|
|
A078680
|
|
Smallest m > 0 such that n*2^m + 1 is prime, or 0 if no such m exists.
|
|
4
|
|
|
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 6, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 8, 3, 1, 2, 1, 1, 2, 5, 1, 4, 1, 3, 2, 1, 2, 8, 583, 1, 2, 1, 1, 6, 1, 1, 4, 1, 2, 2, 5, 2, 4, 7, 1, 2, 1, 5, 2, 1, 1, 2, 3, 3, 2, 1, 1, 4, 3, 1, 2, 3, 1, 10, 1, 2, 4, 1, 2, 2, 1, 1, 8, 7, 2, 582, 1, 1, 2, 1, 1, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Sierpiński proved that a(n)=0 for an infinite number of n. The first proven zero is n=78557. There is a conjecture that the first zero is n=65536 (which is equivalent to the statement that 2^(2^k)+1 is composite for k>4). - T. D. Noe, Feb 25 2011 [Edited by Jeppe Stig Nielsen, Jul 01 2020]
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind
|
|
MAPLE
|
A078680 := proc(n) for m from 1 do if isprime(n*2^m+1) then return m; end if; end do: end proc:
seq(A078680(n), n=1..30) ; # R. J. Mathar, Feb 25 2011
|
|
MATHEMATICA
|
Table[m=1; While[! PrimeQ[n*2^m+1], m++]; m, {n, 100}] (* T. D. Noe, Feb 25 2011 *)
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, m=1; while(isprime(n*2^m+1)==0, m++); m)
|
|
CROSSREFS
|
Cf. A050412, A040076, A078683 (primes n*2^m+1).
Sequence in context: A204901 A016014 A067760 * A296072 A326700 A050412
Adjacent sequences: A078677 A078678 A078679 * A078681 A078682 A078683
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Dec 17 2002
|
|
EXTENSIONS
|
Offset corrected by Jaroslav Krizek, Feb 13 2011
|
|
STATUS
|
approved
|
|
|
|