login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078680 Smallest m > 0 such that n*2^m + 1 is prime, or 0 if no such m exists. 4
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 6, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 8, 3, 1, 2, 1, 1, 2, 5, 1, 4, 1, 3, 2, 1, 2, 8, 583, 1, 2, 1, 1, 6, 1, 1, 4, 1, 2, 2, 5, 2, 4, 7, 1, 2, 1, 5, 2, 1, 1, 2, 3, 3, 2, 1, 1, 4, 3, 1, 2, 3, 1, 10, 1, 2, 4, 1, 2, 2, 1, 1, 8, 7, 2, 582, 1, 1, 2, 1, 1, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sierpiński proved that a(n)=0 for an infinite number of n. The first proven zero is n=78557. There is a conjecture that the first zero is n=65536 (which is equivalent to the statement that 2^(2^k)+1 is composite for k>4). - T. D. Noe, Feb 25 2011 [Edited by Jeppe Stig Nielsen, Jul 01 2020]

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind

MAPLE

A078680 := proc(n) for m from 1 do if isprime(n*2^m+1) then return m; end if; end do: end proc:

seq(A078680(n), n=1..30) ; # R. J. Mathar, Feb 25 2011

MATHEMATICA

Table[m=1; While[! PrimeQ[n*2^m+1], m++]; m, {n, 100}] (* T. D. Noe, Feb 25 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, m=1; while(isprime(n*2^m+1)==0, m++); m)

CROSSREFS

Cf. A050412, A040076, A078683 (primes n*2^m+1).

Sequence in context: A204901 A016014 A067760 * A296072 A326700 A050412

Adjacent sequences: A078677 A078678 A078679 * A078681 A078682 A078683

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Dec 17 2002

EXTENSIONS

Offset corrected by Jaroslav Krizek, Feb 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 2 00:37 EST 2023. Contains 359186 sequences. (Running on oeis4.)