login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080076 Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1. 18
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Named after the French farmer and self-taught mathematician François Proth (1852-1879). - Amiram Eldar, Jun 05 2021

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

Chris K. Caldwell's The Top Twenty, Proth.

Bertalan Borsos, Attila Kovács and Norbert Tihanyi, Tight upper and lower bounds for the reciprocal sum of Proth primes, The Ramanujan Journal (2022).

James Grime and Brady Haran, 78557 and Proth Primes, Numberphile video, 2017.

Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.

Max Lewis and Victor Scharaschkin, k-Lehmer and k-Carmichael Numbers, Integers, Vol. 16 (2016), #A80.

Rogério Paludo and Leonel Sousa, Number Theoretic Transform Architecture suitable to Lattice-based Fully-Homomorphic Encryption, 2021 IEEE 32nd Int'l Conf. Appl.-specific Sys., Architectures and Processors (ASAP) 163-170.

François Proth, Théorèmes sur les nombres premiers, Comptes rendus de l'Académie des Sciences de Paris, Vol. 87 (1878), p. 926.

Tsz-Wo Sze, Deterministic Primality Proving on Proth Numbers, arXiv:0812.2596 [math.NT], 2009.

Eric Weisstein's World of Mathematics, Proth Prime.

Wikipedia, Proth prime.

FORMULA

Conjecture: a(n) ~ (n log n)^2 / 2. - Thomas Ordowski, Oct 19 2014

Sum_{n>=1} 1/a(n) is in the interval (0.7473924793, 0.7473924795) (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022

MAPLE

N:= 20000: # to get all terms <= N

S:= select(isprime, {seq(seq(k*2^m+1, k = 1 .. min(2^m, (N-1)/2^m), 2), m=1..ilog2(N-1))}):

sort(convert(S, list)); # Robert Israel, Feb 02 2016

MATHEMATICA

r[p_, n_] := Reduce[p == (2*m + 1)*2^n + 1 && 2^n > 2*m + 1 && n > 0 && m >= 0, {a, m}, Integers]; r[p_] := Catch[ Do[ If[ r[p, n] =!= False, Throw[True]], {n, 1, Floor[Log[2, p]]}]]; A080076 = Reap[ Do[ p = Prime[k]; If[ r[p] === True, Sow[p]], {k, 1, 2000}]][[2, 1]] (* Jean-François Alcover, Apr 06 2012 *)

nn = 13; Union[Flatten[Table[Select[1 + 2^n Range[1, 2^Min[n, nn - n + 1], 2], # < 2^(nn + 1) && PrimeQ[#] &], {n, nn}]]] (* T. D. Noe, Apr 06 2012 *)

PROG

(PARI) is_A080076(N)=isproth(N)&&isprime(N) \\ see A080075 for isproth(). - M. F. Hasler, Oct 18 2014

next_A080076(N)={until(isprime(N=next_A080075(N)), ); N}

A080076_first(N)=vector(N, i, N=if(i>1, next_A080076(N), 3)) \\ M. F. Hasler, Jul 07 2022, following a suggestion from Bill McEachen

CROSSREFS

Cf. A080075.

Cf. A134876 (number of Proth primes), A214120, A239234.

Cf. A248972.

Sequence in context: A180008 A089996 A307512 * A128339 A147506 A282960

Adjacent sequences: A080073 A080074 A080075 * A080077 A080078 A080079

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Jan 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 2 00:37 EST 2023. Contains 359186 sequences. (Running on oeis4.)