login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018844 Arises from generalized Lucas-Lehmer test for primality. 3
4, 10, 52, 724, 970, 10084, 95050, 140452, 1956244, 9313930, 27246964, 379501252, 912670090, 5285770564, 73621286644, 89432354890, 1025412242452, 8763458109130, 14282150107684, 198924689265124 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Apparently this was suggested by an article by R. M. Robinson.

Starting values for Lucas-Lehmer test that result in a zero term (mod Mersenne prime Mp) after P-1 steps. - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004

m belongs to the sequence iff m-2 is twice a square and m+2 is either three or six times a square. - René Gy, Jan 10 2019

LINKS

Jeppe Stig Nielsen, Table of n, a(n) for n = 1..1370

D. H. Lehmer, An Extended Theory of Lucas' Functions, Ann. Math. 31 (1930), 419-448. See p. 445.

Herb Savage et al., Re: Mersenne: starting values for LL-test

FORMULA

Union of sequences a_1=4, a_2=52, a_{n}=14*a_{n-1} - a_{n-2} and b_1=10, b_2=970, b_{n}=98*b_{n-1} - b_{n-2}.

a[1]=14 (mod Mp), a[2]=52 (mod Mp), a[n]=(14*a[n-1]-a[n-2]) (mod Mp). - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004

Though originally noted as the union of two sequences, when the first sequence (14*a[n-1]-a[n-2]) is evaluated modulo a Mersenne prime, the terms of the second sequence (98*b[n-1]-b[n-2]) will occur naturally (just not in numerical order). - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004

a(n) = sqrt(A206257(n) + 2). [Arkadiusz Wesolowski, Feb 08 2012]

PROG

(PARI) listUpTo(n)=a=List([4, 52]); while(1, m=14*a[#a]-a[#a-1]; m>n&&break(); listput(a, m)); b=List([10, 970]); while(1, m=98*b[#b]-b[#b-1]; m>n&&break(); listput(b, m)); setunion(Set(a), Set(b)) \\ Jeppe Stig Nielsen, Aug 03 2020

CROSSREFS

Sequence in context: A208236 A032495 A109387 * A007027 A192444 A197902

Adjacent sequences: A018841 A018842 A018843 * A018845 A018846 A018847

KEYWORD

easy,nonn

AUTHOR

Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 2 00:37 EST 2023. Contains 359186 sequences. (Running on oeis4.)