login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006972 Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.
(Formerly M5450)
48
399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015

Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020

A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Paolo P. Lava and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 550 terms from Paolo P. Lava)

Ed Copeland and Brady Haran, Something special about 399, Numberphile video (2015)

Wikipedia, Lucas-Carmichael number

Thomas Wright, There are infinitely many elliptic Carmichael numbers

Thomas Wright, There are infinitely many elliptic Carmichael numbers, arXiv:1609.00231 [math.NT], 2016.

Index entries for sequences related to Carmichael numbers.

MAPLE

with(numtheory):

a:= proc(n) option remember; local k; for k from 1+

`if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)

or add(irem(k+1, i+1), i=factorset(k))>0 do od; k

end:

seq(a(n), n=1..15); # Alois P. Heinz, Apr 05 2018

MATHEMATICA

Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]

PROG

(PARI) is(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1 \\ Charles R Greathouse IV, Sep 23 2012

CROSSREFS

Intersection of A024556 and A056729.

Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).

Cf. A216929, A322702.

Sequence in context: A158317 A227008 A253597 * A216925 A292573 A299213

Adjacent sequences: A006969 A006970 A006971 * A006973 A006974 A006975

KEYWORD

nonn

AUTHOR

Richard Pinch and Jeffrey Shallit

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 2 00:11 EST 2023. Contains 359186 sequences. (Running on oeis4.)