login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094535 a(n) is the smallest integer m such that A039995(m)=n. 3
1, 2, 13, 23, 113, 131, 137, 1013, 1031, 1273, 1237, 1379, 6173, 10139, 10193, 10379, 10397, 10937, 12397, 12379, 36137, 36173, 101397, 102371, 101937, 102973, 103917, 106937, 109371, 109739, 123797, 123917, 123719, 346137, 193719, 346173 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Giovanni Resta, Table of n, a(n) for n = 0..500 (first 101 terms from Reinhard Zumkeller)

Carlos Rivera, Puzzle 265. Primes embedded, The Prime Puzzles & Problems Connection.

Reinhard Zumkeller, Illustration of initial terms

FORMULA

A039995(a(n)) = n and A039995(m) != n for m < a(n). - Reinhard Zumkeller, Feb 01 2012

EXAMPLE

a(6) = 137 because 137 is the smallest number m such that A039995(m) = 6; the six numbers 3, 7, 13, 17, 37 & 137 are primes.

See also A205956 for a(100) = 39467139.

MATHEMATICA

cnt[n_] := Count[ PrimeQ@ Union[ FromDigits /@ Subsets[ IntegerDigits[n]]], True]; a[n_] := Block[{k = 1}, While[cnt[k] != n, k++]; k]; Array[a, 21, 0] (* Giovanni Resta, Jun 16 2017 *)

PROG

(Haskell)

import Data.List (elemIndex)

import Data.Maybe (fromJust)

a094535 n = a094535_list !! n

a094535_list = map ((+ 1) . fromJust . (`elemIndex` a039995_list)) [0..]

-- Reinhard Zumkeller, Feb 01 2012

(Python)

from sympy import isprime

from itertools import chain, combinations as combs, count, islice

def powerset(s): # nonempty subsets of s

return chain.from_iterable(combs(s, r) for r in range(1, len(s)+1))

def A039995(n):

ss = set(int("".join(s)) for s in powerset(str(n)))

return sum(1 for k in ss if isprime(k))

def agen():

adict, n = dict(), 0

for k in count(1):

v = A039995(k)

if v not in adict: adict[v] = k

while n in adict: yield adict[n]; n += 1

print(list(islice(agen(), 36))) # Michael S. Branicky, Aug 07 2022

CROSSREFS

Cf. A039995, A093301, A039997.

Cf. A205956.

Sequence in context: A215390 A285789 A090528 * A035244 A085822 A213321

Adjacent sequences: A094532 A094533 A094534 * A094536 A094537 A094538

KEYWORD

base,nonn

AUTHOR

Farideh Firoozbakht, May 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 1 03:21 EST 2023. Contains 359177 sequences. (Running on oeis4.)