THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Fri Dec 30 07:39:08 PM CST 2022) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13d 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 14e 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 15 202705*2^21320516+1 6418121 L5181 2021 16 2^20996011-1 6320430 G6 2003 Mersenne 40 17 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 18 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 19f 7*2^20267500+1 6101127 L4965 2022 20 168451*2^19375200+1 5832522 L4676 2017 21f 69*2^19374980-1 5832452 L4965 2022 22 3*2^18924988-1 5696990 L5530 2022 23 69*2^18831865-1 5668959 L4965 2021 24 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 25 3*2^18196595-1 5477722 L5461 2022 26 3*2^17748034-1 5342692 L5404 2021 27 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 28 3622*5^7558139-1 5282917 L4965 2022 29 7*6^6772401+1 5269954 L4965 2019 30 8508301*2^17016603-1 5122515 L4784 2018 Woodall 31 3*2^16819291-1 5063112 L5230 2021 32 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 33 69*2^15866556-1 4776312 L4965 2021 34 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 35b 37*2^15474010+1 4658143 L4965 2022 36b 93839*2^15337656-1 4617100 L4965 2022 37 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 38 6*5^6546983+1 4576146 L4965 2020 39 69*2^14977631-1 4508719 L4965 2021 40 192971*2^14773498-1 4447272 L4965 2021 41f 4*5^6181673-1 4320805 L4965 2022 42 6962*31^2863120-1 4269952 L5410 2020 43 37*2^14166940+1 4264676 L4965 2022 44 99739*2^14019102+1 4220176 L5008 2019 45 69*2^13832885-1 4164116 L4965 2022 46 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 47d 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 48c 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 49 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 50 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 51 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 52c 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 53 2^13466917-1 4053946 G5 2001 Mersenne 39 54 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 55 206039*2^13104952-1 3944989 L4965 2021 56 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 57 19249*2^13018586+1 3918990 SB10 2007 58 2293*2^12918431-1 3888839 L4965 2021 59d 81*2^12804541+1 3854553 L4965 2022 60 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 61 69*2^12231580-1 3682075 L4965 2021 62 27*2^12184319+1 3667847 L4965 2021 63f 3761*2^11978874-1 3606004 L4965 2022 64 3*2^11895718-1 3580969 L4159 2015 65 37*2^11855148+1 3568757 L4965 2022 66a 5897794^524288+1 3549792 x50 2022 Generalized Fermat 67 3*2^11731850-1 3531640 L4103 2015 68 69*2^11718455-1 3527609 L4965 2020 69 41*2^11676439+1 3514960 L4965 2022 70 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 71e 81*2^11616017+1 3496772 L4965 2022 72 69*2^11604348-1 3493259 L4965 2020 73 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 74 3*2^11484018-1 3457035 L3993 2014 75 193997*2^11452891+1 3447670 L4398 2018 76 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 77 9221*2^11392194-1 3429397 L5267 2021 78 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 79 5*2^11355764-1 3418427 L4965 2021 80 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 81 146561*2^11280802-1 3395865 L5181 2020 82 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 83f 6929*2^11255424-1 3388225 L4965 2022 84 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 85 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 86 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 87 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 88 9271*2^11134335-1 3351773 L4965 2021 89 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 90 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 91 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 92 27*2^10902757-1 3282059 L4965 2022 93 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 94 11*2^10803449+1 3252164 L4965 2022 95 11*2^10797109+1 3250255 L4965 2022 96 7*2^10612737-1 3194754 L4965 2022 97 37*2^10599476+1 3190762 L4965 2022 98 5*2^10495620-1 3159498 L4965 2021 99 5*2^10349000-1 3115361 L4965 2021 100 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 101 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 102 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 103 475856^524288+1 2976633 L3230 2012 Generalized Fermat 104a 2*3^6236772+1 2975697 L4965 2022 105 9*2^9778263+1 2943552 L4965 2020 106 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 107 356926^524288+1 2911151 L3209 2012 Generalized Fermat 108 341112^524288+1 2900832 L3184 2012 Generalized Fermat 109b 213988*5^4138363-1 2892597 L5621 2022 110 43*2^9596983-1 2888982 L4965 2022 111 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 112 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 113d 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 114 27653*2^9167433+1 2759677 SB8 2005 115 90527*2^9162167+1 2758093 L1460 2010 116 6795*2^9144320-1 2752719 L4965 2021 117 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 118e 57*2^9075622-1 2732037 L4965 2022 119 63838*5^3887851-1 2717497 L5558 2022 120 13*2^8989858+1 2706219 L4965 2020 121 4159*2^8938471-1 2690752 L4965 2022 122 273809*2^8932416-1 2688931 L1056 2017 123 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 124 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 125 2038*366^1028507-1 2636562 L2054 2016 126 64598*5^3769854-1 2635020 L5427 2022 127 8*785^900325+1 2606325 L4786 2022 128 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 129 75898^524288+1 2558647 p334 2011 Generalized Fermat 130 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 131 39*2^8413422+1 2532694 L5232 2021 132 31*2^8348000+1 2513000 L5229 2021 133 27*2^8342438-1 2511326 L3483 2021 134 3687*2^8261084-1 2486838 L4965 2021 135 273662*5^3493296-1 2441715 L5444 2021 136d 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 137 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 138 102818*5^3440382-1 2404729 L5427 2021 139 11*2^7971110-1 2399545 L2484 2019 140 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 141 3177*2^7954621-1 2394584 L4965 2021 142 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 143 7*6^3072198+1 2390636 L4965 2019 144 3765*2^7904593-1 2379524 L4965 2021 145 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 146b 5113*2^7895471-1 2376778 L4965 2022 147 861*2^7895451-1 2376771 L4965 2021 148 28433*2^7830457+1 2357207 SB7 2004 149e 2589*2^7803339-1 2349043 L4965 2022 150 5*2^7755002-1 2334489 L4965 2021 151b 2945*2^7753232-1 2333959 L4965 2022 152 2545*2^7732265-1 2327648 L4965 2021 153 5539*2^7730709-1 2327180 L4965 2021 154 4817*2^7719584-1 2323831 L4965 2021 155 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 156 9467*2^7680034-1 2311925 L4965 2022 157 45*2^7661004+1 2306194 L5200 2020 158 15*2^7619838+1 2293801 L5192 2020 159 3597*2^7580693-1 2282020 L4965 2021 160 7401*2^7523295-1 2264742 L4965 2021 161 45*2^7513661+1 2261839 L5179 2020 162 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 163e 1875*2^7474308-1 2249995 L4965 2022 164f 4*5^3189669-1 2229484 L4965 2022 165 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 166b 3197*2^7359542-1 2215447 L4965 2022 167 109838*5^3168862-1 2214945 L5129 2020 168 101*2^7345194-1 2211126 L1884 2019 169 15*2^7300254+1 2197597 L5167 2020 170 422429!+1 2193027 p425 2022 Factorial 171 1759*2^7284439-1 2192838 L4965 2021 172 737*2^7269322-1 2188287 L4665 2017 173 118568*5^3112069+1 2175248 L690 2020 174 6039*2^7207973-1 2169820 L4965 2021 175 502573*2^7181987-1 2162000 L3964 2014 176 402539*2^7173024-1 2159301 L3961 2014 177 3343*2^7166019-1 2157191 L1884 2016 178 161041*2^7107964+1 2139716 L4034 2015 179 27*2^7046834+1 2121310 L3483 2018 180 1759*2^7046791-1 2121299 L4965 2021 181 327*2^7044001-1 2120459 L4965 2021 182 5*2^7037188-1 2118406 L4965 2021 183 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 184 33661*2^7031232+1 2116617 SB11 2007 185 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 186 207494*5^3017502-1 2109149 L5083 2020 187 15*2^6993631-1 2105294 L4965 2021 188 8943501*2^6972593-1 2098967 L466 2022 189d 6020095*2^6972593-1 2098967 L466 2022 190 2^6972593-1 2098960 G4 1999 Mersenne 38 191b 273*2^6963847-1 2096330 L4965 2022 192 6219*2^6958945-1 2094855 L4965 2021 193 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 194 238694*5^2979422-1 2082532 L5081 2020 195 4*72^1119849-1 2079933 L4444 2016 196 33*2^6894190-1 2075360 L4965 2021 197 2345*2^6882320-1 2071789 L4965 2022 198 146264*5^2953282-1 2064261 L1056 2020 199 69*2^6838971-1 2058738 L5037 2020 200 35816*5^2945294-1 2058677 L5076 2020 201 127*2^6836153-1 2057890 L1862 2018 202 19*2^6833086+1 2056966 L5166 2020 203 40597*2^6808509-1 2049571 L3749 2013 204 283*2^6804731-1 2048431 L2484 2020 205 1861709*2^6789999+1 2044000 L5191 2020 206 5781*2^6789459-1 2043835 L4965 2021 207 8435*2^6786180-1 2042848 L4965 2021 208 51*2^6753404+1 2032979 L4965 2020 209 9995*2^6711008-1 2020219 L4965 2020 210 39*2^6684941+1 2012370 L5162 2020 211 6679881*2^6679881+1 2010852 L917 2009 Cullen 212 37*2^6660841-1 2005115 L3933 2014 213 39*2^6648997+1 2001550 L5161 2020 214 304207*2^6643565-1 1999918 L3547 2013 215 69*2^6639971-1 1998833 L5037 2020 216 6471*2^6631137-1 1996175 L4965 2021 217 1319*2^6506224-1 1958572 L4965 2021 218 322498*5^2800819-1 1957694 L4954 2019 219 88444*5^2799269-1 1956611 L3523 2019 220 13*2^6481780+1 1951212 L4965 2020 221 21*2^6468257-1 1947141 L4965 2021 222 138514*5^2771922+1 1937496 L4937 2019 223 33*2^6432160-1 1936275 L4965 2022 224 15*2^6429089-1 1935350 L4965 2021 225 398023*2^6418059-1 1932034 L3659 2013 226 631*2^6359347-1 1914357 L4965 2021 227c 4965*2^6356707-1 1913564 L4965 2022 228 1995*2^6333396-1 1906546 L4965 2021 229 1582137*2^6328550+1 1905090 L801 2009 Cullen 230a 18395930^262144+1 1904404 x50 2022 Generalized Fermat 231a 17191822^262144+1 1896697 x50 2022 Generalized Fermat 232b 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 233d 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 234 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 235e 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 236f 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 237 3303*2^6264946-1 1885941 L4965 2021 238 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 239 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 240 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 241 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 242 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 243 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 244 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 245 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 246 7*6^2396573+1 1864898 L4965 2019 247 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 248 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 249 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 250 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 251 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 252 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 253 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 254 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 255 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 256 194368*5^2638045-1 1843920 L690 2018 257 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 258 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 259 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 260 66916*5^2628609-1 1837324 L690 2018 261 3*2^6090515-1 1833429 L1353 2010 262 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 263 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 264 8349*2^6082397-1 1830988 L4965 2021 265 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 266 32*470^683151+1 1825448 L4064 2021 267 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 268 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 269 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 270 9999*2^6037057-1 1817340 L4965 2021 271 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 272 33*2^6019138-1 1811943 L4965 2022 273 1583*2^5989282-1 1802957 L4036 2015 274 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 275 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 276 327926*5^2542838-1 1777374 L4807 2018 277 81556*5^2539960+1 1775361 L4809 2018 278 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 279 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 280 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 281 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 282 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 283 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 284 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 285 7*2^5775996+1 1738749 L3325 2012 286 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 287 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 288 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 289 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 290 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 291 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 292 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 293 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 294 1243*2^5686715-1 1711875 L1828 2016 295 25*2^5658915-1 1703505 L1884 2021 296 41*2^5651731+1 1701343 L1204 2020 297 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 298 9*2^5642513+1 1698567 L3432 2013 299 10*3^3550446+1 1693995 L4965 2020 300 2622*11^1621920-1 1689060 L2054 2015 301e 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 302 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 303 301562*5^2408646-1 1683577 L4675 2017 304 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 305 171362*5^2400996-1 1678230 L4669 2017 306 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 307 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 308 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 309 252191*2^5497878-1 1655032 L3183 2012 310 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 311 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 312 258317*2^5450519+1 1640776 g414 2008 313 7*6^2104746+1 1637812 L4965 2019 314 5*2^5429494-1 1634442 L3345 2017 315 43*2^5408183-1 1628027 L1884 2018 316 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 317f 2*296598^296598-1 1623035 L4965 2022 318 1349*2^5385004-1 1621051 L1828 2017 319 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 320 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 321 45*2^5308037+1 1597881 L4761 2019 322b 5468*70^864479-1 1595053 L5410 2022 323 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 324 7*2^5229669-1 1574289 L4965 2021 325 180062*5^2249192-1 1572123 L4435 2016 326 124125*6^2018254+1 1570512 L4001 2019 327 27*2^5213635+1 1569462 L3760 2015 328 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 329 308084!+1 1557176 p425 2022 Factorial 330 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 331 25*2^5152151-1 1550954 L1884 2020 332 53546*5^2216664-1 1549387 L4398 2016 333 773620^262144+1 1543643 L3118 2012 Generalized Fermat 334 39*2^5119458+1 1541113 L1204 2019 335 607*26^1089034+1 1540957 L5410 2021 336e 81*2^5115131+1 1539810 L4965 2022 337 223*2^5105835-1 1537012 L2484 2019 338 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 339e 81*2^5100331+1 1535355 L4965 2022 340 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 341 51*2^5085142-1 1530782 L760 2014 342 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 343 676754^262144+1 1528413 L2975 2012 Generalized Fermat 344 296024*5^2185270-1 1527444 L671 2016 345 5359*2^5054502+1 1521561 SB6 2003 346 13*2^4998362+1 1504659 L3917 2014 347 525094^262144+1 1499526 p338 2012 Generalized Fermat 348 92158*5^2145024+1 1499313 L4348 2016 349 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 350 77072*5^2139921+1 1495746 L4340 2016 351 2*3^3123036+1 1490068 L5043 2020 352 519397*2^4908893-1 1477730 L5410 2022 353 306398*5^2112410-1 1476517 L4274 2016 354 265711*2^4858008+1 1462412 g414 2008 355 154222*5^2091432+1 1461854 L3523 2015 356 1271*2^4850526-1 1460157 L1828 2012 357 333*2^4846958-1 1459083 L5546 2022 358 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 359 361658^262144+1 1457075 p332 2011 Generalized Fermat 360 100186*5^2079747-1 1453686 L4197 2015 361 288465!+1 1449771 p3 2022 Factorial 362 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 363 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 364 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 365 653*10^1435026-1 1435029 p355 2014 366 197*2^4765318-1 1434506 L5175 2021 367 188*468^535963+1 1431156 L4832 2019 368a 1809*2^4752792-1 1430737 L4965 2022 369a 2427*2^4749044-1 1429609 L4965 2022 370a 2259*2^4746735-1 1428913 L4965 2022 371a 2223*2^4729304-1 1423666 L4965 2022 372a 1851*2^4727663-1 1423172 L4965 2022 373a 1725*2^4727375-1 1423085 L4965 2022 374a 1611*2^4724014-1 1422074 L4965 2022 375a 1383*2^4719270-1 1420645 L4965 2022 376a 1749*2^4717431-1 1420092 L4965 2022 377a 2325*2^4713991-1 1419057 L4965 2022 378 3267113#-1 1418398 p301 2021 Primorial 379 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 380a 2337*2^4705660-1 1416549 L4965 2022 381 1229*2^4703492-1 1415896 L1828 2018 382 144052*5^2018290+1 1410730 L4146 2015 383 195*2^4685711-1 1410542 L5175 2021 384 9*2^4683555-1 1409892 L1828 2012 385 31*2^4673544+1 1406879 L4990 2019 386 34*993^469245+1 1406305 L4806 2018 387 79*2^4658115-1 1402235 L1884 2018 388 39*2^4657951+1 1402185 L1823 2019 389 4*650^498101-1 1401116 L4294 2021 390 11*2^4643238-1 1397755 L2484 2014 391 68*995^465908-1 1396712 L4001 2017 392 7*6^1793775+1 1395830 L4965 2019 393 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 394 27*2^4583717-1 1379838 L2992 2014 395 121*2^4553899-1 1370863 L3023 2012 396f 9473*2^4543680-1 1367788 L5037 2022 397 27*2^4542344-1 1367384 L1204 2014 398 29*2^4532463+1 1364409 L4988 2019 399 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 400 145310^262144+1 1353265 p314 2011 Generalized Fermat 401 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 402a 303*2^4471002-1 1345909 L5545 2022 403 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 404 36772*6^1723287-1 1340983 L1301 2014 405 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 406 151*2^4424321-1 1331856 L1884 2016 407 195*2^4373994-1 1316706 L5175 2020 408 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 409 49*2^4365175-1 1314051 L1959 2017 410 49*2^4360869-1 1312755 L1959 2017 411 13*2^4333087-1 1304391 L1862 2018 412 353159*2^4331116-1 1303802 L2408 2011 413 9959*2^4308760-1 1297071 L5037 2022 414 23*2^4300741+1 1294654 L4147 2019 415 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 416 141941*2^4299438-1 1294265 L689 2011 417 612749*2^4254500-1 1280738 L5410 2022 418 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 419 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 420 3*2^4235414-1 1274988 L606 2008 421 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 422 45*436^481613+1 1271213 L5410 2020 423 109208*5^1816285+1 1269534 L3523 2014 424 1091*2^4215518-1 1269001 L1828 2018 425 191*2^4203426-1 1265360 L2484 2012 426 1259*2^4196028-1 1263134 L1828 2016 427 325918*5^1803339-1 1260486 L3567 2014 428 133778*5^1785689+1 1248149 L3903 2014 429e 81*2^4131975+1 1243851 L4965 2022 430 17*2^4107544-1 1236496 L4113 2015 431 24032*5^1768249+1 1235958 L3925 2014 432 172*159^561319-1 1235689 L4001 2017 433 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 434 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 435 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 436 64*425^467857-1 1229712 p268 2021 437 97*2^4066717-1 1224206 L2484 2019 438 1031*2^4054974-1 1220672 L1828 2017 439c 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 440 37*2^4046360+1 1218078 L2086 2019 441 39653*430^460397-1 1212446 L4187 2016 442c 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 443 40734^262144+1 1208473 p309 2011 Generalized Fermat 444 9*2^4005979-1 1205921 L1828 2012 445 12*68^656921+1 1203815 L4001 2016 446 67*688^423893+1 1202836 L4001 2017 447 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 448 (146^276995+1)^2-2 1199030 p405 2022 449 138172*5^1714207-1 1198185 L3904 2014 450 50*383^463313+1 1196832 L2012 2021 451 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 452 29*2^3964697+1 1193495 L1204 2019 453 39*2^3961129+1 1192421 L1486 2019 454 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 455d 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 456a P1174253 1174253 p414 2022 457 22478*5^1675150-1 1170884 L3903 2014 458 1199*2^3889576-1 1170883 L1828 2018 459 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 460e 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 461 94*872^397354+1 1168428 L5410 2019 462 27*2^3855094-1 1160501 L3033 2012 463a 537*2^3853860+1 1160131 L5636 2022 464 164*978^387920-1 1160015 L4700 2018 465a 175*2^3850344+1 1159072 L5226 2022 466a 685*2^3847268+1 1158146 L5226 2022 467a 655*2^3846352+1 1157871 L5282 2022 468a 583*2^3846196+1 1157824 L5226 2022 469a 615*2^3844151+1 1157208 L5226 2022 470b 14772*241^485468-1 1156398 L5410 2022 471a 525*2^3840963+1 1156248 L5613 2022 472a 313*2^3837304+1 1155147 L5298 2022 473 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 474a 431*2^3835247+1 1154528 L5161 2022 475a 97*2^3833722+1 1154068 L5226 2022 476 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 477f 125*392^444161+1 1151839 L4832 2022 478b 255*2^3824348+1 1151246 L5226 2022 479 30*514^424652-1 1151218 L4001 2017 480b 569*2^3823191+1 1150898 L5226 2022 481 24518^262144+1 1150678 g413 2008 Generalized Fermat 482b 563*2^3819237+1 1149708 L5178 2022 483b 345*2^3817949+1 1149320 L5373 2022 484 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 485 241*2^3815727-1 1148651 L2484 2019 486b 351*2^3815467+1 1148573 L5226 2022 487 109*980^383669-1 1147643 L4001 2018 488b 427*2^3811610+1 1147412 L5614 2022 489b 569*2^3810475+1 1147071 L5610 2022 490c 213*2^3807864+1 1146284 L5609 2022 491c 87*2^3806438+1 1145854 L5607 2022 492c 369*2^3805321+1 1145519 L5541 2022 493 123547*2^3804809-1 1145367 L2371 2011 494 2564*75^610753+1 1145203 L3610 2014 495c 539*2^3801705+1 1144430 L5161 2022 496c 159*2^3801463+1 1144357 L5197 2022 497c 235*2^3801284+1 1144303 L5608 2022 498 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 499c 519*2^3800625+1 1144105 L5315 2022 500c 281*2^3798465+1 1143455 L5178 2022 501 166*443^432000+1 1143249 L5410 2020 502c 85*2^3797698+1 1143223 L5161 2022 503 326834*5^1634978-1 1142807 L3523 2014 504c 459*2^3795969+1 1142704 L5161 2022 505d 447*2^3780151+1 1137942 L5596 2022 506d 345*2^3779921+1 1137873 L5557 2022 507d 477*2^3779871+1 1137858 L5197 2022 508d 251*2^3774587+1 1136267 L5592 2022 509d 439*2^3773958+1 1136078 L5557 2022 510 43*182^502611-1 1135939 L4064 2020 511 415267*2^3771929-1 1135470 L2373 2011 512 11*2^3771821+1 1135433 p286 2013 513d 427*2^3768104+1 1134315 L5192 2022 514 1455*2^3768024-1 1134292 L1134 2022 515d 711*2^3767492+1 1134131 L5161 2022 516 265*2^3765189-1 1133438 L2484 2018 517d 297*2^3765140+1 1133423 L5197 2022 518d 381*2^3764189+1 1133137 L5589 2022 519d 115*2^3763650+1 1132974 L5554 2022 520d 411*2^3759067+1 1131595 L5589 2022 521d 405*2^3757192+1 1131031 L5590 2022 522 938237*2^3752950-1 1129757 L521 2007 Woodall 523 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 524e 701*2^3744713+1 1127274 L5554 2022 525 207394*5^1612573-1 1127146 L3869 2014 526 684*10^1127118+1 1127121 L4036 2017 527 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 528 104944*5^1610735-1 1125861 L3849 2014 529 23451*2^3739388+1 1125673 L591 2015 530e 615*2^3738023+1 1125260 L5161 2022 531e 347*2^3737875+1 1125216 L5178 2022 532e 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 533e 375*2^3733510+1 1123902 L5584 2022 534 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 535e 629*2^3731479+1 1123290 L5283 2022 536e 113*2^3728113+1 1122276 L5161 2022 537e 303*2^3725438+1 1121472 L5161 2022 538e 187*2^3723972+1 1121030 L5178 2022 539 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 540e 105*2^3720512+1 1119988 L5493 2022 541e 447*2^3719024+1 1119541 L5493 2022 542e 177*2^3717746+1 1119156 L5279 2022 543 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 544e 123*2^3716758+1 1118858 L5563 2022 545e 313*2^3716716+1 1118846 L5237 2022 546e 367*2^3712952+1 1117713 L5264 2022 547e 53*2^3709297+1 1116612 L5197 2022 548 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 549e 395*2^3701693+1 1114324 L5536 2022 550e 589*2^3699954+1 1113800 L5576 2022 551 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 552 119*2^3698412-1 1113336 L2484 2018 553f 391*2^3693728+1 1111926 L5493 2022 554f 485*2^3688111+1 1110235 L5237 2022 555f 341*2^3686613+1 1109784 L5573 2022 556f 87*2^3686558+1 1109767 L5573 2022 557f 675*2^3682616+1 1108581 L5231 2022 558f 569*2^3682167+1 1108446 L5488 2022 559 330286*5^1584399-1 1107453 L3523 2014 560 34*951^371834-1 1107391 L5410 2019 561 45*2^3677787+1 1107126 L1204 2019 562f 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 563 13*2^3675223-1 1106354 L1862 2016 564 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 565f 463*2^3671262+1 1105163 L5524 2022 566f 735*2^3670991+1 1105082 L5575 2022 567f 475*2^3670046+1 1104797 L5524 2022 568 15*2^3668194-1 1104238 L3665 2013 569f 273*2^3665736+1 1103499 L5192 2022 570 13*2^3664703-1 1103187 L1862 2016 571 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 572f 609*2^3662931+1 1102655 L5573 2022 573 118*892^373012+1 1100524 L5071 2020 574 33300*430^417849-1 1100397 L4393 2016 575f 655*2^3653008+1 1099668 L5574 2022 576c 291*268^452750-1 1099341 L5410 2022 577 33*2^3649810+1 1098704 L4958 2019 578f 295*2^3642206+1 1096416 L5161 2022 579 989*2^3640585+1 1095929 L5115 2020 580 567*2^3639287+1 1095538 L4959 2019 581 639*2^3635707+1 1094460 L1823 2019 582 753*2^3631472+1 1093185 L1823 2019 583f 2*205731^205731-1 1093111 L4965 2022 584 65531*2^3629342-1 1092546 L2269 2011 585 1121*2^3629201+1 1092502 L4761 2019 586 215*2^3628962-1 1092429 L2484 2018 587 113*2^3628034-1 1092150 L2484 2014 588 1175*2^3627541+1 1092002 L4840 2019 589 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 590 951*2^3623185+1 1090691 L1823 2019 591 29*920^367810-1 1090113 L4064 2015 592 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 593 485*2^3618563+1 1089299 L3924 2019 594 95*2^3614033+1 1087935 L1474 2019 595 1005*2^3612300+1 1087414 L1823 2019 596 861*2^3611815+1 1087268 L1745 2019 597 1087*2^3611476+1 1087166 L4834 2019 598 485767*2^3609357-1 1086531 L622 2008 599 675*2^3606447+1 1085652 L3278 2019 600 669*2^3606266+1 1085598 L1675 2019 601 65077*2^3605944+1 1085503 L4685 2020 602 1365*2^3605491+1 1085365 L1134 2022 603 851*2^3604395+1 1085034 L2125 2019 604 1143*2^3602429+1 1084443 L4754 2019 605 1183*2^3601898+1 1084283 L1823 2019 606 189*2^3596375+1 1082620 L3760 2016 607 1089*2^3593267+1 1081685 L3035 2019 608 19581121*2^3589357-1 1080512 p49 2022 609 1101*2^3589103+1 1080431 L1823 2019 610 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 611 275*2^3585539+1 1079358 L3803 2016 612 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 613 651*2^3579843+1 1077643 L3035 2018 614 583*2^3578402+1 1077210 L3035 2018 615 309*2^3577339+1 1076889 L4406 2016 616 1185*2^3574583+1 1076060 L4851 2018 617 251*2^3574535+1 1076045 L3035 2016 618 1485*2^3574333+1 1075985 L1134 2022 619 1019*2^3571635+1 1075173 L1823 2018 620 119*2^3571416-1 1075106 L2484 2018 621 35*2^3570777+1 1074913 L2891 2014 622 33*2^3570132+1 1074719 L2552 2014 623 5*2^3569154-1 1074424 L503 2009 624 81*492^399095-1 1074352 L4001 2015 625 22934*5^1536762-1 1074155 L3789 2014 626 265*2^3564373-1 1072986 L2484 2018 627 771*2^3564109+1 1072907 L2125 2018 628 381*2^3563676+1 1072776 L4190 2016 629 555*2^3563328+1 1072672 L4850 2018 630 1183*2^3560584+1 1071846 L1823 2018 631 415*2^3559614+1 1071554 L3035 2016 632 1103*2^3558176-1 1071121 L1828 2018 633 1379*2^3557072-1 1070789 L1828 2018 634 681*2^3553141+1 1069605 L3035 2018 635 599*2^3551793+1 1069200 L3824 2018 636 621*2^3551472+1 1069103 L4687 2018 637 773*2^3550373+1 1068772 L1808 2018 638 1199*2^3548380-1 1068172 L1828 2018 639 191*2^3548117+1 1068092 L4203 2015 640 867*2^3547711+1 1067971 L4155 2018 641 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 642 351*2^3545752+1 1067381 L4082 2016 643 93*2^3544744+1 1067077 L1728 2014 644 1159*2^3543702+1 1066764 L1823 2018 645 178658*5^1525224-1 1066092 L3789 2014 646 1085*2^3539671+1 1065551 L3035 2018 647 465*2^3536871+1 1064707 L4459 2016 648 1019*2^3536312-1 1064539 L1828 2012 649 1179*2^3534450+1 1063979 L3035 2018 650 447*2^3533656+1 1063740 L4457 2016 651 1059*2^3533550+1 1063708 L1823 2018 652 345*2^3532957+1 1063529 L4314 2016 653 553*2^3532758+1 1063469 L1823 2018 654 543131*2^3529754-1 1062568 L4925 2022 655 141*2^3529287+1 1062424 L4185 2015 656 13*2^3527315-1 1061829 L1862 2016 657 1393*2^3525571-1 1061306 L1828 2017 658 1071*2^3523944+1 1060816 L1675 2018 659a 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 660a 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 661a 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 662a 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 663a 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 664a 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 665a 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 666a 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 667a 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 668 329*2^3518451+1 1059162 L1823 2016 669 135*2^3518338+1 1059128 L4045 2015 670a 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 671 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 672a 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 673 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 674a 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 675a 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 676a 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 677b 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 678b 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 679b 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 680 599*2^3515959+1 1058412 L1823 2018 681b 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 682b 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 683b 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 684b 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 685b 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 686b 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 687b 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 688b 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 689b 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 690b 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 691c 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 692 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 693c 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 694c 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 695c 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 696c 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 697 1135*2^3510890+1 1056887 L1823 2018 698c 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 699d 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 700d 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 701d 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 702d 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 703d 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 704e 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 705e 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 706e 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 707e 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 708e 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 709e 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 710e 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 711e 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 712f 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 713f 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 714f 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 715f 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 716f 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 717f 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 718f 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 719 428639*2^3506452-1 1055553 L2046 2011 720f 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 721f 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 722f 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 723f 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 724f 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 725 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 726 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 727 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 728 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 729 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 730 104*383^408249+1 1054591 L2012 2021 731 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 732 555*2^3502765+1 1054441 L1823 2018 733 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 734 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 735 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 736 643*2^3501974+1 1054203 L1823 2018 737 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 738 1159*2^3501490+1 1054057 L2125 2018 739 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 740 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 741 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 742 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 743 1189*2^3499042+1 1053320 L4724 2018 744 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 745 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 746 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 747 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 748 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 749 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 750 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 751 609*2^3497474+1 1052848 L1823 2018 752 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 753 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 754 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 755 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 756 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 757 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 758 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 759 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 760 87*2^3496188+1 1052460 L1576 2014 761 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 762 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 763 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 764 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 765 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 766 783*2^3494129+1 1051841 L3824 2018 767 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 768 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 769 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 770 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 771 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 772 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 773 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 774 51*2^3490971+1 1050889 L1823 2014 775 1485*2^3490746+1 1050823 L1134 2021 776 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 777 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 778 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 779 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 780 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 781 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 782 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 783 753*2^3488818+1 1050242 L1823 2018 784 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 785 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 786 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 787 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 788 699*2^3487253+1 1049771 L1204 2018 789 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 790 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 791 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 792 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 793 249*2^3486411+1 1049517 L4045 2015 794 195*2^3486379+1 1049507 L4108 2015 795 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 796 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 797 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 798 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 799 59912*5^1500861+1 1049062 L3772 2014 800 495*2^3484656+1 1048989 L3035 2016 801 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 802 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 803 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 804 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 805 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 806 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 807 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 808 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 809 323*2^3482789+1 1048427 L1204 2016 810 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 811 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 812 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 813 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 814 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 815 1149*2^3481694+1 1048098 L1823 2018 816 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 817 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 818 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 819 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 820 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 821 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 822 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 823 701*2^3479779+1 1047521 L2125 2018 824 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 825 813*2^3479728+1 1047506 L4724 2018 826 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 827 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 828 197*2^3477399+1 1046804 L2125 2015 829 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 830 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 831 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 832 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 833 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 834 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 835 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 836 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 837 491*2^3473837+1 1045732 L4343 2016 838 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 839 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 840 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 841 1061*2^3471354-1 1044985 L1828 2017 842 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 843 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 844 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 845 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 846 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 847 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 848 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 849 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 850 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 851 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 852 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 853 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 854 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 855 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 856 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 857 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 858 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 859 641*2^3464061+1 1042790 L1444 2018 860 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 861 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 862 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 863 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 864 453*2^3461688+1 1042075 L3035 2016 865 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 866 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 867 571*2^3460216+1 1041632 L3035 2018 868 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 869 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 870 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 871 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 872 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 873 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 874 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 875 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 876 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 877 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 878 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 879 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 880 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 881 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 882 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 883 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 884 1155*2^3455254+1 1040139 L4711 2017 885 37292*5^1487989+1 1040065 L3553 2013 886 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 887 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 888 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 889 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 890 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 891 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 892 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 893 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 894 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 895 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 896 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 897 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 898 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 899 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 900 1273*2^3448551-1 1038121 L1828 2012 901 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 902 1065*2^3447906+1 1037927 L4664 2017 903 1155*2^3446253+1 1037429 L3035 2017 904 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 905 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 906 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 907 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 908 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 909 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 910 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 911 943*2^3442990+1 1036447 L4687 2017 912a 5511*2^3442468+1 1036290 L5514 2022 913 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 914a 6329*2^3441717+1 1036064 L5631 2022 915a 3957*2^3441568+1 1036019 L5476 2022 916 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 917a 4191*2^3441427+1 1035977 L5189 2022 918a 2459*2^3441331+1 1035948 L5514 2022 919a 4335*2^3441306+1 1035940 L5178 2022 920a 2331*2^3441249+1 1035923 L5626 2022 921 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 922 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 923 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 924a 2363*2^3440385+1 1035663 L5625 2022 925a 5265*2^3440332+1 1035647 L5421 2022 926a 6023*2^3440241+1 1035620 L5517 2022 927 943*2^3440196+1 1035606 L1448 2017 928a 6663*2^3439901+1 1035518 L5624 2022 929 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 930 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 931 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 932b 5745*2^3439450+1 1035382 L5178 2022 933 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 934b 5109*2^3439090+1 1035273 L5594 2022 935 543*2^3438810+1 1035188 L3035 2017 936 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 937b 3325*2^3438506+1 1035097 L5619 2022 938 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 939 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 940 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 941b 4775*2^3438217+1 1035011 L5618 2022 942 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 943b 6963*2^3437988+1 1034942 L5616 2022 944 74*941^348034-1 1034913 L5410 2020 945b 7423*2^3437856+1 1034902 L5192 2022 946b 6701*2^3437801+1 1034886 L5615 2022 947b 5741*2^3437773+1 1034877 L5517 2022 948 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 949b 5601*2^3437259+1 1034722 L5612 2022 950b 7737*2^3437192+1 1034702 L5611 2022 951 113*2^3437145+1 1034686 L4045 2015 952 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 953b 6387*2^3436719+1 1034560 L5613 2022 954 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 955c 2921*2^3436299+1 1034433 L5231 2022 956c 9739*2^3436242+1 1034416 L5178 2022 957 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 958 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 959 1147*2^3435970+1 1034334 L3035 2017 960c 4589*2^3435707+1 1034255 L5174 2022 961c 7479*2^3435683+1 1034248 L5421 2022 962c 2863*2^3435616+1 1034227 L5197 2022 963 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 964c 9863*2^3434697+1 1033951 L5189 2022 965c 4065*2^3434623+1 1033929 L5197 2022 966 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 967d 9187*2^3434126+1 1033779 L5600 2022 968c 9531*2^3434103+1 1033772 L5601 2022 969d 1757*2^3433547+1 1033604 L5594 2022 970d 1421*2^3433099+1 1033469 L5237 2022 971d 3969*2^3433007+1 1033442 L5189 2022 972d 6557*2^3433003+1 1033441 L5261 2022 973d 7335*2^3432982+1 1033435 L5231 2022 974d 7125*2^3432836+1 1033391 L5594 2022 975d 2517*2^3432734+1 1033360 L5231 2022 976 911*2^3432643+1 1033332 L1355 2017 977d 5413*2^3432626+1 1033328 L5231 2022 978 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 979d 3753*2^3432413+1 1033263 L5261 2022 980d 2691*2^3432191+1 1033196 L5585 2022 981d 3933*2^3432125+1 1033177 L5387 2022 982 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 983 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 984e 1435*2^3431284+1 1032923 L5587 2022 985 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 986e 6783*2^3430781+1 1032772 L5261 2022 987e 8079*2^3430683+1 1032743 L5585 2022 988 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 989 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 990e 6605*2^3430187+1 1032593 L5463 2022 991e 3761*2^3430057+1 1032554 L5582 2022 992e 6873*2^3429937+1 1032518 L5294 2022 993e 8067*2^3429891+1 1032504 L5581 2022 994e 3965*2^3429719+1 1032452 L5579 2022 995f 3577*2^3428812+1 1032179 L5401 2022 996f 8747*2^3428755+1 1032163 L5493 2022 997f 9147*2^3428638+1 1032127 L5493 2022 998f 3899*2^3428535+1 1032096 L5174 2022 999 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1000 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1001f 8891*2^3428303+1 1032026 L5532 2022 1002f 2147*2^3427371+1 1031745 L5189 2022 1003 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1004 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1005 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1006 1127*2^3427219+1 1031699 L3035 2017 1007 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1008f 3021*2^3427059+1 1031652 L5554 2022 1009f 3255*2^3426983+1 1031629 L5231 2022 1010f 1733*2^3426753+1 1031559 L5565 2022 1011f 2339*2^3426599+1 1031513 L5237 2022 1012f 4729*2^3426558+1 1031501 L5493 2022 1013 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1014 5445*2^3425839+1 1031285 L5237 2022 1015 159*2^3425766+1 1031261 L4045 2015 1016 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1017 3405*2^3425045+1 1031045 L5261 2022 1018 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1019 1695*2^3424517+1 1030886 L5387 2022 1020 4715*2^3424433+1 1030861 L5557 2022 1021 5525*2^3424423+1 1030858 L5387 2022 1022 8615*2^3424231+1 1030801 L5261 2022 1023 5805*2^3424200+1 1030791 L5237 2022 1024 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1025 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1026 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1027 2109*2^3423797+1 1030669 L5197 2022 1028 4929*2^3423494+1 1030579 L5554 2022 1029 2987*2^3422911+1 1030403 L5226 2022 1030 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1031 4843*2^3422644+1 1030323 L5553 2022 1032 5559*2^3422566+1 1030299 L5555 2022 1033 7583*2^3422501+1 1030280 L5421 2022 1034 1119*2^3422189+1 1030185 L1355 2017 1035 2895*2^3422030+1 1030138 L5237 2022 1036 2835*2^3421697+1 1030037 L5387 2022 1037 3363*2^3421353+1 1029934 L5226 2022 1038 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1039 9147*2^3421264+1 1029908 L5237 2022 1040 9705*2^3420915+1 1029803 L5540 2022 1041 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1042 8919*2^3420758+1 1029755 L5226 2022 1043 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1044 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1045 5489*2^3420137+1 1029568 L5174 2022 1046 9957*2^3420098+1 1029557 L5237 2022 1047 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1048 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1049 7213*2^3419370+1 1029337 L5421 2022 1050 7293*2^3419264+1 1029305 L5192 2022 1051 975*2^3419230+1 1029294 L3545 2017 1052 4191*2^3419227+1 1029294 L5421 2022 1053 2393*2^3418921+1 1029202 L5197 2022 1054 999*2^3418885+1 1029190 L3035 2017 1055 2925*2^3418543+1 1029088 L5174 2022 1056 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1057 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1058 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1059 7383*2^3418297+1 1029014 L5189 2022 1060 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1061 907*2^3417890+1 1028891 L3035 2017 1062 5071*2^3417884+1 1028890 L5237 2022 1063 3473*2^3417741+1 1028847 L5541 2022 1064 191249*2^3417696-1 1028835 L1949 2010 1065 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1066 3299*2^3417329+1 1028723 L5421 2022 1067 6947*2^3416979+1 1028618 L5540 2022 1068 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1069 8727*2^3416652+1 1028519 L5226 2022 1070 8789*2^3416543+1 1028486 L5197 2022 1071 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1072 7917*2^3415947+1 1028307 L5537 2022 1073 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1074 2055*2^3415873+1 1028284 L5535 2022 1075 4731*2^3415712+1 1028236 L5192 2022 1076 2219*2^3415687+1 1028228 L5178 2022 1077 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1078 5877*2^3415419+1 1028148 L5532 2022 1079 3551*2^3415275+1 1028104 L5231 2022 1080 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1081 2313*2^3415046+1 1028035 L5226 2022 1082 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1083 7637*2^3414875+1 1027984 L5507 2022 1084 2141*2^3414821+1 1027967 L5226 2022 1085 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1086 3667*2^3414686+1 1027927 L5226 2022 1087 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1088 6159*2^3414623+1 1027908 L5226 2022 1089 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1090 4577*2^3413539+1 1027582 L5387 2022 1091 5137*2^3413524+1 1027577 L5261 2022 1092 8937*2^3413364+1 1027529 L5527 2022 1093 8829*2^3413339+1 1027522 L5531 2022 1094 7617*2^3413315+1 1027515 L5197 2022 1095 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1096 3141*2^3413112+1 1027453 L5463 2022 1097 8831*2^3412931+1 1027399 L5310 2022 1098 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1099 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1100 5421*2^3412877+1 1027383 L5310 2022 1101 9187*2^3412700+1 1027330 L5337 2022 1102 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1103 8243*2^3412577+1 1027292 L5524 2022 1104 1751*2^3412565+1 1027288 L5523 2022 1105 9585*2^3412318+1 1027215 L5197 2022 1106 9647*2^3412247+1 1027193 L5178 2022 1107 3207*2^3412108+1 1027151 L5189 2022 1108 479*2^3411975+1 1027110 L2873 2016 1109 245*2^3411973+1 1027109 L1935 2015 1110 177*2^3411847+1 1027071 L4031 2015 1111 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1112 9963*2^3411566+1 1026988 L5237 2022 1113 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1114 9785*2^3411223+1 1026885 L5189 2022 1115 5401*2^3411136+1 1026858 L5261 2022 1116 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1117 9431*2^3411105+1 1026849 L5237 2022 1118 8227*2^3410878+1 1026781 L5316 2022 1119 4735*2^3410724+1 1026734 L5226 2022 1120 9515*2^3410707+1 1026730 L5237 2022 1121 6783*2^3410690+1 1026724 L5434 2022 1122 8773*2^3410558+1 1026685 L5261 2022 1123 4629*2^3410321+1 1026613 L5517 2022 1124 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1125 113*2^3409934-1 1026495 L2484 2014 1126 5721*2^3409839+1 1026468 L5226 2022 1127 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1128 6069*2^3409493+1 1026364 L5237 2022 1129 1981*910^346850+1 1026347 L1141 2021 1130 5317*2^3409236+1 1026287 L5471 2022 1131 7511*2^3408985+1 1026211 L5514 2022 1132 7851*2^3408909+1 1026188 L5176 2022 1133 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1134 6027*2^3408444+1 1026048 L5239 2022 1135 59*2^3408416-1 1026038 L426 2010 1136 2153*2^3408333+1 1026014 L5237 2022 1137 9831*2^3408056+1 1025932 L5233 2022 1138 3615*2^3408035+1 1025925 L5217 2022 1139 6343*2^3407950+1 1025899 L5226 2022 1140 8611*2^3407516+1 1025769 L5509 2022 1141 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1142 7111*2^3407452+1 1025750 L5508 2022 1143 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1144 6945*2^3407256+1 1025691 L5507 2022 1145 6465*2^3407229+1 1025682 L5301 2022 1146 1873*2^3407156+1 1025660 L5440 2022 1147 7133*2^3406377+1 1025426 L5279 2022 1148 7063*2^3406122+1 1025349 L5178 2022 1149 3105*2^3405800+1 1025252 L5502 2022 1150 953*2^3405729+1 1025230 L3035 2017 1151 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1152 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1153 373*2^3404702+1 1024921 L3924 2016 1154 7221*2^3404507+1 1024863 L5231 2022 1155 6641*2^3404259+1 1024788 L5501 2022 1156 9225*2^3404209+1 1024773 L5250 2022 1157 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1158 833*2^3403765+1 1024639 L3035 2017 1159 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1160 2601*2^3403459+1 1024547 L5350 2022 1161 8835*2^3403266+1 1024490 L5161 2022 1162 7755*2^3403010+1 1024412 L5161 2022 1163 3123*2^3402834+1 1024359 L5260 2022 1164 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1165 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1166 1417*2^3402246+1 1024182 L5497 2022 1167 5279*2^3402241+1 1024181 L5250 2022 1168 6651*2^3402137+1 1024150 L5476 2022 1169 1779*2^3401715+1 1024022 L5493 2022 1170 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1171 8397*2^3401502+1 1023959 L5476 2022 1172 4057*2^3401472+1 1023949 L5492 2022 1173 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1174 4095*2^3401174+1 1023860 L5418 2022 1175 5149*2^3400970+1 1023798 L5176 2022 1176 4665*2^3400922+1 1023784 L5308 2022 1177 24*414^391179+1 1023717 L4273 2016 1178 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1179 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1180 1725*2^3400371+1 1023617 L5197 2022 1181 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1182 9399*2^3400243+1 1023580 L5488 2022 1183 1241*2^3400127+1 1023544 L5279 2022 1184 1263*2^3399876+1 1023468 L5174 2022 1185 1167*2^3399748+1 1023430 L3545 2017 1186 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1187 7679*2^3398569+1 1023076 L5295 2022 1188 6447*2^3398499+1 1023054 L5302 2022 1189 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1190 2785*2^3398332+1 1023004 L5250 2022 1191 611*2^3398273+1 1022985 L3035 2017 1192 2145*2^3398034+1 1022914 L5302 2022 1193 3385*2^3397254+1 1022679 L5161 2022 1194 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1195 4463*2^3396657+1 1022500 L5476 2022 1196 2889*2^3396450+1 1022437 L5178 2022 1197 8523*2^3396448+1 1022437 L5231 2022 1198 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1199 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1200 3349*2^3396326+1 1022400 L5480 2022 1201 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1202 4477*2^3395786+1 1022238 L5161 2022 1203 3853*2^3395762+1 1022230 L5302 2022 1204 2693*2^3395725+1 1022219 L5284 2022 1205 8201*2^3395673+1 1022204 L5178 2022 1206 255*2^3395661+1 1022199 L3898 2014 1207 1049*2^3395647+1 1022195 L3035 2017 1208 9027*2^3395623+1 1022189 L5263 2022 1209 2523*2^3395549+1 1022166 L5472 2022 1210 3199*2^3395402+1 1022122 L5264 2022 1211 342924651*2^3394939-1 1021988 L4166 2017 1212 3825*2^3394947+1 1021985 L5471 2022 1213 1895*2^3394731+1 1021920 L5174 2022 1214 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1215 555*2^3393389+1 1021515 L2549 2017 1216 1865*2^3393387+1 1021515 L5237 2022 1217 4911*2^3393373+1 1021511 L5231 2022 1218 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1219 5229*2^3392587+1 1021275 L5463 2022 1220 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1221 609*2^3392301+1 1021188 L3035 2017 1222 9787*2^3392236+1 1021169 L5350 2022 1223 303*2^3391977+1 1021090 L2602 2016 1224 805*2^3391818+1 1021042 L4609 2017 1225 6475*2^3391496+1 1020946 L5174 2022 1226 67*2^3391385-1 1020911 L1959 2014 1227 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1228 4639*2^3390634+1 1020687 L5189 2022 1229 5265*2^3390581+1 1020671 L5456 2022 1230 663*2^3390469+1 1020636 L4316 2017 1231 6945*2^3390340+1 1020598 L5174 2021 1232 5871*2^3390268+1 1020577 L5231 2021 1233 7443*2^3390141+1 1020539 L5226 2021 1234 5383*2^3389924+1 1020473 L5350 2021 1235 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1236 9627*2^3389331+1 1020295 L5231 2021 1237 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1238 8253*2^3388624+1 1020082 L5226 2021 1239 3329*2^3388472-1 1020036 L4841 2020 1240 4695*2^3388393+1 1020012 L5237 2021 1241 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1242 7177*2^3388144+1 1019937 L5174 2021 1243 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1244 9611*2^3388059+1 1019912 L5435 2021 1245 1833*2^3387760+1 1019821 L5226 2021 1246 9003*2^3387528+1 1019752 L5189 2021 1247 3161*2^3387141+1 1019635 L5226 2021 1248 7585*2^3387110+1 1019626 L5189 2021 1249 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1250 453*2^3387048+1 1019606 L2602 2016 1251 5177*2^3386919+1 1019568 L5226 2021 1252 8739*2^3386813+1 1019537 L5226 2021 1253 2875*2^3386638+1 1019484 L5226 2021 1254 7197*2^3386526+1 1019450 L5178 2021 1255 1605*2^3386229+1 1019360 L5226 2021 1256 8615*2^3386181+1 1019346 L5442 2021 1257 3765*2^3386141+1 1019334 L5174 2021 1258 5379*2^3385806+1 1019233 L5237 2021 1259 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1260 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1261 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1262 173198*5^1457792-1 1018959 L3720 2013 1263 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1264 2109*2^3384733+1 1018910 L5261 2021 1265 7067*2^3384667+1 1018891 L5439 2021 1266 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1267 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1268 2077*2^3384472+1 1018831 L5237 2021 1269 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1270 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1271 9165*2^3383917+1 1018665 L5435 2021 1272 5579*2^3383209+1 1018452 L5434 2021 1273 8241*2^3383131+1 1018428 L5387 2021 1274 7409*2^3382869+1 1018349 L5161 2021 1275 4883*2^3382813+1 1018332 L5161 2021 1276 9783*2^3382792+1 1018326 L5189 2021 1277 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1278 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1279 8877*2^3381936+1 1018069 L5429 2021 1280 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1281 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1282 6675*2^3381688+1 1017994 L5197 2021 1283 2445*2^3381129+1 1017825 L5231 2021 1284 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1285 3381*2^3380585+1 1017662 L5237 2021 1286 7899*2^3380459+1 1017624 L5421 2021 1287 5945*2^3379933+1 1017465 L5418 2021 1288 1425*2^3379921+1 1017461 L1134 2020 1289 4975*2^3379420+1 1017311 L5161 2021 1290 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1291 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1292 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1293 9065*2^3378851+1 1017140 L5414 2021 1294 2369*2^3378761+1 1017112 L5197 2021 1295 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1296 621*2^3378148+1 1016927 L3035 2017 1297 7035*2^3378141+1 1016926 L5408 2021 1298 2067*2^3378115+1 1016918 L5405 2021 1299 1093*2^3378000+1 1016883 L4583 2017 1300 9577*2^3377612+1 1016767 L5406 2021 1301 861*2^3377601+1 1016763 L4582 2017 1302 5811*2^3377016+1 1016587 L5261 2021 1303 2285*2^3376911+1 1016555 L5261 2021 1304 4199*2^3376903+1 1016553 L5174 2021 1305 6405*2^3376890+1 1016549 L5269 2021 1306 1783*2^3376810+1 1016525 L5261 2021 1307 5401*2^3376768+1 1016513 L5174 2021 1308 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1309 2941*2^3376536+1 1016443 L5174 2021 1310 1841*2^3376379+1 1016395 L5401 2021 1311 6731*2^3376133+1 1016322 L5261 2021 1312 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1313 8121*2^3375933+1 1016262 L5356 2021 1314 5505*2^3375777+1 1016214 L5174 2021 1315 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1316 3207*2^3375314+1 1016075 L5237 2021 1317 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1318 5307*2^3374939+1 1015962 L5392 2021 1319 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1320 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1321 208003!-1 1015843 p394 2016 Factorial 1322 6219*2^3374198+1 1015739 L5393 2021 1323 3777*2^3374072+1 1015701 L5261 2021 1324 9347*2^3374055+1 1015696 L5387 2021 1325 1461*2^3373383+1 1015493 L5384 2021 1326 6395*2^3373135+1 1015419 L5382 2021 1327 7869*2^3373021+1 1015385 L5381 2021 1328 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1329 4905*2^3372216+1 1015142 L5261 2021 1330 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1331 2839*2^3372034+1 1015087 L5174 2021 1332 7347*2^3371803+1 1015018 L5217 2021 1333 9799*2^3371378+1 1014890 L5261 2021 1334 4329*2^3371201+1 1014837 L5197 2021 1335 3657*2^3371183+1 1014831 L5360 2021 1336 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1337 179*2^3371145+1 1014819 L3763 2014 1338 5155*2^3371016+1 1014781 L5237 2021 1339 7575*2^3371010+1 1014780 L5237 2021 1340 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1341 9195*2^3370798+1 1014716 L5178 2021 1342 1749*2^3370786+1 1014711 L5362 2021 1343 8421*2^3370599+1 1014656 L5174 2021 1344 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1345 4357*2^3369572+1 1014346 L5231 2021 1346 6073*2^3369544+1 1014338 L5358 2021 1347 839*2^3369383+1 1014289 L2891 2017 1348 65*2^3369359+1 1014280 L5236 2021 1349 8023*2^3369228+1 1014243 L5356 2021 1350 677*2^3369115+1 1014208 L2103 2017 1351 1437*2^3369083+1 1014199 L5282 2021 1352 9509*2^3368705+1 1014086 L5237 2021 1353 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1354 4851*2^3368668+1 1014074 L5307 2021 1355 7221*2^3368448+1 1014008 L5353 2021 1356 5549*2^3368437+1 1014005 L5217 2021 1357 715*2^3368210+1 1013936 L4527 2017 1358 617*2^3368119+1 1013908 L4552 2017 1359 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1360 1847*2^3367999+1 1013872 L5352 2021 1361 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1362 6497*2^3367743+1 1013796 L5285 2021 1363 2533*2^3367666+1 1013772 L5326 2021 1364 6001*2^3367552+1 1013738 L5350 2021 1365 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1366 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1367 777*2^3367372+1 1013683 L4408 2017 1368 9609*2^3367351+1 1013678 L5285 2021 1369 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1370 2529*2^3367317+1 1013667 L5237 2021 1371 5941*2^3366960+1 1013560 L5189 2021 1372 5845*2^3366956+1 1013559 L5197 2021 1373 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1374 9853*2^3366608+1 1013454 L5178 2021 1375 61*2^3366033-1 1013279 L4405 2017 1376 7665*2^3365896+1 1013240 L5345 2021 1377 8557*2^3365648+1 1013165 L5346 2021 1378 369*2^3365614+1 1013154 L4364 2016 1379 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1380 8201*2^3365283+1 1013056 L5345 2021 1381 9885*2^3365151+1 1013016 L5344 2021 1382 5173*2^3365096+1 1012999 L5285 2021 1383 8523*2^3364918+1 1012946 L5237 2021 1384 3985*2^3364776+1 1012903 L5178 2021 1385 9711*2^3364452+1 1012805 L5192 2021 1386 7003*2^3364172+1 1012721 L5217 2021 1387 6703*2^3364088+1 1012696 L5337 2021 1388 7187*2^3364011+1 1012673 L5217 2021 1389 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1390 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1391 2345*2^3363157+1 1012415 L5336 2021 1392 6527*2^3363135+1 1012409 L5167 2021 1393 9387*2^3363088+1 1012395 L5161 2021 1394 8989*2^3362986+1 1012364 L5161 2021 1395 533*2^3362857+1 1012324 L3171 2017 1396 619*2^3362814+1 1012311 L4527 2017 1397 2289*2^3362723+1 1012284 L5161 2021 1398 7529*2^3362565+1 1012237 L5161 2021 1399 7377*2^3362366+1 1012177 L5161 2021 1400 4509*2^3362311+1 1012161 L5324 2021 1401 7021*2^3362208+1 1012130 L5178 2021 1402 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1403 104*873^344135-1 1012108 L4700 2018 1404 4953*2^3362054+1 1012083 L5323 2021 1405 8575*2^3361798+1 1012006 L5237 2021 1406 2139*2^3361706+1 1011978 L5174 2021 1407 6939*2^3361203+1 1011827 L5217 2021 1408 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1409 3^2120580-3^623816-1 1011774 CH9 2019 1410 8185*2^3360896+1 1011735 L5189 2021 1411 2389*2^3360882+1 1011730 L5317 2021 1412 2787*2^3360631+1 1011655 L5197 2021 1413 6619*2^3360606+1 1011648 L5316 2021 1414 2755*2^3360526+1 1011623 L5174 2021 1415 1445*2^3360099+1 1011494 L5261 2021 1416 8757*2^3359788+1 1011401 L5197 2021 1417 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1418 5085*2^3359696+1 1011373 L5261 2021 1419 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1420 6459*2^3359457+1 1011302 L5310 2021 1421 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1422 6115*2^3358998+1 1011163 L5309 2021 1423 7605*2^3358929+1 1011143 L5308 2021 1424 2315*2^3358899+1 1011133 L5197 2021 1425 6603*2^3358525+1 1011021 L5307 2021 1426 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1427 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1428 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1429 5893*2^3357490+1 1010709 L5285 2021 1430 6947*2^3357075+1 1010585 L5302 2021 1431 4621*2^3357068+1 1010582 L5301 2021 1432 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1433 1479*2^3356275+1 1010343 L5178 2021 1434 3645*2^3356232+1 1010331 L5296 2021 1435 1259*2^3356215+1 1010325 L5298 2021 1436 2075*2^3356057+1 1010278 L5174 2021 1437 4281*2^3356051+1 1010276 L5295 2021 1438 1275*2^3356045+1 1010274 L5294 2021 1439 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1440 4365*2^3355770+1 1010192 L5261 2021 1441 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1442 2183*2^3355297+1 1010049 L5266 2021 1443 3087*2^3355000+1 1009960 L5226 2021 1444 8673*2^3354760+1 1009888 L5233 2021 1445 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1446 3015*2^3353943+1 1009641 L5290 2021 1447 6819*2^3353877+1 1009622 L5174 2021 1448 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1449 6393*2^3353366+1 1009468 L5287 2021 1450 3573*2^3353273+1 1009440 L5161 2021 1451 4047*2^3353222+1 1009425 L5286 2021 1452 1473*2^3353114+1 1009392 L5161 2021 1453 1183*2^3353058+1 1009375 L3824 2017 1454 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1455 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1456 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1457 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1458 7123*2^3352180+1 1009111 L5161 2021 1459 2757*2^3352180+1 1009111 L5285 2021 1460 9307*2^3352014+1 1009061 L5284 2021 1461 2217*2^3351732+1 1008976 L5283 2021 1462 543*2^3351686+1 1008961 L4198 2017 1463 4419*2^3351666+1 1008956 L5279 2021 1464 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1465 3059*2^3351379+1 1008870 L5278 2021 1466 7789*2^3351046+1 1008770 L5276 2021 1467 9501*2^3350668+1 1008656 L5272 2021 1468 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1469 9691*2^3349952+1 1008441 L5242 2021 1470 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1471 3209*2^3349719+1 1008370 L5269 2021 1472 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1473 393*2^3349525+1 1008311 L3101 2016 1474 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1475 5487*2^3349303+1 1008245 L5266 2021 1476 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1477 2511*2^3349104+1 1008185 L5264 2021 1478 1005*2^3349046-1 1008167 L4518 2021 1479 7659*2^3348894+1 1008122 L5263 2021 1480 9703*2^3348872+1 1008115 L5262 2021 1481 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1482 7935*2^3348578+1 1008027 L5161 2021 1483 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1484 7821*2^3348400+1 1007973 L5260 2021 1485 7911*2^3347532+1 1007712 L5250 2021 1486 8295*2^3347031+1 1007561 L5249 2021 1487 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1488 4029*2^3346729+1 1007470 L5239 2021 1489 9007*2^3346716+1 1007466 L5161 2021 1490 8865*2^3346499+1 1007401 L5238 2021 1491 6171*2^3346480+1 1007395 L5174 2021 1492 6815*2^3346045+1 1007264 L5235 2021 1493 5*326^400785+1 1007261 L4786 2019 1494 5951*2^3345977+1 1007244 L5233 2021 1495 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1496 1257*2^3345843+1 1007203 L5192 2021 1497 4701*2^3345815+1 1007195 L5192 2021 1498 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1499 7545*2^3345355+1 1007057 L5231 2021 1500 5559*2^3344826+1 1006897 L5223 2021 1501 6823*2^3344692+1 1006857 L5223 2021 1502 4839*2^3344453+1 1006785 L5188 2021 1503 7527*2^3344332+1 1006749 L5220 2021 1504 7555*2^3344240+1 1006721 L5188 2021 1505 6265*2^3344080+1 1006673 L5197 2021 1506 1299*2^3343943+1 1006631 L5217 2021 1507 2815*2^3343754+1 1006574 L5216 2021 1508 5349*2^3343734+1 1006568 L5174 2021 1509 2863*2^3342920+1 1006323 L5179 2020 1510 7387*2^3342848+1 1006302 L5208 2020 1511 9731*2^3342447+1 1006181 L5203 2020 1512 7725*2^3341708+1 1005959 L5195 2020 1513 7703*2^3341625+1 1005934 L5178 2020 1514 7047*2^3341482+1 1005891 L5194 2020 1515 4839*2^3341309+1 1005838 L5192 2020 1516 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1517 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1518 8989*2^3340866+1 1005705 L5189 2020 1519 6631*2^3340808+1 1005688 L5188 2020 1520 1341*2^3340681+1 1005649 L5188 2020 1521 733*2^3340464+1 1005583 L3035 2016 1522 2636*138^469911+1 1005557 L5410 2021 1523 3679815*2^3340001+1 1005448 L4922 2019 1524 57*2^3339932-1 1005422 L3519 2015 1525 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1526 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1527 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1528 3651*2^3339341+1 1005246 L5177 2020 1529 3853*2^3339296+1 1005232 L5178 2020 1530 8015*2^3339267+1 1005224 L5176 2020 1531 3027*2^3339182+1 1005198 L5174 2020 1532 9517*2^3339002+1 1005144 L5172 2020 1533 4003*2^3338588+1 1005019 L3035 2020 1534 6841*2^3338336+1 1004944 L1474 2020 1535 2189*2^3338209+1 1004905 L5031 2020 1536 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1537 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1538 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1539 2957*2^3337667+1 1004742 L5144 2020 1540 1515*2^3337389+1 1004658 L1474 2020 1541 7933*2^3337270+1 1004623 L4666 2020 1542 1251*2^3337116+1 1004576 L4893 2020 1543 651*2^3337101+1 1004571 L3260 2016 1544 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1545 8397*2^3336654+1 1004437 L5125 2020 1546 8145*2^3336474+1 1004383 L5110 2020 1547 1087*2^3336385-1 1004355 L1828 2012 1548 5325*2^3336120+1 1004276 L2125 2020 1549 849*2^3335669+1 1004140 L3035 2016 1550 8913*2^3335216+1 1004005 L5079 2020 1551 7725*2^3335213+1 1004004 L3035 2020 1552 611*2^3334875+1 1003901 L3813 2016 1553 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1554 403*2^3334410+1 1003761 L4293 2016 1555 5491*2^3334392+1 1003756 L4815 2020 1556 6035*2^3334341+1 1003741 L2125 2020 1557 1725*2^3334341+1 1003740 L2125 2020 1558 4001*2^3334031+1 1003647 L1203 2020 1559 2315*2^3333969+1 1003629 L2125 2020 1560 6219*2^3333810+1 1003581 L4582 2020 1561 8063*2^3333721+1 1003554 L1823 2020 1562 9051*2^3333677+1 1003541 L3924 2020 1563 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1564 4091*2^3333153+1 1003383 L1474 2020 1565 9949*2^3332750+1 1003262 L5090 2020 1566 3509*2^3332649+1 1003231 L5085 2020 1567 3781*2^3332436+1 1003167 L1823 2020 1568 4425*2^3332394+1 1003155 L3431 2020 1569 6459*2^3332086+1 1003062 L2629 2020 1570 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1571 5257*2^3331758+1 1002963 L1188 2020 1572 2939*2^3331393+1 1002853 L1823 2020 1573 6959*2^3331365+1 1002845 L1675 2020 1574 8815*2^3330748+1 1002660 L3329 2020 1575 4303*2^3330652+1 1002630 L4730 2020 1576 8595*2^3330649+1 1002630 L4723 2020 1577 673*2^3330436+1 1002564 L3035 2016 1578 8163*2^3330042+1 1002447 L3278 2020 1579 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1580 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1581 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1582 2829*2^3329061+1 1002151 L4343 2020 1583 5775*2^3329034+1 1002143 L1188 2020 1584 7101*2^3328905+1 1002105 L4568 2020 1585 7667*2^3328807+1 1002075 L4087 2020 1586 129*2^3328805+1 1002073 L3859 2014 1587 7261*2^3328740+1 1002055 L2914 2020 1588 4395*2^3328588+1 1002009 L3924 2020 1589 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1590 143183*2^3328297+1 1001923 L4504 2017 1591 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1592 9681*2^3327987+1 1001828 L1204 2020 1593 2945*2^3327987+1 1001828 L2158 2020 1594 5085*2^3327789+1 1001769 L1823 2020 1595 8319*2^3327650+1 1001727 L1204 2020 1596 4581*2^3327644+1 1001725 L2142 2020 1597 655*2^3327518+1 1001686 L4490 2016 1598 8863*2^3327406+1 1001653 L1675 2020 1599 659*2^3327371+1 1001642 L3502 2016 1600 3411*2^3327343+1 1001634 L1675 2020 1601 4987*2^3327294+1 1001619 L3924 2020 1602 821*2^3327003+1 1001531 L3035 2016 1603 2435*2^3326969+1 1001521 L3035 2020 1604 1931*2^3326850-1 1001485 L4113 2022 1605 2277*2^3326794+1 1001469 L5014 2020 1606 6779*2^3326639+1 1001422 L3924 2020 1607 6195*2^3325993+1 1001228 L1474 2019 1608 555*2^3325925+1 1001206 L4414 2016 1609 9041*2^3325643+1 1001123 L3924 2019 1610 1965*2^3325639-1 1001121 L4113 2022 1611 1993*2^3325302+1 1001019 L3662 2019 1612 6179*2^3325027+1 1000937 L3048 2019 1613 4485*2^3324900+1 1000899 L1355 2019 1614 3559*2^3324650+1 1000823 L3035 2019 1615 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1616 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1617 6927*2^3324387+1 1000745 L3091 2019 1618 9575*2^3324287+1 1000715 L3824 2019 1619 1797*2^3324259+1 1000705 L3895 2019 1620 4483*2^3324048+1 1000642 L3035 2019 1621 791*2^3323995+1 1000626 L3035 2016 1622 6987*2^3323926+1 1000606 L4973 2019 1623 3937*2^3323886+1 1000593 L3035 2019 1624 2121*2^3323852+1 1000583 L1823 2019 1625 1571*2^3323493+1 1000475 L3035 2019 1626 2319*2^3323402+1 1000448 L4699 2019 1627 2829*2^3323341+1 1000429 L4754 2019 1628 4335*2^3323323+1 1000424 L1823 2019 1629 8485*2^3322938+1 1000308 L4858 2019 1630 6505*2^3322916+1 1000302 L4858 2019 1631 597*2^3322871+1 1000287 L3035 2016 1632 9485*2^3322811+1 1000270 L2603 2019 1633 8619*2^3322774+1 1000259 L3035 2019 1634 387*2^3322763+1 1000254 L1455 2016 1635 1965*2^3322579-1 1000200 L4113 2022 1636 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1637 6366*745^348190-1 1000060 L4189 2022 1638 5553507*2^3322000+1 1000029 p391 2016 1639 5029159647*2^3321910-1 1000005 L4960 2021 1640 5009522505*2^3321910-1 1000005 L4960 2021 1641 4766298357*2^3321910-1 1000005 L4960 2021 1642 4759383915*2^3321910-1 1000005 L4960 2021 1643 4635733263*2^3321910-1 1000005 L4960 2021 1644 4603393047*2^3321910-1 1000005 L4960 2021 1645 4550053935*2^3321910-1 1000005 L4960 2021 1646 4288198767*2^3321910-1 1000005 L4960 2021 1647 4229494557*2^3321910-1 1000005 L4960 2021 1648 4110178197*2^3321910-1 1000005 L4960 2021 1649 4022490843*2^3321910-1 1000005 L4960 2021 1650 3936623697*2^3321910-1 1000005 L4960 2021 1651 3751145343*2^3321910-1 1000005 L4960 2021 1652 3715773735*2^3321910-1 1000005 L4960 2021 1653 3698976057*2^3321910-1 1000005 L4960 2021 1654 3659465685*2^3321910-1 1000005 L4960 2020 1655 3652932033*2^3321910-1 1000005 L4960 2020 1656 3603204333*2^3321910-1 1000005 L4960 2020 1657 3543733545*2^3321910-1 1000005 L4960 2020 1658 3191900133*2^3321910-1 1000005 L4960 2020 1659 3174957723*2^3321910-1 1000005 L4960 2020 1660 2973510903*2^3321910-1 1000005 L4960 2019 1661 2848144257*2^3321910-1 1000005 L4960 2019 1662 2820058827*2^3321910-1 1000005 L4960 2019 1663 2611553775*2^3321910-1 1000004 L4960 2020 1664 2601087525*2^3321910-1 1000004 L4960 2019 1665 2386538565*2^3321910-1 1000004 L4960 2019 1666 2272291887*2^3321910-1 1000004 L4960 2019 1667 2167709265*2^3321910-1 1000004 L4960 2019 1668 2087077797*2^3321910-1 1000004 L4960 2019 1669 1848133623*2^3321910-1 1000004 L4960 2019 1670 1825072257*2^3321910-1 1000004 L4960 2019 1671 1633473837*2^3321910-1 1000004 L4960 2019 1672 1228267623*2^3321910-1 1000004 L4808 2019 1673 1148781333*2^3321910-1 1000004 L4808 2019 1674 1065440787*2^3321910-1 1000004 L4808 2019 1675 1055109357*2^3321910-1 1000004 L4960 2019 1676 992309607*2^3321910-1 1000004 L4808 2019 1677 926102325*2^3321910-1 1000004 L4808 2019 1678 892610007*2^3321910-1 1000004 L4960 2019 1679 763076757*2^3321910-1 1000004 L4960 2019 1680 607766997*2^3321910-1 1000004 L4808 2019 1681 539679177*2^3321910-1 1000004 L4808 2019 1682 425521077*2^3321910-1 1000004 L4808 2019 1683 132940575*2^3321910-1 1000003 L4808 2019 1684 239378138685*2^3321891+1 1000001 L5104 2020 1685 464253*2^3321908-1 1000000 L466 2013 1686 3^2095902+3^647322-1 1000000 x44 2018 1687 191273*2^3321908-1 1000000 L466 2013 1688 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1689 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1690 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1691 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1692 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1693 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1694 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1695 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1696 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1697 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1698 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1699 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1700 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1701 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1702 10^999999+308267*10^292000+1 1000000 CH10 2021 1703 10^999999-1022306*10^287000-1 999999 CH13 2021 1704 10^999999-1087604*10^287000-1 999999 CH13 2021 1705 531631540026641*6^1285077+1 999999 L3494 2021 1706 3139*2^3321905-1 999997 L185 2008 1707 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1708 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1709 4847*2^3321063+1 999744 SB9 2005 1710 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1711 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1712 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1713 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1714f 439*2^3318318+1 998916 L5573 2022 1715 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1716 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1717 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1718 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1719 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1720 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1721f 975*2^3312951+1 997301 L5231 2022 1722 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1723 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1724f 689*2^3311423+1 996841 L5226 2022 1725 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1726f 593*2^3309333+1 996212 L5572 2022 1727f 383*2^3309321+1 996208 L5570 2022 1728 49*2^3309087-1 996137 L1959 2013 1729 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1730 139413*6^1279992+1 996033 L4001 2015 1731 51*2^3308171+1 995861 L2840 2015 1732f 719*2^3308127+1 995849 L5192 2022 1733 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1734 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1735 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1736 245114*5^1424104-1 995412 L3686 2013 1737 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1738 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1739 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1740 175124*5^1422646-1 994393 L3686 2013 1741f 453*2^3303073+1 994327 L5568 2022 1742 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1743f 531*2^3301693+1 993912 L5226 2022 1744 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1745 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1746f 195*2^3301018+1 993708 L5569 2022 1747f 341*2^3300789+1 993640 L5192 2022 1748 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1749f 849*2^3296427+1 992327 L5571 2022 1750 1611*22^738988+1 992038 L4139 2015 1751 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1752 2017*2^3292325-1 991092 L3345 2017 1753 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1754 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1755f 885*2^3290927+1 990671 L5161 2022 1756 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1757 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1758 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1759 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1760 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1761 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1762f 219*2^3286614+1 989372 L5567 2022 1763 61*2^3286535-1 989348 L4405 2016 1764 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1765 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1766 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1767 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1768 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1769f 531*2^3284944+1 988870 L5536 2022 1770 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1771f 301*2^3284232+1 988655 L5564 2022 1772 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1773 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1774 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1775f 311*2^3282455+1 988120 L5568 2022 1776 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1777f 833*2^3282181+1 988038 L5564 2022 1778f 561*2^3281889+1 987950 L5477 2022 1779 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1780 87*2^3279368+1 987191 L3458 2015 1781f 965*2^3279151+1 987126 L5564 2022 1782 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1783 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1784 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1785f 427*2^3275606+1 986059 L5566 2022 1786 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1787f 337*2^3274106+1 985607 L5564 2022 1788f 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 1789f 1045*2^3273488+1 985422 L5192 2022 1790 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1791 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1792f 1047*2^3272351+1 985079 L5563 2022 1793 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1794 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1795f 933*2^3270993+1 984670 L5562 2022 1796 311*2^3270759+1 984600 L5560 2022 1797 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1798 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1799 65*2^3270127+1 984409 L3924 2015 1800 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1801f 579*2^3269850+1 984326 L5226 2022 1802 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1803 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1804 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1805 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1806 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1807 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1808 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1809 335*2^3266237+1 983238 L5559 2022 1810 1031*2^3265915+1 983142 L5364 2022 1811 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1812 5*2^3264650-1 982759 L384 2013 1813 223*2^3264459-1 982703 L1884 2012 1814 1101*2^3264400+1 982686 L5231 2022 1815 483*2^3264181+1 982620 L5174 2022 1816 525*2^3263227+1 982332 L5231 2022 1817 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1818 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1819 683*2^3262037+1 981974 L5192 2022 1820 923*2^3261401+1 981783 L5477 2022 1821 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1822 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1823 9*2^3259381-1 981173 L1828 2011 1824 1059*2^3258751+1 980985 L5231 2022 1825 6*5^1403337+1 980892 L4965 2020 1826 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1827 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1828 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1829 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1830 875*2^3256589+1 980334 L5550 2022 1831 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1832 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1833 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1834 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1835 779*2^3253063+1 979273 L5192 2022 1836 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1837 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1838 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1839 417*2^3248255+1 977825 L5178 2022 1840 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1841 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1842 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1843 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1844 33*2^3242126-1 975979 L3345 2014 1845 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1846 39*2^3240990+1 975637 L3432 2014 1847 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1848 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1849 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1850 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1851 225*2^3236967+1 974427 L5529 2022 1852 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1853 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1854 1075*2^3234606+1 973717 L5192 2022 1855 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1856 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1857 6*5^1392287+1 973168 L4965 2020 1858 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1859 325*2^3231474+1 972774 L5536 2022 1860 933*2^3231438+1 972763 L5197 2022 1861 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 1862 26172278^131072+1 972272 L4245 2021 Generalized Fermat 1863 697*2^3229518+1 972185 L5534 2022 1864e 22598*745^338354-1 971810 L4189 2022 1865 385*2^3226814+1 971371 L5178 2022 1866 211195*2^3224974+1 970820 L2121 2013 1867 1173*2^3223546+1 970388 L5178 2022 1868 7*6^1246814+1 970211 L4965 2019 1869 25128150^131072+1 969954 L4738 2021 Generalized Fermat 1870 25124378^131072+1 969946 L5102 2021 Generalized Fermat 1871 1089*2^3221691+1 969829 L5178 2022 1872 35*832^332073-1 969696 L4001 2019 1873 600921*2^3219922-1 969299 g337 2018 1874 939*2^3219319+1 969115 L5178 2022 1875 24734116^131072+1 969055 L5070 2021 Generalized Fermat 1876 24644826^131072+1 968849 L5070 2021 Generalized Fermat 1877 24642712^131072+1 968844 L5070 2021 Generalized Fermat 1878 24641166^131072+1 968840 L5070 2021 Generalized Fermat 1879 129*2^3218214+1 968782 L5529 2022 1880 24522386^131072+1 968565 L5070 2021 Generalized Fermat 1881 24486806^131072+1 968483 L4737 2021 Generalized Fermat 1882 811*2^3216944+1 968400 L5233 2022 1883 24297936^131072+1 968042 L4201 2021 Generalized Fermat 1884 1023*2^3214745+1 967738 L5178 2022 1885 187*2^3212152+1 966957 L5178 2022 1886 301*2^3211281-1 966695 L5545 2022 1887 6*409^369832+1 965900 L4001 2015 1888 23363426^131072+1 965809 L5033 2021 Generalized Fermat 1889 1165*2^3207702+1 965618 L5178 2022 1890 94373*2^3206717+1 965323 L2785 2013 1891 2751*2^3206569-1 965277 L4036 2015 1892 761*2^3206341+1 965208 L5178 2022 1893 23045178^131072+1 965029 L5023 2021 Generalized Fermat 1894 23011666^131072+1 964946 L5273 2021 Generalized Fermat 1895 911*2^3205225+1 964872 L5364 2022 1896 22980158^131072+1 964868 L4201 2021 Generalized Fermat 1897 22901508^131072+1 964673 L4743 2021 Generalized Fermat 1898 22808110^131072+1 964440 L5248 2021 Generalized Fermat 1899 22718284^131072+1 964215 L5254 2021 Generalized Fermat 1900 22705306^131072+1 964183 L5248 2021 Generalized Fermat 1901 113983*2^3201175-1 963655 L613 2008 1902 34*888^326732-1 963343 L4001 2017 1903 899*2^3198219+1 962763 L5503 2022 1904 22007146^131072+1 962405 L4245 2020 Generalized Fermat 1905 4*3^2016951+1 962331 L4965 2020 1906 21917442^131072+1 962173 L4622 2020 Generalized Fermat 1907 987*2^3195883+1 962060 L5282 2022 1908 21869554^131072+1 962048 L5061 2020 Generalized Fermat 1909 21757066^131072+1 961754 L4773 2020 Generalized Fermat 1910 21582550^131072+1 961296 L5068 2020 Generalized Fermat 1911 21517658^131072+1 961125 L5126 2020 Generalized Fermat 1912 20968936^131072+1 959654 L4245 2020 Generalized Fermat 1913 671*2^3185411+1 958908 L5315 2022 1914 20674450^131072+1 958849 L4245 2020 Generalized Fermat 1915 1027*2^3184540+1 958646 L5174 2022 1916 789*2^3183463+1 958321 L5482 2022 1917 855*2^3183158+1 958229 L5161 2022 1918 20234282^131072+1 957624 L4942 2020 Generalized Fermat 1919 20227142^131072+1 957604 L4677 2020 Generalized Fermat 1920 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 1921 20185276^131072+1 957486 L4201 2020 Generalized Fermat 1922 935*2^3180599+1 957459 L5477 2022 1923 573*2^3179293+1 957066 L5226 2022 1924 33*2^3176269+1 956154 L3432 2013 1925 81*2^3174353-1 955578 L3887 2022 1926 19464034^131072+1 955415 L4956 2020 Generalized Fermat 1927 600921*2^3173683-1 955380 g337 2018 1928 587*2^3173567+1 955342 L5301 2022 1929 19216648^131072+1 954687 L5024 2020 Generalized Fermat 1930 1414*95^482691-1 954633 L4877 2019 1931 305*2^3171039+1 954581 L5301 2022 1932 755*2^3170701+1 954479 L5302 2022 1933 775*2^3170580+1 954443 L5449 2022 1934 78*236^402022-1 953965 L5410 2020 1935 18968126^131072+1 953946 L5011 2020 Generalized Fermat 1936 18813106^131072+1 953479 L4201 2020 Generalized Fermat 1937 18608780^131072+1 952857 L4488 2020 Generalized Fermat 1938 1087*2^3164677-1 952666 L1828 2012 1939 18509226^131072+1 952552 L4884 2020 Generalized Fermat 1940 18501600^131072+1 952528 L4875 2020 Generalized Fermat 1941 459*2^3163175+1 952214 L5178 2022 1942 15*2^3162659+1 952057 p286 2012 1943 18309468^131072+1 951934 L4928 2020 Generalized Fermat 1944 18298534^131072+1 951900 L4201 2020 Generalized Fermat 1945 849*2^3161727+1 951778 L5178 2022 1946 67*2^3161450+1 951694 L3223 2015 1947 119*2^3161195+1 951617 L5320 2022 1948 1759*2^3160863-1 951518 L4965 2021 1949 58*117^460033+1 951436 L5410 2020 1950 417*2^3160443+1 951391 L5302 2022 1951 9231*70^515544+1 951234 L5410 2021 1952 671*2^3159523+1 951115 L5188 2022 1953 17958952^131072+1 950834 L4201 2020 Generalized Fermat 1954 17814792^131072+1 950375 L4752 2020 Generalized Fermat 1955 17643330^131072+1 949824 L4201 2020 Generalized Fermat 1956 19*2^3155009-1 949754 L1828 2012 1957 281*2^3151457+1 948686 L5316 2022 1958 179*2^3150265+1 948327 L5302 2021 1959 17141888^131072+1 948183 L4963 2019 Generalized Fermat 1960 17138628^131072+1 948172 L4963 2019 Generalized Fermat 1961 17119936^131072+1 948110 L4963 2019 Generalized Fermat 1962 17052490^131072+1 947885 L4715 2019 Generalized Fermat 1963 17025822^131072+1 947796 L4870 2019 Generalized Fermat 1964 16985784^131072+1 947662 L4295 2019 Generalized Fermat 1965 865*2^3147482+1 947490 L5178 2021 1966 963*2^3145753+1 946969 L5451 2021 1967 16741226^131072+1 946837 L4201 2019 Generalized Fermat 1968 387*2^3144483+1 946587 L5450 2021 1969 1035*2^3144236+1 946513 L5449 2021 1970 1065*2^3143667+1 946342 L4944 2021 1971 193*2^3142150+1 945884 L5178 2021 1972 915*2^3141942+1 945822 L5448 2021 1973 939*2^3141397+1 945658 L5320 2021 1974 1063*2^3141350+1 945644 L5178 2021 1975 16329572^131072+1 945420 L4201 2019 Generalized Fermat 1976 69*2^3140225-1 945304 L3764 2014 1977 3*2^3136255-1 944108 L256 2007 1978 417*2^3136187+1 944089 L5178 2021 1979 15731520^131072+1 943296 L4245 2019 Generalized Fermat 1980 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 1981 15667716^131072+1 943064 L4387 2019 Generalized Fermat 1982 15567144^131072+1 942698 L4918 2019 Generalized Fermat 1983 299*2^3130621+1 942414 L5178 2021 1984 15342502^131072+1 941870 L4245 2019 Generalized Fermat 1985 15237960^131072+1 941481 L4898 2019 Generalized Fermat 1986 571*2^3127388+1 941441 L5440 2021 1987 15147290^131072+1 941141 L4861 2019 Generalized Fermat 1988 197*2^3126343+1 941126 L5178 2021 1989 15091270^131072+1 940930 L4760 2019 Generalized Fermat 1990 1097*2^3124455+1 940558 L5178 2021 1991 3125*2^3124079+1 940445 L1160 2019 1992 495*2^3123624+1 940308 L5438 2021 1993 14790404^131072+1 939784 L4871 2019 Generalized Fermat 1994 1041*2^3120649+1 939412 L5437 2021 1995 14613898^131072+1 939101 L4926 2019 Generalized Fermat 1996 3317*2^3117162-1 938363 L5399 2021 1997 763*2^3115684+1 937918 L4944 2021 1998 581*2^3114611+1 937595 L5178 2021 1999 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2000 134*864^319246-1 937473 L5410 2020 2001 700057*2^3113753-1 937339 L5410 2022 2002 1197*2^3111838+1 936760 L5178 2021 2003 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2004 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2005 755*2^3110759+1 936435 L5320 2021 2006 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2007 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2008 628*80^491322+1 935033 L5410 2021 2009 761*2^3105087+1 934728 L5197 2021 2010 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2011 1019*2^3103680-1 934304 L1828 2012 2012 579*2^3102639+1 933991 L5315 2021 2013 99*2^3102401-1 933918 L1862 2017 2014 256612*5^1335485-1 933470 L1056 2013 2015 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2016 69*2^3097340-1 932395 L3764 2014 2017 153*2^3097277+1 932376 L4944 2021 2018 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2019 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2020 207*2^3095391+1 931808 L5178 2021 2021 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2022 45*2^3094632-1 931579 L1862 2018 2023 259*2^3094582+1 931565 L5214 2021 2024 553*2^3094072+1 931412 L4944 2021 2025 57*2^3093440-1 931220 L2484 2020 2026 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2027 513*2^3092705+1 931000 L4329 2016 2028 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2029 933*2^3091825+1 930736 L5178 2021 2030 38*875^316292-1 930536 L4001 2019 2031 5*2^3090860-1 930443 L1862 2012 2032 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2033f 4*5^1330541-1 930009 L4965 2022 2034 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2035 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2036 297*2^3087543+1 929446 L5326 2021 2037 1149*2^3087514+1 929438 L5407 2021 2038 745*2^3087428+1 929412 L5178 2021 2039 373*520^342177+1 929357 L3610 2014 2040 19401*2^3086450-1 929119 L541 2015 2041 75*2^3086355+1 929088 L3760 2015 2042 65*2^3080952-1 927461 L2484 2020 2043 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2044 1139*2^3079783+1 927111 L5174 2021 2045 271*2^3079189-1 926931 L2484 2018 2046 766*33^610412+1 926923 L4001 2016 2047 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2048 555*2^3078792+1 926812 L5226 2021 2049 31*332^367560+1 926672 L4294 2018 2050 167*2^3077568-1 926443 L1862 2019 2051 10001*2^3075602-1 925853 L4405 2019 2052 116*107^455562-1 924513 L4064 2021 2053 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2054 14844*430^350980-1 924299 L4001 2016 2055 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2056 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2057 1105*2^3069884+1 924131 L5314 2021 2058 319*2^3069362+1 923973 L5377 2021 2059 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2060 973*2^3069092+1 923892 L5214 2021 2061 765*2^3068511+1 923717 L5174 2021 2062 60849*2^3067914+1 923539 L591 2014 2063 674*249^385359+1 923400 L5410 2019 2064 499*2^3066970+1 923253 L5373 2021 2065 553*2^3066838+1 923213 L5368 2021 2066 629*2^3066827+1 923210 L5226 2021 2067 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2068 261*2^3066009+1 922964 L5197 2021 2069 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2070 21*2^3065701+1 922870 p286 2012 2071 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2072 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2073 875*2^3063847+1 922313 L5364 2021 2074 43*2^3063674+1 922260 L3432 2013 2075 677*2^3063403+1 922180 L5346 2021 2076 8460*241^387047-1 921957 L5410 2019 2077 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2078 111*2^3060238-1 921226 L2484 2020 2079 1165*2^3060228+1 921224 L5360 2021 2080 5*2^3059698-1 921062 L503 2008 2081 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2082 453*2^3056181+1 920005 L5320 2021 2083 791*2^3055695+1 919859 L5177 2021 2084 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2085 582971*2^3053414-1 919175 L5410 2022 2086 123*2^3049038+1 917854 L4119 2015 2087 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2088 400*95^463883-1 917435 L4001 2019 2089 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2090 454*383^354814+1 916558 L2012 2020 2091 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2092 435*2^3041954+1 915723 L5320 2021 2093 639*2^3040438+1 915266 L5320 2021 2094 1045*2^3037988+1 914529 L5178 2021 2095 291*2^3037904+1 914503 L3545 2015 2096 311*2^3037565+1 914401 L5178 2021 2097 373*2^3036746+1 914155 L5178 2021 2098 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2099 801*2^3036045+1 913944 L5348 2021 2100 915*2^3033775+1 913261 L5178 2021 2101 38804*3^1913975+1 913203 L5410 2021 2102 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2103 869*2^3030655+1 912322 L5260 2021 2104 643*2^3030650+1 912320 L5320 2021 2105 99*2^3029959-1 912111 L1862 2020 2106 417*2^3029342+1 911926 L5178 2021 2107 345*2^3027769+1 911452 L5343 2021 2108 26*3^1910099+1 911351 L4799 2020 2109 355*2^3027372+1 911333 L5174 2021 2110 99*2^3026660-1 911118 L1862 2020 2111 417*2^3026492+1 911068 L5197 2021 2112 1065*2^3025527+1 910778 L5208 2021 2113 34202*3^1908800+1 910734 L5410 2021 2114 8343*42^560662+1 910099 L4444 2020 2115 699*2^3023263+1 910096 L5335 2021 2116 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2117 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2118 383731*2^3021377-1 909531 L466 2011 2119 46821*2^3021380-374567 909531 p363 2013 2120 2^3021377-1 909526 G3 1998 Mersenne 37 2121 615*2^3019445+1 908947 L5260 2021 2122 389*2^3019025+1 908820 L5178 2021 2123 875*2^3018175+1 908565 L5334 2021 2124 555*2^3016352+1 908016 L5178 2021 2125 7*2^3015762+1 907836 g279 2008 2126 759*2^3015314+1 907703 L5178 2021 2127 32582*3^1901790+1 907389 L5372 2021 2128 75*2^3012342+1 906808 L3941 2015 2129 459*2^3011814+1 906650 L5178 2021 2130 991*2^3010036+1 906115 L5326 2021 2131 583*2^3009698+1 906013 L5325 2021 2132 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2133 593*2^3006969+1 905191 L5178 2021 2134 367*2^3004536+1 904459 L5178 2021 2135 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2136 1003*2^3003756+1 904224 L5320 2021 2137 573*2^3002662+1 903895 L5319 2021 2138 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2139 329*2^3002295+1 903784 L5318 2021 2140f 4*5^1292915-1 903710 L4965 2022 2141 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2142 268514*5^1292240-1 903243 L3562 2013 2143 7*10^902708+1 902709 p342 2013 2144 435*2^2997453+1 902326 L5167 2021 2145 583*2^2996526+1 902047 L5174 2021 2146 1037*2^2995695+1 901798 L5178 2021 2147 717*2^2995326+1 901686 L5178 2021 2148 885*2^2995274+1 901671 L5178 2021 2149 43*2^2994958+1 901574 L3222 2013 2150 1065*2^2994154+1 901334 L5315 2021 2151 561*2^2994132+1 901327 L5314 2021 2152 1095*2^2992587-1 900862 L1828 2011 2153 519*2^2991849+1 900640 L5311 2021 2154 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2155 459*2^2990134+1 900123 L5197 2021 2156 15*2^2988834+1 899730 p286 2012 2157 29*564^326765+1 899024 L4001 2017 2158 971*2^2982525+1 897833 L5197 2021 2159 1033*2^2980962+1 897362 L5305 2021 2160 39*2^2978894+1 896739 L2719 2013 2161 38*977^299737+1 896184 L5410 2021 2162 4348099*2^2976221-1 895939 L466 2008 2163 205833*2^2976222-411665 895938 L4667 2017 2164 18976*2^2976221-18975 895937 p373 2014 2165 2^2976221-1 895932 G2 1997 Mersenne 36 2166 1024*3^1877301+1 895704 p378 2014 2167 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2168 24704*3^1877135+1 895626 L5410 2021 2169 591*2^2975069+1 895588 L5299 2021 2170 249*2^2975002+1 895568 L2322 2015 2171 195*2^2972947+1 894949 L3234 2015 2172 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2173 391*2^2971600+1 894544 L5242 2021 2174 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2175 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2176 493*72^480933+1 893256 L3610 2014 2177 561*2^2964753+1 892483 L5161 2021 2178 1185*2^2964350+1 892362 L5161 2021 2179 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2180 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2181 21*2^2959789-1 890987 L5313 2021 2182 627*2^2959098+1 890781 L5197 2021 2183 45*2^2958002-1 890449 L1862 2017 2184 729*2^2955389+1 889664 L5282 2021 2185 198677*2^2950515+1 888199 L2121 2012 2186 88*985^296644+1 887987 L5410 2020 2187 303*2^2949403-1 887862 L1817 2022 2188 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2189 321*2^2946654-1 887034 L1817 2022 2190 17*2^2946584-1 887012 L3519 2013 2191 489*2^2944673+1 886438 L5167 2021 2192 141*2^2943065+1 885953 L3719 2015 2193 757*2^2942742+1 885857 L5261 2021 2194 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2195 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2196 33*2^2939063-1 884748 L3345 2013 2197 5903*2^2938744-1 884654 L4036 2015 2198 717*2^2937963+1 884418 L5256 2021 2199 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2200 243*2^2937316+1 884223 L4114 2015 2201 973*2^2937046+1 884142 L5253 2021 2202 61*2^2936967-1 884117 L2484 2017 2203 903*2^2934602+1 883407 L5246 2021 2204 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2205 188*228^374503+1 883056 L4786 2020 2206 53*248^368775+1 883016 L5196 2020 2207 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2208 17*326^350899+1 881887 L4786 2019 2209 855*2^2929550+1 881886 L5200 2021 2210 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2211 839*2^2928551+1 881585 L5242 2021 2212 7019*10^881309-1 881313 L3564 2013 2213 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2214 577*2^2925602+1 880697 L5201 2021 2215 97366*5^1259955-1 880676 L3567 2013 2216 973*2^2923062+1 879933 L5228 2021 2217 1126*177^391360+1 879770 L4955 2020 2218 243944*5^1258576-1 879713 L3566 2013 2219 693*2^2921528+1 879471 L5201 2021 2220 6*10^879313+1 879314 L5009 2019 2221 269*2^2918105+1 878440 L2715 2015 2222 331*2^2917844+1 878362 L5210 2021 2223 169*2^2917805-1 878350 L2484 2018 2224 1085*2^2916967+1 878098 L5174 2020 2225 389*2^2916499+1 877957 L5215 2020 2226 431*2^2916429+1 877936 L5214 2020 2227 1189*2^2916406+1 877929 L5174 2020 2228 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2229 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2230 465*2^2914079+1 877228 L5210 2020 2231 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2232 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2233 493*2^2912552+1 876769 L5192 2021 2234 143157*2^2911403+1 876425 L4504 2017 2235 567*2^2910402+1 876122 L5201 2020 2236 683*2^2909217+1 875765 L5199 2020 2237 674*249^365445+1 875682 L5410 2019 2238 475*2^2908802+1 875640 L5192 2021 2239 371*2^2907377+1 875211 L5197 2020 2240 207*2^2903535+1 874054 L3173 2015 2241 851*2^2902731+1 873813 L5177 2020 2242 777*2^2901907+1 873564 L5192 2020 2243 717*2^2900775+1 873224 L5185 2020 2244 99*2^2899303-1 872780 L1862 2017 2245 63*2^2898957+1 872675 L3262 2013 2246 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2247 747*2^2895307+1 871578 L5178 2020 2248 403*2^2894566+1 871354 L5180 2020 2249 629*2^2892961+1 870871 L5173 2020 2250 627*2^2891514+1 870436 L5168 2020 2251 325*2^2890955-1 870267 L5545 2022 2252 363*2^2890208+1 870042 L3261 2020 2253 471*2^2890148+1 870024 L5158 2020 2254 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2255 583*2^2889248+1 869754 L5139 2020 2256 955*2^2887934+1 869358 L4958 2020 2257 303*2^2887603-1 869258 L5184 2022 2258 937*2^2887130+1 869116 L5134 2020 2259 885*2^2886389+1 868893 L3924 2020 2260 763*2^2885928+1 868754 L2125 2020 2261 1071*2^2884844+1 868428 L3593 2020 2262 1181*2^2883981+1 868168 L3593 2020 2263 327*2^2881349-1 867375 L5545 2022 2264 51*2^2881227+1 867338 L3512 2013 2265 933*2^2879973+1 866962 L4951 2020 2266 261*2^2879941+1 866952 L4119 2015 2267 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2268 65*2^2876718-1 865981 L2484 2016 2269 21*948^290747-1 865500 L4985 2019 2270 4013*2^2873250-1 864939 L1959 2014 2271 41*2^2872058-1 864578 L2484 2013 2272 359*2^2870935+1 864241 L1300 2020 2273 165*2^2870868+1 864220 L4119 2015 2274 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2275 665*2^2869847+1 863913 L2885 2020 2276 283*2^2868750+1 863583 L3877 2015 2277 845*2^2868291+1 863445 L5100 2020 2278 3125*2^2867399+1 863177 L1754 2019 2279 701*2^2867141+1 863099 L1422 2020 2280 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2281b 119*954^289255+1 861852 L5410 2022 2282 307*2^2862962+1 861840 L4740 2020 2283 147*2^2862651+1 861746 L1741 2015 2284 1207*2^2861901-1 861522 L1828 2011 2285 231*2^2860725+1 861167 L2873 2015 2286 193*2^2858812+1 860591 L2997 2015 2287 629*2^2857891+1 860314 L3035 2020 2288 493*2^2857856+1 860304 L5087 2020 2289 241*2^2857313-1 860140 L2484 2018 2290 707*2^2856331+1 859845 L5084 2020 2291 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2292 949*2^2854946+1 859428 L2366 2020 2293 222361*2^2854840+1 859398 g403 2006 2294 725*2^2854661+1 859342 L5031 2020 2295 399*2^2851994+1 858539 L4099 2020 2296 225*2^2851959+1 858528 L3941 2015 2297 247*2^2851602+1 858421 L3865 2015 2298 183*2^2850321+1 858035 L2117 2015 2299 1191*2^2849315+1 857733 L1188 2020 2300 717*2^2848598+1 857517 L1204 2020 2301 795*2^2848360+1 857445 L4099 2020 2302 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2303 705*2^2846638+1 856927 L1808 2020 2304 369*2^2846547+1 856899 L4099 2020 2305 233*2^2846392-1 856852 L2484 2021 2306 955*2^2844974+1 856426 L1188 2020 2307 753*2^2844700+1 856343 L1204 2020 2308 11138*745^297992-1 855884 L4189 2019 2309 111*2^2841992+1 855527 L1792 2015 2310 44*744^297912-1 855478 L5410 2021 2311 649*2^2841318+1 855325 L4732 2020 2312 228*912^288954-1 855305 L5410 2022 2313 305*2^2840155+1 854975 L4907 2020 2314 1149*2^2839622+1 854815 L2042 2020 2315 95*2^2837909+1 854298 L3539 2013 2316 199*2^2835667-1 853624 L2484 2019 2317 595*2^2833406+1 852943 L4343 2020 2318 1101*2^2832061+1 852539 L4930 2020 2319 813*2^2831757+1 852447 L4951 2020 2320 435*2^2831709+1 852432 L4951 2020 2321 543*2^2828217+1 851381 L4746 2019 2322 704*249^354745+1 850043 L5410 2019 2323 1001*2^2822037+1 849521 L1209 2019 2324 84466*5^1215373-1 849515 L3562 2013 2325 97*2^2820650+1 849103 L2163 2013 2326 107*2^2819922-1 848884 L2484 2013 2327 84256*3^1778899+1 848756 L4789 2018 2328 45472*3^1778899-1 848756 L4789 2018 2329 14804*3^1778530+1 848579 L4064 2021 2330 497*2^2818787+1 848543 L4842 2019 2331 97*2^2818306+1 848397 L3262 2013 2332 313*2^2817751-1 848231 L802 2021 2333 177*2^2816050+1 847718 L129 2012 2334 553*2^2815596+1 847582 L4980 2019 2335 1071*2^2814469+1 847243 L3035 2019 2336 105*2^2813000+1 846800 L3200 2015 2337 1115*2^2812911+1 846774 L1125 2019 2338 96*10^846519-1 846521 L2425 2011 Near-repdigit 2339 763*2^2811726+1 846417 L3919 2019 2340 1125*2^2811598+1 846379 L4981 2019 2341 891*2^2810100+1 845928 L4981 2019 2342 441*2^2809881+1 845862 L4980 2019 2343 711*2^2808473+1 845438 L1502 2019 2344 1089*2^2808231+1 845365 L4687 2019 2345 63*2^2807130+1 845033 L3262 2013 2346 1083*2^2806536+1 844855 L3035 2019 2347 675*2^2805669+1 844594 L1932 2019 2348 819*2^2805389+1 844510 L3372 2019 2349 1027*2^2805222+1 844459 L3035 2019 2350 437*2^2803775+1 844024 L3168 2019 2351 4431*372^327835-1 842718 L5410 2019 2352 150344*5^1205508-1 842620 L3547 2013 2353 311*2^2798459+1 842423 L4970 2019 2354 81*2^2797443-1 842117 L3887 2021 2355 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2356 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2357 43*2^2795582+1 841556 L2842 2013 2358 1001*2^2794357+1 841189 L1675 2019 2359 117*2^2794014+1 841085 L1741 2015 2360 1057*2^2792700+1 840690 L1675 2019 2361 345*2^2792269+1 840560 L1754 2019 2362 711*2^2792072+1 840501 L4256 2019 2363 315*2^2791414-1 840302 L2235 2021 2364 973*2^2789516+1 839731 L3372 2019 2365 27602*3^1759590+1 839543 L4064 2021 2366 2187*2^2786802+1 838915 L1745 2019 2367 15*2^2785940+1 838653 p286 2012 2368 333*2^2785626-1 838560 L802 2021 2369 1337*2^2785444-1 838506 L4518 2017 2370 711*2^2784213+1 838135 L4687 2019 2371 58582*91^427818+1 838118 L5410 2020 2372 923*2^2783153+1 837816 L1675 2019 2373 1103*2^2783149+1 837815 L3784 2019 2374 485*2^2778151+1 836310 L1745 2019 2375 600921*2^2776014-1 835670 g337 2017 2376 1129*2^2774934+1 835342 L1774 2019 2377 750*1017^277556-1 834703 L4955 2021 2378 8700*241^350384-1 834625 L5410 2019 2379 1023*2^2772512+1 834613 L4724 2019 2380 656*249^348030+1 833953 L5410 2019 2381 92*10^833852-1 833854 L4789 2018 Near-repdigit 2382 437*2^2769299+1 833645 L3760 2019 2383 967*2^2768408+1 833377 L3760 2019 2384 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2385 1171*2^2768112+1 833288 L2676 2019 2386 57*2^2765963+1 832640 L3262 2013 2387 1323*2^2764024+1 832058 L1115 2019 2388 77*2^2762047+1 831461 L3430 2013 2389 745*2^2761514+1 831302 L1204 2019 2390 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2391 7*10^830865+1 830866 p342 2014 2392 893*2^2758841+1 830497 L4826 2019 2393 537*2^2755164+1 829390 L3035 2019 2394 579*2^2754370+1 829151 L1823 2019 2395 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2396 215*2^2751022-1 828143 L2484 2018 2397 337*2^2750860+1 828094 L4854 2019 2398 701*2^2750267+1 827916 L3784 2019 2399 467*2^2749195+1 827593 L1745 2019 2400 245*2^2748663+1 827433 L3173 2015 2401 591*2^2748315+1 827329 L3029 2019 2402 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2403b 1007*2^2747268-1 827014 L4518 2022 2404 1089*2^2746155+1 826679 L2583 2019 2405 707*2^2745815+1 826576 L3760 2019 2406 459*2^2742310+1 825521 L4582 2019 2407 777*2^2742196+1 825487 L3919 2019 2408 609*2^2741078+1 825150 L3091 2019 2409 684*157^375674+1 824946 L5112 2022 2410 639*2^2740186+1 824881 L4958 2019 2411 905*2^2739805+1 824767 L4958 2019 2412b 119*954^276761+1 824625 L5410 2022 2413 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2414 777*2^2737282+1 824007 L1823 2019 2415 765*2^2735232+1 823390 L1823 2019 2416 609*2^2735031+1 823330 L1823 2019 2417 305*2^2733989+1 823016 L1823 2019 2418 165*2^2732983+1 822713 L1741 2015 2419 1133*2^2731993+1 822415 L4687 2019 2420 251*2^2730917+1 822091 L3924 2015 2421 1185*2^2730620+1 822002 L4948 2019 2422 (10^410997+1)^2-2 821995 p405 2022 2423 173*2^2729905+1 821786 L3895 2015 2424 1981*2^2728877-1 821478 L1134 2018 2425 693*2^2728537+1 821375 L3035 2019 2426 501*2^2728224+1 821280 L3035 2019 2427 763*2^2727928+1 821192 L3924 2019 2428 10*743^285478+1 819606 L4955 2019 2429 17*2^2721830-1 819354 p279 2010 2430 1006*639^291952+1 819075 L4444 2021 2431 1101*2^2720091+1 818833 L4935 2019 2432 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2433 165*2^2717378-1 818015 L2055 2012 2434 68633*2^2715609+1 817485 L5105 2020 2435 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2436 9574*5^1169232+1 817263 L5410 2021 2437 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2438 133*2^2713410+1 816820 L3223 2015 2439 45*2^2711732+1 816315 L1349 2012 2440 569*2^2711451+1 816231 L4568 2019 2441 12830*3^1709456+1 815622 L5410 2021 2442 335*2^2708958-1 815481 L2235 2020 2443 93*2^2708718-1 815408 L1862 2016 2444 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2445 837*2^2708160+1 815241 L4314 2019 2446 1005*2^2707268+1 814972 L4687 2019 2447 13*458^306196+1 814748 L3610 2015 2448 253*2^2705844+1 814543 L4083 2015 2449 657*2^2705620+1 814476 L4907 2019 2450 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2451 303*2^2703864+1 813947 L1204 2019 2452 141*2^2702160+1 813434 L1741 2015 2453 753*2^2701925+1 813364 L4314 2019 2454 133*2^2701452+1 813221 L3173 2015 2455 521*2^2700095+1 812813 L4854 2019 2456 393*2^2698956+1 812470 L1823 2019 2457 417*2^2698652+1 812378 L3035 2019 2458 525*2^2698118+1 812218 L1823 2019 2459 3125*2^2697651+1 812078 L3924 2019 2460 153*2^2697173+1 811933 L3865 2015 2461 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2462 26*3^1700041+1 811128 L4799 2020 2463 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2464 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2465 58*536^296735-1 809841 L5410 2021 2466 33016*3^1696980+1 809670 L5366 2021 2467 7335*2^2689080-1 809498 L4036 2015 2468 1049*2^2688749+1 809398 L4869 2018 2469 329*2^2688221+1 809238 L3035 2018 2470 865*2^2687434+1 809002 L4844 2018 2471 989*2^2686591+1 808748 L2805 2018 2472 136*904^273532+1 808609 L5410 2020 2473 243*2^2685873+1 808531 L3865 2015 2474 909*2^2685019+1 808275 L3431 2018 2475 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2476 1455*2^2683953-1 807954 L1134 2020 2477 11210*241^339153-1 807873 L5410 2019 2478 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2479 975*2^2681840+1 807318 L4155 2018 2480f 999*2^2681353-1 807171 L4518 2022 2481 295*2^2680932+1 807044 L1741 2015 2482 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2483 575*2^2679711+1 806677 L2125 2018 2484 2386*52^469972+1 806477 L4955 2019 2485 219*2^2676229+1 805628 L1792 2015 2486 637*2^2675976+1 805552 L3035 2018 2487 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2488 951*2^2674564+1 805127 L1885 2018 2489 1372930^131072+1 804474 g236 2003 Generalized Fermat 2490 662*1009^267747-1 804286 L5410 2020 2491 261*2^2671677+1 804258 L3035 2015 2492 895*2^2671520+1 804211 L3035 2018 2493 1361244^131072+1 803988 g236 2004 Generalized Fermat 2494 789*2^2670409+1 803877 L3035 2018 2495 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2496 503*2^2668529+1 803310 L4844 2018 2497 255*2^2668448+1 803286 L1129 2015 2498 4189*2^2666639-1 802742 L1959 2017 2499 539*2^2664603+1 802129 L4717 2018 2500d 3^1681130+3^445781+1 802103 CH9 2022 2501 26036*745^279261-1 802086 L4189 2020 2502 1396*5^1146713-1 801522 L3547 2013 2503 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2504 51*892^271541+1 801147 L5410 2019 2505 297*2^2660048+1 800757 L3865 2015 2506 99*2^2658496-1 800290 L1862 2021 2507 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2508 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2509 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2510 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2511 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2512 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2513 1183953*2^2367907-1 712818 L447 2007 Woodall 2514 150209!+1 712355 p3 2011 Factorial 2515 147855!-1 700177 p362 2013 Factorial 2516 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 2517 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 2518 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 2519 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 2520 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 2521 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 2522 404882*43^404882-1 661368 p310 2011 Generalized Woodall 2523 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 2524 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 2525 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 2526 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 2527 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 2528 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 2529 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 2530 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 2531 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 2532 292402*159^292402+1 643699 g407 2012 Generalized Cullen 2533 93*10^642225-1 642227 L4789 2020 Near-repdigit 2534 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 2535 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 2536 563528*13^563528-1 627745 p262 2009 Generalized Woodall 2537 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 2538 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 2539 269328*211^269328+1 626000 p354 2012 Generalized Cullen 2540 8*10^608989-1 608990 p297 2011 Near-repdigit 2541 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 2542 251749*2^2013995-1 606279 L436 2007 Woodall 2543 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 2544 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 2545 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 2546 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 2547 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 2548 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 2549 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 2550 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 2551 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 2552 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 2553 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 2554 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 2555 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 2556 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 2557 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 2558 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 2559 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 2560 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 2561 110059!+1 507082 p312 2011 Factorial 2562 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 2563 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 2564 30981*14^433735-1 497121 p77 2015 Generalized Woodall 2565 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 2566 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 2567 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 2568 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 2569 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 2570 1098133#-1 476311 p346 2012 Primorial 2571 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 2572 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 2573 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 2574 103040!-1 471794 p301 2010 Factorial 2575 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 2576 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 2577 341351*22^341351-1 458243 p260 2017 Generalized Woodall 2578 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 2579 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 2580 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 2581 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 2582 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 2583 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 2584 176660*18^353320-1 443519 p325 2011 Generalized Woodall 2585 1467763*2^1467763-1 441847 L381 2007 Woodall 2586 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 2587 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2588 94550!-1 429390 p290 2010 Factorial 2589 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 2590 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 2591 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 2592 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 2593 2^1398269-1 420921 G1 1996 Mersenne 35 2594 182402*14^364804-1 418118 p325 2011 Generalized Woodall 2595 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 2596 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 2597 338707*2^1354830+1 407850 L124 2005 Cullen 2598 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 2599 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 2600 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 2601 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 2602 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 2603 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 2604 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 2605 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 2606 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 2607 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 2608 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 2609 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 2610 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2611 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 2612 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 2613 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 2614 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 2615 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 2616 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 2617 1268979*2^1268979-1 382007 L201 2007 Woodall 2618 2^1257787-1 378632 SG 1996 Mersenne 34 2619 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 2620 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 2621 843301#-1 365851 p302 2010 Primorial 2622 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 2623 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 2624 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 2625 1195203*2^1195203-1 359799 L124 2005 Woodall 2626 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 2627 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 2628 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 2629 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 2630 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 2631 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 2632 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 2633 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 2634 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 2635 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 2636 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 2637 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 2638 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 2639 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 2640 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 2641 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 2642 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 2643 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 2644 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 2645 2^859433-1 258716 SG 1994 Mersenne 33 2646 2^756839-1 227832 SG 1992 Mersenne 32 2647 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 2648 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 2649 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 2650 667071*2^667071-1 200815 g55 2000 Woodall 2651 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 2652 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 2653 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 2654 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 2655 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 2656 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 2657 392113#+1 169966 p16 2001 Primorial 2658 366439#+1 158936 p16 2001 Primorial 2659 481899*2^481899+1 145072 gm 1998 Cullen 2660 34790!-1 142891 p85 2002 Factorial 2661 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 2662 361275*2^361275+1 108761 DS 1998 Cullen 2663 26951!+1 107707 p65 2002 Factorial 2664 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 2665 65516468355*2^333333-1 100355 L923 2009 Twin (p) 2666 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 2667 21480!-1 83727 p65 2001 Factorial 2668 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 2669 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 2670 262419*2^262419+1 79002 DS 1998 Cullen 2671 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 2672 160204065*2^262148-1 78923 L5115 2021 Twin (p) 2673 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 2674 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 2675 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2676 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2677 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 2678 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 2679 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 2680 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 2681 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 2682 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 2683 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 2684 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 2685 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 2686 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 2687 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 2688 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 2689 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 2690 12770275971*2^222225-1 66907 L527 2017 Twin (p) 2691 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 2692 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 2693 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 2694 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 2695 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 2696 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 2697 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 2698 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 2699 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 2700 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 2701 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 2702 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 2703 145823#+1 63142 p21 2000 Primorial 2704 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 2705 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 2706 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 2707 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 2708 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 2709 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 2710 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 2711 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 2712 70965694293*2^200006-1 60219 L95 2016 Twin (p) 2713 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 2714 66444866235*2^200003-1 60218 L95 2016 Twin (p) 2715 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 2716 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 2717 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 2718 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 2719 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 2720 2003663613*2^195000-1 58711 L202 2007 Twin (p) 2721 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 2722d Ramanujan tau function at 199^4518 ECPP 57125 E3 2022 ECPP 2723 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 2724 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 2725 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2726 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2727 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 2728 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2729 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2730 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 2731 17976255129*2^183241-1 55172 p415 2021 Twin (p) 2732 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 2733 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 2734 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 2735 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 2736 191547657*2^173372-1 52199 L5116 2020 Twin (p) 2737 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 2738 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 2739 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 2740 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 2741 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 2742 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 2743 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 2744 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 2745 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 2746 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 2747 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 2748 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 2749 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 2750 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 2751 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 2752 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 2753 33218925*2^169690-1 51090 g259 2002 Twin (p) 2754 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 2755 10^50000+65859 50001 E3 2022 ECPP 2756 R(49081) 49081 c70 2022 Repunit, unique, ECPP 2757 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 2758 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 2759 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 2760 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 2761 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 2762 110427610*3^100003-1 47722 p415 2021 Twin (p) 2763 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 2764 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 2765 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 2766 3706785456*13^42069-1 46873 p412 2020 Twin (p) 2767 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2768 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2769 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2770 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2771 151023*2^151023-1 45468 g25 1998 Woodall 2772 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 2773 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 2774 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 2775 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 2776 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 2777 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 2778 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 2779 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 2780 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 2781 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 2782 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 2783 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 2784 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 2785 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 2786 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 2787 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 2788e E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 2789 10^40000+14253 40001 E3 2022 ECPP 2790 p(1289844341) 40000 c84 2020 Partitions, ECPP 2791 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 2792 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 2793 tau(47^4176) 38404 E3 2022 ECPP 2794f 3^78296+479975120078336 37357 E4 2022 ECPP 2795 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 2796e (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 2797e p(1000007396) 35219 E4 2022 Partitions, ECPP 2798 2^116224-15905 34987 c87 2017 ECPP 2799 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 2800 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 2801 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 2802 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 2803 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 2804 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 2805 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 2806 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 2807 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 2808 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 2809 (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 2810 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 2811 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 2812 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 2813 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 2814 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 2815 V(148091) 30950 c81 2015 Lucas number, ECPP 2816 U(148091) 30949 x49 2021 Fibonacci number, ECPP 2817c Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 2818 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 2819d 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 2820 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 2821 2^99069+9814666761 29823 E4 2022 ECPP 2822 49363*2^98727-1 29725 Y 1997 Woodall 2823 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 2824 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 2825 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 2826 V(140057) 29271 c76 2014 Lucas number,ECPP 2827 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 2828 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 2829 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 2830 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 2831 primV(205011) 28552 x39 2009 Lucas primitive part 2832 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 2833 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 2834 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 2835 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 2836 90825*2^90825+1 27347 Y 1997 Cullen 2837 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 2838 U(130021) 27173 x48 2021 Fibonacci number, ECPP 2839 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 2840 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 2841 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 2842 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 2843 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 2844c (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 2845 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 2846 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 2847 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 2848 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 2849 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 2850 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 2851 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 2852 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 2853 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 2854 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 2855 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 2856 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 2857 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 2858 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 2859 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 2860 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 2861 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 2862 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 2863 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 2864 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 2865 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 2866 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 2867 6917!-1 23560 g1 1998 Factorial 2868 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 2869 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 2870 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 2871 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 2872e p(398256632) 22223 E1 2022 Partitions, ECPP 2873f U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 2874 U(104911) 21925 c82 2015 Fibonacci number, ECPP 2875 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 2876 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 2877 6380!+1 21507 g1 1998 Factorial 2878 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 2879 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 2880 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 2881 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 2882 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 2883 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 2884f p(355646102) 21000 E1 2022 Partitions, ECPP 2885f p(350199893) 20838 E7 2022 Partitions, ECPP 2886 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 2887d primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 2888d primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 2889 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 2890 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 2891 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 2892 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 2893 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 2894 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 2895 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 2896 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 2897 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 2898 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 2899 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 2900 p(322610098) 20000 E1 2022 Partitions, ECPP 2901 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 2902 V(94823) 19817 c73 2014 Lucas number, ECPP 2903 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 2904 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 2905 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 2906f V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 2907 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 2908f V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 2909 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 2910 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 2911 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 2912 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 2913 V(89849) 18778 c70 2014 Lucas number, ECPP 2914 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 2915 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 2916 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 2917 Phi(18827,10) 18480 c47 2014 Unique, ECPP 2918 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2919 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 2920 42209#+1 18241 p8 1999 Primorial 2921 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 2922 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 2923 7457*2^59659+1 17964 Y 1997 Cullen 2924 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2925 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 2926 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 2927 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 2928 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 2929 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 2930 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 2931 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 2932 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 2933 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 2934 U(81839) 17103 p54 2001 Fibonacci number 2935 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 2936 V(81671) 17069 c66 2013 Lucas number, ECPP 2937 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 2938 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 2939 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 2940 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 2941 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 2942 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 2943 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 2944 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 2945 p(221444161) 16569 c77 2017 Partitions, ECPP 2946 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 2947 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2948 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 2949 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 2950 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 2951 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 2952 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 2953 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2954 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 2955 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 2956 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 2957 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 2958 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 2959 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 2960 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 2961 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 2962 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 2963 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2964 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 2965 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2966 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 2967 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 2968 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 2969 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 2970 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 2971 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2972 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 2973 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 2974 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 2975 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 2976 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 2977 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2978 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 2979 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 2980 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2981 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 2982f p(158375386) 14011 E1 2022 Partitions, ECPP 2983f p(158295265) 14007 E1 2022 Partitions, ECPP 2984f p(158221457) 14004 E1 2022 Partitions, ECPP 2985 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 2986 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 2987 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 2988 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 2989 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 2990 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 2991 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2992 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 2993 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 2994 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 2995 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 2996 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 2997 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 2998 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 2999 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 3000f p(141528106) 13244 E6 2022 Partitions, ECPP 3001f p(141513546) 13244 E6 2022 Partitions, ECPP 3002f p(141512238) 13244 E6 2022 Partitions, ECPP 3003f p(141255053) 13232 E6 2022 Partitions, ECPP 3004f p(141150528) 13227 E6 2022 Partitions, ECPP 3005f p(141112026) 13225 E6 2022 Partitions, ECPP 3006f p(141111278) 13225 E6 2022 Partitions, ECPP 3007f p(140859260) 13213 E6 2022 Partitions, ECPP 3008f p(140807155) 13211 E6 2022 Partitions, ECPP 3009f p(140791396) 13210 E6 2022 Partitions, ECPP 3010 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 3011 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3012 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 3013 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 3014 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 3015 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3016 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3017 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 3018 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 3019 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 3020 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 3021 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 3022 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 3023 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 3024 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 3025 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 3026 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 3027 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 3028 V(56003) 11704 p193 2006 Lucas number 3029 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 3030 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 3031 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 3032 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 3033 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 3034 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 3035 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 3036 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 3037 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 3038 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 3039 primU(67825) 11336 x23 2007 Fibonacci primitive part 3040 3610!-1 11277 C 1993 Factorial 3041 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 3042 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 3043 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 3044 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 3045 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 3046 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 3047 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 3048 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 3049 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 3050 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 3051 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 3052 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 3053 3507!-1 10912 C 1992 Factorial 3054 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 3055 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 3056 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 3057 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 3058 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 3059 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 3060 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 3061 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 3062 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 3063 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 3064 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 3065 V(51169) 10694 p54 2001 Lucas number 3066 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 3067 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 3068 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 3069 U(50833) 10624 CH4 2005 Fibonacci number 3070 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 3071 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 3072 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 3073 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 3074 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 3075 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 3076 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 3077 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 3078 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3079 24029#+1 10387 C 1993 Primorial 3080 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 3081 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 3082 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 3083 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 3084 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 3085 23801#+1 10273 C 1993 Primorial 3086 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 3087 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 3088 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 3089 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 3090 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 3091 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 3092 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 3093 32469*2^32469+1 9779 MM 1997 Cullen 3094 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 3095 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 3096 8073*2^32294+1 9726 MM 1997 Cullen 3097 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 3098 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 3099 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 3100 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3101 V(44507) 9302 CH3 2005 Lucas number 3102 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 3103 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 3104 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 3105 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 3106 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 3107 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3108 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 3109 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 3110 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 3111 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 3112 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 3113 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 3114 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 3115 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 3116 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3117 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 3118 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3119 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 3120 18523#+1 8002 D 1989 Primorial 3121 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 3122 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 3123 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 3124 U(37511) 7839 x13 2005 Fibonacci number 3125 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 3126 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 3127 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 3128 V(36779) 7687 CH3 2005 Lucas number 3129 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 3130 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 3131 V(35449) 7409 p12 2001 Lucas number 3132 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 3133 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 3134 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 3135 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 3136 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 3137 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 3138 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 3139 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 3140 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 3141 23005*2^23005-1 6930 Y 1997 Woodall 3142 22971*2^22971-1 6920 Y 1997 Woodall 3143 15877#-1 6845 CD 1992 Primorial 3144 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 3145 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 3146 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 3147 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 3148 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 3149 13649#+1 5862 D 1987 Primorial 3150 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 3151 18885*2^18885-1 5690 K 1987 Woodall 3152 1963!-1 5614 CD 1992 Factorial 3153 13033#-1 5610 CD 1992 Primorial 3154 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 3155 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 3156 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 3157 U(25561) 5342 p54 2001 Fibonacci number 3158 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 3159 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 3160 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 3161 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 3162 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 3163 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 3164 11549#+1 4951 D 1986 Primorial 3165 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 3166 7911*2^15823-1 4768 K 1987 Woodall 3167 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 3168 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 3169 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3170 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3171 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 3172 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 3173 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 3174 1477!+1 4042 D 1984 Factorial 3175 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 3176 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 3177 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 3178 12379*2^12379-1 3731 K 1984 Woodall 3179 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 3180 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 3181 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 3182 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 3183 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 3184 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 3185 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 3186 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 3187 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 3188 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 3189 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 3190 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 3191 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 3192 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 3193 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 3194 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 3195 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 3196 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3197 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3198 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 3199 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 3200 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 3201 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 3202 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 3203 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 3204 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 3205 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 3206 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3207 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 3208 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 3209 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 3210 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 3211 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3212 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3213 V(14449) 3020 DK 1995 Lucas number 3214 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 3215 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 3216 U(14431) 3016 p54 2001 Fibonacci number 3217 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 3218 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3219 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3220 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3221 V(13963) 2919 c11 2002 Lucas number, ECPP 3222 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 3223 9531*2^9531-1 2874 K 1984 Woodall 3224 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 3225 6569#-1 2811 D 1992 Primorial 3226 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 3227 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 3228 V(12251) 2561 p54 2001 Lucas number 3229 974!-1 2490 CD 1992 Factorial 3230 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 3231 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 3232 7755*2^7755-1 2339 K 1984 Woodall 3233 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 3234 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 3235 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 3236 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 3237 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 3238 V(10691) 2235 DK 1995 Lucas number 3239 872!+1 2188 D 1983 Factorial 3240 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 3241 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 3242 4787#+1 2038 D 1984 Primorial 3243 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 3244 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 3245 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 3246 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 3247 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 3248 U(9677) 2023 c2 2000 Fibonacci number, ECPP 3249 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 3250 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 3251 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 3252 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 3253 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 3254 6611*2^6611+1 1994 K 1984 Cullen 3255 4583#-1 1953 D 1992 Primorial 3256 U(9311) 1946 DK 1995 Fibonacci number 3257 4547#+1 1939 D 1984 Primorial 3258 4297#-1 1844 D 1992 Primorial 3259 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 3260 V(8467) 1770 c2 2000 Lucas number, ECPP 3261 4093#-1 1750 CD 1992 Primorial 3262 5795*2^5795+1 1749 K 1984 Cullen 3263 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3264 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 3265 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 3266 V(7741) 1618 DK 1995 Lucas number 3267 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 3268 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 3269 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 3270 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 3271 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 3272 83*2^5318-1 1603 K 1984 Woodall 3273 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 3274 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 3275 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 3276 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 3277 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 3278 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3279 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 3280 4713*2^4713+1 1423 K 1984 Cullen 3281 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3282 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 3283 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3284 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 3285 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 3286 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 3287 V(5851) 1223 DK 1995 Lucas number 3288 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 3289 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 3290 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 3291 U(5387) 1126 WM 1990 Fibonacci number 3292 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 3293 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 3294 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 3295 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 3296 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 3297 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 3298 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 3299 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 3300 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 3301 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 3302 R(1031) 1031 WD 1985 Repunit 3303 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 3304 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 3305 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 3306 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 3307 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 3308 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 3309 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 3310 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 3311 V(4793) 1002 DK 1995 Lucas number 3312 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 3313 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 3314 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 3315 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 3316 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 3317 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young