Compiled by Wilfrid Keller
In 1956 Hans Riesel (1929−2014) proved the following interesting result.
Theorem. There exist infinitely many odd integers k such that k · 2n − 1 is composite for every n > 1.
Actually, Riesel showed that k0 = 509203 has this property, and also the multipliers kr = k0 + 11184810r for r = 1, 2, 3, . . . Such numbers are now called Riesel numbers because of their similarity with the Sierpiński numbers. Note that k0 is a prime number. The Riesel problem consists in determining the smallest Riesel number.
Conjecture. The integer k = 509203 is the smallest Riesel number.
23669, 31859, 38473, 46663, 67117, 74699, 81041, 97139, 107347, 121889, |
129007, 143047, 161669, 206231, 215443, 226153, 234343, 245561, 250027, 315929, |
319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, |
365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, |
477583, 485557, 494743 |
The latest update to the list is from December 09, 2022.
A reasonable approach to the Riesel problem is to determine the first exponent n giving a prime k · 2n − 1 in each case. So we can observe the exact rate at which the 254601 multipliers k < 509203 are successively eliminated, which may enable us to predict their further decrease by extrapolation.
|
|
k | n | Discoverer | Date |
27253 | 272347 | Ray Ballinger | 10 Oct 1998 |
39269 | 287048 | Richard Heylen | 25 Mar 2002 |
42779 | 322908 | Ray Ballinger | 26 Jul 1999 |
43541 | 507098 | Ray Ballinger | 01 Oct 2000 |
46271 | 428210 | Patrick Pirson | 29 Apr 2001 |
104917 | 340181 | Janusz Szmidt | 13 Nov 1999 |
130139 | 280296 | Dale Andrews | 02 Feb 2002 |
144643 | 498079 | Richard Heylen | 12 Dec 2000 |
148901 | 360338 | Mark Rodenkirch | 05 Mar 2002 |
159371 | 284166 | Janusz Szmidt | 14 Jan 2002 |
189463 | 324103 | Dave Linton | 15 Jul 2000 |
201193 | 457615 | Daval Davis | 03 Feb 2003 |
220063 | 306335 | Olivier Haeberlé | 03 Sep 1999 |
235601 | 295338 | Helmut Zeisel | 06 Mar 2003 |
245051 | 285750 | Tom Kuechler | 15 Nov 2000 |
267763 | 264115 | Dave Linton | 19 Feb 2000 |
277153 | 429819 | Jeff Wolfe | 21 Nov 2002 |
299617 | 428917 | Dave Linton | 22 Jul 2002 |
376993 | 293603 | Reto Keiser | 08 Sep 2002 |
382691 | 431722 | Ray Ballinger | 27 Feb 2003 |
398533 | 419107 | Dave Linton | 04 Sep 2002 |
401617 | 470149 | Dave Linton | 27 Dec 2002 |
416413 | 424791 | Dave Linton | 28 Apr 2003 |
443857 | 369457 | Nuutti Kuosa | 27 Aug 2001 |
465869 | 497596 | Lucas Schmid | 27 Jan 2003 |
k | n | Discoverer | Date |
659 | 800516 | Dave Linton | 01 Mar 2004 |
89707 | 578313 | Richard Heylen | 02 Apr 2003 |
93997 | 864401 | Guido Stolz & RSP | 01 Apr 2004 |
98939 | 575144 | Olivier Haeberlé | 30 Nov 2001 |
103259 | 615076 | Olivier Haeberlé | 23 Dec 2002 |
109897 | 630221 | Olivier Haeberlé | 22 Apr 2003 |
126667 | 626497 | Ray Ballinger | 09 Jun 2003 |
170591 | 866870 | Drew Bishop & RSP | 15 Apr 2004 |
204223 | 696891 | Olivier Haeberlé | 23 Mar 2003 |
212893 | 730387 | Olivier Haeberlé | 15 Oct 2003 |
215503 | 649891 | Olivier Haeberlé | 28 Apr 2003 |
220033 | 719731 | Olivier Haeberlé | 19 Apr 2004 |
222997 | 613153 | Olivier Haeberlé | 28 Nov 2001 |
246299 | 752600 | Kevin O'Hare & RSP | 23 Jan 2004 |
261221 | 689422 | Sean Faith & RSP | 22 Dec 2003 |
279703 | 616235 | Dhumil Zaveri & RSP | 07 Jan 2004 |
309817 | 901173 | Helmut Michel & RSP | 07 Jun 2004 |
357491 | 609338 | Lucas Schmid | 17 Jan 2003 |
401143 | 532927 | Olivier Haeberlé | 11 Jun 2003 |
458743 | 547791 | Olivier Haeberlé | 22 Oct 2003 |
460139 | 779536 | Drew Bishop & RSP | 26 Mar 2004 |
k | n | Discoverer | Date |
162941 | 993718 | Dmitry Domanov & PrimeGrid | 02 Feb 2012 |
k | n | Discoverer | Date |
71009 | 1185112 | Drew Bishop & RSP | 05 Dec 2004 |
110413 | 1591999 | Will Fisher & RSP | 08 Jun 2005 |
149797 | 1414137 | Peter van Hoof & RSP | 13 Mar 2005 |
150847 | 1076441 | Darren Wallace & RSP | 15 Aug 2004 |
152713 | 1154707 | Ray Ballinger | 23 Oct 2004 |
192089 | 1395688 | Guido Stolz & RSP | 10 May 2004 |
234847 | 1535589 | Darren Wallace & RSP | 09 May 2005 |
325627 | 1472117 | Will Fisher & RSP | 05 Apr 2005 |
345067 | 1876573 | Dave Linton | 13 Nov 2005 |
350107 | 1144101 | Sean Faith & RSP | 24 Oct 2004 |
357659 | 1779748 | Drew Bishop & RSP | 25 Sep 2005 |
412717 | 1084409 | Holger Meissner & RSP | 22 Aug 2004 |
417643 | 1800787 | Greg Childers & RSP | 05 Oct 2004 |
467917 | 1993429 | Steven Wong & RSP | 25 Dec 2005 |
469949 | 1649228 | Steven Wong & RSP | 28 Oct 2007 |
500621 | 1138518 | Darren Wallace & RSP | 18 Oct 2004 |
502541 | 1199930 | Ryan Sefko & RSP | 21 Dec 2004 |
504613 | 1136459 | Magnus Mischel & RSP | 17 Oct 2004 |
As a combined result of the above computations (including the correction), 71 values of k were left which had no prime k · 2n - 1 for n < 2097152 = 221. From these 71 undecided values of k another 8 have been eliminated by the Riesel Sieve Project, whose participants discovered primes k · 2n − 1 for the following pairs k, n :
k | n | Discoverer | Date |
26773 | 2465343 | John Dalton & RSP | 01 Dec 2006 |
113983 | 3201175 | Ian Keogh & RSP | 01 May 2008 |
114487 | 2198389 | Bruce White & RSP | 23 May 2006 |
196597 | 2178109 | Auritania Du & RSP | 09 May 2006 |
275293 | 2335007 | Japke Rosink & RSP | 21 Sep 2006 |
342673 | 2639439 | Dhumil Zaveri & RSP | 28 Apr 2007 |
450457 | 2307905 | Jeff Smith & RSP | 28 Mar 2006 |
485767 | 3609357 | Chris Cardall & RSP | 24 Jun 2008 |
Following the unfortunate disappearence of the Riesel Sieve Project, the investigation was finally resumed at PrimeGrid, starting in March 2010: see The Riesel Problem. In this context, another 5 primes k · 2n − 1 having 2097152 ≤ n < 4194304 were discovered, as follows; the values of k are linked to PrimeGrid's Official Announcements:
k | n | Discoverer | Date |
65531 | 3629342 | Adrian Schori & PrimeGrid | 05 Apr 2011 |
123547 | 3804809 | Jakub Łuszczek & PrimeGrid | 08 May 2011 |
191249 | 3417696 | Jonathan Pritchard & PrimeGrid | 21 Nov 2010 |
415267 | 3771929 | Alexey Tarasov & PrimeGrid | 08 May 2011 |
428639 | 3506452 | Brett Melvold & PrimeGrid | 14 Jan 2011 |
k | n | Discoverer | Date |
40597 | 6808509 | Frank Meador & PrimeGrid | 25 Dec 2013 |
141941 | 4299438 | Scott Brown & PrimeGrid | 26 May 2011 |
252191 | 5497878 | Jan Haller & PrimeGrid | 23 Jun 2012 |
304207 | 6643565 | Randy Ready & PrimeGrid | 11 Oct 2013 |
353159 | 4331116 | Jaakko Reinman & PrimeGrid | 31 May 2011 |
398023 | 6418059 | Vladimir Volynsky & PrimeGrid | 05 Oct 2013 |
402539 | 7173024 | Walter Darimont & PrimeGrid | 02 Oct 2014 |
502573 | 7181987 | Denis Iakovlev & PrimeGrid | 04 Oct 2014 |
with the count of f22 = 8 (compare the table of frequencies above).
k | n | Discoverer | Date |
9221 | 11392194 | Barry Schnur & PrimeGrid | 07 Feb 2021 |
146561 | 11280802 | Pavel Atnashev & PrimeGrid | 16 Nov 2020 |
273809 | 8932416 | Wolfgang Schwieger & PrimeGrid | 13 Dec 2017 |
In addition, four even larger primes were reported by an independent researcher. In these cases it is not known whether the given primes are the smallest ones in their respective sequences.
k | n | Discoverer | Date |
2293 | 12918431 | Ryan Propper | 13 Feb 2021 |
93839 | 15337656 | Ryan Propper | 27 Nov 2022 |
192971 | 14773498 | Ryan Propper | 07 Mar 2021 |
206039 | 13104952 | Ryan Propper | 26 Apr 2021 |
Overall, this leaves the 43 uncertain candidates listed at the beginning. Obviously, the largest prime discovered during this investigation is the recent 4617100-digit prime 93839 · 215337656 − 1.
References.
For more information see the Riesel number page in Chris Caldwell's Glossary.
Address questions about this web page to Wilfrid Keller