login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122396 Least k>1 such that p^k - p^(k-1) - 1 is prime for p = prime(n). 3
3, 2, 2, 2, 2, 3, 2, 7, 56, 2, 2, 8, 8, 8, 2, 4, 4, 2, 2, 2, 9, 3, 21496, 26, 2, 2, 4, 38, 7, 286644, 2, 2, 26, 2, 2, 4, 4, 15, 4, 24, 16, 2, 264, 4, 2, 3, 24, 3, 516, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Does a(n) always exist? Note that k cannot be 5, 11, 17,... (i.e., k=5 mod 6) because then p^2 - p + 1 divides p^k - p^(k-1) - 1.

From Richard N. Smith, Jul 15 2019: (Start)

The link has the primes 82*83^21495-1 = 83^21496-83^21495-1 and 112*113^286643-1 = 113^286644-113^286643-1, thus a(23)=21496 and a(30)=286644.

a(51) > 250000, since 232*233^k-1 is composite for all k<=250000, see link.

a(52) - a(61) = {4, 2, 80, 14, 76, 2, 90, 6, 80, 769}, a(62) > 200000. (End)

LINKS

Table of n, a(n) for n=1..50.

Steven Harvey, Williams primes

MATHEMATICA

lst={}; Do[p=Prime[n]; k=2; While[m=p^k-p^(k-1)-1; !PrimeQ[m], k++ ]; AppendTo[lst, k], {n, 22}]; lst

PROG

(PARI) a(n)=for(k=2, 10^6, if(ispseudoprime(prime(n)^k - prime(n)^(k-1) - 1), return(k))) \\ Richard N. Smith, Jul 15 2019

CROSSREFS

Cf. A087139, A122395.

Sequence in context: A104223 A057934 A058758 * A272893 A037199 A145376

Adjacent sequences: A122393 A122394 A122395 * A122397 A122398 A122399

KEYWORD

nonn,more,hard

AUTHOR

T. D. Noe, Aug 31 2006

EXTENSIONS

a(23)-a(50) from Richard N. Smith, Jul 15 2019, using Steven Harvey's table.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 28 19:31 EST 2022. Contains 359109 sequences. (Running on oeis4.)