|
|
A098876
|
|
Least k such that 3*((6*n)^k) - 1 is prime.
|
|
1
|
|
|
1, 2, 1, 1, 1, 1, 2523, 2, 2, 1, 1, 2, 1, 1, 1, 2, 3, 6, 63, 1, 50, 38, 2, 1, 1, 1, 79, 1, 1, 3, 1, 4, 1, 2, 2, 1, 6, 1, 1, 1, 5, 3, 1, 18, 1, 1, 11, 1, 1, 26, 3, 10, 1, 1, 4, 2, 2, 4, 1, 6, 1, 4, 54, 1, 10, 1, 3, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(72) > 3830, and the sequence then continues: 6, 2, 7, 1, 27, 2, 3, 1, 7, 2, 1, 1, 4, 36, 346, 1, 1, 1, 1, 3, 6, 2, 1, 2, 444, ...
a(72) > 10^4. - Ray Chandler, Nov 13 2004
|
|
LINKS
|
Table of n, a(n) for n=1..71.
|
|
FORMULA
|
a(A138918(n)) = 1. - Michel Marcus, Jul 28 2015
|
|
MATHEMATICA
|
f[n_] := Block[{k = 1}, While[ !PrimeQ[3*((6*n)^k) - 1], k++ ]; k]; Table[ f[n], {n, 71}] (* Robert G. Wilson v, Oct 21 2004 *)
|
|
CROSSREFS
|
Cf. A098877, A138918.
Sequence in context: A248975 A016541 A230453 * A143277 A292378 A320835
Adjacent sequences: A098873 A098874 A098875 * A098877 A098878 A098879
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Oct 13 2004
|
|
EXTENSIONS
|
Corrected and extended by Robert G. Wilson v, Oct 22 2004
|
|
STATUS
|
approved
|
|
|
|