|
|
A098873
|
|
Least k such that 2*((6*n)^k) - 1 is prime.
|
|
1
|
|
|
1, 1, 2, 1, 1, 1, 1, 4, 1, 5, 1, 34, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 24, 8, 1, 10, 7, 1, 1, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 28, 5, 2, 2484, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..50.
|
|
EXAMPLE
|
2*((6*1)^1) - 1 = 11 prime, so a(1)=1
2*((6*2)^1) - 1 = 23 prime, so a(2)=1
2*((6*3)^1) - 1 = 35 = 5*7
2*((6*3)^2) - 1 = 647 prime, so a(3)=2
|
|
MATHEMATICA
|
lk[n_]:=Module[{k=1}, While[!PrimeQ[2((6n)^k)-1], k++]; k]; Array[lk, 50] (* Harvey P. Dale, Apr 02 2018 *)
|
|
CROSSREFS
|
Sequence in context: A107688 A060097 A098120 * A257462 A337131 A046876
Adjacent sequences: A098870 A098871 A098872 * A098874 A098875 A098876
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Oct 13 2004
|
|
EXTENSIONS
|
Corrected by Harvey P. Dale, Apr 02 2018
|
|
STATUS
|
approved
|
|
|
|