login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119591 Least k such that 2*n^k - 1 is prime. 3
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,4

COMMENTS

From Eric Chen, Jun 01 2015: (Start)

Conjecture: a(n) is defined for all n.

a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.

a(n) = 1 if and only if n is in A006254. (End)

From Eric Chen, Sep 16 2021: (Start)

Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.

a(n) = 2 if and only if n is in A066049 but not in A006254.

a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

LINKS

Eric Chen, Table of n, a(n) for n = 2..580

Gary Barnes, Riesel conjectures and proofs

Eric Chen, Table of n, a(n) for n = 2..2050 status

Prime Wiki, Riesel prime small bases least n

FORMULA

From Eric Chen, Sep 16 2021: (Start)

a(6*n) = A098873(n).

a(2^n) = A279095(n).

a(A006254(n)) = 1.

a(A066049(n)) <= 2.

a(A214289(n)) <= 3. (End)

MATHEMATICA

f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)

PROG

(PARI) a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

CROSSREFS

Cf. A119624, A253178.

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Sequence in context: A178649 A353976 A335502 * A333782 A304876 A010125

Adjacent sequences: A119588 A119589 A119590 * A119592 A119593 A119594

KEYWORD

nonn,hard

AUTHOR

Pierre CAMI, Jun 01 2006

EXTENSIONS

Corrected and extended by Ray Chandler, Jun 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 28 19:31 EST 2022. Contains 359109 sequences. (Running on oeis4.)