login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079706 Smallest positive exponent k such that (2n)^k+1 is prime, or -1 if no such k exists. 7
1, 1, 1, -1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, -1, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

All nonzero a(n) are equal to powers of 2. a((p-1)/2) = 1 for prime p>2. - Alexander Adamchuk, Sep 17 2006

Further comments from Alexander Adamchuk, Oct 01 2006: (Start)

a(19) is unknown.

a(20)-a(24) = {1,1,16,1,4}.

a(26)-a(30) = {1,2,2,1,1}.

a(32) = -1.

a(33) = 1.

a(35)-a(42) = {1,1,2,16,1,4,1,2}.

a(44)-a(45) = {1,2}.

a(47)-a(48) = {2,1}.

a(50)-a(51) = {1,1}.

a(53)-a(60) = {1,1,2,1,32,2,4,2}.

a(62)-a(63) = {2,1}.

a(64) = -1.

a(65)-a(71) = {1,4,2,1,1,4,4}.

a(73)-a(83) = {2,1,1,8,4,1,16,2,1,4,1}.

a(85)-a(90) = {2,1,4,2,1,1}.

a(92) = 2.

a(94)-a(99) = {16,1,1,4,1,1}.

a(102)-a(105) = {2,2,8,1}.

a(n) is unknown for n = {19,25,31,34,43,46,49,52,61,72,84,91,93,100,101,...}.

Corresponding smallest primes of the form (2n)^k +1 are listed in A084712[n] = {3,5,7,0,11,13,197,17,19,401,23,577,677,29,31,0,1336337,37,...} Smallest prime of the form (2n)^k +1, or 0 if no such number exists.

The first occurrence of a(k) = 2^n is k = {1,7,17,76,22,57,137,117,307,...} = A122528[n] Minimum number k such that (2k)^(2^n) + 1 is prime, or A079706[A122528(n)] = 2^n.

Corresponding primes A084712[A122528(n)] = {3,197,1336337,284936905588473857,197352587024076973231046657,...}. (End)

The terms a(32) and a(64) are known to be -1 because 2^(6k)+1 and 2^(7k)+1 are divisible by 4^k+1 and 2^k+1, respectively, for all k >0. Also, a(45)=2 because 8101 is prime. - T. D. Noe, May 13 2008

a(19) >= 2^20 or a(19) = -1. - Robert Price, Mar 02 2015

From Robert G. Wilson v, Aug 30 2016: (Start)

n = 1: 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, ..., ;

n = 2: 7, 10, 12, 13, 27, 28, 37, 42, 45, 47, 55, 58, 60, 62, 67, 73, 80, 85, 88, 92, 102, 103, 112, 115, 118, 130, 132, 142, 150, 157, 163, 170, 175, 192, 193, 203, 218, 220, 222, 232, 235, 237, 248, 268, 272, 292, 297, 317, 318, 322, ..., ;

n = 4: 17, 24, 40, 59, 66, 70, 71, 77, 82, 87, 97, 110, 121, 124, 127, 133, 136, 139, 144, 148, 160, 164, 167, 182, 187, 207, 236, 238, 244, 246, 247, 252, 258, 263, 275, 277, 283, 291, 312, 314, 328, 351, 355, 365, 374, 379, 389, 394, ..., ;

n = 8: 76, 104, 145, 196, 213, 217, 255, 271, 298, 305, 332, 391, 433, 442, 446, 458, 467, 478, 511, 514, 560, 612, 616, 628, 642, 655, 695, 801, 814, 841, 934, 968, 1039, 1045, 1050, 1097, 1137, 1141, 1164, 1181, 1189, 1240, 1245, ..., ;

n = 16: 22, 38, 79, 94, 159, 185, 226, 280, 344, 368, 387, 388, 395, 415, 416, 417, 423, 450, 486, 492, 522, 539, 607, 706, 764, 867, 906, 917, 928, 945, 992, 1036, 1078, 1104, 1109, 1115, 1142, 1159, 1176, 1224, 1231, 1281, 1456, 1631, ..., ;

n = 32: 57, 166, 171, 180, 188, 214, 294, 402, 425, 599, 839, 857, 909, 980, 1059, 1209, 1217, 1334, 1387, 1393, 1422, 1434, 1521, 1522, 1599, 1744, 1748, 1757, 1904, 2217, 2245, 2250, 2266, 2458, 2467, 2532, 541, 2579, 2606, 2610, ..., ;

n = 64: 137, 206, 364, 542, 815, 902, 1082, 1247, 1262, 1307, 1392, 1512, 1639, 1814, 1847, 1875, 2015, 2029, 2083, 2162, 2359, 2607, 2859, 2947, 3218, 3346, 3421, 3456, 3481, 3542, 3566, 4065, 4261, 4416, 4494, 4496, 4570, 4720, ..., ;

n = 128: 117, 253, 266, 274, 1738, 2894, 3040, 3375, 3846, 4853, 5119, 5497, 5716, 5777, 6850, 7007, 7144, 7783, 8485, 8980, 96965, ..., ;

n = 256: 307, 449, 674, 787, 969, 1061, 1139, 1381, 1717, 2047, 2102, 2856, 2872, 4322, 4381, 4404, 4571, 5446, 6103, 6610, 6611, 6685, 6869, 7057, 7963, 8128, 8358, 9671, ..., ;

n = 512: 671, 1577, 1939, 2232, 2344, 2687, 2849, 2885, 3193, 3341, 3694, 4339, 4396, 5734, 6377, 6599, 6888, 7367, 8413, 9457, ..., ;

n = 1024: 412, 738, 816, 1242, 1532, 3320, 4535, 6274, 6497, 8823, 9168, 9782, ..., ;

n = 2048: 1279, 6618, 7524,..., ;

n = 4098: 767, 8791, 9112,..., ;

n = 8192: 35926,..., ;

n = 16384: 50915,..., ;

n = 32768: 35453,..., ;

n = 65536: 24297,..., ; etc.

(End)

LINKS

Table of n, a(n) for n=1..18.

Robert G. Wilson v, n and a(n) for n=1 .. 1025, -1 if no such k exists or 0 if unknown.

EXAMPLE

14+1=15, however 14^2+1=197 is prime, hence a(7)=2.

MATHEMATICA

Table[k=1; While[p=1+(2n)^k; k<1024 && !PrimeQ[p], k=2k]; If[k==1024, -1, k], {n, 44}] (* T. D. Noe, May 13 2008 *)

CROSSREFS

Cf. A084712, A122528.

Sequence in context: A358492 A227796 A109374 * A250005 A319907 A357112

Adjacent sequences: A079703 A079704 A079705 * A079707 A079708 A079709

KEYWORD

sign

AUTHOR

Jon Perry, Jan 31 2003

EXTENSIONS

More terms from Alexander Adamchuk, Sep 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 28 19:31 EST 2022. Contains 359109 sequences. (Running on oeis4.)