|
|
A065854
|
|
Smallest prime q such that (p^q-1)/(p-1) is a prime, where p = prime(n).
|
|
6
|
|
|
2, 3, 3, 5, 17, 5, 3, 19, 5, 5, 7, 13, 3, 5, 127, 11, 3, 7, 19, 3, 5, 5, 5, 3, 17, 3, 19, 17, 17, 23, 5, 3, 11, 163, 7, 13, 17, 7, 3, 3, 19, 17, 17, 5, 31, 577, 41, 239, 5, 11, 113, 5, 17, 7, 23, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = 2*A065813(n) + 1, n > 1.
|
|
LINKS
|
Table of n, a(n) for n=1..56.
Andy Steward, Titanic Prime Generalized Repunits
|
|
MATHEMATICA
|
Do[p = Prime[n]; k = 1; While[ !PrimeQ[ (p^Prime[k] - 1)/(p - 1)], k++ ]; Print[ Prime[k]], {n, 1, 56} ]
|
|
PROG
|
(PARI) { allocatemem(932245000); for (n=1, 100, p=prime(n); q=2; while (!isprime((p^q - 1)/(p - 1)), q=nextprime(q + 1)); write("b065854.txt", n, " ", q) ) } \\ Harry J. Smith, Nov 01 2009
|
|
CROSSREFS
|
Cf. A084740 (least k such that (n^k-1)/(n-1) is prime).
Sequence in context: A275914 A154923 A154693 * A263769 A064776 A270592
Adjacent sequences: A065851 A065852 A065853 * A065855 A065856 A065857
|
|
KEYWORD
|
hard,nonn
|
|
AUTHOR
|
Vladeta Jovovic, Nov 26 2001
|
|
STATUS
|
approved
|
|
|
|