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Preface

This book teaches the most modern form

of Java programming using the features

in the 8th version of that language.

My previous Java book, Thinking in Java, 4th Edition (Prentice Hall

2006), is still useful for programming in Java 5, the version of the

language used for Android programming. But especially with the

advent of Java 8, the language has changed significantly enough that

new Java code feels and reads differently. This justified the two-year

effort of creating a new book.

On Java 8 is designed for someone with a basic foundation in

programming. For beginners, web sites like Code.org and Khan

Academy can provide at least some of that background, along with the
Thinking in C seminar freely available at the OnJava8 Site. Services like
YouTube, blogs and StackOverflow have made finding answers

ridiculously easy compared to just a few years ago when we relied on

print media. Combine these with perseverance, and you can use this

book as your first programming text. It’s also intended for professional

programmers who want to expand their knowledge.

https://www.khanacademy.org/computing/computer-programming
https://code.org/learn
https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming
http://www.OnJava8.com


I am grateful for all the benefits from Thinking in Java, mostly in the

form of speaking engagements all over the world. It has proved

invaluable in creating connections with people and companies for my

Reinventing Business project. One of the reasons I finally wrote this book is
to support my Reinventing Business research, and it seems the

next logical step is to actually create a so-called Teal Organization. I

hope this book can become a kind of crowdfunding for that project.

Goals

Each chapter teaches a concept, or a group of associated concepts,

without relying on features that haven’t yet been introduced. That way

you can digest each piece in the context of your current knowledge

before moving on.

My goals in this book are to:

1. Present the material one step at a time so you can easily

incorporate each idea before moving on, and to carefully sequence

the presentation of features so you’re exposed to a topic before

http://www.reinventing-business.com/


you see it in use. This isn’t always possible; in those situations, a

brief introductory description is given.

2. Use examples that are as simple and short as possible. This

sometimes prevents me from tackling “real world” problems, but

I’ve found that beginners are usually happier when they can

understand every detail of an example rather than being

impressed by the scope of the problem it solves. For this I might

receive criticism for using “toy examples,” but I’m willing to

accept that in favor of producing something pedagogically useful.

3. Give you what I think is important for you to understand about

the language, rather than everything I know. I believe there is an

information importance hierarchy, and there are some facts that

95 percent of programmers will never need to know—details that

just confuse people and increase their perception of the

complexity of the language. If you must think about it, it will also

confuse the reader/maintainer of that code, so I advocate



choosing a simpler approach.

4. Provide you with a solid foundation so you understand the issues

well enough to move on to more difficult coursework and books.

Language Design

Errors

Every language has design errors. New programmers experience deep

uncertainty and frustration when they must wade through features

and guess at what they should use and what they shouldn’t. It’s

embarrassing to admit mistakes, but this bad beginner experience is a

lot worse than the discomfort of acknowledging you were wrong about

something. Alas, every failed language/library design experiment is

forever embedded in the Java distribution.

The Nobel laureate economist Joseph Stiglitz has a philosophy of life

that applies here, called The Theory of Escalating Commitment:

“The cost of continuing mistakes is borne

by others, while the cost of admitting

mistakes is borne by yourself.”

If you’ve read my past writings, you’ll know that when I find design

errors in a language, I tend to point them out. Java has developed a

particularly avid following, folks who treat the language more like a



country of origin and less like a programming tool. Because I’ve

written about Java, they assume I am a fellow patriot. When I criticize

the errors I find, it tends to have two effects:

1. Initially, a lot of “my-country-right-or-wrong” furor, which

typically dies down to isolated pockets. Eventually—this can take

years—the error is acknowledged and seen as just part of the

history of Java.

2. More importantly, new programmers don’t go through the

struggle of wondering why “they” did it this way, especially the

self-doubt that comes from finding something that just doesn’t

seem right and naturally assuming I must be doing it wrong or I

just don’t get it. Worse, those who teach the language often go

right along with the misconceptions rather than delving in and

analyzing the issue. By understanding the language design errors,

new programmers can understand that something was a mistake,

and move ahead.

Understanding language and library design errors is essential because

of the impact they have on programmer productivity. Some companies

and teams choose to avoid certain features because, while seductive on

the surface, those features can block your progress when you least



expect it. Design errors also inform the creation and adoption of new

languages. It’s fun to explore what can be done with a language, but

design errors tell you what can’t be done with that language.

For many years, I honestly felt a lack of care from the Java designers

regarding their users. Some of these errors seemed so blatant, so

poorly thought-out, that it appeared the designers had some other

motivation in mind instead of serving their users. There was a lot of

notoriety around the Java language for a long time, and perhaps that’s

where the seduction was. This seeming lack of respect for

programmers is the major reason I moved away from Java and didn’t

want anything to do with it for such a long time.

When I did start looking into Java again, something about Java 8 felt

very different, as if a fundamental shift had occurred in the designers’

attitude about the language and its users. Many features and libraries

that had been warts on the language were fixed after years of ignoring

user complaints. New features felt very different, as if there were new

folks on board who were extremely interested in programmer

experience. These features were—finally—working to make the

language better rather than just quickly adding ideas without delving

into their implications. And some of the new features are downright



elegant (or at least, as elegant as possible given Java constraints). I can

only guess that some person or people have departed the language

group and this has changed the perspective.

Because of this new focus by the language developers—and I don’t

think I’m imagining it—writing this book has been dramatically better

than past experiences. Java 8 contains fundamental and important

improvements. Alas, because of Java’s rigid backwards-compatibility

promise, these improvements required great effort so it’s unlikely we’ll

see anything this dramatic again (I hope I’m wrong about this).

Nonetheless, I applaud those who have turned the ship as much as

they have and set the language on a better course. For the first time I

can ever recall, I found myself saying “I love that!” about some of the

Java code I’ve been able to write in Java 8.

Ultimately, the timing for this book seems good, because Java 8

introduces important features that strongly affect the way code is

written, while—so far—Java 9 seems to focus on the understory of the



language, bringing important infrastructure features but not those that

affect the kind of coding focused on in this book. However, because it’s

an eBook, if I discover something I think requires an update or an

addition, I can push the new version to existing customers.

Tested Examples

The code examples in this book compile with Java 8 and the Gradle

build tool. All the examples are in a freely-accessible Github

repository.

Without a built-in test framework with tests that run every time you

do a build of your system, you have no way of knowing whether your

code is reliable. To accomplish this in the book, I created a test system

to display and validate the output of most examples. The output from

running an example is attached, as a block comment, at the end of

examples that produce output. In some cases only the first few lines

are shown, or first and last lines. Embedded output improves the

https://gradle.org/
https://github.com/BruceEckel/Onjava8-examples/
https://github.com/BruceEckel/Onjava8-examples/


reading and learning experience, and provides yet another way to

verify the correctness of the examples.

Popularity

Java’s popularity has significant implications. If you learn it, getting a

job will probably be easier. There are a lot more training materials,

courses, and other learning resources available. If you’re starting a

company and you choose to work in Java, it’s much easier to find

programmers, and that’s a compelling argument.

Short-term thinking is almost always a bad idea. Don’t use Java if you

really don’t like it—using it just to get a job is an unhappy life choice.

As a company, think hard before choosing Java just because you can

hire people. There might be another language that makes fewer



employees far more productive for your particular need.

But if you do enjoy it, if Java does call to you, then welcome. I hope

this book will enrich your programming experience.

Android Programmers

I’ve made this book as “Java 8 as possible,” so if you want to program

for Android devices, you must study Java 5, which I cover in Thinking

in Java, 4th edition. At the time of publishing of On Java 8, Thinking in Java,
4th Edition has become a free download, available through

www.OnJava8.com. Thinking in Java, 4th Edition is available in print from
Prentice-Hall. In addition, there are many other resources that

specialize in Android programming.

This is Only an eBook

On Java 8 is only available as an eBook,

and only via www.OnJava8.com. Any

other source or delivery mechanism is

illegitimate. There is no print version.

This is copyrighted work. Do not post or share it in any way without

permission via mindviewinc@gmail.com. You may use the examples

for teaching, as long as they are not republished without permission

and attribution. See the Copyright.txt file in the example

distribution for full details.

http://www.OnJava8.com
http://www.OnJava8.com


This book is far too large to publish as a single print volume, and my

intent has always been to only publish it as an eBook. Color syntax

highlighting for code listings is, alone, worth the cost of admission.

Searchability, font resizing or text-to-voice for the vision-impaired, the

fact you can always keep it with you—there are so many benefits to

eBooks it’s hard to name them all.

Anyone buying this book needs a computer to run the programs and

write code, and the eBook reads nicely on a computer (I was also

surprised to discover that it even reads tolerably well on a phone).

However, the best reading experience is on a tablet computer. Tablets

are inexpensive enough that you can now buy one for less than you’d

pay for an equivalent print version of this book. It’s much easier to

read a tablet in bed (for example) than trying to manage the pages of a

physical book, especially one this big. When working at your

computer, you don’t have to hold the pages open when using a tablet

at your side. It might feel different at first, but I think you’ll find the

benefits far outweigh the discomfort of adapting.

I’ve done the research, and Google Play Books works on, and provides

a very nice reading experience, every platform, including Linux and

iOS devices. As an experiment, I’ve decided to try publishing



exclusively through Google Books.

Note: At the time of this writing, reading the book through the

Google Play Books web browser app was—although tolerable—the

least satisfying viewing experience. I strongly advocate using a tablet

computer instead.

Colophon

This book was written with Pandoc-flavored Markdown, and produced

into ePub version 3 format using Pandoc.

http://pandoc.org/


The body font is Georgia and the headline font is Verdana. The code

font is Ubuntu Mono, because it is especially compact and allows more

characters on a line without wrapping. I chose to place the code inline

(rather than make listings into images, as I’ve seen some books do)

because it was important to me that the reader be able to resize the

font of the code listings when they resize the body font (otherwise,

really, what’s the point?).

The build process for the book was automated, as well as the process

to extract, compile and test the code examples. All automation was

achieved through fairly extensive programs I wrote in Python 3.

Cover Design

The cover of On Java 8 is from a mosaic created through the Works

Progress Administration (WPA, a huge project during the US Great

Depression from 1935-1943 which put millions of out-of-work-people

back to work). It also reminds me of the illustrations from The Wizard

of Oz series of books. My friend and designer, Daniel Will-Harris

(www.will-harris.com) and I just liked the image.

Thanks

http://www.will-harris.com


Thanks to Eric Evans (author of Domain-Driven Design) for

suggesting the book title, and to everyone else in the conference

newsgroups for their help in finding the title.

Thanks to James Ward for starting me with the Gradle build tool for

this book, and for his help and friendship over the years. Thanks to

Ben Muschko for his work polishing the build files, and Hans Dockter

for giving Ben the time.

Jeremy Cerise and Bill Frasure came to the developer retreat for the

book and followed up with valuable help.

Thanks to all who have taken the time and effort to come to my
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Introduction

“The limits of my language are the limits

of my world”—Wittgenstein

This is true of both spoken/written languages and programming

languages. It’s often subtle: A language gently guides you into certain

modes of thought and away from others. Java is particularly

opinionated.

Java is a derived language. The original language designers didn’t

want to use C++ for a project, so created a new language which

unsurprisingly looked a lot like C++, but with improvements (their

original project never came to fruition). The core changes were the

incorporation of a virtual machine and garbage collection, both of

which are described in detail in this book. Java is also responsible for

pushing the industry forward in other ways; for example, most

languages are now expected to include documentation markup syntax

and a tool to produce HTML documentation.

One of the most predominant Java concepts came from the SmallTalk

language, which insists that the “object” (described in the next



chapter) is the fundamental unit of programming, so everything must

be an object. Time has tested this belief and found it overenthusiastic.

Some folks even declare that objects are a complete failure and should

be discarded. Personally, I find that making everything an object is not

only an unnecessary burden but also pushes many designs in a poor

direction. However, there are still situations where objects shine.

Requiring that everything be an object (especially all the way down to

the lowest level) is a design mistake, but banning objects altogether

seems equally draconian.

Other Java language decisions haven’t panned out as promised.

Throughout this book I attempt to explain these so you not only

understand those features, but also why they might not feel quite right

to you. It’s not about declaring that Java is a good language or a bad

one. If you understand the flaws and limitations of the language you

will:

1. Not get stymied when you encounter a feature that seems “off.”

2. Design and code better by knowing where the boundaries are.

Programming is about managing complexity: the complexity of the

problem, laid upon the complexity of the machine. Because of this

complexity, most of our programming projects fail.



Many language design decisions are made with complexity in mind,

but at some point other issues are considered essential. Inevitably,

those other issues are what cause programmers to eventually “hit the

wall” with a language. For example, C++ had to be backward-

compatible with C (to allow easy migration for C programmers), as

well as efficient. Those are both useful goals and account for much of

the success of C++, but they also expose extra complexity that prevent

some projects from finishing. Certainly, you can blame programmers

and management, but if a language can help by catching your

mistakes, why shouldn’t it?

Visual BASIC (VB) was tied to BASIC, which wasn’t really designed as

an extensible language. All the extensions piled upon VB have

produced some truly un-maintainable syntax. Perl is backward-

compatible with awk, sed, grep, and other Unix tools it was meant

to replace, and as a result it is often accused of producing “write-only

code” (that is, you can’t read your own code). On the other hand, C++,



VB, Perl, and other languages such as SmallTalk had some of their

design efforts focused on the issue of complexity and as a result are

remarkably successful in solving certain types of problems.

The communication revolution enables all of us to communicate with

each other more easily: one-on-one as well as in groups and as a

planet. I’ve heard it suggested that the next revolution is the formation

of a kind of global mind that results from enough people and enough

interconnectedness. Java might or might not be one of the tools for

that revolution, but at least the possibility has made me feel like I’m

doing something meaningful by attempting to teach the language.

Prerequisites

This book assumes you have some programming familiarity, so you

understand:

A program is a collection of statements

The idea of a subroutine/function/macro

Control statements such as “if” and looping constructs such as

“while”

Etc.

You might have learned this in many places, typically school, books, or

the Internet. As long as you you feel comfortable with the basic ideas



of programming, you can work through this book. The Thinking in C

multimedia seminar freely downloadable from OnJava8.com will bring you
up to speed on the fundamentals necessary to learn Java. On

Java 8 does introduce the concepts of object-oriented programming

(OOP) and Java’s basic control mechanisms.

Although I make references to C and C++ language features, these are

not intended to be insider comments, but instead to help all

programmers put Java in perspective with those languages, from

which, after all, Java is descended. I attempt to make these references

simple and to explain anything that might be unfamiliar to a non-

C/C++ programmer.

JDK HTML

http://www.OnJava8.com


Documentation

The Java Development Kit (JDK) from Oracle (a free download) comes with
documentation in electronic form, readable through your

Web browser. Unless necessary, this book will not repeat that

documentation, because it’s usually much faster to find the class

descriptions with your browser than to look them up in a book (also,

the online documentation is current). I’ll simply refer to “the JDK

documentation.” I’ll provide extra descriptions of the classes only

when it’s necessary to supplement that documentation so you

understand a particular example.

Thinking in C

The Thinking in C multimedia seminar is freely downloadable from

www.OnJava8.com. This gives an introduction to the C syntax, operators,
and functions that are the foundation of Java syntax.

Thinking in C also provides a gentle introduction to coding, assuming

even less about the student’s programming background than does this

book.

I commissioned Chuck Allison to create Thinking in C as a standalone

product, which was later included in book CDs, and finally reworked

as a free download. By freely providing this seminar online, I can

ensure that everyone begins with adequate preparation.

http://java.oracle.com
http://www.OnJava8.com


Source Code

All the source code for this book is available as copyrighted freeware,

distributed via Github. To ensure you have the most current version, this is
the official code distribution site. You may use this code in

classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the

code is properly cited, and to prevent you from republishing the code

without permission. (As long as this book is cited, using examples

from the book in most media is generally not a problem.)

In each source-code file you find a reference to the following copyright

notice:

// Copyright.txt

This computer source code is Copyright ©2017 MindView LLC.

All Rights Reserved.

Permission to use, copy, modify, and distribute this

computer source code (Source Code) and its documentation

https://github.com/BruceEckel/Onjava8-examples/


without fee and without a written agreement for the

purposes set forth below is hereby granted, provided that

the above copyright notice, this paragraph and the

following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to

include the compiled code, in executable format only, in

personal and commercial software programs.

2. Permission is granted to use the Source Code without

modification in classroom situations, including in

presentation materials, provided that the book "On

Java 8" is cited as the origin.

3. Permission to incorporate the Source Code into printed

media may be obtained by contacting:

MindView LLC, PO Box 969, Crested Butte, CO 81224

MindViewInc@gmail.com

4. The Source Code and documentation are copyrighted by

MindView LLC. The Source code is provided without express

or implied warranty of any kind, including any implied

warranty of merchantability, fitness for a particular

purpose or non-infringement. MindView LLC does not



warrant that the operation of any program that includes the

Source Code will be uninterrupted or error-free. MindView

LLC makes no representation about the suitability of the

Source Code or of any software that includes the Source

Code for any purpose. The entire risk as to the quality

and performance of any program that includes the Source

Code is with the user of the Source Code. The user

understands that the Source Code was developed for research

and instructional purposes and is advised not to rely

exclusively for any reason on the Source Code or any

program that includes the Source Code. Should the Source

Code or any resulting software prove defective, the user

assumes the cost of all necessary servicing, repair, or

correction.

5. IN NO EVENT SHALL MINDVIEW LLC, OR ITS PUBLISHER BE

LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR
DIRECT,

INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES,

INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS
OF



BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS,
OR FOR

PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS
SOURCE

CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE
INABILITY

TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW LLC,
OR

ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH

DAMAGE. MINDVIEW LLC SPECIFICALLY DISCLAIMS ANY

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR

PURPOSE. THE SOURCE CODE AND DOCUMENTATION
PROVIDED

HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY
ACCOMPANYING

SERVICES FROM MINDVIEW LLC, AND MINDVIEW LLC HAS
NO

OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES,

ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView LLC maintains a Web site which



is the sole distribution point for electronic copies of the

Source Code, https://github.com/BruceEckel/OnJava8-examples,

where it is freely available under the terms stated above.

If you think you've found an error in the Source Code,

please submit a correction at:

https://github.com/BruceEckel/OnJava8-examples/issues

You may use the code in your projects and in the classroom (including

your presentation materials) as long as the copyright notice that

appears in each source file is retained.

Coding Standards

In the text of this book, identifiers (keywords, methods, variables, and

class names) are set in bold, fixed-width code font. Some

keywords, such as class, are used so much that the bolding can

become tedious. Those which are distinctive enough are left in normal

font.

I use a particular coding style for the examples in this book. As much



as possible within the book’s formatting constraints, this follows the

style that Oracle itself uses in virtually all code you find at its site, and

seems to be supported by most Java development environments. As

the subject of formatting style is good for hours of hot debate, I’ll just

say I’m not trying to dictate correct style via my examples; I have my

own motivation for using the style I do. Because Java is a free-form

programming language, continue to use whatever style you’re

comfortable with. One solution to the coding style issue is to use an

IDE ( integrated development environment) tool like IntelliJ IDEA,

Eclipse or NetBeans to change formatting to that which suits you.

The code files in this book are tested with an automated system, and

should work without compiler errors (except those specifically tagged)

in the latest version of Java.

This book focuses on and is tested with Java 8. If you must learn about

earlier releases of the language not covered here, the 4th edition of



Thinking in Java is freely downloadable at www.OnJava8.com.

Bug Reports

No matter how many tools a writer uses to detect errors, some always

creep in and these often leap off the page for a fresh reader. If you

discover anything you believe to be an error, please submit the error

along with your suggested correction, for either the book’s prose or

examples, here. Your help is appreciated.

Mailing List

For news and notifications, you can subscribe to the low-volume email

list at www.OnJava8.com. I don’t use ads and strive to make the content as
appropriate as possible.

What About User

http://www.OnJava8.com
https://github.com/BruceEckel/Onjava8-examples/issues
http://www.OnJava8.com


Interfaces?

Graphical user interfaces and desktop programming in Java have had

a tumultuous—some would say tragic—history.

The original design goal of the graphical user interface (GUI) library in

Java 1.0 was to enable the programmer to build a GUI to look good on

all platforms. That goal was not achieved. Instead, the Java 1.0

Abstract Windowing Toolkit (AWT) produced a GUI that looked

equally mediocre on all systems. In addition, it was restrictive; you

could use only four fonts and you could not access any of the more

sophisticated GUI elements that exist in your operating system. The

Java 1.0 AWT programming model was also awkward and non-object-

oriented. A student in one of my seminars (who had been at Sun

during the creation of Java) explained why: The original AWT had

been conceived, designed, and implemented in a month. Certainly a

marvel of productivity, and also an object lesson in why design is

important.

The situation improved with the Java 1.1 AWT event model, which

took a much clearer, object-oriented approach, along with the addition

of JavaBeans, a component programming model (now dead) oriented

toward the easy creation of visual programming environments. Java 2



(Java 1.2) finished the transformation away from the old Java 1.0 AWT

by essentially replacing everything with the Java Foundation Classes

(JFC), the GUI portion of which is called “Swing.” These are a rich set

of JavaBeans that create a reasonable GUI. The revision 3 rule of the

software industry (“a product isn’t good until revision 3”) seems to

hold true with programming languages as well.

It seemed that Swing was the final GUI library for Java. This

assumption turned out to be wrong—Sun made a final attempt, called

JavaFX. When Oracle bought Sun they changed the original ambitious

project (which included a scripting language) into a library, and now it

appears to be the only UI toolkit getting development effort (see the

Wikipedia article on JavaFX)—but even that effort has diminished.

JavaFX, too, seems eventually doomed.

Swing is still part of the Java distribution (but it only receives

maintenance, no new development), and with Java now an open-

source project it should always be available. Also, Swing and JavaFX

have some limited interactivity, presumably to aid the transition to

JavaFX.

Ultimately, desktop Java never took hold, and never even touched the

designers’ ambitions. Other pieces, such as JavaBeans, were given



much fanfare (and many unfortunate authors spent a lot of effort

writing books solely on Swing and even books just on JavaBeans) but

never gained any traction. Most usage you’ll see for desktop Java is for

integrated development environments (IDEs) and some in-house

corporate applications. People do develop user interfaces in Java, but

it’s safe to consider that a niche usage of the language.

If you must learn Swing, it’s covered in the freely-downloadable

Thinking in Java, 4th Edition (available at www.OnJava8.com), and in books
dedicated to the topic.

What is an Object?

“We do not realize what tremendous

power the structure of an habitual

language has. It is not an exaggeration to

say that it enslaves us through the

mechanism of semantic reactions and

that the structure which a language

exhibits, and impresses upon us

unconsciously, is automatically projected

upon the world around us.”—Alfred

http://www.OnJava8.com


Korzybski (1930)

The genesis of the computer revolution was in a machine. Our

programming languages thus tend to look like that machine.

But computers are not so much machines as they are mind

amplification tools (“bicycles for the mind,” as Steve Jobs was fond of

saying) and a different kind of expressive medium. As a result, tools

are beginning to look less like machines and more like parts of our

minds.

Programming languages are the fabric of thought for creating

applications. Languages take inspiration from other forms of

expression such as writing, painting, sculpture, animation, and

filmmaking.

Object-oriented programming (OOP) is one experiment in using the

computer as an expressive medium.

Many people feel uncomfortable wading into object-oriented

programming without understanding the big picture, so the concepts



introduced here give you an overview of OOP. Others might not

understand such an overview until they are exposed to the mechanism,

becoming lost without seeing code. If you’re part of this latter group

and are eager to get to the specifics of the language, feel free to jump

past this chapter—skipping it now will not prevent you from writing

programs or learning the language. However, come back here

eventually to fill in your knowledge so you understand why objects are

important and how to design with them.

This chapter assumes you have some programming experience,

although not necessarily in C. If you need more preparation in

programming before tackling this book, work through the Thinking in

C multimedia seminar, freely downloadable from www.OnJava8.com.

The Progress of

Abstraction

All programming languages are abstractions. It can be argued that the

complexity of the problems you’re able to solve is directly related to

the kind and quality of abstraction. By “kind” I mean, “What is it you

are abstracting?” Assembly language is a minimal abstraction of the
underlying machine. Many so-called “imperative” languages (such as

FORTRAN, BASIC, and C) were themselves abstractions of assembly

language. Although they were big improvements, their primary

http://www.OnJava8.com
https://en.wikipedia.org/wiki/Assembly_language


abstraction still requires you to think in terms of the structure of the

computer rather than the structure of the problem you are trying to

solve. The programmer must establish the association between the

machine model (the “solution space,” the place where you’re

implementing that solution, such as a computer) and the model of the

problem that is actually solved (the “problem space,” the place where

the problem exists, such as a business). The effort required to perform

this mapping, and the fact it is extrinsic to the programming language,

produces programs that are difficult to write and expensive to

maintain.

The alternative to modeling the machine is to model the problem

you’re trying to solve. Early languages such as LISP and APL chose

particular views of the world (“All problems are ultimately lists” or “All

problems are algorithmic,” respectively). Prolog casts all problems into

chains of decisions. Languages have been created for constraint-based

programming and for programming exclusively by manipulating

graphical symbols. Each of these approaches can be a good solution to

the particular class of problem they’re designed to solve, but when you

step outside of that domain they become awkward.

The object-oriented approach goes a step further by providing tools for



the programmer to represent elements in the problem space. This

representation is general enough that the programmer is not

constrained to any particular type of problem. We refer to the

elements in the problem space and their representations in the

solution space as “objects.” (Note that some objects don’t have

problem-space analogs.) The idea is that the program adapts itself to

the lingo of the problem by adding new types of objects. When you

read the code describing the solution, you’re reading words that also

express the problem. This is a more flexible and powerful language

abstraction than what we’ve had before. Thus, OOP describes the

problem in terms of the problem, rather than in terms of the computer

where the solution will run. There’s still a connection, because objects

look somewhat like little computers: Each has state and performs

operations. This is similar to objects in the real world—they all have

characteristics and behaviors.

Alan Kay summarized five basic characteristics of SmallTalk, the first

successful object-oriented language and a language that inspired Java.

These characteristics represent a pure approach to object-oriented

programming:

1. Everything is an object. Think of an object as a fancy variable;



it stores data, but you can “make requests”, asking it to perform

operations on itself. You can usually take any conceptual

component in the problem you’re trying to solve (dogs, buildings,

services, etc.) and represent it as an object in your program.

2. A program is a bunch of objects telling each other what

to do by sending messages. When you “send a message” to an

object, it’s a request to call a method that belongs to that object.

3. Each object has its own memory made up of other

objects. Put another way, you create a new kind of object by

packaging existing objects. This hides the complexity of a program

behind the simplicity of objects.

4. Every object has a type. Each object is an instance of a class,

where “class” is (approximately) synonymous with “type.” The

most important distinguishing characteristic of a class is “What

messages can you send to it?”

5. All objects of a particular type can receive the same

messages. This is a loaded statement, as you will see later.

Because an object of type “circle” is also an object of type “shape,”

a circle is guaranteed to accept shape messages. This means you

can write code that talks to shapes and automatically handles



anything that fits the description of a shape. This substitutability

is a foundation of OOP.

Grady Booch offers an even more succinct description of an object:

An object has state, behavior and identity

This means an object can have internal data (which gives it state),

methods (to produce behavior), and each object is uniquely

distinguished from every other object—that is, every object has a

unique address in memory. 1

An Object Has an

Interface

Aristotle was probably the first to begin a careful study of the concept

of type; he spoke of “the class of fishes and the class of birds.” The idea

that all objects, while unique, are also part of a class of objects that

have characteristics and behaviors in common was used directly in the

first object-oriented language, Simula-67, with its fundamental

keyword class that introduces a new type into a program.



Simula, as its name implies, was created for developing simulations

such as the classic “bank teller problem.” In this, you have numerous

tellers, customers, accounts, transactions, and units of money—many

“objects.” Objects that are identical except for their state are grouped

together into “classes of objects,” and that’s where the keyword class

arose.

Creating abstract data types (classes) is a fundamental concept in

object-oriented programming. Abstract data types work almost exactly

like built-in types: You create variables of a type (called objects or

instances in object-oriented parlance) and manipulate those variables

(called sending messages or requests; you send a message and the

object figures out what to do with it). The members (elements) of each

class share some commonality: Every account has a balance, every

teller can accept a deposit, etc. At the same time, each member has its

own state: Each account has a different balance, each teller has a

name. Thus, the tellers, customers, accounts, transactions, etc., can

each be represented with a unique entity in the program. This entity is

the object, and each object belongs to a particular class that defines its

characteristics and behaviors.

So, although what we really do in object-oriented programming is



create new data types, virtually all object-oriented programming

languages use the “class” keyword. When you see the word “type”

think “class” and vice versa.2

Since a class describes a set of objects that have identical

characteristics (data elements) and behaviors (functionality), a class is

really a data type because a floating point number, for example, also

has a set of characteristics and behaviors. The difference is that a

programmer defines a class to fit a problem rather than being forced

to use an existing data type that was designed to represent a unit of

storage in a machine. You extend the programming language by

adding new data types specific to your needs. The programming

system welcomes the new classes and gives them the same care and

type checking it gives to built-in types.

The object-oriented approach is not limited to building simulations.

Whether or not you agree that any program is a simulation of the

system you’re designing, OOP techniques help reduce a large set of

problems to a simpler solution.

Once a class is established, make as many objects of that class as you

like, then manipulate those objects as if they are the elements that

exist in your problem. Indeed, one of the challenges of object-oriented



programming is creating a one-to-one mapping between the elements

in the problem space and objects in the solution space.

How do you get an object to do useful work? You make a request of

that object—complete a transaction, draw something on the screen,

turn on a switch. Each object accepts only certain requests, defined by

its interface The type determines the interface. As a simple example,

consider a representation for a light bulb:

Light lt = new Light();

lt.on();

The interface determines the requests you can make for a particular

object. However, there must be code somewhere to satisfy that

request. This, along with the hidden data, comprises the



implementation. A type has a method associated with each possible

request, and when you make a particular request to an object, that

method is called. This process is usually summarized by saying you

“send a message” (make a request) to an object, and the object figures

out what to do with that message (it executes code).

Here, the name of the class is Light, the name of this particular

Light object is lt, and the requests you can make of a Light object

are to turn it on, turn it off, make it brighter, or make it dimmer. You

create a Light object by defining a “reference” (lt) for that object

and calling new to request a new object of that type. To send a

message to the object, you state the name of the object and connect it

to the message request with a period (dot). From the standpoint of the

user of a predefined class, that’s pretty much all there is to

programming with objects.

The preceding diagram follows the format of the Unified Modeling

Language (UML). Each class is represented by a box, with the type



name in the top portion of the box, any data members you care to

describe in the middle portion of the box, and the methods (the

functions that belong to this object, which receive any messages you

send to that object) in the bottom portion of the box. Often, only the

name of the class and the public methods are shown in UML design

diagrams, so the middle portion is not shown, as in this case. If you’re

interested only in the class name, the bottom portion doesn’t need to

be shown, either.

Objects Provide

Services

When trying to develop or understand a program design, an excellent

way to think about objects is as “service providers.” Your program

itself will provide services to the user, and it will accomplish this by

using the services offered by other objects. Your goal is to produce (or

better, locate in existing code libraries) a set of objects providing the

ideal services to solve your problem.

A way to start doing this is to ask, “If I could magically pull them out of

a hat, what objects would solve my problem right away?” For example,

suppose you are creating a bookkeeping program. You might imagine

objects that contain predefined bookkeeping input screens, other



objects that perform bookkeeping calculations, and an object that

handles printing of checks and invoices on all different kinds of

printers. Maybe some of these objects already exist, and for the ones

that don’t, what would they look like? What services would those

objects provide, and what objects would they need to fulfill their

obligations? If you keep doing this, you eventually reach a point where

you say either, “That object seems simple enough to sit down and

write” or “I’m sure that object must exist already.” This is a reasonable

way to decompose a problem into a set of objects.

Thinking of an object as a service provider has an additional benefit: It

helps improve the cohesiveness of the object. High cohesion is a

fundamental quality of software design: It means the various aspects

of a software component (such as an object, although this could also

apply to a method or a library of objects) “fit together” well. One

problem people have when designing objects is cramming too much

functionality into one object. For example, in your check printing



module, you might decide you need an object that knows all about

formatting and printing. You’ll probably discover this is too much for

one object, and that what you need is three or more objects. One object

might be a catalog of all the possible check layouts, which can be

queried for information about how to print a check. One object or set

of objects can be a generic printing interface that knows all about

different kinds of printers (but nothing about bookkeeping—that is a

candidate for buying rather than writing yourself). A third object uses

the services of the other two to accomplish the task. Thus, each object

has a cohesive set of services it offers. In good object-oriented design,

each object does one thing well, but doesn’t try to do too much. This

not only discovers objects that might be purchased (the printer

interface object), but it also produces new objects that might be reused

somewhere else (the catalog of check layouts).

Treating objects as service providers is useful not only during the

design process, but also when someone else is trying to understand

your code or reuse an object. If they can see the value of the object

based on what service it provides, it makes it much easier to fit it into

the design.

The Hidden



Implementation

We can break up the playing field into class creators (those who create

new data types) and client programmers 3 (the class consumers who use the
data types in their applications). The goal of the client

programmer is to collect a toolbox full of classes to use for rapid

application development. The goal of the class creator is to build a

class that exposes only what’s necessary to the client programmer and

keeps everything else hidden. Why? Because if it’s hidden, the client

programmer can’t access it, which means the class creator can change

the hidden portion at will without worrying about the impact on

anyone else. The hidden portion usually represents the tender insides

of an object that could easily be corrupted by a careless or uninformed

client programmer, so hiding the implementation reduces program

bugs.

All relationships need boundaries, respected by all parties involved.

When you create a library, you establish a relationship with the client

programmer, who is also a programmer, but one who is putting

together an application by using your library, possibly to build a bigger

library. If all members of a class are available to everyone, the client

programmer can do anything with that class and there’s no way to

enforce rules. Even though you might prefer that the client



programmer not directly manipulate some of the members of your

class, without access control there’s no way to prevent it. Everything’s

naked to the world.

So the first reason for access control is to keep client programmers’

hands off portions they shouldn’t touch—parts necessary for the

internal operation of the data type but not part of the interface that

users need to solve their particular problems. This is actually a service

to client programmers because they can easily see what’s important

and what they can ignore. (Notice this is also a philosophical decision.

Some programming languages assume that if a programmer wishes to

access the internals, they should be allowed.)

The second reason for access control is to enable the library designer

to change the internal workings of the class without worrying about

how it will affect the client programmer. For example, you might

implement a particular class in a simple fashion to ease development,

then later discover you must rewrite it to make it run faster. If the

interface and implementation are clearly separated and protected, you

can accomplish this easily.



Java has three explicit keywords to set the boundaries in a class:

public, private, and protected. These access specifiers

determine who can use the definitions that follow. public means the

element is available to everyone. private means no one can access

that element except you, the creator of the type, inside methods of that

type. private is a brick wall between you and the client

programmer. Anyone trying to access a private member gets a

compile-time error. protected acts like private, with the

exception that an inheriting class may access protected members,

but not private members. Inheritance is introduced shortly.

Java also has a “default” access, which comes into play if you don’t use

one of the aforementioned specifiers. This is usually called package

access because classes can access the members of other classes in the

same package (library component), but outside the package those

same members appear to be private.

Reusing the



Implementation

Once a class is tested, it should (ideally) represent a useful unit of

code. This reusability is not nearly so easy to achieve as many hope; it

takes experience and insight to produce a reusable object design. But

once you have such a design, it begs for reuse. Code reuse is an

argument for object-oriented programming languages.

The simplest way to reuse a class is to use an object of that class

directly, but you can also place an object of that class inside a new

class. Your new class can be made up of any number and type of other

objects, in any combination, to produce the desired functionality.

Because you compose a new class from existing classes, this concept is

called composition (if composition is dynamic, it’s usually called



aggregation). Composition is often called a has-a relationship, as in

“A car has an engine.”

(This diagram indicates composition with the filled diamond, which

states there is one car. I typically use a simpler form: just a line,

without the diamond, to indicate an association.4

Composition comes with a great deal of flexibility. The member objects

of your new class are typically private, making them inaccessible to

client programmers who use the class. This means changing those

members doesn’t disturb existing client code. You can also change the

member objects at run time, to dynamically change the behavior of

your program. Inheritance, described next, does not have this

flexibility since the compiler must place compile-time restrictions on

classes created using inheritance.

Inheritance is is often highly emphasized in object-oriented

programming. A new programmer can get the impression that

inheritance should be used everywhere. This can result in awkward

and overly complicated designs. Instead, first look to composition

when creating new classes, since it is simpler, more flexible, and

produces cleaner designs. Once you’ve had some experience, it is

reasonably obvious when you need inheritance.



Inheritance

By itself, the idea of an object is a convenient tool. Objects package

data and functionality together by concept and represent an

appropriate problem-space idea rather than being forced to use the

idioms of the underlying machine. These concepts are expressed as

fundamental units in the programming language by using the class

keyword.

It seems a pity, however, to go to all the trouble to create a class, then



be forced to create a brand new one that might have similar

functionality. It’s nicer if we can take the existing class, clone it, then

make additions and modifications to the clone. This is effectively what

you get with inheritance, with the exception that if the original class

(called the base class or superclass or parent class) is changed, the modified
“clone” (called the derived class or inherited class or

subclass or child class) also reflects those changes.

The arrow in this diagram points from the derived class to the base

class. As you will see, there is commonly more than one derived class.

A type does more than describe the constraints on a set of objects; it

also relates to other types. Two types can have characteristics and

behaviors in common, but one type might contain more characteristics

than another and might also handle more messages (or handle them

differently). Inheritance expresses this similarity through the concept

of base types and derived types. A base type contains all characteristics

and behaviors shared among the types derived from it. You create a

base type to represent the core of your ideas. From the base type, you

derive other types to express the different ways this core can be

realized.

For example, a trash-recycling machine sorts pieces of trash. The base

type is “trash.” Each piece of trash has a weight, a value, and so on,



and can be shredded, melted, or decomposed. From this, more specific

types of trash are derived with additional characteristics (a bottle has a

color, a steel can is magnetic) or behaviors (you can crush an

aluminum can). In addition, some behaviors can be different (the

value of paper depends on its type and condition). Using inheritance,

you build a type hierarchy that expresses the problem you’re trying to

solve in terms of its types.

A second example is the common “shape” example, perhaps used in a

computer-aided design system or game simulation. The base type is

“shape,” and each shape has a size, a color, a position, and so on. Each

shape can be drawn, erased, moved, colored, etc. From this, specific

types of shapes are derived (inherited)—circle, square, triangle, and so

on—each of which can have additional characteristics and behaviors.

Certain shapes can be flipped, for example. Some behaviors might be

different, such as when you calculate the area of a shape. The type

hierarchy embodies both the similarities and differences between the

shapes.



Casting the solution in the same terms as the problem is useful

because you don’t need intermediate models to get from a description

of the problem to a description of the solution. With objects, the type

hierarchy is an important aspect of the model, so you go directly from

the description of the system in the real world to the description of the

system in code. Indeed, sometimes people who are trained to look for

complex solutions have difficulty with the simplicity of object-oriented

design.

Inheriting from an existing type creates a new type. This new type

contains not only all the members of the existing type (although the

private ones are hidden away and inaccessible), but more



importantly it duplicates the interface of the base class. That is, all

messages accepted by base-class objects are also accepted by derived-

class objects. We know the type of a class by the messages it accepts,

so the derived class is the same type as the base class. In the previous

example, “A circle is a shape.” This type equivalence via inheritance is

one of the fundamental gateways in understanding the meaning of

object-oriented programming.

Since both base class and derived class have the same fundamental

interface, there must be some implementation to go along with that

interface. That is, there must be executable code when an object



receives a particular message. If you inherit a class and don’t do

anything else, the methods from the base-class interface come right

along into the derived class. That means objects of the derived class

have not only the same type, they also have the same behavior, which

isn’t particularly interesting.

There are two ways to differentiate your new derived class from the

original base class. The first is straightforward: add brand new

methods to the derived class. These new methods are not part of the

base-class interface. This means the base class didn’t do as much as

you wanted, so you added more methods. This simple and primitive

use for inheritance is, at times, the perfect solution to your problem.

However, look closely for the possibility that your base class might

also need these additional methods (or that you should be using

composition instead). This process of discovery and iteration of your

design happens regularly in object-oriented programming.

Although inheritance can sometimes imply (especially in Java, where

the keyword for inheritance is extends) that you are going to add



new methods to the interface, that’s not necessarily true. The second

and more important way to differentiate your new class is to change

the behavior of an existing base-class method. This is called

overriding that method.

To override a method, you create a new definition for the method in

the derived class. You’re saying, “I’m using the same interface method

here, but I want it to do something different for my new type.”

Is-a vs. Is-Like-a

Relationships

There’s a certain debate that can occur about inheritance: Should



inheritance override only base-class methods (and not add new

methods that aren’t in the base class)? This would mean that the

derived class is exactly the same type as the base class since it has

exactly the same interface. As a result, you can perfectly substitute an

object of the derived class for an object of the base class. This can be

thought of as pure substitution, and it’s often called the substitution

principle 5. In a sense, this is the ideal way to treat inheritance. We often
refer to the relationship between the base class and derived

classes in this case as an is-a relationship, because you can say, “A

circle is a shape.” A test for inheritance is to see if the is-a relationship

makes sense for your classes.

Sometimes you add new interface elements to a derived type, thus



extending the interface. The new type can still substitute for the base

type, but the substitution isn’t perfect because your new methods are

not accessible from the base type. This can be described as an is-like-a

relationship (my term). The new type has the interface of the old type

but it also contains other methods, so you can’t really say it’s exactly

the same. For example, consider an air conditioner. Suppose your

house is wired with all the controls for cooling; that is, it has an

interface that to control cooling. Imagine that the air conditioner

breaks down and you replace it with a heat pump, which can both heat

and cool. The heat pump is-like-an air conditioner, but it can do more.

Because the control system of your house is designed only to control

cooling, it is restricted to communication with the cooling part of the

new object. The interface of the new object is extended, and the

existing system only knows about the original interface.

Once you see this design it becomes clear that the base class “cooling

system” is not general enough, and should be renamed to



“temperature control system” so it can also include heating—at which

point the substitution principle will work. However, this diagram

shows what can happen with design in the real world.

When you see the substitution principle it’s easy to feel like this

approach (pure substitution) is the only way to do things, and in fact it

is nice if your design works out that way. But you’ll find there are

times when it’s equally clear you must add new methods to the

interface of a derived class (extension). With inspection both cases

should be reasonably obvious.

Interchangeable

Objects with

Polymorphism

When dealing with type hierarchies, you often treat an object not as

the specific type it is, but as its base type. This way you can write code

that doesn’t depend on specific types. In the shape example, methods

manipulate generic shapes, unconcerned about whether they’re circles,

squares, triangles, or some shape that hasn’t even been defined yet. All

shapes can be drawn, erased, and moved, so these methods send a

message to a shape object without worrying how the object copes with

the message.



Such code is unaffected by the addition of new types, and adding new

types is a common way to extend an object-oriented program to

handle new situations. For example, you can derive a new subtype of

shape called “pentagon” without modifying methods that deal only

with generic shapes. This ability to easily extend a design by deriving

new subtypes is one of the essential ways to encapsulate change. This

improves designs while reducing the cost of software maintenance.

There’s a problem when attempting to treat derived-type objects as

their generic base types (circles as shapes, bicycles as vehicles,

cormorants as birds, etc.). If a method tells a generic shape to draw

itself, or a generic vehicle to steer, or a generic bird to move, the

compiler cannot know at compile time precisely what piece of code is

executed. That’s the whole point—when the message is sent, the

programmer doesn’t want to know what piece of code is executed; the

draw method can be applied equally to a circle, a square, or a triangle,

and the object will execute the proper code depending on its specific

type.

If you don’t need to know what piece of code is executed, when you

add a new subtype, the code it executes can be different without

requiring changes to the code that calls it. But what does the compiler



do when it cannot know precisely what piece of code is executed? For

example, in the following diagram the BirdController object just

works with generic Bird objects and does not know what exact type

they are. This is convenient from BirdControllers perspective

because it doesn’t require special code to determine the exact type of

Bird it’s working with or that Birds behavior. So how does it happen

that, when move() is called while ignoring the specific type of Bird,

the right behavior will occur (a Goose walks, flies, or swims, and a

Penguin walks or swims)?

The answer is the primary twist of inheritance: The compiler cannot

make a function call in the traditional sense. The function call

generated by a non-OOP compiler produces what is called early



binding, a term you might not have heard because you’ve never

thought about it any other way. It means the compiler generates a call

to a specific function name, which resolves to the absolute address of

the code to be executed. With inheritance, the program cannot

determine the address of the code until run time, so some other

scheme is necessary when a message is sent to an object.

To solve the problem, object-oriented languages use the concept of

late binding. When you send a message to an object, the code called

isn’t determined until run time. The compiler does ensure that the

method exists and performs type checking on the arguments and

return value, but it doesn’t know the exact code to execute.

To perform late binding, Java uses a special bit of code in lieu of the

absolute call. This code calculates the address of the method body,

using information stored in the object (this process is covered in great

detail in the Polymorphism chapter). Thus, each object behaves differently
according to the contents of that special bit of code. When

you send a message to an object, the object actually does figure out

what to do with that message.

In some languages you must explicitly grant a method the flexibility of

late-binding properties. For example, C++ uses the virtual

keyword. In such languages, methods are not dynamically bound by



default. In Java, dynamic binding is the default behavior and you don’t

need extra keywords to produce polymorphism.

Consider the shape example. The family of classes (all based on the

same uniform interface) was diagrammed earlier in this chapter. To

demonstrate polymorphism, we write a single piece of code that

ignores specific details of type and talks only to the base class. That

code is decoupled from type-specific information and thus is simpler

to write and easier to understand. And, if a new type—a Hexagon, for

example—is added through inheritance, code works just as well for the

new type of Shape as it did on the existing types. Thus, the program

is extensible.

If you write a method in Java (you will soon learn how):

void doSomething(Shape shape) {

shape.erase();

// ...

shape.draw();

}

This method speaks to any Shape, so it is independent of the specific

type of object it’s drawing and erasing. If some other part of the

program uses the doSomething() method:



Circle circle = new Circle();

Triangle triangle = new Triangle();

Line line = new Line();

doSomething(circle);

doSomething(triangle);

doSomething(line);

The calls to doSomething() automatically work correctly,

regardless of the exact type of the object.

This is a rather amazing trick. Consider the line:

doSomething(circle);

What’s happening here is that a Circle is passed into a method that

expects a Shape. Since a Circle is a Shape it is treated as such by
doSomething(). That is, any message that doSomething() can



send to a Shape, a Circle can accept. It is a completely safe and

logical thing to do.

We call this process of treating a derived type as though it were its

base type upcasting. The name cast is used in the sense of casting into

a mold and the up comes from the way the inheritance diagram is

typically arranged, with the base type at the top and the derived

classes fanning out downward. Thus, casting to a base type is moving

up the inheritance diagram: “upcasting.”

An object-oriented program contains upcasting somewhere, because

that’s how you decouple yourself from knowing the exact type you’re

working with. Look at the code in doSomething():

shape.erase();

// ...

shape.draw();

Notice it doesn’t say, “If you’re a Circle, do this, if you’re a Square,

do that, etc.” If you write that kind of code, which checks for all the



possible types a Shape can actually be, it’s messy and you must

change it every time you add a new kind of Shape. Here, you just say,

“You’re a shape, I know you can erase() and draw() yourself, do

it, and take care of the details correctly.”

What’s impressive about the code in doSomething() is that,

somehow, the right thing happens. Calling draw() for Circle

causes different code to be executed than calling draw() for a

Square or a Line, but when the draw() message is sent to an

anonymous Shape, the correct behavior occurs based on the actual

type of the Shape. This is amazing because when the Java compiler is

compiling the code for doSomething(), it cannot know exactly

what types it is dealing with. Ordinarily, you’d expect it to end up

calling the version of erase() and draw() for the base class

Shape, and not for the specific Circle, Square, or Line. And yet the right
thing happens—that’s polymorphism. The compiler and

runtime system handle the details; all you must know is it happens,

and more importantly, how to design with it. When you send a

message to an object, the object will do the right thing, even when

upcasting is involved.

The Singly-Rooted

Hierarchy



An OOP issue that has become especially prominent since the

introduction of C++ is whether all classes should by default be

inherited from a single base class. In Java (as with virtually all other

OOP languages except for C++) the answer is yes, and the name of this

ultimate base class is simply Object.

There are many benefits to a singly-rooted hierarchy. All objects have

a common interface, so they are all ultimately the same fundamental

type. The alternative (provided by C++) is that you don’t know that

everything is the same basic type. From a backward-compatibility

standpoint this fits the model of C better and can be thought of as less

restrictive, but for full-on object-oriented programming you must

build your own hierarchy to provide the same convenience that’s built

into other OOP languages. And in any new class library you acquire,

some other incompatible interface is used. It requires effort to work

the new interface into your design. Is the extra “flexibility” of C++

worth it? If you need it—if you have a large investment in C—it’s quite



valuable. If you’re starting from scratch, alternatives such as Java can

be more productive.

A singly rooted hierarchy makes it much easier to implement a

garbage collector, one of the fundamental improvements of Java over

C++. And since information about the type of an object is guaranteed

to be in all objects, you’ll never end up with an object whose type you

cannot determine. This is especially important with system-level

operations, such as exception handling (a language mechanism for

reporting errors), and to allow greater flexibility in programming.

Collections

In general, you don’t know how many objects you need to solve a

particular problem, or how long they will last. You also don’t know

how to store those objects. How can you know how much space to

create if that information isn’t known until run time?

The solution to most problems in object-oriented design seems

flippant: You create another type of object. The new type of object that

solves this particular problem holds references to other objects. You

can also do the same thing with an array, available in most languages.

But this new object, generally called a collection (also called a

container, but the Java libraries use “collection” almost universally),



will expand itself whenever necessary to accommodate everything you

place inside it. You don’t need to know how many objects you’re going

to hold in a collection—just create a collection object and let it take

care of the details.

Fortunately, a good OOP language comes with a set of collections as

part of the package. In C++, it’s part of the Standard C++ Library and

is often called the Standard Template Library (STL). SmallTalk has a

very complete set of collections. Java also has numerous collections in

its standard library. In some libraries, one or two generic collections is

considered good enough for all needs, and in others (Java, for

example) the library has different types of collections for different

needs: several different kinds of List classes (to hold sequences),

Maps (also known as associative arrays, to associate objects with

other objects), Sets (to hold one of each type of object), and more

components such as queues, trees, stacks, etc.

From a design standpoint, all you really want is a collection you can

manipulate to solve your problem. If a single type of collection

satisfied all of your needs, we wouldn’t need different kinds. There are

two reasons you need a choice of collections:

1. Collections provide different types of interfaces and external



behavior. Stacks and queues are different from sets and lists. One

of these might provide a more flexible solution to your problem

than another.

2. Different implementations have different efficiencies for certain

operations. For example, there are two basic types of List:

ArrayList and LinkedList. Both are simple sequences that

can have identical interfaces and external behaviors. But some

operations have significantly different costs. Randomly accessing

elements in an ArrayList is a constant-time operation; it takes

the same amount of time regardless of the element you select.

However, in a LinkedList it is expensive to move through the

list to randomly select an element, and it takes longer to find an

element that is farther down the list. On the other hand, to insert

an element in the middle of a sequence, it’s cheaper in a

LinkedList than in an ArrayList. These and other

operations have different efficiencies depending on the underlying

structure of the sequence. You might start building your program



with a LinkedList and, when tuning for performance, change

to an ArrayList. Because of the abstraction via the interface

List, you can change from one to the other with minimal impact

on your code.

Parameterized Types

(Generics)

Before Java 5, collections held the one universal type in Java:

Object. The singly rooted hierarchy means everything is an

Object, so a collection that holds Objects can hold anything. 6 This made
collections easy to reuse.

To use such a collection, you add object references to it and later ask

for them back. But, since the collection holds only Objects, when

you add an object reference into the collection it is upcast to Object,

thus losing its character. When fetching it back, you get an Object

reference, and not a reference to the type you put in. How do you turn

it back into something with the specific type of the object you put into

the collection?

Here, the cast is used again, but this time you’re not casting up the

inheritance hierarchy to a more general type. Instead, you cast down

the hierarchy to a more specific type, so this manner of casting is



called downcasting. With upcasting, you know that a Circle is a

type of Shape so it’s safe to upcast, but you don’t know that an

Object is necessarily a Circle or a Shape so it’s not safe to

downcast unless you determine extra type information about that

object.

It’s not completely dangerous because if you downcast to the wrong

type you’ll get a runtime error called an exception, described shortly.

When you fetch Object references from a collection, however, you

need some way to remember exactly what they are in order to perform

a proper downcast.

Downcasting and the associated runtime checks require extra time for

the running program and extra effort from the programmer. Wouldn’t

it make sense to somehow create the collection so it knows the types it

holds, eliminating the need for the downcast and a possible mistake?

The solution is called a parameterized type mechanism. A

parameterized type is a class that the compiler can automatically



customize to work with particular types. For example, with a

parameterized collection, the compiler can customize that collection so

it accepts only Shapes and fetches only Shapes.

Java 5 added parameterized types, called generics, which is a major

feature. You’ll recognize generics by the angle brackets with types

inside; for example, you can create an ArrayList to hold Shape

like this:

ArrayList<Shape> shapes = new ArrayList<>();

There have also been changes to many of the standard library

components to take advantage of generics. You will see that generics

have an impact on much of the code in this book.

Object Creation &

Lifetime

One critical issue when working with objects is the way they are

created and destroyed. Each object requires resources, most notably

memory, to exist. When an object is no longer needed it must be

cleaned up so these resources are released for reuse. In simple

programming situations the question of how an object is cleaned up

doesn’t seem too challenging: You create the object, use it for as long

as it’s needed, then it should be destroyed. However, it’s not hard to



encounter situations that are more complex.

Suppose, for example, you are designing a system to manage air traffic

for an airport. (The same model might also work for managing crates

in a warehouse, or a video rental system, or a kennel for boarding

pets.) At first it seems simple: Make a collection to hold airplanes,

then create a new airplane and place it in the collection for each

airplane that enters the air-traffic-control zone. For cleanup, simply

clean up the appropriate airplane object when a plane leaves the zone.

But suppose you have some other system to record data about the

planes; perhaps data that doesn’t require such immediate attention as

the main controller function. Maybe it’s a record of the flight plans of

all the small planes that leave the airport. So you have a second

collection of small planes, and whenever you create a plane object you

also put it in this second collection if it’s a small plane. Then some

background process performs operations on the objects in this

collection during idle moments.

Now the problem is more difficult: How can you possibly know when

to destroy the objects? When you’re done with the object, some other

part of the system might not be. This same problem can arise in a

number of other situations, and in programming systems (such as



C++) where you must explicitly delete an object this can become quite

complex.

Where is the data for an object and how is the lifetime of the object

controlled? C++ takes the approach that efficiency is the most

important issue, so it gives the programmer a choice. For maximum

runtime speed, the storage and lifetime can be determined while the

program is written, by placing the objects on the stack (these are

sometimes called automatic or scoped variables) or in the static

storage area. This places a priority on the speed of storage allocation

and release, and this control can be very valuable in certain situations.

However, you sacrifice flexibility because you must know the exact

quantity, lifetime, and type of objects while you’re writing the

program. If you are trying to solve a more general problem such as

computer-aided design, warehouse management, or air-traffic control,

this is too restrictive.

The second approach is to create objects dynamically in a pool of

memory called the heap. In this approach, you don’t know until run

time how many objects you need, what their lifetime is, or what their

exact type is. Those are determined at the spur of the moment while

the program is running. If you need a new object, you simply make it



on the heap when you need it. Because the storage is managed

dynamically, at run time, the amount of time required to allocate

storage on the heap can be longer than the time to create storage on

the stack (but not necessarily). Creating storage on the stack is often a

single assembly instruction to move the stack pointer down and

another to move it back up. The time to create heap storage depends

on the design of the storage mechanism.

The dynamic approach makes the generally logical assumption that

objects tend to be complicated, so the extra overhead of finding

storage and releasing that storage will not have an important impact

on the creation of an object. In addition, the greater flexibility is

essential to solve general programming problems.

Java uses dynamic memory allocation, exclusively.7 Every time you create
an object, you use the new operator to build a dynamic instance

of that object.

There’s another issue, however, and that’s the lifetime of an object.



With languages that allow objects to be created on the stack, the

compiler determines how long the object lasts and automatically

destroys it. However, if you create it on the heap the compiler has no

knowledge of its lifetime. In a language like C++, you must determine

programmatically when to destroy the object, which can lead to

memory leaks if you don’t do it correctly. Java is built upon a garbage

collector which automatically discovers when an object is no longer in

use and releases it. A garbage collector is much more convenient

because it reduces the number of issues you must track and the code

you must write. Thus, the garbage collector provides a much higher

level of insurance against the insidious problem of memory leaks,

which has brought many a C++ project to its knees.

With Java, the garbage collector is designed to take care of the

problem of releasing memory (although this doesn’t include other

aspects of cleaning up an object). The garbage collector “knows” when

an object is no longer in use, and automatically releases the memory

for that object. This, combined with the fact that all objects are

inherited from the single root class Object and you can create

objects only one way—on the heap—makes the process of

programming in Java much simpler than programming in C++. You



have far fewer decisions to make and hurdles to overcome.

Exception Handling:

Dealing with Errors

Since the beginning of programming languages, error handling has

been especially difficult. Because it’s so hard to design a good error-

handling scheme, many languages ignore the issue, passing the

problem on to library designers who come up with halfway measures

that work in many situations but can easily be circumvented, generally

by just ignoring errors. A major problem with most error-handling

schemes is that they rely on programmers to follow an agreed-upon

convention that is not enforced by the language. If the programmer is

not vigilant—often the case if they are in a hurry—these schemes can

easily be forgotten.

Exception handling wires error handling directly into the

programming language and sometimes even the operating system. An

exception is an object that is “thrown” from the site of the error and



can be “caught” by an appropriate exception handler designed for that

particular type of error. It’s as if exception handling is a different,

parallel path of execution, taken when things go wrong. Because it

uses a separate execution path, it doesn’t interfere with your normally

executing code. This can make that code simpler to write because you

aren’t constantly forced to check for errors. In addition, a thrown

exception is unlike an error value returned from a method or a flag set

by a method to indicate an error condition—these can be ignored. An

exception cannot be ignored, so it’s guaranteed to be dealt with at

some point. Finally, exceptions provide a way to reliably recover from

a bad situation. Instead of just exiting the program, you are sometimes

able to set things right and restore execution, which produces more

robust programs.

Java’s exception handling stands out among programming languages,

because in Java, exception handling was wired in from the beginning

and you’re forced to use it. It is the single acceptable way to report

errors. If you don’t write your code to properly handle exceptions,

you’ll get a compile-time error message. This guaranteed consistency

can sometimes make error handling much easier.

It’s worth noting that exception handling isn’t an object-oriented



feature, although in object-oriented languages the exception is

normally represented by an object. Exception handling existed before

object-oriented languages.

Summary

A procedural program contains data definitions and function calls. To

find the meaning of such a program, you must work at it, looking

through the function calls and low-level concepts to create a model in

your mind. This is the reason we need intermediate representations

when designing procedural programs—by themselves, these programs

tend to be confusing because the terms of expression are oriented

more toward the computer than to the problem you’re solving.

Because OOP adds many new concepts on top of what you find in a

procedural language, your natural assumption might be that the

resulting Java program is far more complicated than the equivalent

procedural program. Here, you’ll be pleasantly surprised: A well-

written Java program is generally simpler and easier to understand

than a procedural program. What you’ll see are the definitions of the

objects that represent concepts in your problem space (rather than the

issues of the computer representation) and messages sent to those

objects to indicate activities in that space. One of the delights of



object-oriented programming is that, with a well-designed program,

it’s easy to understand the code by reading it. Usually, there’s a lot less

code as well, because many problems are solved by reusing existing

library code.

OOP and Java might not be for everyone. It’s important to evaluate

your own needs and decide whether Java will optimally satisfy those

needs, or if you might be better off with another programming system

(perhaps the one you’re currently using). If your needs are very

specialized for the foreseeable future and you have specific constraints

that might not be satisfied by Java, you owe it to yourself to investigate

the alternatives (in particular, I recommend looking at Python). If you still
choose Java as your language, you’ll at least understand what the

options were and have a clear vision of why you took that direction.

1. This is actually a bit restrictive, since objects can conceivably exist

in different machines and address spaces, and they can also be

stored on disk. In these cases, the identity of the object must be

determined by something other than a memory address. ↩

2. In some cases we make a distinction, stating that type determines

the interface while class is a particular implementation of that

interface.↩

3. I’m indebted to my friend Scott Meyers for this term. ↩

https://www.python.org/


4. This is enough detail for most diagrams, and you don’t need to get

specific about whether you’re using aggregation or composition.↩

5. Or Liskov Substitution Principle, after Barbara Liskov who first

described it↩

6. They do not hold primitives, but autoboxing simplifies this

restriction somewhat. This is discussed in detail later in the

book. ↩

7. Primitive types, which you’ll learn about later, are a special case. ↩

Installing Java and the

Book Examples

In which we provision ourselves for the

journey.

Before you can begin learning the language, you must install Java and

the book’s source-code examples. Because it is possible for a



“dedicated beginner” to learn programming from this book, I explain

the process in detail, assuming you haven’t previously used the

computer’s command-line shell. If you have, you can skip forward to

the installation instructions.

If any terminology or processes described here are still not clear to

you, you can usually find explanations or answers through Google. For more
specific issues or problems, try StackOverflow. Sometimes you can find
installation instructions on YouTube.

Editors

To create and modify Java program files—the code listings shown in

this book—you need a program called an editor. You’ll also need an

editor to make changes to your system configuration files, which is

sometimes required during installation.

Programming editors vary from heavyweight Integrated Development

Environments (IDEs, like Eclipse, NetBeans and IntelliJ IDEA) to

more basic text manipulation applications. If you already have an IDE

and are comfortable with it, feel free to use that for this book, but in

https://www.google.com/
http://stackoverflow.com/
https://www.youtube.com/


the interest of keeping things simple, I recommend the Atom editor.

Find it at atom.io.

Atom is free and open-source, is very simple to install, works on all

platforms (Windows, Mac and Linux), and has a built-in Java mode

that is automatically invoked when you open a Java file. It isn’t a

heavy-duty IDE so it doesn’t get confusing, which is ideal for this book.

On the other hand, it has some handy editing features that you’ll

probably come to love. More details are on their site.

There are many other editors; these are a subculture unto themselves

and people even get into heated arguments about their merits. If you

find one you like better, it’s not too hard to change. The important

thing is to choose one and get comfortable with it.

The Shell

If you haven’t programmed before, you might be unfamiliar with your

operating system shell (also called the command prompt in Windows).

The shell harkens back to the early days of computing when everything

happened by typing commands and the computer responded by

displaying responses; it was all text-based.

Although it can seem primitive in the age of graphical user interfaces,

a shell provides a surprising number of valuable features. We’ll use the

https://atom.io/


shell regularly in this book, both as part of the installation process and

to run Java programs.

Starting a Shell

Mac: Click on the Spotlight (the magnifying-glass icon in the upper-

right corner of the screen) and type “terminal.” Click on the

application that looks like a little TV screen (you might also be able to

hit “Return”). This starts a shell in your home directory.

Windows: First, start the Windows Explorer to navigate through

your directories:

Windows 7: click the “Start” button in the lower left corner of the

screen. In the Start Menu search box area type “explorer” then

press the “Enter” key.

Windows 8: click Windows+Q, type “explorer” then press the

“Enter” key.

Windows 10: click Windows+E.

Once the Windows Explorer is running, move through the folders on

your computer by double-clicking on them with the mouse. Navigate



to the desired folder. Now click the file tab at the top left of the

Explorer window and select “Open command prompt.” This opens a

shell in the destination directory.

Linux: To open a shell in your home directory:

Debian: Press Alt+F2. In the dialog that pops up, type ‘gnome-

terminal’

Ubuntu: Either right-click on the desktop and select ‘Open

Terminal’, or press Ctrl+Alt+T

Redhat: Right-click on the desktop and select ‘Open Terminal’

Fedora: Press Alt+F2. In the dialog that pops up, type ‘gnome-

terminal’

Directories

Directories are one of the fundamental elements of a shell. Directories



hold files, as well as other directories. Think of a directory as a tree

with branches. If books is a directory on your system and it has two

other directories as branches, for example math and art, we say you

have a directory books with two subdirectories math and art. We refer to
them as books/math and books/art since books is their

parent directory. Note that Windows uses backslashes rather than

forward slashes to separate the parts of a directory.

Basic Shell Operations

The shell operations I show here are approximately identical across

operating systems. For the purposes of this book, here are the essential

operations in a shell:

Change directory: Use cd followed by the name of the

directory where you want to move, or cd .. if you want to move

up a directory. If you want to move to a different directory while

remembering where you came from, use pushd followed by the

different directory name. Then, to return to the previous

directory, just say popd.

Directory listing: ls (dir in Windows) displays all the files

and subdirectory names in the current directory. Use the wildcard

* (asterisk) to narrow your search. For example, if you want to list

all the files ending in “.java,” you say ls *.java (Windows:



dir *.java). If you want to list the files starting with “F” and

ending in “.java,” you say ls F*.java (Windows: dir

F*.java).

Create a directory: use the mkdir (“make directory”)

command (Windows: md), followed by the name of the directory

you want to create. For example, mkdir books (Windows: md

books).

Remove a file: Use rm (“remove”) followed by the name of the

file you wish to remove (Windows: del). For example, rm

somefile.java (Windows: del somefile.java).

Remove a directory: use the rm -r command to remove the

files in the directory and the directory itself (Windows:

deltree). For example, rm -r books (Windows: deltree

books).

Repeat a command: The “up arrow” on all three operating

systems moves through previous commands so you can edit and

repeat them. On Mac/Linux, !! repeats the last command and !n

repeats the nth command.

Command history: Use history in Mac/Linux or press the

F7 key in Windows. This gives you a list of all the commands



you’ve entered. Mac/Linux provides numbers to refer to when you

want to repeat a command.

Unpacking a zip archive: A file name ending with .zip is an

archive containing other files in a compressed format. Both Linux

and Mac have command-line unzip utilities, and you can install

a command-line unzip for Windows via the Internet. However,

in all three systems the graphical file browser (Windows Explorer,

the Mac Finder, or Nautilus or equivalent on Linux) will browse to

the directory containing your zip file. Then right-mouse-click on



the file and select “Open” on the Mac, “Extract Here” on Linux, or

“Extract all …” on Windows.

To learn more about your shell, search Wikipedia for Windows Shell

or, for Mac/Linux, Bash Shell.

Installing Java

To compile and run the examples, you must first install the Java

development kit. In this book we use JDK8 (Java 1.8).

Windows

1. Follow the instructions at this link to Install Chocolatey.

2. At a shell prompt, type: choco install jdk8. This takes

some time, but when it’s finished Java is installed and the

necessary environment variables are set.

Macintosh

The Mac comes with a much older version of Java that won’t work for

the examples in this book, so you must first update it to Java 8. You

will need administration rights to perform these steps.

1. Follow the instructions at this link to Install HomeBrew. Then at a shell
prompt, execute brew update to make sure you have the

latest changes.

2. At a shell prompt, execute brew cask install java.

https://en.wikipedia.org/wiki/Windows_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://chocolatey.org/
http://brew.sh/


Once HomeBrew and Java are installed, all other activities described

in this book can be accomplished within a guest account, if that suits

your needs.

Linux

Use the standard package installer with the following shell commands:

Ubuntu/Debian:

1. sudo apt-get update

2. sudo apt-get install default-jdk

Fedora/Redhat:

1. su-c "yum install java-1.8.0-openjdk"

Verify Your

Installation

Open a new shell and type:



java -version

You should see something like the following (Version numbers and

actual text will vary):

java version "1.8.0_112"

Java(TM) SE Runtime Environment (build 1.8.0_112-b15)

Java HotSpot(TM) 64-Bit Server VM (build 25.112-b15, mixed mode)

If you see a message that the command is not found or not recognized,

review the installation instructions in this chapter. If you still can’t get

it to work, check StackOverflow.

Installing and Running

the Book Examples

Once you have Java installed, the process to install and run the book

examples is the same for all platforms:

http://stackoverflow.com/search?q=installing+java


1. Download the book examples from the GitHub Repository.

2. unzip (as described in Basic Shell Operations) the downloaded file into the
directory of your choice.

3. Use the Windows Explorer, the Mac Finder, or Nautilus or

equivalent on Linux to browse to the directory where you

unzipped OnJava8-Examples, and open a shell there.

4. If you’re in the right directory, you should see files named

gradlew and gradlew.bat in that directory, along with

numerous other files and directories. The directories correspond

to the chapters in the book.

5. At the shell prompt, type gradlew run (Windows) or

./gradlew run (Mac/Linux).

The first time you do this, Gradle will install itself and numerous other

packages, so it will take some time. After everything is installed,

subsequent builds and runs are faster.

Note you must be connected to the Internet the first time you run

gradlew so that Gradle can download the necessary packages.

Basic Gradle Tasks

There are a large number of Gradle tasks automatically available with

this book’s build. Gradle uses an approach called convention over

configuration which results in the availability of many tasks even if

https://github.com/BruceEckel/OnJava8-Examples/archive/master.zip


you’re only trying to accomplish something very basic. Some of the

tasks that “came along for the ride” with this book are inappropriate or

don’t successfully execute. Here is a list of the Gradle tasks you will

typically use:

gradlew compileJava: Compiles all the Java files in the

book that can be compiled (some files don’t compile, to

demonstrate incorrect language usage).

gradlew run: First compiles, then executes all the Java files in

the book that can be executed (some files are library

components).

gradlew test: Executes all the unit tests (you’ll learn about

these in Validating Your Code).

gradlew chapter: ExampleName: Compiles and runs a specific

example program. For instance, gradlew

objects:HelloDate.



Objects Everywhere

“If we spoke a different language, we

would perceive a somewhat different

world.”— Ludwig Wittgenstein (1889-

1951)

Although it is based on C++, Java is more of a “pure” object-oriented

language. Both C++ and Java are hybrid languages, but in Java the

designers felt that the hybridization was not as important as it was in

C++. A hybrid language allows multiple programming styles; the

reason C++ is hybrid is to support backward compatibility with the C

language. Because C++ is a superset of the C language, it includes

many of that language’s undesirable features, which can make some

aspects of C++ overly complicated.

The Java language assumes you’re only writing object-oriented

programs. Before you can begin you must shift your mindset into an

object-oriented world. In this chapter you’ll see the basic components



of a Java program and learn that (almost) everything in Java is an

object.

You Manipulate

Objects with

References

What’s in a name? That which we call a

rose, by any other word would smell as

sweet. (Shakespeare, Romeo & Juliet)

Every programming language manipulates elements in memory.

Sometimes the programmer must be constantly aware of that

manipulation. Do you manipulate the element directly, or use an

indirect representation that requires special syntax (for example,

pointers in C or C++)?

Java simplifies the issue by considering everything an object, using a

single consistent syntax. Although you treat everything as an object,

the identifier you manipulate is actually a “reference” to an object.1

You might imagine a television (the object) and a remote control (the

reference). As long as you’re holding this reference, you have a

connection to the television, but when someone says, “Change the

channel” or “Lower the volume,” what you’re manipulating is the



reference, which in turn modifies the object. To move around the room

and still control the television, you take the remote/reference with

you, not the television.

Also, the remote control can stand on its own, with no television. That

is, just because you have a reference doesn’t mean there’s necessarily

an object connected to it. To hold a word or sentence, you create a

String reference:

String s;

But here you’ve created only the reference, not an object. If you now

decide to send a message to s, you get an error because s isn’t actually

attached to anything (there’s no television). A safer practice is to

always initialize a reference when you create it:

String s = "asdf";



This uses a special Java feature: Strings can be initialized with quoted

text. You must use a more general type of initialization for other types

of objects.

You Must Create All

the Objects

The point of a reference is to connect it to an object. You usually create

objects with the new operator. The keyword new says, “Make one of

these.” So in the preceding example, you can say:

String s = new String("asdf");

Not only does this mean “Make a new String,” but it also gives

information about how to make the String by supplying an initial

group of characters.

Java comes with a plethora of ready-made types in addition to

String. On top of that, you can create your own types. In fact,

creating new types is the fundamental activity in Java programming,

and it’s what you’ll be learning about in the rest of this book.

Where Storage Lives

It’s useful to visualize the way things are laid out while the program is

running—in particular, how memory is arranged. There are five

different places to store data:



1. Registers. This is the fastest storage because it exists in a place different
from that of other storage: inside the central processing

unit (CPU)2. However, the number of registers is severely limited, so
registers are allocated as they are needed. You don’t have direct

control over register allocation, nor do you see any evidence in

your programs that registers even exist (C & C++, on the other

hand, allow you to suggest register allocation to the compiler).

2. The stack. This lives in the general random-access memory

(RAM) area, but has direct support from the processor via its

stack pointer. The stack pointer is moved down to create new

memory and moved up to release that memory. This is an

extremely fast and efficient way to allocate storage, second only to

registers. The Java system must know, while it is creating the

program, the exact lifetime of all the items stored on the stack.

This constraint places limits on the flexibility of your programs, so

while some Java storage exists on the stack—in particular, object

references—Java objects themselves are not placed on the stack.

3. The heap. This is a general-purpose pool of memory (also in the

RAM area) where all Java objects live. Unlike the stack, the

compiler doesn’t need to know how long objects must stay on the

heap. Thus, there’s a great deal of flexibility when using heap



storage. Whenever you need an object, you write the code to

create it using new, and the storage is allocated on the heap when

that code is executed. There’s a price for this flexibility: It can take

more time to allocate and clean up heap storage than stack

storage (if you even could create objects on the stack in Java, as

you can in C++). Over time, however, Java’s heap allocation

mechanism has become very fast, so this is not an issue for

concern.

4. Constant storage. Constant values are often placed directly in

the program code, which is safe since they can never change.

Sometimes constants are cordoned off by themselves so they can

be optionally placed in read-only memory (ROM), in embedded

systems. 3

5. Non-RAM storage. If data lives completely outside a program,

it can exist while the program is not running, outside the control

of the program. The two primary examples of this are serialized

objects, where objects are turned into streams of bytes, generally



sent to another machine, and persistent objects, where the objects

are placed on disk so they will hold their state even when the

program is terminated. The trick with these types of storage is

turning the objects into something that exist on the other

medium, and yet be resurrected into a regular RAM-based object

when necessary. Java provides support for lightweight

persistence. Libraries such as JDBC and Hibernate provide more
sophisticated support for storing and retrieving object

information using databases.

Special Case: Primitive Types

One group of types that you’ll often use gets special treatment. You can

think of these as “primitive” types. The reason for the special

treatment is that creating an object with new—especially a small,

simple variable—isn’t very efficient, because new places objects on the

heap. For these types Java falls back on the approach taken by C and

C++. That is, instead of creating the variable using new, an

“automatic” variable is created that is not a reference. The variable

holds the value directly, and it’s placed on the stack, so it’s much more

efficient.

Java specifies the size of each primitive type, and these sizes don’t

change from one machine architecture to another as they do in some

http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
http://hibernate.org/


languages. This size invariance is one reason Java programs are more

portable than programs in some other languages.

Primitive Size

Min

Max

Wrapper

boolean

Boolean

Unicode

16

65,535

char

0

bits

\uffff

Character

\u0000

byte

8 bits

-128



+127

Byte

16

short

-215

+215-1

Short

bits

32

int

-231

+231-1

Integer

bits

64

long

-263

+263-1

Long

bits



32

float

IEEE754

IEEE754

Float

bits

64

double

IEEE754

IEEE754

Double

bits

void

Void

All numeric types are signed, so don’t look for unsigned types.

The size of the boolean type is not explicitly specified; it is defined to

take the literal values true or false.

“Wrapper” classes for primitive data types create a non-primitive

object on the heap to represent that primitive type. For example:

char c = 'x';



Character ch = new Character(c);

Or you can also use:

Character ch = new Character('x');

Autoboxing automatically converts a primitive to a wrapped object:

Character ch = 'x';

and back:

char c = ch;

The reasons for wrapping primitives are shown in a later chapter.

High-Precision Numbers

Java includes two classes for performing high-precision arithmetic:

BigInteger and BigDecimal. Although these fit approximately

the same category as the “wrapper” classes, neither one has a

corresponding primitive.

Both classes have methods that provide analogues for the operations

you perform on primitive types. That is, you can do anything with a

BigInteger or BigDecimal you can with an int or float, it’s

just that you must use method calls instead of operators. Also, since

there are more calculations involved, the operations are slower. You’re

exchanging speed for accuracy.

BigInteger supports arbitrary-precision integers. This means you



can accurately represent integral values of any size without losing any

information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you can

use these for accurate monetary calculations, for example.

Consult the JDK documentation for details about these two classes.

Arrays in Java

Many programming languages support some kind of array. Using

arrays in C and C++ is perilous because those arrays are only blocks of

memory. If a program accesses the array outside of its memory block

or uses the memory before initialization (common programming

errors), the results are unpredictable.

One of the primary goals of Java is safety, so many of the problems

that plague programmers in C and C++ are not repeated in Java. A

Java array is guaranteed to be initialized and cannot be accessed

outside of its range. This range checking comes at the price of having a

small amount of memory overhead for each array as well as extra time

to verify the index at run time, but the assumption is that the safety



and increased productivity are worth the expense (and Java can often

optimize these operations).

When you create an array of objects, you are really creating an array of

references, and each of those references is automatically initialized to

a special value with its own keyword: null. When Java sees null, it

recognizes that the reference in question isn’t pointing to an object.

You must assign an object to each reference before you use it, and if

you try to use a reference that’s still null, the problem is reported at

run time. Thus, typical array errors are prevented in Java.

You can also create an array of primitives. The compiler guarantees

initialization by zeroing the memory for that array.

Arrays are covered in detail later in the book, and specifically in the

Arrays chapter.



Comments

There are two types of comments in Java. The first are the traditional

C-style comment which begin with a /* and continue, possibly across

many lines, until a */. Note that many programmers begin each line

of a multiline comment with a *, so you’ll often see:

/* This is a comment

* that continues

* across lines

*/

Remember, however, that everything inside the /* and */ is ignored,

so there’s no difference if you say instead:

/* This is a comment that

continues across lines */

The second form of comment comes from C++. It is the single-line

comment, which starts with a // and continues until the end of the

line. This type of comment is convenient and commonly used because



it’s easy. So you often see:

// This is a one-line comment

You Never Need to

Destroy an Object

In some programming languages, managing storage lifetime requires

significant effort. How long does a variable last? If you are supposed to

destroy it, when should you? Confusion over storage lifetime can lead

to many bugs, and this section shows how Java simplifies the issue by

releasing storage for you.

Scoping

Most procedural languages have the concept of scope. This determines

both the visibility and lifetime of the names defined within that scope.

In C, C++, and Java, scope is determined by the placement of curly

braces {}. Here is a fragment of Java code demonstrating scope:

{

int x = 12;

// Only x available



{

int q = 96;

// Both x & q available

}

// Only x available

// q is "out of scope"

}

A variable defined within a scope is available only until the end of that

scope.

Indentation makes Java code easier to read. Since Java is a free-form

language, the extra spaces, tabs, and carriage returns do not affect the

resulting program.

You cannot do the following, even though it is legal in C and C++:

{

int x = 12;

{

int x = 96; // Illegal

}

}

The Java compiler will announce that the variable x has already been



defined. Thus the C and C++ ability to “hide” a variable in a larger

scope is not allowed, because the Java designers thought it led to

confusing programs.

Scope of Objects

Java objects do not have the same lifetimes as primitives. When you

create a Java object using new, it persists past the end of the scope.

Thus, if you say:

{

String s = new String("a string");

} // End of scope

the reference s vanishes at the end of the scope. However, the

String object that s points to is still occupying memory. In this bit

of code, there is no way to access the object after the end of the scope,

because the only reference to it is out of scope. In later chapters you’ll

see how the reference to the object can be passed around and

duplicated during the course of a program.

Because objects created with new exist as long as you need them, a



whole slew of C++ programming problems vanish in Java. In C++ you

must not only make sure that the objects stay around as long as

necessary, you must also destroy the objects when you’re done with

them.

This brings up a question. If Java leaves the objects lying around, what

keeps them from filling up memory and halting your program, which

is exactly the kind of problem that occurs in C++? In Java, a bit of

magic happens: the garbage collector looks at all the objects created

with new and finds those that are no longer referenced. It then

releases the memory for those objects, so the memory can be used for

new objects. This means you don’t worry about reclaiming memory

yourself. You simply create objects, and when you no longer need

them, they go away by themselves. This prevents an important class of



programming problem: the so-called “memory leak,” when a

programmer forgets to release memory.

Creating New Data

Types: class

If everything is an object, what determines how a particular class of

object looks and behaves? Put another way, what establishes the type

of an object? You might expect a keyword called “type,” and that would

certainly make sense. Historically, however, most object-oriented

languages use the keyword class to describe a new kind of object.

The class keyword (so common it will often not be bold-faced

throughout this book) is followed by the name of the new type. For

example:

class ATypeName {

// Class body goes here

}

This introduces a new type, although here the class body consists only

of a comment, so there is not too much you can do with it. However,

you can create an object of ATypeName using new:

ATypeName a = new ATypeName();

You can’t tell it to do much of anything—that is, you cannot send it any



interesting messages—until you define some methods for it.

Fields

When you define a class, you can put two types of elements in your

class: fields (sometimes called data members), and methods

(sometimes called member functions). A field is an object of any type you
can talk to via its reference. A field can also be a primitive type. If

it is a reference to an object, you must initialize that reference to

connect it to an actual object (using new, as seen earlier).

Each object keeps its own storage for its fields. Ordinarily, fields are

not shared among objects. Here is an example of a class with some

fields:



class DataOnly {

int i;

double d;

boolean b;

}

This class doesn’t do anything except hold data. As before, you create

an object like this:

DataOnly data = new DataOnly();

You can assign values to the fields by referring to object members. To

do this, you state the name of the object reference, followed by a

period (dot), followed by the name of the member inside the object:

objectReference.member

For example:

data.i = 47;

data.d = 1.1;

data.b = false;

What if your object contains other objects that contain data you want

to modify? You just keep “connecting the dots.” For example:

myPlane.leftTank.capacity = 100;

You can nest many objects this way (although such a design might



become confusing).

Default Values for Primitive Members

When a primitive data type is a field in a class, it is guaranteed to get a

default value if you do not initialize it:

Primitive

Default

boolean

false

\u0000

char

(null)

byte

(byte)0

short

(short)0

int

0

long

0L

float



0.0f

double

0.0d

The default values are only what Java guarantees when the variable is

used as a member of a class. This ensures that primitive fields will

always be initialized (something C++ doesn’t do), reducing a source of

bugs. However, this initial value might not be correct or even legal for

the program you are writing. It’s best to always explicitly initialize

your variables.

This guarantee doesn’t apply to local variables—those that are not

fields of a class. Thus, if within a method definition you have:

int x;

Then x will get some arbitrary value (as it does in C and C++); it will

not automatically be initialized to zero. You are responsible for

assigning an appropriate value before you use x. If you forget, Java

definitely improves on C++: You get a compile-time error telling you



the variable might not be initialized. (C++ compilers often warn you

about uninitialized variables, but in Java these are errors.)

Methods, Arguments,

and Return Values

In many languages (like C and C++), the term function is used to

describe a named subroutine. In Java, we use the term method, as in

“a way to do something.”

Methods in Java determine the messages an object can receive. The

fundamental parts of a method are the name, the arguments, the

return type, and the body. Here is the basic form:

ReturnType methodName( /* Argument list */ ) {

// Method body

}

ReturnType indicates the type of value produced by the method

when you call it. The argument list gives the types and names for the

information you pass into the method. The method name and

argument list are collectively called the signature of the method. The



signature uniquely identifies that method.

Methods in Java can only be created as part of a class. A method can

be called only for an object4, and that object must be able to perform that
method call. If you try to call the wrong method for an object,

you’ll get an error message at compile time.

You call a method for an object by giving the object reference followed

by a period (dot), followed by the name of the method and its

argument list, like this:

objectReference.methodName(arg1, arg2, arg3);

Consider a method f() that takes no arguments and returns a value

of type int. For a reference a that accepts calls to f(), you can say this:

int x = a.f();

The type of the return value must be compatible with the type of x.

This act of calling a method is sometimes termed sending a message

to an object. In the preceding example, the message is f() and the

object is a. Object-oriented programming can be summarized as

“sending messages to objects.”

The Argument List

The method argument list specifies the information you pass into the

method. As you might guess, this information—like everything else in

Java—takes the form of objects. The argument list must specify the



object types and the name of each object. As always, where you seem

to be handing objects around, you are actually passing references.5

The type of the reference must be correct, however. If a String

argument is expected, you must pass in a String or the compiler will

give an error.

Here is the definition for a method that takes a String as its

argument. It must be placed within a class for it to compile:

int storage(String s) {

return s.length() * 2;

}

This method calculates and delivers the number of bytes required to

hold the information in a particular String. The argument s is of

type String. Once s is passed into storage(), you can treat it like

any other object—you can send it messages. Here, we call length(),

which is a String method that returns the number of characters in a

String. The size of each char in a String is 16 bits, or two bytes.

You can also see the return keyword, which does two things. First, it

means “Leave the method, I’m done.” Second, if the method produces

a value, that value is placed right after the return statement. Here,

the return value is produced by evaluating the expression



s.length() * 2.

You can return any type you want, but if you don’t return anything at

all, you do so by indicating that the method produces void (nothing).

Here are some examples:

boolean flag() { return true; }

double naturalLogBase() { return 2.718; }

void nothing() { return; }

void nothing2() {}

When the return type is void, the return keyword is used only to

exit the method, and is therefore unnecessary if called at the end of the

method. You can return from a method at any point, but if you’ve

given a non-void return type, the compiler will force you to return

the appropriate type of value regardless of where you return.



It might look like a program is just a bunch of objects with methods

that take other objects as arguments and send messages to those other

objects. That is indeed much of what goes on, but in the following

Operators chapter you’ll learn how to do the detailed low-level work by
making decisions within a method. For this chapter, sending messages

will suffice.

Writing a Java

Program

There are several other issues you must understand before seeing your

first Java program.

Name Visibility

A problem in any programming language is the control of names. If

you use a name in one module of the program, and another

programmer uses the same name in another module, how do you

distinguish one name from another and prevent the two names from

“clashing?” In C this is especially challenging because a program is

often an unmanageable sea of names. C++ classes (on which Java

classes are modeled) nest functions within classes so they cannot clash

with function names nested within other classes. However, C++

continues to allow global data and global functions, so clashing is still

possible. To solve this problem, C++ introduced namespaces using



additional keywords.

Java avoided all these problems by taking a fresh approach. To

produce an unambiguous name for a library, the Java creators want

you to use your Internet domain name in reverse, because domain

names are guaranteed to be unique. Since my domain name is

MindviewInc.com, my foibles utility library is named

com.mindviewinc.utility.foibles. Following your

reversed domain name, the dots are intended to represent

subdirectories.

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc., were
capitalized by convention, so the library would appear:

Com.mindviewinc.utility.foibles. Partway through the

development of Java 2, however, they discovered this caused

problems, so now the entire package name is lowercase.

This mechanism means all your files automatically live in their own

namespaces, and each class within a file has a unique identifier. This

way, the language prevents name clashes.

Using reversed URLs was a new approach to namespaces, never before

tried in another language. Java has a number of these “inventive”

approaches to problems. As you might imagine, adding a feature

without experimenting with it first risks discovering problems with



that feature in the future, after the feature is used in production code,

typically when it’s too late to do anything about it (some mistakes were

bad enough to actually remove things from the language).

The problem with associating namespaces with file paths using

reversed URLs is by no means one that causes bugs, but it does make

it challenging to manage source code. By using

com.mindviewinc.utility.foibles, I create a directory

hierarchy with “empty” directories com and mindviewinc whose

only job is to reflect the reversed URL. This approach seemed to open

the door to what you will encounter in production Java programs:

deep directory hierarchies filled with empty directories, not just for the

reversed URLs but also to capture other information. These long paths

are basically being used to store data about what is in the directory. If

you expect to use directories in the way they were originally designed,

this approach lands anywhere from “frustrating” to “maddening,” and

for production Java code you are essentially forced to use one of the

IDEs specifically designed to manage code that is laid out in this



fashion, such as NetBeans, Eclipse, or IntelliJ IDEA. Indeed, those

IDEs both manage and create the deep empty directory hierarchies for

you.

For this book’s examples, I didn’t want to burden you with the extra

annoyance of the deep hierarchies, which would have effectively

required you to learn one of the big IDEs before getting started. The

examples for each chapter are in a shallow subdirectory with a name

reflecting the chapter title. This caused me occasional struggles with

tools that follow the deep-hierarchy approach.

Using Other Components

Whenever you use a predefined class in your program, the compiler

must locate that class. In the simplest case, the class already exists in

the source-code file it’s being called from. In that case, you simply use

the class—even if the class doesn’t get defined until later in the file

(Java eliminates the so-called “forward referencing” problem).

What about a class that exists in some other file? You might think the

compiler should be smart enough to go and find it, but there is a

problem. Imagine you use a class with a particular name, but more

than one definition for that class exists (presumably these are different

definitions). Or worse, imagine that you’re writing a program, and as



you’re building it you add a new class to your library that conflicts with

the name of an existing class.

To solve this problem, you must eliminate all potential ambiguities by

telling the Java compiler exactly what classes you want using the

import keyword. import tells the compiler to bring in a package,

which is a library of classes. (In other languages, a library could

consist of functions and data as well as classes, but remember that all

activities in Java take place within classes.)

Much of the time you’ll use components from the standard Java

libraries that come with your compiler. With these, you don’t worry

about long, reversed domain names; you just say, for example:

import java.util.ArrayList;

This tells the compiler to use Java’s ArrayList class, located in its

util library.

However, util contains a number of classes, and you might want to

use several of them without declaring them all explicitly. This is easily

accomplished by using * to indicate a wild card:



import java.util.*;

The examples in this book are small and for simplicity’s sake we’ll

usually use the * form. However, many style guides specify that each

class should be individually imported.

The static Keyword

Creating a class describes the look of its objects and the way they

behave. You don’t actually get an object until you create one using

new, at which point storage is allocated and methods become

available.

This approach is insufficient in two cases. Sometimes you want only a

single, shared piece of storage for a particular field, regardless of how

many objects of that class are created, or even if no objects are created.

The second case is if you need a method that isn’t associated with any

particular object of this class. That is, you need a method you can call

even if no objects are created.

The static keyword (adopted from C++) produces both these

effects. When you say something is static, it means the field or

method is not tied to any particular object instance. Even if you’ve

never created an object of that class, you can call a static method or

access a static field. With ordinary, non-static fields and



methods, you must create an object and use that object to access the

field or method, because non-static fields and methods must target

a particular object.6

Some object-oriented languages use the terms class data and class

methods, meaning that the data and methods exist only for the class as

a whole, and not for any particular objects of the class. Sometimes

Java literature uses these terms too.

To make a field or method static, you place the keyword before the

definition. The following produces and initializes a static field:

class StaticTest {

static int i = 47;

}

Now even if you make two StaticTest objects, there is still only

one piece of storage for StaticTest.i. Both objects share the same

i. For example:

StaticTest st1 = new StaticTest();

StaticTest st2 = new StaticTest();

Both st1.i and st2.i have the same value of 47 since they are the

same piece of memory.

There are two ways to refer to a static variable. As in the preceding



example, you can name it via an object; for example, st2.i. You can

also refer to it directly through its class name, something you cannot

do with a non-static member:

StaticTest.i++;

The ++ operator adds one to the variable. Now both st1.i and

st2.i have the value 48.

Using the class name is the preferred way to refer to a static

variable because it emphasizes the variable’s static nature7.

Similar logic applies to static methods. You can refer to a static

method either through an object as you can with any method, or with

the special additional syntax ClassName.method(). You define a

static method like this:

class Incrementable {

static void increment() { StaticTest.i++; }

}

The Incrementable method increment() increments the

static int i using the ++ operator. You can call increment()

in the typical way, through an object:

Incrementable sf = new Incrementable();

sf.increment();



However, the preferred approach is to call it directly through its class:

Incrementable.increment();

static applied to a field definitely changes the way the data is

created—one for each class versus the non-static one for each

object. When applied to a method, static allows you to call that

method without creating an object. This is essential, as you will see, in

defining the main() method that is the entry point for running an

application.

Your First Java

Program

Finally, here’s the first complete program. It starts by displaying a

String, followed by the date, using the Date class from the Java

standard library.

// objects/HelloDate.java

import java.util.*;

public class HelloDate {



public static void main(String[] args) {

System.out.println("Hello, it's: ");

System.out.println(new Date());

}

}

In this book I treat the first line specially; it’s always a comment line

containing the the path information to the file (using the directory

name objects for this chapter) followed by the file name. I have

tools to automatically extract and test the book’s code based on this

information, and you will easily find the code example in the

repository by referring to the first line.

At the beginning of each program file, you must place import

statements to bring in any extra classes you need for the code in that

file. I say “extra” because there’s a certain library of classes

automatically included in every Java file: java.lang. Start up your

Web browser and look at the documentation from Oracle. If you

haven’t downloaded the JDK documentation from the Oracle Java site, do so
now8, or find it on the Internet. If you look at the list of packages, you’ll see
all the different class libraries that come with Java.

Select java.lang. This will bring up a list of all the classes that are

part of that library. Since java.lang is implicitly included in every

https://github.com/BruceEckel/OnJava8-Examples
http://java.oracle.com


Java code file, these classes are automatically available. There’s no

Date class listed in java.lang, which means you must import

another library to use that. If you don’t know the library where a

particular class is, or if you want to see all classes, select “Tree” in the

Java documentation. Now you can find every single class that comes

with Java. Use the browser’s “find” function to find Date. You’ll see it

listed as java.util.Date, which tells you it’s in the util library

and you must import java.util.* in order to use Date.

If inside the documentation you select java.lang, then System,

you’ll see that the System class has several fields, and if you select

out, you’ll discover it’s a static PrintStream object. Since it’s

static, you don’t need to use new—the out object is always there,

and you can just use it. What you can do with this out object is

determined by its type: PrintStream. Conveniently,

PrintStream is shown in the description as a hyperlink, so if you

click on that, you’ll see a list of all the methods you can call for

PrintStream. There are quite a few, and these are covered later in

the book. For now all we’re interested in is println(), which in

effect means “Print what I’m giving you out to the console and end

with a newline.” Thus, in any Java program you can write something



like this:

System.out.println("A String of things");

whenever you want to display information to the console.

One of the classes in the file must have the same name as the file. (The

compiler complains if you don’t do this.) When you’re creating a

standalone program such as this one, the class with the name of the

file must contain an entry point from which the program starts. This

special method is called main(), with the following signature and

return type:

public static void main(String[] args) {

The public keyword means the method is available to the outside

world (described in detail in the Implementation Hiding chapter). The
argument to main() is an array of String objects. The args won’t

be used in the current program, but the Java compiler insists they be

there because they hold the arguments from the command line.

The line that prints the date is interesting:

System.out.println(new Date());

The argument is a Date object that is only created to send its value

(automatically converted to a String) to println(). As soon as

this statement is finished, that Date is unnecessary, and the garbage

collector can come along and get it anytime. We don’t worry about



cleaning it up.

When you look at the JDK documentation, you see that System has

many other useful methods (one of Java’s assets is its large set of

standard libraries). For example:

// objects/ShowProperties.java

public class ShowProperties {

public static void main(String[] args) {

System.getProperties().list(System.out);

System.out.println(System.getProperty("user.name"));

System.out.println(

System.getProperty("java.library.path"));

}

}

/* Output: (First 20 Lines)

-- listing properties --

java.runtime.name=Java(TM) SE Runtime Environment

sun.boot.library.path=C:\Program

Files\Java\jdk1.8.0_112\jr...

java.vm.version=25.112-b15

java.vm.vendor=Oracle Corporation



java.vendor.url=http://java.oracle.com/

path.separator=;

java.vm.name=Java HotSpot(TM) 64-Bit Server VM

file.encoding.pkg=sun.io

user.script=

user.country=US

sun.java.launcher=SUN_STANDARD

sun.os.patch.level=

java.vm.specification.name=Java Virtual Machine

Specification

user.dir=C:\Users\Bruce\Documents\GitHub\on-ja...

java.runtime.version=1.8.0_112-b15

java.awt.graphicsenv=sun.awt.Win32GraphicsEnvironment

java.endorsed.dirs=C:\Program

Files\Java\jdk1.8.0_112\jr...

os.arch=amd64

java.io.tmpdir=C:\Users\Bruce\AppData\Local\Temp\

...

*/

The first line in main() displays all “properties” from the system



where you are running the program, so it gives you environment

information. The list() method sends the results to its argument,

System.out. You will see later in the book that you can send the

results elsewhere, to a file, for example. You can also ask for a specific

property—here, user.name and java.library.path.

The /* Output: tag at the end of the file indicates the beginning of

the output generated by this file. Most examples in this book that

produce output will contain the output in this commented form, so

you see the output and know it is correct. The tag allows the output to

be automatically updated into the text of this book after being checked

with a compiler and executed.

Compiling and Running

To compile and run this program, and all the other programs in this

book, you must first have a Java programming environment. The

installation process was described in Installing Java and the Book

Examples. If you followed these instructions, you are using the Java
Developer’s Kit (JDK), free from Oracle. If you use another



development system, look in the documentation for that system to

determine how to compile and run programs.

Installing Java and the Book Examples also describes how to install the
examples for this book. Move to the subdirectory named

objects and type:

javac HelloDate.java

This command should produce no response. If you get any kind of an

error message, it means you haven’t installed the JDK properly and

you must investigate those problems.

On the other hand, if you just get your command prompt back, you can

type:

java HelloDate

and you’ll get the message and the date as output.

This is the process to compile and run each program (containing a

main()) in this book9. However, the source code for this book also has a file
called build.gradle in the root directory, and this

contains the Gradle configuration for automatically building, testing,



and running the files for the book. When you run the gradlew

command for the first time, Gradle will automatically install itself

(assuming you have Java installed).

Coding Style

The style described in the document Code Conventions for the Java

Programming Language 10 is to capitalize the first letter of a class name. If
the class name consists of several words, they are run

together (that is, you don’t use underscores to separate the names),

and the first letter of each embedded word is capitalized, such as:

class AllTheColorsOfTheRainbow { // ...

This is sometimes called “camel-casing.” For almost everything else—

methods, fields (member variables), and object reference names—the

accepted style is just as it is for classes except that the first letter of the

identifier is lowercase. For example:

class AllTheColorsOfTheRainbow {

int anIntegerRepresentingColors;



void changeTheHueOfTheColor(int newHue) {

// ...

}

// ...

}

The user must also type these long names, so be merciful.

The Java code you find in the Oracle libraries also follows the

placement of open-and-close curly braces in this book.

Summary

This chapter shows you just enough Java so you understand how to

write a simple program. You’ve also seen an overview of the language

and some of its basic ideas. However, the examples so far have all been

of the form “Do this, then do that, then do something else.” The next

two chapters will introduce the basic operators used in Java

programming, and show you how to control the flow of your program.

1. This can be a flashpoint. There are those who say, “Clearly, it’s a

pointer,” but this presumes an underlying implementation. Also,

the syntax of Java references is much more akin to C++ references

than to pointers. In the 1st edition of Thinking in Java, I chose to

invent a new term, “handle,” because C++ references and Java



references have some important differences. I was coming out of

C++ and did not want to confuse the C++ programmers whom I

assumed would be the largest audience for Java. In the 2nd

edition of Thinking in Java, I decided that “reference” was the

more commonly used term, and that anyone changing from C++

would have a lot more to cope with than the terminology of

references, so they might as well jump in with both feet. However,

there are people who disagree even with the term “reference.” In

one book I read that it was “completely wrong to say that Java

supports pass by reference,” because Java object identifiers

(according to that author) are actually “object references.” And

(he goes on) everything is actually pass by value. So you’re not

passing by reference, you’re “passing an object reference by

value.” One could argue for the precision of such convoluted

explanations, but I think my approach simplifies the

understanding of the concept without hurting anything (well,

language lawyers may claim I’m lying to you, but I’ll say that I’m

providing an appropriate abstraction).↩

2. Most microprocessor chips do have additional cache memory but

this is organized as traditional memory and not as registers↩



3. An example of this is the String pool. All literal Strings and

String-valued constant expressions are interned automatically

and put into special static storage. ↩

4. static methods, which you’ll learn about soon, can be called for

the class, without an object.↩

5. With the usual exception of the aforementioned “special” data

types boolean, char, byte, short, int, long, float, and double. In general,
though, you pass objects, which really means

you pass references to objects. ↩

6. static methods don’t require objects to be created before they

are used, so they cannot directly access non-static members or

methods by calling those other members without referring to a

named object (since non-static members and methods must be

tied to a particular object).↩

7. In some cases it also gives the compiler better opportunities for

optimization↩

8. Note this documentation doesn’t come packed with the JDK; you

must do a separate download to get it. ↩

9. For every program in this book to compile and run through the

command line, you might also need to set your CLASSPATH. ↩

10. (Search the Internet; also look for “Google Java Style”). To keep



code listings narrow for this book, not all these guidelines could

be followed, but you’ll see that the style I use here matches the

Java standard as much as possible.↩

Operators

Operators manipulate data.

Because Java was inherited from C++, most of its operators are

familiar to C and C++ programmers. Java also adds some

improvements and simplifications.

If you know C or C++ syntax, you can skim through this chapter and

the next, looking for places where Java is different from those

languages. However, if you find yourself floundering a bit in these two

chapters, make sure you go through the free multimedia seminar

Thinking in C, downloadable from www.OnJava8.com. It contains audio
lectures, slides, exercises, and solutions specifically designed to

bring you up to speed with the fundamentals necessary to learn Java.

http://www.OnJava8.com


Using Java Operators

An operator takes one or more arguments and produces a new value.

The arguments are in a different form than ordinary method calls, but

the effect is the same. Addition and unary plus (+), subtraction and

unary minus (-), multiplication (*), division (/), and assignment (=) all work
much the same in any programming language.

All operators produce a value from their operands. In addition, some

operators change the value of an operand. This is called a side effect.

The most common use for operators that modify their operands is to

generate the side effect, but keep in mind that the value produced is

available for your use, just as in operators without side effects.

Almost all operators work only with primitives. The exceptions are =,

== and !=, which work with all objects (and are a point of confusion

for objects). In addition, the String class supports + and +=.

Precedence

Operator precedence defines expression evaluation when several



operators are present. Java has specific rules that determine the order

of evaluation. The easiest one to remember is that multiplication and

division happen before addition and subtraction. Programmers often

forget the other precedence rules, and use parentheses to make the

order of evaluation explicit. For example, look at statements [1] and

[2]:

// operators/Precedence.java

public class Precedence {

public static void main(String[] args) {

int x = 1, y = 2, z = 3;

int a = x + y - 2/2 + z; // [1]

int b = x + (y - 2)/(2 + z); // [2]

System.out.println("a = " + a);

System.out.println("b = " + b);

}

}

/* Output:

a = 5

b = 1

*/



These statements look roughly the same, but from the output you see

they have very different meanings depending on the use of

parentheses.

Notice that System.out.println() uses the + operator. In this

context, + means “String concatenation” and, if necessary,

“String conversion.” When the compiler sees a String followed by

a + followed by a non-String, it attempts to convert the non-

String into a String. The output shows it successfully converts

from int into String for a and b.

Assignment

The operator = performs assignment. It means “Take the value of the

right-hand side (often called the rvalue) and copy it into the left-hand

side (often called the lvalue).” An rvalue is any constant, variable, or

expression that produces a value, but an lvalue must be a distinct,

named variable. (That is, there must be a physical space to store the

value.) For instance, you can assign a constant value to a variable:



a = 4;

but you cannot assign anything to a constant value—it cannot be an

lvalue. (You can’t say 4 = a; .)

Assigning primitives is straightforward. Since the primitive holds the

actual value and not a reference to an object, when you assign

primitives, you copy the contents from one place to another. For

example, if you say a = b for primitives, the contents of b are copied

into a. If you then go on to modify a, b is naturally unaffected by this
modification. As a programmer, this is what you can expect for most

situations.

When you assign objects, however, things change. Whenever you

manipulate an object, what you’re manipulating is the reference, so

when you assign “from one object to another,” you’re actually copying

a reference from one place to another. This means if you say c = d

for objects, you end up with both c and d pointing to the object where,

originally, only d pointed. Here’s an example that demonstrates this

behavior:

// operators/Assignment.java

// Assignment with objects is a bit tricky

class Tank {

int level;



}

public class Assignment {

public static void main(String[] args) {

Tank t1 = new Tank();

Tank t2 = new Tank();

t1.level = 9;

t2.level = 47;

System.out.println("1: t1.level: " + t1.level +

", t2.level: " + t2.level);

t1 = t2;

System.out.println("2: t1.level: " + t1.level +

", t2.level: " + t2.level);

t1.level = 27;

System.out.println("3: t1.level: " + t1.level +

", t2.level: " + t2.level);

}

}

/* Output:

1: t1.level: 9, t2.level: 47

2: t1.level: 47, t2.level: 47



3: t1.level: 27, t2.level: 27

*/

The Tank class is simple, and two instances (t1 and t2) are created

within main(). The level field within each Tank is given a

different value, then t2 is assigned to t1, and t1 is changed. In many
programming languages you expect t1 and t2 to be independent at

all times, but because you’ve assigned a reference, changing the t1

object appears to change the t2 object as well! This is because both t1

and t2 contain references that point to the same object. (The original

reference that was in t1, that pointed to the object holding a value of

9, was overwritten during the assignment and effectively lost; its

object is cleaned up by the garbage collector.)

This phenomenon is often called aliasing, and it’s a fundamental way

that Java works with objects. But what if you don’t want aliasing to

occur here? You can forego the assignment and say:

t1.level = t2.level;

This retains the two separate objects instead of discarding one and



tying t1 and t2 to the same object. Manipulating the fields within

objects goes against Java design principles. This is a nontrivial topic,

so keep in mind that assignment for objects can add surprises.

Aliasing During Method Calls

Aliasing will also occur when you pass an object into a method:

// operators/PassObject.java

// Passing objects to methods might not be

// what you're used to

class Letter {

char c;

}

public class PassObject {

static void f(Letter y) {

y.c = 'z';

}

public static void main(String[] args) {



Letter x = new Letter();

x.c = 'a';

System.out.println("1: x.c: " + x.c);

f(x);

System.out.println("2: x.c: " + x.c);

}

}

/* Output:

1: x.c: a

2: x.c: z

*/

In many programming languages, the method f() appears to make a

copy of its argument Letter y inside the scope of the method. But

once again a reference is passed, so the line

y.c = 'z';

is actually changing the object outside of f().

Aliasing and its solution is a complex issue covered in the Appendix:

Passing and Returning Objects. You’re aware of it now so you can

watch for pitfalls.

Mathematical



Operators

The basic mathematical operators are the same as the ones available in

most programming languages: addition (+), subtraction (-), division

(/), multiplication (*) and modulus (%, which produces the remainder

from division). Integer division truncates, rather than rounds, the

result.

Java also uses the shorthand notation from C/C++ that performs an

operation and an assignment at the same time. This is denoted by an

operator followed by an equal sign, and is consistent with all the

operators in the language (whenever it makes sense). For example, to

add 4 to the variable x and assign the result to x, use: x += 4.

This example shows the mathematical operators:

// operators/MathOps.java

// The mathematical operators

import java.util.*;

public class MathOps {

public static void main(String[] args) {

// Create a seeded random number generator:

Random rand = new Random(47);

int i, j, k;



// Choose value from 1 to 100:

j = rand.nextInt(100) + 1;

System.out.println("j : " + j);

k = rand.nextInt(100) + 1;

System.out.println("k : " + k);

i = j + k;

System.out.println("j + k : " + i);

i = j - k;

System.out.println("j - k : " + i);

i = k / j;

System.out.println("k / j : " + i);

i = k * j;

System.out.println("k * j : " + i);

i = k % j;

System.out.println("k % j : " + i);

j %= k;

System.out.println("j %= k : " + j);

// Floating-point number tests:

float u, v, w; // Applies to doubles, too

v = rand.nextFloat();



System.out.println("v : " + v);

w = rand.nextFloat();

System.out.println("w : " + w);

u = v + w;

System.out.println("v + w : " + u);

u = v - w;

System.out.println("v - w : " + u);

u = v * w;

System.out.println("v * w : " + u);

u = v / w;

System.out.println("v / w : " + u);

// The following also works for char,

// byte, short, int, long, and double:

u += v;

System.out.println("u += v : " + u);

u -= v;

System.out.println("u -= v : " + u);

u *= v;

System.out.println("u *= v : " + u);

u /= v;



System.out.println("u /= v : " + u);

}

}

/* Output:

j : 59

k : 56

j + k : 115

j - k : 3

k / j : 0

k * j : 3304

k % j : 56

j %= k : 3

v : 0.5309454

w : 0.0534122

v + w : 0.5843576

v - w : 0.47753322

v * w : 0.028358962

v / w : 9.940527

u += v : 10.471473

u -= v : 9.940527



u *= v : 5.2778773

u /= v : 9.940527

*/

To generate numbers, the program first creates a Random object. If

you create a Random object with no arguments, Java uses the current

time as a seed for the random number generator, and will thus

produce different output for each execution of the program. However,

in the examples in this book, it is important that the output at the end

of each example be as consistent as possible so it can be verified with

external tools. By providing a seed (an initialization value for the

random number generator that always produces the same sequence

for a particular seed value) when creating the Random object, the

same random numbers are generated each time the program is

executed, so the output is verifiable.1 To generate more varying output, feel
free to remove the seed in the examples in the book.

The program generates a number of different types of random

numbers with the Random object by calling the methods nextInt()



and nextFloat() (you can also call nextLong() or

nextDouble()). The argument to nextInt() sets the upper

bound on the generated number. The lower bound is zero, which we

don’t want because of the possibility of a divide-by-zero, so the result

is offset by one.

Unary Minus and Plus

Operators

The unary minus (-) and unary plus (+) are the same operators as

binary minus and plus. The compiler figures out which use is intended

by the way you write the expression. For instance, the statement

x = -a;

has an obvious meaning. The compiler is able to figure out:

x = a * -b;

but the reader might get confused, so it is sometimes clearer to say:

x = a * (-b);

Unary minus inverts the sign on the data. Unary plus provides



symmetry with unary minus, but its only effect is to promote smaller-

type operands to int.

Auto Increment and

Decrement

Java, like C, has a number of shortcuts. Shortcuts can make code much

easier to type, and either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators

(often called the auto-increment and auto-decrement operators). The

decrement operator is -- and means “decrease by one unit.” The

increment operator is ++ and means “increase by one unit.” If a is an

int, for example, the expression ++a is equivalent to a = a + 1.

Increment and decrement operators not only modify the variable, but

also produce the value of the variable as a result.

There are two versions of each type of operator, often called prefix and

postfix. Pre-increment means the ++ operator appears before the

variable, and post-increment means the ++ operator appears after the

variable. Similarly, pre-decrement means the --operator appears

before the variable, and post-decrement means the -- operator

appears after the variable. For pre-increment and pre-decrement (i.e.,

++a or --a), the operation is performed and the value is produced.



For post-increment and post-decrement (i.e., a++ or a--), the value

is produced, then the operation is performed.

// operators/AutoInc.java

// Demonstrates the ++ and -- operators

public class AutoInc {

public static void main(String[] args) {

int i = 1;

System.out.println("i: " + i);

System.out.println("++i: " + ++i); // Pre-increment

System.out.println("i++: " + i++); // Post-increment

System.out.println("i: " + i);

System.out.println("--i: " + --i); // Pre-decrement

System.out.println("i--: " + i--); // Post-decrement

System.out.println("i: " + i);

}

}

/* Output:

i: 1

++i: 2

i++: 2



i: 3

--i: 2

i--: 2

i: 1

*/

For the prefix form, you get the value after the operation is performed,

but with the postfix form, you get the value before the operation is

performed. These are the only operators, other than those involving

assignment, that have side effects—they change the operand rather

than just using its value.

The increment operator is one explanation for the name C++,

implying “one step beyond C.” In an early Java speech, Bill Joy (one of

the Java creators), said that “Java = C++--” (C plus plus minus

minus), suggesting that Java is C++ with the unnecessary hard parts

removed, and therefore a much simpler language. As you progress,

you’ll see that many parts are simpler, and yet in other ways Java isn’t

much easier than C++.



Relational Operators

Relational operators produce a boolean result indicating the

relationship between the values of the operands. A relational

expression produces true if the relationship is true, and false if the

relationship is untrue. The relational operators are less than (< ),

greater than (> ), less than or equal to (<=), greater than or equal to (>=),
equivalent (==) and not equivalent (!=). Equivalence and non-equivalence
work with all primitives, but the other comparisons won’t

work with type boolean. Because boolean values can only be

true or false, “greater than” or “less than” doesn’t make sense.

Testing Object Equivalence

The relational operators == and != also work with all objects, but

their meaning often confuses the first-time Java programmer. Here’s



an example:

// operators/Equivalence.java

public class Equivalence {

public static void main(String[] args) {

Integer n1 = 47;

Integer n2 = 47;

System.out.println(n1 == n2);

System.out.println(n1 != n2);

}

}

/* Output:

true

false

*/

The statement System.out.println(n1 == n2) will print the

result of the boolean comparison within it. Surely the output should

be “true”, then “false,” since both Integer objects are the same. But

while the contents of the objects are the same, the references are not

the same. The operators == and != compare object references, so the

output is actually “false”, then “true.” Naturally, this surprises people



at first.

How do you compare the actual contents of an object for equivalence?

You must use the special method equals() that exists for all objects

(not primitives, which work fine with == and !=). Here’s how it’s

used:

// operators/EqualsMethod.java

public class EqualsMethod {

public static void main(String[] args) {

Integer n1 = 47;

Integer n2 = 47;

System.out.println(n1.equals(n2));

}

}

/* Output:

true

*/

The result is now what you expect. Ah, but it’s not as simple as that.

Create your own class:

// operators/EqualsMethod2.java

// Default equals() does not compare contents



class Value {

int i;

}

public class EqualsMethod2 {

public static void main(String[] args) {

Value v1 = new Value();

Value v2 = new Value();

v1.i = v2.i = 100;

System.out.println(v1.equals(v2));

}

}

/* Output:

false

*/

Now things are confusing again: The result is false. This is because

the default behavior of equals() is to compare references. So unless



you override equals() in your new class you won’t get the desired

behavior. Unfortunately, you won’t learn about overriding until the

Reuse chapter and about the proper way to define equals() until the
Appendix: Collection Topics, but being aware of the way

equals() behaves might save you some grief in the meantime.

Most of the Java library classes implement equals() to compare the

contents of objects instead of their references.

Logical Operators

Each of the logical operators AND (&& ), OR (||) and NOT (! ) produce a
boolean value of true or false based on the logical

relationship of its arguments. This example uses the relational and

logical operators:

// operators/Bool.java

// Relational and logical operators

import java.util.*;

public class Bool {

public static void main(String[] args) {

Random rand = new Random(47);

int i = rand.nextInt(100);

int j = rand.nextInt(100);

System.out.println("i = " + i);



System.out.println("j = " + j);

System.out.println("i > j is " + (i > j));

System.out.println("i < j is " + (i < j));

System.out.println("i >= j is " + (i >= j));

System.out.println("i <= j is " + (i <= j));

System.out.println("i == j is " + (i == j));

System.out.println("i != j is " + (i != j));

// Treating an int as a boolean is not legal Java:

//- System.out.println("i && j is " + (i && j));

//- System.out.println("i || j is " + (i || j));

//- System.out.println("!i is " + !i);

System.out.println("(i < 10) && (j < 10) is "

+ ((i < 10) && (j < 10)) );

System.out.println("(i < 10) || (j < 10) is "

+ ((i < 10) || (j < 10)) );

}

}

/* Output:

i = 58

j = 55



i > j is true

i < j is false

i >= j is true

i <= j is false

i == j is false

i != j is true

(i < 10) && (j < 10) is false

(i < 10) || (j < 10) is false

*/

You can apply AND, OR, or NOT to boolean values only. You can’t

use a non-boolean as if it were a boolean in a logical expression as

you can in C and C++. The failed attempts at doing this are

commented out with a //-. The subsequent expressions, however,

produce boolean values using relational comparisons, then use

logical operations on the results.

Note that a boolean value is automatically converted to an

appropriate text form if it is used where a String is expected.



You can replace the definition for int in the preceding program with

any other primitive data type except boolean. Be aware, however,

that the comparison of floating point numbers is very strict. A number

that is the tiniest fraction different from another number is still “not

equal.” A number that is the tiniest bit above zero is still nonzero.

Short-Circuiting

Logical operators support a phenomenon called “short-circuiting.” this

means the expression is evaluated only until the truth or falsehood of

the entire expression can be unambiguously determined. As a result,

the latter parts of a logical expression might not be evaluated. Here’s a

demonstration:

// operators/ShortCircuit.java

// Short-circuiting behavior with logical operators

public class ShortCircuit {

static boolean test1(int val) {

System.out.println("test1(" + val + ")");

System.out.println("result: " + (val < 1));

return val < 1;

}

static boolean test2(int val) {



System.out.println("test2(" + val + ")");

System.out.println("result: " + (val < 2));

return val < 2;

}

static boolean test3(int val) {

System.out.println("test3(" + val + ")");

System.out.println("result: " + (val < 3));

return val < 3;

}

public static void main(String[] args) {

boolean b = test1(0) && test2(2) && test3(2);

System.out.println("expression is " + b);

}

}

/* Output:

test1(0)



result: true

test2(2)

result: false

expression is false

*/

Each test performs a comparison against the argument and returns

true or false. It also prints information to show you it’s being

called. The tests are used in the expression:

test1(0) && test2(2) && test3(2)

You might naturally expect all three tests to execute, but the output

shows otherwise. The first test produces a true result, so the

expression evaluation continues. However, the second test produces a

false result. Since this means the whole expression must be false,

why continue evaluating the rest of the expression? It might be

expensive. The reason for short-circuiting, in fact, is that you can get a

potential performance increase if all the parts of a logical expression

do not need evaluation.

Literals

Ordinarily, when you insert a literal value into a program, the

compiler knows exactly what type to make it. When the type is



ambiguous, you must guide the compiler by adding some extra

information in the form of characters associated with the literal value.

The following code shows these characters:

// operators/Literals.java

public class Literals {

public static void main(String[] args) {

int i1 = 0x2f; // Hexadecimal (lowercase)

System.out.println(

"i1: " + Integer.toBinaryString(i1));

int i2 = 0X2F; // Hexadecimal (uppercase)

System.out.println(

"i2: " + Integer.toBinaryString(i2));

int i3 = 0177; // Octal (leading zero)

System.out.println(

"i3: " + Integer.toBinaryString(i3));

char c = 0xffff; // max char hex value

System.out.println(

"c: " + Integer.toBinaryString(c));

byte b = 0x7f; // max byte hex value 10101111;

System.out.println(



"b: " + Integer.toBinaryString(b));

short s = 0x7fff; // max short hex value

System.out.println(

"s: " + Integer.toBinaryString(s));

long n1 = 200L; // long suffix

long n2 = 200l; // long suffix (can be confusing)

long n3 = 200;

// Java 7 Binary Literals:

byte blb = (byte)0b00110101;

System.out.println(

"blb: " + Integer.toBinaryString(blb));

short bls = (short)0B0010111110101111;

System.out.println(

"bls: " + Integer.toBinaryString(bls));

int bli = 0b00101111101011111010111110101111;

System.out.println(

"bli: " + Integer.toBinaryString(bli));

long bll = 0b00101111101011111010111110101111;

System.out.println(

"bll: " + Long.toBinaryString(bll));



float f1 = 1;

float f2 = 1F; // float suffix

float f3 = 1f; // float suffix

double d1 = 1d; // double suffix

double d2 = 1D; // double suffix

// (Hex and Octal also work with long)

}

}

/* Output:

i1: 101111

i2: 101111

i3: 1111111

c: 1111111111111111

b: 1111111

s: 111111111111111

blb: 110101

bls: 10111110101111

bli: 101111101011111010111110101111

bll: 101111101011111010111110101111

*/



A trailing character after a literal value establishes its type. Uppercase

or lowercase L means long (however, using a lowercase l is

confusing because it can look like the number one). Uppercase or

lowercase F means float. Uppercase or lowercase D means double.

Hexadecimal (base 16), which works with all the integral data types, is

denoted by a leading 0x or 0X followed by 0-9 or a-f either in uppercase or
lowercase. If you try to initialize a variable with a value

bigger than it can hold (regardless of the numerical form of the value),

the compiler will give you an error message. Notice in the preceding

code the maximum possible hexadecimal values for char, byte, and

short. If you exceed these, the compiler will automatically make the

value an int and declare you need a narrowing cast for the

assignment (casts are defined later in this chapter). You’ll know you’ve

stepped over the line.

Octal (base 8) is denoted by a leading zero in the number and digits

from 0-7.

Java 7 introduced binary literals, denoted by a leading 0b or 0B,

which can initialize all integral types.



When working with integral types, it’s useful to display the binary

form of the results. This is easily accomplished with the static

toBinaryString() methods from the Integer and Long

classes. Notice that when passing smaller types to

Integer.toBinaryString(), the type is automatically

converted to an int.

Underscores in Literals

There’s a thoughtful addition in Java 7: you can include underscores in

numeric literals in order to make the results clearer to read. This is

especially helpful for grouping digits in large values:

// operators/Underscores.java

public class Underscores {

public static void main(String[] args) {

double d = 341_435_936.445_667;

System.out.println(d);

int bin = 0b0010_1111_1010_1111_1010_1111_1010_1111;

System.out.println(Integer.toBinaryString(bin));



System.out.printf("%x%n", bin); // [1]

long hex = 0x7f_e9_b7_aa;

System.out.printf("%x%n", hex);

}

}

/* Output:

3.41435936445667E8

101111101011111010111110101111

2fafafaf

7fe9b7aa

*/

There are (reasonable) rules:

1. Single underscores only—you can’t double them up.

2. No underscores at the beginning or end of a number.

3. No underscores around suffixes like F, D or L.

4. No around binary or hex identifiers b and x.

[1] Notice the use of %n. If you’re familiar with C-style languages,



you’re probably used to seeing \n to represent a line ending. The

problem with that is it gives you a “Unix style” line ending. If you

are on Windows, you must specify \r\n instead. This difference

is a needless hassle; the programming language should take care

of it for you. That’s what Java has achieved with %n, which always

produces the appropriate line ending for the platform it’s running

on—but only when you’re using System.out.printf() or

System.out.format(). For System.out.println()

you must still use \n; if you use %n, println() will simply emit

%n and not a newline.

Exponential Notation

Exponents use a notation I’ve always found rather dismaying:

// operators/Exponents.java

// "e" means "10 to the power."

public class Exponents {

public static void main(String[] args) {

// Uppercase and lowercase 'e' are the same:

float expFloat = 1.39e-43f;

expFloat = 1.39E-43f;

System.out.println(expFloat);



double expDouble = 47e47d; // 'd' is optional

double expDouble2 = 47e47; // Automatically double

System.out.println(expDouble);

}

}

/* Output:

1.39E-43

4.7E48

*/

In science and engineering, e refers to the base of natural logarithms,

approximately 2.718. (A more precise double value is available in

Java as Math.E.) This is used in exponentiation expressions such as

1.39 x e-43, which means 1.39 x 2.718-43. However, when the

FORTRAN programming language was invented, they decided that e

would mean “ten to the power,” an odd decision because FORTRAN

was designed for science and engineering, and one would think its

designers would be sensitive about introducing such an ambiguity. 2 At any
rate, this custom was followed in C, C++ and now Java. So if

you’re used to thinking in terms of e as the base of natural logarithms,

you must do a mental translation when you see an expression such as

1.39 e-43f in Java; it means 1.39 x 10-43.



Note you don’t need the trailing character when the compiler can

figure out the appropriate type. With

long n3 = 200;

there’s no ambiguity, so an L after the 200 is superfluous. However,

with

float f4 = 1e-43f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so

without the trailing f, it will give you an error declaring you must use

a cast to convert double to float.

Bitwise Operators

The bitwise operators allow you to manipulate individual bits in an

integral primitive data type. Bitwise operators perform Boolean

algebra on the corresponding bits in the two arguments to produce the

result.

The bitwise operators come from C’s low-level orientation, where you

often manipulate hardware directly and must set the bits in hardware



registers. Java was originally designed to be embedded in TV set-top

boxes, so this low-level orientation still made sense. However, you

probably won’t use the bitwise operators much.

The bitwise AND operator (& ) produces a one in the output bit if both

input bits are one; otherwise, it produces a zero. The bitwise OR

operator (|) produces a one in the output bit if either input bit is a one

and produces a zero only if both input bits are zero. The bitwise

EXCLUSIVE OR, or XOR (^), produces a one in the output bit if one

or the other input bit is a one, but not both. The bitwise NOT (~, also

called the ones complement operator) is a unary operator; it takes only

one argument. (All other bitwise operators are binary operators.)

Bitwise NOT produces the opposite of the input bit—a one if the input

bit is zero, a zero if the input bit is one.

The bitwise operators and logical operators use the same characters,

so a mnemonic device helps you remember the meanings: Because bits

are “small,” there is only one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the

operation and assignment: &=, |= and ^= are all legitimate. (Since ~

is a unary operator, it cannot be combined with the = sign.)

The boolean type is treated as a one-bit value, so it is somewhat



different. You can perform a bitwise AND, OR, and XOR, but you can’t

perform a bitwise NOT (presumably to prevent confusion with the

logical NOT). For booleans, the bitwise operators have the same

effect as the logical operators except they do not short circuit. Also,

bitwise operations on booleans include an XOR logical operator that

is not included under the list of “logical” operators. You cannot use

booleans in shift expressions, which are described next.

Shift Operators

The shift operators also manipulate bits. They can be used solely with

primitive, integral types. The left-shift operator (<< ) produces the

operand to the left of the operator after it is shifted to the left by the

number of bits specified to the right of the operator (inserting zeroes

at the lower-order bits). The signed right-shift operator (>> ) produces

the operand to the left of the operator after it is shifted to the right by

the number of bits specified to the right of the operator. The signed

right shift >> uses sign extension: If the value is positive, zeroes are inserted



at the higher-order bits; if the value is negative, ones are

inserted at the higher-order bits. Java has also added the unsigned

right shift >>> , which uses zero extension: Regardless of the sign, zeroes are
inserted at the higher-order bits. This operator does not

exist in C or C++.

If you shift a char, byte, or short, it is promoted to int before the shift takes
place, and the result is an int. Only the five low-order bits

of the right-hand side are used. This prevents you from shifting more

than the number of bits in an int. If you’re operating on a long,

you’ll get a long result. Only the six low-order bits of the right-hand

side are used, so you can’t shift more than the number of bits in a

long.

Shifts can be combined with the equal sign (<<= or >>= or >>>=).

The lvalue is replaced by the lvalue shifted by the rvalue. There is a

problem, however, with the unsigned right shift combined with

assignment. If you use it with byte or short, you don’t get the

correct results. Instead, these are promoted to int and right shifted,

but then truncated as they are assigned back into their variables, so

you get -1 in those cases. Here’s a demonstration:

// operators/URShift.java

// Test of unsigned right shift



public class URShift {

public static void main(String[] args) {

int i = -1;

System.out.println(Integer.toBinaryString(i));

i >>>= 10;

System.out.println(Integer.toBinaryString(i));

long l = -1;

System.out.println(Long.toBinaryString(l));

l >>>= 10;

System.out.println(Long.toBinaryString(l));

short s = -1;

System.out.println(Integer.toBinaryString(s));

s >>>= 10;

System.out.println(Integer.toBinaryString(s));

byte b = -1;

System.out.println(Integer.toBinaryString(b));

b >>>= 10;

System.out.println(Integer.toBinaryString(b));

b = -1;

System.out.println(Integer.toBinaryString(b));



System.out.println(Integer.toBinaryString(b>>>10));

}

}

/* Output:

11111111111111111111111111111111

1111111111111111111111

1111111111111111111111111111111111111111111111111111111

111111111

111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

11111111111111111111111111111111

1111111111111111111111

*/

In the last shift, the resulting value is not assigned back into b, but is

printed directly, so the correct behavior occurs.

Here’s an example that exercises all the operators involving bits:

// operators/BitManipulation.java



// Using the bitwise operators

import java.util.*;

public class BitManipulation {

public static void main(String[] args) {

Random rand = new Random(47);

int i = rand.nextInt();

int j = rand.nextInt();

printBinaryInt("-1", -1);

printBinaryInt("+1", +1);

int maxpos = 2147483647;

printBinaryInt("maxpos", maxpos);

int maxneg = -2147483648;

printBinaryInt("maxneg", maxneg);

printBinaryInt("i", i);

printBinaryInt("~i", ~i);

printBinaryInt("-i", -i);

printBinaryInt("j", j);

printBinaryInt("i & j", i & j);

printBinaryInt("i | j", i | j);

printBinaryInt("i ^ j", i ^ j);



printBinaryInt("i << 5", i << 5);

printBinaryInt("i >> 5", i >> 5);

printBinaryInt("(~i) >> 5", (~i) >> 5);

printBinaryInt("i >>> 5", i >>> 5);

printBinaryInt("(~i) >>> 5", (~i) >>> 5);

long l = rand.nextLong();

long m = rand.nextLong();

printBinaryLong("-1L", -1L);

printBinaryLong("+1L", +1L);

long ll = 9223372036854775807L;

printBinaryLong("maxpos", ll);

long lln = -9223372036854775808L;

printBinaryLong("maxneg", lln);

printBinaryLong("l", l);

printBinaryLong("~l", ~l);

printBinaryLong("-l", -l);

printBinaryLong("m", m);

printBinaryLong("l & m", l & m);

printBinaryLong("l | m", l | m);

printBinaryLong("l ^ m", l ^ m);



printBinaryLong("l << 5", l << 5);

printBinaryLong("l >> 5", l >> 5);

printBinaryLong("(~l) >> 5", (~l) >> 5);

printBinaryLong("l >>> 5", l >>> 5);

printBinaryLong("(~l) >>> 5", (~l) >>> 5);

}

static void printBinaryInt(String s, int i) {

System.out.println(

s + ", int: " + i + ", binary:\n " +

Integer.toBinaryString(i));

}

static void printBinaryLong(String s, long l) {

System.out.println(

s + ", long: " + l + ", binary:\n " +

Long.toBinaryString(l));

}

}

/* Output: (First 32 Lines)

-1, int: -1, binary:

11111111111111111111111111111111



+1, int: 1, binary:

1

maxpos, int: 2147483647, binary:

1111111111111111111111111111111

maxneg, int: -2147483648, binary:

10000000000000000000000000000000

i, int: -1172028779, binary:

10111010001001000100001010010101

~i, int: 1172028778, binary:

1000101110110111011110101101010

-i, int: 1172028779, binary:

1000101110110111011110101101011

j, int: 1717241110, binary:

1100110010110110000010100010110

i & j, int: 570425364, binary:

100010000000000000000000010100

i | j, int: -25213033, binary:

11111110011111110100011110010111

i ^ j, int: -595638397, binary:

11011100011111110100011110000011



i << 5, int: 1149784736, binary:

1000100100010000101001010100000

i >> 5, int: -36625900, binary:

11111101110100010010001000010100

(~i) >> 5, int: 36625899, binary:

10001011101101110111101011

i >>> 5, int: 97591828, binary:

101110100010010001000010100

(~i) >>> 5, int: 36625899, binary:

10001011101101110111101011

...

*/

The two methods at the end, printBinaryInt() and

printBinaryLong(), take an int or a long, respectively, and

display it in binary format along with a descriptive String. As well as

demonstrating the effect of all the bitwise operators for int and

long, this example also shows the minimum, maximum, +1, and -1

values for int and long so you see what they look like. Note that the

high bit represents the sign: 0 means positive and 1 means negative.

The output for the int portion is displayed above.



The binary representation of the numbers is called signed twos

complement.

Ternary if-else

Operator

The ternary operator, also called the conditional operator, is unusual

because it has three operands. It is truly an operator because it

produces a value, unlike the ordinary if-else statement that you’ll

see in the next section of this chapter. The expression is of the form:

boolean-exp ? value0 : value1

If boolean-exp evaluates to true, value0 is evaluated, and its result becomes
the value produced by the operator. If boolean-exp is false,

value1 is evaluated and its result becomes the value produced by the

operator.

You can also use an ordinary if-else statement (described later),

but the ternary operator is much terser. Although C (where this

operator originated) prides itself on being a terse language, and the



ternary operator might have been introduced partly for efficiency, be

somewhat wary of using it on an everyday basis—it’s easy to produce

unreadable code.

The ternary operator is different from if-else because it produces a

value. Here’s an example comparing the two:

// operators/TernaryIfElse.java

public class TernaryIfElse {

static int ternary(int i) {

return i < 10 ? i * 100 : i * 10;

}

static int standardIfElse(int i) {

if(i < 10)

return i * 100;

else

return i * 10;

}



public static void main(String[] args) {

System.out.println(ternary(9));

System.out.println(ternary(10));

System.out.println(standardIfElse(9));

System.out.println(standardIfElse(10));

}

}

/* Output:

900

100

900

100

*/

The code in ternary() is more compact than what you’d write

without the ternary operator, in standardIfElse(). However,

standardIfElse() is easier to understand, and doesn’t require a

lot more typing. Ponder your reasons when choosing the ternary

operator—it’s primarily warranted when you’re setting a variable to

one of two values.

String Operator + and



+=

There’s one special usage of an operator in Java: The + and +=

operators can concatenate Strings, as you’ve already seen. It seems

a natural use of these operators even though it doesn’t fit with the

traditional way they are used.

This capability seemed like a good idea in C++, so operator

overloading was added to C++ to allow the C++ programmer to add

meanings to almost any operator. Unfortunately, operator overloading

combined with some of the other restrictions in C++ turns out to be a

fairly complicated feature for programmers to design into their

classes. Although operator overloading would have been much simpler

to implement in Java than it was in C++ (as demonstrated by the C#

language, which does have straightforward operator overloading), this

feature was still considered too complex, so Java programmers cannot

implement their own overloaded operators like C++ and C#

programmers can.

If an expression begins with a String, all operands that follow must

be Strings (remember that the compiler automatically turns a

double-quoted sequence of characters into a String):

// operators/StringOperators.java



public class StringOperators {

public static void main(String[] args) {

int x = 0, y = 1, z = 2;

String s = "x, y, z ";

System.out.println(s + x + y + z);

// Converts x to a String:

System.out.println(x + " " + s);

s += "(summed) = "; // Concatenation operator

System.out.println(s + (x + y + z));

// Shorthand for Integer.toString():

System.out.println("" + x);

}

}

/* Output:

x, y, z 012

0 x, y, z

x, y, z (summed) = 3

0

*/

Note that the output from the first print statement is o12 instead of



just 3, which you’d get if it was summing the integers. This is because

the Java compiler converts x, y, and z into their String

representations and concatenates those Strings, instead of adding

them together first. The second print statement converts the leading

variable into a String, so the String conversion does not depend

on what comes first. Finally, you see the += operator to append a

String to s, and parentheses to control the order of evaluation of the

expression so the ints are actually summed before they are displayed.

Notice the last example in main(): you sometimes see an empty

String followed by a + and a primitive as a way to perform the

conversion without calling the more cumbersome explicit method

(Integer.toString(), here).

Common Pitfalls When

Using Operators

One of the pitfalls when using operators is attempting to leave out the

parentheses when you are even the least bit uncertain about how an



expression will evaluate. This is still true in Java.

An extremely common error in C and C++ looks like this:

while(x = y) {

// ...

}

The programmer was clearly trying to test for equivalence (==) rather

than do an assignment. In C and C++ the result of this assignment will

always be true if y is nonzero, and you’ll probably get an infinite

loop. In Java, the result of this expression is not a boolean, but the

compiler expects a boolean and won’t convert from an int, so it

will conveniently give you a compile-time error and catch the problem

before you ever try to run the program. So the pitfall never happens in

Java. (The only time you won’t get a compile-time error is when x and

y are boolean, in which case x = y is a legal expression, and in the

preceding example, probably an error.)

A similar problem in C and C++ is using bitwise AND and OR instead



of the logical versions. Bitwise AND and OR use one of the characters

(& or |) while logical AND and OR use two (&& and ||). Just as with

= and ==, it’s easy to type just one character instead of two. In Java,

the compiler again prevents this, because it won’t let you cavalierly use

one type where it doesn’t belong.

Casting Operators

The word cast is used in the sense of “casting into a mold.” Java will

automatically change one type of data into another when appropriate.

For instance, if you assign an integral value to a floating point variable,

the compiler will automatically convert the int to a float. Casting

makes this type conversion explicit, or forces it when it wouldn’t

normally happen.

To perform a cast, put the desired data type inside parentheses to the

left of any value, as seen here:

// operators/Casting.java

public class Casting {

public static void main(String[] args) {

int i = 200;

long lng = (long)i;

lng = i; // "Widening," so a cast is not required



long lng2 = (long)200;

lng2 = 200;

// A "narrowing conversion":

i = (int)lng2; // Cast required

}

}

Thus, you can cast a numeric value as well as a variable. Casts may be

superfluous; for example, the compiler will automatically promote an

int value to a long when necessary. However, you are allowed to use

superfluous casts to make a point or to clarify your code. In other

situations, a cast might be essential just to get the code to compile.

In C and C++, casting can cause some headaches. In Java, casting is

safe, with the exception that when you perform a so-called narrowing

conversion (that is, when you go from a data type that can hold more

information to one that doesn’t hold as much), you run the risk of

losing information. Here the compiler forces you to use a cast, in effect

saying, “This can be a dangerous thing to do—if you want me to do it



anyway you must make the cast explicit.” With a widening conversion

an explicit cast is not needed, because the new type will more than

hold the information from the old type so no information is ever lost.

Java can cast any primitive type to any other primitive type, except for

boolean, which doesn’t allow any casting at all. Class types do not

allow casting. To convert one to the other, there must be special

methods. (You’ll find out later that objects can be cast within a family

of types; an Oak can be cast to a Tree and vice versa, but not to a

foreign type such as a Rock.)

Truncation and Rounding

When you are performing narrowing conversions, you must pay

attention to issues of truncation and rounding. For example, if you

cast from a floating point value to an integral value, what does Java

do? For example, if you cast the value 29.7 to an int, is the resulting

value 30 or 29? The answer is seen here:

// operators/CastingNumbers.java

// What happens when you cast a float

// or double to an integral value?

public class CastingNumbers {

public static void main(String[] args) {



double above = 0.7, below = 0.4;

float fabove = 0.7f, fbelow = 0.4f;

System.out.println("(int)above: " + (int)above);

System.out.println("(int)below: " + (int)below);

System.out.println("(int)fabove: " + (int)fabove);

System.out.println("(int)fbelow: " + (int)fbelow);

}

}

/* Output:

(int)above: 0

(int)below: 0

(int)fabove: 0

(int)fbelow: 0

*/

So the answer is that casting from a float or double to an integral

value always truncates the number. If instead you want the result

rounded, use the round() methods in java.lang.Math:

// operators/RoundingNumbers.java

// Rounding floats and doubles

public class RoundingNumbers {



public static void main(String[] args) {

double above = 0.7, below = 0.4;

float fabove = 0.7f, fbelow = 0.4f;

System.out.println(

"Math.round(above): " + Math.round(above));

System.out.println(

"Math.round(below): " + Math.round(below));

System.out.println(

"Math.round(fabove): " + Math.round(fabove));

System.out.println(

"Math.round(fbelow): " + Math.round(fbelow));

}

}



/* Output:

Math.round(above): 1

Math.round(below): 0

Math.round(fabove): 1

Math.round(fbelow): 0

*/

Since round() is part of java.lang, you don’t need an extra

import to use it.

Promotion

You’ll discover that if you perform any mathematical or bitwise

operations on primitive data types smaller than an int (that is, char,

byte, or short), those values are promoted to int before

performing the operations, and the resulting value is of type int. To

assign back into the smaller type, you use a cast. (And, since you’re

assigning back into a smaller type, you might be losing information.)

In general, the largest data type in an expression is the one that

determines the size of the result of that expression. If you multiply a

float and a double, the result is double. If you add an int and a long, the
result is long.

Java Has No “sizeof”

In C and C++, the sizeof() operator tells you the number of bytes



allocated for data items. The most compelling reason for sizeof()

in C and C++ is for portability. Different data types might be different

sizes on different machines, so the programmer must discover how big

those types are when performing operations that are sensitive to size.

For example, one computer might store integers in 32 bits, whereas

another might store integers as 16 bits. Programs could store larger

values in integers on the first machine. As you might imagine,

portability is a huge headache for C and C++ programmers.

Java does not need a sizeof() operator for this purpose, because all

the data types are the same size on all machines. You do not need to

think about portability on this level—it is designed into the language.

A Compendium of

Operators

The following example shows which primitive data types can be used

with particular operators. Basically, it is the same example repeated

over and over, but using different primitive data types. The file will



compile without error because the lines that fail are commented out

with a //-.

// operators/AllOps.java

// Tests all operators on all primitive data types

// to show which ones are accepted by the Java compiler

public class AllOps {

// To accept the results of a boolean test:

void f(boolean b) {}

void boolTest(boolean x, boolean y) {

// Arithmetic operators:

//- x = x * y;

//- x = x / y;

//- x = x % y;

//- x = x + y;

//- x = x - y;

//- x++;

//- x--;

//- x = +y;

//- x = -y;

// Relational and logical:



//- f(x > y);

//- f(x >= y);

//- f(x < y);

//- f(x <= y);

f(x == y);

f(x != y);

f(!y);

x = x && y;

x = x || y;

// Bitwise operators:

//- x = ~y;

x = x & y;

x = x | y;

x = x ^ y;

//- x = x << 1;

//- x = x >> 1;

//- x = x >>> 1;

// Compound assignment:

//- x += y;

//- x -= y;



//- x *= y;

//- x /= y;

//- x %= y;

//- x <<= 1;

//- x >>= 1;

//- x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:

//- char c = (char)x;

//- byte b = (byte)x;

//- short s = (short)x;

//- int i = (int)x;

//- long l = (long)x;

//- float f = (float)x;

//- double d = (double)x;

}

void charTest(char x, char y) {

// Arithmetic operators:



x = (char)(x * y);

x = (char)(x / y);

x = (char)(x % y);

x = (char)(x + y);

x = (char)(x - y);

x++;

x--;

x = (char) + y;

x = (char) - y;

// Relational and logical:

f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:



x= (char)~y;

x = (char)(x & y);

x = (char)(x | y);

x = (char)(x ^ y);

x = (char)(x << 1);

x = (char)(x >> 1);

x = (char)(x >>> 1);

// Compound assignment:

x += y;

x -= y;

x *= y;

x /= y;

x %= y;

x <<= 1;

x >>= 1;

x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:



//- boolean bl = (boolean)x;

byte b = (byte)x;

short s = (short)x;

int i = (int)x;

long l = (long)x;

float f = (float)x;

double d = (double)x;

}

void byteTest(byte x, byte y) {

// Arithmetic operators:

x = (byte)(x* y);

x = (byte)(x / y);

x = (byte)(x % y);

x = (byte)(x + y);

x = (byte)(x - y);

x++;

x--;

x = (byte) + y;

x = (byte) - y;

// Relational and logical:



f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:

x = (byte)~y;

x = (byte)(x & y);

x = (byte)(x | y);

x = (byte)(x ^ y);

x = (byte)(x << 1);

x = (byte)(x >> 1);

x = (byte)(x >>> 1);

// Compound assignment:

x += y;

x -= y;



x *= y;

x /= y;

x %= y;

x <<= 1;

x >>= 1;

x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:

//- boolean bl = (boolean)x;

char c = (char)x;

short s = (short)x;

int i = (int)x;

long l = (long)x;

float f = (float)x;

double d = (double)x;

}

void shortTest(short x, short y) {

// Arithmetic operators:



x = (short)(x * y);

x = (short)(x / y);

x = (short)(x % y);

x = (short)(x + y);

x = (short)(x - y);

x++;

x--;

x = (short) + y;

x = (short) - y;

// Relational and logical:

f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:



x = (short) ~ y;

x = (short)(x & y);

x = (short)(x | y);

x = (short)(x ^ y);

x = (short)(x << 1);

x = (short)(x >> 1);

x = (short)(x >>> 1);

// Compound assignment:

x += y;

x -= y;

x *= y;

x /= y;

x %= y;

x <<= 1;

x >>= 1;

x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:



//- boolean bl = (boolean)x;

char c = (char)x;

byte b = (byte)x;

int i = (int)x;

long l = (long)x;

float f = (float)x;

double d = (double)x;

}

void intTest(int x, int y) {

// Arithmetic operators:

x = x * y;

x = x / y;

x = x % y;

x = x + y;

x = x - y;

x++;

x--;

x = +y;

x = -y;

// Relational and logical:



f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:

x = ~y;

x = x & y;

x = x | y;

x = x ^ y;

x = x << 1;

x = x >> 1;

x = x >>> 1;

// Compound assignment:

x += y;

x -= y;



x *= y;

x /= y;

x %= y;

x <<= 1;

x >>= 1;

x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:

//- boolean bl = (boolean)x;

char c = (char)x;

byte b = (byte)x;

short s = (short)x;

long l = (long)x;

float f = (float)x;

double d = (double)x;

}

void longTest(long x, long y) {

// Arithmetic operators:



x = x * y;

x = x / y;

x = x % y;

x = x + y;

x = x - y;

x++;

x--;

x = +y;

x = -y;

// Relational and logical:

f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:



x = ~y;

x = x & y;

x = x | y;

x = x ^ y;

x = x << 1;

x = x >> 1;

x = x >>> 1;

// Compound assignment:

x += y;

x -= y;

x *= y;

x /= y;

x %= y;

x <<= 1;

x >>= 1;

x >>>= 1;

x &= y;

x ^= y;

x |= y;

// Casting:



//- boolean bl = (boolean)x;

char c = (char)x;

byte b = (byte)x;

short s = (short)x;

int i = (int)x;

float f = (float)x;

double d = (double)x;

}

void floatTest(float x, float y) {

// Arithmetic operators:

x = x * y;

x = x / y;

x = x % y;

x = x + y;

x = x - y;

x++;

x--;

x = +y;

x = -y;

// Relational and logical:



f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);

//- f(x || y);

// Bitwise operators:

//- x = ~y;

//- x = x & y;

//- x = x | y;

//- x = x ^ y;

//- x = x << 1;

//- x = x >> 1;

//- x = x >>> 1;

// Compound assignment:

x += y;

x -= y;



x *= y;

x /= y;

x %= y;

//- x <<= 1;

//- x >>= 1;

//- x >>>= 1;

//- x &= y;

//- x ^= y;

//- x |= y;

// Casting:

//- boolean bl = (boolean)x;

char c = (char)x;

byte b = (byte)x;

short s = (short)x;

int i = (int)x;

long l = (long)x;

double d = (double)x;

}

void doubleTest(double x, double y) {

// Arithmetic operators:



x = x * y;

x = x / y;

x = x % y;

x = x + y;

x = x - y;

x++;

x--;

x = +y;

x = -y;

// Relational and logical:

f(x > y);

f(x >= y);

f(x < y);

f(x <= y);

f(x == y);

f(x != y);

//- f(!x);

//- f(x && y);



//- f(x || y);

// Bitwise operators:

//- x = ~y;

//- x = x & y;

//- x = x | y;

//- x = x ^ y;

//- x = x << 1;

//- x = x >> 1;

//- x = x >>> 1;

// Compound assignment:

x += y;

x -= y;

x *= y;

x /= y;

x %= y;

//- x <<= 1;

//- x >>= 1;

//- x >>>= 1;

//- x &= y;

//- x ^= y;



//- x |= y;

// Casting:

//- boolean bl = (boolean)x;

char c = (char)x;

byte b = (byte)x;

short s = (short)x;

int i = (int)x;

long l = (long)x;

float f = (float)x;

}

}

Note that boolean is limited. You can assign to it the values true

and false, and you can test it for truth or falsehood, but you cannot

add Booleans or perform any other type of operation on them.

In char, byte, and short, you see the effect of promotion with the

arithmetic operators. Each arithmetic operation on any of those types

produces an int result, which must be explicitly cast back to the

original type (a narrowing conversion that might lose information) to

assign back to that type. With int values, however, you do not need a

cast, because everything is already an int. Don’t be lulled into



thinking everything is safe, though. If you multiply two ints that are

big enough, you’ll overflow the result. The following example

demonstrates this:

// operators/Overflow.java

// Surprise! Java lets you overflow

public class Overflow {

public static void main(String[] args) {

int big = Integer.MAX_VALUE;

System.out.println("big = " + big);

int bigger = big * 4;

System.out.println("bigger = " + bigger);

}

}

/* Output:

big = 2147483647

bigger = -4

*/

You get no errors or warnings from the compiler, and no exceptions at

run time. Java is good, but it’s not that good.

Compound assignments do not require casts for char, byte, or



short, even though they are performing promotions that have the

same results as the direct arithmetic operations. On the other hand,

the lack of a cast certainly simplifies the code.

Except for boolean, any primitive type can be cast to any other

primitive type. Again, you must be aware of the effect of a narrowing

conversion when casting to a smaller type; otherwise, you might

unknowingly lose information during the cast.

Summary

If you’ve had experience with any languages that use C-like syntax, you

see that the operators in Java are so similar there is virtually no

learning curve. If you found this chapter challenging, make sure you

view the multimedia presentation Thinking in C, freely available at

www.OnJava8.com.

1. As an undergraduate, I attended Pomona College for two years,

where the number 47 was considered a “magic number.” See the

Wikipedia article.↩

http://www.OnJava8.com
https://en.wikipedia.org/wiki/47_(number)
https://en.wikipedia.org/wiki/47_(number)


2. John Kirkham writes, “I started computing in 1962 using

FORTRAN II on an IBM 1620. At that time, and throughout the

1960s and into the 1970s, FORTRAN was an all uppercase

language. This probably started because many of the early input

devices were old teletype units that used 5 bit Baudot code, which

had no lowercase capability. The E in the exponential notation

was also always uppercase and was never confused with the

natural logarithm base e, which is always lowercase. The E simply

stood for exponential, which was for the base of the number

system used—usually 10. At the time octal was also widely used by

programmers. Although I never saw it used, if I had seen an octal

number in exponential notation I would have considered it to be

base 8. The first time I remember seeing an exponential using a

lowercase e was in the late 1970s and I also found it confusing.

The problem arose as lowercase crept into FORTRAN, not at its

beginning. We actually had functions to use if you really wanted

to use the natural logarithm base, but they were all uppercase.” ↩



Control Flow

A program manipulates its world and

makes choices. In Java you make choices

with execution control statements.

Java uses all of C’s execution control statements, so if you’ve

programmed with C or C++, most of what you see is familiar. Most

procedural programming languages have some kind of control

statements, and there is often overlap among languages. In Java, the

keywords include if-else, while, do-while, for, return, break, and a
selection statement called switch. Java does not,

however, support the much-maligned goto (which can still be the

most expedient way to solve certain types of problems). You can still

do a goto-like jump, but it is much more constrained than goto in

other languages.

true and false

All conditional statements use the truth or falsehood of a conditional



expression to determine the execution path. An example of a

conditional expression is a == b. This uses the conditional operator

== to see if the value of a is equivalent to the value of b. The

expression returns true or false. If you display the result of a

conditional expression, it produces the strings “true” and “false”

representing the boolean values:

// control/TrueFalse.java

public class TrueFalse {

public static void main(String[] args) {

System.out.println(1 == 1);

System.out.println(1 == 2);

}

}

/* Output:

true

false



*/

Any of the relational operators you’ve seen in the previous chapter can

produce a conditional statement. Note that Java doesn’t allow you to

use a number as a boolean, even though it’s allowed in C and C++

(where truth is nonzero and falsehood is zero). To use a non-

boolean in a boolean test, such as if(a), you must first convert

it to a boolean value by using a conditional expression, such as

if(a != 0).

if-else

The if-else statement is the most basic way to control program

flow. The else is optional, so you can use if in two forms:

if(Boolean-expression)

statement

or

if(Boolean-expression)

statement

else

statement

The Boolean-expression must produce a boolean result. The

statement is either a simple statement terminated by a semicolon, or a



compound statement: a group of simple statements enclosed in braces.

Whenever the word “statement” is used, it always implies that the

statement can be simple or compound.

As an example of if-else, here is a test() method that tells

whether a guess is above, below, or equivalent to a target number:

// control/IfElse.java

public class IfElse {

static int result = 0;

static void test(int testval, int target) {

if(testval > target)

result = +1;

else if(testval < target) // [1]

result = -1;

else

result = 0; // Match

}

public static void main(String[] args) {

test(10, 5);

System.out.println(result);

test(5, 10);



System.out.println(result);

test(5, 5);

System.out.println(result);

}

}

/* Output:

1

-1

0

*/

[1] “else if” is not a new keyword, but just an else followed

by a new if statement.

Although Java, like C and C++ before it, is a “free-form” language, it is

conventional to indent the body of a control flow statement so the

reader can easily determine where it begins and ends.

Iteration Statements



Looping is controlled by while, do-while and for, which are

sometimes called iteration statements. Such statements repeat until

the controlling Boolean-expression evaluates to false. The form for

a while loop is:

while(Boolean-expression)

statement

The Boolean-expression is evaluated once at the beginning of the loop

and again before each further iteration of the statement.

This generates random numbers until a particular condition is met:

// control/WhileTest.java

// Demonstrates the while loop

public class WhileTest {

static boolean condition() {

boolean result = Math.random() < 0.99;

System.out.print(result + ", ");

return result;

}

public static void main(String[] args) {

while(condition())

System.out.println("Inside 'while'");



System.out.println("Exited 'while'");

}

}

/* Output: (First and Last 5 Lines)

true, Inside 'while'

true, Inside 'while'

true, Inside 'while'

true, Inside 'while'

true, Inside 'while'

...________...________...________...________...

true, Inside 'while'

true, Inside 'while'

true, Inside 'while'

true, Inside 'while'

false, Exited 'while'

*/

The condition() method uses the static method random() in



the Math library, which generates a double value between 0 and 1

(It includes 0, but not 1). The result value comes from the

comparison operator < , which produces a boolean result. The

conditional expression for the while says: “repeat the statements in

the body as long as condition() returns true.”

do-while

The form for do-while is

do

statement

while(Boolean-expression);

The sole difference between while and do-while is that the

statement of the do-while always executes at least once, even if the

expression evaluates to false the first time. In a while, if the

conditional is false the first time the statement never executes. In

practice, do-while is less common than while.

for

A for loop is perhaps the most commonly used form of iteration. This



loop performs initialization before the first iteration. Then it performs

conditional testing and, at the end of each iteration, some form of

“stepping.” The form of the for loop is:

for(initialization; Boolean-expression; step)

statement

Any of the expressions initialization, Boolean-expression or step can be
empty. The expression is tested before each iteration, and as soon

as it evaluates to false, execution will continue at the line following

the for statement. At the end of each loop, the step executes.

for loops are often used for “counting” tasks:

// control/ListCharacters.java

// List all the lowercase ASCII letters

public class ListCharacters {

public static void main(String[] args) {

for(char c = 0; c < 128; c++)

if(Character.isLowerCase(c))

System.out.println("value: " + (int)c +

" character: " + c);

}

}

/* Output: (First 10 Lines)



value: 97 character: a

value: 98 character: b

value: 99 character: c

value: 100 character: d

value: 101 character: e

value: 102 character: f

value: 103 character: g

value: 104 character: h

value: 105 character: i

value: 106 character: j

...

*/

Note that the variable c is defined when it is used, inside the control

expression of the for loop, rather than at the beginning of main().

The scope of c is the statement controlled by the for.

Traditional procedural languages like C require that all variables be

defined at the beginning of a block. When the compiler creates a block,



it can allocate space for those variables. In Java and C++, you can

spread your variable declarations throughout the block, defining them

when you need them. This allows a more natural coding style and

makes code easier to understand.1

This program uses the java.lang.Character “wrapper” class,

which not only wraps the primitive char type in an object, but also

provides other utilities. Here, static isLowerCase() detects

whether the character in question is a lowercase letter.

The Comma Operator

The comma operator (not the comma separator, used to separate

definitions and method arguments) has only one use in Java: in the

control expression of a for loop. In both the initialization and step

portions of the control expression, you can have a number of

statements separated by commas, and those statements are evaluated

sequentially.

Using the comma operator, you can define multiple variables within a



for statement, but they must be of the same type:

// control/CommaOperator.java

public class CommaOperator {

public static void main(String[] args) {

for(int i = 1, j = i + 10; i < 5; i++, j = i * 2) {

System.out.println("i = " + i + " j = " + j);

}

}

}

/* Output:

i = 1 j = 11

i = 2 j = 4

i = 3 j = 6

i = 4 j = 8

*/

The int definition in the for statement covers both i and j. The initialization
portion can have any number of definitions of one type.

The ability to define variables in a control expression is limited to the

for loop. You cannot use this approach with any of the other selection

or iteration statements.

In both the initialization and step portions, the statements are



evaluated in sequential order.

For-in Syntax

Java 5 introduced a more succinct for syntax, for use with arrays and

collections (you’ll learn more about these in the Arrays and Collections

chapters). This is sometimes called the enhanced for, and much of the

documentation you’ll see call this the for-each syntax, but Java 8 has

added forEach() which is heavily used. This confuses the

terminology, and so I take some license and instead call it for-in (in

Python, for example, you actually say for x in sequence, so

there is reasonable precedent). Just keep in mind you might see it

termed differently elsewhere.

The for-in produces each item for you, automatically, so you don’t

create an int to count through a sequence of items. For example,

suppose you have an array of float and you’d like to select each

element in that array:

// control/ForInFloat.java

import java.util.*;

public class ForInFloat {

public static void main(String[] args) {

Random rand = new Random(47);



float[] f = new float[10];

for(int i = 0; i < 10; i++)

f[i] = rand.nextFloat();

for(float x : f)

System.out.println(x);

}

}

/* Output:

0.72711575

0.39982635

0.5309454

0.0534122

0.16020656

0.57799757

0.18847865

0.4170137

0.51660204

0.73734957

*/

The array is populated using the old for loop, because it must be



accessed with an index. You see the for-in syntax in the line:

for(float x : f) {

This defines a variable x of type float and sequentially assigns each element
of f to x.

Any method that returns an array is a for-in candidate. For example,

the String class has a method toCharArray() that returns an

array of char, so you can easily iterate through the characters in a

String:

// control/ForInString.java

public class ForInString {

public static void main(String[] args) {

for(char c : "An African Swallow".toCharArray())

System.out.print(c + " ");

}

}

/* Output:

A n A f r i c a n S w a l l o w

*/

As you’ll see in the Collections chapter, for-in also works with any object
that is Iterable.

Many for statements involve stepping through a sequence of integral



values, like this:

for(int i = 0; i < 100; i++)

For these, the for-in syntax won’t work unless you create an array of

int first. To simplify this task, I’ve created a method called range()

in onjava.Range that automatically generates the appropriate

array.

The Implementation Hiding chapter introduces static import s.

However, you don’t need to know those details to begin using this

library. You see the static import syntax in the import line

here:

// control/ForInInt.java

import static onjava.Range.*;

public class ForInInt {

public static void main(String[] args) {

for(int i : range(10)) // 0..9

System.out.print(i + " ");

System.out.println();

for(int i : range(5, 10)) // 5..9

System.out.print(i + " ");

System.out.println();



for(int i : range(5, 20, 3)) // 5..20 step 3

System.out.print(i + " ");

System.out.println();

for(int i : range(20, 5, -3)) // Count down

System.out.print(i + " ");

System.out.println();

}

}

/* Output:

0 1 2 3 4 5 6 7 8 9

5 6 7 8 9

5 8 11 14 17

20 17 14 11 8

*/

The range() method is overloaded, which means the same method

name can be used with different argument lists (you’ll learn about

overloading soon). The first overloaded form of range() just starts

at zero and produces values up to but not including the top end of the

range. The second form starts at the first value and goes until one less

than the second, and the third form has a step value so it increases by



that value. The fourth form shows you can also count down. range()

is a simple version of what’s called a generator, which you’ll see later

in the book.

range() allows for-in syntax in more places, and thus arguably

increases readability.

Notice that System.out.print() does not emit a newline, so you

can output a line in pieces.

The for-in syntax doesn’t just save time when writing code. More

importantly, it is far easier to read and says what you are trying to do

(get each element of the array) rather than giving the details of how

you are doing it (“I’m creating this index so I can use it to select each

of the array elements.”). The for-in syntax is preferred in this book.

return

Several keywords represent unconditional branching, which means

the branch happens without any test. These include return, break,

continue, and a way to jump to a labeled statement, similar to



goto in other languages.

The return keyword has two purposes: It specifies what value a

method will return (if it doesn’t have a void return value) and it

causes the current method to exit, returning that value. The test()

method from IfElse.java can be rewritten to take advantage of

this:

// control/TestWithReturn.java

public class TestWithReturn {

static int test(int testval, int target) {

if(testval > target)

return +1;

if(testval < target)

return -1;

return 0; // Match

}

public static void main(String[] args) {



System.out.println(test(10, 5));

System.out.println(test(5, 10));

System.out.println(test(5, 5));

}

}

/* Output:

1

-1

0

*/

There’s no need for else, because the method will not continue after

executing a return.

If you do not have a return statement in a method that returns

void, there’s an implicit return at the end of that method, so it’s

not always necessary to include a return statement. However, if your

method states it will return anything other than void, you must

ensure every code path will return a value.

break and continue

You can also control the flow of the loop inside the body of any of the

iteration statements by using break and continue. break quits



the loop without executing the rest of the statements in the loop.

continue stops the execution of the current iteration and goes back

to the beginning of the loop to begin the next iteration.

Here you see break and continue within for and while loops:

// control/BreakAndContinue.java

// Break and continue keywords

import static onjava.Range.*;

public class BreakAndContinue {

public static void main(String[] args) {

for(int i = 0; i < 100; i++) { // [1]

if(i == 74) break; // Out of for loop

if(i % 9 != 0) continue; // Next iteration

System.out.print(i + " ");

}

System.out.println();

// Using for-in:

for(int i : range(100)) { // [2]

if(i == 74) break; // Out of for loop

if(i % 9 != 0) continue; // Next iteration

System.out.print(i + " ");



}

System.out.println();

int i = 0;

// An "infinite loop":

while(true) { // [3]

i++;

int j = i * 27;

if(j == 1269) break; // Out of loop

if(i % 10 != 0) continue; // Top of loop

System.out.print(i + " ");

}

}

}

/* Output:

0 9 18 27 36 45 54 63 72

0 9 18 27 36 45 54 63 72

10 20 30 40

*/

[1] The value of i never gets to 100 because the break statement

breaks out of the loop when i is 74. Normally, you use a break



like this only if you don’t know when the terminating condition

occurs. The continue statement takes execution back to the top

of the iteration loop (thus incrementing i) whenever i is not

evenly divisible by 9. When it is, the value is displayed.

[2] For-in produces the same results.

[3] The “infinite” while loop could continue forever because its

conditional expression is always true, but the break breaks out

of the loop. Notice the continue statement moves control back

to the top of the loop without completing anything after the

continue. Thus, display occurs only when the value of i is

divisible by 10. In the output, the value 0 is shown because 0 %

9 produces 0.

Another form of the infinite loop is for(;;). The compiler treats

both while(true) and for(;;) the same way, so the one you use

is a matter of programming taste.

The Infamous “Goto”



The goto keyword was present in programming languages from the
beginning. Indeed, goto was the genesis of program control in

assembly language: “If condition A, then jump here; otherwise, jump there.”
If you read the assembly code that is ultimately generated by

virtually any compiler, you’ll see that program control contains many

jumps (the Java compiler produces its own “assembly code,” but this

code is run by the Java Virtual Machine rather than directly on a

hardware CPU).

A goto is a jump at the source-code level, and that’s what brought it

into disrepute. If a program will always jump from one point to

another, isn’t there some way to reorganize the code so the flow of

control is not so jumpy? goto fell into true disfavor with the

publication of the famous “Goto considered harmful” paper by Edsger

Dijkstra, and since then goto-bashing is a popular sport, with

advocates of the cast-out keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most

fruitful. The problem is not goto, but the overuse of goto; in rare

situations goto is actually the best way to structure control flow.

Although goto is a reserved word in Java, it is not used in the

language—Java has no goto. However, it does have something that

looks a bit like a jump tied in with the break and continue

https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/Assembly_language


keywords. It’s not a jump but rather a way to break out of an iteration

statement. The reason it’s often thrown in with discussions of goto is

because it uses the same mechanism: a label.

A label is an identifier followed by a colon, like this:

label1:

The only place a label is useful in Java is right before an iteration

statement. And that means right before—it does no good to put any

other statement between the label and the iteration. And the sole

reason to put a label before an iteration is if you’re going to nest

another iteration or a switch (which you’ll learn about shortly)

inside it. That’s because the break and continue keywords will

normally interrupt only the current loop, but when used with a label,

they’ll interrupt the loops up to where the label exists:

label1:

outer-iteration {

inner-iteration {

// ...

break; // [1]

// ...

continue; // [2]



// ...

continue label1; // [3]

// ...

break label1; // [4]

}

}

[1] The break breaks out of the inner iteration and you end up

in the outer iteration.

[2] The continue moves back to the beginning of the inner

iteration.

[3] The continue label1 breaks out of the inner iteration

and the outer iteration, all the way back to label1. Then it does

in fact continue the iteration, but starting at the outer iteration.

[4] The break label1 also breaks all the way out to label1,

but it does not reenter the iteration. It actually does break out of

both iterations.

Labeled break and labeled continue can also be used with for

loops:

// control/LabeledFor.java

// For loops with "labeled break"/"labeled continue."



public class LabeledFor {

public static void main(String[] args) {

int i = 0;

outer: // Can't have statements here

for(; true ;) { // infinite loop

inner: // Can't have statements here

for(; i < 10; i++) {

System.out.println("i = " + i);

if(i == 2) {

System.out.println("continue");

continue;

}

if(i == 3) {

System.out.println("break");

i++; // Otherwise i never

// gets incremented.

break;

}

if(i == 7) {

System.out.println("continue outer");



i++; // Otherwise i never

// gets incremented.

continue outer;

}

if(i == 8) {

System.out.println("break outer");

break outer;

}

for(int k = 0; k < 5; k++) {

if(k == 3) {

System.out.println("continue inner");

continue inner;

}

}

}

}

// Can't break or continue to labels here

}

}

/* Output:



i = 0

continue inner

i = 1

continue inner

i = 2

continue

i = 3

break

i = 4

continue inner

i = 5

continue inner

i = 6

continue inner

i = 7

continue outer

i = 8

break outer

*/

Note that break breaks out of the for loop, and that the increment expression
doesn’t occur until the end of the pass through the for



loop. Since break skips the increment expression, the increment is

performed directly in the case of i == 3. The continue outer

statement in the case of i == 7 also goes to the top of the loop and

also skips the increment, so it too is incremented directly.

Without the break outer statement, there’s no way to get out of

the outer loop from within an inner loop, since break by itself can

only break out of the innermost loop. (The same is true for

continue.)

In cases where breaking out of a loop also exits the method, you can

simply use a return.

This demonstrates labeled break and continue statements with

while loops:

// control/LabeledWhile.java

// "While" with "labeled break" and "labeled continue."

public class LabeledWhile {

public static void main(String[] args) {

int i = 0;

outer:

while(true) {

System.out.println("Outer while loop");



while(true) {

i++;

System.out.println("i = " + i);

if(i == 1) {

System.out.println("continue");

continue;

}

if(i == 3) {

System.out.println("continue outer");

continue outer;

}

if(i == 5) {

System.out.println("break");

break;

}

if(i == 7) {

System.out.println("break outer");

break outer;

}

}



}

}

}

/* Output:

Outer while loop

i = 1

continue

i = 2

i = 3

continue outer

Outer while loop

i = 4

i = 5

break

Outer while loop

i = 6

i = 7

break outer

*/

The same rules hold true for while:



1. A plain continue goes to the top of the innermost loop and

continues.

2. A labeled continue goes to the label and reenters the loop right

after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the loop

denoted by the label.

It’s important to remember that the only reason to use labels in Java is

when you have nested loops and you must break or continue

through more than one nested level.

Labeled break and labeled continue have turned out to be

speculative features (with little or no precedent in preceding

languages) that are relatively unused, so you rarely see them in code.

In Dijkstra’s “Goto considered harmful” paper, what he specifically

objected to was the labels, not the goto. He observed that the number

of bugs seems to increase with the number of labels in a program, 2



and that labels and gotos make programs difficult to analyze. Note

that Java labels don’t suffer from this problem, since they are

constrained in their placement and can’t be used to transfer control in

an ad hoc manner. This is a case where a language feature is made

more valuable by restricting its use.

switch

The switch is sometimes called a selection statement. A switch

selects from among pieces of code based on the value of an integral

expression. Its general form is:

switch(integral-selector) {

case integral-value1 : statement; break;

case integral-value2 : statement; break;

case integral-value3 : statement; break;

case integral-value4 : statement; break;

case integral-value5 : statement; break;

// ...

default: statement;

}

Integral-selector is an expression that produces an integral value. The switch
compares the result of integral-selector to each integral-value. If it finds a
match, the corresponding statement (a single



statement or multiple statements; braces are not required) executes. If

no match occurs, the default statement executes.

Notice in the preceding definition that each case ends with a break.

This jumps to the end of the switch body. The example shows the

conventional way to build a switch statement, but the break is

optional. If it is missing, the code for the following case statements

executes until a break is encountered. Although you don’t usually

want this kind of behavior, it can be useful to an experienced

programmer. Note that the last statement, following the default,

doesn’t have a break because the execution just falls through to

where the break would have taken it anyway. You can put a break

at the end of the default statement with no harm if you considered

it important for style’s sake.

The switch statement is a clean way to implement multiway

selection (i.e., selecting from among a number of different execution

paths), but before Java 7 it only worked with a selector that evaluates

to an integral value, such as int or char. For non-integral types

(except String in Java 7 and beyond), you must use a series of if

statements. At the end of the next chapter, you’ll see that the enum

feature helps ease this restriction, as enums are designed to work



nicely with switch.

Here’s an example that creates letters randomly and determines

whether they’re vowels or consonants:

// control/VowelsAndConsonants.java

// Demonstrates the switch statement

import java.util.*;

public class VowelsAndConsonants {

public static void main(String[] args) {

Random rand = new Random(47);

for(int i = 0; i < 100; i++) {

int c = rand.nextInt(26) + 'a';

System.out.print((char)c + ", " + c + ": ");

switch(c) {

case 'a':

case 'e':

case 'i':

case 'o':

case 'u': System.out.println("vowel");

break;

case 'y':



case 'w': System.out.println("Sometimes vowel");

break;

default: System.out.println("consonant");

}

}

}

}

/* Output: (First 13 Lines)

y, 121: Sometimes vowel

n, 110: consonant

z, 122: consonant

b, 98: consonant

r, 114: consonant

n, 110: consonant

y, 121: Sometimes vowel

g, 103: consonant

c, 99: consonant

f, 102: consonant

o, 111: vowel

w, 119: Sometimes vowel



z, 122: consonant

...

*/

Since Random.nextInt(26) generates a value between 0 and 25,

you need only add an offset of a to produce the lowercase letters. The

single-quoted characters in the case statements also produce integral

values used for comparison.

Notice how the cases can be “stacked” on top of each other to provide

multiple matches for a particular piece of code. It’s essential to put the

break statement at the end of a particular case; otherwise, control

will drop through and continue processing on the next case.

In the statement:

int c = rand.nextInt(26) + 'a';

Random.nextInt() produces a random int value from 0 to 25,

which is added to the value of a. This means a is automatically

converted to an int to perform the addition.



To print c as a character, it must be cast to char; otherwise, you’ll

produce integral output.

Switching on Strings

Java 7 added the ability to switch on Strings as well as integral

values. This example shows both the old way you would choose from a

set of String possibilities, and the new way, using switch:

// control/StringSwitch.java

public class StringSwitch {

public static void main(String[] args) {

String color = "red";

// Old way: using if-then

if("red".equals(color)) {

System.out.println("RED");

} else if("green".equals(color)) {

System.out.println("GREEN");

} else if("blue".equals(color)) {

System.out.println("BLUE");

} else if("yellow".equals(color)) {

System.out.println("YELLOW");

} else {



System.out.println("Unknown");

}

// New way: Strings in switch

switch(color) {

case "red":

System.out.println("RED");

break;

case "green":

System.out.println("GREEN");

break;

case "blue":

System.out.println("BLUE");

break;

case "yellow":

System.out.println("YELLOW");

break;

default:

System.out.println("Unknown");

break;

}



}

}

/* Output:

RED

RED

*/

Once you understand switch, this syntax is a logical extension. The

result is cleaner and easier to understand and maintain.

As a second example of switching on Strings, let’s revisit

Math.random(). Does it produce a value from zero to one, inclusive

or exclusive of the value “1”? In math lingo, is it (0,1), or [0,1], or (0,1]

or [0,1)? (The square bracket means “includes,” whereas the

parenthesis means “doesn’t include.”)

Here’s a test program that might provide the answer. All command-

line arguments are passed as String objects, so we can switch on

the argument to decide what to do. There’s one problem: the user

might not provide any arguments, so indexing into the args array

would cause the program to fail. To fix this, we check the length of

the array and, if it’s zero, we use an empty String, otherwise we

select the first element in the args array:



// control/RandomBounds.java

// Does Math.random() produce 0.0 and 1.0?

// {java RandomBounds lower}

import onjava.*;

public class RandomBounds {

public static void main(String[] args) {

new TimedAbort(3);

switch(args.length == 0 ? "" : args[0]) {

case "lower":

while(Math.random() != 0.0)

; // Keep trying

System.out.println("Produced 0.0!");

break;

case "upper":

while(Math.random() != 1.0)

; // Keep trying

System.out.println("Produced 1.0!");

break;

default:

System.out.println("Usage:");



System.out.println("\tRandomBounds lower");

System.out.println("\tRandomBounds upper");

System.exit(1);

}

}

}

To run the program, you type a command line of either:

java RandomBounds lower

or

java RandomBounds upper

Using the TimedAbort class from the onjava package, the

program aborts after three seconds, so it would appear that

Math.random() never produces either 0.0 or 1.0. But this is where

such an experiment can be deceiving. If you consider the number of

different double fractions between 0 and 1, the likelihood of reaching

any one value experimentally might exceed the lifetime of one



computer, or even one experimenter. It turns out 0.0 is included in the

output of Math.random(), while 1.0 is not. In math lingo, it is [0,1).

You must be careful to analyze your experiments and to understand

their limitations.

Summary

This chapter concludes our exploration of fundamental features that

appear in most programming languages: calculation, operator

precedence, type casting, and selection and iteration. Now you’re

ready to begin taking steps that move you closer to the world of object-

oriented and functional programming. The next chapter will cover the

important issues of initialization and cleanup of objects, followed in

the subsequent chapter by the essential concept of implementation

hiding.

1. In earlier languages, a large number of decisions were based on

making life easier for the compiler writers. You’ll see that in

modern languages, most design decisions make life easier for the

users of the language, although at times there are compromises—

which usually end up becoming regrets on the part of the

language designers.↩

2. Note that this seems a hard assertion to support, and may very



well be an example of the cognitive bias called the correlation-

causation fallacy↩

Housekeeping

“Unsafe” programming is one of the

major culprits that makes programming

expensive.

Two of these safety issues are initialization and cleanup. Many C bugs

occur when the programmer forgets to initialize a variable. This is

especially true with libraries when users don’t know how to initialize a

library component, or even that they must. Cleanup is a special

problem because it’s easy to forget about an element when you’re done

with it, since it no longer concerns you. Thus, the resources used by

that element are retained and you can easily end up running out of

resources (most notably, memory).

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation


C++ introduced the concept of a constructor, a special method

automatically called when an object is created. Java adopted the

constructor, and also has a garbage collector that automatically

releases memory resources when they’re no longer used. This chapter

examines the issues of initialization and cleanup, and their support in

Java.

Guaranteed

Initialization with the

Constructor

You can imagine creating a method called initialize() for every

class you write. The name is a hint it should be called before using the

object. Unfortunately, this means the user must remember to call that

method. In Java, the class designer can guarantee initialization of

every object by writing a constructor. If a class has a constructor, Java

automatically calls that constructor when an object is created, before

users can even get their hands on it. So initialization is guaranteed.

The next challenge is what to name this method. There are two issues.

The first is that any name you use could clash with a name you might

like to use as an element in the class. The second is that because the

compiler is responsible for calling the constructor, it must always



know which method to call. The C++ solution seems the easiest and

most logical, so it’s also used in Java: The name of the constructor is

the name of the class. It makes sense that such a method is called

automatically during initialization.

Here’s a simple class with a constructor:

// housekeeping/SimpleConstructor.java

// Demonstration of a simple constructor

class Rock {

Rock() { // This is the constructor

System.out.print("Rock ");

}

}

public class SimpleConstructor {

public static void main(String[] args) {

for(int i = 0; i < 10; i++)

new Rock();

}

}

/* Output:

Rock Rock Rock Rock Rock Rock Rock Rock Rock Rock



*/

Now, when an object is created:

new Rock();

storage is allocated and the constructor is called. The constructor

guarantees that the object is properly initialized before you can get

your hands on it.

Note that the coding style of making the first letter of all methods

lowercase does not apply to constructors, since the name of the

constructor must match the name of the class exactly.

In C++, a constructor that takes no arguments is called the default

constructor. This term was in use for many years before Java

appeared, but for some reason the Java designers decided to use the

term no-arg constructor, which I found very awkward and

unnecessary, so I resisted and attempted to continue using “default

constructor.” Java 8 has introduced the use of default as a keyword

for method definitions, so I must relent, choke down a bit of bile, and

use no-arg.

Like any method, the constructor can have arguments that specify how

an object is created. The preceding example can easily be changed so

the constructor takes an argument:



// housekeeping/SimpleConstructor2.java

// Constructors can have arguments

class Rock2 {

Rock2(int i) {

System.out.print("Rock " + i + " ");

}

}

public class SimpleConstructor2 {

public static void main(String[] args) {

for(int i = 0; i < 8; i++)

new Rock2(i);

}

}

/* Output:

Rock 0 Rock 1 Rock 2 Rock 3 Rock 4 Rock 5 Rock 6 Rock 7

*/



If a class Tree has a constructor that takes a single integer argument

denoting the height of the tree, you create a Tree object like this:

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, the compiler won’t let you

create a Tree object any other way.

Constructors eliminate an important class of problems and make the

code easier to read. In the preceding code fragment, for example, you

don’t see an explicit call to some initialize() method that is

conceptually separate from creation. In Java, creation and

initialization are unified concepts—you can’t have one without the

other.

The constructor is an unusual type of method because it has no return

value. This is distinctly different from a void return value, where the

method returns nothing but you still have the option to make it return

something else. Constructors return nothing and you don’t have an

option (the new expression does return a reference to the newly

created object, but the constructor itself has no return value). If there

were a return value, and if you could select your own, the compiler

would somehow need to know what to do with that return value.

Method Overloading



Names are an important feature in any programming language. When

you create an object, you give a name to a region of storage. A method

is a name for an action. You refer to all objects, fields, and methods by

using names. Well-chosen names create a system that is easier for

people to understand and change. It’s a lot like writing prose—the goal

is to communicate with your readers.

A problem arises when mapping the concept of nuance in human

language onto a programming language. Often, the same word

expresses a number of different meanings—it’s overloaded. This is

useful, especially when it comes to trivial differences. You say, “Wash

the shirt,” “Wash the car,” and “Wash the dog.” It would be silly to be

forced to say, “shirtWash the shirt,” “carWash the car,” and “dogWash

the dog” just so the listener doesn’t have to make any distinction about

the action performed. Most human languages are redundant, so even

if you miss a few words, you can still determine the meaning. You

don’t need unique identifiers—you can deduce meaning from context.

Most programming languages (C in particular) require a unique

identifier for each method (often called functions in those languages).

So you could not have a function called print() for printing integers

and another called print() for printing floats—each function



requires a unique name.

In Java (and C++), another factor forces the overloading of method

names: the constructor. Because the constructor’s name is

predetermined by the name of the class, there can be only one

constructor name. But how do you create an object in more than one

way? For example, suppose you build a class that can initialize itself in

a standard way or by reading information from a file. You need two

constructors, the no-arg constructor and one that takes a String as

an argument, which is the name of the file from which to initialize the

object. Both are constructors, so they must have the same name—the

name of the class. Thus, method overloading is necessary to allow the

same method name with different argument types. And although

method overloading is essential for constructors, it’s a general

convenience and can be used with any method.

Here’s an example that shows both overloaded constructors and

overloaded methods:

// housekeeping/Overloading.java

// Both constructor and ordinary method overloading

class Tree {

int height;



Tree() {

System.out.println("Planting a seedling");

height = 0;

}

Tree(int initialHeight) {

height = initialHeight;

System.out.println("Creating new Tree that is " +

height + " feet tall");

}

void info() {

System.out.println(

"Tree is " + height + " feet tall");

}

void info(String s) {

System.out.println(

s + ": Tree is " + height + " feet tall");

}

}

public class Overloading {

public static void main(String[] args) {



for(int i = 0; i < 5; i++) {

Tree t = new Tree(i);

t.info();

t.info("overloaded method");

}

// Overloaded constructor:

new Tree();

}

}

/* Output:

Creating new Tree that is 0 feet tall

Tree is 0 feet tall

overloaded method: Tree is 0 feet tall

Creating new Tree that is 1 feet tall

Tree is 1 feet tall

overloaded method: Tree is 1 feet tall

Creating new Tree that is 2 feet tall



Tree is 2 feet tall

overloaded method: Tree is 2 feet tall

Creating new Tree that is 3 feet tall

Tree is 3 feet tall

overloaded method: Tree is 3 feet tall

Creating new Tree that is 4 feet tall

Tree is 4 feet tall

overloaded method: Tree is 4 feet tall

Planting a seedling

*/

A Tree object can be created either as a seedling, with no argument,

or as a plant grown in a nursery, with an existing height. To support

this, there is a no-arg constructor, plus a constructor that takes the

existing height.

You might also want to call the info() method in more than one

way. For example, if you have an extra message you want printed, you

can use info(String). If you have nothing more to say, you just

use info(). It would seem strange to give two separate names to

what is obviously the same concept. With method overloading, you use

the same name for both.



Distinguishing Overloaded

Methods

If methods have the same name, how can Java know which method

you mean? There’s a simple rule: Each overloaded method must take a

unique list of argument types.

If you think about this for a second, it makes sense. How else could a

programmer tell the difference between two methods that have the

same name, other than by the types of their arguments?

Even differences in the ordering of arguments are sufficient to

distinguish two methods, although you don’t normally take this

approach because it produces difficult-to-maintain code:

// housekeeping/OverloadingOrder.java

// Overloading based on the order of the arguments

public class OverloadingOrder {

static void f(String s, int i) {

System.out.println("String: " + s + ", int: " + i);

}



static void f(int i, String s) {

System.out.println("int: " + i + ", String: " + s);

}

public static void main(String[] args) {

f("String first", 11);

f(99, "Int first");

}

}

/* Output:

String: String first, int: 11

int: 99, String: Int first

*/

The two f() methods have identical arguments, but the order is

different, and that’s what makes them distinct.

Overloading with Primitives

A primitive can be automatically promoted from a smaller type to a

larger one, and this can be slightly confusing in combination with

overloading. Here’s a demonstration of what happens when a

primitive is handed to an overloaded method:

// housekeeping/PrimitiveOverloading.java



// Promotion of primitives and overloading

public class PrimitiveOverloading {

void f1(char x) { System.out.print("f1(char) "); }

void f1(byte x) { System.out.print("f1(byte) "); }

void f1(short x) { System.out.print("f1(short) "); }

void f1(int x) { System.out.print("f1(int) "); }

void f1(long x) { System.out.print("f1(long) "); }

void f1(float x) { System.out.print("f1(float) "); }

void f1(double x) { System.out.print("f1(double) "); }

void f2(byte x) { System.out.print("f2(byte) "); }

void f2(short x) { System.out.print("f2(short) "); }

void f2(int x) { System.out.print("f2(int) "); }

void f2(long x) { System.out.print("f2(long) "); }

void f2(float x) { System.out.print("f2(float) "); }

void f2(double x) { System.out.print("f2(double) "); }

void f3(short x) { System.out.print("f3(short) "); }

void f3(int x) { System.out.print("f3(int) "); }

void f3(long x) { System.out.print("f3(long) "); }

void f3(float x) { System.out.print("f3(float) "); }

void f3(double x) { System.out.print("f3(double) "); }



void f4(int x) { System.out.print("f4(int) "); }

void f4(long x) { System.out.print("f4(long) "); }

void f4(float x) { System.out.print("f4(float) "); }

void f4(double x) { System.out.print("f4(double) "); }

void f5(long x) { System.out.print("f5(long) "); }

void f5(float x) { System.out.print("f5(float) "); }

void f5(double x) { System.out.print("f5(double) "); }

void f6(float x) { System.out.print("f6(float) "); }

void f6(double x) { System.out.print("f6(double) "); }

void f7(double x) { System.out.print("f7(double) "); }

void testConstVal() {

System.out.print("5: ");

f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5);

System.out.println();

}

void testChar() {

char x = 'x';

System.out.print("char: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();



}

void testByte() {

byte x = 0;

System.out.print("byte: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

void testShort() {

short x = 0;

System.out.print("short: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

void testInt() {

int x = 0;

System.out.print("int: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

void testLong() {



long x = 0;

System.out.print("long: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

void testFloat() {

float x = 0;

System.out.print("float: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

void testDouble() {

double x = 0;

System.out.print("double: ");

f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

System.out.println();

}

public static void main(String[] args) {

PrimitiveOverloading p =

new PrimitiveOverloading();



p.testConstVal();

p.testChar();

p.testByte();

p.testShort();

p.testInt();

p.testLong();

p.testFloat();

p.testDouble();

}

}

/* Output:

5: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float)

f7(double)

char: f1(char) f2(int) f3(int) f4(int) f5(long)

f6(float) f7(double)

byte: f1(byte) f2(byte) f3(short) f4(int) f5(long)

f6(float) f7(double)

short: f1(short) f2(short) f3(short) f4(int) f5(long)

f6(float) f7(double)

int: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float)



f7(double)

long: f1(long) f2(long) f3(long) f4(long) f5(long)

f6(float) f7(double)

float: f1(float) f2(float) f3(float) f4(float)

f5(float) f6(float) f7(double)

double: f1(double) f2(double) f3(double) f4(double)

f5(double) f6(double) f7(double)

*/

The constant value 5 is treated as an int, so if an overloaded method

is available that takes an int, it is used. In all other cases, if you have

a data type that is smaller than the argument in the method, that data

type is promoted. char produces a slightly different effect, since if it

doesn’t find an exact char match, it is promoted to int.

What happens if your argument is bigger than the argument expected

by the method? An example gives the answer:

// housekeeping/Demotion.java

// Demotion of primitives

public class Demotion {

void f1(double x) {

System.out.println("f1(double)");



}

void f2(float x) { System.out.println("f2(float)"); }

void f3(long x) { System.out.println("f3(long)"); }

void f4(int x) { System.out.println("f4(int)"); }

void f5(short x) { System.out.println("f5(short)"); }

void f6(byte x) { System.out.println("f6(byte)"); }

void f7(char x) { System.out.println("f7(char)"); }

void testDouble() {

double x = 0;

System.out.println("double argument:");

f1(x);

f2((float)x);

f3((long)x);

f4((int)x);

f5((short)x);

f6((byte)x);

f7((char)x);

}

public static void main(String[] args) {

Demotion p = new Demotion();



p.testDouble();

}

}

/* Output:

double argument:

f1(double)

f2(float)

f3(long)

f4(int)

f5(short)

f6(byte)

f7(char)

*/

If your argument is wider than what the method expects, you must



perform a narrowing conversion with a cast. If you don’t do this, the

compiler will issue an error message.

Overloading on Return

Values

It is common to wonder, “Why only class names and method

argument lists? Why not distinguish between methods based on their

return values?” For example, these two methods, which have the same

name and arguments, are easily distinguished from each other:

void f() {}

int f() { return 1; }

This might work fine as long as the compiler could unequivocally

determine the meaning from the context, as in int x = f().

However, you can also call a method and ignore the return value. This

is calling a method for its side effect, since you don’t care about the

return value, but instead want the other effects of the method call. So

if you call the method this way:



f();

how can Java determine which f() should be called? And how could

someone reading the code see it? Because of this sort of problem, you

cannot use return value types to distinguish overloaded methods. To

support new features, Java 8 has added better guessing in some

specialized situations, but in general it doesn’t work.

No-arg Constructors

As mentioned previously, a no-arg constructor is one without

arguments, used to create a “default object.” If you create a class that

has no constructors, the compiler will automatically create a no-arg

constructor for you. For example:

// housekeeping/DefaultConstructor.java

class Bird {}

public class DefaultConstructor {

public static void main(String[] args) {

Bird b = new Bird(); // Default!

}

}

The expression

new Bird()



creates a new object and calls the no-arg constructor, even though one

was not explicitly defined. Without it, you have no method call to build

the object. However, if you define any constructors (with or without

arguments), the compiler will not synthesize one for you:

// housekeeping/NoSynthesis.java

class Bird2 {

Bird2(int i) {}

Bird2(double d) {}

}

public class NoSynthesis {

public static void main(String[] args) {

//- Bird2 b = new Bird2(); // No default

Bird2 b2 = new Bird2(1);

Bird2 b3 = new Bird2(1.0);

}

}

If you say:

new Bird2()



the compiler complains it cannot find a constructor that matches.

When you don’t put in any constructors, it’s as if the compiler says,

“You are bound to need some constructor, so let me make one for

you.” But if you write a constructor, the compiler says, “You’ve written

a constructor so you know what you’re doing; if you didn’t put in a

default it’s because you meant to leave it out.”

The this Keyword

For two objects of the same type called a and b, you might wonder

how you can call a method peel() for both those objects:

// housekeeping/BananaPeel.java

class Banana { void peel(int i) { /* ... */ } }

public class BananaPeel {

public static void main(String[] args) {

Banana a = new Banana(),

b = new Banana();

a.peel(1);



b.peel(2);

}

}

If there’s only one method called peel(), how can that method know

whether it’s called for the object a or b?

The compiler does some undercover work so you can write code this

way. There’s a secret first argument passed to the method peel(),

and that argument is the reference to the object that’s being

manipulated. So the two method calls become something like:

Banana.peel(a, 1);

Banana.peel(b, 2);

This is internal and you can’t write these expressions and get the

compiler to accept them, but it gives you an idea of what’s happening.

Suppose you’re inside a method and you’d like to get the reference to

the current object. However, that reference is passed secretly by the

compiler—it’s not in the argument list. Conveniently, there’s a

keyword: this. The this keyword can be used only inside a non-

static method. When you call a method on an object, this

produces a reference to that object. You can treat the reference just

like any other object reference. If you’re calling a method of your class



from within another method of your class, don’t use this. Simply call

the method. The current this reference is automatically used for the

other method. Thus you can say:

// housekeeping/Apricot.java

public class Apricot {

void pick() { /* ... */ }

void pit() { pick(); /* ... */ }

}

Inside pit(), you could say this.pick() but there’s no need.1

The compiler does it for you automatically. The this keyword is used

only for those special cases where you must explicitly use the reference

to the current object. For example, it’s often used in return

statements for returning the reference to the current object:

// housekeeping/Leaf.java

// Simple use of the "this" keyword

public class Leaf {

int i = 0;

Leaf increment() {

i++;

return this;



}

void print() {

System.out.println("i = " + i);

}

public static void main(String[] args) {

Leaf x = new Leaf();

x.increment().increment().increment().print();

}

}

/* Output:

i = 3

*/

Because increment() returns the reference to the current object via

the this keyword, multiple operations can easily be performed on the

same object.

The this keyword is also useful for passing the current object to

another method:

// housekeeping/PassingThis.java

class Person {

public void eat(Apple apple) {



Apple peeled = apple.getPeeled();

System.out.println("Yummy");

}

}

class Peeler {

static Apple peel(Apple apple) {

// ... remove peel

return apple; // Peeled

}

}

class Apple {

Apple getPeeled() { return Peeler.peel(this); }

}

public class PassingThis {

public static void main(String[] args) {

new Person().eat(new Apple());

}



}

/* Output:

Yummy

*/

Apple calls Peeler.peel(), a foreign utility method to perform

an operation that, for some reason, must be external to Apple

(perhaps the external method can be applied across many different

classes, and you don’t want to repeat the code). To pass itself to the

foreign method, it must use this.

Calling Constructors from

Constructors

When you write several constructors for a class, there are times when

you’d like to call one constructor from another to avoid duplicating

code. You can make such a call by using the this keyword.

Normally, when you say this, it is in the sense of “this object” or “the

current object,” and by itself it produces the reference to the current

object. Inside a constructor, the this keyword takes on a different

meaning when you give it an argument list. It makes an explicit call to

the constructor that matches that argument list, and so is a

straightforward way to call other constructors:



// housekeeping/Flower.java

// Calling constructors with "this"

public class Flower {

int petalCount = 0;

String s = "initial value";

Flower(int petals) {

petalCount = petals;

System.out.println(

"Constructor w/ int arg only, petalCount= "

+ petalCount);

}

Flower(String ss) {

System.out.println(

"Constructor w/ String arg only, s = " + ss);

s = ss;

}

Flower(String s, int petals) {

this(petals);

//- this(s); // Can't call two!

this.s = s; // Another use of "this"



System.out.println("String & int args");

}

Flower() {

this("hi", 47);

System.out.println("no-arg constructor");

}

void printPetalCount() {

//- this(11); // Not inside non-constructor!

System.out.println(

"petalCount = " + petalCount + " s = "+ s);

}

public static void main(String[] args) {

Flower x = new Flower();

x.printPetalCount();

}

}

/* Output:

Constructor w/ int arg only, petalCount= 47

String & int args

no-arg constructor



petalCount = 47 s = hi

*/

The constructor Flower(String s, int petals) shows that,

while you can call one constructor using this, you cannot call two. In

addition, the constructor call must be the first thing you do, or you’ll

get a compiler error message.

This example also shows another way you’ll see this used. Since the

name of the argument s and the name of the member data s are the

same, there’s an ambiguity. You can resolve it using this.s, to say

that you’re referring to the member data. You’ll often see this form

used in Java code, and it’s used in numerous places in this book.

In printPetalCount(), the compiler won’t let you call a

constructor from inside any method other than a constructor.

The Meaning of static

With the this keyword in mind, you can more fully understand what

it means to make a method static: There is no this for that

particular method. You cannot call non-static methods from inside



static methods2 (although the reverse is possible), and you can call a static
method for the class itself, without any object. In fact, that’s

the primary purpose of a static method. It’s as if you’re creating the

equivalent of a global method. However, global methods are not

permitted in Java, and putting the static method inside a class

allows it access to other static methods and to static fields.

Some people argue that static methods are not object-oriented,

since they do have the semantics of a global method; with a static

method, you don’t send a message to an object, since there’s no this.

This is a fair argument, and if you find yourself using a lot of static

methods, rethink your strategy. However, statics are pragmatic,

and there are times when you genuinely need them, so whether or not

they are “proper OOP” should be left to the theoreticians.

Cleanup: Finalization

and Garbage

Collection



Programmers know the importance of initialization, but often forget

the importance of cleanup. After all, who cleans up an int? But

“letting go” of an object once you’re done with it is not always safe.

Java does have the garbage collector to reclaim the memory of objects

that are no longer used. But now consider an unusual case: Suppose

your object allocates “special” memory without using new. The

garbage collector only knows how to release memory allocated with

new, so it won’t know how to release the object’s “special” memory. To

handle this case, Java provides a method called finalize() you can

define for your class.

Here’s how it’s supposed to work: When the garbage collector is ready

to release the storage used for your object, it first calls finalize(),

and only on the next garbage-collection pass will it reclaim the object’s

memory. So if you choose to use finalize(), it gives you the ability

to perform some important cleanup at the time of garbage collection.

finalize() is a potential programming pitfall because some

programmers, especially C++ programmers, might initially mistake it

for the destructor in C++, a function that is always called when an

object is destroyed. It is important to distinguish between C++ and

Java here, because in C++, objects always get destroyed (in a bug-free



program), whereas in Java, objects do not always get garbage

collected. Or, put another way:

1. Your objects might not get garbage

collected.

2. Garbage collection is not destruction.

If there is some activity to perform before you no longer need an

object, you must perform that activity yourself. Java has no destructor

or similar concept, so you must create an ordinary method to perform

this cleanup. For example, suppose that in the process of creating your

object, it draws itself on the screen. If you don’t explicitly erase its

image from the screen, it might never get cleaned up. If you put some

kind of erasing functionality inside finalize(), then if an object is

garbage collected and finalize() is called (and there’s no

guarantee this will happen), the image will first be removed from the

screen, but if it isn’t, the image will remain.

You might find that the storage for an object never gets released

because your program never nears the point of running out of storage.



If your program completes and the garbage collector never gets

around to releasing the storage for any of your objects, that storage is

returned to the operating system en masse as the program exits. This

is a good thing, because garbage collection has some overhead, and if

you never do it, you never incur that expense.

What is finalize() for?

So, if you can’t use finalize() as a general-purpose cleanup

method, what good is it?

A third point to remember is:

3. Garbage collection is only about

memory.

That is, the sole reason for the existence of the garbage collector is to

recover memory your program is no longer using. So any activity

associated with garbage collection, most notably your finalize()

method, must also be only about memory and its deallocation.

Does this mean that if your object contains other objects,

finalize() should explicitly release those objects? Well, no—the



garbage collector takes care of the release of all object memory

regardless of how the object is created. The need for finalize() is

limited to special cases where your object can allocate storage in some

way other than creating an object. But, you might observe, everything

in Java is an object, so how can this be?

It would seem that finalize() is in place because you might do

something C-like by allocating memory using a mechanism other than

the normal one in Java. This can happen primarily through native

methods, which are a way to call non-Java code from Java (Native

methods are covered in Appendix B of the electronic 2nd edition of

Thinking in Java, available at www.OnJava8.com). C and C++ are the only
languages currently supported by native methods, but since those

languages can call subprograms in other languages, you can effectively

call anything. Inside the non-Java code, C’s malloc() family of

functions might be called to allocate storage, and unless you call

free(), that storage is not released, causing a memory leak.

However, free() is a C and C++ function, so you’d call it in a native

method inside your finalize().

After reading this, you probably get the idea you won’t use

finalize() much. 3 You’re correct; it is not the appropriate place for normal
cleanup to occur. So where should normal cleanup be

http://www.OnJava8.com


performed?

You Must Perform Cleanup

To clean up an object, the user of that object must call a cleanup

method when cleanup is desired. This sounds pretty straightforward,

but it collides a bit with the C++ concept of the destructor. In C++, all

objects are destroyed. Or rather, all objects should be destroyed. If the

C++ object is created as a local (i.e., on the stack—not possible in

Java), the destruction happens at the closing curly brace of the scope

where the object was created. If the object was created using new (like

in Java), the destructor is called when the programmer calls the C++

operator delete (which doesn’t exist in Java). If the C++

programmer forgets to call delete, the destructor is never called,

and you have a memory leak, plus the other parts of the object never

get cleaned up. This kind of bug can be very difficult to track down,

and is one of the compelling reasons to move from C++ to Java.

In contrast, Java doesn’t allow you to create local objects—you must

always use new. But in Java, there’s no “delete” for releasing the



object, because the garbage collector releases the storage for you. So

from a simplistic standpoint, you can say that because of garbage

collection, Java has no destructor. You’ll see as this book progresses,

however, that the presence of a garbage collector does not remove the

need for or the utility of destructors. (And never call finalize()

directly, so that’s not a solution.) If you want some kind of cleanup

performed other than storage release, you must still explicitly call an

appropriate method in Java: the equivalent of a C++ destructor but

without the convenience.

Remember that neither garbage collection nor finalization is

guaranteed. If the JVM isn’t close to running out of memory, it might

not waste time recovering memory through garbage collection.

The Termination Condition

In general, you can’t rely on finalize() being called, and you must

create separate “cleanup” methods and call them explicitly. So it

appears that finalize() is only useful for obscure memory cleanup

that most programmers will never use. However, there is an

interesting use of finalize() that does not rely on it being called

every time. This is the verification of the termination condition4 of an object.

When you’re no longer interested in an object—when it’s ready to be



cleaned up—that object should be in a state whereby its memory can

be safely released. For example, if the object represents an open file,

that file should be closed by the programmer before the object is

garbage collected. If any portions of the object are not properly

cleaned up, you have a bug in your program that can be very difficult

to find. finalize() can eventually discover this condition, even if it

isn’t always called. If one of the finalizations happens to reveal the

bug, you discover the problem, which is all you really care about.

Here’s a simple example of how you might use it:

// housekeeping/TerminationCondition.java

// Using finalize() to detect an object that

// hasn't been properly cleaned up

import onjava.*;

class Book {

boolean checkedOut = false;

Book(boolean checkOut) {

checkedOut = checkOut;

}

void checkIn() {

checkedOut = false;



}

@Override

public void finalize() {

if(checkedOut)

System.out.println("Error: checked out");

// Normally, you'll also do this:

// super.finalize(); // Call the base-class version

}

}

public class TerminationCondition {

public static void main(String[] args) {

Book novel = new Book(true);

// Proper cleanup:

novel.checkIn();

// Drop the reference, forget to clean up:

new Book(true);

// Force garbage collection & finalization:

System.gc();

new Nap(1); // One second delay

}



}

/* Output:

Error: checked out

*/

The termination condition says that all Book objects must be checked

in before they are garbage collected, but main() doesn’t check in one

of the books. Without finalize() to verify the termination

condition, this can be a difficult bug to find.

You see here the use of @Override. The @ indicates an annotation,

which is extra information about the code. Here, it tells the compiler

you aren’t accidentally redefining the finalize() method that is in

every object—you know you’re doing it. The compiler makes sure you

haven’t misspelled the method name, and that the method actually

exists in the base class. The annotation is also a reminder to the

reader. @Override was introduced in Java 5, and modified in Java 7,

and I use it throughout the book.

Note that System.gc() is used to force finalization. But even if it

isn’t, it’s highly probable that the errant Book will eventually be

discovered through repeated executions of the program (assuming the

program allocates enough storage to cause the garbage collector to



execute).

Assume that the base-class version of finalize() does something

important, and call it using super, as you see in

Book.finalize(). It is commented because it requires exception

handling, which we haven’t covered yet.

How a Garbage Collector

Works

If you come from a programming language where allocating objects on

the heap is expensive, you might naturally assume that Java’s scheme

of allocating everything (except primitives) on the heap is also

expensive. However, the garbage collector can significantly increase

the speed of object creation. This might sound a bit odd at first—that

storage release affects storage allocation—but it’s the way some JVMs

work, and it means allocating storage for heap objects in Java can be

nearly as fast as creating storage on the stack in other languages.

For example, you can think of the C++ heap as a yard where each

object stakes out its own piece of turf. This real estate can become



abandoned sometime later and must be reused. In some JVMs, the

Java heap is different; it’s more like a conveyor belt that moves

forward every time you allocate a new object. This means object

storage allocation is remarkably rapid. The “heap pointer” is simply

moved forward into virgin territory, so it’s effectively the same as

C++’s stack allocation. (There’s some extra overhead for bookkeeping,

but it’s nothing like searching for storage.)

You might observe that the heap isn’t in fact a conveyor belt, and if you

treat it that way, you’ll start paging memory—moving it on and off

disk, so it appears there’s more memory than actually exists. Paging

significantly impacts performance. Eventually, after you create enough

objects, you’ll run out of memory. The trick is that the garbage

collector steps in and collects the garbage. While it does this, it also

compacts all the objects in the heap so you’ve effectively moved the

“heap pointer” closer to the beginning of the conveyor belt and farther

away from a page fault. The garbage collector rearranges things and

makes it possible for the high-speed, infinite-free-heap model while

allocating storage.

To understand garbage collection in Java, it’s helpful to learn how

garbage-collection schemes work in other systems. A simple but slow



garbage-collection technique is called reference counting. This means

each object contains a reference counter, and every time a reference is

attached to that object, the reference count is increased. Every time a

reference goes out of scope or is set to null, the reference count is

decreased. Thus, managing reference counts is a small but constant

overhead that happens throughout the lifetime of your program. The

garbage collector moves through the entire list of objects, and when it

finds one with a reference count of zero it releases that storage

(however, reference counting schemes often release an object as soon

as the count goes to zero). The one drawback is that if objects

circularly refer to each other they can have nonzero reference counts

while still being garbage. Locating such self-referential groups requires

significant extra work for the garbage collector. Reference counting is

commonly used to explain one kind of garbage collection, but it

doesn’t seem to be in any JVM implementations.

Faster schemes do not use reference counting, but are based instead

on the idea that any non-dead object must ultimately be traceable back

to a reference that lives either on the stack or in static storage. The

chain might go through several layers of objects. Thus, if you start in

the stack and in the static storage area and walk through all the



references, you’ll find all the live objects. For each reference you find,

you must trace into the object that it points to, then follow all the

references in that object, tracing into the objects they point to, etc.,

until you’ve moved through the entire web that originated with the

reference on the stack or in static storage. Each object you move

through must still be alive. Note there is no problem with detached

self-referential groups—these are simply not found, and are therefore

automatically garbage.

In the approach described here, the JVM uses an adaptive garbage-

collection scheme, and what it does with the live objects it locates

depends on the variant currently used. One of these variants is stop-

and-copy. This means—for reasons that become apparent—the

program is first stopped (this is not a background collection scheme).

Then, each live object is copied from one heap to another, leaving

behind all the garbage. In addition, as the objects are copied into the

new heap, they are packed end-to-end, thus compacting the new heap

(and allowing new storage to be reeled off the end as previously

described).

When an object is moved from one place to another, all references that

point to the object must be changed. The reference that goes from the



stack or the static storage area to the object can be changed right away,

but there can be other references pointing to this object encountered

later during the “walk.” These are fixed up as they are found (imagine

a table that maps old addresses to new ones).

There are two issues that make these so-called “copy collectors”

inefficient. The first is the idea that you have two heaps and you slosh

all the memory back and forth between these two separate heaps,

maintaining twice as much memory as you actually need. Some JVMs

deal with this by allocating the heap in chunks as needed and copying

from one chunk to another.

The second issue is the copying process itself. Once your program

becomes stable, it might be generating little or no garbage. Despite

that, a copy collector will still copy all the memory from one place to

another, which is wasteful. To prevent this, some JVMs detect that no

new garbage is generated and switch to a different variant (this is the

“adaptive” part). This other variant is called mark-and-sweep, and it’s

what earlier versions of Sun’s JVM used all the time. For general use,

mark-and-sweep is fairly slow, but when you know you’re generating

little or no garbage, it’s fast.

Mark-and-sweep follows the same logic of starting from the stack and



static storage, and tracing through all the references to find live

objects. However, each time it finds a live object, that object is marked

by setting a flag in it—the object isn’t collected yet. Only when the

marking process is finished does the sweep occur. During the sweep,

the dead objects are released. However, no copying happens, so if the

collector chooses to compact a fragmented heap, it does so by shuffling

objects around.

“Stop-and-copy” refers to the idea that this type of garbage collection

is not done in the background; instead, the program is stopped while

the garbage collection occurs. In the Oracle literature you’ll find many

references to garbage collection as a low-priority background process,

but garbage collection was not implemented that way in earlier

versions of the JVM. Instead, the garbage collector stopped the

program when memory got low. Mark-and-sweep also requires that

the program be stopped.

As previously mentioned, in the JVM described here memory is

allocated in big blocks. If you allocate an especially large object, it gets

its own block. Strict stop-and-copy requires copying every live object

from the source heap to a new heap before you can free the old one,

which translates to lots of memory. With blocks, the garbage collection



can typically copy objects to dead blocks as it collects. Each block has a

generation count to keep track of whether it’s alive. In the normal

case, only the blocks created since the last garbage collection are

compacted; all other blocks get their generation count bumped if they

are referenced from somewhere. This handles the normal case of lots

of short-lived temporary objects. Periodically, a full sweep is made—

large objects are still not copied (they just get their generation count

bumped), and blocks containing small objects are copied and

compacted. The JVM monitors the efficiency of garbage collection and

if it becomes a waste of time because all objects are long-lived, it

switches to mark-and-sweep. Similarly, the JVM keeps track of how

successful mark-and-sweep is, and if the heap starts to become

fragmented, it switches back to stop-and-copy. This is where the

“adaptive” part comes in, so you end up with a mouthful: “Adaptive

generational stop-and-copy mark-and-sweep.”

There are a number of additional speedups possible in a JVM. An



especially important one involves the operation of the loader and what

is called a just-in-time (JIT) compiler. A JIT compiler partially or fully

converts a program into native machine code so it doesn’t need

interpretation by the JVM and thus runs much faster. When a class

must be loaded (typically, the first time you create an object of that

class), the .class file is located, and the bytecodes for that class are

brought into memory. You could simply JIT compile all the loaded

code, but this has two drawbacks: It takes a little more time, which,

compounded throughout the life of the program, can add up; and it

increases the size of the executable (bytecodes are significantly more

compact than expanded JIT code), and this might cause paging, which

definitely slows down a program. An alternative approach is lazy

evaluation, which means the code is not JIT compiled until necessary.

Thus, code that never gets executed might never be JIT compiled. The

Java HotSpot technologies in recent JDKs take a similar approach by

increasingly optimizing a piece of code each time it is executed, so the

more the code is executed, the faster it gets.

Member Initialization

Java goes out of its way to guarantee that variables are properly

initialized before they are used. In the case of a method’s local



variables, this guarantee comes in the form of a compile-time error. So

if you say:

void f() {

int i;

i++;

}

you’ll get an error message that says that i might not be initialized.

The compiler could give i a default value, but an uninitialized local

variable is probably a programmer error, and a default value would

cover that up. Forcing the programmer to provide an initialization

value is more likely to catch a bug.

If a primitive is a field in a class, however, things are a bit different. As you
saw in the Objects Everywhere chapter, each primitive field of a class is
guaranteed to get an initial value. Here’s a program that

verifies this, and shows the values:

// housekeeping/InitialValues.java

// Shows default initial values

public class InitialValues {

boolean t;

char c;

byte b;



short s;

int i;

long l;

float f;

double d;

InitialValues reference;

void printInitialValues() {

System.out.println("Data type Initial value");

System.out.println("boolean " + t);

System.out.println("char [" + c + "]");

System.out.println("byte " + b);

System.out.println("short " + s);

System.out.println("int " + i);

System.out.println("long " + l);

System.out.println("float " + f);

System.out.println("double " + d);

System.out.println("reference " + reference);

}

public static void main(String[] args) {

new InitialValues().printInitialValues();



}

}

/* Output:

Data type Initial value

boolean false

char [NUL]

byte 0

short 0

int 0

long 0

float 0.0

double 0.0

reference null

*/

Even though the values are not specified, they automatically get

initialized (the char value is a zero, which my output verification

system translates to NUL). So at least there’s no threat of working with



uninitialized variables.

When you define an object reference inside a class without initializing

it to a new object, that reference is given a special value of null.

Specifying Initialization

How do you give a variable an initial value? One direct way to do this

is to assign the value when you define the variable in the class. Here

the field definitions in class InitialValues are changed to provide

initial values:

// housekeeping/InitialValues2.java

// Providing explicit initial values

public class InitialValues2 {

boolean bool = true;

char ch = 'x';

byte b = 47;

short s = 0xff;

int i = 999;

long lng = 1;

float f = 3.14f;

double d = 3.14159;

}



You can also initialize non-primitive objects in this same way. If

Depth is a class, you can create a variable and initialize it like so:

// housekeeping/Measurement.java

class Depth {}

public class Measurement {

Depth d = new Depth();

// ...

}

If you haven’t given d an initial value and you try to use it anyway,

you’ll get a runtime error called an exception (covered in the

Exceptions chapter).

You can call a method to provide an initialization value:

// housekeeping/MethodInit.java

public class MethodInit {

int i = f();

int f() { return 11; }

}

This method can have arguments, but those arguments cannot be

other class members that haven’t been initialized yet. Thus, you can do

this:



// housekeeping/MethodInit2.java

public class MethodInit2 {

int i = f();

int j = g(i);

int f() { return 11; }

int g(int n) { return n * 10; }

}

But you cannot do this:

// housekeeping/MethodInit3.java

public class MethodInit3 {

//- int j = g(i); // Illegal forward reference

int i = f();

int f() { return 11; }

int g(int n) { return n * 10; }

}



The compiler appropriately complains about forward referencing,

since it is about the order of initialization and not the way the program

is compiled.

This approach to initialization is simple and straightforward. It has the

limitation that every object of type InitialValues will get these



same initialization values. Sometimes this is exactly what you need,

but at other times you need more flexibility.

Constructor

Initialization

The constructor performs initialization, and this gives you greater

flexibility in your programming because you can call methods at run

time to determine initial values. However, you aren’t precluding

automatic initialization, which happens before the constructor is

entered. So, for example, if you say:

// housekeeping/Counter.java

public class Counter {

int i;

Counter() { i = 7; }

// ...

}

then i will first be initialized to 0, then to 7. This is true with all the

primitive types and with object references, including those given

explicit initialization at the point of definition. For this reason, the

compiler doesn’t try to force you to initialize elements in the

constructor at any particular place, or before they are used—



initialization is already guaranteed.

Order of Initialization

The order variables are defined within a class determines the order of

initialization. The variable definitions can be scattered throughout and

in between method definitions, but the variables are initialized before

any methods can be called—even the constructor. For example:

// housekeeping/OrderOfInitialization.java

// Demonstrates initialization order

// When the constructor is called to create a

// Window object, you'll see a message:

class Window {

Window(int marker) {

System.out.println("Window(" + marker + ")");

}

}

class House {

Window w1 = new Window(1); // Before constructor

House() {

// Show that we're in the constructor:

System.out.println("House()");



w3 = new Window(33); // Reinitialize w3

}

Window w2 = new Window(2); // After constructor

void f() { System.out.println("f()"); }

Window w3 = new Window(3); // At end

}

public class OrderOfInitialization {

public static void main(String[] args) {

House h = new House();

h.f(); // Shows that construction is done

}

}

/* Output:

Window(1)

Window(2)

Window(3)

House()

Window(33)

f()

*/



In House, the definitions of the Window objects are intentionally

scattered about to prove they’ll all get initialized before the constructor

is entered or anything else can happen. In addition, w3 is reinitialized

inside the constructor.

The output shows that the w3 reference gets initialized twice: once

before and once during the constructor call (The first object is

dropped, so it can be garbage collected later). This might not seem

efficient at first, but it guarantees proper initialization. Consider what

would happen if an overloaded constructor were defined that did not

initialize w3 and there wasn’t a “default” initialization for w3 in its

definition.

static Data Initialization

There’s only a single piece of storage for a static, regardless of how

many objects are created. You can’t apply the static keyword to

local variables, so it only applies to fields. If a field is a static

primitive and you don’t initialize it, it gets the standard initial value for

its type. If it’s a reference to an object, the default initialization value is



null.

To place initialization at the point of definition, it looks the same as for

non-statics.

This shows when static storage gets initialized:

// housekeeping/StaticInitialization.java

// Specifying initial values in a class definition

class Bowl {

Bowl(int marker) {

System.out.println("Bowl(" + marker + ")");

}

void f1(int marker) {

System.out.println("f1(" + marker + ")");

}

}

class Table {

static Bowl bowl1 = new Bowl(1);

Table() {

System.out.println("Table()");

bowl2.f1(1);

}



void f2(int marker) {

System.out.println("f2(" + marker + ")");

}

static Bowl bowl2 = new Bowl(2);

}

class Cupboard {

Bowl bowl3 = new Bowl(3);

static Bowl bowl4 = new Bowl(4);

Cupboard() {

System.out.println("Cupboard()");

bowl4.f1(2);

}

void f3(int marker) {

System.out.println("f3(" + marker + ")");

}

static Bowl bowl5 = new Bowl(5);

}

public class StaticInitialization {

public static void main(String[] args) {

System.out.println("main creating new Cupboard()");



new Cupboard();

System.out.println("main creating new Cupboard()");

new Cupboard();

table.f2(1);

cupboard.f3(1);

}

static Table table = new Table();

static Cupboard cupboard = new Cupboard();

}

/* Output:

Bowl(1)

Bowl(2)

Table()

f1(1)

Bowl(4)

Bowl(5)

Bowl(3)

Cupboard()

f1(2)

main creating new Cupboard()



Bowl(3)

Cupboard()

f1(2)

main creating new Cupboard()

Bowl(3)

Cupboard()

f1(2)

f2(1)

f3(1)

*/

Bowl shows the creation of a class, and Table and Cupboard have

static members of Bowl scattered through their class definitions.

Note that Cupboard creates a non-static Bowl bowl3 prior to

the static definitions.

The output shows that static initialization occurs only if it’s

necessary. If you don’t create a Table object and you never refer to

Table.bowl1 or Table.bowl2, the static Bowl bowl1 and

bowl2 will never be created. They are initialized only when you create

the first Table object (or the first static access occurs). After that, the static
objects are not reinitialized.

The order of initialization is statics first, if they haven’t already



been initialized by a previous object creation, then the non-static

objects. The evidence is in the output. To execute main() (a static method),
the StaticInitialization class must be loaded, and

its static fields table and cupboard are then initialized, which

causes those classes to be loaded, and since they both contain static

Bowl objects, Bowl is then loaded. Thus, all the classes in this

particular program get loaded before main() starts. This is usually

not the case, because in typical programs you won’t have everything

linked together by statics as you do in this example.

To summarize the process of creating an object, consider a class called

Dog:

1. Even though it doesn’t explicitly use the static keyword, the

constructor is actually a static method. So the first time you

create an object of type Dog, or the first time you access a

static method or static field of class Dog, the Java

interpreter must locate Dog.class, which it does by searching

through the classpath.

2. As Dog.class is loaded (creating a Class object, which you’ll

learn about later), all of its static initializers are run. Thus,

static initialization takes place only once, as the Class object

is loaded for the first time.



3. When you create a new Dog(), the construction process for a

Dog object first allocates enough storage for a Dog object on the

heap.

4. This storage is wiped to zero, automatically setting all the

primitives in that Dog object to their default values (zero for

numbers and the equivalent for boolean and char) and the

references to null.

5. Any initializations that occur at the point of field definition are

executed.

6. Constructors are executed. As you shall see in the Reuse chapter, this
might actually involve a fair amount of activity, especially

when inheritance is involved.

Explicit static Initialization

You can group other static initializations inside a special “static

clause” (sometimes called a static block) in a class. It looks like this:

// housekeeping/Spoon.java

public class Spoon {



static int i;

static {

i = 47;

}

}

It looks a little like a method, but it’s just the static keyword

followed by a block of code. This code, like other static

initializations, is executed only once: the first time you make an object

of that class or the first time you access a static member of that

class (even if you never make an object of that class). For example:

// housekeeping/ExplicitStatic.java

// Explicit static initialization with "static" clause

class Cup {

Cup(int marker) {

System.out.println("Cup(" + marker + ")");

}

void f(int marker) {



System.out.println("f(" + marker + ")");

}

}

class Cups {

static Cup cup1;

static Cup cup2;

static {

cup1 = new Cup(1);

cup2 = new Cup(2);

}

Cups() {

System.out.println("Cups()");

}

}

public class ExplicitStatic {

public static void main(String[] args) {

System.out.println("Inside main()");

Cups.cup1.f(99); // [1]

}

// static Cups cups1 = new Cups(); // [2]



// static Cups cups2 = new Cups(); // [2]

}

/* Output:

Inside main()

Cup(1)

Cup(2)

f(99)

*/

The static initializers for Cups run when either the access of the

static object cup1 occurs on [1], or if [1] is commented out and the lines
marked [2] are uncommented. If both [1] and [2] are

commented out, the static initialization for Cups never occurs.

Also, it doesn’t matter if one or both of the lines marked [2] are

uncommented; the static initialization only occurs once.

Non-static Instance

Initialization

Java provides a similar syntax, called instance initialization, for

initializing non-static variables for each object. Here’s an example:

// housekeeping/Mugs.java

// Instance initialization

class Mug {



Mug(int marker) {

System.out.println("Mug(" + marker + ")");

}

}

public class Mugs {

Mug mug1;

Mug mug2;

{ // [1]

mug1 = new Mug(1);

mug2 = new Mug(2);

System.out.println("mug1 & mug2 initialized");

}

Mugs() {

System.out.println("Mugs()");

}

Mugs(int i) {

System.out.println("Mugs(int)");

}

public static void main(String[] args) {

System.out.println("Inside main()");



new Mugs();

System.out.println("new Mugs() completed");

new Mugs(1);

System.out.println("new Mugs(1) completed");

}

}

/* Output:

Inside main()

Mug(1)

Mug(2)

mug1 & mug2 initialized

Mugs()

new Mugs() completed

Mug(1)

Mug(2)

mug1 & mug2 initialized



Mugs(int)

new Mugs(1) completed

*/

[1] The instance initialization clause looks exactly like the static

initialization clause except for the missing static keyword. This

syntax is necessary to support the initialization of anonymous

inner classes (see the Inner Classes chapter), but you can also guarantee that
certain operations occur regardless of which

explicit constructor is called.

The output shows that the instance initialization clause is executed

before either one of the constructors.

Array Initialization

An array is a sequence of either objects or primitives that are all the

same type and are packaged together under one identifier name.

Arrays are defined and used with the square-brackets indexing

operator []. To define an array reference, you follow the type name

with empty square brackets:

int[] a1;

You can also put the square brackets after the identifier to produce

exactly the same meaning:

int a1[];



This conforms to expectations from C and C++ programmers. The

former style, however, is probably a more sensible syntax, since it says

that the type is “an int array.” That style is used in this book.

The compiler doesn’t allow you to tell it how big the array is. This

brings us back to that issue of “references.” All you have now is a

reference to an array (you’ve allocated enough storage for that

reference), and there’s been no space allocated for the array object

itself. To create storage for the array, you must write an initialization

expression. For arrays, initialization can appear anywhere in your

code, but you can also use a special kind of initialization expression

that must occur when you create the array. This special initialization is

a set of values surrounded by curly braces. The storage allocation (the

equivalent of using new) is taken care of by the compiler in this case.

For example:

int[] a1 = { 1, 2, 3, 4, 5 };

Why would you ever define an array reference without an array?

int[] a2;

Well, it’s possible to assign one array to another in Java, so you can

say:

a2 = a1;



What you’re really doing is copying a reference, as demonstrated here:

// housekeeping/ArraysOfPrimitives.java

public class ArraysOfPrimitives {

public static void main(String[] args) {

int[] a1 = { 1, 2, 3, 4, 5 };

int[] a2;

a2 = a1;

for(int i = 0; i < a2.length; i++)

a2[i] += 1;

for(int i = 0; i < a1.length; i++)

System.out.println("a1[" + i + "] = " + a1[i]);

}

}

/* Output:

a1[0] = 2

a1[1] = 3

a1[2] = 4



a1[3] = 5

a1[4] = 6

*/

a1 is given an initialization value but a2 is not; a2 is assigned later—

here, to another array. Since a2 and a1 are then aliased to the same

array, the changes made via a2 are seen in a1.

All arrays have an intrinsic member (whether they’re arrays of objects

or arrays of primitives) you can query—but not change—to tell you

how many elements there are in the array. This member is length.

Since arrays in Java, just like C and C++, start counting from element

zero, the largest element you can index is length - 1. If you go out

of bounds, C and C++ quietly accept this and allow you to stomp all

over your memory, which is the source of many infamous bugs.

However, Java protects you against such problems by causing a

runtime error (an exception) if you step out of bounds. 5

Dynamic Array Creation

What if you don’t know how many elements you’re going to need in

your array while you’re writing the program? You simply use new to

create the elements in the array. Here, new works even though it’s

creating an array of primitives (new won’t create a non-array



primitive):

// housekeeping/ArrayNew.java

// Creating arrays with new

import java.util.*;

public class ArrayNew {

public static void main(String[] args) {

int[] a;

Random rand = new Random(47);

a = new int[rand.nextInt(20)];

System.out.println("length of a = " + a.length);

System.out.println(Arrays.toString(a));

}

}

/* Output:

length of a = 18

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

*/

The size of the array is chosen at random by using the

Random.nextInt() method, which produces a value between zero

and that of its argument. Because of the randomness, it’s clear that



array creation is actually happening at run time. In addition, the

output of this program shows that array elements of primitive types

are automatically initialized to “empty” values. (For numerics and

char, this is zero, and for boolean, it’s false.)

The Arrays.toString() method, part of the standard

java.util library, produces a printable version of a one-

dimensional array.

The array can also be defined and initialized in the same statement:

int[] a = new int[rand.nextInt(20)];

This is the preferred way to do it, if you can.

If you create a non-primitive array, you create an array of references.

Consider the wrapper type Integer, which is a class and not a

primitive:

// housekeeping/ArrayClassObj.java

// Creating an array of nonprimitive objects

import java.util.*;

public class ArrayClassObj {

public static void main(String[] args) {

Random rand = new Random(47);

Integer[] a = new Integer[rand.nextInt(20)];



System.out.println("length of a = " + a.length);

for(int i = 0; i < a.length; i++)

a[i] = rand.nextInt(500); // Autoboxing

System.out.println(Arrays.toString(a));

}

}

/* Output:

length of a = 18

[55, 193, 361, 461, 429, 368, 200, 22, 207, 288, 128,

51, 89, 309, 278, 498, 361, 20]

*/

Here, even after new is called to create the array:

Integer[] a = new Integer[rand.nextInt(20)];

it’s only an array of references, and the initialization is not complete

until the reference itself is initialized by creating a new Integer

object (via autoboxing, in this case):

a[i] = rand.nextInt(500);

If you forget to create the object, however, you’ll get an exception at

run time when you try to use the empty array location.

It’s also possible to initialize arrays of objects by using a curly brace-



enclosed list. There are two forms:

// housekeeping/ArrayInit.java

// Array initialization

import java.util.*;

public class ArrayInit {

public static void main(String[] args) {

Integer[] a = {

1, 2,

3, // Autoboxing

};

Integer[] b = new Integer[]{

1, 2,

3, // Autoboxing

};

System.out.println(Arrays.toString(a));

System.out.println(Arrays.toString(b));

}

}

/* Output:

[1, 2, 3]



[1, 2, 3]

*/

In both cases, the final comma in the list of initializers is optional.

(This feature makes for easier maintenance of long lists.)

Although the first form is useful, it’s more limited because it can only

be used at the point the array is defined. You can use the second and

third forms anywhere, even inside a method call. For example, you can

create an array of String objects to pass to the main() of another

class, to provide alternate command-line arguments to that main():

// housekeeping/DynamicArray.java

// Array initialization

public class DynamicArray {

public static void main(String[] args) {

Other.main(new String[]{ "fiddle", "de", "dum" });

}

}

class Other {

public static void main(String[] args) {

for(String s : args)

System.out.print(s + " ");



}

}

/* Output:

fiddle de dum

*/

The array argument for Other.main() is created at the point of the

method call, so you can even provide alternate arguments at the time

of the call.

Variable Argument Lists

You create and call methods in a way that produces an effect similar to

C’s variable argument lists (known as “varargs” in C). These can

include unknown quantities of arguments as well as unknown types.

Since all classes are ultimately inherited from the common root class

Object (a subject you learn more about as this book progresses), you

can create a method that takes an array of Object and call it like this:

// housekeeping/VarArgs.java

// Using array syntax to create variable argument lists



class A {}

public class VarArgs {

static void printArray(Object[] args) {

for(Object obj : args)

System.out.print(obj + " ");

System.out.println();

}

public static void main(String[] args) {

printArray(new Object[]{

47, (float) 3.14, 11.11});

printArray(new Object[]{"one", "two", "three" });

printArray(new Object[]{new A(), new A(), new A()});

}

}

/* Output:

47 3.14 11.11

one two three

A@15db9742 A@6d06d69c A@7852e922

*/

printArray() takes an array of Object, then steps through the



array using the for-in syntax and prints each one. The standard Java

library classes produce sensible output, but the objects of the classes

created here print the class name, followed by an @ sign and

hexadecimal digits. Thus, the default behavior (if you don’t define a

toString() method for your class, which is described later in the

book) is to print the class name and the address of the object.

You might see pre-Java 5 code written like the above to produce

variable argument lists. In Java 5 this long-requested feature was

finally added, so ellipses define a variable argument list, as in

printArray():

// housekeeping/NewVarArgs.java

// Using array syntax to create variable argument lists

public class NewVarArgs {

static void printArray(Object... args) {

for(Object obj : args)

System.out.print(obj + " ");

System.out.println();

}

public static void main(String[] args) {

// Can take individual elements:



printArray(47, (float) 3.14, 11.11);

printArray(47, 3.14F, 11.11);

printArray("one", "two", "three");

printArray(new A(), new A(), new A());

// Or an array:

printArray((Object[])new Integer[]{ 1, 2, 3, 4 });

printArray(); // Empty list is OK

}

}

/* Output:

47 3.14 11.11

47 3.14 11.11

one two three

A@15db9742 A@6d06d69c A@7852e922

1 2 3 4

*/

With varargs, you no longer explicitly write out the array syntax—the

compiler will actually fill it in for you when you specify varargs. You’re

still getting an array, which is why printArray() is able to use for-

in to iterate through the array. However, it’s more than just an



automatic conversion from a list of elements to an array. Notice the

second-to-last line in the program, where an array of Integer

(created using autoboxing) is cast to an Object array (to remove a

compiler warning) and passed to printArray(). Clearly, the

compiler sees this is already an array and performs no conversion on

it. So if you have a group of items you can pass them in as a list, and if

you already have an array it will accept that as the variable argument

list.

The last line of the program shows it’s possible to pass zero arguments

to a vararg list. This is helpful when you have optional trailing

arguments:

// housekeeping/OptionalTrailingArguments.java

public class OptionalTrailingArguments {

static void f(int required, String... trailing) {

System.out.print("required: " + required + " ");

for(String s : trailing)

System.out.print(s + " ");

System.out.println();

}

public static void main(String[] args) {



f(1, "one");

f(2, "two", "three");

f(0);

}

}

/* Output:

required: 1 one

required: 2 two three

required: 0

*/

This also shows how you can use varargs with a specified type other

than Object. Here, all the varargs must be String objects. It’s

possible to use any type of argument in varargs, including a primitive

type. The following example also shows that the vararg list becomes an

array, and if there’s nothing in the list it’s an array of size zero:

// housekeeping/VarargType.java

public class VarargType {

static void f(Character... args) {

System.out.print(args.getClass());

System.out.println(" length " + args.length);



}

static void g(int... args) {

System.out.print(args.getClass());

System.out.println(" length " + args.length);

}

public static void main(String[] args) {

f('a');

f();

g(1);

g();

System.out.println("int[]: " +

new int[0].getClass());

}

}

/* Output:

class [Ljava.lang.Character; length 1

class [Ljava.lang.Character; length 0

class [I length 1

class [I length 0

int[]: class [I



*/

The getClass() method is part of Object, and is explored fully in

the Type Information chapter. It produces the class of an object, and when
you print this class, you see an encoded String representing

the class type. The leading [ indicates this is an array of the type that follows.
The I is for a primitive int; to double-check, I created an

array of int in the last line and printed its type. This verifies that

using varargs does not depend on autoboxing, but it actually uses the

primitive types.

Varargs work harmoniously with autoboxing:

// housekeeping/AutoboxingVarargs.java

public class AutoboxingVarargs {

public static void f(Integer... args) {

for(Integer i : args)

System.out.print(i + " ");

System.out.println();

}

public static void main(String[] args) {

f(1, 2);

f(4, 5, 6, 7, 8, 9);

f(10, 11, 12);



}

}

/* Output:

1 2

4 5 6 7 8 9

10 11 12

*/

Notice you can mix the types together in a single argument list, and

autoboxing selectively promotes the int arguments to Integer.

Varargs complicate the process of overloading, although it seems safe

enough at first:

// housekeeping/OverloadingVarargs.java

public class OverloadingVarargs {

static void f(Character... args) {

System.out.print("first");

for(Character c : args)

System.out.print(" " + c);

System.out.println();

}

static void f(Integer... args) {



System.out.print("second");

for(Integer i : args)

System.out.print(" " + i);

System.out.println();

}

static void f(Long... args) {

System.out.println("third");

}

public static void main(String[] args) {

f('a', 'b', 'c');

f(1);

f(2, 1);

f(0);

f(0L);

//- f(); // Won't compile -- ambiguous

}

}

/* Output:

first a b c

second 1



second 2 1

second 0

third

*/

In each case, the compiler uses autoboxing to match the overloaded

method, and calls the most specifically matching method.

But when you call f() without arguments, it has no way of knowing

which one to call. Although this error is understandable, it will

probably surprise the client programmer.

You might try solving the problem by adding a non-vararg argument

to one of the methods:

// housekeeping/OverloadingVarargs2.java

// {WillNotCompile}

public class OverloadingVarargs2 {

static void f(float i, Character... args) {

System.out.println("first");

}

static void f(Character... args) {

System.out.print("second");

}



public static void main(String[] args) {

f(1, 'a');

f('a', 'b');

}

}

The {WillNotCompile} comment tag excludes the file from this

book’s Gradle build.

If you compile it by hand you’ll see the error message:

OverloadingVarargs2.java:14: error: reference to f is ambiguous

f('a', 'b');

\^

both method f(float,Character...) in OverloadingVarargs2 and method

f(Character...) in OverloadingVarargs2 match

1 error

If you give both methods a non-vararg argument, it works:

// housekeeping/OverloadingVarargs3.java

public class OverloadingVarargs3 {

static void f(float i, Character... args) {

System.out.println("first");

}



static void f(char c, Character... args) {

System.out.println("second");

}

public static void main(String[] args) {

f(1, 'a');

f('a', 'b');

}

}

/* Output:

first

second

*/

As a rule of thumb, only use a variable argument list on one version of

an overloaded method. Or consider not doing it at all.

Enumerated Types

A seemingly small addition in Java 5 is the enum keyword, which



makes your life much easier when you group together and use a set of

enumerated types. In the past you created a set of constant integral

values, but these do not naturally restrict themselves to your set and

thus are riskier and more difficult to use. Enumerated types are a

common enough need that C, C++, and a number of other languages

have always had them. Before Java 5, programmers were forced to

know a lot and be quite careful when they wanted to properly produce

the enum effect. Now Java has enum, too, and it’s much more full-

featured than what you find in C/C++. Here’s a simple example:

// housekeeping/Spiciness.java

public enum Spiciness {

NOT, MILD, MEDIUM, HOT, FLAMING

}

This creates an enumerated type called Spiciness with five named

values. Because the instances of enumerated types are constants, they

are in all capital letters by convention (if there are multiple words in a

name, they are separated by underscores).

To use an enum, you create a reference of that type and assign it to an
instance:

// housekeeping/SimpleEnumUse.java

public class SimpleEnumUse {



public static void main(String[] args) {

Spiciness howHot = Spiciness.MEDIUM;

System.out.println(howHot);

}

}

/* Output:

MEDIUM

*/

The compiler automatically adds useful features when you create an

enum. For example, it creates a toString() to easily display the

name of an enum instance, which is how the print statement above

produced its output. The compiler also creates an ordinal()

method to indicate the declaration order of a particular enum

constant, and a static values() method that produces an array

of values of the enum constants in the order they were declared:

// housekeeping/EnumOrder.java

public class EnumOrder {

public static void main(String[] args) {

for(Spiciness s : Spiciness.values())

System.out.println(



s + ", ordinal " + s.ordinal());

}

}

/* Output:

NOT, ordinal 0

MILD, ordinal 1

MEDIUM, ordinal 2

HOT, ordinal 3

FLAMING, ordinal 4

*/

Although enums appear to be a new data type, the keyword only

produces some compiler behavior while generating a class for the

enum, so in many ways you can treat an enum as if it were any other

class. In fact, enums are classes and have their own methods.

An especially nice feature is the way that enums can be used inside

switch statements:

// housekeeping/Burrito.java

public class Burrito {

Spiciness degree;

public Burrito(Spiciness degree) {



this.degree = degree;

}

public void describe() {

System.out.print("This burrito is ");

switch(degree) {

case NOT: System.out.println(

"not spicy at all.");

break;

case MILD:

case MEDIUM: System.out.println("a little hot.");

break;

case HOT:

case FLAMING:

default: System.out.println("maybe too hot.");

}

}

public static void main(String[] args) {

Burrito

plain = new Burrito(Spiciness.NOT),

greenChile = new Burrito(Spiciness.MEDIUM),



jalapeno = new Burrito(Spiciness.HOT);

plain.describe();

greenChile.describe();

jalapeno.describe();

}

}

/* Output:

This burrito is not spicy at all.

This burrito is a little hot.

This burrito is maybe too hot.

*/

Since a switch is intended to select from a limited set of possibilities,

it’s an ideal match for an enum. Notice how enum names can produce

a much clearer expression of intent.

In general you can use an enum as if it were another way to create a

data type, then just put the results to work. That’s the point, so you



don’t have to think too hard about them. Before the introduction of

enum, you went to a lot of effort to make an equivalent enumerated

type that was safe to use.

This is enough for you to understand and use basic enums, but we’ll

look more deeply at them later in the book—they have their own

chapter: Enumerations.

Summary

This seemingly elaborate mechanism for initialization, the constructor,

should give you a strong hint about the critical importance placed on

initialization in the language. As Bjarne Stroustrup, the inventor of

C++, was designing that language, one of the first observations he

made about productivity in C was that improper initialization of

variables causes a significant portion of programming problems. These

kinds of bugs are hard to find, and similar issues apply to improper

cleanup. Because constructors allow you to guarantee proper

initialization and cleanup (the compiler will not allow an object to be

created without the proper constructor calls), you get complete control

and safety.

In C++, destruction is quite important because objects created with

new must be explicitly destroyed. In Java, the garbage collector



automatically releases the memory for all objects, so the equivalent

cleanup method in Java isn’t necessary much of the time (but when it

is, you must do it yourself). In cases where you don’t need destructor-

like behavior, Java’s garbage collector greatly simplifies programming

and adds much-needed safety in managing memory. Some garbage

collectors can even clean up other resources like graphics and file

handles. However, the garbage collector does add a runtime cost, the

expense of which is difficult to put into perspective because of the

historical slowness of Java interpreters. Although Java has had

significant performance increases over time, the speed problem has

taken its toll on the adoption of the language for certain types of

programming problems.

Because of the guarantee that all objects are constructed, there’s

actually more to the constructor than what is shown here. In

particular, when you create new classes using either composition or

inheritance, the guarantee of construction also holds, and some

additional syntax is necessary to support this. You’ll learn about

composition, inheritance, and how they affect constructors in future

chapters.

1. Some people will obsessively put this in front of every method



call and field reference, arguing that it makes it “clearer and more

explicit.” Don’t do it. There’s a reason that we use high-level

languages. They do things for us. If you use this when it’s not

necessary, you confuse and annoy everyone who reads your code,

since all the rest of the code they’ve read won’t use this

everywhere. People expect this only when it is necessary.

Following a consistent and straightforward coding style saves

time and money. ↩

2. The one case this is possible is if you pass a reference to an object

into the static method (the static method could also create

its own object). Then, via the reference (which is now effectively

this), you can call non-static methods and access non-

static fields. But typically, to do something like this, you’ll just

make an ordinary, non-static method. ↩

3. Joshua Bloch goes further in his section titled “avoid finalizers”:

“Finalizers are unpredictable, often dangerous, and generally

unnecessary.” Effective Java Programming Language Guide,

p. 20 (Addison-Wesley, 2001).↩

4. A term coined by Bill Venners ( www.Artima.com) during a

seminar that he and I gave together.↩



5. Of course, checking every array access costs time and code and

there’s no way to turn it off, which means that array accesses

might be a source of inefficiency in your program if they occur at a

critical juncture. For Internet security and programmer

productivity, the Java designers saw that this was a worthwhile

trade-off. Although you may be tempted to write code you think

might make array accesses more efficient, this is a waste of time

because automatic compile-time and runtime optimizations will

speed array accesses. ↩

Implementation Hiding

Access control (or implementation hiding)

is about “not getting it right the first

time.”

All good writers—including those who write software—know that a

piece of work isn’t good until it’s been rewritten, often many times. If

you leave a piece of code in a drawer for a while and come back to it,

you might see a much better way to do it. This is one of the prime

motivations for refactoring, which rewrites working code to make it



more readable, understandable, and thus maintainable. 1

There is a tension, however, in this desire to change and improve your

code. There are often consumers ( client programmers) who rely on

some aspect of your code staying the same. So you want to change it;

they want it to stay the same. Thus a primary consideration in object-

oriented design is to “separate the things that change from the things

that stay the same.”

This is particularly important for libraries. Consumers of that library

must rely on the part they use, and know they won’t have to rewrite

code if a new version of the library comes out. On the flip side, the

library creator must have the freedom to make modifications and

improvements with the certainty that the client code won’t be affected

by those changes.

This can be achieved through convention. For example, the library

programmer must agree not to remove existing methods when

modifying a class in the library, since that would break the client

programmer’s code. The reverse situation is more complex. In the case

of a field, how can the library creator know which fields were accessed

by client programmers? This is also true with methods used only to

implement a class, but not meant for direct use by client



programmers. What if the library creator wants to rip out an old

implementation and put in a new one? Changing any of those

members might break a client programmer’s code. Thus the library

creator is in a strait jacket and can’t change anything.

To solve this problem, Java provides access specifiers to allow the

library creator to say what is available to the client programmer and

what is not. The levels of access control span from “most access” to

“least access”: public, protected, package access (which has no

keyword), and private. From the previous paragraph you might

think, as a library designer, you’ll keep everything as “private” as

possible, and expose only the methods you want the client

programmer to use. This is generally what you’ll do, even though it’s

often counterintuitive for people who program in other languages

(especially C) and who are used to accessing everything without

restriction.

The concept of a library of components and the control over who can

access the components of that library is not complete, however.

There’s still the question of how the components are bundled together

into a cohesive library unit. This is controlled with the package

keyword in Java, and the access specifiers are affected by whether a



class is in the same package or in a separate package. So to begin this

chapter, you’ll learn how library components are placed into packages.

Then you can understand the complete meaning of the access

specifiers.

package: the Library

Unit

A package contains a group of classes, organized together under a

single namespace.

For example, there’s a utility library that’s part of the standard Java

distribution, organized under the namespace java.util. One of the

classes in java.util is called ArrayList. One way to use an

ArrayList is to specify the full name java.util.ArrayList.

// hiding/FullQualification.java

public class FullQualification {

public static void main(String[] args) {

java.util.ArrayList list =



new java.util.ArrayList();

}

}

This rapidly becomes tedious, so you can use the import keyword

instead. To import a single class, you name that class in the import

statement:

// hiding/SingleImport.java

import java.util.ArrayList;

public class SingleImport {

public static void main(String[] args) {

ArrayList list = new ArrayList();

}

}

Now you can use ArrayList with no qualification. However, none of

the other classes in java.util are available. To import everything,

you use the * as you’ve been seeing in the rest of the examples in this book:

import java.util.*;

The reason for all this importing is to provide a mechanism to manage

namespaces. The names of all your class members are insulated from

each other. A method f() inside a class A will not clash with an f()



that has the same signature in class B. But what about the class

names? Suppose you create a Stack class that is installed on a

machine that already has a Stack class that’s written by someone

else? This potential clashing of names is why we need complete control

over namespaces in Java. To achieve this, we create a unique identifier

combination for each class.

Most of the examples thus far have existed in a single file and are

designed for local use, so they haven’t bothered with package names.

However, an example without a package name is still in a package: the

“unnamed” or default package. This is certainly an option, and for

simplicity’s sake this approach is used whenever possible throughout

the rest of this book. However, if you’re planning to create libraries or

programs friendly to other Java programs on the same machine, you

must think about preventing class name clashes.

A Java source-code file is called a compilation unit (sometimes a

translation unit). Each compilation unit must have a file name ending

in .java. Inside the compilation unit there can be a public class

that must have the same name as the file (including capitalization, but

excluding the .java file name extension). There can be only one

public class in each compilation unit; otherwise, the compiler will



complain. If there are additional classes in that compilation unit, they

are hidden from the world outside that package because they’re not

public, and they comprise “support” classes for the main public

class.

Code Organization

When you compile a .java file, you get an output file for each class

in the .java file. Each output file has the name of its corresponding

class in the .java file, but with an extension of .class. Thus you

can end up with quite a few .class files from a small number of

.java files. If you’ve programmed with a compiled language, you

might be used to the compiler spitting out an intermediate form

(usually an “obj” file) that is then packaged together with others of its

kind using a linker (to create an executable file) or a librarian (to

create a library). That’s not how Java works. A working program is a

bunch of .class files, which can be packaged and compressed into a

Java ARchive (JAR) file (using the jar archiver). The Java

interpreter is responsible for finding, loading, and interpreting these



files.

A library is a group of these class files. Each source file usually has a

public class and any number of non-public classes, so there’s one

public component for each source file. To say that all these

components belong together, use the package keyword.

If you use a package statement, it must appear as the first non-

comment in the file. When you say:

package hiding;

you’re stating this compilation unit is part of a library named

hiding. Put another way, you’re saying that the public class name

within this compilation unit is under the umbrella of the name

hiding, and anyone who wants to use that name must either fully

specify the name or use the import keyword in combination with

hiding, using the choices given previously. (Note that the

convention for Java package names is to use all lowercase letters, even

for intermediate words.)

For example, suppose the name of a file is MyClass.java. This

means there can only be one public class in that file, and the name

of that class must be MyClass (including the capitalization):

// hiding/mypackage/MyClass.java



package hiding.mypackage;

public class MyClass {

// ...

}

Now, if someone wants to use MyClass or, for that matter, any of the

other public classes in hiding.mypackage, they must use the

import keyword to make the name or names in

hiding.mypackage available. The alternative is to give the fully

qualified name:

// hiding/QualifiedMyClass.java

public class QualifiedMyClass {

public static void main(String[] args) {

hiding.mypackage.MyClass m =

new hiding.mypackage.MyClass();

}

}

The import keyword makes it cleaner:

// hiding/ImportedMyClass.java

import hiding.mypackage.*;

public class ImportedMyClass {



public static void main(String[] args) {

MyClass m = new MyClass();

}

}

The package and import keywords divide up the single global

namespace so names don’t clash.

Creating Unique Package

Names

You might observe that, since a package never really gets “packaged”

into a single file, a package can be made up of many .class files, and

things could get a bit cluttered. To prevent this, a logical thing to do is

to place all the .class files for a particular package into a single

directory; that is, use the hierarchical file structure of the operating

system to your advantage. This is one way that Java references the

problem of clutter; you’ll see the other way later when the jar utility

is introduced.

Collecting the package files into a single subdirectory solves two other



problems: creating unique package names, and finding those classes

that might be buried in a directory structure someplace. This is

accomplished by encoding the path of the location of the .class file

into the name of the package. By convention, the first part of the

package name is the reversed Internet domain name of the creator

of the class. Since Internet domain names are unique, if you follow this

convention, your package name is also unique and you won’t have a

name clash. If you don’t have your own domain name, you must

fabricate an unlikely combination (such as your first and last name) to

create unique package names. If you’ve decided to start publishing

Java code, it’s worth the relatively small effort to get a domain name.

The second part of this trick is resolving the package name into a

directory on your machine, so when the Java interpreter must load a

.class file, it can locate the directory where that .class file

resides. First, it finds the environment variable CLASSPATH2 (set via the
operating system, and sometimes by the installation program that

installs Java or a Java-based tool on your machine). CLASSPATH

contains one or more directories that are roots in a search for .class

files. Starting at that root, the interpreter takes the package name and

replaces each dot with a slash to generate a path name off of the

CLASSPATH root (so package foo.bar.baz becomes



foo\bar\baz or foo/bar/baz or possibly something else,

depending on your operating system). This is then concatenated with

the various entries in the CLASSPATH. That’s where it looks for the

.class file with the name corresponding to the class you’re trying to

create. (It also searches some standard directories relative to where

the Java interpreter resides.)

To understand this, consider my domain name, MindviewInc.com.

By reversing this and making it all lowercase, com.mindviewinc

establishes my unique global name for my classes. (The com, edu,

org, etc., extensions were formerly capitalized in Java packages, but

this was changed in Java 2 so the entire package name is lowercase.) I

subdivide this by deciding to create a library named simple,

yielding:

package com.mindviewinc.simple;

This package name can be used as an umbrella namespace for the

following two files:

// com/mindviewinc/simple/Vector.java

// Creating a package

package com.mindviewinc.simple;

public class Vector {



public Vector() {

System.out.println("com.mindviewinc.simple.Vector");

}

}

As mentioned before, the package statement must be the first non-

comment code in the file. The second file looks much the same:

// com/mindviewinc/simple/List.java

// Creating a package

package com.mindviewinc.simple;

public class List {

public List() {

System.out.println("com.mindviewinc.simple.List");

}

}

Both of these files are placed in the following subdirectory on my

machine:

C:\DOC\Java\com\mindviewinc\simple

(The first comment line in every file in this book establishes the

directory location of that file in the source-code tree—this is used by

the automatic code-extraction tool for this book.)



If you walk back through this path, you see the package name

com.mindviewinc.simple, but what about the first portion of

the path? That’s taken care of by the CLASSPATH environment

variable. On my machine, part of the CLASSPATH looks like this:

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\Java

The CLASSPATH can contain many alternative search paths.

There’s a variation when using JAR files, however. You must put the

actual name of the JAR file in the classpath, not just the path where

it’s located. So for a JAR named grape.jar your classpath would

include:

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar

Once the classpath is set up properly, the following file can be placed

in any directory:

// hiding/LibTest.java

// Uses the library

import com.mindviewinc.simple.*;

public class LibTest {

public static void main(String[] args) {

Vector v = new Vector();

List l = new List();



}

}

/* Output:

com.mindviewinc.simple.Vector

com.mindviewinc.simple.List

*/

When the compiler encounters the import statement for the

simple library, it begins searching at the directories specified by

CLASSPATH, looking for subdirectory

com/mindviewinc/simple, then seeking the compiled files of the

appropriate names (Vector.class for Vector, and

List.class for List). Note that both the classes and the desired

methods in Vector and List must be public.

Setting the CLASSPATH is such a trial for beginning Java users (it was

for me, when I started) that the JDK for later versions of Java got a bit

smarter. You’ll find that when you install it, even if you don’t set the

CLASSPATH, you can compile and run basic Java programs. However,

to compile and run the individual examples for this book (available at

https://github.com/BruceEckel/OnJava8-examples), you must add

the base directory of the book’s unpacked code tree to your

https://github.com/BruceEckel/Onjava8-examples


CLASSPATH (the gradlew command manages its own CLASSPATH,

so you only need to set the CLASSPATH if you want to use javac and

java directly, without Gradle).

Collisions

What happens if two libraries are imported via * and they include the

same names? For example, suppose a program does this:

import com.mindviewinc.simple.*;

import java.util.*;

Since java.util.* also contains a Vector class, this causes a

potential collision. However, as long as you don’t write the code that

actually causes the collision, everything is OK—this is good, because

otherwise you might do a lot of typing to prevent collisions that never

happen.

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know, and

the reader can’t know either. So the compiler complains and forces you

to be explicit. For the standard Java Vector, you say:

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the



location of that Vector, there’s no need for the import

java.util.* statement unless I use something else from

java.util.

Alternatively, you can use the single-class import form to prevent

clashes—as long as you don’t use both colliding names in the same

program (in which case you must fall back to fully specifying the

names).

A Custom Tool Library

With this knowledge, you can now create your own libraries of tools to

reduce or eliminate duplicate code.

Ordinarily, I would package such a utility using my reversed domain

name, in something like com.mindviewinc.util, but to simplify

and reduce some visual noise, I’ll reduce this book’s utility package

name to just onjava.

For example, here are the range() methods, introduced in the

Control Flow chapter, that allow for-in syntax for simple integer sequences:

// onjava/Range.java



// Array creation methods that can be used without

// qualifiers, using static imports:

package onjava;

public class Range {

// Produce a sequence [0..n)

public static int[] range(int n) {

int[] result = new int[n];

for(int i = 0; i < n; i++)

result[i] = i;

return result;

}

// Produce a sequence [start..end)

public static int[] range(int start, int end) {

int sz = end - start;

int[] result = new int[sz];

for(int i = 0; i < sz; i++)

result[i] = start + i;



return result;

}

// Produce sequence [start..end) incrementing by step

public static

int[] range(int start, int end, int step) {

int sz = (end - start)/step;

int[] result = new int[sz];

for(int i = 0; i < sz; i++)

result[i] = start + (i * step);

return result;

}

}

The location of this file must be in a directory that starts at one of the

CLASSPATH locations, then continues into onjava. After compiling,

the methods can be used anywhere in your system using an import

static statement.

From now on, whenever you come up with a useful new utility, you can

add it to your own library. You’ll see more components added to the

onjava library throughout the book.

Using Imports to Change



Behavior

A missing feature in Java is C’s conditional compilation, where you

change a switch and get different behavior without changing any other

code. The reason such a feature was left out of Java is probably

because it is most often used in C to solve cross-platform issues:

Different portions of the code are compiled depending on the target

platform. Since Java is intended to be automatically cross-platform,

such a feature should not be necessary.

However, there are other valuable uses for conditional compilation. A

very common use is for debugging code. The debugging features are

enabled during development and disabled in the shipping product.

You can accomplish this by changing the package that’s imported to

change the code used in your program from the debug version to the



production version. This technique can be used for any kind of

conditional code.

Package Caveat

When you create a package, you implicitly specify a directory structure

when you give the package a name. The package must live in the

directory indicated by its name, and that directory must be searchable

starting from the CLASSPATH. Experimenting with the package

keyword can be a bit frustrating at first, because unless you adhere to

the package-name to directory-path rule, you’ll get many mysterious

runtime messages about not being able to find a particular class, even

if that class is sitting there in the same directory. If you get a message

like this, try commenting out the package statement, and if it runs,

you’ll know where the problem lies.

Note that compiled code is often placed in a different directory than

source code. This is the standard for many projects, and integrated

development environments will usually do it automatically. The path

to the compiled code must still be found by the JVM through the

CLASSPATH.

Java Access Specifiers

The Java access specifiers public, protected, and private are



placed in front of definitions for members in your class, both fields

and methods. Each access specifier only controls the access for that

particular definition.

If you don’t provide an access specifier, it means “package access.” So

one way or another, everything has some kind of access control. In the

following sections, you’ll learn about various kinds of access.

Package Access

All the examples before this chapter have only used the public

access specifier, or no specifier ( default access). Default access has no

keyword, and is commonly called package access (sometimes

“friendly”). It means that all the other classes in the current package

have access to that member. To all the classes outside of this package,

the member appears as private. Since a compilation unit—a file—

can belong to only a single package, all the classes within a single

compilation unit are automatically available to each other via package

access.

Package access groups related classes into a package so they can easily



interact with each other. Classes in a package grant mutual access to

their package-access members, so you “own” the code in that package.

It makes sense that only code you own should have package access to

other code you own. Package access is one reason for grouping classes

together in a package. In many languages, the way you organize your

definitions in files can be arbitrary, but in Java you’re compelled to

organize them in a sensible fashion. In addition, you’ll probably

exclude classes that shouldn’t have access to the classes defined in the

current package.

The class controls the code that has access to its members. Code from

another package can’t just come around and say, “Hi, I’m a friend of

Bobs!” and expect to be shown the protected, package-access, and

private members of Bob. The only way to grant access to a member

is to:

1. Make the member public. Then everybody, everywhere, can

access it.

2. Give the member package access by leaving off any access



specifier, and put the other classes in the same package. Then the

other classes in that package can access the member.

3. As you’ll see in the Reuse chapter, when inheritance is introduced, an
inherited class can access a protected member as well as a

public member (but not private members). It can access

package-access members only if the two classes are in the same

package. But don’t worry about inheritance and protected

right now.

4. Provide “accessor/mutator” methods (also known as “get/set”

methods) that read and change the value.

public: Interface Access

When you use the public keyword, it means the member declaration

that immediately follows public is available to everyone, in

particular to the client programmer who uses the library. Suppose you

define a package dessert containing the following compilation unit:

// hiding/dessert/Cookie.java

// Creates a library

package hiding.dessert;

public class Cookie {

public Cookie() {

System.out.println("Cookie constructor");



}

void bite() { System.out.println("bite"); }

}

Remember, the class file produced by Cookie.java must reside in a

subdirectory called dessert, in a directory under hiding

(indicating the Implementation Hiding chapter of this book) that must be
under one of the CLASSPATH directories. Don’t make the mistake

of thinking that Java will always look at the current directory as one of

the starting points for searching. If you don’t have a . as one of the

paths in your CLASSPATH, Java won’t look there.

Now if you create a program that uses Cookie:

// hiding/Dinner.java

// Uses the library

import hiding.dessert.*;

public class Dinner {

public static void main(String[] args) {

Cookie x = new Cookie();

//- x.bite(); // Can't access

}

}

/* Output:



Cookie constructor

*/

you can create a Cookie object, since its constructor is public and

the class is public. (We’ll look more at the concept of a public

class later.) However, the bite() member is inaccessible inside

Dinner.java since bite() provides access only within package

dessert, so the compiler prevents you from using it.

The Default Package

You might be surprised to discover that the following code compiles,

even though it appears to break the rules:

// hiding/Cake.java

// Accesses a class in a separate compilation unit

class Cake {

public static void main(String[] args) {

Pie x = new Pie();

x.f();

}



}

/* Output:

Pie.f()

*/

In a second file in the same directory:

// hiding/Pie.java

// The other class

class Pie {

void f() { System.out.println("Pie.f()"); }

}

Initially, these seem like completely foreign files, and yet Cake is able

to create a Pie object and call its f() method. (Note you must have .

in your CLASSPATH for the files to compile.) You’d typically think

Pie and f() have package access and are therefore not available to

Cake. They do have package access—that part is correct. The reason

they are available in Cake.java is because they are in the same

directory and have no explicit package name. Java treats files like this

as implicitly part of the “default package” for that directory, and thus

they provide package access to all the other files in that directory.

private: You Can’t Touch



That!

The private keyword means no one can access that member except

the class that contains that member, inside methods of that class.

Other classes in the same package cannot access private members,

so it’s as if you’re even insulating the class against yourself. On the

other hand, it’s not unlikely that a package might be created by several

people collaborating together. With private, you can freely change

that member without worrying whether it affects another class in the

same package.

Default package access often provides an adequate amount of hiding;

remember, a package-access member is inaccessible to the client

programmer using the class. This is nice, since default access is the

one you normally use (and the one that you’ll get if you forget to add

any access control). Thus, you’ll typically think about access for the

members you make public for the client programmer. As a result,

you might initially think you won’t use the private keyword very

often, since it’s tolerable to get away without it. However, the

consistent use of private is important, especially where

multithreading is concerned. (As you’ll see in the Concurrent

Programming chapter.)



Here’s an example of private:

// hiding/IceCream.java

// Demonstrates "private" keyword

class Sundae {

private Sundae() {}

static Sundae makeASundae() {

return new Sundae();

}

}

public class IceCream {

public static void main(String[] args) {

//- Sundae x = new Sundae();

Sundae x = Sundae.makeASundae();

}

}

This shows an example where private comes in handy: To control

how an object is created and prevent someone from directly accessing



a particular constructor (or all of them). In the preceding example, you

cannot create a Sundae object via its constructor; instead, you must

call the makeASundae() method to do it for you.3

Any method that you’re certain is only a “helper” method for that class

can be made private, to ensure you don’t accidentally use it

elsewhere in the package and thus prohibit yourself from changing or

removing the method. Making a method private retains these

options.

The same is true for a private field inside a class. Unless you must

expose the underlying implementation (less likely than you might

think), make fields private. However, just because a reference to an

object is private inside a class doesn’t mean that some other object

can’t have a public reference to the same object. (See Appendix:

Passing and Returning Objects to learn about aliasing issues.)

protected: Inheritance Access

Understanding the protected access specifier requires a jump

ahead. First, be aware you don’t have to understand this section to

continue through this book up through inheritance (the Reuse

chapter). But for completeness, here is a brief description and example

using protected.



The protected keyword deals with a concept called inheritance,

that takes an existing class—which we refer to as the base class—and

adds new members to that class without touching the existing class.

You can also change the behavior of existing members of the class. To

inherit from a class, you say that your new class extends an existing

class, like this:

class Foo extends Bar {

The rest of the class definition looks the same.

If you create a new package and inherit from a class in another

package, the only members you can access are the public members

of the original class. (If you perform the inheritance in the same

package, you can manipulate all the members with package access.)

Sometimes the creator of the base class would like to take a particular

member and grant access to derived classes but not the world in

general. That’s what protected does. protected also gives

package access—that is, other classes in the same package can access

protected elements.

If you refer back to the file Cookie.java, the following class cannot

call the package-access member bite():

// hiding/ChocolateChip.java



// Can't use package-access member from another package

import hiding.dessert.*;

public class ChocolateChip extends Cookie {

public ChocolateChip() {

System.out.println("ChocolateChip constructor");

}

public void chomp() {

//- bite(); // Can't access bite

}

public static void main(String[] args) {

ChocolateChip x = new ChocolateChip();

x.chomp();

}

}

/* Output:

Cookie constructor

ChocolateChip constructor

*/

If a method bite() exists in class Cookie, it also exists in any class

inherited from Cookie. But since bite() has package access and is



in a foreign package, it’s unavailable to us in this one. You can make it

public, but then everyone has access, and maybe that’s not what you

want. If you change the class Cookie as follows:

// hiding/cookie2/Cookie.java

package hiding.cookie2;

public class Cookie {

public Cookie() {

System.out.println("Cookie constructor");

}

protected void bite() {

System.out.println("bite");

}

}

bite() becomes accessible to anyone inheriting from Cookie:

// hiding/ChocolateChip2.java

import hiding.cookie2.*;

public class ChocolateChip2 extends Cookie {

public ChocolateChip2() {

System.out.println("ChocolateChip2 constructor");

}



public void chomp() { bite(); } // Protected method

public static void main(String[] args) {

ChocolateChip2 x = new ChocolateChip2();

x.chomp();

}

}

/* Output:

Cookie constructor

ChocolateChip2 constructor

bite

*/

Although bite() also has package access, it is not public.

Package Access vs. Public

Constructors

When you define a class with package access, you can give it a

public constructor without any complaints from the compiler:

// hiding/packageaccess/PublicConstructor.java



package hiding.packageaccess;

class PublicConstructor {

public PublicConstructor() {}

}

A tool like Checkstyle, which you can run with the command

gradlew hiding:checkstyleMain, points out that this is false

advertising, and technically an error. You can’t actually access this so-

called public constructor from outside the package:

// hiding/CreatePackageAccessObject.java

// {WillNotCompile}

import hiding.packageaccess.*;

public class CreatePackageAccessObject {

public static void main(String[] args) {

new PublicConstructor();

}

}

If you compile this file by hand, you’ll get a compiler error message:

CreatePackageAccessObject.java:6: error:



PublicConstructor is not public in hiding.packageaccess;

cannot be accessed from outside package

new PublicConstructor();

^

1 error

Thus, declaring a constructor public inside a package-access class

doesn’t actually make it public, and it should probably be flagged

with a compiler error at the point of declaration.

Interface and

Implementation

Access control is often called implementation hiding. Wrapping data

and methods within classes in combination with implementation

hiding is called encapsulation.4 The result is a data type with characteristics
and behaviors.

Access control puts boundaries within a data type for two important

reasons. The first is to establish what client programmers can and



cannot use. You build your internal mechanisms into the structure

without worrying that the client programmers will accidentally treat

the internals as part of the interface they should be using.

This feeds directly into the second reason: to separate interface from

implementation. If the structure is used in a set of programs, but client

programmers can’t do anything but send messages to the public

interface, you are free to change anything that’s not public (e.g.,

package access, protected, or private) without breaking client

code.

For clarity, you might prefer a style of creating classes that puts the

public members at the beginning, followed by the protected,

package-access, and private members. The advantage is that the

user of the class can then read down from the top and see first what’s

important to them (the public members, because they can be

accessed outside the file), and stop reading when they encounter the

non-public members, which are part of the internal



implementation:

// hiding/OrganizedByAccess.java

public class OrganizedByAccess {

public void pub1() { /* ... */ }

public void pub2() { /* ... */ }

public void pub3() { /* ... */ }

private void priv1() { /* ... */ }

private void priv2() { /* ... */ }

private void priv3() { /* ... */ }

private int i;

// ...

}

This makes it only partially easier to read, because the interface and

implementation are still mixed together. That is, you still see the

source code—the implementation—because it’s right there in the class.

In addition, the comment documentation supported by Javadoc

lessens the importance of code readability by the client programmer.

Displaying the interface to the consumer of a class is really the job of

the class browser, a tool that shows all available classes and what you

can do with them (i.e., what members are available). In Java, the JDK



documentation gives the same effect as a class browser.

Class Access

Access specifiers also determine which classes within a library are

available to the users of that library. If you want a class to be available

to a client programmer, you use the public keyword on the entire

class definition. This controls whether the client programmer can even

create an object of the class.

To control access for a class, the specifier must appear before the

keyword class:

public class Widget {

If the name of your library is hiding, any client programmer can

access Widget by saying:

import hiding.Widget;

or

import hiding.*;

There are additional constraints:

1. There can be only one public class per compilation unit (file).

The idea is that each compilation unit has a single public interface

represented by that public class. It can have as many

supporting package-access classes as you want. More than one



public class inside a compilation unit produces a compile-time

error message.

2. The name of the public class must exactly match the name of

the file containing the compilation unit, including capitalization.

So for Widget, the name of the file must be Widget.java, not

widget.java or WIDGET.java. Again, you’ll get a compile-

time error if they don’t agree.

3. It is possible, though not typical, for a compilation unit to lack a

public class. Here, you can name the file whatever you like

(although naming it arbitrarily is confusing to people reading and

maintaining the code).

What if you’ve got a class inside hiding that you’re only using to

accomplish the tasks performed by Widget or some other public

class in hiding? You don’t want to bother creating documentation

for the client programmer, and you think sometime later you might

completely change things and rip out your class altogether,

substituting a different one. To give you this flexibility, ensure that no

client programmers become dependent on your particular

implementation details hidden inside hiding by leaving the public

keyword off the class, to give it package access.



When you create a package-access class, it still makes sense to make

the fields of the class private—you should always make fields as

private as possible—but it’s generally reasonable to give the

methods the same access as the class (package access). Since a

package-access class is usually used only within the package, you only

make the methods of such a class public if you’re forced, and in

those cases, the compiler will tell you.

Note that a class cannot be private (that would make it inaccessible

to anyone but the class) or protected.5 So you have only two choices for
class access: package access or public. To prevent access

to that class, make all the constructors private, thereby prohibiting

anyone but you, inside a static member of the class, from creating

an object of that class:

// hiding/Lunch.java

// Demonstrates class access specifiers. Make a class

// effectively private with private constructors:

class Soup1 {

private Soup1() {}

public static Soup1 makeSoup() { // [1]

return new Soup1();

}



}

class Soup2 {

private Soup2() {}

private static Soup2 ps1 = new Soup2(); // [2]

public static Soup2 access() {

return ps1;

}

public void f() {}

}

// Only one public class allowed per file:

public class Lunch {

void testPrivate() {

// Can't do this! Private constructor:

//- Soup1 soup = new Soup1();

}

void testStatic() {

Soup1 soup = Soup1.makeSoup();

}

void testSingleton() {

Soup2.access().f();



}

}

You can create an object via a static method using [1]. You can also

create a static object and return a reference when the user requests it,

as in [2].

Up to now, most of the methods return either void or a primitive

type, so the definition in [1] might look a little confusing at first. The

word Soup1 before the method name (makeSoup) tells what the

method returns. So far, this has usually been void, which means it

returns nothing. But you can also return a reference to an object,

which happens here. This method returns a reference to an object of

class Soup1.

The classes Soup1 and Soup2 show how to prevent direct creation of

a class by making all the constructors private. Remember that if

you don’t explicitly create at least one constructor, the no-arg

constructor (constructor with no arguments) is created for you. By



writing the no-arg constructor, it won’t be created automatically. By

making it private, no one can create an object of that class. But now

how does anyone use this class? The preceding example shows two

options. In Soup1, a static method is created that creates a new

Soup1 and returns a reference to it. This can be useful to perform

extra operations on the Soup1 before returning it, or to keep count of

how many Soup1 objects to create (perhaps to restrict their

population).

Soup2 uses what’s called a design pattern. This particular pattern is

called a Singleton, because it allows only a single object to ever be

created. The object of class Soup2 is created as a static private

member of Soup2, so there’s one and only one, and you can’t get at it

except through the public method access().

Summary

Boundaries are important in any relationship, respected by all parties

involved. When you create a library, you establish a relationship with

the user of that library—the client programmer—who is another

programmer, but one using your library to build an application or a

bigger library.

Without rules, client programmers can do anything they want with all



the members of a class, even if you might prefer they don’t directly

manipulate some of the members. Everything’s naked to the world.

This chapter looked at how classes are built to form libraries: first, the

way a group of classes is packaged within a library, and second, the

way the class controls access to its members.

It is estimated that a C programming project begins to break down

somewhere between 50K and 100K lines of code because C has a single

namespace, and names begin to collide, causing extra management

overhead. In Java, the package keyword, the package naming

scheme, and the import keyword give you complete control over

names, so the issue of name collision is easily avoided.

There are two reasons for controlling access to members. The first is to

keep users’ hands off portions they shouldn’t touch. These pieces are

necessary for the internal operations of the class, but not part of the

interface that the client programmer needs. So making methods and

fields private is a service to client programmers, because they can

easily see what’s important to them and what they can ignore. It

simplifies their understanding of the class.

The second and most important reason for access control is to allow

the library designer to change the internal workings of the class



without worrying it will affect the client programmer. You might, for

example, build a class one way at first, then discover that restructuring

your code will provide much greater speed. If the interface and

implementation are clearly separated and protected, you can

accomplish this without forcing client programmers to rewrite their

code. Access control ensures that no client programmer becomes

dependent on any part of the underlying implementation of a class.

When you have the ability to change the underlying implementation,

you not only have the freedom to improve your design, you also have

the freedom to make mistakes. No matter how carefully you plan and

design, you’ll make mistakes. Knowing it’s relatively safe to make

these mistakes means you’ll be more experimental, you’ll learn more

quickly, and you’ll finish your project sooner.

The public interface to a class is what the user does see, so that is

the most important part of the class to get “right” during analysis and

design. Even that allows you some leeway for change. If you don’t get

the interface right the first time, you can add more methods, as long as

you don’t remove any that client programmers have already used in

their code.

Notice that access control focuses on a relationship—and a kind of



communication—between a library creator and the external clients of

that library. There are many situations where this is not the case. For

example, if you write all the code yourself, or you work in close

quarters with a small team and everything goes into the same package.

These situations have a different kind of communication, and rigid

adherence to access rules might not be optimal. Default (package)

access might be just fine.

1. See Refactoring: Improving the Design of Existing Code, by

Martin Fowler, et al. (Addison-Wesley, 1999). Occasionally

someone will argue against refactoring, suggesting that code

which works is perfectly good and it’s a waste of time to refactor

it. The problem with this way of thinking is that the lion’s share of

a project’s time and money is not in the initial writing of the code,

but in maintaining it. Making code easier to understand translates

into very significant dollars. ↩

2. When referring to the environment variable, capital letters are

used (e.g. CLASSPATH).↩

3. There’s another effect here: Since the no-arg constructor is the

only one defined, and it’s private, it will prevent inheritance of

this class. (A subject to be introduced later.)↩



4. However, people often refer to implementation hiding alone as

encapsulation. ↩

5. Actually, an inner class can be private or protected, but that’s a

special case. These are introduced in the Inner Classes chapter.↩

Reuse

One of the most compelling reasons for

object-oriented programming is code

reuse.

In procedural languages like C, “reuse” often means “copying code,”

and this is equally easy to do in any language. But it doesn’t work very

well. Like everything in Java, the solution revolves around the class.

You reuse code by creating new classes, but instead of creating them

from scratch, you use existing classes that someone has already built

and debugged.

The trick is to use the classes without soiling the existing code. In this

chapter you’ll see two ways to accomplish this. The first is

straightforward: You create objects of your existing class inside the

new class. This is called composition, because the new class is



composed of objects of existing classes. You’re reusing the

functionality of the code, not its form.

The second approach is more subtle. It creates a new class as a type of

an existing class. You literally take the form of the existing class and

add code to it without modifying the existing class. This technique is

called inheritance, and the compiler does most of the work.

Inheritance is one of the cornerstones of object-oriented

programming, and has additional implications explored in the

Polymorphism chapter.

Much syntax and behavior are similar for both composition and

inheritance (which makes sense because they are both ways of making

new types from existing types). In this chapter, you’ll learn about these

code reuse mechanisms.

Composition Syntax

Composition has been used frequently in the examples you’ve already

seen. You simply place object references inside new classes. For



example, suppose you’d like an object that holds several String

objects, a couple of primitives, and an object of another class. For the

non-primitive objects, you put references inside your new class, but

you define the primitives directly:

// reuse/SprinklerSystem.java

// Composition for code reuse

class WaterSource {

private String s;

WaterSource() {

System.out.println("WaterSource()");

s = "Constructed";

}

@Override

public String toString() { return s; }

}

public class SprinklerSystem {

private String valve1, valve2, valve3, valve4;

private WaterSource source = new WaterSource();

private int i;

private float f;



@Override

public String toString() {

return

"valve1 = " + valve1 + " " +

"valve2 = " + valve2 + " " +

"valve3 = " + valve3 + " " +

"valve4 = " + valve4 + "\n" +

"i = " + i + " " + "f = " + f + " " +

"source = " + source; // [1]

}

public static void main(String[] args) {

SprinklerSystem sprinklers = new SprinklerSystem();

System.out.println(sprinklers);

}

}

/* Output:

WaterSource()

valve1 = null valve2 = null valve3 = null valve4 = null

i = 0 f = 0.0 source = Constructed

*/



One of the methods defined in both classes is special: toString().

Every non-primitive object has a toString() method, and it’s

called in special situations when the compiler wants a String but it

has an object. So in [1],the compiler sees you trying to “add” a

String object (“source =”) to a WaterSource. Because you can

only add a String to another String, it says, “I’ll turn source

into a String by calling toString().” Then it can combine the

two Strings and pass the resulting String to

System.out.println(). To allow this behavior with any class

you create, you need only write a toString() method.

The @Override annotation is used on toString() to tell the

compiler to make sure we are overriding properly. @Override is

optional, but it helps verify you don’t misspell (or, more subtly, mis-

type uppercase or lowercase letters), or make other common mistakes.

Primitive fields in a class are automatically initialized to zero, as noted

in the Objects Everywhere chapter. But the object references are

initialized to null, and if you try to call methods for any of them, you’ll get
an exception—a runtime error. Conveniently, you can still

print a null reference without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for

every reference, because that would incur unnecessary overhead in



many cases. There are four ways to initialize references:

1. When the objects are defined. This means they’ll always be

initialized before the constructor is called.

2. In the constructor for that class.

3. Right before you actually use the object. This is often called lazy

initialization. It can reduce overhead in situations where object

creation is expensive and the object doesn’t need to be created

every time.

4. Using instance initialization.

All four approaches are shown here:

// reuse/Bath.java

// Constructor initialization with composition

class Soap {

private String s;

Soap() {

System.out.println("Soap()");

s = "Constructed";

}

@Override

public String toString() { return s; }



}

public class Bath {

private String // Initializing at point of definition:

s1 = "Happy",

s2 = "Happy",

s3, s4;

private Soap castille;

private int i;

private float toy;

public Bath() {

System.out.println("Inside Bath()");

s3 = "Joy";

toy = 3.14f;

castille = new Soap();

}

// Instance initialization:

{ i = 47; }

@Override

public String toString() {

if(s4 == null) // Delayed initialization:



s4 = "Joy";

return

"s1 = " + s1 + "\n" +

"s2 = " + s2 + "\n" +

"s3 = " + s3 + "\n" +

"s4 = " + s4 + "\n" +

"i = " + i + "\n" +

"toy = " + toy + "\n" +

"castille = " + castille;

}

public static void main(String[] args) {

Bath b = new Bath();

System.out.println(b);

}

}

/* Output:

Inside Bath()

Soap()

s1 = Happy

s2 = Happy



s3 = Joy

s4 = Joy

i = 47

toy = 3.14

castille = Constructed

*/

In the Bath constructor, a statement is executed before any of the

initializations take place. When you don’t initialize at the point of

definition, there’s still no guarantee that you’ll perform any

initialization before you send a message to an object reference—an un-

initialized reference will produce a runtime exception if you try to call

a method on it.

When toString() is called it fills in s4 so all the fields are properly

initialized by the time they are used.

Inheritance Syntax

Inheritance is an integral part of all object-oriented languages. It turns



out you’re always inheriting when you create a class, because unless

you explicitly inherit from some other class, you implicitly inherit from

Java’s standard root class Object.

The syntax for composition is obvious, but inheritance uses a special

syntax. When you inherit, you say, “This new class is like that old

class.” You state this in code before the opening brace of the class

body, using the keyword extends followed by the name of the base

class. When you do this, you automatically get all the fields and

methods in the base class. Here’s an example:

// reuse/Detergent.java

// Inheritance syntax & properties

class Cleanser {

private String s = "Cleanser";

public void append(String a) { s += a; }

public void dilute() { append(" dilute()"); }

public void apply() { append(" apply()"); }

public void scrub() { append(" scrub()"); }

@Override

public String toString() { return s; }

public static void main(String[] args) {



Cleanser x = new Cleanser();

x.dilute(); x.apply(); x.scrub();

System.out.println(x);

}

}

public class Detergent extends Cleanser {

// Change a method:

@Override

public void scrub() {

append(" Detergent.scrub()");

super.scrub(); // Call base-class version

}

// Add methods to the interface:

public void foam() { append(" foam()"); }

// Test the new class:

public static void main(String[] args) {

Detergent x = new Detergent();

x.dilute();

x.apply();

x.scrub();



x.foam();

System.out.println(x);

System.out.println("Testing base class:");

Cleanser.main(args);

}

}

/* Output:

Cleanser dilute() apply() Detergent.scrub() scrub()

foam()

Testing base class:

Cleanser dilute() apply() scrub()

*/

This demonstrates a number of features. First, in the Cleanser

append() method, Strings are concatenated to s using the +=

operator, one of the operators (along with +) that the Java designers

“overloaded” to work with Strings.

Second, both Cleanser and Detergent contain a main()

method. You can create a main() for each of your classes; this allows easy
testing for each class. You don’t need to remove the main()

when you’re finished; you can leave it in for later testing. Even if you

have many classes in a program, the only main() that runs is the one



invoked on the command line. So here, when you say java

Detergent, Detergent.main() is called. But you can also say

java Cleanser to invoke Cleanser.main(), even though

Cleanser is not a public class. Even if a class has package access,

a public main() is accessible.

Here, Detergent.main() calls Cleanser.main() explicitly,

passing it the same arguments from the command line (of course, you

can pass it any String array).

All methods in Cleanser are public. Remember that if you leave

off any access specifier, the member defaults to package access, which

allows access only to package members. Thus, within this package,

anyone could use those methods if there were no access specifier.

Detergent would have no trouble, for example. However, if a class

from some other package were to inherit from Cleanser, it could

access only public members. So to allow for inheritance, as a

general rule make all fields private and all methods public.



(protected members also allow access by derived classes; you’ll

learn about this later.) In particular cases you must make adjustments,

but this is a useful guideline.

Cleanser has a set of methods in its interface: append(),

dilute(), apply(), scrub(), and toString(). Because

Detergent is derived from Cleanser (via the extends

keyword), it automatically gets all these methods in its interface, even

though you don’t see them all explicitly defined in Detergent. You

can think of inheritance, then, as reusing the class.

As seen in scrub(), it’s possible to take a method that’s been defined

in the base class and modify it. Here, you might call the method from

the base class inside the new version. But inside scrub(), you

cannot simply call scrub(), since that would produce a recursive

call. To solve this problem, Java’s super keyword refers to the

“superclass” (base class) that the current class inherits. Thus the

expression super.scrub() calls the base-class version of the



method scrub().

When inheriting, you’re not restricted to using the methods of the base

class. You can also add new methods to the derived class exactly the

way you add any method to a class: Just define it. The method

foam() is an example.

In Detergent.main() you see that for a Detergent object, you

can call all the methods available in Cleanser as well as in

Detergent (such as foam()).

Initializing the Base Class

There are now two classes involved: the base class and the derived

class. It can be confusing to imagine the resulting object produced by a

derived class. From the outside, it looks like the new class has the

same interface as the base class and maybe some additional methods

and fields. But inheritance doesn’t just copy the interface of the base

class. When you create an object of the derived class, it contains within

it a subobject of the base class. This subobject is the same as if you had

created an object of the base class by itself. It’s just that from the

outside, the subobject of the base class is wrapped within the derived-

class object.

It’s essential that the base-class subobject be initialized correctly, and there’s
only one way to guarantee this: Perform the initialization in the



constructor by calling the base-class constructor, which has all the

appropriate knowledge and privileges to perform the base-class

initialization. Java automatically inserts calls to the base-class

constructor in the derived-class constructor. The following example

shows this with three levels of inheritance:

// reuse/Cartoon.java

// Constructor calls during inheritance

class Art {

Art() {

System.out.println("Art constructor");

}

}

class Drawing extends Art {

Drawing() {

System.out.println("Drawing constructor");

}

}

public class Cartoon extends Drawing {

public Cartoon() {

System.out.println("Cartoon constructor");



}

public static void main(String[] args) {

Cartoon x = new Cartoon();

}

}

/* Output:

Art constructor

Drawing constructor

Cartoon constructor

*/

The construction happens from the base “outward,” so the base class is

initialized before the derived-class constructors can access it. Even if

you don’t create a constructor for Cartoon, the compiler will

synthesize a no-arg constructor for you that calls the base-class

constructor. Try removing the Cartoon constructor to see this.

Constructors with Arguments

The preceding example has all no-arg constructors; that is, they have

no arguments. It’s easy for the compiler to call these because there’s

no question about what arguments to pass. If there isn’t a no-arg base-

class constructor, or if you must call a base-class constructor that has



arguments, you must explicitly write a call to the base-class

constructor using the super keyword and the appropriate argument

list:

// reuse/Chess.java

// Inheritance, constructors and arguments

class Game {

Game(int i) {

System.out.println("Game constructor");

}

}

class BoardGame extends Game {

BoardGame(int i) {

super(i);

System.out.println("BoardGame constructor");

}

}

public class Chess extends BoardGame {

Chess() {

super(11);

System.out.println("Chess constructor");



}

public static void main(String[] args) {

Chess x = new Chess();

}

}

/* Output:

Game constructor

BoardGame constructor

Chess constructor

*/

If you don’t call the base-class constructor inside the BoardGame

constructor, the compiler will complain it can’t find a constructor of

the form Game(). In addition, the call to the base-class constructor

must be the first action inside the derived-class constructor. (The

compiler reminds you if you get it wrong.)

Delegation



A third relationship, not directly supported by Java, is called

delegation. This is midway between inheritance and composition,

because you place a member object in the class you’re building (like

composition), but at the same time you expose all the methods from

the member object in your new class (like inheritance). For example, a

spaceship needs a control module:

// reuse/SpaceShipControls.java

public class SpaceShipControls {

void up(int velocity) {}

void down(int velocity) {}

void left(int velocity) {}

void right(int velocity) {}

void forward(int velocity) {}

void back(int velocity) {}

void turboBoost() {}

}

One way to build a space ship is to use inheritance:

// reuse/DerivedSpaceShip.java

public class

DerivedSpaceShip extends SpaceShipControls {



private String name;

public DerivedSpaceShip(String name) {

this.name = name;

}

@Override

public String toString() { return name; }

public static void main(String[] args) {

DerivedSpaceShip protector =

new DerivedSpaceShip("NSEA Protector");

protector.forward(100);

}

}

However, a DerivedSpaceShip isn’t really “a type of”

SpaceShipControls, even if, for example, you “tell” a

DerivedSpaceShip to go forward(). It’s more accurate to say

that a space ship contains SpaceShipControls, and at the same

time all the methods in SpaceShipControls are exposed in a

space ship. Delegation solves the dilemma:

// reuse/SpaceShipDelegation.java

public class SpaceShipDelegation {



private String name;

private SpaceShipControls controls =

new SpaceShipControls();

public SpaceShipDelegation(String name) {

this.name = name;

}

// Delegated methods:

public void back(int velocity) {

controls.back(velocity);

}

public void down(int velocity) {

controls.down(velocity);

}

public void forward(int velocity) {

controls.forward(velocity);

}

public void left(int velocity) {



controls.left(velocity);

}

public void right(int velocity) {

controls.right(velocity);

}

public void turboBoost() {

controls.turboBoost();

}

public void up(int velocity) {

controls.up(velocity);

}

public static void main(String[] args) {

SpaceShipDelegation protector =

new SpaceShipDelegation("NSEA Protector");

protector.forward(100);

}



}

The methods are forwarded to the underlying controls object, and

the interface is thus the same as it is with inheritance. However, you

have more control with delegation because you can choose to provide

only a subset of the methods in the member object.

Although the Java language doesn’t support delegation, development

tools often do. The above example, for instance, was automatically

generated using the JetBrains Idea IDE.

Combining

Composition and

Inheritance

You’ll often use composition and inheritance together. The following

example shows the creation of class using both inheritance and

composition, along with the necessary constructor initialization:

// reuse/PlaceSetting.java

// Combining composition & inheritance

class Plate {

Plate(int i) {

System.out.println("Plate constructor");

}



}

class DinnerPlate extends Plate {

DinnerPlate(int i) {

super(i);

System.out.println("DinnerPlate constructor");

}

}

class Utensil {

Utensil(int i) {

System.out.println("Utensil constructor");

}

}

class Spoon extends Utensil {

Spoon(int i) {

super(i);

System.out.println("Spoon constructor");

}

}

class Fork extends Utensil {

Fork(int i) {



super(i);

System.out.println("Fork constructor");

}

}

class Knife extends Utensil {

Knife(int i) {

super(i);

System.out.println("Knife constructor");

}

}

// A cultural way of doing something:

class Custom {

Custom(int i) {

System.out.println("Custom constructor");

}

}

public class PlaceSetting extends Custom {

private Spoon sp;

private Fork frk;

private Knife kn;



private DinnerPlate pl;

public PlaceSetting(int i) {

super(i + 1);

sp = new Spoon(i + 2);

frk = new Fork(i + 3);

kn = new Knife(i + 4);

pl = new DinnerPlate(i + 5);

System.out.println("PlaceSetting constructor");

}

public static void main(String[] args) {

PlaceSetting x = new PlaceSetting(9);

}

}

/* Output:

Custom constructor

Utensil constructor

Spoon constructor

Utensil constructor

Fork constructor

Utensil constructor



Knife constructor

Plate constructor

DinnerPlate constructor

PlaceSetting constructor

*/

Although the compiler forces you to initialize the base classes, and

requires you do it right at the beginning of the constructor, it doesn’t

watch over you to make sure you initialize the member objects.

Notice how cleanly the classes are separated. You don’t even need the

source code for the methods to reuse the code. At most, you just

import a package. (This is true for both inheritance and composition.)

Guaranteeing Proper Cleanup

Java doesn’t have the C++ concept of a destructor, a method that is

automatically called when an object is destroyed. The reason is

probably that in Java, the practice is simply to forget about objects

rather than to destroy them, allowing the garbage collector to reclaim

memory as necessary.



Often this is fine, but there are times when your class might perform

some activities during its lifetime that require cleanup. The

Housekeeping chapter explained that you can’t know when the

garbage collector is called, or even if it is called. So if you want

something cleaned up for a class, you must explicitly write a special

method to do it, and make sure the client programmer knows they

must call this method. On top of this—as described in the Exceptions

chapter—you must guard against an exception by putting such cleanup

in a finally clause.

Consider an example of a computer-aided design system that draws

pictures on the screen:

// reuse/CADSystem.java

// Ensuring proper cleanup

// {java reuse.CADSystem}

package reuse;

class Shape {

Shape(int i) {

System.out.println("Shape constructor");

}

void dispose() {



System.out.println("Shape dispose");

}

}

class Circle extends Shape {

Circle(int i) {

super(i);

System.out.println("Drawing Circle");

}

@Override

void dispose() {

System.out.println("Erasing Circle");

super.dispose();

}

}

class Triangle extends Shape {

Triangle(int i) {

super(i);

System.out.println("Drawing Triangle");

}

@Override



void dispose() {

System.out.println("Erasing Triangle");

super.dispose();

}

}

class Line extends Shape {

private int start, end;

Line(int start, int end) {

super(start);

this.start = start;

this.end = end;

System.out.println(

"Drawing Line: " + start + ", " + end);

}

@Override

void dispose() {

System.out.println(

"Erasing Line: " + start + ", " + end);

super.dispose();

}



}

public class CADSystem extends Shape {

private Circle c;

private Triangle t;

private Line[] lines = new Line[3];

public CADSystem(int i) {

super(i + 1);

for(int j = 0; j < lines.length; j++)

lines[j] = new Line(j, j*j);

c = new Circle(1);

t = new Triangle(1);

System.out.println("Combined constructor");

}

@Override

public void dispose() {

System.out.println("CADSystem.dispose()");

// The order of cleanup is the reverse

// of the order of initialization:

t.dispose();

c.dispose();



for(int i = lines.length - 1; i >= 0; i--)

lines[i].dispose();

super.dispose();

}

public static void main(String[] args) {

CADSystem x = new CADSystem(47);

try {

// Code and exception handling...

} finally {

x.dispose();

}

}

}

/* Output:

Shape constructor

Shape constructor

Drawing Line: 0, 0

Shape constructor

Drawing Line: 1, 1

Shape constructor



Drawing Line: 2, 4

Shape constructor

Drawing Circle

Shape constructor

Drawing Triangle

Combined constructor

CADSystem.dispose()

Erasing Triangle

Shape dispose

Erasing Circle

Shape dispose

Erasing Line: 2, 4

Shape dispose

Erasing Line: 1, 1

Shape dispose

Erasing Line: 0, 0

Shape dispose

Shape dispose

*/

Everything in this system is some kind of Shape (itself a kind of



Object, since it’s implicitly inherited from the root class). Each class

overrides Shapes dispose() method in addition to calling the

base-class version of that method using super. The specific Shape

classes—Circle, Triangle, and Line—all have constructors that

“draw,” although any method called during the lifetime of the object

can be responsible for doing something that needs cleanup. Each class

has its own dispose() method to restore non-memory things back

to the way they were before the object existed.

In main(), there are two keywords you haven’t seen before, and

won’t be explained in detail until the Exceptions chapter: try and finally. The
try keyword indicates that the block that follows

(delimited by curly braces) is a guarded region, which means it is

given special treatment. One of these special treatments is that the

code in the finally clause following this guarded region is always

executed, no matter how the try block exits. (With exception

handling, it’s possible to leave a try block in a number of non-

ordinary ways.) Here, the finally clause is saying, “Always call



dispose() for x, no matter what happens.”

In your cleanup method (dispose(), in this case), you must also

pay attention to the calling order for the base-class and member-object

cleanup methods in case one subobject depends on another. First

perform all cleanup work specific to your class, in the reverse order of

creation. (In general, this requires that base-class elements still be

viable.) Then call the base-class cleanup method, as demonstrated

here.

There are many cases where the cleanup issue is not a problem; you

just let the garbage collector do the work. But when you must perform

explicit cleanup, diligence and attention are required, because there’s

not much you can rely on when it comes to garbage collection. The

garbage collector might never be called. If it is, it can reclaim objects in

any order it wants. You can’t rely on garbage collection for anything

but memory reclamation. If you want cleanup to take place, make your

own cleanup methods and don’t use finalize().

Name Hiding

If a Java base class has a method name that’s overloaded several

times, redefining that method name in the derived class will not hide

any of the base-class versions. Overloading works regardless of



whether the method was defined at this level or in a base class:

// reuse/Hide.java

// Overloading a base-class method name in a derived

// class does not hide the base-class versions

class Homer {

char doh(char c) {

System.out.println("doh(char)");

return 'd';

}

float doh(float f) {

System.out.println("doh(float)");

return 1.0f;

}

}

class Milhouse {}

class Bart extends Homer {

void doh(Milhouse m) {

System.out.println("doh(Milhouse)");

}

}



public class Hide {

public static void main(String[] args) {

Bart b = new Bart();

b.doh(1);

b.doh('x');

b.doh(1.0f);

b.doh(new Milhouse());

}

}

/* Output:

doh(float)

doh(char)

doh(float)

doh(Milhouse)

*/

All the overloaded methods of Homer are available in Bart, even

though Bart introduces a new overloaded method. As you’ll see in the

next chapter, it’s far more common to override methods of the same

name, using exactly the same signature and return type as in the base

class. Otherwise it can be confusing.



You’ve been seeing the Java 5 @Override annotation, which is not a

keyword but can be used as if it were. When you mean to override a

method, you can choose to add this annotation and the compiler will

produce an error message if you accidentally overload instead of

overriding:

// reuse/Lisa.java

// {WillNotCompile}

class Lisa extends Homer {

@Override void doh(Milhouse m) {

System.out.println("doh(Milhouse)");

}

}

The {WillNotCompile} tag excludes the file from this book’s

Gradle build, but if you compile it by hand you’ll see:

method does not override a method from its superclass

The @Override annotation prevents you from accidentally



overloading.

Choosing Composition

vs. Inheritance

Both composition and inheritance allow you to place subobjects inside

your new class (composition explicitly does this—with inheritance it’s

implicit). You might wonder about the difference between the two, and

when to choose one over the other.

Use composition when you want the functionality of an existing class

inside your new class, but not its interface. That is, embed a (usually

private) object to implement features in your new class. The user of

your new class sees the interface you’ve defined for the new class

rather than the interface from the embedded object.

Sometimes it makes sense to allow the class user to directly access the

composition of your new class. For this, make the member objects

public (you can think of this as a kind of “semi-delegation”). The

member objects use implementation hiding themselves, so this is safe.

When the user knows you’re assembling a bunch of parts, it makes the

interface easier to understand. A car object is a good example:

// reuse/Car.java

// Composition with public objects



class Engine {

public void start() {}

public void rev() {}

public void stop() {}

}

class Wheel {

public void inflate(int psi) {}

}

class Window {

public void rollup() {}

public void rolldown() {}

}

class Door {

public Window window = new Window();

public void open() {}

public void close() {}

}

public class Car {

public Engine engine = new Engine();

public Wheel[] wheel = new Wheel[4];



public Door

left = new Door(),

right = new Door(); // 2-door

public Car() {

for(int i = 0; i < 4; i++)

wheel[i] = new Wheel();

}

public static void main(String[] args) {

Car car = new Car();

car.left.window.rollup();

car.wheel[0].inflate(72);

}

}

The composition of a car is part of the analysis of the problem (and not

part of the underlying design). Making the members public assists

the client programmer’s understanding of how to use the class and



requires less code complexity for the creator of the class. However,

keep in mind this is a special case. In general, make fields private.

When you inherit, you take an existing class and make a special

version of it. This usually means taking a general-purpose class and

specializing it for a particular need. With a little thought, you’ll see it

would make no sense to compose a car using a vehicle object—a car

doesn’t contain a vehicle, it is a vehicle. The is-a relationship is

expressed with inheritance, and the has-a relationship is expressed

with composition.

protected

Now that you’ve been introduced to inheritance, the keyword

protected becomes meaningful. In an ideal world, the private

keyword would be enough. In real projects, there are times when you

hide something from the world at large and yet allow access for

members of derived classes.

The protected keyword is a nod to pragmatism. It says, “This is

private as far as the class user is concerned, but available to anyone

who inherits from this class or anyone else in the same package.”

(protected also provides package access.)

Although it’s possible to create protected fields, the best approach



is to leave the fields private and always preserve your right to

change the underlying implementation. You can then allow controlled

access to inheritors of your class through protected methods:

// reuse/Orc.java

// The protected keyword

class Villain {

private String name;

protected void set(String nm) { name = nm; }

Villain(String name) { this.name = name; }

@Override

public String toString() {

return "I'm a Villain and my name is " + name;

}

}

public class Orc extends Villain {

private int orcNumber;

public Orc(String name, int orcNumber) {

super(name);

this.orcNumber = orcNumber;

}



public void change(String name, int orcNumber) {

set(name); // Available because it's protected

this.orcNumber = orcNumber;

}

@Override

public String toString() {

return "Orc " + orcNumber + ": " + super.toString();

}

public static void main(String[] args) {

Orc orc = new Orc("Limburger", 12);

System.out.println(orc);

orc.change("Bob", 19);

System.out.println(orc);

}

}

/* Output:

Orc 12: I'm a Villain and my name is Limburger

Orc 19: I'm a Villain and my name is Bob

*/

change() has access to set() because it’s protected. Notice the



way Orcs toString() method is defined in terms of the base-class

version of toString().

Upcasting

The most important aspect of inheritance is not that it provides

methods for the new class. It’s the relationship expressed between the

new class and the base class. This relationship can be summarized by

saying, “The new class is a type of the existing class.”

This description is not just a fanciful way of explaining inheritance—

it’s supported directly by the language. As an example, consider a base

class called Instrument that represents musical instruments, and a

derived class called Wind. Because inheritance guarantees that all

methods in the base class are also available in the derived class, any

message you can send to the base class can also be sent to the derived

class. If the Instrument class has a play() method, so will Wind

instruments. This means you can accurately say that a Wind object is

also a type of Instrument. The following example shows how the



compiler supports this notion:

// reuse/Wind.java

// Inheritance & upcasting

class Instrument {

public void play() {}

static void tune(Instrument i) {

// ...

i.play();

}

}

// Wind objects are instruments

// because they have the same interface:

public class Wind extends Instrument {



public static void main(String[] args) {

Wind flute = new Wind();

Instrument.tune(flute); // Upcasting

}

}

The tune() method accepts an Instrument reference. However,

in Wind.main() the tune() method is handed a Wind reference.

Given that Java is particular about type checking, it seems strange that

a method that accepts one type will readily accept another type, until

you realize that a Wind object is also an Instrument object, and

there’s no method that tune() could call for an Instrument that

isn’t also in Wind. Inside tune(), the code works for Instrument



and anything derived from Instrument, and the act of converting a

Wind reference into an Instrument reference is called upcasting.

The term is based on the way that class inheritance diagrams have

traditionally been drawn: with the root at the top of the page, growing

downward. (Of course, you can draw your diagrams any way you find

helpful.) The inheritance diagram for Wind.java is then:

Casting from a derived type to a base type moves up on the inheritance

diagram, so it’s commonly called upcasting. Upcasting is always safe

because you’re going from a more specific type to a more general type.

That is, the derived class is a superset of the base class. It might

contain more methods than the base class, but it must contain at least

the methods in the base class. During the upcast, the class interface

can only lose methods, not gain them. This is why the compiler allows



upcasting without any explicit casts or other special notation.

You can also perform the reverse of upcasting, called downcasting, but

this involves a dilemma that is examined further in the next chapter,

and in the Type Information chapter.

Composition vs. Inheritance

Revisited

In object-oriented programming, the most likely way to create and use

code is by packaging data and methods together into a class, and using

objects of that class. You’ll also use existing classes to build new

classes with composition. Less frequently, you’ll use inheritance. So

although inheritance gets a lot of emphasis when teaching OOP, it

doesn’t mean you should use it everywhere you possibly can. On the

contrary, use it sparingly, only when it’s clear that inheritance is

useful. One of the clearest ways to determine whether to use

composition or inheritance is to ask whether you’ll ever upcast from

your new class to the base class. If you must upcast, inheritance is

necessary, but if you don’t upcast, look closely at whether you need

inheritance. The Polymorphism chapter provides one of the most compelling
reasons for upcasting, but if you remember to ask, “Do I

need to upcast?” you’ll have a good tool for deciding between

composition and inheritance.



The final Keyword

Java’s final keyword has slightly different meanings depending on

context, but in general it says, “This cannot be changed.” You can

prevent changes for two reasons: design or efficiency. Because these

two reasons are quite different, it’s possible to misuse the final

keyword.

The following sections discuss the three places where final can be

used: for data, methods, and classes.

final Data

Many programming languages have a way to tell the compiler that a

piece of data is “constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change.

2. It can be a value initialized at run time that you don’t want

changed.

In the case of a compile-time constant, the compiler is allowed to

“fold” the constant value into calculations; that is, the calculation can

be performed at compile time, eliminating some runtime overhead. In



Java, these sorts of constants must be primitives and are expressed

with the final keyword. You must provide a value when the constant

is defined.

A field that is both static and final has only one piece of storage

that cannot be changed.

When final is used with object references rather than primitives, the

meaning can be confusing. With a primitive, final makes the value a

constant, but with an object reference, final makes the reference a

constant. Once the reference is initialized to an object, it can never be

changed to point to another object. However, the object itself can be

modified; Java does not provide a way to make any arbitrary object a

constant. (You can, however, write your class so objects have the effect

of being constant.) This restriction includes arrays, which are also

objects.

Here’s an example that demonstrates final fields:

// reuse/FinalData.java

// The effect of final on fields

import java.util.*;

class Value {

int i; // Package access



Value(int i) { this.i = i; }

}

public class FinalData {

private static Random rand = new Random(47);

private String id;

public FinalData(String id) { this.id = id; }

// Can be compile-time constants:

private final int valueOne = 9;

private static final int VALUE_TWO = 99;

// Typical public constant:

public static final int VALUE_THREE = 39;

// Cannot be compile-time constants:

private final int i4 = rand.nextInt(20);

static final int INT_5 = rand.nextInt(20);

private Value v1 = new Value(11);

private final Value v2 = new Value(22);

private static final Value VAL_3 = new Value(33);

// Arrays:

private final int[] a = { 1, 2, 3, 4, 5, 6 };

@Override



public String toString() {

return id + ": " + "i4 = " + i4

+ ", INT_5 = " + INT_5;

}

public static void main(String[] args) {

FinalData fd1 = new FinalData("fd1");

//- fd1.valueOne++; // Error: can't change value

fd1.v2.i++; // Object isn't constant!

fd1.v1 = new Value(9); // OK -- not final

for(int i = 0; i < fd1.a.length; i++)

fd1.a[i]++; // Object isn't constant!

//- fd1.v2 = new Value(0); // Error: Can't

//- fd1.VAL_3 = new Value(1); // change reference

//- fd1.a = new int[3];

System.out.println(fd1);

System.out.println("Creating new FinalData");

FinalData fd2 = new FinalData("fd2");

System.out.println(fd1);

System.out.println(fd2);

}



}

/* Output:

fd1: i4 = 15, INT_5 = 18

Creating new FinalData

fd1: i4 = 15, INT_5 = 18

fd2: i4 = 13, INT_5 = 18

*/

Since valueOne and VALUE_TWO are final primitives with

compile-time values, they can both be used as compile-time constants

and are not different in any important way. VALUE_THREE is the

more typical way you’ll see such constants defined: public so they’re

usable outside the package, static to emphasize there’s only one,

and final to say it’s a constant.

By convention, final static primitives with constant initial

values (that is, compile-time constants) are named with all capitals,

with words separated by underscores. (This is just like C constants,

which is where that style originated.)

Just because something is final doesn’t mean its value is known at

compile time. This is demonstrated by initializing i4 and INT_5 at

run time using randomly generated numbers. This portion of the



example also shows the difference between making a final value

static or non-static. This difference shows up only when the

values are initialized at run time, since the compile-time values are

treated the same by the compiler. (And presumably optimized out of

existence.) The difference is shown when you run the program. Note

that the values of i4 for fd1 and fd2 are unique, but the value for

INT_5 is not changed by creating the second FinalData object.

That’s because it’s static and is initialized once upon loading and

not each time you create a new object.

The variables v1 through VAL_3 demonstrate the meaning of a

final reference. As you see in main(), just because v2 is final

doesn’t mean you can’t change its value. Because it’s a reference,

final just means you cannot rebind v2 to a new object. The same

meaning holds true for an array, which is just another kind of

reference. (There is no way I know of to make the array references

themselves final.) Making references final seems less useful than

making primitives final.

Blank finals

Blank finals are final fields without initialization values. The

compiler ensures that blank finals are initialized before use. A



final field inside a class can now be different for each object while

retaining its immutable quality:

// reuse/BlankFinal.java

// "Blank" final fields

class Poppet {

private int i;

Poppet(int ii) { i = ii; }

}

public class BlankFinal {

private final int i = 0; // Initialized final

private final int j; // Blank final

private final Poppet p; // Blank final reference

// Blank finals MUST be initialized in constructor:

public BlankFinal() {

j = 1; // Initialize blank final

p = new Poppet(1); // Init blank final reference

}

public BlankFinal(int x) {

j = x; // Initialize blank final

p = new Poppet(x); // Init blank final reference



}

public static void main(String[] args) {

new BlankFinal();

new BlankFinal(47);

}

}

You’re forced to perform assignments to finals either with an

expression at the point of definition of the field or in every

constructor. This guarantees that the final field is always initialized

before use.

final Arguments

You make arguments final by declaring them as such in the

argument list. This means that inside the method you cannot change

what the argument reference points to:

// reuse/FinalArguments.java

// Using "final" with method arguments

class Gizmo {

public void spin() {}

}



public class FinalArguments {

void with(final Gizmo g) {

//- g = new Gizmo(); // Illegal -- g is final

}

void without(Gizmo g) {

g = new Gizmo(); // OK -- g not final

g.spin();

}

// void f(final int i) { i++; } // Can't change

// You can only read from a final primitive:

int g(final int i) { return i + 1; }

public static void main(String[] args) {

FinalArguments bf = new FinalArguments();

bf.without(null);

bf.with(null);

}

}



The methods f() and g() show what happens when primitive

arguments are final. You can read the argument, but you can’t

change it. This feature is primarily used to pass data to anonymous

inner classes, which you’ll learn about in the Inner Classes chapter.

final Methods

There are two reasons for final methods. The first is to put a “lock”

on the method to prevent an inheriting class from changing that

method’s meaning by overriding it. This is done for design reasons

when you want to make sure that a method’s behavior is retained

during inheritance.

The second reason final methods were suggested in the past is

efficiency. In earlier implementations of Java, if you made a method

final, you allowed the compiler to turn any calls to that method into

inline calls. When the compiler saw a final method call, it could (at

its discretion) skip the normal approach of inserting code to perform

the method call mechanism (push arguments on the stack, hop over to

the method code and execute it, hop back and clean off the stack

arguments, and deal with the return value) and instead replace the

method call with a copy of the actual code in the method body. This

eliminates the overhead of the method call. However, if a method is



big, your code begins to bloat, and you probably wouldn’t see

performance gains from inlining, since any speedups in the call and

return were dwarfed by the amount of time spent inside the method.

Relatively early in the history of Java, the virtual machine (in

particular, the hotspot technologies) began detecting these situations

and optimizing away the extra indirection. For a long time, using

final to help the optimizer has been discouraged. You should let the

compiler and JVM handle efficiency issues and make a method final

only to explicitly prevent overriding.1

final and private

Any private methods in a class are implicitly final. Because you

can’t access a private method, you can’t override it. You can add the

final specifier to a private method, but it doesn’t give that

method any extra meaning.

This can be confusing, because if you try to override a private

method (which is implicitly final), it seems to work, and the

compiler doesn’t give an error message:

// reuse/FinalOverridingIllusion.java

// It only looks like you can override

// a private or private final method



class WithFinals {

// Identical to "private" alone:

private final void f() {

System.out.println("WithFinals.f()");

}

// Also automatically "final":

private void g() {

System.out.println("WithFinals.g()");

}

}

class OverridingPrivate extends WithFinals {

private final void f() {

System.out.println("OverridingPrivate.f()");

}

private void g() {

System.out.println("OverridingPrivate.g()");

}

}

class OverridingPrivate2 extends OverridingPrivate {

public final void f() {



System.out.println("OverridingPrivate2.f()");

}

public void g() {

System.out.println("OverridingPrivate2.g()");

}

}

public class FinalOverridingIllusion {

public static void main(String[] args) {

OverridingPrivate2 op2 = new OverridingPrivate2();

op2.f();

op2.g();

// You can upcast:

OverridingPrivate op = op2;

// But you can't call the methods:

//- op.f();

//- op.g();

// Same here:

WithFinals wf = op2;

//- wf.f();

//- wf.g();



}

}

/* Output:

OverridingPrivate2.f()

OverridingPrivate2.g()

*/

“Overriding” can only occur if something is part of the base-class

interface. That is, you must upcast an object to its base type and call

the same method (the point of this becomes clear in the next chapter).

If a method is private, it isn’t part of the base-class interface. It is

just code that’s hidden away inside the class, and it just happens to

have that name. But if you create a public, protected, or

package-access method with the same name in the derived class,

there’s no connection to the method that might happen to have that

name in the base class. You haven’t overridden the method, you’ve just

created a new method. Since a private method is unreachable and

effectively invisible, it doesn’t factor into anything except for the code



organization of the class for which it was defined.

final Classes

When you say that an entire class is final (by preceding its

definition with the final keyword), you’re preventing all inheritance

from this class. You do this because, for some reason, the design of

your class is such that there is never a need to make any changes, or

for safety or security reasons you don’t want subclassing.

// reuse/Jurassic.java

// Making an entire class final

class SmallBrain {}

final class Dinosaur {

int i = 7;

int j = 1;

SmallBrain x = new SmallBrain();

void f() {}

}

//- class Further extends Dinosaur {}



// error: Cannot extend final class 'Dinosaur'

public class Jurassic {

public static void main(String[] args) {

Dinosaur n = new Dinosaur();

n.f();

n.i = 40;

n.j++;

}

}

The fields of a final class can be final or not, as you choose. The

same rules apply to final for fields regardless of whether the class is

defined as final. However, because it prevents inheritance, all

methods in a final class are implicitly final, since there’s no way

to override them. You can include the final specifier to a method in

a final class, but it doesn’t add any meaning.

final Caution

It can seem sensible to make a method final while you’re designing

a class. You might feel that no one could possibly want to override that

method. Sometimes this is true.

But be careful with your assumptions. In general, it’s difficult to



anticipate how a class can be reused, especially a general-purpose

class. If you define a method as final, you might prevent the

possibility of reusing your class through inheritance in some other

programmer’s project simply because you can’t imagine it being used

that way.

The standard Java library is a good example of this. In particular, the

Java 1.0/1.1 Vector class was commonly used and might be even

more useful if, in the name of efficiency (which was almost certainly

an illusion), all the methods hadn’t been made final. It’s easily

conceivable you might inherit and override with such a fundamentally

useful class, but the designers somehow decided this wasn’t

appropriate. This is ironic for two reasons. First, Stack inherits

Vector, which says that a Stack is a Vector, which isn’t really true from a
logical standpoint. Nonetheless, it’s a case where the Java

designers themselves inherited Vector. When they created Stack

this way, they should have realized that final methods were too

restrictive.

Second, many of the most important methods of Vector, such as

addElement() and elementAt(), are synchronized. The

Concurrent Programming chapter shows that this imposes a

significant performance overhead that probably wipes out any gains



provided by final. This lends credence to the theory that

programmers are consistently bad at guessing where optimizations

should occur. It’s too bad that such a clumsy design made it into the

standard library, where everyone had to cope with it. Fortunately, the

modern Java collection library supersedes Vector with

ArrayList, which behaves much more civilly. Unfortunately, there’s

still new code that uses the old collection library, including Vector.

Hashtable, another important Java 1.0/1.1 standard library class

(later superseded by HashMap), does not have any final methods.

As mentioned elsewhere in this book, it’s obvious that different classes

were designed by different people. The method names in Hashtable

are much briefer compared to those in Vector, another piece of

evidence. This is precisely the sort of thing that should not be obvious

to consumers of a class library. When things are inconsistent, it just

makes more work for the user—yet another paean to the value of



design and code walkthroughs.

Initialization and

Class Loading

In more traditional languages, programs are loaded all at once, as part

of the startup process. This is followed by initialization, then the

program begins. The process of initialization in these languages must

be carefully controlled so the order of initialization of statics

doesn’t cause trouble. C++, for example, has problems if one static

expects another static to be valid before the second one is

initialized.

Java doesn’t have this problem because it takes a different approach to

loading. This is one of the activities that become easier because

everything in Java is an object. Remember that the compiled code for

each class exists in its own separate file. That file isn’t loaded until the

code is needed. In general, you can say that “class code is loaded at the

point of first use.” This is usually when the first object of that class is

constructed, but loading also occurs when a static field or static



method is accessed. The constructor is also a static method even

though the static keyword is not explicit. So to be precise, a class is

first loaded when any one of its static members is accessed.

The point of first use is also when static initialization takes place.

All static objects and static code blocks are initialized in textual

order (the order you write them in the class definition), at load time.

The statics are initialized only once.

Initialization with





Inheritance



It’s helpful to look at the whole initialization process, including

inheritance, to get a full picture of what happens. Consider the

following example:

// reuse/Beetle.java

// The full process of initialization

class Insect {

private int i = 9;

protected int j;

Insect() {

System.out.println("i = " + i + ", j = " + j);

j = 39;

}

private static int x1 =

printInit("static Insect.x1 initialized");

static int printInit(String s) {

System.out.println(s);

return 47;

}

}

public class Beetle extends Insect {



private int k = printInit("Beetle.k initialized");

public Beetle() {

System.out.println("k = " + k);

System.out.println("j = " + j);

}

private static int x2 =

printInit("static Beetle.x2 initialized");

public static void main(String[] args) {

System.out.println("Beetle constructor");

Beetle b = new Beetle();

}

}

/* Output:

static Insect.x1 initialized

static Beetle.x2 initialized

Beetle constructor





i = 9, j = 0



Beetle.k initialized

k = 47

j = 39

*/

When you run java Beetle, you first try to access

Beetle.main() (a static method), so the loader goes out and

finds the compiled code for the Beetle class, in the file

Beetle.class. While loading that, the loader notices there’s a base

class, which it also loads. This happens whether or not you make an

object of that base class. (Try commenting out the object creation to

prove it to yourself.)

If the base class has its own base class, that second base class will also

be loaded, and so on. Next, the static initialization in the root base

class (in this case, Insect) is performed, then the next derived class,

and so on. This is important because the derived-class static

initialization might depend on the base-class member being initialized

properly.

Now the necessary classes have all been loaded, so the object can be

created. First, all the primitives in this object are set to their default

values and the object references are set to null—this happens in one



fell swoop by setting the memory in the object to binary zero. Then the

base-class constructor is called. Here the call is automatic, but you can

also specify the base-class constructor call (as the first operation in the

Beetle constructor) by using super. The base-class constructor

goes through the same process in the same order as the derived-class

constructor. After the base-class constructor completes, the instance

variables are initialized in textual order. Finally, the rest of the body of

the constructor is executed.

Summary

Both inheritance and composition create new types from existing

types. Composition reuses existing types as part of the underlying

implementation of the new type, and inheritance reuses the interface.

With inheritance, the derived class has the base-class interface, so it

can be upcast to the base, which is critical for polymorphism, as you’ll

see in the next chapter.

Despite the strong emphasis on inheritance in object-oriented



programming, when you start a design, prefer composition (or

possibly delegation) during the first cut and use inheritance only when

it is clearly necessary. Composition tends to be more flexible. In

addition, by using the added artifice of inheritance with your member

type, you can change the exact type, and thus the behavior, of those

member objects at run time. Therefore, you can change the behavior of

the composed object at run time.

When designing a system, your goal is to find or create a set of classes

where each class has a specific use and is neither too big

(encompassing so much functionality it’s unwieldy to reuse) nor

annoyingly small (you can’t use it by itself or without adding

functionality). If your designs become too complex, it’s often helpful to

add more objects by breaking existing objects into smaller parts.

When you start designing a system, remember that program

development is an incremental process, just like human learning. It

relies on experimentation; you can do as much analysis as you want,

but you still won’t know all the answers when you set out on a project.

You’ll have much more success—and more immediate feedback—if you

start out to “grow” your project as an organic, evolutionary creature,

rather than constructing it all at once like a glass-box skyscraper.



Inheritance and composition are two of the most fundamental tools in

object-oriented programming that allow you to perform such

experiments.

1. Don’t listen to the sirens of premature optimization. If you get

your system working and it’s too slow, it’s doubtful you can fix it

with the final keyword. Profiling, however, can be helpful in

speeding up your program. ↩

Polymorphism

“I have been asked, ‘Pray, Mr. Babbage, if

you put into the machine wrong figures,

will the right answers come out?’ I am not

able to rightly apprehend the kind of

confusion of ideas that could provoke

such a question.”— Charles Babbage

(1791-1871)

Polymorphism is the third essential

feature of an object-oriented

programming language, after data



abstraction and inheritance.

It provides another dimension of separation of interface from

implementation, to decouple what from how. Polymorphism improves

code organization and readability as well as the creation of extensible

programs that can be “grown” not only during the original creation of

the project, but also when new features are desired.

Encapsulation creates new data types by combining characteristics

and behaviors. Implementation hiding separates the interface from

the implementation by making the details private. This sort of

mechanical organization makes ready sense to someone with a

procedural programming background. But polymorphism deals with

decoupling in terms of types. In the previous chapter, inheritance

enabled you to treat an object as its own type or its base type. This

treats many types (derived from the same base type) as if they were

one type, and a single piece of code works on all those different types

equally. The polymorphic method call allows one type to express its



distinction from another, similar type, as long as they’re both derived

from the same base type. This distinction is expressed through

differences in behavior of the methods you can call through the base

class.

In this chapter, you’ll learn about polymorphism (also called dynamic

binding or late binding or runtime binding) starting from the basics, with
simple examples that strip away everything but the polymorphic

behavior of the program.

Upcasting Revisited

In the previous chapter you saw how an object can be used as its own

type or as an object of its base type. Taking an object reference and

treating it as a reference to its base type is called upcasting because of

the way inheritance trees are drawn with the base class at the top.

You also saw a problem arise, embodied in the following example of

musical instruments. Since several of these examples play Notes, we

first create a separate Note enumeration, in a package:

// polymorphism/music/Note.java

// Notes to play on musical instruments

package polymorphism.music;

public enum Note {

MIDDLE_C, C_SHARP, B_FLAT; // Etc.



}

enums were introduced in the Housekeeping chapter.

Here, Wind is a type of Instrument; therefore, Wind inherits

Instrument:

// polymorphism/music/Instrument.java

package polymorphism.music;

class Instrument {

public void play(Note n) {

System.out.println("Instrument.play()");

}

}

// polymorphism/music/Wind.java

package polymorphism.music;

// Wind objects are instruments

// because they have the same interface:

public class Wind extends Instrument {

// Redefine interface method:

@Override

public void play(Note n) {

System.out.println("Wind.play() " + n);



}

}

The method Music.tune() accepts an Instrument reference,

but also anything derived from Instrument:

// polymorphism/music/Music.java

// Inheritance & upcasting

// {java polymorphism.music.Music}

package polymorphism.music;

public class Music {

public static void tune(Instrument i) {

// ...

i.play(Note.MIDDLE_C);

}

public static void main(String[] args) {

Wind flute = new Wind();

tune(flute); // Upcasting

}



}

/* Output:

Wind.play() MIDDLE_C

*/

In main() you see a Wind reference passed to tune(), with no cast

necessary. This is acceptable—the interface in Instrument must

exist in Wind, because Wind inherits Instrument. Upcasting from

Wind to Instrument can “narrow” that interface, but it cannot

make it anything less than the full interface to Instrument.

Forgetting the Object Type

Music.java might seem strange to you. Why should anyone

intentionally forget the type of an object? This “forgetting” is exactly

what happens when you upcast, and it seems like it might be much

more straightforward if tune() takes a Wind reference as its

argument. This brings up an essential point: If you did that, you’d have

to write a new tune() for every type of Instrument in your

system. Suppose you follow this reasoning and add Stringed and

Brass instruments:

// polymorphism/music/Music2.java

// Overloading instead of upcasting



// {java polymorphism.music.Music2}

package polymorphism.music;

class Stringed extends Instrument {

@Override

public void play(Note n) {

System.out.println("Stringed.play() " + n);

}

}

class Brass extends Instrument {

@Override

public void play(Note n) {

System.out.println("Brass.play() " + n);

}

}

public class Music2 {

public static void tune(Wind i) {

i.play(Note.MIDDLE_C);

}

public static void tune(Stringed i) {

i.play(Note.MIDDLE_C);



}

public static void tune(Brass i) {

i.play(Note.MIDDLE_C);

}

public static void main(String[] args) {

Wind flute = new Wind();

Stringed violin = new Stringed();

Brass frenchHorn = new Brass();

tune(flute); // No upcasting

tune(violin);

tune(frenchHorn);

}

}

/* Output:

Wind.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

*/

This works, but there’s a major drawback: You must write type-

specific methods for each new Instrument class you add. This



means more programming in the first place, but it also means that to

add a new method like tune() or a new type of Instrument,

you’ve got a lot of work to do. Add the fact that the compiler won’t tell

you if you forget to overload one of your methods, and the whole

process of working with types becomes unmanageable.

Wouldn’t it be much nicer to write a single method that takes the base

class as its argument, and not worry about any of the specific derived

classes? That is, wouldn’t it be nice to forget there are derived classes,

and write your code to talk only to the base class?

That’s exactly what polymorphism enables. However, most

programmers who come from a procedural programming background

have a bit of trouble with the way polymorphism works.

The Twist

The difficulty with Music.java can be seen by running the program.

The output is Wind.play(). This is clearly the desired output, but it

doesn’t seem to make sense it would work that way. Look at the



tune() method:

public static void tune(Instrument i) {

// ...

i.play(Note.MIDDLE_C);

}

It receives an Instrument reference. So how can the compiler

possibly know this Instrument reference points to a Wind here and

not a Brass or Stringed? The compiler can’t. To get a deeper

understanding of the issue, it’s helpful to examine the subject of

binding.

Method-Call Binding

Connecting a method call to a method body is called binding. When

binding is performed before the program runs(by the compiler and

linker, if there is one), it’s called early binding. You might not have

heard the term before because it has never been an option with

procedural languages. C, for example, has only one kind of method

call, and that’s early binding.



The confusing part of the preceding program revolves around early

binding, because the compiler cannot know the correct method to call

when it has only an Instrument reference.

The solution is called late binding, which means the binding occurs at

run time, based on the type of object. Late binding is also called

dynamic binding or runtime binding. When a language implements

late binding, there must be some mechanism to determine the type of

the object at run time and to call the appropriate method. That is, the

compiler still doesn’t know the object type, but the method-call

mechanism finds out and calls the correct method body. The late-

binding mechanism varies from language to language, but you can

imagine that some sort of type information must be installed in the

objects.

All method binding in Java uses late binding unless the method is

static or final (private methods are implicitly final). This

means that ordinarily you don’t make decisions about whether late

binding will occur—it happens automatically.

Why would you declare a method final? As noted in the last chapter,

it prevents anyone from overriding that method. Perhaps more

important, it effectively “turns off” dynamic binding, or rather it tells



the compiler that dynamic binding isn’t necessary. This allows the

compiler to generate slightly more efficient code for final method

calls. However, in most cases it won’t make any overall performance

difference in your program, so it’s best to only use final as a design

decision, and not as an attempt to improve performance.

Producing the Right Behavior

Once you know that all method binding in Java happens

polymorphically via late binding, you can write your code to talk to the

base class and know that all the derived-class cases will work correctly

using the same code. Or to put it another way, you “send a message to

an object and let the object figure out the right thing to do.”

The classic object-oriented example uses shapes. This example is easy

to visualize, but unfortunately it can confuse novice programmers into

thinking that OOP is just for graphics programming, which is not the

case.

The shape example has a base class called Shape and various derived

types: Circle, Square, Triangle, etc. The reason the example



works so well is it’s easy to say, “A circle is a type of shape” and be

understood. The inheritance diagram shows the relationships:

The upcast could occur in a statement as simple as:

Shape s = new Circle();

This creates a Circle object, and the resulting reference is

immediately assigned to a Shape, which would seem to be an error

(assigning one type to another); and yet it’s fine because a Circle is



a Shape by inheritance. So the compiler agrees with the statement

and doesn’t issue an error message.

Suppose you call one of the base-class methods (those overridden in

the derived classes):

s.draw();

Again, you might expect that Shapes draw() is called because this

is, after all, a Shape reference—how could the compiler know to do

anything else? And yet the proper Circle.draw() is called because

of late binding (polymorphism).

The following example puts it a slightly different way. First, let’s create

a reusable library of Shape types. The base class Shape establishes

the common interface to anything inherited from Shape—all shapes

can be drawn and erased:

// polymorphism/shape/Shape.java

package polymorphism.shape;

public class Shape {

public void draw() {}

public void erase() {}

}

The derived classes override these definitions to provide unique



behavior for each specific type of shape:

// polymorphism/shape/Circle.java

package polymorphism.shape;

public class Circle extends Shape {

@Override

public void draw() {

System.out.println("Circle.draw()");

}

@Override

public void erase() {

System.out.println("Circle.erase()");

}

}

// polymorphism/shape/Square.java

package polymorphism.shape;

public class Square extends Shape {

@Override

public void draw() {

System.out.println("Square.draw()");

}



@Override

public void erase() {

System.out.println("Square.erase()");

}

}

// polymorphism/shape/Triangle.java

package polymorphism.shape;

public class Triangle extends Shape {

@Override

public void draw() {

System.out.println("Triangle.draw()");

}

@Override

public void erase() {

System.out.println("Triangle.erase()");

}

}

RandomShapes is a kind of “factory” that produces a reference to a

randomly created Shape object each time you call its get() method.

Note that the upcasting happens in the return statements, each of



which takes a reference to a Circle, Square, or Triangle and

sends it out of get() as the return type, Shape. So whenever you call

get(), you never get a chance to see what specific type it is, since you

always get back a plain Shape reference:

// polymorphism/shape/RandomShapes.java

// A "factory" that randomly creates shapes

package polymorphism.shape;

import java.util.*;

public class RandomShapes {

private Random rand = new Random(47);

public Shape get() {

switch(rand.nextInt(3)) {

default:

case 0: return new Circle();

case 1: return new Square();

case 2: return new Triangle();

}

}

public Shape[] array(int sz) {

Shape[] shapes = new Shape[sz];



// Fill up the array with shapes:

for(int i = 0; i < shapes.length; i++)

shapes[i] = get();

return shapes;

}

}

The array() method allocates and fills an array of Shape objects,

and is used here in the for-in expression:

// polymorphism/Shapes.java

// Polymorphism in Java

import polymorphism.shape.*;

public class Shapes {

public static void main(String[] args) {

RandomShapes gen = new RandomShapes();

// Make polymorphic method calls:

for(Shape shape : gen.array(9))

shape.draw();

}

}

/* Output:



Triangle.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Square.draw()

Triangle.draw()

Circle.draw()

*/

main() steps an array of Shape references produced (via the call to

array()) by calls to RandomShapes.get(). Now you know you

have Shapes, but you don’t know anything more specific (and neither

does the compiler). However, when you step through this array and

call draw() for each one, the correct type-specific behavior magically

occurs, as you see from the output when you run the program.

The point of creating the shapes randomly is to drive home the



understanding that the compiler can have no special knowledge that

allows it to make the correct calls at compile time. All the calls to

draw() must be made through dynamic binding.

Extensibility

Now let’s return to the musical instrument example. Because of

polymorphism, you can add as many new types as you want to the

system without changing the tune() method. In a well-designed

OOP program, many of your methods will follow the model of

tune() and communicate only with the base-class interface. Such a

program is extensible because you can add new functionality by

inheriting new data types from the common base class. The methods

that manipulate the base-class interface will not change to

accommodate the new classes.

Consider what happens if you take the instrument example and add



more methods in the base class, along with a number of new classes:

All these new classes work correctly with the old, unchanged tune()

method. Even if tune() is in a separate file and new methods are

added to the interface of Instrument, tune() will still work

correctly, even without recompiling it. Here is the implementation of

the diagram:



// polymorphism/music3/Music3.java

// An extensible program

// {java polymorphism.music3.Music3}

package polymorphism.music3;

import polymorphism.music.Note;

class Instrument {

void play(Note n) {

System.out.println("Instrument.play() " + n);

}

String what() { return "Instrument"; }

void adjust() {

System.out.println("Adjusting Instrument");

}

}

class Wind extends Instrument {

@Override

void play(Note n) {

System.out.println("Wind.play() " + n);

}

@Override



String what() { return "Wind"; }

@Override

void adjust() {

System.out.println("Adjusting Wind");

}

}

class Percussion extends Instrument {

@Override

void play(Note n) {

System.out.println("Percussion.play() " + n);

}

@Override

String what() { return "Percussion"; }

@Override

void adjust() {

System.out.println("Adjusting Percussion");

}

}

class Stringed extends Instrument {

@Override



void play(Note n) {

System.out.println("Stringed.play() " + n);

}

@Override

String what() { return "Stringed"; }

@Override

void adjust() {

System.out.println("Adjusting Stringed");

}

}

class Brass extends Wind {

@Override

void play(Note n) {

System.out.println("Brass.play() " + n);

}

@Override

void adjust() {

System.out.println("Adjusting Brass");

}

}



class Woodwind extends Wind {

@Override

void play(Note n) {

System.out.println("Woodwind.play() " + n);

}

@Override

String what() { return "Woodwind"; }

}

public class Music3 {

// Doesn't care about type, so new types

// added to the system still work right:

public static void tune(Instrument i) {

// ...

i.play(Note.MIDDLE_C);

}

public static void tuneAll(Instrument[] e) {

for(Instrument i : e)

tune(i);

}

public static void main(String[] args) {



// Upcasting during addition to the array:

Instrument[] orchestra = {

new Wind(),

new Percussion(),

new Stringed(),

new Brass(),

new Woodwind()

};

tuneAll(orchestra);

}

}

/* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C



*/

The new methods are what(), which returns a String reference

with a description of the class, and adjust(), which provides some

way to adjust each instrument.

In main(), when you place something inside the orchestra array,

you automatically upcast to Instrument.

The tune() method is blissfully ignorant of all the code changes that

happen around it, and yet it works correctly. This is exactly what

polymorphism is supposed to provide. Changes in your code don’t

cause damage to parts of the program that should not be affected. Put

another way, polymorphism is an important technique for the

programmer to “separate the things that change from the things that

stay the same.”

Pitfall: “Overriding” private

Methods

Here’s something you might innocently try to do:

// polymorphism/PrivateOverride.java

// Trying to override a private method

// {java polymorphism.PrivateOverride}

package polymorphism;



public class PrivateOverride {

private void f() {

System.out.println("private f()");

}

public static void main(String[] args) {

PrivateOverride po = new Derived();

po.f();

}

}

class Derived extends PrivateOverride {

public void f() { System.out.println("public f()"); }

}

/* Output:

private f()

*/

You might reasonably expect the output to be “public f()”, but a

private method is automatically final, and is also hidden from

the derived class. So Deriveds f() here is a brand new method; it’s

not even overloaded, since the base-class version of f() isn’t visible in

Derived.



The result of this is that only non-private methods can be

overridden, but watch out for the appearance of overriding private

methods, which generates no compiler warnings, but doesn’t do what

you might expect. To be clear, use a different name from a private

base-class method in your derived class.

If you use the @Override annotation, the problem is detected:

// polymorphism/PrivateOverride2.java

// Detecting a mistaken override using @Override

// {WillNotCompile}

package polymorphism;

public class PrivateOverride2 {

private void f() {

System.out.println("private f()");

}

public static void main(String[] args) {

PrivateOverride2 po = new Derived2();

po.f();



}

}

class Derived2 extends PrivateOverride2 {

@Override

public void f() { System.out.println("public f()"); }

}

The compiler message is:

error: method does not override or

implement a method from a supertype

Pitfall: Fields and static

Methods

Once you learn about polymorphism, you can begin to think

everything happens polymorphically. However, only ordinary method

calls can be polymorphic. For example, if you access a field directly,

that access is resolved at compile time:

// polymorphism/FieldAccess.java

// Direct field access is determined at compile time

class Super {

public int field = 0;

public int getField() { return field; }



}

class Sub extends Super {

public int field = 1;

@Override

public int getField() { return field; }

public int getSuperField() { return super.field; }

}

public class FieldAccess {

public static void main(String[] args) {

Super sup = new Sub(); // Upcast

System.out.println("sup.field = " + sup.field +

", sup.getField() = " + sup.getField());

Sub sub = new Sub();

System.out.println("sub.field = " +

sub.field + ", sub.getField() = " +

sub.getField() +

", sub.getSuperField() = " +

sub.getSuperField());

}

}



/* Output:

sup.field = 0, sup.getField() = 1

sub.field = 1, sub.getField() = 1, sub.getSuperField()

= 0

*/

When a Sub object is upcast to a Super reference, any field accesses

are resolved by the compiler, and are thus not polymorphic. In this

example, different storage is allocated for Super.field and

Sub.field. Thus, Sub actually contains two fields called field: its

own and the one it gets from Super. However, the Super version is

not the default that is produced when you refer to field in Sub. To

get the Super field you must explicitly say super.field.

Although this seems like it could be a confusing issue, in practice it

virtually never comes up. For one thing, you’ll generally make all fields

private and so you won’t access them directly, but only as side

effects of calling methods. In addition, you probably won’t give the

same name to a base-class field and a derived-class field, because it is

confusing.

If a method is static, it doesn’t behave polymorphically:

// polymorphism/StaticPolymorphism.java



// Static methods are not polymorphic

class StaticSuper {

public static String staticGet() {

return "Base staticGet()";

}

public String dynamicGet() {

return "Base dynamicGet()";

}

}

class StaticSub extends StaticSuper {

public static String staticGet() {

return "Derived staticGet()";

}

@Override

public String dynamicGet() {

return "Derived dynamicGet()";

}

}

public class StaticPolymorphism {

public static void main(String[] args) {



StaticSuper sup = new StaticSub(); // Upcast

System.out.println(StaticSuper.staticGet());

System.out.println(sup.dynamicGet());

}

}

/* Output:

Base staticGet()

Derived dynamicGet()

*/

static methods are associated with the class, and not the individual

objects.

Constructors and

Polymorphism



As usual, constructors are different from other kinds of methods. This

is also true when polymorphism is involved. Even though constructors

are not polymorphic (they’re actually static methods, but the

static declaration is implicit), it’s important to understand the way

constructors work in complex hierarchies and with polymorphism.

This understanding will help you avoid unpleasant entanglements.

Order of Constructor Calls

The order of constructor calls was briefly discussed in the

Housekeeping chapter and again in the Reuse chapter, but that was before
polymorphism was introduced.

A constructor for the base class is always called during the

construction process for a derived class. The initialization

automatically moves up the inheritance hierarchy so a constructor for

every base class is called. This makes sense because the constructor

has a special job: to see that the object is built properly. Since fields

are usually private, you must generally assume that a derived class

has access to its own members only, and not to those of the base class.

Only the base-class constructor has the proper knowledge and access

to initialize its own elements. Therefore, it’s essential that all

constructors get called; otherwise, the entire object wouldn’t be

constructed. That’s why the compiler enforces a constructor call for



every portion of a derived class. It will silently call the no-arg

constructor if you don’t explicitly call a base-class constructor in the

derived-class constructor body. If there is no no-arg constructor, the

compiler will complain. (In the case where a class has no constructors,

the compiler will automatically synthesize a no-arg constructor.)

This example shows the effects of composition, inheritance, and

polymorphism on the order of construction:

// polymorphism/Sandwich.java

// Order of constructor calls

// {java polymorphism.Sandwich}

package polymorphism;

class Meal {

Meal() { System.out.println("Meal()"); }

}

class Bread {

Bread() { System.out.println("Bread()"); }

}

class Cheese {

Cheese() { System.out.println("Cheese()"); }

}



class Lettuce {

Lettuce() { System.out.println("Lettuce()"); }

}

class Lunch extends Meal {

Lunch() { System.out.println("Lunch()"); }

}

class PortableLunch extends Lunch {

PortableLunch() {

System.out.println("PortableLunch()");

}

}

public class Sandwich extends PortableLunch {

private Bread b = new Bread();

private Cheese c = new Cheese();

private Lettuce l = new Lettuce();

public Sandwich() {

System.out.println("Sandwich()");

}

public static void main(String[] args) {

new Sandwich();



}

}

/* Output:

Meal()

Lunch()

PortableLunch()

Bread()

Cheese()

Lettuce()

Sandwich()

*/

This example creates a complex class out of other classes. Each class

has a constructor that announces itself. The important class is

Sandwich, which reflects three levels of inheritance (four, if you

count the implicit inheritance from Object) and three member

objects.

The output for creating a Sandwich object shows that the order of

constructor calls for a complex object is as follows:

1. The base-class constructor is called. This step is repeated

recursively such that the root of the hierarchy is constructed first,



followed by the next-derived class, etc., until the most-derived

class is reached.

2. Member initializers are called in the order of declaration.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit, you

know all about the base class and can access any public and

protected members of the base class. This means you can assume

that all members of the base class are valid when you’re in the derived

class. In a normal method, construction has already taken place, so all

the members of all parts of the object are also constructed.

Inside the constructor you must be certain all members are already

built. The only way to guarantee this is for the base-class constructor

to be called first. Then, when you’re in the derived-class constructor,

all the members you can access in the base class have been initialized.

Knowing that all members are valid inside the constructor is also the

reason that, whenever possible, you should initialize all member

objects (that is, objects placed in the class using composition) at their



point of definition in the class (e.g., b, c, and l in the preceding

example). If you follow this practice, you help ensure that all base-

class members and member objects of the current object have been

initialized.

Unfortunately, this doesn’t handle every case, as you will see in the

next section.

Inheritance and Cleanup

When using composition and inheritance to create a new class, most of

the time you won’t worry about cleanup. Subobjects can usually be left

to the garbage collector. If you do have cleanup issues, you must be

diligent and create a dispose() method (the name I have chosen to

use here; you might come up with something better) for your new

class. And with inheritance, you must override dispose() in the

derived class for any special cleanup that must happen as part of

garbage collection. When you override dispose() in an inherited

class, it’s important to remember to call the base-class version of

dispose(), since otherwise the base-class cleanup will not happen:

// polymorphism/Frog.java

// Cleanup and inheritance

// {java polymorphism.Frog}



package polymorphism;

class Characteristic {

private String s;

Characteristic(String s) {

this.s = s;

System.out.println("Creating Characteristic " + s);

}

protected void dispose() {

System.out.println("disposing Characteristic " + s);

}

}

class Description {

private String s;

Description(String s) {

this.s = s;

System.out.println("Creating Description " + s);

}

protected void dispose() {

System.out.println("disposing Description " + s);

}



}

class LivingCreature {

private Characteristic p =

new Characteristic("is alive");

private Description t =

new Description("Basic Living Creature");

LivingCreature() {

System.out.println("LivingCreature()");

}

protected void dispose() {

System.out.println("LivingCreature dispose");

t.dispose();

p.dispose();

}

}

class Animal extends LivingCreature {

private Characteristic p =

new Characteristic("has heart");

private Description t =

new Description("Animal not Vegetable");



Animal() { System.out.println("Animal()"); }

@Override

protected void dispose() {

System.out.println("Animal dispose");

t.dispose();

p.dispose();

super.dispose();

}

}

class Amphibian extends Animal {

private Characteristic p =

new Characteristic("can live in water");

private Description t =

new Description("Both water and land");

Amphibian() {

System.out.println("Amphibian()");

}

@Override

protected void dispose() {

System.out.println("Amphibian dispose");



t.dispose();

p.dispose();

super.dispose();

}

}

public class Frog extends Amphibian {

private Characteristic p =

new Characteristic("Croaks");

private Description t = new Description("Eats Bugs");

public Frog() { System.out.println("Frog()"); }

@Override

protected void dispose() {

System.out.println("Frog dispose");

t.dispose();

p.dispose();

super.dispose();

}

public static void main(String[] args) {

Frog frog = new Frog();

System.out.println("Bye!");



frog.dispose();

}

}

/* Output:

Creating Characteristic is alive

Creating Description Basic Living Creature

LivingCreature()

Creating Characteristic has heart

Creating Description Animal not Vegetable

Animal()

Creating Characteristic can live in water

Creating Description Both water and land

Amphibian()

Creating Characteristic Croaks

Creating Description Eats Bugs

Frog()

Bye!

Frog dispose

disposing Description Eats Bugs

disposing Characteristic Croaks



Amphibian dispose

disposing Description Both water and land

disposing Characteristic can live in water

Animal dispose

disposing Description Animal not Vegetable

disposing Characteristic has heart

LivingCreature dispose

disposing Description Basic Living Creature

disposing Characteristic is alive

*/

Each class in the hierarchy contains member objects of types

Characteristic and Description, which must also be



disposed. The order of disposal should be the reverse of the order of

initialization, in case one subobject is dependent on another. For

fields, this means reverse order of declaration (since fields are

initialized in declaration order). For base classes (following the form

that’s used in C++ for destructors), perform the derived-class cleanup

first, then the base-class cleanup. That’s because the derived-class

cleanup could call some methods in the base class that require the

base-class components to be alive, so you cannot destroy them

prematurely. The output shows that all parts of the Frog object are

disposed in reverse order of creation.

Although you don’t always perform cleanup, when you do, the process

requires care and awareness.

A Frog object “owns” its member objects. It creates them, and it

knows they should live as long as the Frog does, so it knows when to

dispose() of the member objects. However, if one of these member

objects is shared with one or more other objects, the problem becomes

more complex and you cannot simply call dispose(). Here,

reference counting might be necessary to keep track of the number of

objects still accessing a shared object. Here’s what it looks like:

// polymorphism/ReferenceCounting.java



// Cleaning up shared member objects

class Shared {

private int refcount = 0;

private static long counter = 0;

private final long id = counter++;

Shared() {

System.out.println("Creating " + this);

}

public void addRef() { refcount++; }

protected void dispose() {

if(--refcount == 0)

System.out.println("Disposing " + this);

}

@Override

public String toString() {

return "Shared " + id;

}

}

class Composing {

private Shared shared;



private static long counter = 0;

private final long id = counter++;

Composing(Shared shared) {

System.out.println("Creating " + this);

this.shared = shared;

this.shared.addRef();

}

protected void dispose() {

System.out.println("disposing " + this);

shared.dispose();

}

@Override

public String toString() {

return "Composing " + id;

}

}

public class ReferenceCounting {

public static void main(String[] args) {

Shared shared = new Shared();

Composing[] composing = {



new Composing(shared),

new Composing(shared),

new Composing(shared),

new Composing(shared),

new Composing(shared)

};

for(Composing c : composing)

c.dispose();

}

}

/* Output:

Creating Shared 0

Creating Composing 0

Creating Composing 1

Creating Composing 2

Creating Composing 3

Creating Composing 4

disposing Composing 0

disposing Composing 1

disposing Composing 2



disposing Composing 3

disposing Composing 4

Disposing Shared 0

*/

The static long counter keeps track of the number of

instances of Shared that are created, and it also provides a value for

id. The type of counter is long rather than int, to prevent

overflow (this is just good practice; overflowing such a counter is not

likely to happen in any of the examples in this book). The id is final

because it should not change its value once initialized.

When you attach a shared object to your class, you must remember to

call addRef(), but the dispose() method will keep track of the

reference count and decide when to actually perform the cleanup. This

technique requires extra diligence to use, but if you are sharing objects

that require cleanup you don’t have much choice.

Behavior of Polymorphic

Methods Inside Constructors



The hierarchy of constructor calls brings up a dilemma. What happens

if you’re inside a constructor and you call a dynamically bound method

of the object that’s being constructed?

Inside an ordinary method, the dynamically bound call is resolved at

run time, because the object cannot know whether it belongs to the

class that the method is in or some class derived from it.

If you call a dynamically bound method inside a constructor, the

overridden definition for that method is also used. However, the effect

of this call can be rather unexpected because the overridden method is

called before the object is fully constructed. This can conceal some

difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into existence

(hardly an ordinary feat). Inside any constructor, the entire object

might be only partially formed—you can only know that the base-class

objects are initialized. If the constructor is only one step in building an

object of a class that’s been derived from that constructor’s class, the

derived parts have not yet been initialized at the time the current

constructor is called. A dynamically bound method call, however,

reaches “outward” into the inheritance hierarchy. It calls a method in a

derived class. If you do this inside a constructor, you can call a method



that might manipulate members that haven’t been initialized yet—a

sure recipe for disaster.

Here’s the problem:

// polymorphism/PolyConstructors.java

// Constructors and polymorphism

// don't produce what you might expect

class Glyph {

void draw() { System.out.println("Glyph.draw()"); }

Glyph() {

System.out.println("Glyph() before draw()");

draw();

System.out.println("Glyph() after draw()");

}

}

class RoundGlyph extends Glyph {

private int radius = 1;

RoundGlyph(int r) {

radius = r;

System.out.println(

"RoundGlyph.RoundGlyph(), radius = " + radius);



}

@Override

void draw() {

System.out.println(

"RoundGlyph.draw(), radius = " + radius);

}

}

public class PolyConstructors {

public static void main(String[] args) {

new RoundGlyph(5);

}

}

/* Output:

Glyph() before draw()

RoundGlyph.draw(), radius = 0

Glyph() after draw()

RoundGlyph.RoundGlyph(), radius = 5

*/

Glyph.draw() is designed for overriding, which happens in

RoundGlyph. But the Glyph constructor calls this method, and the



call ends up in RoundGlyph.draw(), which would seem to be the

intent. The output shows that when Glyphs constructor calls

draw(), the value of radius isn’t even the default initial value 1. It’s

0. This would probably result in either a dot or nothing at all drawn on

the screen, and you’d be left staring, trying to figure out why the

program won’t work.

The order of initialization described in the earlier section isn’t quite

complete, and that’s the key to solving the mystery. The actual process

of initialization is:

1. The storage allocated for the object is initialized to binary zero

before anything else happens.

2. The base-class constructors are called as described previously.

Now the overridden draw() method is called (yes, before the

RoundGlyph constructor is called), which discovers a radius

value of zero, due to Step 1.

3. Member initializers are called in the order of declaration.

4. The body of the derived-class constructor is called.

There’s an upside to this: Everything is at least initialized to zero (or

whatever zero means for that particular data type) and not just left as

garbage. This includes object references embedded inside a class via



composition, which become null. So if you forget to initialize that

reference, you’ll get an exception at run time. Everything else gets

zero, usually a telltale value when you are looking at output.

On the other hand, you should be horrified at the outcome of this

program. You’ve done a perfectly logical thing, and yet the behavior is

mysteriously wrong, with no complaints from the compiler. (C++

produces more rational behavior in this situation.) Bugs like this can

easily be buried and take a long time to discover.

As a result, a good guideline for constructors is “Do as little as possible

to set the object into a good state, and if you can possibly avoid it,

don’t call any other methods in this class.” The only safe methods to

call inside a constructor are those that are final in the base class.

(This also applies to private methods, which are automatically

final.) These cannot be overridden and thus cannot produce this

kind of surprise. You might not always follow this guideline, but it’s

something to strive towards.



Covariant Return

Types

Java 5 added covariant return types, which means an overridden

method in a derived class can return a type derived from the type

returned by the base-class method:

// polymorphism/CovariantReturn.java

class Grain {

@Override

public String toString() { return "Grain"; }

}

class Wheat extends Grain {

@Override

public String toString() { return "Wheat"; }

}

class Mill {

Grain process() { return new Grain(); }



}

class WheatMill extends Mill {

@Override

Wheat process() { return new Wheat(); }

}

public class CovariantReturn {

public static void main(String[] args) {

Mill m = new Mill();

Grain g = m.process();

System.out.println(g);

m = new WheatMill();

g = m.process();

System.out.println(g);

}

}

/* Output:

Grain

Wheat

*/

The key difference here is that pre-Java-5 versions forced the



overridden version of process() to return Grain, rather than

Wheat, even though Wheat is derived from Grain and thus is still a

legitimate return type. Covariant return types allow the more specific

Wheat return type.

Designing with

Inheritance

Once you learn polymorphism, it can seem that everything ought to be

inherited, because polymorphism is such a clever tool. This can

burden your designs. In fact, if you choose inheritance first when

you’re using an existing class to make a new class, things can become

needlessly complicated.

A better approach is to choose composition first, especially when it’s

not obvious which approach to use. Composition does not force a

design into an inheritance hierarchy. Composition is also more flexible

since it’s possible to dynamically choose a type (and thus behavior)

when using composition, whereas inheritance requires that an exact

type be known at compile time. The following example illustrates this:

// polymorphism/Transmogrify.java

// Dynamically changing the behavior of an object

// via composition (the "State" design pattern)



class Actor {

public void act() {}

}

class HappyActor extends Actor {

@Override

public void act() {

System.out.println("HappyActor");

}

}

class SadActor extends Actor {

@Override

public void act() {

System.out.println("SadActor");

}

}

class Stage {

private Actor actor = new HappyActor();

public void change() { actor = new SadActor(); }

public void performPlay() { actor.act(); }

}



public class Transmogrify {

public static void main(String[] args) {

Stage stage = new Stage();

stage.performPlay();

stage.change();

stage.performPlay();

}

}

/* Output:

HappyActor

SadActor

*/

A Stage object contains a reference to an Actor, which is initialized

to a HappyActor object. This means performPlay() produces a

particular behavior. But since a reference can be re-bound to a

different object at run time, a reference for a SadActor object can be

substituted in actor, then the behavior produced by



performPlay() changes. Thus you gain dynamic flexibility at run

time. (This is also called the State pattern). In contrast, you can’t

decide to inherit differently at run time; that must be completely

determined at compile time.

A general guideline is “Use inheritance to express differences in

behavior, and fields to express variations in state.” In the preceding

example, both are used; two different classes are inherited to express

the difference in the act() method, and Stage uses composition to

allow its state to be changed. Here, that change in state happens to

produce a change in behavior.

Substitution vs. Extension

It would seem that the cleanest way to create an inheritance hierarchy

is to take the “pure” approach. That is, only methods from the base

class are overridden in the derived class, as seen in this diagram:



This can be called a pure “is-a” relationship because the interface of a

class establishes what it is. Inheritance guarantees that any derived

class has the interface of the base class and nothing less. If you follow

this diagram, derived classes will also have no more than the base-

class interface.

This pure substitution means derived class objects can be perfectly

substituted for the base class, and you don’t know any extra

information about the subclasses when you’re using them:



That is, the base class can receive any message you can send to the

derived class because the two have exactly the same interface. All you

do is upcast from the derived class and never look back to see what

exact type of object you’re dealing with. Everything is handled through

polymorphism.

When you see it this way, it seems like a pure is-a relationship is the

only sensible way to do things, and any other design indicates



muddled thinking and is by definition broken. This too is a trap. As

soon as you start thinking this way, you’ll turn around and discover

that extending the interface (which, unfortunately, the keyword

extends seems to encourage) is the perfect solution to a particular

problem. This can be termed an “is-like-a” relationship, because the

derived class is like the base class—it has the same fundamental

interface—but it has other features that require additional methods to

implement:

While this is also a useful and sensible approach (depending on the

situation), it has a drawback. The extended part of the interface in the

derived class is not available from the base class, so once you upcast,

you can’t call the new methods:

If you’re not upcasting, it won’t bother you, but often you’ll get into a



situation where you must rediscover the exact type of the object so you

can access the extended methods of that type. The following section

shows how this is done.

Downcasting and Runtime

Type Information

Since you lose the specific type information via an upcast (moving up

the inheritance hierarchy), it makes sense that to retrieve the type

information—that is, to move back down the inheritance hierarchy—

you use a downcast.

You know an upcast is always safe because the base class cannot have

a bigger interface than the derived class. Therefore, every message you

send through the base-class interface is guaranteed to be accepted.

With a downcast, however, you don’t really know that a shape (for

example) is actually a circle. It could also be a triangle or square or

some other type.

To solve this problem, there must be some way to guarantee that a

downcast is correct, so you won’t accidentally cast to the wrong type

then send a message that the object can’t accept. That would be

unsafe.

In some languages (like C++) you must perform a special operation to



get a type-safe downcast, but in Java, every cast is checked! So even

though it looks like you’re just performing an ordinary parenthesized

cast, at run time this cast is checked to ensure it is in fact the type you

think it is. If it isn’t, you get a ClassCastException. This act of

checking types at run time is called runtime type information (RTTI).

The following example demonstrates the behavior of RTTI:

// polymorphism/RTTI.java

// Downcasting & Runtime type information (RTTI)

// {ThrowsException}

class Useful {

public void f() {}

public void g() {}

}

class MoreUseful extends Useful {

@Override

public void f() {}

@Override

public void g() {}

public void u() {}

public void v() {}



public void w() {}

}

public class RTTI {

public static void main(String[] args) {

Useful[] x = {

new Useful(),

new MoreUseful()

};

x[0].f();

x[1].g();

// Compile time: method not found in Useful:

//- x[1].u();

((MoreUseful)x[1]).u(); // Downcast/RTTI

((MoreUseful)x[0]).u(); // Exception thrown

}

}



/* Output:

___[ Error Output ]___

Exception in thread "main"

java.lang.ClassCastException: Useful cannot be cast to

MoreUseful

at RTTI.main(RTTI.java:31)

*/

As in the previous diagram, MoreUseful extends the interface of

Useful. But since it’s inherited, it can also be upcast to a Useful.

You see this happening in the initialization of the array x in main().

Since both objects in the array are of class Useful, you can send the

f() and g() methods to both, and if you try to call u() (which exists only in
MoreUseful), you’ll get a compile-time error message.

To access the extended interface of a MoreUseful object, you can try

downcasting. If it’s the correct type, it is successful. Otherwise, you’ll

get a ClassCastException. You don’t write any special code for

this exception, since it indicates a programmer error that could

happen anywhere in a program. The {ThrowsException}

comment tag tells this book’s build system to expect this program to

throw an exception when it executes.

There’s more to RTTI than a simple cast. For example, there’s a way to



see what type you’re dealing with before you try to downcast it. The

Type Information chapter is devoted to the study of different aspects of Java
runtime type information.

Summary

Polymorphism means “different forms.” In object-oriented

programming, you have the same interface from the base class, and

different forms using that interface: the different versions of the

dynamically bound methods.

You’ve seen in this chapter that it’s impossible to understand, or even

create, an example of polymorphism without using data abstraction

and inheritance. Polymorphism is a feature that cannot be viewed in

isolation (like a switch statement can, for example), but instead

works only in concert, as part of the larger picture of class

relationships.

To use polymorphism—and thus object-oriented techniques—

effectively in your programs, you must expand your view of

programming to include not just members and messages of an

individual class, but also the commonality among classes and their

relationships with each other. Although this requires significant effort,

it’s a worthy struggle. The results are faster program development,

better code organization, extensible programs, and easier code



maintenance.

Keep in mind, however, that polymorphism can be overused. Analyze

your code and make sure it’s actually providing a benefit.

Interfaces

Interfaces and abstract classes provide a

more structured way to separate interface

from implementation.

Such mechanisms are not that common in programming languages.

C++, for example, only has indirect support for these concepts. The

fact that language keywords exist in Java indicates that these ideas

were considered important enough to provide direct support.

First, we’ll look at the abstract class, a kind of midway step between

an ordinary class and an interface. Although your first impulse is to

create an interface, the abstract class is an important and necessary



tool for building classes that have fields and unimplemented methods.

You can’t always use a pure interface.

Abstract Classes and

Methods

In all the “instrument” examples in the previous chapter, the methods

in the base class Instrument were always “dummy” methods. If

these methods are ever called, you’ve done something wrong. That’s

because the intent of Instrument is to create a common interface

for all the classes derived from it.

In those examples, the only reason to create this common interface is

so it can be expressed differently for each different subtype. It

establishes a basic form, so you can say what’s common for all the

derived classes. Another way of saying this is to call Instrument an

abstract base class, or simply an abstract class.

For an abstract class like Instrument, objects of that specific class

almost always have no meaning. You create an abstract class when you

want to manipulate a set of classes through its common interface.

Thus, Instrument is meant to express only the interface, and not a

particular implementation, so creating an object that is only an

Instrument makes no sense, and you’ll probably want to prevent



the user from doing it. This can be accomplished by making all the

methods in Instrument generate errors, but that delays the

information until run time and requires reliable exhaustive testing on

the user’s part. It’s usually better to catch problems at compile time.

Java provides a mechanism for doing this called the abstract method.1

This is a method that is incomplete; it has only a declaration and no

method body. Here is the syntax for an abstract method declaration:

abstract void f();

A class containing abstract methods is called an abstract class. If a

class contains one or more abstract methods, the class itself must be

qualified as abstract, otherwise, the compiler produces an error

message.

// interfaces/Basic.java

abstract class Basic {

abstract void unimplemented();

}

If an abstract class is incomplete, what is Java supposed to do when

someone tries to make an object of that class? It cannot safely create

an object of an abstract class, so you get an error message from the

compiler. This ensures the purity of the abstract class, and you don’t



worry about misusing it.

// interfaces/AttemptToUseBasic.java

// {WillNotCompile}

public class AttemptToUseBasic {

Basic b = new Basic();

// error: Basic is abstract; cannot be instantiated

}

If you inherit from an abstract class and you want to make objects of

the new type, you must provide method definitions for all the abstract

methods in the base class. If you don’t (and you might choose not to),

then the derived class is also abstract, and the compiler will force you

to qualify that class with the abstract keyword.

// interfaces/Basic2.java

abstract class Basic2 extends Basic {

int f() { return 111; }

abstract void g();

// unimplemented() still not implemented

}

It’s possible to make a class abstract without including any

abstract methods. This is useful when you’ve got a class where



abstract methods don’t make sense, and yet you want to prevent

any instances of that class.

// interfaces/AbstractWithoutAbstracts.java

abstract class Basic3 {

int f() { return 111; }

// No abstract methods

}

public class AbstractWithoutAbstracts {

// Basic3 b3 = new Basic3();

// error: Basic3 is abstract; cannot be instantiated

}

To create an instantiable class, inherit from your abstract class and

provide definitions for all the abstract methods:

// interfaces/Instantiable.java

abstract class Uninstantiable {

abstract void f();

abstract int g();

}

public class Instantiable extends Uninstantiable {

@Override



void f() { System.out.println("f()"); }

@Override

int g() { return 22; }

public static void main(String[] args) {

Uninstantiable ui = new Instantiable();

}

}

Note the use of @Override. Without this annotation, if you don’t

provide the exact method name or signature, the abstract

mechanism sees you haven’t implemented the abstract method

and produces a compile-time error. Thus, you could effectively argue

that @Override is redundant here. However, @Override also

gives the reader a signal that this method is overridden—I consider

this useful, and so will use @Override even when the compiler

would inform me of mistakes without it.

Remember that the defacto access is “friendly.” You’ll see shortly that

an interface automatically makes its methods public; in fact,

interfaces only allow public methods and if you don’t provide an

access specifier, the resulting method is not “friendly,” but public.

Whereas abstract classes allow almost everything:



// interfaces/AbstractAccess.java

abstract class AbstractAccess {

private void m1() {}

// private abstract void m1a(); // illegal

protected void m2() {}

protected abstract void m2a();

void m3() {}

abstract void m3a();

public void m4() {}

public abstract void m4a();

}

It makes sense that private abstract is not allowed, because

you could never legally provide a definition in any subclass of

AbstractAccess.

The Instrument class from the previous chapter can easily be

turned into an abstract class. Only some of the methods are

abstract; making a class abstract doesn’t force you to make all

the methods abstract. Here’s what it looks like:



Here’s the orchestra example modified to use abstract classes and

methods:

// interfaces/music4/Music4.java

// Abstract classes and methods

// {java interfaces.music4.Music4}

package interfaces.music4;



import polymorphism.music.Note;

abstract class Instrument {

private int i; // Storage allocated for each

public abstract void play(Note n);

public String what() { return "Instrument"; }

public abstract void adjust();

}

class Wind extends Instrument {

@Override

public void play(Note n) {

System.out.println("Wind.play() " + n);

}

@Override

public String what() { return "Wind"; }

@Override

public void adjust() {

System.out.println("Adjusting Wind");

}

}

class Percussion extends Instrument {



@Override

public void play(Note n) {

System.out.println("Percussion.play() " + n);

}

@Override

public String what() { return "Percussion"; }

@Override

public void adjust() {

System.out.println("Adjusting Percussion");

}

}

class Stringed extends Instrument {

@Override

public void play(Note n) {

System.out.println("Stringed.play() " + n);

}

@Override

public String what() { return "Stringed"; }

@Override

public void adjust() {



System.out.println("Adjusting Stringed");

}

}

class Brass extends Wind {

@Override

public void play(Note n) {

System.out.println("Brass.play() " + n);

}

@Override

public void adjust() {

System.out.println("Adjusting Brass");

}

}

class Woodwind extends Wind {

@Override

public void play(Note n) {

System.out.println("Woodwind.play() " + n);

}

@Override

public String what() { return "Woodwind"; }



}

public class Music4 {

// Doesn't care about type, so new types

// added to the system still work right:

static void tune(Instrument i) {

// ...

i.play(Note.MIDDLE_C);

}

static void tuneAll(Instrument[] e) {

for(Instrument i : e)

tune(i);

}

public static void main(String[] args) {

// Upcasting during addition to the array:

Instrument[] orchestra = {

new Wind(),

new Percussion(),

new Stringed(),

new Brass(),

new Woodwind()



};

tuneAll(orchestra);

}

}

/* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C

*/

There’s really no change except in Instrument.

It’s helpful to create abstract classes and methods because they

make the abstractness of a class explicit, and tell both the user and the

compiler its intended use. Abstract classes are also useful refactoring

tools, since they allow you to easily move common methods up the



inheritance hierarchy.

Interfaces

To create an interface, use the interface keyword. The name

“interface” is so commonly used throughout this book that, like “class,”

I set it in normal body font unless I am specifically referring to the

keyword interface.

Interfaces were easier to describe before Java 8, because they only

allowed abstract methods. They looked like this:

// interfaces/PureInterface.java

// Interface only looked like this before Java 8

public interface PureInterface {

int m1();

void m2();

double m3();

}

You don’t even have to use the abstract keyword on the methods—

because they are in an interface, Java knows they can’t have method

bodies (you can still add the abstract keyword, but then it just

looks like you don’t understand interfaces and you’ll embarrass

yourself).



So, before Java 8, we could say things like:

The interface keyword creates a completely abstract class, one

that doesn’t represent any implementation. With an interface, you

describe what a class should look like, and do, but not how it should

do it. You determine method names, argument lists, and return

types, but no method bodies. An interface provides only a form, but

generally no implementation, although in certain restricted cases,

it can.

An interface says, “All classes that implement this particular

interface will look like this.” Thus, any code that uses a particular

interface knows what methods might be called for that interface,

and that’s all. So the interface is used to establish a “protocol”

between classes. (Some object-oriented programming languages

have a keyword called protocol to do the same thing.)

With Java 8 the interface waters have been muddied a bit, because

Java 8 allows both default methods and static methods—for

important reasons that you’ll understand as we progress through the

book. The basic concept of the interface still holds, which is that they

are more of a concept of a type, and less of an implementation.

Perhaps the most notable difference between an interface and an



abstract class is the idiomatic ways the two are used. An interface

typically suggests a “type of class” or an adjective, like Runnable, or

Serializable, whereas an abstract class is usually part of your class

hierarchy and is a “type of thing,” like String or ActionHero.

To create an interface, use the interface keyword instead of the

class keyword. As with a class, you can add the public keyword

before the interface keyword (but only if that interface is defined

in a file of the same name). If you leave off the public keyword, you

get package access, so the interface is only usable within the same

package.

An interface can also contain fields, but these are implicitly static

and final.

To make a class that conforms to a particular interface (or group of

interfaces), use the implements keyword, which says, “The interface

is what it looks like, but now I’m going to say how it works.” Other

than that, it looks like inheritance.

// interfaces/ImplementingAnInterface.java



interface Concept { // Package access

void idea1();

void idea2();

}

class Implementation implements Concept {

public void idea1() { System.out.println("idea1"); }

public void idea2() { System.out.println("idea2"); }

}

You can choose to explicitly declare the methods in an interface as

public, but they are public even if you don’t say it. So when you

implement an interface, the methods from the interface must be

defined as public. Otherwise, they would default to package access,

and you’d be reducing the accessibility of a method during inheritance,

which is not allowed by the Java compiler.

Default Methods

Java 8 creates an additional use for the default keyword (formerly

used only in switch statements and annotations). When used within

an interface, default creates a method body that is substituted

whenever the interface is implemented without defining that method.

Default methods are a bit more limited than methods on abstract



classes, but can be very useful, as we will see in the Streams chapter.

Let’s see how this works by starting with an interface:

// interfaces/AnInterface.java

interface AnInterface {

void firstMethod();

void secondMethod();

}

We can implement this in the usual way:

// interfaces/AnImplementation.java

public class AnImplementation implements AnInterface {

public void firstMethod() {

System.out.println("firstMethod");

}

public void secondMethod() {

System.out.println("secondMethod");

}

public static void main(String[] args) {

AnInterface i = new AnImplementation();

i.firstMethod();

i.secondMethod();



}

}

/* Output:

firstMethod

secondMethod

*/

If we add another method newMethod() to AnInterface without

an associated implementation for that method within

AnImplementation, the compiler will issue an error:

AnImplementation.java:3: error: AnImplementation is

not abstract and does not override abstract method

newMethod() in AnInterface

public class AnImplementation implements AnInterface {

^

1 error

If we use the default keyword and provide a default definition for

newMethod(), all existing uses of the interface can continue to

work, untouched, while new code can call newMethod():

// interfaces/InterfaceWithDefault.java

interface InterfaceWithDefault {



void firstMethod();

void secondMethod();

default void newMethod() {

System.out.println("newMethod");

}

}

The default keyword allows method implementations within

interfaces—before Java 8 this was not permitted.

// interfaces/Implementation2.java

public class Implementation2

implements InterfaceWithDefault {

public void firstMethod() {

System.out.println("firstMethod");

}

public void secondMethod() {

System.out.println("secondMethod");

}

public static void main(String[] args) {

InterfaceWithDefault i =

new Implementation2();



i.firstMethod();

i.secondMethod();

i.newMethod();

}

}

/* Output:

firstMethod

secondMethod

newMethod

*/

Although newMethod() has no definition within

Implementation2, it’s now available.

The compelling reason to add default methods is that they allow

you to add methods to an existing interface without breaking all the

code that already uses that interface. default methods are

sometimes also called defender methods or virtual extension methods.

Multiple Inheritance



Multiple inheritance means a class may inherit characteristics and

features from more than one parent type.

When Java was first designed, multiple inheritance in C++ was

roundly denigrated. Java was strictly a single-inheritance language:

You could only inherit from one class (or abstract class). You could

also implement as many interfaces as you like, but before Java 8 an

interface carried no baggage—it was only a description of what its

methods looked like.

Now, many years later, via default methods, Java has some

multiple inheritance. Combining interfaces with default methods

means you can combine behaviors from multiple base types. Because

interfaces still don’t allow fields (only static fields, which don’t

apply), fields can still only come from the single base class or

abstract class; that is, you cannot have multiple inheritance of

state. Here’s what it looks like:

// interfaces/MultipleInheritance.java

import java.util.*;

interface One {

default void first() { System.out.println("first"); }

}



interface Two {

default void second() {

System.out.println("second");

}

}

interface Three {

default void third() { System.out.println("third"); }

}

class MI implements One, Two, Three {}

public class MultipleInheritance {

public static void main(String[] args) {

MI mi = new MI();

mi.first();

mi.second();

mi.third();

}

}

/* Output:

first

second



third

*/

Now we can do something we never could prior to Java 8: combine

implementations from multiple sources. This works fine as long as all

the base-class methods have distinct names and argument lists. If not,

you get compile-time errors:

// interfaces/MICollision.java

import java.util.*;

interface Bob1 {

default void bob() {

System.out.println("Bob1::bob");

}

}

interface Bob2 {

default void bob() {

System.out.println("Bob2::bob");

}

}

// class Bob implements Bob1, Bob2 {}

/* Produces:



error: class Bob inherits unrelated defaults

for bob() from types Bob1 and Bob2

class Bob implements Bob1, Bob2 {}

^

1 error

*/

interface Sam1 {

default void sam() {

System.out.println("Sam1::sam");

}

}

interface Sam2 {

default void sam(int i) {

System.out.println(i * 2);

}

}

// This works because the argument lists are distinct:

class Sam implements Sam1, Sam2 {}

interface Max1 {

default void max() {



System.out.println("Max1::max");

}

}

interface Max2 {

default int max() { return 47; }

}

// class Max implements Max1, Max2 {}

/* Produces:

error: types Max2 and Max1 are incompatible;

both define max(), but with unrelated return types

class Max implements Max1, Max2 {}

^

1 error

*/

In Sam, the two sam() methods have the same name but their

signatures are unique—the signature includes the name and argument

types, and it’s what the compiler uses to distinguish one method from

another. However, as Max shows, the return type is not part of the

signature and thus cannot be used to differentiate two methods.

To fix the problem, you must override the conflicting method:



// interfaces/Jim.java

import java.util.*;

interface Jim1 {

default void jim() {

System.out.println("Jim1::jim");

}

}

interface Jim2 {

default void jim() {

System.out.println("Jim2::jim");

}

}

public class Jim implements Jim1, Jim2 {

@Override

public void jim() { Jim2.super.jim(); }

public static void main(String[] args) {

new Jim().jim();



}

}

/* Output:

Jim2::jim

*/

Of course, you can redefine jim() to anything you want, but you’ll

typically choose one of the base-class implementations using the

super keyword, as shown.

static Methods in Interfaces

Java 8 also adds the ability to include static methods inside

interfaces. This allows utilities that rightly belong in the interface,

which are typically things that manipulate that interface, or are

general-purpose tools:

// onjava/Operations.java

package onjava;

import java.util.*;

public interface Operations {

void execute();

static void runOps(Operations... ops) {

for(Operations op : ops)



op.execute();

}

static void show(String msg) {

System.out.println(msg);

}

}

This is a version of the Template Method design pattern (described in

the Patterns chapter), where runOps() is the template method.

runOps() uses a variable argument list so we can pass as many

Operation arguments as we want and run them in order:

// interfaces/Machine.java

import java.util.*;

import onjava.Operations;

class Bing implements Operations {

public void execute() {

Operations.show("Bing");

}

}

class Crack implements Operations {

public void execute() {



Operations.show("Crack");

}

}

class Twist implements Operations {

public void execute() {

Operations.show("Twist");

}

}

public class Machine {

public static void main(String[] args) {

Operations.runOps(

new Bing(), new Crack(), new Twist());

}

}

/* Output:

Bing

Crack

Twist

*/

Here you see the different ways to create Operations: an external



class (Bing), an anonymous class, a method reference, and lambda

expressions—which certainly appear to be the nicest solution here.

This feature is an improvement, because it allows you to keep static



methods in more appropriate places.

Instrument as an Interface

Let’s revisit the instrument example, using interfaces:

The Woodwind and Brass classes show that once you’ve

implemented an interface, that implementation becomes an ordinary

class that can be extended in the regular way.

Because of the way interfaces work, none of the methods in

Instrument are explicitly public, but they’re automatically

public anyway. Both play() and adjust() have definitions using the default
keyword. Before Java 8, both definitions had to be

duplicated in each implementation, which was redundant and

annoying:

// interfaces/music5/Music5.java

// {java interfaces.music5.Music5}

package interfaces.music5;

import polymorphism.music.Note;

interface Instrument {

// Compile-time constant:

int VALUE = 5; // static & final

default void play(Note n) { // Automatically public

System.out.println(this + ".play() " + n);



}

default void adjust() {

System.out.println("Adjusting " + this);

}

}

class Wind implements Instrument {

@Override

public String toString() { return "Wind"; }

}

class Percussion implements Instrument {

@Override

public String toString() { return "Percussion"; }

}

class Stringed implements Instrument {

@Override

public String toString() { return "Stringed"; }

}

class Brass extends Wind {

@Override

public String toString() { return "Brass"; }



}

class Woodwind extends Wind {

@Override

public String toString() { return "Woodwind"; }

}

public class Music5 {

// Doesn't care about type, so new types

// added to the system still work right:

static void tune(Instrument i) {

// ...

i.play(Note.MIDDLE_C);

}

static void tuneAll(Instrument[] e) {

for(Instrument i : e)

tune(i);

}

public static void main(String[] args) {

// Upcasting during addition to the array:

Instrument[] orchestra = {

new Wind(),



new Percussion(),

new Stringed(),

new Brass(),

new Woodwind()

};

tuneAll(orchestra);

}

}

/* Output:

Wind.play() MIDDLE_C

Percussion.play() MIDDLE_C

Stringed.play() MIDDLE_C

Brass.play() MIDDLE_C

Woodwind.play() MIDDLE_C

*/

One other change was made to this version of the example: The

what() method is changed to toString(), since that is how the

method is used. Since toString() is part of the root class Object,

it doesn’t have to appear in the interface.



Notice it doesn’t matter if you are upcasting to a “regular” class called

Instrument, an abstract class called Instrument, or to an

interface called Instrument. The behavior is the same. In fact, the

tune() method shows that there isn’t any evidence about whether

Instrument is a “regular” class, an abstract class, or an

interface.

Abstract Classes

vs. Interfaces

Especially with the addition of default methods in Java 8, it can

become somewhat confusing to know when an abstract class is the

best choice, and when you should instead use an interface. This table

should make the distinction clear:

Abstract

Feature

Interfaces

Classes



Can combine

Can only inherit

Combinations

Multiple interfaces

from a single

in a new class.

abstract class.

Cannot contain

Can contain fields.

fields (except

Non-abstract

State

static fields,

methods may refer

which do not

to these fields.

support object state).

default methods



need not be

abstract methods

default methods

implemented in

must be

& abstract

subtypes. default

implemented in

methods

methods can only

subtypes.

refer to other

interface methods

(not fields).

Cannot have a

Can have a



Constructor

constructor.

constructor.

Visibility

Can be protected

Implicitly public.

or “friendly.”

An abstract class is still a class, and can thus be the only class

inherited when creating a new class. Multiple interfaces can be

implemented in the process of creating a new class.

A rule of thumb is to “be as abstract as possible—within reason.” Thus,

prefer interfaces over abstract classes. You’ll know when you must use

an abstract class. And don’t use either one unless you must. Most of

the time, a regular class will do the trick, and when it doesn’t, you can

move to an interface or abstract class.

Complete Decoupling

Whenever a method works with a class instead of an interface, you are

limited to using that class or its subclasses. If you would like to apply

the method to a class that isn’t in that hierarchy, you’re out of luck. An

interface relaxes this constraint considerably. As a result, you can



write more reusable code.

For example, suppose you have a Processor class with name() and process()
methods. process() takes input, modifies it and

produces output. This class is inherited to create different types of

Processor. Here, the Processor types modify String objects

(note that the return types can be covariant, but not the argument

types):

// interfaces/Applicator.java

import java.util.*;

class Processor {

public String name() {

return getClass().getSimpleName();

}

public Object process(Object input) {

return input;

}

}

class Upcase extends Processor {

@Override // Covariant return:

public String process(Object input) {

return ((String)input).toUpperCase();



}

}

class Downcase extends Processor {

@Override

public String process(Object input) {

return ((String)input).toLowerCase();

}

}

class Splitter extends Processor {

@Override

public String process(Object input) {

// split() divides a String into pieces:

return Arrays.toString(((String)input).split(" "));

}

}

public class Applicator {

public static void apply(Processor p, Object s) {

System.out.println("Using Processor " + p.name());

System.out.println(p.process(s));

}



public static void main(String[] args) {

String s =

"We are such stuff as dreams are made on";

apply(new Upcase(), s);

apply(new Downcase(), s);

apply(new Splitter(), s);

}

}

/* Output:

Using Processor Upcase

WE ARE SUCH STUFF AS DREAMS ARE MADE ON

Using Processor Downcase

we are such stuff as dreams are made on

Using Processor Splitter

[We, are, such, stuff, as, dreams, are, made, on]

*/

The Applicator.apply() method takes any kind of

Processor, applies it to an Object and prints the results. Creating

a method that behaves differently depending on the argument object

you pass it is called the Strategy design pattern. The method contains



the fixed part of the algorithm, and the Strategy contains the part that

varies. The Strategy is the object you pass in, containing code. Here,

the Processor object is the Strategy, and main() shows three

different Strategies applied to the String s.

The split() method is part of the String class. It takes the

String object and splits it using the argument as a boundary, and

returns a String[]. It is used here as a shorter way of creating an

array of String.

Now suppose you discover a set of electronic filters that seem like they

might fit into your Applicator.apply() method:

// interfaces/filters/Waveform.java

package interfaces.filters;

public class Waveform {

private static long counter;

private final long id = counter++;

@Override

public String toString() {

return "Waveform " + id;

}

}



// interfaces/filters/Filter.java

package interfaces.filters;

public class Filter {

public String name() {

return getClass().getSimpleName();

}

public Waveform process(Waveform input) {

return input;

}

}

// interfaces/filters/LowPass.java

package interfaces.filters;

public class LowPass extends Filter {

double cutoff;

public LowPass(double cutoff) {

this.cutoff = cutoff;

}

@Override

public Waveform process(Waveform input) {

return input; // Dummy processing



}

}

// interfaces/filters/HighPass.java

package interfaces.filters;

public class HighPass extends Filter {

double cutoff;

public HighPass(double cutoff) {

this.cutoff = cutoff;

}

@Override

public Waveform process(Waveform input) {

return input;

}

}

// interfaces/filters/BandPass.java

package interfaces.filters;

public class BandPass extends Filter {

double lowCutoff, highCutoff;

public BandPass(double lowCut, double highCut) {

lowCutoff = lowCut;



highCutoff = highCut;

}

@Override

public Waveform process(Waveform input) {

return input;

}

}

Filter has the same interface elements as Processor, but because

it isn’t inherited from Processor—because the creator of the

Filter class had no clue you might want to use it as a Processor

—you can’t use a Filter with the Applicator.apply() method,

even though it would work fine. Basically, the coupling between

Applicator.apply() and Processor is stronger than it needs

to be, and this prevents the Applicator.apply() code from

being reused when it ought to be. Also notice that the inputs and

outputs are both Waveforms.

If Processor is an interface, however, the constraints are loosened

enough you can reuse an Applicator.apply() that takes that

interface. Here are the modified versions of Processor and

Applicator:



// interfaces/interfaceprocessor/Processor.java

package interfaces.interfaceprocessor;

public interface Processor {

default String name() {

return getClass().getSimpleName();

}

Object process(Object input);

}

// interfaces/interfaceprocessor/Applicator.java

package interfaces.interfaceprocessor;

public class Applicator {

public static void apply(Processor p, Object s) {

System.out.println("Using Processor " + p.name());

System.out.println(p.process(s));

}

}

The first way you can reuse code is if client programmers can write

their classes to conform to the interface, like this:

// interfaces/interfaceprocessor/StringProcessor.java

// {java interfaces.interfaceprocessor.StringProcessor}



package interfaces.interfaceprocessor;

import java.util.*;

interface StringProcessor extends Processor {

@Override

String process(Object input); // [1]

String S = // [2]

"If she weighs the same as a duck, " +

"she's made of wood";

static void main(String[] args) { // [3]

Applicator.apply(new Upcase(), S);

Applicator.apply(new Downcase(), S);

Applicator.apply(new Splitter(), S);

}

}

class Upcase implements StringProcessor {

@Override // Covariant return:

public String process(Object input) {

return ((String)input).toUpperCase();

}

}



class Downcase implements StringProcessor {

@Override

public String process(Object input) {

return ((String)input).toLowerCase();

}

}

class Splitter implements StringProcessor {

@Override

public String process(Object input) {

return Arrays.toString(((String)input).split(" "));

}

}

/* Output:

Using Processor Upcase

IF SHE WEIGHS THE SAME AS A DUCK, SHE'S MADE OF WOOD

Using Processor Downcase

if she weighs the same as a duck, she's made of wood

Using Processor Splitter

[If, she, weighs, the, same, as, a, duck,, she's, made,

of, wood]



*/

[1] This declaration is unnecessary; the compiler will not

complain if you remove it. However it does notate the covariant

return change from Object to String.

[2] s is automatically static and final because it’s defined

inside an interface.

[3] You can even define a main() inside an interface.

here, the approach works. However, you are often in the situation of

being unable to modify the classes. In the case of the electronic filters,

for example, the library was discovered rather than created. In these

cases, you can use the Adapter design pattern. In Adapter, you write

code to take the interface you have and produce the interface you

need, like this:

// interfaces/interfaceprocessor/FilterProcessor.java

// {java interfaces.interfaceprocessor.FilterProcessor}

package interfaces.interfaceprocessor;

import interfaces.filters.*;

class FilterAdapter implements Processor {

Filter filter;

FilterAdapter(Filter filter) {



this.filter = filter;

}

@Override

public String name() { return filter.name(); }

@Override

public Waveform process(Object input) {

return filter.process((Waveform)input);

}

}

public class FilterProcessor {

public static void main(String[] args) {

Waveform w = new Waveform();

Applicator.apply(

new FilterAdapter(new LowPass(1.0)), w);

Applicator.apply(

new FilterAdapter(new HighPass(2.0)), w);



Applicator.apply(

new FilterAdapter(new BandPass(3.0, 4.0)), w);

}

}

/* Output:

Using Processor LowPass

Waveform 0

Using Processor HighPass

Waveform 0

Using Processor BandPass

Waveform 0

*/

In this approach to Adapter, the FilterAdapter constructor takes

the interface you have—Filter—and produces an object that has the

Processor interface you need. You might also notice delegation in

the FilterAdapter class.

Covariance allows us to produce a Waveform from process()

rather than just an Object.

Decoupling interface from implementation allows an interface to be

applied to multiple different implementations, and thus your code is



more reusable.

Combining Multiple

Interfaces

Because an interface has no implementation at all—that is, there is no

storage associated with an interface—there’s nothing to prevent many

interfaces from being combined. This is valuable because there are

times when you want to say, “An x is an a and a b and a c.”

In a derived class, you aren’t forced to have a base class that is either

abstract or “concrete” (that is, one with no abstract methods).

If you do inherit from a non-interface, you can inherit from only one.

All the rest of the base elements must be interfaces. You place all the

interface names after the implements keyword and separate them

with commas. You can have as many interfaces as you want. You can

upcast to each interface, because each interface is an independent

type. The following example shows a concrete class combined with



several interfaces to produce a new class:

// interfaces/Adventure.java

// Multiple interfaces

interface CanFight {

void fight();

}

interface CanSwim {

void swim();

}

interface CanFly {

void fly();

}

class ActionCharacter {

public void fight() {}

}

class Hero extends ActionCharacter

implements CanFight, CanSwim, CanFly {

public void swim() {}

public void fly() {}

}



public class Adventure {

public static void t(CanFight x) { x.fight(); }

public static void u(CanSwim x) { x.swim(); }

public static void v(CanFly x) { x.fly(); }

public static void w(ActionCharacter x) { x.fight(); }

public static void main(String[] args) {

Hero h = new Hero();

t(h); // Treat it as a CanFight

u(h); // Treat it as a CanSwim

v(h); // Treat it as a CanFly

w(h); // Treat it as an ActionCharacter

}

}

Hero combines the concrete class ActionCharacter with the

interfaces CanFight, CanSwim, and CanFly. When you combine a

concrete class with interfaces this way, the concrete class must come

first, then the interfaces. (The compiler gives an error otherwise.)

The signature for fight() is the same in the interface CanFight

and the class ActionCharacter, and fight() is not provided

with a definition in Hero. You can extend an interface, but then



you’ve got another interface. When you want to create an object, all the

definitions must first exist. Even though Hero does not explicitly

provide a definition for fight(), the definition comes along with

ActionCharacter; thus, it’s possible to create Hero objects.

Adventure shows four methods that take arguments of the various

interfaces and of the concrete class. When you create a Hero object, it

can be passed to any of these methods, which means it is upcast to

each interface in turn. Because of the way interfaces are designed in

Java, this works without any particular effort on the part of the

programmer.

Keep in mind that one of the core reasons for interfaces is shown in

the preceding example: to upcast to more than one base type (and the

flexibility this provides). However, a second reason for using interfaces

is the same as using an abstract base class: to prevent the client

programmer from making an object of this class and to establish it is

only an interface.



This brings up a question: Should you use an interface or an

abstract class? If it’s possible to create your base class without any

method definitions or member variables, prefer interfaces to

abstract classes. In fact, if you know something is a base class, you

can consider making it an interface (this subject is revisited in the

chapter summary).

Extending an

Interface with

Inheritance

You can easily add new method declarations to an interface by using

inheritance, and you can also combine several interfaces into a new

interface with inheritance. In both cases you get a new interface, as

seen in this example:

// interfaces/HorrorShow.java

// Extending an interface with inheritance

interface Monster {

void menace();

}

interface DangerousMonster extends Monster {

void destroy();



}

interface Lethal {

void kill();

}

class DragonZilla implements DangerousMonster {

@Override

public void menace() {}

@Override

public void destroy() {}

}

interface Vampire extends DangerousMonster, Lethal {

void drinkBlood();

}

class VeryBadVampire implements Vampire {

@Override

public void menace() {}

@Override

public void destroy() {}

@Override

public void kill() {}



@Override

public void drinkBlood() {}

}

public class HorrorShow {

static void u(Monster b) { b.menace(); }

static void v(DangerousMonster d) {

d.menace();

d.destroy();

}

static void w(Lethal l) { l.kill(); }

public static void main(String[] args) {

DangerousMonster barney = new DragonZilla();

u(barney);

v(barney);

Vampire vlad = new VeryBadVampire();

u(vlad);

v(vlad);



w(vlad);

}

}

DangerousMonster is a simple extension to Monster that

produces a new interface. This is implemented in DragonZilla.

The syntax used in Vampire works only when inheriting interfaces.

Normally, you can use extends with only a single class, but

extends can refer to multiple base interfaces when building a new

interface. Notice that interface names are separated with commas.

Name Collisions When

Combining Interfaces

There’s a small pitfall when implementing multiple interfaces. In the

preceding example, both CanFight and ActionCharacter have

identical void fight() methods. An identical method is not a

problem, but what if the method differs by signature or return type?

Here’s an example:

// interfaces/InterfaceCollision.java

interface I1 { void f(); }

interface I2 { int f(int i); }

interface I3 { int f(); }



class C { public int f() { return 1; } }

class C2 implements I1, I2 {

@Override

public void f() {}

@Override

public int f(int i) { return 1; } // overloaded

}

class C3 extends C implements I2 {

@Override

public int f(int i) { return 1; } // overloaded

}

class C4 extends C implements I3 {

// Identical, no problem:

@Override

public int f() { return 1; }

}



// Methods differ only by return type:

//- class C5 extends C implements I1 {}

//- interface I4 extends I1, I3 {}

The difficulty occurs because overriding, implementation, and

overloading get unpleasantly mixed together. Also, overloaded

methods cannot differ only by return type. When the last two lines are

uncommented, the error messages say it all:

error: C5 is not abstract and does not override abstract

method f() in I1

class C5 extends C implements I1 {}

error: types I3 and I1 are incompatible; both define f(),

but with unrelated return types

interface I4 extends I1, I3 {}

Using the same method names in different interfaces when you expect

those interface to be combined generally causes confusion in the

readability of the code. Strive to avoid it.

Adapting to an

Interface

One of the most compelling reasons for interfaces is to allow multiple

implementations for the same interface. In simple cases this is in the



form of a method that accepts an interface, leaving it up to you to

implement that interface and pass your object to the method.

Thus, a common use for interfaces is the aforementioned Strategy

design pattern. You write a method that performs certain operations,

and that method takes an interface you also specify. You’re basically

saying, “You can use my method with any object you like, as long as

your object conforms to my interface.” This makes your method more

flexible, general and reusable.

For example, the constructor for the Scanner class (which you’ll

learn more about in the Strings chapter) takes a Readable interface.

You’ll find that Readable is not an argument for any other method

in the Java standard library—it was created solely for Scanner, so

Scanner doesn’t constrain its argument to a particular class. This

way, Scanner can be made to work with more types. If you create a

new class and you want it used with Scanner, you make it

Readable, like this:

// interfaces/RandomStrings.java

// Implementing an interface to conform to a method

import java.nio.*;

import java.util.*;



public class RandomStrings implements Readable {

private static Random rand = new Random(47);

private static final char[] CAPITALS =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();

private static final char[] LOWERS =

"abcdefghijklmnopqrstuvwxyz".toCharArray();

private static final char[] VOWELS =

"aeiou".toCharArray();

private int count;

public RandomStrings(int count) {

this.count = count;

}

@Override

public int read(CharBuffer cb) {

if(count-- == 0)

return -1; // Indicates end of input

cb.append(CAPITALS[rand.nextInt(CAPITALS.length)]);

for(int i = 0; i < 4; i++) {

cb.append(VOWELS[rand.nextInt(VOWELS.length)]);

cb.append(LOWERS[rand.nextInt(LOWERS.length)]);



}

cb.append(" ");

return 10; // Number of characters appended

}

public static void main(String[] args) {

Scanner s = new Scanner(new RandomStrings(10));

while(s.hasNext())

System.out.println(s.next());

}

}

/* Output:

Yazeruyac

Fowenucor

Goeazimom

Raeuuacio

Nuoadesiw

Hageaikux

Ruqicibui

Numasetih

Kuuuuozog



Waqizeyoy

*/

The Readable interface only requires the implementation of a

read() method (notice how the @Override points out the salient

method). Inside read(), you add to the CharBuffer argument

(there are several ways to do this; see the CharBuffer

documentation), or return -1 when you have no more input.

Suppose you have a type that does not already implement Readable

—how do you make it work with Scanner? Here’s an example that

produces random floating point numbers:

// interfaces/RandomDoubles.java

import java.util.*;

public interface RandomDoubles {

Random RAND = new Random(47);

default double next() { return RAND.nextDouble(); }

static void main(String[] args) {

RandomDoubles rd = new RandomDoubles() {};

for(int i = 0; i < 7; i ++)

System.out.print(rd.next() + " ");

}



}

/* Output:

0.7271157860730044 0.5309454508634242

0.16020656493302599 0.18847866977771732

0.5166020801268457 0.2678662084200585

0.2613610344283964

*/

Again, we can use the Adapter pattern, but here the adapted class can

be created by implementing both interfaces. So, using the multiple

inheritance provided by the interface keyword, we produce a new

class which is both RandomDoubles and Readable:

// interfaces/AdaptedRandomDoubles.java

// Creating an adapter with inheritance

import java.nio.*;

import java.util.*;

public class AdaptedRandomDoubles

implements RandomDoubles, Readable {

private int count;

public AdaptedRandomDoubles(int count) {

this.count = count;



}

@Override

public int read(CharBuffer cb) {

if(count-- == 0)

return -1;

String result = Double.toString(next()) + " ";

cb.append(result);

return result.length();

}

public static void main(String[] args) {

Scanner s =

new Scanner(new AdaptedRandomDoubles(7));

while(s.hasNextDouble())

System.out.print(s.nextDouble() + " ");

}

}



/* Output:

0.7271157860730044 0.5309454508634242

0.16020656493302599 0.18847866977771732

0.5166020801268457 0.2678662084200585

0.2613610344283964

*/

Because you can add an interface onto any existing class in this way, it

means that a method that takes an interface provides a way to adapt

any class to work with that method. This is the power of using

interfaces instead of classes.

Fields in Interfaces

Because any fields you put into an interface are automatically static

and final, the interface is a convenient tool for creating groups of

constant values. Before Java 5, this was the only way to produce the

same effect as an enum in C or C++. So you will see pre-Java 5 code

like this:

// interfaces/Months.java



// Using interfaces to create groups of constants

public interface Months {

int

JANUARY = 1, FEBRUARY = 2, MARCH = 3,

APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,

AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,

NOVEMBER = 11, DECEMBER = 12;

}

Notice the Java style of using all uppercase letters (with underscores to

separate multiple words in a single identifier) for static finals

that have constant initializers. The fields in an interface are

automatically public, so that is not explicitly specified.

Since Java 5, we have the much more powerful and flexible enum

keyword and it rarely makes sense to use interfaces to hold groups of

constants. However, you will probably run across the old idiom on

many occasions when reading legacy code. You can find more details

on enums in the Enumerations chapter.

Initializing Fields in

Interfaces

Fields defined in interfaces cannot be “blank finals,” but they can be



initialized with non-constant expressions. For example:

// interfaces/RandVals.java

// Initializing interface fields with

// non-constant initializers

import java.util.*;

public interface RandVals {

Random RAND = new Random(47);

int RANDOM_INT = RAND.nextInt(10);

long RANDOM_LONG = RAND.nextLong() * 10;

float RANDOM_FLOAT = RAND.nextLong() * 10;

double RANDOM_DOUBLE = RAND.nextDouble() * 10;

}

Since the fields are static, they are initialized when the class is first

loaded, which happens when any of the fields are accessed for the first

time. Here’s a simple test:

// interfaces/TestRandVals.java



public class TestRandVals {

public static void main(String[] args) {

System.out.println(RandVals.RANDOM_INT);

System.out.println(RandVals.RANDOM_LONG);

System.out.println(RandVals.RANDOM_FLOAT);

System.out.println(RandVals.RANDOM_DOUBLE);

}

}

/* Output:

8

-32032247016559954

-8.5939291E18

5.779976127815049

*/

The fields are not part of the interface. The values are stored in the

static storage area for that interface.

Nesting Interfaces

Interfaces can be nested within classes and within other interfaces.

This reveals a number of interesting features:

// interfaces/nesting/NestingInterfaces.java



// {java interfaces.nesting.NestingInterfaces}

package interfaces.nesting;

class A {

interface B {

void f();

}

public class BImp implements B {

@Override

public void f() {}

}

private class BImp2 implements B {

@Override

public void f() {}

}

public interface C {

void f();

}

class CImp implements C {

@Override

public void f() {}



}

private class CImp2 implements C {

@Override

public void f() {}

}

private interface D {

void f();

}

private class DImp implements D {

@Override

public void f() {}

}

public class DImp2 implements D {

@Override

public void f() {}

}

public D getD() { return new DImp2(); }

private D dRef;

public void receiveD(D d) {

dRef = d;



dRef.f();

}

}

interface E {

interface G {

void f();

}

// Redundant "public":

public interface H {

void f();

}

void g();

// Cannot be private within an interface:

//- private interface I {}

}

public class NestingInterfaces {

public class BImp implements A.B {

@Override

public void f() {}

}



class CImp implements A.C {

@Override

public void f() {}

}

// Cannot implement a private interface except

// within that interface's defining class:

//- class DImp implements A.D {

//- public void f() {}

//- }

class EImp implements E {

@Override

public void g() {}

}

class EGImp implements E.G {

@Override

public void f() {}

}

class EImp2 implements E {

@Override

public void g() {}



class EG implements E.G {

@Override

public void f() {}

}

}

public static void main(String[] args) {

A a = new A();

// Can't access A.D:

//- A.D ad = a.getD();

// Doesn't return anything but A.D:

//- A.DImp2 di2 = a.getD();

// Cannot access a member of the interface:

//- a.getD().f();

// Only another A can do anything with getD():

A a2 = new A();

a2.receiveD(a.getD());

}

}

The syntax for nesting an interface within a class is reasonably

obvious. Just like non-nested interfaces, these can have public or



package-access visibility.

As an added twist, interfaces can also be private, as seen in A.D

(the same qualification syntax is used for nested interfaces as for

nested classes). What good is a private nested interface? You might

guess it can only be implemented as a private inner class as in

DImp, but A.DImp2 shows it can also be implemented as a public

class. However, A.DImp2 can only be used as itself. You are not

allowed to mention the fact that it implements the private interface

D, so implementing a private interface is a way to force the

definition of the methods in that interface without adding any type

information (that is, without allowing any upcasting).

The method getD() produces a further quandary concerning the

private interface: It’s a public method that returns a reference to

a private interface. What can you do with the return value of this

method? main() shows several attempts to use the return value, all

of which fail. The return value must be handed to an object that has

permission to use it—here, another A, via the receiveD() method.

Interface E shows that interfaces can be nested within each other.



However, the rules about interfaces—in particular, that all interface

elements must be public—are strictly enforced here, so an interface

nested within another interface is automatically public and cannot

be made private.

NestingInterfaces shows the various ways that nested

interfaces can be implemented. In particular, notice that when you

implement an interface, you are not required to implement any

interfaces nested within. Also, private interfaces cannot be

implemented outside of their defining classes.

Initially, these features can seem like they are added strictly for

syntactic consistency, but I generally find that once you know about a

feature, you often discover places where it is useful.

Interfaces and

Factories

An interface is a gateway to multiple implementations, and a typical

way to produce objects that fit the interface is the Factory Method



design pattern. Instead of calling a constructor directly, you call a

creation method on a factory object which produces an

implementation of the interface—this way, in theory, your code is

completely isolated from the implementation of the interface, thus

making it possible to transparently swap one implementation for

another. Here’s a demonstration showing the structure of the Factory

Method:

// interfaces/Factories.java

interface Service {

void method1();

void method2();

}

interface ServiceFactory {

Service getService();

}

class Service1 implements Service {

Service1() {} // Package access

public void method1() {

System.out.println("Service1 method1");

}



public void method2() {

System.out.println("Service1 method2");

}

}

class Service1Factory implements ServiceFactory {

@Override

public Service getService() {

return new Service1();

}

}

class Service2 implements Service {

Service2() {} // Package access

public void method1() {

System.out.println("Service2 method1");

}

public void method2() {

System.out.println("Service2 method2");

}

}

class Service2Factory implements ServiceFactory {



@Override

public Service getService() {

return new Service2();

}

}

public class Factories {

public static void

serviceConsumer(ServiceFactory fact) {

Service s = fact.getService();

s.method1();

s.method2();

}

public static void main(String[] args) {

serviceConsumer(new Service1Factory());

// Services are completely interchangeable:

serviceConsumer(new Service2Factory());

}

}

/* Output:

Service1 method1



Service1 method2

Service2 method1

Service2 method2

*/

Without the Factory Method, your code must somewhere specify the

exact type of Service created, to call the appropriate constructor.

Why would you add this extra level of indirection? One common

reason is to create a framework. Suppose you are creating a system to

play games; for example, to play both chess and checkers on the same

board:

// interfaces/Games.java

// A Game framework using Factory Methods

interface Game { boolean move(); }

interface GameFactory { Game getGame(); }

class Checkers implements Game {

private int moves = 0;

private static final int MOVES = 3;

@Override

public boolean move() {

System.out.println("Checkers move " + moves);



return ++moves != MOVES;

}

}

class CheckersFactory implements GameFactory {

@Override

public Game getGame() { return new Checkers(); }

}

class Chess implements Game {

private int moves = 0;

private static final int MOVES = 4;

@Override

public boolean move() {

System.out.println("Chess move " + moves);

return ++moves != MOVES;

}



}

class ChessFactory implements GameFactory {

@Override

public Game getGame() { return new Chess(); }

}

public class Games {

public static void playGame(GameFactory factory) {

Game s = factory.getGame();

while(s.move())

;

}

public static void main(String[] args) {

playGame(new CheckersFactory());

playGame(new ChessFactory());

}

}

/* Output:

Checkers move 0

Checkers move 1

Checkers move 2



Chess move 0

Chess move 1

Chess move 2

Chess move 3

*/

If the Games class represents a complex piece of code, this approach

means you can reuse that code with different types of games. You can

imagine more elaborate games that can benefit from this pattern.

In the next chapter, you’ll see a more elegant way to implement

factories using anonymous inner classes.

Summary

It is tempting to decide that interfaces are good, and therefore always

choose interfaces over concrete classes. Almost anytime you create a

class, you can instead create an interface and a factory.

Many people have fallen to this temptation, creating interfaces and

factories whenever it’s possible. The logic seems to be that you might



use a different implementation, so always add that abstraction. It has

become a kind of premature design optimization.

Any abstraction should be motivated by a real need. Interfaces should

be something you refactor to when necessary, rather than installing

the extra level of indirection everywhere, along with the extra

complexity. That extra complexity is significant, and if you make

someone work through that complexity only to realize that you’ve

added interfaces “just in case” and for no compelling reason—well, if I

see such a design I begin questioning all the other designs this

particular person has done.

An appropriate guideline is to prefer classes to interfaces. Start with

classes, and if it becomes clear that interfaces are necessary, refactor.

Interfaces are a great tool, but they can easily be overused.

1. For C++ programmers, this is the analogue of C++’s pure virtual

function. ↩

Inner Classes

A class defined within another class is

called an inner class.



With inner classes you can group classes that logically belong together

and control the visibility of one within the other. However, it’s

important to understand that inner classes are distinctly different

from composition.

At first, inner classes look like a simple code-hiding mechanism: You

place classes inside other classes. You’ll learn, however, that the inner

class does more than that—it knows about and can communicate with

the surrounding class—and the kind of code you can write with inner

classes is more elegant and clear, although there’s certainly no

guarantee of this (also, Java 8 Lambdas and Method References

reduce some of the need for inner classes).

Initially, inner classes can seem odd, and it will take some time to

become comfortable using them in your designs. The need for inner

classes isn’t always obvious, but after the basic syntax and semantics

of inner classes are described, the section “Why inner classes?” should

begin to make clear their benefits.

The remainder of the chapter contains more detailed explorations of

the syntax of inner classes. These features are provided for language



completeness, but you might not use them, at least not at first. So the

initial parts of this chapter might be all you need for now, and you can

leave the more detailed explorations as reference material.

Creating Inner Classes

You create an inner class just as you’d expect—by placing the class

definition inside a surrounding class:

// innerclasses/Parcel1.java

// Creating inner classes

public class Parcel1 {

class Contents {

private int i = 11;

public int value() { return i; }

}

class Destination {

private String label;

Destination(String whereTo) {



label = whereTo;

}

String readLabel() { return label; }

}

// Using inner classes looks just like

// using any other class, within Parcel1:

public void ship(String dest) {

Contents c = new Contents();

Destination d = new Destination(dest);

System.out.println(d.readLabel());

}

public static void main(String[] args) {

Parcel1 p = new Parcel1();

p.ship("Tasmania");

}

}

/* Output:

Tasmania

*/

When used inside ship(), these inner classes look just like ordinary classes.
The only apparent difference is that the names are nested



within Parcel1.

More typically, an outer class has a method that returns a reference to

an inner class, as seen in the to() and contents() methods:

// innerclasses/Parcel2.java

// Returning a reference to an inner class

public class Parcel2 {

class Contents {

private int i = 11;

public int value() { return i; }

}

class Destination {

private String label;

Destination(String whereTo) {

label = whereTo;

}

String readLabel() { return label; }

}

public Destination to(String s) {

return new Destination(s);

}



public Contents contents() {

return new Contents();

}

public void ship(String dest) {

Contents c = contents();

Destination d = to(dest);

System.out.println(d.readLabel());

}

public static void main(String[] args) {

Parcel2 p = new Parcel2();

p.ship("Tasmania");

Parcel2 q = new Parcel2();

// Defining references to inner classes:

Parcel2.Contents c = q.contents();

Parcel2.Destination d = q.to("Borneo");

}



}

/* Output:

Tasmania

*/

To make an object of the inner class anywhere except from within a

non-static method of the outer class, you must specify the type of

that object as OuterClassName.InnerClassName, as seen in main().

The Link to the Outer

Class

So far, it appears that inner classes are just a name-hiding and code

organization scheme, helpful but not that compelling. However,

there’s another twist. When you create an inner class, an object of that

inner class contains an implicit link to the enclosing object that made

it. Through this link, it can access the members of that enclosing

object, without any special qualifications. In addition, inner classes

have access rights to all the elements in the enclosing class:

// innerclasses/Sequence.java

// Holds a sequence of Objects

interface Selector {

boolean end();



Object current();

void next();

}

public class Sequence {

private Object[] items;

private int next = 0;

public Sequence(int size) {

items = new Object[size];

}

public void add(Object x) {

if(next < items.length)

items[next++] = x;

}

private class SequenceSelector implements Selector {

private int i = 0;

@Override

public boolean end() { return i == items.length; }

@Override

public Object current() { return items[i]; }

@Override



public void next() { if(i < items.length) i++; }

}

public Selector selector() {

return new SequenceSelector();

}

public static void main(String[] args) {

Sequence sequence = new Sequence(10);

for(int i = 0; i < 10; i++)

sequence.add(Integer.toString(i));

Selector selector = sequence.selector();

while(!selector.end()) {

System.out.print(selector.current() + " ");

selector.next();

}

}

}

/* Output:

0 1 2 3 4 5 6 7 8 9

*/

The Sequence is a fixed-sized array of Object with a class wrapped



around it. You call add() to add a new Object to the end of the

sequence (if there’s room left). To fetch each of the objects in a

Sequence, there’s an interface called Selector. This is an example

of the Iterator design pattern you shall learn more about in the

Collections chapter. A Selector tells you whether you’re at the end(),
accesses the current() Object, and moves to the

next() Object in the Sequence. Because Selector is an

interface, other classes can implement the interface in their own ways,

and other methods can take the interface as an argument, to create

more general-purpose code.

Here, the SequenceSelector is a private class that provides

Selector functionality. In main(), you see the creation of a

Sequence, followed by the addition of a number of String objects.

Then, a Selector is produced with a call to selector(), and this

is used to move through the Sequence and select each item.

At first, the creation of SequenceSelector looks like just another



inner class. But examine it closely. Note that each of the methods

—end(), current(), and next()—refers to items, a reference

that isn’t part of SequenceSelector, but is instead a private

field in the enclosing class. However, the inner class can access

methods and fields from the enclosing class as if it owned them. This

turns out to be very convenient, as you see in the preceding example.

So an inner class has automatic access to the members of the enclosing

class. How can this happen? The inner class secretly captures a

reference to the particular object of the enclosing class that was

responsible for creating it. Then, when you refer to a member of the

enclosing class, that reference is used to select that member.

Fortunately, the compiler takes care of all these details for you, but

now you see that an object of an inner class can be created only in

association with an object of the enclosing class (when, as you shall

see, the inner class is non-static). Construction of the inner-class

object requires the reference to the object of the enclosing class, and

the compiler will complain if it cannot access that reference. Most of

the time this occurs without any intervention on the part of the

programmer.

Using .this and .new



To produce the reference to the outer-class object, you name the outer

class followed by a dot and this. The resulting reference is

automatically the correct type, known and checked at compile time, so

there is no runtime overhead. Here’s how to use .this:

// innerclasses/DotThis.java

// Accessing the outer-class object

public class DotThis {

void f() { System.out.println("DotThis.f()"); }

public class Inner {

public DotThis outer() {

return DotThis.this;

// A plain "this" would be Inner's "this"

}

}

public Inner inner() { return new Inner(); }

public static void main(String[] args) {

DotThis dt = new DotThis();

DotThis.Inner dti = dt.inner();

dti.outer().f();

}



}

/* Output:

DotThis.f()

*/

Sometimes you want to tell some other object to create an object of

one of its inner classes. To do this, provide a reference to the other

outer-class object in the new expression, using the .new syntax, like

this:

// innerclasses/DotNew.java

// Creating an inner class directly using .new syntax

public class DotNew {

public class Inner {}

public static void main(String[] args) {

DotNew dn = new DotNew();

DotNew.Inner dni = dn.new Inner();

}

}

To create an object of the inner class directly, you don’t follow the

same form and refer to the outer class name DotNew as you might

expect. Instead, use an object of the outer class to make an object of



the inner class, as you see above. This also resolves the name scoping

issues for the inner class, so you don’t say (indeed, you cannot say)

dn.new DotNew.Inner().

Here, you see .new applied to the “Parcel” example:

// innerclasses/Parcel3.java

// Using .new to create instances of inner classes

public class Parcel3 {

class Contents {

private int i = 11;

public int value() { return i; }

}

class Destination {

private String label;

Destination(String whereTo) { label = whereTo; }

String readLabel() { return label; }

}

public static void main(String[] args) {

Parcel3 p = new Parcel3();

// Must use instance of outer class

// to create an instance of the inner class:



Parcel3.Contents c = p.new Contents();

Parcel3.Destination d =

p.new Destination("Tasmania");

}

}

It’s not possible to create an object of the inner class unless you

already have an object of the outer class. This is because the object of

the inner class is quietly connected to the object of the outer class it

was made from. However, if you make a nested class (a static inner

class), it doesn’t need a reference to the outer-class object.

Inner Classes and

Upcasting

Inner classes become more interesting when you upcast to a base

class, and in particular to an interface. (The effect of producing an

interface reference from an object that implements it is essentially the

same as upcasting to a base class.) That’s because the inner class—the



implementation of the interface—can then be unseen and unavailable,

which is convenient for hiding the implementation. All you get back is

a reference to the base class or the interface.

We can create interfaces for the previous examples:

// innerclasses/Destination.java

public interface Destination {

String readLabel();

}

// innerclasses/Contents.java

public interface Contents {

int value();

}

Now Contents and Destination represent interfaces available to

the client programmer. Remember that an interface automatically

makes all of its members public.

When you get a reference to the base class or the interface, it’s possible

you can’t even find out the exact type, as shown here:

// innerclasses/TestParcel.java

class Parcel4 {

private class PContents implements Contents {



private int i = 11;

@Override

public int value() { return i; }

}

protected final class

PDestination implements Destination {

private String label;

private PDestination(String whereTo) {

label = whereTo;

}

@Override

public String readLabel() { return label; }

}

public Destination destination(String s) {

return new PDestination(s);

}

public Contents contents() {

return new PContents();

}

}



public class TestParcel {

public static void main(String[] args) {

Parcel4 p = new Parcel4();

Contents c = p.contents();

Destination d = p.destination("Tasmania");

// Illegal -- can't access private class:

//- Parcel4.PContents pc = p.new PContents();

}

}

In Parcel4, the inner class PContents is private, so nothing

but Parcel4 can access it. Normal (non-inner) classes cannot be

made private or protected; they can only be given public or

package access.

PDestination is protected, so it can only be accessed by

Parcel4, classes in the same package (since protected also gives

package access), and the inheritors of Parcel4. This means the client



programmer has restricted knowledge and access to these members.

In fact, you can’t even downcast to a private inner class (or a

protected inner class unless you’re an inheritor), because you can’t

access the name, as you see in class TestParcel.

private inner classes provide a way for the class designer to

completely prevent any type-coding dependencies and to completely

hide details about implementation. In addition, extension of an

interface is useless from the client programmer’s perspective since the

client programmer cannot access any additional methods that aren’t

part of the public interface. This also provides an opportunity for

the Java compiler to generate more efficient code.

Inner Classes in

Methods and Scopes

What you’ve seen so far encompasses the typical use for inner classes.

In general, the inner classes you’ll write and read are “plain”, and

simple to understand. However, the syntax for inner classes covers a

number of other, more obscure techniques.

Inner classes can be created within a method or even an arbitrary

scope. There are two reasons for doing this:

1. As shown previously, you’re implementing an interface of some



kind so you can create and return a reference.

2. You’re solving a complicated problem and you create a class to aid

in your solution, but you don’t want it publicly available.

In the following examples, the previous code is modified to use:

1. A class defined within a method.

2. A class defined within a scope inside a method.

3. An anonymous class implementing an interface.

4. An anonymous class extending a class that has a non-default

constructor.

5. An anonymous class that performs field initialization.

6. An anonymous class that performs construction using instance

initialization (anonymous inner classes cannot have

constructors).

The first example shows the creation of an entire class within the

scope of a method (instead of the scope of another class). This is called

a local inner class:

// innerclasses/Parcel5.java

// Nesting a class within a method

public class Parcel5 {

public Destination destination(String s) {



final class PDestination implements Destination {

private String label;

private PDestination(String whereTo) {

label = whereTo;

}

@Override

public String readLabel() { return label; }

}

return new PDestination(s);

}

public static void main(String[] args) {

Parcel5 p = new Parcel5();

Destination d = p.destination("Tasmania");

}

}

The class PDestination is part of destination() rather than

being part of Parcel5. Therefore, PDestination cannot be

accessed outside of destination(). The upcasting in the return

statement means nothing comes out of destination() except a

reference to a Destination interface. The fact that the name of the



class PDestination is placed inside destination() doesn’t

mean PDestination is not a valid object once destination()

returns.

You can use the class identifier PDestination for an inner class

inside each class in the same subdirectory without a name clash.

Next, see how you can nest an inner class within any arbitrary scope:

// innerclasses/Parcel6.java

// Nesting a class within a scope

public class Parcel6 {

private void internalTracking(boolean b) {

if(b) {

class TrackingSlip {

private String id;

TrackingSlip(String s) {

id = s;

}

String getSlip() { return id; }

}

TrackingSlip ts = new TrackingSlip("slip");

String s = ts.getSlip();



}

// Can't use it here! Out of scope:

//- TrackingSlip ts = new TrackingSlip("x");

}

public void track() { internalTracking(true); }

public static void main(String[] args) {

Parcel6 p = new Parcel6();

p.track();

}

}

The class TrackingSlip is nested inside the scope of an if

statement. This does not mean that the class is conditionally created—

it gets compiled along with everything else. However, it’s not available

outside the scope where it is defined. Other than that, it looks just like

an ordinary class.

Anonymous Inner



Classes

The next example looks a little odd:

// innerclasses/Parcel7.java

// Returning an instance of an anonymous inner class

public class Parcel7 {

public Contents contents() {

return new Contents() { // Insert class definition

private int i = 11;

@Override

public int value() { return i; }

}; // Semicolon required

}

public static void main(String[] args) {

Parcel7 p = new Parcel7();

Contents c = p.contents();

}

}

The contents() method combines the creation of the return value

with the definition of the class that represents that return value. In

addition, the class has no name—it’s anonymous. It looks as if you’re



creating a Contents object, But then, before you get to the

semicolon, you say, “But wait, I think I’ll slip in a class definition.”

What this strange syntax means is “Create an object of an anonymous

class that’s inherited from Contents.” The reference returned by the

new expression is automatically upcast to a Contents reference. The

anonymous inner-class syntax is shorthand for:

// innerclasses/Parcel7b.java

// Expanded version of Parcel7.java

public class Parcel7b {

class MyContents implements Contents {

private int i = 11;

@Override

public int value() { return i; }

}

public Contents contents() {

return new MyContents();

}

public static void main(String[] args) {

Parcel7b p = new Parcel7b();

Contents c = p.contents();



}

}

In the anonymous inner class, Contents is created with a no-arg

constructor. Here’s what to do if your base class needs a constructor

with an argument:

// innerclasses/Parcel8.java

// Calling the base-class constructor

public class Parcel8 {

public Wrapping wrapping(int x) {

// Base constructor call:

return new Wrapping(x) { // [1]

@Override

public int value() {

return super.value() * 47;

}

}; // [2]

}

public static void main(String[] args) {

Parcel8 p = new Parcel8();

Wrapping w = p.wrapping(10);



}

}

[1] You pass the appropriate argument to the base-class

constructor.

[2] The semicolon at the end of an anonymous inner class doesn’t

mark the end of the class body. Instead, it marks the end of the

expression that happens to contain the anonymous class. Thus,

it’s identical to the way the semicolon is used everywhere else.

Although it’s an ordinary class with an implementation, Wrapping is

also used as a common “interface” to its derived classes:

// innerclasses/Wrapping.java

public class Wrapping {

private int i;

public Wrapping(int x) { i = x; }

public int value() { return i; }

}

For variety, Wrapping’s constructor requires an argument.

You can also perform initialization when you define fields in an

anonymous class:

// innerclasses/Parcel9.java



public class Parcel9 {

// Argument must be final or "effectively final"

// to use within the anonymous inner class:

public Destination destination(final String dest) {

return new Destination() {

private String label = dest;

@Override

public String readLabel() { return label; }

};

}

public static void main(String[] args) {

Parcel9 p = new Parcel9();

Destination d = p.destination("Tasmania");

}

}

If you’re defining an anonymous inner class and must use an object

that’s defined outside the anonymous inner class, the compiler

requires that the argument reference be final or “effectively final”

(that is, it’s never changed after initialization, so it can be treated as if

it is final), as you see in the argument to destination(). Here



you can leave off the final without a problem, but it’s usually better

to include it as a reminder.

As long as you’re assigning a field, the approach in this example is fine.

But what if you must perform some constructor-like activity? You can’t

have a named constructor in an anonymous class (since there’s no

name). With instance initialization, you can, in effect, create a

constructor for an anonymous inner class, like this:

// innerclasses/AnonymousConstructor.java

// Creating a constructor for an anonymous inner class

abstract class Base {

Base(int i) {

System.out.println("Base constructor, i = " + i);

}

public abstract void f();

}

public class AnonymousConstructor {

public static Base getBase(int i) {

return new Base(i) {

{ System.out.println(

"Inside instance initializer"); }



@Override

public void f() {

System.out.println("In anonymous f()");

}

};

}

public static void main(String[] args) {

Base base = getBase(47);

base.f();

}

}

/* Output:

Base constructor, i = 47

Inside instance initializer

In anonymous f()

*/

Here, the variable i did not have to be final. While i is passed to the base
constructor of the anonymous class, it is never directly used

inside the anonymous class.

Here’s the “parcel” theme with instance initialization. Note that the

arguments to destination() must be final or “effectively final”



since they are used within the anonymous class:

// innerclasses/Parcel10.java

// Using "instance initialization" to perform

// construction on an anonymous inner class

public class Parcel10 {

public Destination

destination(final String dest, final float price) {

return new Destination() {

private int cost;

// Instance initialization for each object:

{

cost = Math.round(price);

if(cost > 100)

System.out.println("Over budget!");

}

private String label = dest;

@Override

public String readLabel() { return label; }

};

}



public static void main(String[] args) {

Parcel10 p = new Parcel10();

Destination d = p.destination("Tasmania", 101.395F);

}

}

/* Output:

Over budget!

*/

Inside the instance initializer you see code that couldn’t be executed as

part of a field initializer (that is, the if statement). So in effect, an

instance initializer is the constructor for an anonymous inner class.

However, it’s limited; you can’t overload instance initializers, so you

can have only one of these constructors.

Anonymous inner classes are somewhat limited compared to regular

inheritance, because they can either extend a class or implement an

interface, but not both. And if you do implement an interface, you can



only implement one.

Nested Classes

If you don’t need a connection between the inner-class object and the

outer-class object, you can make the inner class static. This is

commonly called a nested class. To understand the meaning of

static when applied to inner classes, remember that the object of an

ordinary inner class implicitly keeps a reference to the object of the

enclosing class that created it. This is not true for a static inner

class. A nested class means:

1. You don’t need an outer-class object to create an object of a

nested class.

2. You can’t access a non-static outer-class object from an object

of a nested class.

Nested classes are different from ordinary inner classes in another

way. Fields and methods in ordinary inner classes can only be at the

outer level of a class, so ordinary inner classes cannot have static

data, static fields, or nested classes. However, nested classes can

have all these:

// innerclasses/Parcel11.java

// Nested classes (static inner classes)



public class Parcel11 {

private static class

ParcelContents implements Contents {

private int i = 11;

@Override

public int value() { return i; }

}

protected static final class ParcelDestination

implements Destination {

private String label;

private ParcelDestination(String whereTo) {

label = whereTo;

}

@Override

public String readLabel() { return label; }

// Nested classes can contain other static elements:

public static void f() {}

static int x = 10;

static class AnotherLevel {

public static void f() {}



static int x = 10;

}

}

public static Destination destination(String s) {

return new ParcelDestination(s);

}

public static Contents contents() {

return new ParcelContents();

}

public static void main(String[] args) {

Contents c = contents();

Destination d = destination("Tasmania");

}

}

In main(), no object of Parcel11 is necessary; instead, you use the

normal syntax for selecting a static member to call the methods

that return references to Contents and Destination.



An ordinary (non-static) inner class can create a link to the outer-

class object using a special this reference. A nested class does not

have a special this reference, which makes it analogous to a static

method.

Classes Inside Interfaces

A nested class can be part of an interface. Any class you put inside an

interface is automatically public and static. Since the class is

static, the nested class is only placed inside the namespace of the

interface. You can even implement the surrounding interface in the

inner class, like this:

// innerclasses/ClassInInterface.java

// {java ClassInInterface$Test}

public interface ClassInInterface {

void howdy();

class Test implements ClassInInterface {

@Override

public void howdy() {

System.out.println("Howdy!");

}

public static void main(String[] args) {



new Test().howdy();

}

}

}

/* Output:

Howdy!

*/

It’s convenient to nest a class inside an interface when you create

common code to use with all different implementations of that

interface.

Earlier I suggested putting a main() in every class to act as a test bed

for that class. A potential drawback is that your test fixtures are

exposed in your shipping product. If this is a problem, you can use a

nested class to hold your test code:

// innerclasses/TestBed.java

// Putting test code in a nested class

// {java TestBed$Tester}



public class TestBed {

public void f() { System.out.println("f()"); }

public static class Tester {

public static void main(String[] args) {

TestBed t = new TestBed();

t.f();

}

}

}

/* Output:

f()

*/

This generates a separate class called TestBed$Tester (to run the

program, you say java TestBed$Tester, but you must escape

the $ under Unix/Linux systems). You can use this class for testing,

but you don’t have to include it in your shipping product; you can

delete TestBed$Tester.class before packaging things up.

Reaching Outward from a

Multiply Nested Class

It doesn’t matter how deeply an inner class is nested—it can



transparently access all members of all classes it is nested within, as

seen here:

// innerclasses/MultiNestingAccess.java

// Nested classes can access all members of all

// levels of the classes they are nested within

class MNA {

private void f() {}

class A {

private void g() {}

public class B {

void h() {

g();

f();

}

}

}

}

public class MultiNestingAccess {

public static void main(String[] args) {

MNA mna = new MNA();



MNA.A mnaa = mna.new A();

MNA.A.B mnaab = mnaa.new B();

mnaab.h();

}

}

Notice how the private methods g() and f() are callable without

any qualification. This example also demonstrates the syntax

necessary to create objects of multiply nested inner classes when you

create the objects in a different class. The “.new” syntax produces the

correct scope, so you do not have to qualify the class name in the

constructor call.

Why Inner Classes?

You’ve seen a lot of syntax and semantics describing the way inner

classes work, but this doesn’t answer the question of why they exist.

Why did the Java designers go to so much trouble to add this

fundamental language feature?



Typically, the inner class inherits from a class or implements an

interface, and the code in the inner class manipulates the outer-class

object it was created within. An inner class provides a kind of window

into the outer class.

A question that cuts to the heart of inner classes is this: If I just need a

reference to an interface, why don’t I just make the outer class

implement that interface? The answer is “If that’s all you need, that’s

how to do it.” So what is it that distinguishes an inner class

implementing an interface from an outer class implementing the same

interface? The answer is that you can’t always have the convenience of

interfaces—sometimes you’re working with implementations. So the

most compelling reason for inner classes is:

Each inner class can independently inherit

from an implementation. Thus, the inner

class is not limited by whether the outer

class is already inheriting from an

implementation.

Without the ability that inner classes provide to inherit—in effect—

from more than one concrete or abstract class, some design and

programming problems are intractable. So one way to look at the inner



class is as the rest of the solution of the multiple-inheritance problem.

Interfaces solve part of the problem, but inner classes effectively allow

“multiple implementation inheritance.” That is, inner classes

effectively allow you to inherit from more than one non-interface.

To see this in more detail, consider a situation where you have two

interfaces that must somehow be implemented within a class. Because

of the flexibility of interfaces, you have two choices: a single class or an

inner class.

// innerclasses/mui/MultiInterfaces.java

// Two ways a class can implement multiple interfaces

// {java innerclasses.mui.MultiInterfaces}

package innerclasses.mui;

interface A {}

interface B {}

class X implements A, B {}

class Y implements A {

B makeB() {

// Anonymous inner class:

return new B() {};

}



}

public class MultiInterfaces {

static void takesA(A a) {}

static void takesB(B b) {}

public static void main(String[] args) {

X x = new X();

Y y = new Y();

takesA(x);

takesA(y);

takesB(x);

takesB(y.makeB());

}

}

This assumes the structure of your code makes logical sense either

way. You’ll ordinarily have some kind of guidance from the nature of

the problem about whether to use a single class or an inner class. But

without any other constraints, the approach in the preceding example

doesn’t really make much difference from an implementation

standpoint. Both of them work.

Using abstract or concrete classes instead of interfaces suddenly



limits you to inner classes if your class must somehow implement both

of the others:

// innerclasses/MultiImplementation.java

// For concrete or abstract classes, inner classes

// produce "multiple implementation inheritance"

// {java innerclasses.MultiImplementation}

package innerclasses;

class D {}

abstract class E {}

class Z extends D {

E makeE() { return new E() {}; }

}

public class MultiImplementation {

static void takesD(D d) {}

static void takesE(E e) {}

public static void main(String[] args) {

Z z = new Z();

takesD(z);

takesE(z.makeE());

}



}

If you didn’t have to solve the “multiple implementation inheritance”

problem, you could conceivably code around everything else without

the need for inner classes. But with inner classes you have these

additional features:

1. The inner class can have multiple instances, each with its own

state information, independent of the information in the outer-

class object.

2. In a single outer class you can have several inner classes, each of

which implements the same interface or inherits from the same

class in a different way. An example of this is shown shortly.

3. The point of creation of the inner-class object is not tied to the

creation of the outer-class object.

4. There is no potentially confusing “is-a” relationship with the inner

class; it’s a separate entity.

As an example, if Sequence.java did not use inner classes, you’d

say, “A Sequence is a Selector,” and you’d only be allowed one



Selector for a particular Sequence. You can easily have a second

method, reverseSelector(), that produces a Selector that

moves backward through the sequence. This kind of flexibility is only

available with inner classes.

Closures & Callbacks

A closure is a callable object that retains information from the scope

where it was created. From this definition, you see that an inner class

is an object-oriented closure, because it doesn’t just contain each piece

of information from the outer-class object (“the scope where it was

created”), but it automatically holds a reference back to the whole

outer-class object, where it has permission to manipulate all the

members, even private ones.

Before Java 8, the only way to produce closure-like behavior was

through inner classes. With Java 8, we now have lambda expressions

which also have closure behavior, but with much nicer and more

concise syntax; you’ll learn all about these in the Functional

Programming chapter. Although you should prefer lambdas to innerclass
closures, you will see pre-Java-8 code that uses the inner class

approach, so it’s still necessary to understand it.

One of the most compelling arguments for including some kind of

pointer mechanism in Java was to allow callbacks. With a callback,



some other object is given a piece of information that allows it to call

back into the originating object at some later point. This is a powerful

concept, as you will see later in the book. If a callback is implemented

using a pointer, however, you must rely on the programmer to behave

properly and not misuse the pointer. As you’ve seen by now, Java

tends to be more careful than that, so pointers were not included in

the language.

The closure provided by the inner class is a good solution—more

flexible and far safer than a pointer. Here’s an example:

// innerclasses/Callbacks.java

// Using inner classes for callbacks

// {java innerclasses.Callbacks}

package innerclasses;

interface Incrementable {

void increment();

}

// Very simple to just implement the interface:

class Callee1 implements Incrementable {

private int i = 0;

@Override



public void increment() {

i++;

System.out.println(i);

}

}

class MyIncrement {

public void increment() {

System.out.println("Other operation");

}

static void f(MyIncrement mi) { mi.increment(); }

}

// If your class must implement increment() in

// some other way, you must use an inner class:

class Callee2 extends MyIncrement {

private int i = 0;

@Override

public void increment() {

super.increment();

i++;

System.out.println(i);



}

private class Closure implements Incrementable {

@Override

public void increment() {

// Specify outer-class method, otherwise

// you'll get an infinite recursion:

Callee2.this.increment();

}

}

Incrementable getCallbackReference() {

return new Closure();

}

}

class Caller {

private Incrementable callbackReference;

Caller(Incrementable cbh) {

callbackReference = cbh;

}

void go() { callbackReference.increment(); }

}



public class Callbacks {

public static void main(String[] args) {

Callee1 c1 = new Callee1();

Callee2 c2 = new Callee2();

MyIncrement.f(c2);

Caller caller1 = new Caller(c1);

Caller caller2 =

new Caller(c2.getCallbackReference());

caller1.go();

caller1.go();

caller2.go();

caller2.go();

}

}

/* Output:

Other operation

1

1

2

Other operation



2

Other operation

3

*/

This shows a further distinction between implementing an interface in

an outer class versus doing so in an inner class. Callee1 is clearly

the simpler solution in terms of the code. Callee2 inherits from

MyIncrement, which already has a different increment()

method that does something unrelated to the one expected by the

Incrementable interface. When MyIncrement is inherited into

Callee2, increment() can’t be overridden for use by

Incrementable, so you’re forced to provide a separate

implementation using an inner class. Also note that when you create

an inner class, you do not add to or modify the interface of the outer

class.

Everything except getCallbackReference() in Callee2 is

private. To allow any connection to the outside world, the interface

Incrementable is essential. Here you see how interfaces allow for a

complete separation of interface from implementation.

The inner class Closure implements Incrementable to provide a



hook back into Callee2—but a safe hook. Whoever gets the

Incrementable reference can only call increment() and has no

other abilities (unlike a pointer, which would allow you to run wild).

Caller takes an Incrementable reference in its constructor

(although capturing the callback reference can happen at any time)

and then, sometime later, uses the reference to “call back” into the

Callee class.

The value of the callback is in its flexibility; you can dynamically

decide what methods are called at run time. In user interfaces, for

example, callbacks are often used everywhere to implement GUI

functionality.

Inner Classes & Control

Frameworks

A more concrete example of inner classes is found in something I refer

to here as a control framework.

An application framework is a class or a set of classes designed to

solve a particular type of problem. To apply an application framework,



you typically inherit from one or more classes and override some of

the methods. The code you write in the overridden methods

customizes the general solution provided by that application

framework to solve your specific problem. This is an example of the

Template Method design pattern. The Template Method contains the

basic structure of the algorithm, and it calls one or more overrideable

methods to complete the action of that algorithm. A design pattern

separates things that change from things that stay the same, and here

the Template Method is the part that stays the same, and the

overrideable methods are the things that change.

A control framework is a particular type of application framework

dominated by the need to respond to events. A system that primarily

responds to events is called an event-driven system. A common

problem in application programming is the graphical user interface

(GUI), which is almost entirely event-driven.

To see how inner classes allow the simple creation and use of control

frameworks, consider a framework that executes events whenever

those events are “ready.” Although “ready” could mean anything, here

it is based on clock time. What follows is a control framework that

contains no specific information about what it’s controlling. That



information is supplied during inheritance, when the action()

portion of the algorithm is implemented.

Here is the interface that describes any control event. It’s an

abstract class instead of an actual interface because the default

behavior is to perform the control based on time. Thus, some of the

implementation is included:

// innerclasses/controller/Event.java

// The common methods for any control event

package innerclasses.controller;

import java.time.*; // Java 8 time classes

public abstract class Event {

private Instant eventTime;

protected final Duration delayTime;

public Event(long millisecondDelay) {

delayTime = Duration.ofMillis(millisecondDelay);

start();

}

public void start() { // Allows restarting

eventTime = Instant.now().plus(delayTime);

}



public boolean ready() {

return Instant.now().isAfter(eventTime);

}

public abstract void action();

}

The constructor captures the time in milliseconds (measured from the

time of creation of the object) when you want the Event to run, then

calls start(), which takes the current time and adds the delay time

to produce the time when the event will occur. Rather than including it

in the constructor, start() is a separate method. This way, you can

restart the timer after the event has run out, so the Event object can

be reused. For example, if you want a repeating event, you can call

start() inside your action() method.

ready() tells you when it’s time to run the action() method.

However, ready() can be overridden in a derived class to base the

Event on something other than time.

Next we write the actual control framework to manage and fire events.

The Event objects are held inside a collection object of type

List<Event> (pronounced “List of Event”), which you’ll learn more

about in the Collections chapter. For now, all you must know is that add()
will append an Event to the end of the List, size()



produces the number of entries in the List, the for-in syntax fetches

successive Events from the List, and remove() removes the

specified Event from the List.

// innerclasses/controller/Controller.java

// The reusable framework for control systems

package innerclasses.controller;

import java.util.*;

public class Controller {

// A class from java.util to hold Event objects:

private List<Event> eventList = new ArrayList<>();

public void addEvent(Event c) { eventList.add(c); }

public void run() {

while(eventList.size() > 0)

// Make a copy so you're not modifying the list

// while you're selecting the elements in it:

for(Event e : new ArrayList<>(eventList))

if(e.ready()) {

System.out.println(e);

e.action();

eventList.remove(e);



}

}

}

The run() method loops through a copy of the eventList, hunting

for an Event object that’s ready() to run. For each one it finds ready(), it
prints information using the object’s toString()

method, calls the action() method, then removes the Event from

the list.

So far, you know nothing about exactly what an Event does. And this

is the crux of the design—how it “separates the things that change

from the things that stay the same.” Or, to use my term, the “vector of

change” is the different actions of the various kinds of Event objects,

and you express different actions by creating different Event

subclasses.

This is where inner classes come into play. They allow two things:

1. The entire implementation of a control framework is created in a

single class, thereby encapsulating everything that’s unique about

that implementation. Inner classes are used to express the many

different kinds of action() necessary to solve the problem.

2. Inner classes keep this implementation from becoming awkward,

because you easily access any of the members in the outer class.



Without this, the code might become unpleasant enough that

you’d seek an alternative.

Consider a particular implementation of the control framework

designed to control greenhouse functions. Each action is entirely

different: turning lights, water, and thermostats on and off, ringing

bells, and restarting the system. The control framework is designed to

easily isolate this different code. Inner classes allow multiple derived

versions of the same base class, Event, within a single class. For each

type of action, you inherit a new Event inner class, and write the

control code in the action() implementation.

As is typical with an application framework, the class

GreenhouseControls inherits Controller:

// innerclasses/GreenhouseControls.java

// This produces a specific application of the

// control system, all in a single class. Inner

// classes allow you to encapsulate different

// functionality for each type of event.

import innerclasses.controller.*;

public class GreenhouseControls extends Controller {

private boolean light = false;



public class LightOn extends Event {

public LightOn(long delayTime) {

super(delayTime);

}

@Override

public void action() {

// Put hardware control code here to

// physically turn on the light.

light = true;

}

@Override

public String toString() {

return "Light is on";

}

}

public class LightOff extends Event {

public LightOff(long delayTime) {

super(delayTime);

}

@Override



public void action() {

// Put hardware control code here to

// physically turn off the light.

light = false;

}

@Override

public String toString() {

return "Light is off";

}

}

private boolean water = false;

public class WaterOn extends Event {

public WaterOn(long delayTime) {

super(delayTime);

}

@Override

public void action() {

// Put hardware control code here.

water = true;

}



@Override

public String toString() {

return "Greenhouse water is on";

}

}

public class WaterOff extends Event {

public WaterOff(long delayTime) {

super(delayTime);

}

@Override

public void action() {

// Put hardware control code here.

water = false;

}

@Override

public String toString() {

return "Greenhouse water is off";

}

}

private String thermostat = "Day";



public class ThermostatNight extends Event {

public ThermostatNight(long delayTime) {

super(delayTime);

}

@Override

public void action() {

// Put hardware control code here.

thermostat = "Night";

}

@Override

public String toString() {

return "Thermostat on night setting";

}

}

public class ThermostatDay extends Event {

public ThermostatDay(long delayTime) {

super(delayTime);

}

@Override

public void action() {



// Put hardware control code here.

thermostat = "Day";

}

@Override

public String toString() {

return "Thermostat on day setting";

}

}

// An example of an action() that inserts a

// new one of itself into the event list:

public class Bell extends Event {

public Bell(long delayTime) {

super(delayTime);

}

@Override

public void action() {

addEvent(new Bell(delayTime.toMillis()));

}

@Override

public String toString() {



return "Bing!";

}

}

public class Restart extends Event {

private Event[] eventList;

public

Restart(long delayTime, Event[] eventList) {

super(delayTime);

this.eventList = eventList;

for(Event e : eventList)

addEvent(e);

}

@Override

public void action() {

for(Event e : eventList) {

e.start(); // Rerun each event

addEvent(e);

}

start(); // Rerun this Event

addEvent(this);



}

@Override

public String toString() {

return "Restarting system";

}

}

public static class Terminate extends Event {

public Terminate(long delayTime) {

super(delayTime);

}

@Override

public void action() { System.exit(0); }

@Override

public String toString() {

return "Terminating";

}

}

}

Note that light, water, and thermostat belong to the outer

class GreenhouseControls, and yet the inner classes can access



those fields without qualification or special permission. Also, the

action() methods usually involve some sort of hardware control.

Most of the Event classes look similar, but Bell and Restart are

special. Bell rings, then adds a new Bell object to the event list, so

it will ring again later. Notice how inner classes almost look like

multiple inheritance: Bell and Restart have all the methods of

Event and also appear to have all the methods of the outer class

GreenhouseControls.

Restart is given an array of Event objects it adds to the controller.

Since Restart is just another Event object, you can also add a

Restart object within Restart.action() so the system

regularly restarts itself.

The following class configures the system by creating a

GreenhouseControls object and adding various kinds of Event

objects. This is an example of the Command design pattern—each

object in eventList is a request encapsulated as an object:

// innerclasses/GreenhouseController.java

// Configure and execute the greenhouse system

import innerclasses.controller.*;

public class GreenhouseController {



public static void main(String[] args) {

GreenhouseControls gc = new GreenhouseControls();

// Instead of using code, you could parse

// configuration information from a text file:

gc.addEvent(gc.new Bell(900));

Event[] eventList = {

gc.new ThermostatNight(0),

gc.new LightOn(200),

gc.new LightOff(400),

gc.new WaterOn(600),

gc.new WaterOff(800),

gc.new ThermostatDay(1400)

};

gc.addEvent(gc.new Restart(2000, eventList));

gc.addEvent(

new GreenhouseControls.Terminate(5000));

gc.run();

}

}

/* Output:



Thermostat on night setting

Light is on

Light is off

Greenhouse water is on

Greenhouse water is off

Bing!

Thermostat on day setting

Bing!

Restarting system

Thermostat on night setting

Light is on

Light is off

Greenhouse water is on

Bing!

Greenhouse water is off

Thermostat on day setting



Bing!

Restarting system

Thermostat on night setting

Light is on

Light is off

Bing!

Greenhouse water is on

Greenhouse water is off

Terminating

*/

This class initializes the system and adds all the appropriate events.

The Restart event is repeatedly run, and it loads the eventList

into the GreenhouseControls object each time. If you provide a

command-line argument indicating milliseconds, it will terminate the

program after that many milliseconds (this is used for testing).

It’s more flexible to read the events from a file instead of hard-coding

them.

This example moves you toward an appreciation of the value of inner

classes, especially when used within a control framework.

Inheriting from Inner



Classes

Because the inner-class constructor must attach to a reference of the

enclosing class object, things are slightly complicated when you inherit

from an inner class. The problem is that the “secret” reference to the

enclosing class object must be initialized, and yet in the derived class

there’s no longer a default object to attach to. You must use a special

syntax to make the association explicit:

// innerclasses/InheritInner.java

// Inheriting an inner class

class WithInner {

class Inner {}

}

public class InheritInner extends WithInner.Inner {

//- InheritInner() {} // Won't compile

InheritInner(WithInner wi) {

wi.super();



}

public static void main(String[] args) {

WithInner wi = new WithInner();

InheritInner ii = new InheritInner(wi);

}

}

InheritInner is extending only the inner class, not the outer one.

But when it comes time to create a constructor, the default one is no

good, and you can’t just pass a reference to an enclosing object. In

addition, you must use the syntax

enclosingClassReference.super();

inside the constructor. This provides the necessary reference, and the

program will then compile.

Can Inner Classes Be

Overridden?

What happens when you create an inner class, then inherit from the

enclosing class and redefine the inner class? That is, is it possible to

“override” the entire inner class? This seems like a powerful concept,

but “overriding” an inner class as if it were another method of the

outer class doesn’t really do anything:



// innerclasses/BigEgg.java

// An inner class cannot be overridden like a method

class Egg {

private Yolk y;

protected class Yolk {

public Yolk() {

System.out.println("Egg.Yolk()");

}

}

Egg() {

System.out.println("New Egg()");

y = new Yolk();

}

}

public class BigEgg extends Egg {

public class Yolk {

public Yolk() {

System.out.println("BigEgg.Yolk()");

}

}



public static void main(String[] args) {

new BigEgg();

}

}

/* Output:

New Egg()

Egg.Yolk()

*/

The no-arg constructor is synthesized automatically by the compiler,

and this calls the base-class no-arg constructor. You might think, since

a BigEgg is created, the “overridden” version of Yolk is used, but

this is not the case, as you see from the output.

There’s no extra inner-class magic when you inherit from the outer

class. The two inner classes are completely separate entities, each in its

own namespace. However, it’s still possible to explicitly inherit from

the inner class:

// innerclasses/BigEgg2.java

// Proper inheritance of an inner class

class Egg2 {

protected class Yolk {



public Yolk() {

System.out.println("Egg2.Yolk()");

}

public void f() {

System.out.println("Egg2.Yolk.f()");

}

}

private Yolk y = new Yolk();

Egg2() { System.out.println("New Egg2()"); }

public void insertYolk(Yolk yy) { y = yy; }

public void g() { y.f(); }

}

public class BigEgg2 extends Egg2 {

public class Yolk extends Egg2.Yolk {

public Yolk() {

System.out.println("BigEgg2.Yolk()");

}

@Override

public void f() {

System.out.println("BigEgg2.Yolk.f()");



}

}

public BigEgg2() { insertYolk(new Yolk()); }

public static void main(String[] args) {

Egg2 e2 = new BigEgg2();

e2.g();

}

}

/* Output:

Egg2.Yolk()

New Egg2()

Egg2.Yolk()

BigEgg2.Yolk()

BigEgg2.Yolk.f()

*/

Now BigEgg2.Yolk explicitly extends Egg2.Yolk and



overrides its methods. The method insertYolk() allows BigEgg2

to upcast one of its own Yolk objects into the y reference in Egg2, so when
g() calls y.f(), the overridden version of f() is used. The

second call to Egg2.Yolk() is the base-class constructor call of the

BigEgg2.Yolk constructor. The overridden version of f() is used

when g() is called.

Local Inner Classes

As noted earlier, inner classes can also be created inside code blocks,

typically inside the body of a method. A local inner class cannot have

an access specifier because it isn’t part of the outer class, but it does

have access to the final variables in the current code block and all the

members of the enclosing class. Here’s an example comparing the

creation of a local inner class with an anonymous inner class:

// innerclasses/LocalInnerClass.java

// Holds a sequence of Objects

interface Counter {

int next();

}

public class LocalInnerClass {

private int count = 0;

Counter getCounter(final String name) {



// A local inner class:

class LocalCounter implements Counter {

LocalCounter() {

// Local inner class can have a constructor

System.out.println("LocalCounter()");

}

@Override

public int next() {

System.out.print(name); // Access local final

return count++;

}

}

return new LocalCounter();

}

// Repeat, but with an anonymous inner class:

Counter getCounter2(final String name) {

return new Counter() {

// Anonymous inner class cannot have a named

// constructor, only an instance initializer:

{



System.out.println("Counter()");

}

@Override

public int next() {

System.out.print(name); // Access local final

return count++;

}

};

}

public static void main(String[] args) {

LocalInnerClass lic = new LocalInnerClass();

Counter

c1 = lic.getCounter("Local inner "),

c2 = lic.getCounter2("Anonymous inner ");

for(int i = 0; i < 5; i++)

System.out.println(c1.next());

for(int i = 0; i < 5; i++)

System.out.println(c2.next());

}

}



/* Output:

LocalCounter()

Counter()

Local inner 0

Local inner 1

Local inner 2

Local inner 3

Local inner 4

Anonymous inner 5

Anonymous inner 6

Anonymous inner 7

Anonymous inner 8

Anonymous inner 9

*/

Counter returns the next value in a sequence. It is implemented here

as both a local class and an anonymous inner class, each with the same



behaviors and capabilities. Since the name of the local inner class is

not accessible outside the method, the only justification for using a

local inner class instead of an anonymous inner class is if you need a

named constructor and/or an overloaded constructor, since an

anonymous inner class can only use instance initialization.

Another reason to make a local inner class rather than an anonymous

inner class is if you make more than one object of that class.

Inner-Class Identifiers

After compilation, every class produces a .class file that holds all

the information about how to create objects of that type. Upon

loading, each class file produces a “meta-class” called the Class

object.

You might guess that inner classes also produce .class files to

contain the information for their Class objects. The names of these

files/classes have a formula: the name of the enclosing class, followed

by a $, followed by the name of the inner class. For example, the

.class files created by LocalInnerClass.java include:

Counter.class



LocalInnerClass$1.class

LocalInnerClass$1LocalCounter.class

LocalInnerClass.class

If inner classes are anonymous, the compiler generates numbers as

inner-class identifiers. If inner classes are nested within inner classes,

their names are appended after a $ and the outer-class identifier(s).

This scheme of generating internal names is simple and

straightforward. It’s also robust and handles most situations.1 Since it is the
standard naming scheme for Java, the generated files are

automatically platform-independent. (Note that the Java compiler is

changing your inner classes in all sorts of other ways to make them

work.)

Summary

Interfaces and inner classes are more sophisticated concepts than

what you’ll find in many OOP languages; for example, there’s nothing

like them in C++. Together, they solve the same problem that C++



attempts to solve with its multiple inheritance (MI) feature. However,

MI in C++ turns out to be rather difficult to use, whereas Java

interfaces and inner classes are, by comparison, much more accessible.

Although the features themselves are reasonably straightforward,

using these features is a design issue, much the same as

polymorphism. Over time, you’ll become better at recognizing

situations where you should use an interface, or an inner class, or

both. But at this point in the book, you should at least be comfortable

with the syntax and semantics. As you see these language features in

use, you’ll eventually internalize them.

1. On the other hand, $ is a meta-character to the Unix shell and so

you’ll sometimes have trouble when listing the .class files. This

is a bit strange coming from Sun, a Unix-based company. My

guess is they weren’t considering this issue, but instead thought

you’d naturally focus on the source-code files.↩

Collections

It’s a fairly simple program that only has

a fixed quantity of objects with known



lifetimes.

In general, your programs will always be creating new objects based

on some criteria known only at run time. You won’t know the quantity

or even the exact type of the objects you need. To solve the general

programming problem, you must create any number of objects,

anytime, anywhere. So you can’t rely on creating a named reference to

hold each one of your objects:

MyType aReference;

since you’ll never know how many of these you’ll actually need.

Most languages provide some way to solve this essential problem. Java

has several ways to hold objects (or rather, references to objects). The

compiler-supported type is the array, previously discussed. An array is

the most efficient way to hold a group of objects, and you’re pointed

towards this choice to hold a group of primitives. But an array has a

fixed size, and in the more general case, you won’t know at the time

you’re writing the program how many objects you’re going to need, or

whether you need a more sophisticated way to store your objects—so

the fixed-sized constraint of an array is too limiting.



The java.util library has a reasonably complete set of collection

classes to solve this problem, the basic types of which are List, Set, Queue,
and Map. These types are also known as container classes, but I shall use the
term that the Java library uses. Collections provide

sophisticated ways to hold objects, and solve a surprising number of

problems.

Among their other characteristics—Set, for example, holds only one

object of each value, and Map is an associative array that lets you

associate objects with other objects—the Java collection classes will

automatically resize themselves. So, unlike arrays, you can put in any

number of objects without worrying about how big the collection

should be.

Even though they don’t have direct keyword support in Java, 1

collection classes are fundamental tools that significantly increase

your programming muscle. In this chapter you’ll get a basic working

knowledge of the Java collection library, with an emphasis on typical

usage. Here, we’ll focus on the collections that you’ll use in day-to-day



programming. Later, in the Appendix: Collection Topics, you’ll learn about
the rest of the collections and more details about their

functionality and how to use them.

Generics and Type-

Safe Collections

One of the problems of using pre-Java 5 collections was that the

compiler allowed you to insert an incorrect type into a collection. For

example, consider a collection of Apple objects, using the basic

workhorse collection, ArrayList. For now, you can think of

ArrayList as “an array that automatically expands itself.” Using an

ArrayList is straightforward: Create one, insert objects using

add(), and access them with get(), using an index—just as you do

with an array, but without the square brackets.2 ArrayList also has a method
size() that tells how many elements were added, so you

don’t inadvertently index off the end and cause an error (by throwing a

runtime exception; exceptions are introduced in the chapter

Exceptions).

In this example, Apples and Oranges are placed into the collection,

then pulled out. Normally, the Java compiler will give you a warning

because the example does not use generics. Here, a special annotation

is used to suppress the warning. Annotations start with an @ sign, and



can take an argument; this one is @SuppressWarnings and the

argument indicates that “unchecked” warnings only should be

suppressed (You’ll learn more about Java annotations in the

Annotations chapter):

// collections/ApplesAndOrangesWithoutGenerics.java

// Simple collection use (suppressing compiler warnings)

// {ThrowsException}

import java.util.*;

class Apple {

private static long counter;

private final long id = counter++;

public long id() { return id; }

}

class Orange {}

public class ApplesAndOrangesWithoutGenerics {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

ArrayList apples = new ArrayList();

for(int i = 0; i < 3; i++)

apples.add(new Apple());



// No problem adding an Orange to apples:

apples.add(new Orange());

for(Object apple : apples) {

((Apple) apple).id();

// Orange is detected only at run time

}

}

}

/* Output:

___[ Error Output ]___

Exception in thread "main"

java.lang.ClassCastException: Orange cannot be cast to

Apple

at ApplesAndOrangesWithoutGenerics.main(ApplesA

ndOrangesWithoutGenerics.java:23)

*/

The classes Apple and Orange are distinct; they have nothing in

common except they are both Objects. (Remember that if you don’t

explicitly say what class you’re inheriting from, you automatically

inherit from Object.) Since ArrayList holds Objects, you can



not only add Apple objects into this collection using the ArrayList

method add(), but you can also add Orange objects without

complaint at either compile time or run time. When you go to fetch out

what you think are Apple objects using the ArrayList method

get(), you get back a reference to an Object you must cast to an

Apple. Then you must surround the entire expression with

parentheses to force the evaluation of the cast before calling the id()

method for Apple; otherwise, you’ll get a syntax error.

At run time, when you try to cast the Orange object to an Apple, you

get the error as shown in the output.

In the Generics chapter, you’ll learn that creating classes using Java generics
can be complex. However, applying predefined generic

classes is reasonably straightforward. For example, to define an

ArrayList intended to hold Apple objects, you say

ArrayList<Apple> instead of just ArrayList. The angle brackets surround
the type parameter(s) (there might be more than

one), which specify the type(s) that can be held by that instance of the

collection.

With generics, you’re prevented, at compile time, from putting the

wrong type of object into a collection.3 Here’s the example again, using
generics:



// collections/ApplesAndOrangesWithGenerics.java

import java.util.*;

public class ApplesAndOrangesWithGenerics {

public static void main(String[] args) {

ArrayList<Apple> apples = new ArrayList<>();

for(int i = 0; i < 3; i++)

apples.add(new Apple());

// Compile-time error:

// apples.add(new Orange());

for(Apple apple : apples) {

System.out.println(apple.id());

}

}

}

/* Output:

0

1

2

*/

On the right-hand side of the definition for apples, you see new



ArrayList<>(). This is sometimes called the “diamond syntax”

because of the <> . Before Java 7, you had to, in effect, duplicate the

type declaration on both sides, like this:

ArrayList<Apple> apples = new ArrayList<Apple>();

As types got more complex, this duplication produced code that was

quite messy and hard to read. Programmers began observing that all

the information is available on the left-hand side, so there was no

reason for the compiler to force us to repeat ourselves on the right-

hand side. This request for type inference, even on such a small scale,

was heard by the Java language team.

With the type specified in the ArrayList definition, the compiler

prevents you from putting an Orange into apples, so it becomes a

compile-time error rather than a runtime error.

With generics, the cast is not necessary when fetching items from the

List. Since the List knows what type it holds, it does the cast for

you when you call get(). Thus, with generics you not only know that

the compiler will check the type of object you put into a collection, but

you also get cleaner syntax when using the objects in the collection.

You are not limited to putting the exact type of object into a collection

when you specify that type as a generic parameter. Upcasting works



the same with generics as it does with other types:

// collections/GenericsAndUpcasting.java

import java.util.*;

class GrannySmith extends Apple {}

class Gala extends Apple {}

class Fuji extends Apple {}

class Braeburn extends Apple {}

public class GenericsAndUpcasting {

public static void main(String[] args) {

ArrayList<Apple> apples = new ArrayList<>();

apples.add(new GrannySmith());

apples.add(new Gala());

apples.add(new Fuji());

apples.add(new Braeburn());

for(Apple apple : apples)

System.out.println(apple);

}

}

/* Output:



GrannySmith@15db9742

Gala@6d06d69c

Fuji@7852e922

Braeburn@4e25154f

*/

Thus, you can add a subtype of Apple to a collection specified to hold

Apple objects.

The output is produced from the default toString() method of

Object, which prints the class name followed by the unsigned

hexadecimal representation of the hash code of the object (generated

by the hashCode() method). You’ll learn about hash codes in detail

in the Appendix: Understanding equals() and hashCode().

Basic Concepts

The Java collection library takes the idea of “holding objects” and

divides it into two distinct concepts, expressed as the basic interfaces

of the library:



1. Collection: a sequence of individual elements with one or

more rules applied to them. A List must hold the elements in

the way they were inserted, a Set cannot have duplicate

elements, and a Queue produces the elements in the order

determined by a queuing discipline (usually the same order in

which they are inserted).

2. Map: a group of key-value object pairs that looks up a value using

a key. An ArrayList looks up an object using a number, so in a

sense it associates numbers to objects. A map looks up an object

using another object. It’s also called an associative array, because

it associates objects with other objects, or a dictionary, because you look up a
value object using a key object just like you look up

a definition using a word. Maps are powerful programming tools.

Although it’s not always possible, ideally you’ll write most of your code

to talk to these interfaces, and the only place you’ll specify the precise

type you’re using is at the point of creation. Thus, you can create a

List like this:

List<Apple> apples = new ArrayList<>();

Notice that the ArrayList is upcast to a List, in contrast to the

way it was handled in the previous examples. The intent of using the

interface is that if you decide to change your implementation, you just



change it at the point of creation, like this:

List<Apple> apples = new LinkedList<>();

Thus, you’ll typically make an object of a concrete class, upcast it to

the corresponding interface, then use the interface throughout the rest

of your code.

This approach won’t always work, because some classes have

additional functionality. For example, LinkedList has additional

methods not in the List interface, and a TreeMap has methods not

in the Map interface. If you use those methods, you can’t upcast to the

more general interface.

The Collection interface generalizes the idea of a sequence—a way

of holding a group of objects. Here’s a simple example that fills a

Collection (represented here with an ArrayList) with

Integer objects, then prints each element in the resulting collection:

// collections/SimpleCollection.java

import java.util.*;



public class SimpleCollection {

public static void main(String[] args) {

Collection<Integer> c = new ArrayList<>();

for(int i = 0; i < 10; i++)

c.add(i); // Autoboxing

for(Integer i : c)

System.out.print(i + ", ");

}

}

/* Output:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

*/

This example only uses Collection methods, so any object of a

class inherited from Collection would work. However,

ArrayList is the most basic type of sequence.

The add() method name suggests that it puts a new element in the

Collection. However, the documentation carefully states that

add() “ensures this Collection contains the specified element.”

This is to allow for the meaning of Set, which adds the element only if

it isn’t already there. With an ArrayList, or any sort of List,



add() always means “put it in,” because Lists don’t care if there are

duplicates.

All Collections can be traversed using the for-in syntax, as shown

here. Later in this chapter you’ll learn about a more flexible concept

called an Iterator.

Adding Groups of

Elements

The Arrays and Collections classes in java.util contain utility methods to
add groups of elements to a Collection.

Arrays.asList() takes either an array or a comma-separated list

of elements (using varargs) and turns it into a List object.

Collections.addAll() takes a Collection object and either

an array or a comma-separated list and adds the elements to the

Collection. Here you see both methods, as well as the more

conventional addAll() method that’s part of all Collection

types:

// collections/AddingGroups.java

// Adding groups of elements to Collection objects

import java.util.*;

public class AddingGroups {

public static void main(String[] args) {



Collection<Integer> collection =

new ArrayList<>(Arrays.asList(1, 2, 3, 4, 5));

Integer[] moreInts = { 6, 7, 8, 9, 10 };

collection.addAll(Arrays.asList(moreInts));

// Runs significantly faster, but you can't

// construct a Collection this way:

Collections.addAll(collection, 11, 12, 13, 14, 15);

Collections.addAll(collection, moreInts);

// Produces a list "backed by" an array:

List<Integer> list = Arrays.asList(16,17,18,19,20);

list.set(1, 99); // OK -- modify an element

// list.add(21); // Runtime error; the underlying

// array cannot be resized.

}

}

The constructor for a Collection can accept another

Collection which it uses for initializing itself, so you can use

Arrays.asList() to produce input for the constructor. However,

Collections.addAll() runs much faster, and it’s just as easy to

construct the Collection with no elements, then call



Collections.addAll(), so this is the preferred approach.

The Collection.addAll() method can only take an argument of

another Collection object, so it is not as flexible as

Arrays.asList() or Collections.addAll(), which use

variable argument lists.

It’s also possible to use the output of Arrays.asList() directly, as

a List, but the underlying representation here is the array, which

cannot be resized. If you try to add() or delete() elements in such

a list, that would attempt to change the size of an array, so you’ll get an

“Unsupported Operation” error at run time:

// collections/AsListInference.java

import java.util.*;

class Snow {}

class Powder extends Snow {}

class Light extends Powder {}

class Heavy extends Powder {}

class Crusty extends Snow {}

class Slush extends Snow {}

public class AsListInference {

public static void main(String[] args) {



List<Snow> snow1 = Arrays.asList(

new Crusty(), new Slush(), new Powder());

//- snow1.add(new Heavy()); // Exception

List<Snow> snow2 = Arrays.asList(

new Light(), new Heavy());

//- snow2.add(new Slush()); // Exception

List<Snow> snow3 = new ArrayList<>();

Collections.addAll(snow3,

new Light(), new Heavy(), new Powder());

snow3.add(new Crusty());

// Hint with explicit type argument specification:

List<Snow> snow4 = Arrays.<Snow>asList(

new Light(), new Heavy(), new Slush());

//- snow4.add(new Powder()); // Exception

}

}



In snow4, notice the “hint” in the middle of Arrays.asList(), to

tell the compiler what the actual target type should be for the resulting

List type produced by Arrays.asList(). This is called an

explicit type argument specification.

Printing Collections

You must use Arrays.toString() to produce a printable

representation of an array, but the collections print nicely without any

help. Here’s an example that also introduces you to the basic Java

collections:

// collections/PrintingCollections.java

// Collections print themselves automatically

import java.util.*;

public class PrintingCollections {

static Collection

fill(Collection<String> collection) {

collection.add("rat");

collection.add("cat");

collection.add("dog");

collection.add("dog");

return collection;



}

static Map fill(Map<String, String> map) {

map.put("rat", "Fuzzy");

map.put("cat", "Rags");

map.put("dog", "Bosco");

map.put("dog", "Spot");

return map;

}

public static void main(String[] args) {

System.out.println(fill(new ArrayList<>()));

System.out.println(fill(new LinkedList<>()));

System.out.println(fill(new HashSet<>()));

System.out.println(fill(new TreeSet<>()));

System.out.println(fill(new LinkedHashSet<>()));

System.out.println(fill(new HashMap<>()));

System.out.println(fill(new TreeMap<>()));

System.out.println(fill(new LinkedHashMap<>()));

}

}

/* Output:



[rat, cat, dog, dog]

[rat, cat, dog, dog]

[rat, cat, dog]

[cat, dog, rat]

[rat, cat, dog]

{rat=Fuzzy, cat=Rags, dog=Spot}

{cat=Rags, dog=Spot, rat=Fuzzy}

{rat=Fuzzy, cat=Rags, dog=Spot}

*/

This shows the two primary categories in the Java collection library.

The distinction is based on the number of items held in each “slot” in

the collection. The Collection category only holds one item in each

slot. It includes List, which holds a group of items in a specified

sequence, Set, which only allows the addition of one identical item,

and Queue, which only inserts objects at one “end” of the collection

and removes objects from the other “end” (for the purposes of this

example, this is just another way of looking at a sequence and so is not

shown). A Map holds two objects, a key and an associated value, in

each slot.

The default printing behavior, provided via each collection’s



toString() method, produces reasonably readable results. A

Collection is printed surrounded by square brackets, with each

element separated by a comma. A Map is surrounded by curly braces,

with each key and value associated with an equal sign (keys on the left,

values on the right).

The first fill() method works with all types of Collection, each

of which implements the add() method to include new elements.

ArrayList and LinkedList are both types of List, and the

output shows that they both hold elements in insertion order. The

difference between the two is not only performance for certain types of

operations, but also that a LinkedList contains more operations

than an ArrayList. These are explored more fully later in this

chapter.

HashSet, TreeSet and LinkedHashSet are types of Set. The

output shows that a Set only holds one of each identical item, and

that the different Set implementations store the elements differently.

The HashSet stores elements using a rather complex approach,

explored in the Appendix: Collection Topics—all you must know now is that
this technique is the fastest way to retrieve elements, and as a

result the storage order can seem nonsensical (you often care only that

something is a member of the Set, and order is unimportant). If



storage order is important, you can use a TreeSet, which keeps the

objects in ascending comparison order, or a LinkedHashSet, which

keeps the objects in the order in which they were added.

A Map (also called an associative array) looks up an object using a

key, like a simple database. The associated object is called a value. If

you have a Map that associates states with their capitals and you want



the capital of Ohio, you look it up using “Ohio” as the key—almost as if

you were indexing into an array. Because of this behavior, a Map only

accepts one of each key.

Map.put(key, value) adds a value (what you want) and

associates it with a key (how you look it up). Map.get(key)

produces the value associated with that key. The above example only

adds key-value pairs, and does not perform lookups. That is shown

later.

Notice you don’t specify (or think about) the size of the Map because it

resizes itself automatically. Also, Maps know how to print themselves,

showing the association with keys and values.

The example uses the three basic flavors of Map: HashMap, TreeMap

and LinkedHashMap.

The order that the keys and values are held inside a HashMap is not

the insertion order because the HashMap implementation uses a very

fast algorithm that controls the order. A TreeMap keeps the keys



sorted by ascending comparison order, and a LinkedHashMap

keeps the keys in insertion order while retaining the lookup speed of

the HashMap.

List

Lists promise to maintain elements in a particular sequence. The

List interface adds a number of methods to Collection that allow

insertion and removal of elements in the middle of a List.

There are two types of List:

The basic ArrayList, which excels at randomly accessing

elements, but is slower when inserting and removing elements in

the middle of a List.

The LinkedList, which provides optimal sequential access,

with inexpensive insertions and deletions in the middle of the

List. A LinkedList is relatively slow for random access, but it

has a larger feature set than the ArrayList.

The following example reaches forward in the book to use a library

from the Type Information chapter by importing typeinfo.pets.

This is a library that contains a hierarchy of Pet classes along with

some tools to randomly generate Pet objects. You don’t need the full

details, just that:



1. There’s a Pet class and various subtypes of Pet.

2. The static Pets.list() method returns an ArrayList

filled with randomly selected Pet objects.

// collections/ListFeatures.java

import typeinfo.pets.*;

import java.util.*;

public class ListFeatures {

public static void main(String[] args) {

Random rand = new Random(47);

List<Pet> pets = Pets.list(7);

System.out.println("1: " + pets);

Hamster h = new Hamster();

pets.add(h); // Automatically resizes

System.out.println("2: " + pets);

System.out.println("3: " + pets.contains(h));

pets.remove(h); // Remove by object

Pet p = pets.get(2);

System.out.println(

"4: " + p + " " + pets.indexOf(p));

Pet cymric = new Cymric();



System.out.println("5: " + pets.indexOf(cymric));

System.out.println("6: " + pets.remove(cymric));

// Must be the exact object:

System.out.println("7: " + pets.remove(p));

System.out.println("8: " + pets);

pets.add(3, new Mouse()); // Insert at an index

System.out.println("9: " + pets);

List<Pet> sub = pets.subList(1, 4);

System.out.println("subList: " + sub);

System.out.println("10: " + pets.containsAll(sub));

Collections.sort(sub); // In-place sort

System.out.println("sorted subList: " + sub);

// Order is not important in containsAll():

System.out.println("11: " + pets.containsAll(sub));

Collections.shuffle(sub, rand); // Mix it up

System.out.println("shuffled subList: " + sub);

System.out.println("12: " + pets.containsAll(sub));

List<Pet> copy = new ArrayList<>(pets);

sub = Arrays.asList(pets.get(1), pets.get(4));

System.out.println("sub: " + sub);



copy.retainAll(sub);

System.out.println("13: " + copy);

copy = new ArrayList<>(pets); // Get a fresh copy

copy.remove(2); // Remove by index

System.out.println("14: " + copy);

copy.removeAll(sub); // Only removes exact objects

System.out.println("15: " + copy);

copy.set(1, new Mouse()); // Replace an element

System.out.println("16: " + copy);

copy.addAll(2, sub); // Insert a list in the middle

System.out.println("17: " + copy);

System.out.println("18: " + pets.isEmpty());

pets.clear(); // Remove all elements

System.out.println("19: " + pets);

System.out.println("20: " + pets.isEmpty());

pets.addAll(Pets.list(4));

System.out.println("21: " + pets);

Object[] o = pets.toArray();

System.out.println("22: " + o[3]);

Pet[] pa = pets.toArray(new Pet[0]);



System.out.println("23: " + pa[3].id());

}

}

/* Output:

1: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug]

2: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Hamster]

3: true

4: Cymric 2

5: -1

6: false

7: true

8: [Rat, Manx, Mutt, Pug, Cymric, Pug]

9: [Rat, Manx, Mutt, Mouse, Pug, Cymric, Pug]

subList: [Manx, Mutt, Mouse]

10: true

sorted subList: [Manx, Mouse, Mutt]

11: true

shuffled subList: [Mouse, Manx, Mutt]

12: true

sub: [Mouse, Pug]



13: [Mouse, Pug]

14: [Rat, Mouse, Mutt, Pug, Cymric, Pug]

15: [Rat, Mutt, Cymric, Pug]

16: [Rat, Mouse, Cymric, Pug]

17: [Rat, Mouse, Mouse, Pug, Cymric, Pug]

18: false

19: []

20: true

21: [Manx, Cymric, Rat, EgyptianMau]

22: EgyptianMau

23: 14

*/

The print lines are numbered so the output can be related to the

source code. The first output line shows the original List of Pets.

Unlike an array, a List can add or remove elements after creation,

and it resizes itself. That’s its fundamental value: a modifiable

sequence. You see the result of adding a Hamster in output line 2—

the object is appended to the end of the list.

You can find out whether an object is in the list using the

contains() method. To remove an object, you can pass that



object’s reference to the remove() method. Also, with a reference to

an object, you can discover the index number where that object is

located in the List using indexOf(), as you see in output line 4.

When deciding whether an element is part of a List, discovering the

index of an element, and removing an element from a List by

reference, the equals() method (part of the root class Object) is

used. Each Pet is defined as a unique object, so even though there are

two Cymrics in the list, if I create a new Cymric object and pass it to

indexOf(), the result is -1 (indicating it wasn’t found), and

attempts to remove() the object will return false. For other

classes, equals() can be defined differently—Strings, for

example, are equal if the contents of two Strings are identical. So to

prevent surprises, it’s important to be aware that List behavior

changes depending on equals() behavior.

Output lines 7 and 8 show the success of removing an object that

exactly matches an object in the List.

It’s possible to insert an element in the middle of the List, as in

output line 9 and the code that precedes it, but this brings up an issue:

for a LinkedList, insertion and removal in the middle of a list is a

cheap operation (except for, in this case, the actual random access into



the middle of the list), but for an ArrayList it is an expensive

operation. Does this mean you should never insert elements in the

middle of an ArrayList, and switch to a LinkedList if you do?

No, it just means you should be aware of the issue, and if you start

doing many insertions in the middle of an ArrayList and your

program starts slowing down, you might look at your List

implementation as the possible culprit (the best way to discover such a

bottleneck is to use a profiler). Optimization is a tricky issue, and the

best policy is to leave it alone until you discover you must worry about

it (although understanding the issues is always a good idea).

The subList() method easily creates a slice out of a larger list, and

this naturally produces a true result when passed to

containsAll() for that larger list. Notice that order is

unimportant—you see in output lines 11 and 12 that calling the

intuitively named Collections.sort() and

Collections.shuffle() on sub doesn’t affect the outcome of

containsAll(). subList() produces a list backed by the

original list. Therefore, changes in the returned list are reflected in the

original list, and vice versa.

The retainAll() method is effectively a “set intersection”



operation, in this case keeping all the elements in copy that are also

in sub. Again, the resulting behavior depends on the equals()

method.

Output line 14 shows the result of removing an element using its index

number, which is more straightforward than removing it by object

reference since you don’t worry about equals() behavior when

using indexes.

The removeAll() method also operates based on the equals()

method. As the name implies, it removes all the objects from the List

that are in the argument List.

The set() method is rather unfortunately named because of the

potential confusion with the Set class—“replace” might be a better

name here, because it replaces the element at the index (the first

argument) with the second argument.

Output line 17 shows that for Lists, there’s an overloaded

addAll() method that inserts the new list in the middle of the



original list, instead of just appending it to the end with the

addAll() that comes from Collection.

Output lines 18-20 show the effect of the isEmpty() and clear()

methods.

Output lines 22 and 23 show how you can convert any Collection

to an array using toArray(). This is an overloaded method; the no-

argument version returns an array of Object, but if you pass an array

of the target type to the overloaded version, it produces an array of the

type specified (assuming it passes type checking). If the argument

array is too small to hold all the objects in the List (as is the case

here), toArray() creates a new array of the appropriate size. Pet

objects have an id() method, which you see is called on one of the

objects in the resulting array.

Iterators

In any collection, you must have a way to insert elements and fetch

them out again. After all, that’s the primary job of a collection—to hold

things. In a List, add() is one way to insert elements, and get() is

one way to fetch elements.

When you start thinking at a higher level, there’s a drawback: You

must program to the exact type of the collection to use it. This might



not seem bad at first, but what if you write code for a List, and later

on you discover it would be convenient to apply that same code to a

Set? Or suppose you’d like to write, from the beginning, a piece of

general-purpose code that doesn’t know or care what type of collection

it’s working with, so it can be used on different types of collections

without rewriting that code?

The concept of an Iterator (another design pattern) achieves this

abstraction. An iterator is an object that moves through a sequence

and selects each object in that sequence without the client

programmer knowing or caring about the underlying structure of that

sequence. In addition, an iterator is usually what’s called a lightweight

object: one that’s cheap to create. For that reason, you’ll often find

seemingly strange constraints for iterators; for example, the Java

Iterator can move in only one direction. There’s not much you can

do with an Iterator except:

1. Ask a Collection to hand you an Iterator using a method

called iterator(). That Iterator is ready to return the first

element in the sequence.

2. Get the next object in the sequence with next().

3. See if there are any more objects in the sequence with



hasNext().

4. Remove the last element returned by the iterator with

remove().

To see how it works, we again use the Pet tools from the Type

Information chapter:

// collections/SimpleIteration.java

import typeinfo.pets.*;

import java.util.*;

public class SimpleIteration {

public static void main(String[] args) {

List<Pet> pets = Pets.list(12);

Iterator<Pet> it = pets.iterator();

while(it.hasNext()) {

Pet p = it.next();

System.out.print(p.id() + ":" + p + " ");

}

System.out.println();

// A simpler approach, when possible:

for(Pet p : pets)

System.out.print(p.id() + ":" + p + " ");



System.out.println();

// An Iterator can also remove elements:

it = pets.iterator();

for(int i = 0; i < 6; i++) {

it.next();

it.remove();

}

System.out.println(pets);

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx 8:Cymric 9:Rat 10:EgyptianMau 11:Hamster

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx 8:Cymric 9:Rat 10:EgyptianMau 11:Hamster

[Pug, Manx, Cymric, Rat, EgyptianMau, Hamster]

*/

With an Iterator, you don’t worry about the number of elements in

the collection. That’s taken care of for you by hasNext() and

next().



If you’re moving forward through the List and not trying to modify

the List object itself, you see that the for-in syntax is more succinct.

An Iterator can also remove the last element produced by

next(), which means you must call next() before you call

remove().4

This idea performing an operation on each object in a collection is

powerful and is seen throughout this book.

Now consider the creation of a display() method that is collection-

agnostic:

// collections/CrossCollectionIteration.java

import typeinfo.pets.*;

import java.util.*;

public class CrossCollectionIteration {

public static void display(Iterator<Pet> it) {

while(it.hasNext()) {

Pet p = it.next();

System.out.print(p.id() + ":" + p + " ");

}

System.out.println();

}



public static void main(String[] args) {

List<Pet> pets = Pets.list(8);

LinkedList<Pet> petsLL = new LinkedList<>(pets);

HashSet<Pet> petsHS = new HashSet<>(pets);

TreeSet<Pet> petsTS = new TreeSet<>(pets);

display(pets.iterator());

display(petsLL.iterator());

display(petsHS.iterator());

display(petsTS.iterator());

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

5:Cymric 2:Cymric 7:Manx 1:Manx 3:Mutt 6:Pug 4:Pug

0:Rat



*/

display() contains no information about the type of sequence it is

traversing. This shows the true power of the Iterator: the ability to

separate the operation of traversing a sequence from the underlying

structure of that sequence. For this reason, we sometimes say that

iterators unify access to collections.

We can produce a cleaner version of the previous example by using the

Iterable interface, which describes “anything that can produce an

Iterator”:

// collections/CrossCollectionIteration2.java

import typeinfo.pets.*;

import java.util.*;

public class CrossCollectionIteration2 {

public static void display(Iterable<Pet> ip) {

Iterator<Pet> it = ip.iterator();

while(it.hasNext()) {

Pet p = it.next();

System.out.print(p.id() + ":" + p + " ");

}

System.out.println();



}

public static void main(String[] args) {

List<Pet> pets = Pets.list(8);

LinkedList<Pet> petsLL = new LinkedList<>(pets);

HashSet<Pet> petsHS = new HashSet<>(pets);

TreeSet<Pet> petsTS = new TreeSet<>(pets);

display(pets);

display(petsLL);

display(petsHS);

display(petsTS);

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

5:Cymric 2:Cymric 7:Manx 1:Manx 3:Mutt 6:Pug 4:Pug



0:Rat

*/

All of the classes are Iterable, so now the calls to display() are

notably simpler.

ListIterator

ListIterator is a more powerful subtype of Iterator that is

produced only by List classes. While Iterator can only move

forward, ListIterator is bidirectional. It can produce indices of

the next and previous elements relative to where the iterator is

pointing in the list, and it can replace the last element it visited using

the set() method. You can produce a ListIterator that points

to the beginning of the List by calling listIterator(), and you

can also create a ListIterator that starts out pointing to an index

n in the list by calling listIterator(n). Here’s demonstration of

these abilities:

// collections/ListIteration.java

import typeinfo.pets.*;



import java.util.*;

public class ListIteration {

public static void main(String[] args) {

List<Pet> pets = Pets.list(8);

ListIterator<Pet> it = pets.listIterator();

while(it.hasNext())

System.out.print(it.next() +

", " + it.nextIndex() +

", " + it.previousIndex() + "; ");

System.out.println();

// Backwards:

while(it.hasPrevious())

System.out.print(it.previous().id() + " ");

System.out.println();

System.out.println(pets);

it = pets.listIterator(3);



while(it.hasNext()) {

it.next();

it.set(Pets.get());

}

System.out.println(pets);

}

}

/* Output:

Rat, 1, 0; Manx, 2, 1; Cymric, 3, 2; Mutt, 4, 3; Pug,

5, 4; Cymric, 6, 5; Pug, 7, 6; Manx, 8, 7;

7 6 5 4 3 2 1 0

[Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Manx]

[Rat, Manx, Cymric, Cymric, Rat, EgyptianMau, Hamster,

EgyptianMau]

*/

The Pets.get() method is used to replace all the Pet objects in the

List from location 3 onward.

LinkedList

LinkedList implements the basic List interface like ArrayList

does, but it performs insertion and removal in the middle of the List



more efficiently than ArrayList. However, it is less efficient for

random-access operations.

LinkedList adds methods to use it as a stack, a

Queue or a double-ended queue(deque). Some of these

methods are aliases or slight variations of each other, producing

names familiar for a particular use (Queue, in particular).

getFirst() and element() are identical—they return the

head (first element) of the list without removing it, and throw

NoSuchElementException if the List is empty. peek() is

a slight variation of those two that returns null if the list is

empty.

removeFirst() and remove() are also identical—they

remove and return the head of the list, and throw

NoSuchElementException for an empty list. poll() is a

slight variation that returns null if this list is empty.

addFirst() inserts an element at the beginning of the list.

offer() is the same as add() and addLast(). They all add

an element to the tail (end) of a list.

removeLast() removes and returns the last element of the list.

Here’s an example that shows the basic similarity and differences



between these features. It doesn’t repeat the behavior that was shown

in ListFeatures.java:

// collections/LinkedListFeatures.java

import typeinfo.pets.*;

import java.util.*;

public class LinkedListFeatures {

public static void main(String[] args) {

LinkedList<Pet> pets =

new LinkedList<>(Pets.list(5));

System.out.println(pets);

// Identical:

System.out.println(

"pets.getFirst(): " + pets.getFirst());

System.out.println(

"pets.element(): " + pets.element());

// Only differs in empty-list behavior:

System.out.println("pets.peek(): " + pets.peek());

// Identical; remove and return the first element:

System.out.println(

"pets.remove(): " + pets.remove());



System.out.println(

"pets.removeFirst(): " + pets.removeFirst());

// Only differs in empty-list behavior:

System.out.println("pets.poll(): " + pets.poll());

System.out.println(pets);

pets.addFirst(new Rat());

System.out.println("After addFirst(): " + pets);

pets.offer(Pets.get());

System.out.println("After offer(): " + pets);

pets.add(Pets.get());

System.out.println("After add(): " + pets);

pets.addLast(new Hamster());

System.out.println("After addLast(): " + pets);

System.out.println(

"pets.removeLast(): " + pets.removeLast());

}

}

/* Output:

[Rat, Manx, Cymric, Mutt, Pug]

pets.getFirst(): Rat



pets.element(): Rat

pets.peek(): Rat

pets.remove(): Rat

pets.removeFirst(): Manx

pets.poll(): Cymric

[Mutt, Pug]

After addFirst(): [Rat, Mutt, Pug]

After offer(): [Rat, Mutt, Pug, Cymric]

After add(): [Rat, Mutt, Pug, Cymric, Pug]

After addLast(): [Rat, Mutt, Pug, Cymric, Pug, Hamster]

pets.removeLast(): Hamster

*/

The result of Pets.list() is handed to the LinkedList

constructor to populate it. If you look at the Queue interface, you’ll

see the element(), offer(), peek(), poll() and remove()

methods that were added to LinkedList so it could be a Queue

implementation. Full examples of Queues are given later in this

chapter.



Stack

A stack is a “last-in, first-out” (LIFO) collection. It’s sometimes called

a pushdown stack, because whatever you “push” on the stack last is

the first item you can “pop” off of the stack. An often-used analogy is

cafeteria trays in a spring-loaded holder—the last ones that go in are

the first ones that come out.

Java 1.0 came with a Stack class that turned out to be badly designed

(for backward compatibility, we are forever stuck with old design

mistakes in Java). Java 6 added ArrayDeque, with methods that

directly implement stack functionality:

// collections/StackTest.java

import java.util.*;

public class StackTest {

public static void main(String[] args) {

Deque<String> stack = new ArrayDeque<>();

for(String s : "My dog has fleas".split(" "))



stack.push(s);

while(!stack.isEmpty())

System.out.print(stack.pop() + " ");

}

}

/* Output:

fleas has dog My

*/

Even though it acts in all ways as a stack, we must still declare it as a

Deque. Suppose that a class named Stack tells the story better:

// onjava/Stack.java

// A Stack class built with an ArrayDeque

package onjava;

import java.util.Deque;

import java.util.ArrayDeque;

public class Stack<T> {

private Deque<T> storage = new ArrayDeque<>();

public void push(T v) { storage.push(v); }

public T peek() { return storage.peek(); }

public T pop() { return storage.pop(); }



public boolean isEmpty() { return storage.isEmpty(); }

@Override

public String toString() {

return storage.toString();

}

}

This introduces the simplest possible example of a class definition

using generics. The <T> after the class name tells the compiler this is a

parameterized type, and that the type parameter—which is

substituted with a real type when the class is used—is T. Basically, this

says, “We’re defining a Stack that holds objects of type T.” The

Stack is implemented using an ArrayDeque, which also holds type

T. Notice that push() takes an object of type T, while peek() and pop()
return an object of type T. The peek() method provides you

with the top element without removing it from the top of the stack,

while pop() removes and returns the top element.

If you want only stack behavior, inheritance is inappropriate here

because that would produce a class with all the rest of the

ArrayDeque methods (you’ll see in the Appendix: Collection Topics

that this very mistake was made by the Java 1.0 designers when they

created java.util.Stack). Using composition, we choose which



methods to expose and how to name them.

We’ll use the same code from StackTest.java to demonstrate this

new Stack class:

// collections/StackTest2.java

import onjava.*;

public class StackTest2 {

public static void main(String[] args) {

Stack<String> stack = new Stack<>();

for(String s : "My dog has fleas".split(" "))

stack.push(s);

while(!stack.isEmpty())

System.out.print(stack.pop() + " ");

}

}

/* Output:

fleas has dog My

*/

To use this Stack in your own code, you fully specify the package—or

change the name of the class—when you create one; otherwise, you’ll

probably collide with the Stack in java.util. For example, if we



import java.util.* into the above example, we must use

package names to prevent collisions:

// collections/StackCollision.java

public class StackCollision {

public static void main(String[] args) {

onjava.Stack<String> stack = new onjava.Stack<>();

for(String s : "My dog has fleas".split(" "))

stack.push(s);

while(!stack.isEmpty())

System.out.print(stack.pop() + " ");

System.out.println();

java.util.Stack<String> stack2 =

new java.util.Stack<>();

for(String s : "My dog has fleas".split(" "))

stack2.push(s);

while(!stack2.empty())

System.out.print(stack2.pop() + " ");

}

}

/* Output:



fleas has dog My

fleas has dog My

*/

Even though java.util.Stack exists, ArrayDeque produces a

much better Stack and so is preferable.

You can also control the selection of the “preferred” Stack

implementation using an explicit import:

import onjava.Stack;

Now any reference to Stack will select the onjava version, and to

select java.util.Stack you must use full qualification.

Set

A Set refuses to hold more than one instance of each object value. If

you try to add more than one instance of an equivalent object, the Set

prevents duplication. The most common use for a Set is to test for

membership, so you can easily ask whether an object is in a Set.

Because of this, lookup is typically the most important operation for a



Set, so you’ll usually choose a HashSet implementation, which is

optimized for rapid lookup.

Set has the same interface as Collection, so there isn’t any extra

functionality like there is in the two different types of List. Instead,

the Set is exactly a Collection—it just has different behavior.

(This is the ideal use of inheritance and polymorphism: to express

different behavior.) A Set determines membership based on the

“value” of an object, a more complex topic covered in the Appendix:

Collection Topics.

This uses a HashSet with Integer objects:

// collections/SetOfInteger.java

import java.util.*;

public class SetOfInteger {

public static void main(String[] args) {

Random rand = new Random(47);

Set<Integer> intset = new HashSet<>();

for(int i = 0; i < 10000; i++)

intset.add(rand.nextInt(30));

System.out.println(intset);

}



}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

*/

Ten thousand random numbers from 0 up to 29 are added to the Set,

so you can imagine that each value has many duplications. And yet you

see that only one instance of each appears in the result.

The HashSet in earlier versions of Java produced output no

discernible order. A HashSet uses hashing for speed—hashing is

covered in the Appendix: Collection Topics chapter. The order maintained by
a HashSet is different from a TreeSet or a

LinkedHashSet, since each implementation has a different way of

storing elements. TreeSet keeps elements sorted into a red-black

tree data structure, whereas HashSet uses the hashing function.

LinkedHashSet also uses hashing for lookup speed, but appears to

maintain elements in insertion order using a linked list. Apparently,

the hashing algorithm was changed and now Integers end up in

sorted order. However, you should not depend on this behavior:

// collections/SetOfString.java

import java.util.*;



public class SetOfString {

public static void main(String[] args) {

Set<String> colors = new HashSet<>();

for(int i = 0; i < 100; i++) {

colors.add("Yellow");

colors.add("Blue");

colors.add("Red");

colors.add("Red");

colors.add("Orange");

colors.add("Yellow");

colors.add("Blue");

colors.add("Purple");

}

System.out.println(colors);

}

}

/* Output:

[Red, Yellow, Blue, Purple, Orange]

*/

String objects don’t seem to produce an order. To sort the results,



one approach is to use a TreeSet instead of a HashSet:

// collections/SortedSetOfString.java

import java.util.*;

public class SortedSetOfString {

public static void main(String[] args) {

Set<String> colors = new TreeSet<>();

for(int i = 0; i < 100; i++) {

colors.add("Yellow");

colors.add("Blue");

colors.add("Red");

colors.add("Red");

colors.add("Orange");

colors.add("Yellow");

colors.add("Blue");

colors.add("Purple");

}

System.out.println(colors);

}

}

/* Output:



[Blue, Orange, Purple, Red, Yellow]

*/

One of the most common operations is a test for set membership using

contains(), but there are also operations like the Venn diagrams

you might have been taught in elementary school:

// collections/SetOperations.java

import java.util.*;

public class SetOperations {

public static void main(String[] args) {

Set<String> set1 = new HashSet<>();

Collections.addAll(set1,

"A B C D E F G H I J K L".split(" "));

set1.add("M");

System.out.println("H: " + set1.contains("H"));

System.out.println("N: " + set1.contains("N"));

Set<String> set2 = new HashSet<>();

Collections.addAll(set2, "H I J K L".split(" "));

System.out.println(

"set2 in set1: " + set1.containsAll(set2));

set1.remove("H");



System.out.println("set1: " + set1);

System.out.println(

"set2 in set1: " + set1.containsAll(set2));

set1.removeAll(set2);

System.out.println(

"set2 removed from set1: " + set1);

Collections.addAll(set1, "X Y Z".split(" "));

System.out.println(

"'X Y Z' added to set1: " + set1);

}

}

/* Output:

H: true

N: false

set2 in set1: true

set1: [A, B, C, D, E, F, G, I, J, K, L, M]

set2 in set1: false

set2 removed from set1: [A, B, C, D, E, F, G, M]

'X Y Z' added to set1: [A, B, C, D, E, F, G, M, X, Y,

Z]



*/

The method names are self-explanatory, and there are a few more in

the JDK documentation.

Producing a list of unique elements can be useful. For example,

suppose you’d like to list all the words in the file

SetOperations.java, above. Using the

java.nio.file.Files.readAllLines() method introduced

later in the book, you can open a file and read it as a List<String> ,

with each String a line from the input file:

// collections/UniqueWords.java

import java.util.*;

import java.nio.file.*;

public class UniqueWords {

public static void

main(String[] args) throws Exception {

List<String> lines = Files.readAllLines(

Paths.get("SetOperations.java"));

Set<String> words = new TreeSet<>();

for(String line : lines)

for(String word : line.split("\\W+"))



if(word.trim().length() > 0)

words.add(word);

System.out.println(words);

}

}

/* Output:

[A, B, C, Collections, D, E, F, G, H, HashSet, I, J, K,

L, M, N, Output, Set, SetOperations, String, System, X,

Y, Z, add, addAll, added, args, class, collections,

contains, containsAll, false, from, import, in, java,

main, new, out, println, public, remove, removeAll,

removed, set1, set2, split, static, to, true, util,

void]

*/

We step through each line in the file and break it into words using

String.split(), using the regular expression \\W+, which

means it splits on one or more (that’s the +) non-word letters (regular

expressions are introduced in the Strings chapter). Each resulting word is
added to the words Set. Since it is a TreeSet, the result is

sorted. Here, the sorting is done lexicographically so the uppercase

and lowercase letters are in separate groups. If you’d like to sort it



alphabetically, you can pass the

String.CASE_INSENSITIVE_ORDER Comparator (a

comparator is an object that establishes order) to the TreeSet

constructor:

// collections/UniqueWordsAlphabetic.java

// Producing an alphabetic listing

import java.util.*;

import java.nio.file.*;

public class UniqueWordsAlphabetic {

public static void

main(String[] args) throws Exception {

List<String> lines = Files.readAllLines(

Paths.get("SetOperations.java"));

Set<String> words =

new TreeSet<>(String.CASE_INSENSITIVE_ORDER);

for(String line : lines)

for(String word : line.split("\\W+"))

if(word.trim().length() > 0)

words.add(word);

System.out.println(words);



}

}

/* Output:

[A, add, addAll, added, args, B, C, class, collections,

contains, containsAll, D, E, F, false, from, G, H,

HashSet, I, import, in, J, java, K, L, M, main, N, new,

out, Output, println, public, remove, removeAll,

removed, Set, set1, set2, SetOperations, split, static,

String, System, to, true, util, void, X, Y, Z]

*/

Comparators are explored in detail in the Arrays chapter.

Map

The ability to map objects to other objects is a powerful way to solve

programming problems. For example, consider a program to examine

the randomness of Java’s Random class. Ideally, Random would

produce a perfect distribution of numbers, but to test this you must



generate many random numbers and count the ones that fall in the

various ranges. A Map easily solves the problem. Here, the key is the

number produced by Random, and the value is the number of times

that number appears:

// collections/Statistics.java

// Simple demonstration of HashMap

import java.util.*;

public class Statistics {

public static void main(String[] args) {

Random rand = new Random(47);

Map<Integer, Integer> m = new HashMap<>();

for(int i = 0; i < 10000; i++) {

// Produce a number between 0 and 20:

int r = rand.nextInt(20);

Integer freq = m.get(r); // [1]

m.put(r, freq == null ? 1 : freq + 1);

}

System.out.println(m);

}

}



/* Output:

{0=481, 1=502, 2=489, 3=508, 4=481, 5=503, 6=519,

7=471, 8=468, 9=549, 10=513, 11=531, 12=521, 13=506,

14=477, 15=497, 16=533, 17=509, 18=478, 19=464}

*/

[1] Autoboxing converts the randomly generated int into an

Integer reference that can be used with the HashMap (you

can’t use primitives with collections). get() returns null if the

key is not already in the collection (which means this is the first

time the number was found). Otherwise, get() produces the

associated Integer value for the key, which is incremented

(again, autoboxing simplifies the expression but there are actually

conversions to and from Integer taking place).

Next, we’ll use a String description to look up Pet objects. This also

shows how you can test a Map to see if it contains a key or a value with

containsKey() and containsValue():

// collections/PetMap.java

import typeinfo.pets.*;

import java.util.*;

public class PetMap {



public static void main(String[] args) {

Map<String, Pet> petMap = new HashMap<>();

petMap.put("My Cat", new Cat("Molly"));

petMap.put("My Dog", new Dog("Ginger"));

petMap.put("My Hamster", new Hamster("Bosco"));

System.out.println(petMap);

Pet dog = petMap.get("My Dog");

System.out.println(dog);

System.out.println(petMap.containsKey("My Dog"));

System.out.println(petMap.containsValue(dog));

}

}

/* Output:

{My Dog=Dog Ginger, My Cat=Cat Molly, My

Hamster=Hamster Bosco}

Dog Ginger

true

true

*/

Maps, like arrays and Collections, can easily be expanded to multiple
dimensions; you make a Map whose values are Maps (and the



values of those Maps can be other collections, even other Maps). Thus, it’s
easy to combine collections to quickly produce powerful data

structures. For example, suppose you are keeping track of people who

have multiple pets—all you need is a Map<Person, List<Pet>> :

// collections/MapOfList.java

// {java collections.MapOfList}

package collections;

import typeinfo.pets.*;

import java.util.*;

public class MapOfList {

public static final Map<Person, List< ? extends Pet>>

petPeople = new HashMap<>();

static {

petPeople.put(new Person("Dawn"),

Arrays.asList(

new Cymric("Molly"),

new Mutt("Spot")));

petPeople.put(new Person("Kate"),

Arrays.asList(new Cat("Shackleton"),

new Cat("Elsie May"), new Dog("Margrett")));

petPeople.put(new Person("Marilyn"),



Arrays.asList(

new Pug("Louie aka Louis Snorkelstein Dupree"),

new Cat("Stanford"),

new Cat("Pinkola")));

petPeople.put(new Person("Luke"),

Arrays.asList(

new Rat("Fuzzy"), new Rat("Fizzy")));

petPeople.put(new Person("Isaac"),

Arrays.asList(new Rat("Freckly")));

}

public static void main(String[] args) {

System.out.println("People: " + petPeople.keySet());

System.out.println("Pets: " + petPeople.values());

for(Person person : petPeople.keySet()) {

System.out.println(person + " has:");

for(Pet pet : petPeople.get(person))



System.out.println(" " + pet);

}

}

}

/* Output:

People: [Person Dawn, Person Kate, Person Isaac, Person

Marilyn, Person Luke]

Pets: [[Cymric Molly, Mutt Spot], [Cat Shackleton, Cat

Elsie May, Dog Margrett], [Rat Freckly], [Pug Louie aka

Louis Snorkelstein Dupree, Cat Stanford, Cat Pinkola],

[Rat Fuzzy, Rat Fizzy]]

Person Dawn has:

Cymric Molly

Mutt Spot

Person Kate has:

Cat Shackleton

Cat Elsie May

Dog Margrett

Person Isaac has:

Rat Freckly



Person Marilyn has:

Pug Louie aka Louis Snorkelstein Dupree

Cat Stanford

Cat Pinkola

Person Luke has:

Rat Fuzzy

Rat Fizzy

*/

A Map can return a Set of its keys, a Collection of its values, or a

Set of its pairs. The keySet() method produces a Set of all the

keys in petPeople, used in the for-in statement to iterate through

the Map.

Queue

A queue is typically a first-in-first-out (FIFO) collection. That is, you

put things in at one end and pull them out at the other, and the order

you put them in is the same order they come out. Queues are

commonly used as a way to reliably transfer objects from one area of a

program to another. Queues are especially important in Concurrent

Programming, because they safely transfer objects from one task to

another.



LinkedList implements the Queue interface with methods to

support queue behavior, so a LinkedList can be used as a Queue

implementation. By upcasting a LinkedList to a Queue, this

example uses the Queue-specific methods in the Queue interface:

// collections/QueueDemo.java

// Upcasting to a Queue from a LinkedList

import java.util.*;

public class QueueDemo {

public static void printQ(Queue queue) {

while(queue.peek() != null)

System.out.print(queue.remove() + " ");

System.out.println();

}

public static void main(String[] args) {

Queue<Integer> queue = new LinkedList<>();

Random rand = new Random(47);

for(int i = 0; i < 10; i++)

queue.offer(rand.nextInt(i + 10));

printQ(queue);

Queue<Character> qc = new LinkedList<>();



for(char c : "Brontosaurus".toCharArray())

qc.offer(c);

printQ(qc);

}

}

/* Output:

8 1 1 1 5 14 3 1 0 1

B r o n t o s a u r u s

*/

offer() is a Queue-specific method that inserts an element at the

tail of the queue if it can, or returns false. Both peek() and

element() return the head of the queue without removing it, but

peek() returns null if the queue is empty and element() throws

NoSuchElementException. Both poll() and remove()

remove and return the head of the queue, but poll() returns null

if the queue is empty, while remove() throws

NoSuchElementException.



Autoboxing automatically converts the int result of nextInt() into

the Integer object required by queue, and the char c into the

Character object required by qc. The Queue interface narrows

access to the methods of LinkedList so only the appropriate

methods are available, and you are thus less tempted to use

LinkedList methods (here, you can actually cast queue back to a

LinkedList, but you are at least discouraged from doing so).

The Queue-specific methods provide complete and standalone

functionality. That is, you can have a usable Queue without any of the

methods in Collection, from which it is inherited.

PriorityQueue

First-in, first-out (FIFO) describes the most typical queuing discipline.

A queuing discipline decides, given a group of elements in the queue,

which one goes next. First-in, first-out says that the next element

should be the one that was waiting the longest.

A priority queue says that the element that goes next is the one with

the greatest need (the highest priority). For example, in an airport, a

customer might be pulled out of a queue if their plane is about to

leave. If you build a messaging system, some messages are more

important than others, and should be dealt with sooner, regardless of



when they arrive. The PriorityQueue was added in Java 5 to

provide an automatic implementation for this behavior.

When you offer() an object onto a PriorityQueue, that object

is sorted into the queue.5 The default sorting uses the natural order of the
objects in the queue, but you can modify the order by providing

your own Comparator. The PriorityQueue ensures that when

you call peek(), poll() or remove(), the element you get is the

one with the highest priority.

It’s trivial to make a PriorityQueue that works with built-in types

like Integer, String or Character. In the following example,

the first set of values are the identical random values from the

previous example, showing that they emerge differently from the

PriorityQueue:

// collections/PriorityQueueDemo.java

import java.util.*;

public class PriorityQueueDemo {

public static void main(String[] args) {

PriorityQueue<Integer> priorityQueue =

new PriorityQueue<>();

Random rand = new Random(47);

for(int i = 0; i < 10; i++)



priorityQueue.offer(rand.nextInt(i + 10));

QueueDemo.printQ(priorityQueue);

List<Integer> ints = Arrays.asList(25, 22, 20,

18, 14, 9, 3, 1, 1, 2, 3, 9, 14, 18, 21, 23, 25);

priorityQueue = new PriorityQueue<>(ints);

QueueDemo.printQ(priorityQueue);

priorityQueue = new PriorityQueue<>(

ints.size(), Collections.reverseOrder());

priorityQueue.addAll(ints);

QueueDemo.printQ(priorityQueue);

String fact = "EDUCATION SHOULD ESCHEW OBFUSCATION";

List<String> strings =

Arrays.asList(fact.split(""));

PriorityQueue<String> stringPQ =

new PriorityQueue<>(strings);

QueueDemo.printQ(stringPQ);

stringPQ = new PriorityQueue<>(

strings.size(), Collections.reverseOrder());

stringPQ.addAll(strings);

QueueDemo.printQ(stringPQ);



Set<Character> charSet = new HashSet<>();

for(char c : fact.toCharArray())

charSet.add(c); // Autoboxing

PriorityQueue<Character> characterPQ =

new PriorityQueue<>(charSet);

QueueDemo.printQ(characterPQ);

}

}

/* Output:

0 1 1 1 1 1 3 5 8 14

1 1 2 3 3 9 9 14 14 18 18 20 21 22 23 25 25

25 25 23 22 21 20 18 18 14 14 9 9 3 3 2 1 1

A A B C C C D D E E E F H H I I L N N O O O O S S

S T T U U U W

W U U U T T S S S O O O O N N L I I H H F E E E D D C C

C B A A

A B C D E F H I L N O S T U W

*/

Duplicates are allowed, and the lowest values have the highest priority

(in the case of String, spaces also count as values and are higher in



priority than letters). To change the ordering using a Comparator

object, the third constructor call to PriorityQueue<Integer>

and the second call to PriorityQueue<String> use the reverse-

order Comparator produced by

Collections.reverseOrder().

The last section adds a HashSet to eliminate duplicate

Characters.

Integer, String and Character work with PriorityQueue

because these classes already have natural ordering built in. If you

want you use your own class in a PriorityQueue, you must include

additional functionality to produce natural ordering, or provide your

own Comparator. There’s a more sophisticated example that

demonstrates this in the Appendix: Collection Topics.

Collection vs. Iterator

Collection is the root interface common to all sequence

collections. It might be thought of as an “incidental interface,” one that



appeared because of commonality between other interfaces. In

addition, the java.util.AbstractCollection class provides

a default implementation for a Collection, so you can create a new

subtype of AbstractCollection without unnecessary code

duplication.

One argument for having an interface is it creates more generic code.

By writing to an interface rather than an implementation, your code

can be applied to more types of objects. 6 So if I write a method that takes a
Collection, that method can be applied to any type that

implements Collection—and this allows a new class to implement

Collection for use with my method. The Standard C++ Library has

no common base class for its collections—all commonality between

collections is achieved through iterators. In Java, it might seem

sensible to follow the C++ approach, and to express commonality

between collections using an iterator rather than a Collection.

However, the two approaches are bound together, since implementing

Collection also means providing an iterator() method:

// collections/InterfaceVsIterator.java

import typeinfo.pets.*;

import java.util.*;

public class InterfaceVsIterator {



public static void display(Iterator<Pet> it) {

while(it.hasNext()) {

Pet p = it.next();

System.out.print(p.id() + ":" + p + " ");

}

System.out.println();

}

public static void display(Collection<Pet> pets) {

for(Pet p : pets)

System.out.print(p.id() + ":" + p + " ");

System.out.println();

}

public static void main(String[] args) {

List<Pet> petList = Pets.list(8);

Set<Pet> petSet = new HashSet<>(petList);

Map<String, Pet> petMap = new LinkedHashMap<>();

String[] names = ("Ralph, Eric, Robin, Lacey, " +

"Britney, Sam, Spot, Fluffy").split(", ");

for(int i = 0; i < names.length; i++)

petMap.put(names[i], petList.get(i));



display(petList);

display(petSet);

display(petList.iterator());

display(petSet.iterator());

System.out.println(petMap);

System.out.println(petMap.keySet());

display(petMap.values());

display(petMap.values().iterator());

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

{Ralph=Rat, Eric=Manx, Robin=Cymric, Lacey=Mutt,



Britney=Pug, Sam=Cymric, Spot=Pug, Fluffy=Manx}

[Ralph, Eric, Robin, Lacey, Britney, Sam, Spot, Fluffy]

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

*/

Both versions of display() work with Map objects as well as

subtypes of Collection. Both Collection and Iterator

decouple the display() methods from knowing the particular

implementation of the underlying collection.

here the two approaches come up even. In fact, Collection pulls

ahead a bit because it is Iterable, and so in the implementation of

display(Collection) the for-in construct can be used, which

makes the code a little cleaner.

An Iterator becomes compelling when you implement a foreign

class, one that is not a Collection, when it would be difficult or

annoying to make it implement the Collection interface. For

example, if we create a Collection implementation by inheriting

from a class that holds Pet objects, we must implement all the



Collection methods, even if we don’t use them within the

display() method. Although this can easily be accomplished by

inheriting from AbstractCollection, you’re forced to implement

iterator() anyway, along with size(), to provide the methods not
implemented by AbstractCollection, but used by the other

methods in AbstractCollection:

// collections/CollectionSequence.java

import typeinfo.pets.*;

import java.util.*;

public class CollectionSequence

extends AbstractCollection<Pet> {

private Pet[] pets = Pets.array(8);

@Override

public int size() { return pets.length; }

@Override

public Iterator<Pet> iterator() {

return new Iterator<Pet>() { // [1]

private int index = 0;

@Override

public boolean hasNext() {

return index < pets.length;



}

@Override

public Pet next() { return pets[index++]; }

@Override

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}

};

}

public static void main(String[] args) {

CollectionSequence c = new CollectionSequence();

InterfaceVsIterator.display(c);

InterfaceVsIterator.display(c.iterator());

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx



*/

The remove() method is an “optional operation,” covered in the

Appendix: Collection Topics. Here, it’s not necessary to implement it, and if
you call it, it will throw an exception.

[1] You might think, since iterator() returns

Iterator<Pet> , that the anonymous inner class definition

could use the diamond syntax and Java could infer the type. But

that doesn’t work; the type inference is still quite limited.

This example shows that if you implement Collection, you also

implement iterator(), and just implementing iterator()

alone requires only slightly less effort than inheriting from

AbstractCollection. However, if your class already inherits

from another class, you cannot also inherit from

AbstractCollection. In that case, to implement Collection

you’d have to implement all the methods in the interface. Here it’s

much easier to inherit and add the ability to create an iterator:

// collections/NonCollectionSequence.java

import typeinfo.pets.*;

import java.util.*;

class PetSequence {

protected Pet[] pets = Pets.array(8);



}

public class NonCollectionSequence extends PetSequence {

public Iterator<Pet> iterator() {

return new Iterator<Pet>() {

private int index = 0;

@Override

public boolean hasNext() {

return index < pets.length;

}

@Override

public Pet next() { return pets[index++]; }

@Override

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}

};



}

public static void main(String[] args) {

NonCollectionSequence nc =

new NonCollectionSequence();

InterfaceVsIterator.display(nc.iterator());

}

}

/* Output:

0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug

7:Manx

*/

Producing an Iterator is the least-coupled way of connecting a

sequence to a method that consumes that sequence, and puts far fewer

constraints on the sequence class than does implementing

Collection.

for-in and Iterators

So far, the for-in syntax is primarily used with arrays, but it also works

with any Collection object. You’ve actually seen a few examples of

this using ArrayList, but here’s a general proof:

// collections/ForInCollections.java



// All collections work with for-in

import java.util.*;

public class ForInCollections {

public static void main(String[] args) {

Collection<String> cs = new LinkedList<>();

Collections.addAll(cs,

"Take the long way home".split(" "));

for(String s : cs)

System.out.print("'" + s + "' ");

}

}

/* Output:

'Take' 'the' 'long' 'way' 'home'

*/

Since cs is a Collection, this code shows that working with for-in

is a characteristic of all Collection objects.

The reason this works is that Java 5 introduced an interface called

Iterable containing an iterator() method that produces an

Iterator. for-in uses this Iterable interface to move through a

sequence. So if you create any class that implements Iterable, you



can use it in a for-in statement:

// collections/IterableClass.java

// Anything Iterable works with for-in

import java.util.*;

public class IterableClass implements Iterable<String> {

protected String[] words = ("And that is how " +

"we know the Earth to be banana-shaped."

).split(" ");

@Override

public Iterator<String> iterator() {

return new Iterator<String>() {

private int index = 0;

@Override

public boolean hasNext() {

return index < words.length;

}

@Override

public String next() { return words[index++]; }

@Override

public void remove() { // Not implemented



throw new UnsupportedOperationException();

}

};

}

public static void main(String[] args) {

for(String s : new IterableClass())

System.out.print(s + " ");

}

}

/* Output:

And that is how we know the Earth to be banana-shaped.

*/

iterator() returns an instance of an anonymous inner

implementation of Iterator<String> which delivers each word

in the array. In main() you see that IterableClass does indeed

work in a for-in statement.

In Java 5, a number of classes were made Iterable, primarily all

Collection classes (but not Maps). For example, this code displays

all operating system environment variables:

// collections/EnvironmentVariables.java



// {VisuallyInspectOutput}

import java.util.*;

public class EnvironmentVariables {

public static void main(String[] args) {

for(Map.Entry entry: System.getenv().entrySet()) {

System.out.println(entry.getKey() + ": " +

entry.getValue());

}

}

}

System.getenv()7 returns a Map, entrySet() produces a Set of Map.Entry
elements, and a Set is Iterable so it can be used

in a for-in loop.

A for-in statement works with an array or anything Iterable, but

that doesn’t mean that an array is automatically an Iterable, nor is

there any autoboxing that takes place:

// collections/ArrayIsNotIterable.java



import java.util.*;

public class ArrayIsNotIterable {

static <T> void test(Iterable<T> ib) {

for(T t : ib)

System.out.print(t + " ");

}

public static void main(String[] args) {

test(Arrays.asList(1, 2, 3));

String[] strings = { "A", "B", "C" };

// An array works in for-in, but it's not Iterable:

//- test(strings);

// You must explicitly convert it to an Iterable:

test(Arrays.asList(strings));

}

}

/* Output:

1 2 3 A B C

*/

Trying to pass an array as an Iterable argument fails. There is no

automatic conversion to an Iterable; you must do it by hand.



The Adapter Method Idiom

What if you have an existing class that is Iterable, and you’d like to

add one or more new ways to use this class in a for-in statement? For

example, suppose you’d like to choose whether to iterate through a list

of words in either a forward or reverse direction. If you inherit from

the class and override the iterator() method, you replace the

existing method and you don’t get a choice.

One solution I call the Adapter Method idiom. The “Adapter” part

comes from design patterns, because you must provide a particular

interface to satisfy the for-in statement. When you have one interface

and you need another one, writing an adapter solves the problem.

Here, I want to add the ability to produce a reverse iterator to the default
forward iterator, so I can’t override. Instead, I add a method

that produces an Iterable object which can then be used in the for-

in statement. As you see here, this allows us to provide multiple ways

to use for-in:

// collections/AdapterMethodIdiom.java

// The "Adapter Method" idiom uses for-in

// with additional kinds of Iterables

import java.util.*;

class ReversibleArrayList<T> extends ArrayList<T> {



ReversibleArrayList(Collection<T> c) {

super(c);

}

public Iterable<T> reversed() {

return new Iterable<T>() {

public Iterator<T> iterator() {

return new Iterator<T>() {

int current = size() - 1;

public boolean hasNext() {

return current > -1;

}

public T next() { return get(current--); }

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}

};

}

};

}

}



public class AdapterMethodIdiom {

public static void main(String[] args) {

ReversibleArrayList<String> ral =

new ReversibleArrayList<String>(

Arrays.asList("To be or not to be".split(" ")));

// Grabs the ordinary iterator via iterator():

for(String s : ral)

System.out.print(s + " ");

System.out.println();

// Hand it the Iterable of your choice

for(String s : ral.reversed())

System.out.print(s + " ");

}

}

/* Output:

To be or not to be

be to not or be To

*/

In main(), if you put the ral object in the for-in statement, you get the
(default) forward iterator. But if you call reversed() on the

object, it produces different behavior.



Using this approach, I can add two adapter methods to the

IterableClass.java example:

// collections/MultiIterableClass.java

// Adding several Adapter Methods

import java.util.*;

public class MultiIterableClass extends IterableClass {

public Iterable<String> reversed() {

return new Iterable<String>() {

public Iterator<String> iterator() {

return new Iterator<String>() {

int current = words.length - 1;

public boolean hasNext() {

return current > -1;

}

public String next() {

return words[current--];

}

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}



};

}

};

}

public Iterable<String> randomized() {

return new Iterable<String>() {

public Iterator<String> iterator() {

List<String> shuffled =

new ArrayList<String>(Arrays.asList(words));

Collections.shuffle(shuffled, new Random(47));

return shuffled.iterator();

}

};

}

public static void main(String[] args) {

MultiIterableClass mic = new MultiIterableClass();

for(String s : mic.reversed())

System.out.print(s + " ");

System.out.println();

for(String s : mic.randomized())



System.out.print(s + " ");

System.out.println();

for(String s : mic)

System.out.print(s + " ");

}

}

/* Output:

banana-shaped. be to Earth the know we how is that And

is banana-shaped. Earth that how the be And we know to

And that is how we know the Earth to be banana-shaped.

*/

Notice that the second method, random(), doesn’t create its own

Iterator but returns the one from the shuffled List.

The output shows that the Collections.shuffle() method

doesn’t affect the original array, but only shuffles the references in

shuffled. This is only true because the randomized() method

wraps an ArrayList around the result of Arrays.asList(). If

the List produced by Arrays.asList() is shuffled directly, it

will modify the underlying array, as shown here:

// collections/ModifyingArraysAsList.java



import java.util.*;

public class ModifyingArraysAsList {

public static void main(String[] args) {

Random rand = new Random(47);

Integer[] ia = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

List<Integer> list1 =

new ArrayList<>(Arrays.asList(ia));

System.out.println("Before shuffling: " + list1);

Collections.shuffle(list1, rand);

System.out.println("After shuffling: " + list1);

System.out.println("array: " + Arrays.toString(ia));

List<Integer> list2 = Arrays.asList(ia);

System.out.println("Before shuffling: " + list2);

Collections.shuffle(list2, rand);

System.out.println("After shuffling: " + list2);

System.out.println("array: " + Arrays.toString(ia));

}

}

/* Output:

Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



After shuffling: [4, 6, 3, 1, 8, 7, 2, 5, 10, 9]

array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

After shuffling: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8]

array: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8]

*/

In the first case, the output of Arrays.asList() is handed to the

ArrayList constructor, and this creates an ArrayList that

references the elements of ia. Shuffling these references doesn’t

modify the array. However, if you use the result of

Arrays.asList(ia) directly, shuffling modifies the order of ia.

It’s important to be aware that Arrays.asList() produces a

List object that uses the underlying array as its physical

implementation. If you do anything to that List that modifies it, and

you don’t want the original array modified, make a copy into another

collection.



Summary

Java provides a number of ways to hold objects:

1. An array associates numerical indexes to objects. It holds objects

of a known type so you don’t have to cast the result when you’re

looking up an object. It can be multidimensional, and it can hold

primitives. Although you can create arrays at run-time, the size of

an array cannot be changed once you create it.

2. A Collection holds single elements, and a Map holds

associated pairs. With Java generics, you specify the type of object

held in the collections, so you can’t put the wrong type into a

collection and you don’t have to cast elements when you fetch

them out of a collection. Both Collections and Maps

automatically resize themselves as you add more elements. A

collection won’t hold primitives, but autoboxing takes care of

translating primitives back and forth to the wrapper types held in

the collection.

3. Like an array, a List also associates numerical indexes to objects

—thus, arrays and Lists are ordered collections.

4. Use an ArrayList if you perform many random accesses, but a

LinkedList for many insertions and removals in the middle of



the list.

5. The behavior of Queues and stacks is provided via the

LinkedList.

6. A Map is a way to associate, not integral values, but objects with

other objects. HashMaps are designed for rapid access, whereas a

TreeMap keeps its keys in sorted order, and thus is not as fast as

a HashMap. A LinkedHashMap keeps its elements in insertion

order, but provides rapid access with hashing.

7. A Set only accepts one of each type of object. HashSets provide

maximally fast lookups, whereas TreeSets keep the elements in

sorted order. LinkedHashSets keep elements in insertion



order.

8. Don’t use the legacy classes Vector, Hashtable, and Stack

in new code.

It’s helpful to look at a simplified diagram of the Java collections

(without the abstract classes or legacy components). This only

includes the interfaces and classes you encounter on a regular basis.

Simple Collection Taxonomy

You’ll see there are really only four basic collection components—Map,

List, Set, and Queue—and only two or three implementations of

each one (the java.util.concurrent implementations of

Queue are not included in this diagram). The collections you use most often
have heavy black lines around them.

The dotted boxes represent interfaces, and the solid boxes are regular

(concrete) classes. The dotted lines with hollow arrows indicate that a

particular class is implementing an interface. The solid arrows show

that a class can produce objects of the class where the arrow is

pointing. For example, any Collection can produce an

Iterator, and a List can produce a ListIterator (as well as

an ordinary Iterator, since List inherits Collection).

Here’s an example that shows the different methods between the

various classes. The actual code is from the Generics chapter; I’m just calling



it here to produce the output. The output also shows the

interfaces implemented in each class or interface:

// collections/CollectionDifferences.java

import onjava.*;

public class CollectionDifferences {

public static void main(String[] args) {

CollectionMethodDifferences.main(args);

}

}

/* Output:

Collection: [add, addAll, clear, contains, containsAll,

equals, forEach, hashCode, isEmpty, iterator,

parallelStream, remove, removeAll, removeIf, retainAll,

size, spliterator, stream, toArray]

Interfaces in Collection: [Iterable]

Set extends Collection, adds: []

Interfaces in Set: [Collection]

HashSet extends Set, adds: []

Interfaces in HashSet: [Set, Cloneable, Serializable]

LinkedHashSet extends HashSet, adds: []



Interfaces in LinkedHashSet: [Set, Cloneable,

Serializable]

TreeSet extends Set, adds: [headSet,

descendingIterator, descendingSet, pollLast, subSet,

floor, tailSet, ceiling, last, lower, comparator,

pollFirst, first, higher]

Interfaces in TreeSet: [NavigableSet, Cloneable,

Serializable]

List extends Collection, adds: [replaceAll, get,

indexOf, subList, set, sort, lastIndexOf, listIterator]

Interfaces in List: [Collection]

ArrayList extends List, adds: [trimToSize,

ensureCapacity]

Interfaces in ArrayList: [List, RandomAccess,

Cloneable, Serializable]

LinkedList extends List, adds: [offerFirst, poll,

getLast, offer, getFirst, removeFirst, element,

removeLastOccurrence, peekFirst, peekLast, push,

pollFirst, removeFirstOccurrence, descendingIterator,

pollLast, removeLast, pop, addLast, peek, offerLast,



addFirst]

Interfaces in LinkedList: [List, Deque, Cloneable,

Serializable]

Queue extends Collection, adds: [poll, peek, offer,

element]

Interfaces in Queue: [Collection]

PriorityQueue extends Queue, adds: [comparator]

Interfaces in PriorityQueue: [Serializable]

Map: [clear, compute, computeIfAbsent,

computeIfPresent, containsKey, containsValue, entrySet,

equals, forEach, get, getOrDefault, hashCode, isEmpty,

keySet, merge, put, putAll, putIfAbsent, remove,

replace, replaceAll, size, values]

HashMap extends Map, adds: []

Interfaces in HashMap: [Map, Cloneable, Serializable]

LinkedHashMap extends HashMap, adds: []

Interfaces in LinkedHashMap: [Map]

SortedMap extends Map, adds: [lastKey, subMap,

comparator, firstKey, headMap, tailMap]

Interfaces in SortedMap: [Map]



TreeMap extends Map, adds: [descendingKeySet,

navigableKeySet, higherEntry, higherKey, floorKey,

subMap, ceilingKey, pollLastEntry, firstKey, lowerKey,

headMap, tailMap, lowerEntry, ceilingEntry,

descendingMap, pollFirstEntry, lastKey, firstEntry,

floorEntry, comparator, lastEntry]

Interfaces in TreeMap: [NavigableMap, Cloneable,

Serializable]

*/

All Sets except TreeSet have exactly the same interface as

Collection. List and Collection differ significantly, although

List requires methods from Collection. On the other hand, the

methods in the Queue interface stand alone; the Collection

methods are not required to create a functioning Queue

implementation. Finally, the only intersection between Map and

Collection is the fact that a Map can produce Collections

using the entrySet() and values() methods.

Notice the tagging interface java.util.RandomAccess, which is

attached to ArrayList but not to LinkedList. This provides

information for algorithms that dynamically change their behavior



depending on a particular List.

It’s true this organization is somewhat odd, as object-oriented

hierarchies go. However, as you learn more about the collections in

java.util (in particular, in the Appendix: Collection Topics), you’ll see there
are more issues than just a slightly odd inheritance structure.

Collection libraries have always been difficult design problems—

solving these problems involves satisfying a set of forces that often

oppose each other. So be prepared for some compromises here and

there.

Despite these issues, the Java collections are fundamental tools you

can use on a day-to-day basis to make your programs simpler, more

powerful, and more effective. It might take you a little while to get

comfortable with some aspects of the library, but I think you’ll find

yourself rapidly acquiring and using the classes in this library.

1. A number of languages, such as Perl, Python, and Ruby, have

native support for collections.↩

2. This is a place where operator overloading would have been nice.

C++ and C# collection classes produce a cleaner syntax using

operator overloading.↩

3. At the end of the Generics chapter, you’ll find a discussion about whether
this is such a bad problem. However, the Generics



chapter also shows that Java generics are useful for more than

just type-safe collections. ↩

4. remove() is a so-called “optional” method (there are other such

methods), which means not all Iterator implementations must

implement it. This topic is covered in the Appendix: Collection

Topics. The standard Java library collections implement

remove(), however, so you don’t need to worry about it until

that chapter. ↩

5. This actually depends on the implementation. Priority queue

algorithms typically sort on insertion (maintaining a heap), but

they may also perform the selection of the most important

element upon removal. The choice of algorithm can be important

if an object’s priority can change while it is waiting in the queue. ↩

6. Some people advocate the automatic creation of an interface for

every possible combination of methods in a class—sometimes for

every single class. I believe that an interface should have more

meaning than a mechanical duplication of method combinations,

so I tend to wait until I see the value added by an interface before

creating one.↩

7. This was not available before Java 5, because it was thought too



tightly coupled to the operating system, and thus to violate “write

once, run anywhere.” The fact it is included now suggests that the

Java designers became more pragmatic.↩

Functional

Programming

A functional programming language

manipulates pieces of code as easily as it

manipulates data. Although Java is not a

functional language, Java 8 Lambda

Expressions and Method References allow

you to program in a functional style.

In the early days of the computer age, memory was scarce and

precious. Nearly everyone programmed in assembly language. People

knew about compilers, but the mere thought of the inefficient code

generation from such a thing—many bytes would certainly be

generated that hand-coded assembly would never produce!

Often, just to fit a program into limited memory, programmers saved

code space by modifying in-memory code to make it do something



different, while the program was executing. This technique is called

self-modifying code, and as long as a program was small enough for a

handful of people to maintain all the tricky and arcane assembly code,

you could probably get it to work.

Memory got cheaper and processors got faster. The C language

appeared and was thought of as “high level” by most assembly-

language programmers. Others discovered that C could make them

significantly more productive. And with C, it still wasn’t that hard to

create self-modifying code.

With cheaper hardware, programs grew in size and complexity. It

became difficult just to get programs to work. We sought ways to make

code more consistent and understandable. Self-modifying code, in its

purest form, turns out to be a really bad idea because it’s very hard to

be quite sure what it is doing. It’s also difficult to test, because are you

testing the output, some code in transition, the process of

modification, etc.?

And yet, the idea of using code to somehow manipulate other code

remains intriguing, as long as there is some way to make it safer.

From a code creation, maintenance, and reliability standpoint this

idea is quite compelling. If, instead of writing lots of code from



scratch, you start with existing small pieces that are understandable,

well-tested, and reliable. Then compose them together to create new

code. Wouldn’t that make us more productive and at the same time

create more robust code?

This is what functional programming (FP) is about. By incorporating

existing code to produce new functionality instead of writing

everything from scratch, you get more reliable code, faster. This theory

seems to hold up, at least in some situations. On the way, functional

languages have produced nice syntax which some non-functional

languages have appropriated.

You can also think of it this way:

OO abstracts data, FP abstracts behavior.

A pure functional language goes further in its endeavor for safety. It

imposes the additional constraint that all data must be immutable: set

once and never changed. Values are handed to a function which then

produces new values but never modifies anything external to itself



(including its arguments or elements outside of that function’s scope).

When this is enforced, you know that any bugs are not caused by so-

called side effects, because the function only creates and returns a

result, nothing else.

Even better, the “immutable objects and no side effects” paradigm

solves one of the most fundamental and vexing problems in parallel

programming (when parts of your program are running

simultaneously on multiple processors). This is the problem of

mutable shared state, which means different parts of your code

(running on different processors) can try to modify the same piece of

memory at the same time (Who wins? Nobody knows). If functions

never modify existing values but only produce new values—the

definition of a pure functional language—there can be no contention

over memory. Thus, pure functional languages are often put forward

as the solution to parallel programming (there are also other viable

solutions).

Be aware, then, that there are numerous motivations behind

functional languages, which means describing them can be somewhat

confusing. It often depends on perspective. The reasons span “it’s for

parallel programming,” to “code reliability” and “code creation and



library reuse.” 1 Also remember that the arguments for FP—in

particular, that programmers will create more robust code, faster—are

still at least partly hypothetical. We have seen some good results,2 but we
haven’t proven that a pure functional language is the best approach

to solving the programming problem.

Ideas from FP are worth incorporating into non-FP languages. This

happened in Python, for example, to the great benefit of that language.

Java 8 adds its own features from FP, which we explore in this

chapter.

Old vs. New

Ordinarily, methods produce different results depending on the data

we pass. What if you want a method to behave differently from one call

to the next? If we pass code to the method, we can control its behavior.

Previously, we’ve done this by creating an object containing the

desired behavior inside a method, then passing that object to the

method we want to control. The following example shows this, then

adds the Java 8 approaches: method references and lambda

expressions.

// functional/Strategize.java

interface Strategy {

String approach(String msg);



}

class Soft implements Strategy {

public String approach(String msg) {

return msg.toLowerCase() + "?";

}

}

class Unrelated {

static String twice(String msg) {

return msg + " " + msg;

}

}

public class Strategize {

Strategy strategy;

String msg;

Strategize(String msg) {

strategy = new Soft(); // [1]

this.msg = msg;

}

void communicate() {

System.out.println(strategy.approach(msg));



}

void changeStrategy(Strategy strategy) {

this.strategy = strategy;

}

public static void main(String[] args) {

Strategy[] strategies = {

new Strategy() { // [2]

public String approach(String msg) {

return msg.toUpperCase() + "!";

}

},

msg -> msg.substring(0, 5), // [3]

Unrelated::twice // [4]

};

Strategize s = new Strategize("Hello there");

s.communicate();

for(Strategy newStrategy : strategies) {

s.changeStrategy(newStrategy); // [5]

s.communicate(); // [6]

}



}

}

/* Output:

hello there?

HELLO THERE!

Hello

Hello there Hello there

*/

Strategy provides the interface that carries functionality in its

single approach() method. By creating different Strategy

objects you create different behavior.

Traditionally we implement this behavior by making a class that

implements the Strategy interface, as in Soft.

[1] In Strategize, you can see that Soft is the default

strategy, as it is assigned in the constructor.

[2] A slightly less verbose and more spontaneous approach is to

create an anonymous inner class. There’s still a fair amount of

repetitious code, and you always have to look at it until you say

“oh, I see, they’re using an anonymous inner class.”



[3] This is the Java 8 lambda expression, distinguished by the

arrow -> separating the argument and function body. To the right

of the arrow is the expression that is returned from the lambda.

This achieves the same effect as the class definition and

anonymous inner class, but with a lot less code.

[4] This is the Java 8 method reference, distinguished by the ::.

To the left of the :: is the name of a class or object, and to the

right of the :: is the name of a method, but without an argument

list.

[5] After using the default Soft strategy, we step through all the

strategies in the array and place each one into s using

changeStrategy().

[6] Now, each call to communicate() produces different

behavior, depending on the strategy “code object” that’s being

used at the moment. We pass behavior, rather than only passing

data.3



Prior to Java 8, we have been able to pass functionality via [1] and [2]

However, the syntax has been so awkward to write and read that we’ve

only done it when forced. Method references and lambda expressions

make it possible to pass functionality when you want to, instead of

only when you must.

Lambda Expressions

Lambda Expressions are function definitions written using the

minimum possible syntax:

1. Lambda expressions produce functions, not classes. On the Java

Virtual Machine (JVM), everything is a class, so there are various

manipulations performed behind the scenes that make lambdas

look like functions—but as a programmer, you can happily

pretend they are “just functions.”

2. The lambda syntax is as spare as possible, precisely to make

lambdas easy to write and use.

You saw one lambda expression in Strategize.java, but there

are other syntax variations:

// functional/LambdaExpressions.java

interface Description {

String brief();



}

interface Body {

String detailed(String head);

}

interface Multi {

String twoArg(String head, Double d);

}

public class LambdaExpressions {

static Body bod = h -> h + " No Parens!"; // [1]

static Body bod2 = (h) -> h + " More details"; // [2]

static Description desc = () -> "Short info"; // [3]

static Multi mult = (h, n) -> h + n; // [4]

static Description moreLines = () -> { // [5]

System.out.println("moreLines()");

return "from moreLines()";

};

public static void main(String[] args) {

System.out.println(bod.detailed("Oh!"));

System.out.println(bod2.detailed("Hi!"));

System.out.println(desc.brief());



System.out.println(mult.twoArg("Pi! ", 3.14159));

System.out.println(moreLines.brief());

}

}

/* Output:

Oh! No Parens!

Hi! More details

Short info

Pi! 3.14159

moreLines()

from moreLines()

*/

We start with three interfaces, each with a single method (you’ll

understand the significance of this shortly). However, each method

has a different number of arguments, in order to demonstrate lambda

expression syntax.

The basic syntax of any lambda expression is:

1. The arguments.

2. Followed by the -> , which you might choose to read as

“produces.”



3. Everything after the -> is the method body.

[1] With a single argument, you can just say it without

parentheses. This, however, is a special case.

[2] The normal case is to use parentheses around the arguments.

For consistency, you can also use parentheses around a single

argument, although this is not commonly done.

[3] With no arguments, you must use parentheses to indicate an

empty argument list.

[4] For more than one argument, place them in a parenthesized

argument list.

So far, all the lambda expression method bodies have been a single

line. The result of that expression automatically becomes the return

value of the lambda expression, and it’s illegal to use the return

keyword here. This is another way that lambda expressions abbreviate

the syntax for describing functionality.

[5] If you do need multiple lines in your lambda expression, you

must put those lines inside curly braces. In this situation, you



revert to using return to produce a value from the lambda

expression.

Lambda expressions typically produce more readable code than

anonymous inner classes, so we’ll use them when possible in this book.

Recursion

A recursive function is one that calls itself. It’s possible to write

recursive lambda expressions, with a caveat: The recursive method

must be an instance variable or a static variable, otherwise you’ll

get a compile-time error. We’ll create an example for each case.

Both examples need an interface that accepts an int and produces an

int:

// functional/IntCall.java

interface IntCall {

int call(int arg);

}

A factorial for an integer n multiplies together all the positive integers

less than or equal to n. A factorial function is a common recursive example:

// functional/RecursiveFactorial.java

public class RecursiveFactorial {

static IntCall fact;

https://en.wikipedia.org/wiki/Factorial


public static void main(String[] args) {

fact = n -> n == 0 ? 1 : n * fact.call(n - 1);

for(int i = 0; i <= 10; i++)

System.out.println(fact.call(i));

}

}

/* Output:

1

1

2

6

24

120

720

5040

40320

362880

3628800

*/

Here, fact is a static variable. Note the use of the ternary if-else.



The recursive function will keep calling itself until i == 0. All

recursive functions have some kind of “stop condition,” otherwise

they’ll recurse infinitely and produce an exception.

We can implement a Fibonacci sequence as a recursive lambda expression,
this time using an instance variable:

// functional/RecursiveFibonacci.java

public class RecursiveFibonacci {

IntCall fib;

RecursiveFibonacci() {

fib = n -> n == 0 ? 0 :

n == 1 ? 1 :

fib.call(n - 1) + fib.call(n - 2);

}

int fibonacci(int n) { return fib.call(n); }

public static void main(String[] args) {

RecursiveFibonacci rf = new RecursiveFibonacci();

https://en.wikipedia.org/wiki/Fibonacci_number


for(int i = 0; i <= 10; i++)

System.out.println(rf.fibonacci(i));

}

}

/* Output:

0

1

1

2

3

5

8

13

21

34

55

*/

The Fibonacci sequence sums the last two elements in the sequence to

produce the next one.

Method References



Java 8 Method References refer to methods without the extra baggage

required by previous versions of Java. A method reference is a class

name or an object name, followed by a ::4, then the name of the method:

// functional/MethodReferences.java

import java.util.*;

interface Callable { // [1]

void call(String s);

}

class Describe {

void show(String msg) { // [2]

System.out.println(msg);

}

}

public class MethodReferences {

static void hello(String name) { // [3]

System.out.println("Hello, " + name);

}

static class Description {

String about;

Description(String desc) { about = desc; }



void help(String msg) { // [4]

System.out.println(about + " " + msg);

}

}

static class Helper {

static void assist(String msg) { // [5]

System.out.println(msg);

}

}

public static void main(String[] args) {

Describe d = new Describe();

Callable c = d::show; // [6]



c.call("call()"); // [7]

c = MethodReferences::hello; // [8]

c.call("Bob");

c = new Description("valuable")::help; // [9]

c.call("information");

c = Helper::assist; // [10]

c.call("Help!");

}

}

/* Output:

call()

Hello, Bob

valuable information

Help!

*/

[1] We start out with a single-method interface (again, you’ll soon

learn the importance of this).

[2] The signature (argument types and return type) of show()

conforms to the signature of Callable’s call().

[3] hello() is also signature-conformant to call().



[4] … as is help(), a non-static method within a static

inner class.

[5] assist() is a static method inside a static inner

class.

[6] We assign a method reference for the Describe object to a

Callable—which doesn’t have a show() method but rather a

call() method. However, Java seems fine with this seemingly-

odd assignment, because the method reference is signature-

conformant to Callable’s call() method.

[7] We can now invoke show() by calling call(), because

Java maps call() onto show().

[8] This is a static method reference.

[9] This is another version of [6]: a method reference for a

method attached to a live object, which is sometimes called a

bound method reference.

[10] Finally, getting a method reference for a static method of

a static inner class looks just like the outer-class version at



[8].

This isn’t an exhaustive example; we’ll look at all the variations of

method references shortly.

Runnable

The Runnable interface has been in Java since version 1.0, so no

import is necessary. It also conforms to the special single-method

interface format: Its method run() takes no arguments and has no

return value. We can therefore use a lambda expression and a method

reference as a Runnable:

// functional/RunnableMethodReference.java

// Method references with interface Runnable

class Go {

static void go() {

System.out.println("Go::go()");

}

}

public class RunnableMethodReference {

public static void main(String[] args) {

new Thread(new Runnable() {

public void run() {



System.out.println("Anonymous");

}

}).start();

new Thread(

() -> System.out.println("lambda")

).start();

new Thread(Go::go).start();

}

}

/* Output:

Anonymous

lambda

Go::go()

*/

A Thread object takes a Runnable as its constructor argument, and

has a method start() which calls run(). Notice that only the

anonymous inner class is required to have a method named run().



Unbound Method References

An unbound method reference refers to an ordinary (non-static)

method, without an associated object. To apply an unbound reference,

you must supply the object:

// functional/UnboundMethodReference.java

// Method reference without an object

class X {

String f() { return "X::f()"; }

}

interface MakeString {

String make();

}

interface TransformX {

String transform(X x);

}

public class UnboundMethodReference {

public static void main(String[] args) {

// MakeString ms = X::f; // [1]

TransformX sp = X::f;

X x = new X();



System.out.println(sp.transform(x)); // [2]

System.out.println(x.f()); // Same effect

}

}

/* Output:

X::f()

X::f()

*/

So far, we’ve seen references to methods that have the same signature

as their associated interface. At [1], we try to do the same thing for

f() in X, attempting to assign to a MakeString. This produces an

error from the compiler about an “invalid method reference,” even

though make() has the same signature as f(). The problem is that

there’s actually another (hidden) argument involved: our old friend

this. You can’t call f() without an X object to call it upon. Thus,

X::f represents an unbound method reference, because it hasn’t

been “bound” to an object.

To solve the problem we need an X object, so our interface actually

needs an extra argument, as you see in TransformX. If you assign

X::f to a TransformX, Java is happy. We must now make a second



mental adjustment—with an unbound reference, the signature of the

functional method (the single method in the interface) no longer quite

matches the signature of the method reference. There’s a good reason,

which is that you need an object to call the method on.

The result at [2] is a bit of a brain-teaser. I take the unbound reference

and call transform() on it, passing it an X, and somehow that

results in the call to x.f(). Java knows it must take the first

argument, which is effectively this, and call the method on it.

If your method has more arguments, just follow the pattern of the first

argument taking this:

// functional/MultiUnbound.java

// Unbound methods with multiple arguments

class This {

void two(int i, double d) {}

void three(int i, double d, String s) {}

void four(int i, double d, String s, char c) {}

}



interface TwoArgs {

void call2(This athis, int i, double d);

}

interface ThreeArgs {

void call3(This athis, int i, double d, String s);

}

interface FourArgs {

void call4(

This athis, int i, double d, String s, char c);

}

public class MultiUnbound {

public static void main(String[] args) {

TwoArgs twoargs = This::two;

ThreeArgs threeargs = This::three;

FourArgs fourargs = This::four;

This athis = new This();

twoargs.call2(athis, 11, 3.14);

threeargs.call3(athis, 11, 3.14, "Three");

fourargs.call4(athis, 11, 3.14, "Four", 'Z');

}



}

To make a point, I named the class This and the first arguments for

the functional methods athis, but you should choose other names to

prevent confusion in production code.

Constructor Method

References

You can also capture a reference for a constructor, and later call that

constructor via the reference.

// functional/CtorReference.java

class Dog {

String name;

int age = -1; // For "unknown"

Dog() { name = "stray"; }

Dog(String nm) { name = nm; }

Dog(String nm, int yrs) { name = nm; age = yrs; }

}

interface MakeNoArgs {

Dog make();

}

interface Make1Arg {



Dog make(String nm);

}

interface Make2Args {

Dog make(String nm, int age);

}

public class CtorReference {

public static void main(String[] args) {

MakeNoArgs mna = Dog::new; // [1]

Make1Arg m1a = Dog::new; // [2]

Make2Args m2a = Dog::new; // [3]

Dog dn = mna.make();

Dog d1 = m1a.make("Comet");

Dog d2 = m2a.make("Ralph", 4);

}

}

Dog has three constructors, and the make() methods inside the



functional interfaces reflect the constructor argument lists (the

make() methods can have different names).

Notice how we use Dog::new for each of [1], [2], and [3]. There’s only one
name for all three constructors: ::new. But the constructor

reference is assigned to a different interface in each case, and the

compiler can detect from that which constructor reference to use.

The compiler can see that calling your functional method (make(), in

this example) means to call the constructor.

Functional Interfaces

Both method references and lambda expressions must be assigned,

and those assignations require type information for the compiler to

ensure type correctness. Lambda expressions in particular introduce

new requirements. Consider:

x -> x.toString()

We see that the return type must be a String, but what type is x?

Because lambda expressions include a form of type inference (the

compiler figures some things out about types instead of requiring the

programmer to be explicit), the compiler must somehow be able to

deduce the type of x.

Here’s a second example:

(x, y) -> x + y



Now x and y can be any types that support the + operator, including

two different numeric types or a String and some other type that

will automatically convert to a String (this includes most types). But

when this lambda expression is assigned, the compiler must determine

the exact types of x and y to generate the correct code.

The same issue holds true for method references. Suppose you want to

pass

System.out::println

to a method you are writing—what type do you give for the method’s

argument?

To solve this problem, Java 8 introduces java.util.function

containing a set of interfaces which are target types for lambda

expressions and method references. Each interface contains only one

abstract method, called the functional method.

This “functional method” pattern can be enforced by using the

@FunctionalInterface annotation when you write interfaces:

// functional/FunctionalAnnotation.java

@FunctionalInterface

interface Functional {

String goodbye(String arg);



}

interface FunctionalNoAnn {

String goodbye(String arg);

}

/*

@FunctionalInterface

interface NotFunctional {

String goodbye(String arg);

String hello(String arg);

}

Produces error message:

NotFunctional is not a functional interface

multiple non-overriding abstract methods

found in interface NotFunctional

*/

public class FunctionalAnnotation {

public String goodbye(String arg) {

return "Goodbye, " + arg;

}

public static void main(String[] args) {



FunctionalAnnotation fa =

new FunctionalAnnotation();

Functional f = fa::goodbye;

FunctionalNoAnn fna = fa::goodbye;

// Functional fac = fa; // Incompatible

Functional fl = a -> "Goodbye, " + a;

FunctionalNoAnn fnal = a -> "Goodbye, " + a;

}

}

The @FunctionalInterface annotation is optional; Java treats

both Functional and FunctionalNoAnn as functional interfaces

in main(). The value of @FunctionalInterface is seen in the

definition of NotFunctional: More than one method in your

interface produces a compile-time error message.

Look closely at what happens in the definitions of f and fna.

Functional and FunctionalNoAnn define interfaces. Yet what

is assigned is just the method goodbye. First, this is only a method

and not a class. Second, it’s not even a method of a class that

implements one of those interfaces. This is a bit of magic that was

added to Java 8: if you assign a method reference or a lambda



expression to a functional interface (and the types fit), Java will adapt

your assignment to the target interface. Under the covers, the compiler

wraps your method reference or lambda expression in an instance of a

class that implements the target interface.

Even though FunctionalAnnotation does fit the Functional

mold, if we try to assign a FunctionalAnnotation directly to a

Functional as in the definition for fac, Java won’t let us—which we expect,
since it doesn’t explicitly implement Functional. The

only surprise is that Java 8 allows us to assign functions to interfaces,

which results in a much nicer, simpler syntax.

The goal of java.util.function is to create a complete-enough

set of target interfaces that you don’t ordinarily need to define your

own. Mostly because of primitive types, this produces a small

explosion of interfaces. If you understand the naming pattern, you can

generally detect what a particular interface does by looking at the

name. Here are the basic naming guidelines:

1. If it only deals with objects, not primitives, then it’s just a

straightforward name, like Function, Consumer,

Predicate, etc. The argument types are added via generics.

2. If it takes a primitive argument, this is denoted by the first part of

the name, as in LongConsumer, DoubleFunction,



IntPredicate, etc. An exception to this is the primitive

Supplier types.

3. If it returns a primitive result, this is indicated with To, as in

ToLongFunction<T> and IntToLongFunction.

4. If it returns the same type as its argument(s), it’s an Operator,

with UnaryOperator for one argument and

BinaryOperator for two arguments.

5. If it takes two arguments and returns a boolean, it’s a

Predicate.

6. If it takes two arguments of different types, there’s a Bi in the

name.

This table describes the target types in java.util.function

(with noted exceptions):

Name

Characteristic

Functional

Usage

Method

Runnable

No arguments;



(java.lang)

Runnable

Returns nothing

run()

Supplier<T>

Supplier

BooleanSupplier

No arguments;

get()

IntSupplier

Returns any type

getAstype()

LongSupplier

DoubleSupplier

Callable

No arguments;

(java.util.concurrent)

Callable<V>

Returns any type

call()



Consumer<T>

One argument;

Consumer

IntConsumer

Returns nothing

accept()

LongConsumer

DoubleConsumer

Two-argument

BiConsumer

BiConsumer<T,U>

Consumer

accept()

Two-argument

Consumer;

ObjIntConsumer<T>

First arg is a

ObjtypeConsumer

ObjLongConsumer<T>

reference;



accept()

Second arg is a

ObjDoubleConsumer<T>

primitive

Function<T,R>

IntFunction<R>

LongFunction<R>

DoubleFunction<R>

ToIntFunction<T>

Function

One argument;

ToLongFunction<T>

apply()

Returns a different

ToDoubleFunction<T>

type

Totype & typeTotype:

IntToLongFunction

applyAstype()

IntToDoubleFunction



LongToIntFunction

LongToDoubleFunction

DoubleToIntFunction

DoubleToLongFunction

UnaryOperator<T>

One argument;

UnaryOperator

IntUnaryOperator

Returns the same

type

apply()

LongUnaryOperator

DoubleUnaryOperator

BinaryOperator<T>

Two arguments,

same type;

BinaryOperator

IntBinaryOperator

Returns the same

apply()



LongBinaryOperator

type

DoubleBinaryOperator

Two arguments,

Comparator

same type;

(java.util)

Comparator<T>

Returns int

compare()

Predicate<T>

BiPredicate<T,U>

Two arguments;

Predicate

IntPredicate

Returns boolean

test()

LongPredicate

DoublePredicate

IntToLongFunction



IntToDoubleFunction

Primitive argument;

typeTotypeFunction

LongToIntFunction

Returns a primitive

applyAstype()

LongToDoubleFunction

DoubleToIntFunction

DoubleToLongFunction

BiFunction<T,U,R>

BiConsumer<T,U>

Two arguments;

Bioperation

BiPredicate<T,U>

Different types

(method name varies)

ToIntBiFunction<T,U>

ToLongBiFunction<T,U>

ToDoubleBiFunction<T,U>

You might imagine additional rows for further illumination, but this



table gives the general idea, and should allow you to, more or less,

deduce the functional interface you need.

You can see that some choices were made in creating

java.util.function. For example, why no IntComparator,

LongComparator and DoubleComparator? There’s a

BooleanSupplier but no other interfaces where Boolean is

represented. There’s a generic BiConsumer, but no BiConsumers

for all the int, long and double variations (I can sympathize with

why they gave up on that one). Are these oversights or did someone

decide that the usage of the other permutations were too small (and

how did they come to that conclusion)?

You can also see how much complexity the primitive types add to Java.

They were included in the first version of the language because of

efficiency concerns—which were mitigated fairly soon. Now, for the

lifetime of the language, we are stuck with the effects of a poor

language design choice.

Here’s an example that enumerates all the different Function

variants, applied to lambda expressions:

// functional/FunctionVariants.java

import java.util.function.*;



class Foo {}

class Bar {

Foo f;

Bar(Foo f) { this.f = f; }

}

class IBaz {

int i;

IBaz(int i) {

this.i = i;

}

}

class LBaz {

long l;

LBaz(long l) {

this.l = l;

}

}

class DBaz {

double d;

DBaz(double d) {



this.d = d;

}

}

public class FunctionVariants {

static Function<Foo,Bar> f1 = f -> new Bar(f);

static IntFunction<IBaz> f2 = i -> new IBaz(i);

static LongFunction<LBaz> f3 = l -> new LBaz(l);

static DoubleFunction<DBaz> f4 = d -> new DBaz(d);

static ToIntFunction<IBaz> f5 = ib -> ib.i;

static ToLongFunction<LBaz> f6 = lb -> lb.l;

static ToDoubleFunction<DBaz> f7 = db -> db.d;

static IntToLongFunction f8 = i -> i;

static IntToDoubleFunction f9 = i -> i;

static LongToIntFunction f10 = l -> (int)l;

static LongToDoubleFunction f11 = l -> l;

static DoubleToIntFunction f12 = d -> (int)d;

static DoubleToLongFunction f13 = d -> (long)d;

public static void main(String[] args) {

Bar b = f1.apply(new Foo());

IBaz ib = f2.apply(11);



LBaz lb = f3.apply(11);

DBaz db = f4.apply(11);

int i = f5.applyAsInt(ib);

long l = f6.applyAsLong(lb);

double d = f7.applyAsDouble(db);

l = f8.applyAsLong(12);

d = f9.applyAsDouble(12);

i = f10.applyAsInt(12);

d = f11.applyAsDouble(12);

i = f12.applyAsInt(13.0);

l = f13.applyAsLong(13.0);

}

}

These lambda expressions attempt to produce the simplest code that

will fit the signature. In some cases casts were necessary, otherwise the

compiler complains about truncation errors.

Each test in main() shows the different kinds of apply methods in

the Function interfaces. Each one produces a call to its associated

lambda expression.

Method references have their own magic:



// functional/MethodConversion.java

import java.util.function.*;

class In1 {}

class In2 {}

public class MethodConversion {

static void accept(In1 i1, In2 i2) {

System.out.println("accept()");

}

static void someOtherName(In1 i1, In2 i2) {

System.out.println("someOtherName()");

}

public static void main(String[] args) {

BiConsumer<In1,In2> bic;

bic = MethodConversion::accept;

bic.accept(new In1(), new In2());

bic = MethodConversion::someOtherName;

// bic.someOtherName(new In1(), new In2()); // Nope

bic.accept(new In1(), new In2());

}

}



/* Output:

accept()

someOtherName()

*/

Look up the documentation for BiConsumer. You’ll see its functional

method is accept(). Indeed, if we name our method accept(), it

works as a method reference. But we can give it a completely different

name like someOtherName() and it works as well, as long as the

argument types and return type are the same as BiConsumer’s

accept().

Thus, when working with functional interfaces, the name doesn’t

matter—only the argument types and return type. Java performs a

mapping of your name onto the functional method of the interface. To

invoke your method, you call the functional method name

(accept(), in this case), not your method name.

Now we’ll look at all the class-based functionals (that is, those that

don’t involve primitives), applied to method references. Again, I’ve

created the simplest methods that fit the functional signatures:

// functional/ClassFunctionals.java

import java.util.*;



import java.util.function.*;

class AA {}

class BB {}

class CC {}

public class ClassFunctionals {

static AA f1() { return new AA(); }

static int f2(AA aa1, AA aa2) { return 1; }

static void f3(AA aa) {}

static void f4(AA aa, BB bb) {}

static CC f5(AA aa) { return new CC(); }

static CC f6(AA aa, BB bb) { return new CC(); }

static boolean f7(AA aa) { return true; }

static boolean f8(AA aa, BB bb) { return true; }

static AA f9(AA aa) { return new AA(); }

static AA f10(AA aa1, AA aa2) { return new AA(); }

public static void main(String[] args) {

Supplier<AA> s = ClassFunctionals::f1;

s.get();

Comparator<AA> c = ClassFunctionals::f2;

c.compare(new AA(), new AA());



Consumer<AA> cons = ClassFunctionals::f3;

cons.accept(new AA());

BiConsumer<AA,BB> bicons = ClassFunctionals::f4;

bicons.accept(new AA(), new BB());

Function<AA,CC> f = ClassFunctionals::f5;

CC cc = f.apply(new AA());

BiFunction<AA,BB,CC> bif = ClassFunctionals::f6;

cc = bif.apply(new AA(), new BB());

Predicate<AA> p = ClassFunctionals::f7;

boolean result = p.test(new AA());

BiPredicate<AA,BB> bip = ClassFunctionals::f8;

result = bip.test(new AA(), new BB());

UnaryOperator<AA> uo = ClassFunctionals::f9;

AA aa = uo.apply(new AA());

BinaryOperator<AA> bo = ClassFunctionals::f10;

aa = bo.apply(new AA(), new AA());

}

}

Note that each method name is arbitrary (f1(), f2(), etc.), but as

you just saw, once the method reference is assigned to a functional



interface, you can call the functional method associated with that

interface. In this example, these are get(), compare(),

accept(), apply(), and test().

Functional Interfaces with

More Arguments

The interfaces in java.util.functional are limited. There’s a

BiFunction, but it stops there. What if you need an interface for

three-argument functions? Those interfaces are fairly straightforward,

so it’s easy to look at the Java library source code and make our own:

// functional/TriFunction.java

@FunctionalInterface

public interface TriFunction<T, U, V, R> {

R apply(T t, U u, V v);



}

A short test will verify it works:

// functional/TriFunctionTest.java

public class TriFunctionTest {

static int f(int i, long l, double d) { return 99; }

public static void main(String[] args) {

TriFunction<Integer, Long, Double, Integer> tf =

TriFunctionTest::f;

tf = (i, l, d) -> 12;

}

}

We test both a method reference and a lambda expression.

Missing Primitive Functionals

Let’s revisit BiConsumer, to see how we would create the various

missing permutations involving int, long and double:

// functional/BiConsumerPermutations.java

import java.util.function.*;

public class BiConsumerPermutations {

static BiConsumer<Integer, Double> bicid = (i, d) ->

System.out.format("%d, %f%n", i, d);



static BiConsumer<Double, Integer> bicdi = (d, i) ->

System.out.format("%d, %f%n", i, d);

static BiConsumer<Integer, Long> bicil = (i, l) ->

System.out.format("%d, %d%n", i, l);

public static void main(String[] args) {

bicid.accept(47, 11.34);

bicdi.accept(22.45, 92);

bicil.accept(1, 11L);

}

}

/* Output:

47, 11.340000

92, 22.450000

1, 11

*/

For display, I use System.out.format() which is like

System.out.println() except it provides far more display

options. Here, the %f says I’m giving it n as a floating-point value, and

the %d says that n is an integral value. I’m able to include spaces, and

it doesn’t add a newline unless you put in a %n—it will also accept the



traditional \n for newlines, but %n is automatically cross-platform,

which is another reason to use format().

The example simply uses the appropriate wrapper types, and boxing

and unboxing takes care of converting back and forth between

primitives. We can also use wrapped types with, for example,

Function, instead of its predefined primitive variations:

// functional/FunctionWithWrapped.java

import java.util.function.*;

public class FunctionWithWrapped {

public static void main(String[] args) {

Function<Integer, Double> fid = i -> (double)i;

IntToDoubleFunction fid2 = i -> i;

}

}

Without the cast, you get an error message: “Integer cannot be

converted to Double,” whereas the IntToDoubleFunction



version has no such problem. The Java library code for

IntToDoubleFunction looks like this:

@FunctionalInterface

public interface IntToDoubleFunction {

double applyAsDouble(int value);

}

Because we can simply write Function<Integer,Double> and

produce working results, it’s clear that the only reason for the

primitive variants of the functionals is to prevent the autoboxing and

autounboxing involved with passing arguments and returning results.

That is, for performance.

It seems safe to conjecture that the reason some of the functional types

have definitions and others don’t is because of projected frequency of

use.

Of course, if performance actually becomes a problem because of a

missing primitive functional, you can easily write your own

interface(using the Java library sources for reference)—although it

seems unlikely this is your performance bottleneck.

Higher-Order

Functions



This name can sound intimidating, but:

A higher-order function is simply a function that consumes or produces

functions.

Let’s first look at producing a function:

// functional/ProduceFunction.java

import java.util.function.*;

interface

FuncSS extends Function<String, String> {} // [1]

public class ProduceFunction {

static FuncSS produce() {

return s -> s.toLowerCase(); // [2]

}

public static void main(String[] args) {

FuncSS f = produce();

System.out.println(f.apply("YELLING"));

}

}

/* Output:

yelling

*/

https://en.wikipedia.org/wiki/Higher-order_function


Here, produce() is the higher-order function.

[1] Using inheritance, you can easily create an alias for a

specialized interface.

[2] With lambda expressions, it becomes almost effortless to

create and return a function from within a method.

To consume a function, the consuming method must describe the

function type correctly in its argument list:

// functional/ConsumeFunction.java

import java.util.function.*;

class One {}

class Two {}

public class ConsumeFunction {

static Two consume(Function<One,Two> onetwo) {

return onetwo.apply(new One());

}

public static void main(String[] args) {

Two two = consume(one -> new Two());

}

}

Things get particularly interesting when you produce a new function



based on the consumed function:

// functional/TransformFunction.java

import java.util.function.*;

class I {

@Override

public String toString() { return "I"; }

}

class O {

@Override

public String toString() { return "O"; }

}

public class TransformFunction {

static Function<I,O> transform(Function<I,O> in) {

return in.andThen(o -> {

System.out.println(o);

return o;

});

}

public static void main(String[] args) {

Function<I,O> f2 = transform(i -> {



System.out.println(i);

return new O();

});

O o = f2.apply(new I());

}

}

/* Output:

I

O

*/

here, transform() produces a function with the same signature as

the one passed in, but you can produce any kind you’d like.

This uses a default method in the Function interface called

andThen() which is specifically designed for manipulating

functions. As the name implies, andThen() is invoked after the in

function is called (there’s also compose(), which applies the new



function before the in function). To attach an andThen() function,

we simply pass that function as an argument. What comes out of

transform() is a new function, which combines the action of in

with that of the andThen() argument.

Closures

In ProduceFunction.java in the previous section, we returned a

lambda function from a method. That example kept things simple, but

there are some issues we must explore around returning lambdas.

These issues are summarized by the term closure. Closures are

important because they make it easy to produce functions.

Consider a more complex lambda, one that uses variables outside its

function scope. What happens when you return that function? That is,

what does it reference for those “outside” variables when you call the

function? It becomes quite challenging if the language doesn’t

automatically solve this problem. Languages that do solve it are said to

support closures, or to be lexically scoped (the term variable capture is also
used). Java 8 provides limited, but reasonable, closure support,

which we’ll examine using some simple examples.

First, here’s a method to return a function that accesses an object field

and a method argument:

// functional/Closure1.java



import java.util.function.*;

public class Closure1 {

int i;

IntSupplier makeFun(int x) {

return () -> x + i++;

}

}

Upon reflection, however, this use of i isn’t that big of a challenge,

because the object is likely to exist after you call makeFun()—indeed,

the garbage collector almost certainly preserves an object with extant

functions tied back to it this way.5 Of course, if you call makeFun() multiple
times for the same object, you’ll end up with several functions

all sharing the same storage for i:

// functional/SharedStorage.java

import java.util.function.*;

public class SharedStorage {

public static void main(String[] args) {

Closure1 c1 = new Closure1();

IntSupplier f1 = c1.makeFun(0);

IntSupplier f2 = c1.makeFun(0);

IntSupplier f3 = c1.makeFun(0);



System.out.println(f1.getAsInt());

System.out.println(f2.getAsInt());

System.out.println(f3.getAsInt());

}

}

/* Output:

0

1

2

*/

Every call to getAsInt() increments i, demonstrating that the

storage is shared.

What if i is local to makeFun()? Under normal circumstances, i is

gone when makeFun() completes. It still compiles, however:

// functional/Closure2.java

import java.util.function.*;

public class Closure2 {

IntSupplier makeFun(int x) {

int i = 0;

return () -> x + i;



}

}

The IntSupplier returned by makeFun() “closes over” i and x,

thus both are still valid when you invoke the returned function. Notice,

however, I didn’t increment i as in Closure1.java. Trying to

increment it produces a compile-time error:

// functional/Closure3.java

// {WillNotCompile}

import java.util.function.*;

public class Closure3 {

IntSupplier makeFun(int x) {

int i = 0;

// Neither x++ nor i++ will work:

return () -> x++ + i++;

}

}

The error, repeated for both x and i, is:

local variables referenced from a lambda

expression must be final or effectively final

Clearly, if we make x and i final it will work, because then we can’t
increment either one:



// functional/Closure4.java

import java.util.function.*;

public class Closure4 {

IntSupplier makeFun(final int x) {

final int i = 0;

return () -> x + i;

}

}

But why did Closure2.java work when x and i were not final?

This is where the meaning of “effectively” final appears. The term

was created for Java 8 to say you haven’t explicitly declared a variable

to be final but you’re still treating it that way—you aren’t changing

it. A local variable is effectively final if its initial value is never

changed.

If x and i are changed elsewhere in the method (but not inside of the

returned function), the compiler still considers it an error. Each

increment produces a separate error message:

// functional/Closure5.java

// {WillNotCompile}

import java.util.function.*;



public class Closure5 {

IntSupplier makeFun(int x) {

int i = 0;

i++;

x++;

return () -> x + i;

}

}

To be “effectively final” means you could apply the final keyword to

the variable declaration without changing any of the rest of the code.

It’s actually final, you just haven’t bothered to say so.

We can actually fix the issue in Closure5.java by assigning x and

i to final variables before using them in the closure:

// functional/Closure6.java

import java.util.function.*;

public class Closure6 {

IntSupplier makeFun(int x) {

int i = 0;

i++;

x++;



final int iFinal = i;

final int xFinal = x;

return () -> xFinal + iFinal;

}

}

Since we never change iFinal and xFinal after assignment, the

use of final here is redundant.

What if you’re using references? We can change from int to

Integer:

// functional/Closure7.java

// {WillNotCompile}

import java.util.function.*;

public class Closure7 {

IntSupplier makeFun(int x) {

Integer i = 0;

i = i + 1;

return () -> x + i;

}

}

The compiler is still smart enough to see that i is being changed. The



wrapper types might be getting special treatment, so let’s try a List:

// functional/Closure8.java

import java.util.*;

import java.util.function.*;

public class Closure8 {

Supplier<List<Integer>> makeFun() {

final List<Integer> ai = new ArrayList<>();

ai.add(1);

return () -> ai;

}

public static void main(String[] args) {

Closure8 c7 = new Closure8();

List<Integer>

l1 = c7.makeFun().get(),

l2 = c7.makeFun().get();

System.out.println(l1);

System.out.println(l2);

l1.add(42);

l2.add(96);

System.out.println(l1);



System.out.println(l2);

}

}

/* Output:

[1]

[1]

[1, 42]

[1, 96]

*/

This time it works: we modify the contents of the List without

producing a compile-time error. When you look at the output from

this example, it does seem pretty safe, because each time makeFun()

is called, a brand new ArrayList is created and returned—which

means it is not shared, so each generated closure has its own separate

ArrayList and they can’t interfere with each other.

And notice I’ve declared ai to be final, although for this example

you can take final off and get the same results (try it!). The final

keyword applied to object references only says that the reference

doesn’t get reassigned. It doesn’t say you can’t modify the object itself.

Looking at the difference between Closure7.java and



Closure8.java, we see that Closure7.java actually has a

reassignment of i. Maybe that’s the trigger for the “effectively final”

error message:

// functional/Closure9.java

// {WillNotCompile}

import java.util.*;

import java.util.function.*;

public class Closure9 {

Supplier<List<Integer>> makeFun() {

List<Integer> ai = new ArrayList<>();

ai = new ArrayList<>(); // Reassignment

return () -> ai;

}

}

The reassignment does indeed trigger the message. If you only modify

the object that’s pointed to, Java accepts it. And that’s probably safe as

long as no one else ever gets the reference to that object (that would

mean you have more than one entity that can modify the object, at

which point things can get very confusing).6

There’s a conundrum, however, if we now look back at



Closure1.java. i is modified without compiler complaints. It is

neither final nor “effectively final.” Because i is a member of the

surrounding class, it’s certainly safe to do this (other than the fact you

are creating multiple functions that share mutable memory). Indeed,

you can argue that no variable capture occurs in that case. And to be

sure, the error message for Closure3.java specifically refers to

local variables. Thus, the rule isn’t as simple as saying “any variable

defined outside the lambda must be final or effectively final.” Instead,

you must think in terms of captured variables being effectively final. If

it’s a field in an object, it has an independent lifetime and doesn’t need

any special capturing in order to exist later, when the lambda is called.

Inner Classes as Closures

We can duplicate our example using an anonymous inner class:



// functional/AnonymousClosure.java

import java.util.function.*;

public class AnonymousClosure {

IntSupplier makeFun(int x) {

int i = 0;

// Same rules apply:

// i++; // Not "effectively final"

// x++; // Ditto

return new IntSupplier() {

public int getAsInt() { return x + i; }

};

}

}

It turns out that as long as there have been inner classes, there have

been closures (Java 8 just makes closures easier). Prior to Java 8, the

requirement was that x and i be explicitly declared final. With Java

8, the rule for inner classes has been relaxed to include “effectively

final.”

Function Composition

Function composition basically means “pasting functions together to create
new functions,” and it’s commonly considered a part of



functional programming. You saw one example of function

composition in TransformFunction.java with the use of

andThen(). Some of the java.util.function interfaces

contain methods to support function composition.7

Compositional

Supporting

Method

Interfaces

Function

BiFunction

Consumer

BiConsumer

IntConsumer

andThen(argument)

Performs the original

LongConsumer

operation followed by

DoubleConsumer

the argument operation.

UnaryOperator



IntUnaryOperator

LongUnaryOperator

DoubleUnaryOperator

BinaryOperator

Function

compose(argument)

UnaryOperator

Performs the argument

IntUnaryOperator

operation followed by

the original operation.

LongUnaryOperator

DoubleUnaryOperator

Predicate

and(argument)

BiPredicate

Short-circuiting logical

IntPredicate

AND of the original

predicate and the



LongPredicate

argument predicate.

DoublePredicate

Predicate

or(argument)

BiPredicate

Short-circuiting logical

OR of the original

IntPredicate

predicate and the

LongPredicate

argument predicate.

DoublePredicate

Predicate

negate()

BiPredicate

A predicate that is the

IntPredicate

logical negation of this

predicate.



LongPredicate

DoublePredicate

This example uses both compose() and andThen() from

Function:

// functional/FunctionComposition.java

import java.util.function.*;

public class FunctionComposition {

static Function<String, String>

f1 = s -> {

System.out.println(s);

return s.replace('A', '_');

},

f2 = s -> s.substring(3),

f3 = s -> s.toLowerCase(),

f4 = f1.compose(f2).andThen(f3);

public static void main(String[] args) {

System.out.println(

f4.apply("GO AFTER ALL AMBULANCES"));

}

}



/* Output:

AFTER ALL AMBULANCES

_fter _ll _mbul_nces

*/

The important thing to see here is that we are creating a new function

f4, which can then be called using apply() (almost) like any other

function. 8

By the time f1 gets the String, it’s already had the first three

characters stripped off by f2. That’s because the call to

compose(f2) means f2 gets called before f1.

Here’s a demonstration of the logical operations for Predicate:

// functional/PredicateComposition.java

import java.util.function.*;

import java.util.stream.*;

public class PredicateComposition {

static Predicate<String>

p1 = s -> s.contains("bar"),

p2 = s -> s.length() < 5,

p3 = s -> s.contains("foo"),

p4 = p1.negate().and(p2).or(p3);



public static void main(String[] args) {

Stream.of("bar", "foobar", "foobaz", "fongopuckey")

.filter(p4)

.forEach(System.out::println);

}

}

/* Output:

foobar

foobaz

*/

p4 takes all the predicates and combines them into a more complex

predicate, which reads: “If the String does NOT contain ‘bar’ AND

the length is less than 5, OR it contains ‘foo’, the result is true.”

Because it produces such clear syntax, I’ve cheated a bit in main()

and borrowed from the next chapter. First I create a “stream” (a

sequence) of String objects, then feed each one to the filter()



operation. filter() uses our p4 predicate to decide which object in

the stream to keep, and which to throw away. Finally, I use

forEach() to apply the println method reference to each of the

surviving objects.

You can see from the output how p4 works: anything with a “foo”

survives, even if its length is greater than five. “fongopuckey” is too

long and doesn’t have a “bar” to save it.

Currying and Partial

Evaluation

Currying is named after Haskell Curry, one of its inventors and possibly the
only computer person to have an important thing named

after each of his names (the other is the Haskell programming

language). Currying means starting with a function that takes multiple

arguments and turning it into a sequence of functions, each of which

only takes a single argument.

// functional/CurryingAndPartials.java

import java.util.function.*;

public class CurryingAndPartials {

// Uncurried:

static String uncurried(String a, String b) {

return a + b;

https://en.wikipedia.org/wiki/Currying


}

public static void main(String[] args) {

// Curried function:

Function<String, Function<String, String>> sum =

a -> b -> a + b; // [1]

System.out.println(uncurried("Hi ", "Ho"));

Function<String, String>

hi = sum.apply("Hi "); // [2]

System.out.println(hi.apply("Ho"));

// Partial application:

Function<String, String> sumHi =

sum.apply("Hup ");

System.out.println(sumHi.apply("Ho"));

System.out.println(sumHi.apply("Hey"));

}

}

/* Output:

Hi Ho

Hi Ho

Hup Ho



Hup Hey

*/

[1] This is the tricky line: a cascade of arrows. And notice how, in

the function interface declaration, Function has another

Function as its second argument.

[2] The goal of currying is to be able to create a new function by

providing a single argument, so you now have an “argumented

function” and the remaining “free argument.” In effect, you start

with a two-argument function and end up with a one-argument

function.

You can curry a three-argument function by adding another level:

// functional/Curry3Args.java

import java.util.function.*;

public class Curry3Args {

public static void main(String[] args) {

Function<String,

Function<String,

Function<String, String>>> sum =

a -> b -> c -> a + b + c;

Function<String,



Function<String, String>> hi =

sum.apply("Hi ");

Function<String, String> ho =

hi.apply("Ho ");

System.out.println(ho.apply("Hup"));

}

}

/* Output:

Hi Ho Hup

*/

For each level of arrow-cascading, you wrap another Function

around the type declaration.

When dealing with primitives and boxing, use the appropriate

functional interfaces:

// functional/CurriedIntAdd.java

import java.util.function.*;

public class CurriedIntAdd {

public static void main(String[] args) {

IntFunction<IntUnaryOperator>

curriedIntAdd = a -> b -> a + b;



IntUnaryOperator add4 = curriedIntAdd.apply(4);

System.out.println(add4.applyAsInt(5));

}

}

/* Output:

9

*/

You can find more examples of currying on the Internet. Usually these

are in languages other than Java, but if you understand the basic

concepts they should be fairly easy to translate.

Pure Functional

Programming



It’s possible, with much discipline, to write pure functional programs

in languages without functional support, even in a language as

primitive as C. Java makes it easier than that, but you must carefully

make everything final and ensure that all your methods and

functions have no side effects. Because Java is by nature not an

immutable language, you don’t get any help from the compiler if you

make a mistake.

There are third-party tools to help you9, but it’s arguably easier to use a
language like Scala or Clojure, designed from the start for

immutability. These languages make it possible to have part of your

project in Java, and if you must write in a pure functional style, other

parts in Scala (which requires some discipline) or Clojure (which

requires much less). Although you’ll see in the Concurrent

Programming chapter that Java does support parallelism, if that is a core part
of your project you might consider using something like

Scala or Clojure for at least part of the project.

Summary

Lambda expressions and method references do not turn Java into a

functional language, but rather provide support for programming in a

more functional style. They are a huge improvement to Java because

they allow you to write more succinct, cleaner, and easier-to-



understand code. In the following chapter you’ll see how they enable

streams. If you’re like me, you’ll love streams.

These features are likely to satisfy a large portion of Java programmers

who have become antsy and jealous about new, more functional

languages like Clojure and Scala, and stem the flow of Java

programmers to those languages (or at least prepare them better if

they still decide to move).

Lambdas and method references are far from perfect, however—we

forever pay the price of the rash decisions made by the Java designers

in the heady, early days of the language. In particular, there is no

generic lambda, so lambdas really aren’t first class citizens in Java.

This doesn’t mean Java 8 isn’t a big improvement, but it does mean

that, like many Java features, you eventually reach a point where you

start getting frustrated.

As you come up the learning curve, remember you can get help from

IDEs like NetBeans, IntelliJ Idea, and Eclipse, which will suggest when

you can use a lambda expression or method reference (and often

rewrite the code for you!).

1. Pasting functionality together is a rather different approach, but it

still enables a kind of library.↩



2. For example, this eBook was produced using Pandoc, a program written in
the pure functional language Haskell↩

3. Sometimes functional languages describe this as “code as data.” ↩

4. This syntax came from C++. ↩

5. I have not tested this statement. ↩

6. This will make additional sense in the Concurrent Programming

chapter, when you’ll understand that mutating shared variables is

“not thread-safe.” ↩

7. The reason interfaces can support methods is that they are Java 8

default methods, which you’ll learn about in the next chapter. ↩

8. Some languages, Python for example, allow composed functions

to be called exactly like any other function. But this is Java, so we

take what we can get. ↩

9. See, for example, Immutables and Mutability Detector.↩

Streams

Collections optimize the storage of

objects. Streams are about processing

groups of objects.

A stream is a sequence of elements that is not associated with any

http://pandoc.org/
https://www.haskell.org/
http://immutables.github.io/
http://mutabilitydetector.github.io/MutabilityDetector/


particular storage mechanism—indeed, we say that streams have “no

storage.”

Instead of iterating through elements in a collection, with a stream you

draw elements from a pipe and operate on them. These pipes are

typically strung together to form a pipeline of operations upon the

stream.

Most of the time, the reason you store objects in a collection is to

process them, so you’ll find yourself moving away from collections as

the primary focus of your programming, and towards streams.

One of the core benefits of streams is that they make your programs

smaller and easier to understand. Lambda expressions and method

references come into their own when used with streams. Streams

make Java 8 particularly attractive.1

For example, suppose you want to display a random selection of

unique ints between 5 and 20, sorted. The fact that you’re sorting

them might make you focus first on choosing a sorted collection, and

work around that. But with streams, you simply state what you want

done:

// streams/Randoms.java

import java.util.*;



public class Randoms {

public static void main(String[] args) {

new Random(47)

.ints(5, 20)

.distinct()

.limit(7)

.sorted()

.forEach(System.out::println);

}

}

/* Output:

6

10

13

16

17

18

19

*/

We start by seeding the Random object (to produce identical output



when the program runs). The ints() method produces a stream and

is overloaded in a number of ways—two arguments set the bounds of

the values produced. This produces a stream of random ints. We tell

it to make them unique using the intermediate stream operation

distinct(), then choose the first seven using limit(). Then we

tell it we want the elements to be sorted(). Finally, we’d like to

display each item so we use forEach(), which performs an

operation on each stream object, according to the function we pass it.

Here, we pass a method reference System.out::println which

it uses to show each item on the console.

Note that Randoms.java declares no variables. Streams can model

systems that have state without ever using assignment or mutable

data, and this can be very helpful.

Declarative programming is a style where we state what we want

done, rather than specifying how, and it’s what you see in functional

programming. Notice it’s much more difficult to understand the

imperative form:

// streams/ImperativeRandoms.java

import java.util.*;

public class ImperativeRandoms {



public static void main(String[] args) {

Random rand = new Random(47);

SortedSet<Integer> rints = new TreeSet<>();

while(rints.size() < 7) {

int r = rand.nextInt(20);

if(r < 5) continue;

rints.add(r);

}

System.out.println(rints);

}

}

/* Output:

[7, 8, 9, 11, 13, 15, 18]

*/

In Randoms.java, we didn’t have to define any variables at all, but

here we have three: rand, rints and r. The code is further

complicated by the fact that nextInt() has no option for a lower

bound—its built-in lower bound is always zero, so we must generate

extra values and filter out the ones that are less than five.

Notice how you must study the code to figure out what’s going on,



whereas in Randoms.java, the code just tells you what it’s doing.

This clarity is one of the most compelling reasons for using Java 8

streams.

Explicitly writing the mechanics of iteration as in

ImperativeRandoms.java is called external iteration. In

Randoms, you don’t see any of these mechanisms and so it is called

internal iteration, a core characteristic of streams programming.

Internal iteration produces more readable code, but it also makes it

easier to use multiple processors: By loosening control of how

iteration happens, you can hand that control over to a parallelizing

mechanism. You’ll learn about this in the Concurrent Programming

chapter.

Another important aspect of streams is that they are lazy, which

means they are only evaluated when absolutely necessary. You can

think of a stream as a “delayed list.” Because of delayed evaluation,

streams enable us to represent very large (even infinite) sequences



without memory concerns.

Java 8 Stream Support

The Java designers faced a conundrum. They had an existing set of

libraries, used not only within the Java libraries themselves, but in

millions of lines of code written by users. How would they integrate

the new, fundamental concept of streams into existing libraries?

In simple cases like Random, they could just add more methods. As

long as the existing methods were not changed, legacy code would not

get disturbed.

The big challenge came from libraries that used interfaces. Collection

classes are an essential part of this, because you want to convert

collections into streams. But if you add a new method to an interface,

you break every class that implements your interface but doesn’t

implement your new method.

The solution, introduced in Java 8, is default methods in interfaces,

which were covered in the Interfaces chapter. With default methods, the Java



designers could shoehorn stream methods into

existing classes, and they added virtually every operation you might

need. There are three types of operations: creating streams, modifying

elements of a stream ( intermediate operations), and consuming

stream elements ( terminal operations). This last type often means

collecting elements of a stream (typically into a collection).

We’ll look at each type of operation.

Stream Creation

You can easily turn a group of items into a stream using

Stream.of() (Bubble is defined later in the chapter):

// streams/StreamOf.java

import java.util.stream.*;

public class StreamOf {

public static void main(String[] args) {

Stream.of(

new Bubble(1), new Bubble(2), new Bubble(3))

.forEach(System.out::println);

Stream.of("It's ", "a ", "wonderful ",

"day ", "for ", "pie!")

.forEach(System.out::print);



System.out.println();

Stream.of(3.14159, 2.718, 1.618)

.forEach(System.out::println);

}

}

/* Output:

Bubble(1)

Bubble(2)

Bubble(3)

It's a wonderful day for pie!

3.14159

2.718

1.618

*/

In addition, every Collection can produce a stream using the

stream() method:

// streams/CollectionToStream.java

import java.util.*;

import java.util.stream.*;

public class CollectionToStream {



public static void main(String[] args) {

List<Bubble> bubbles = Arrays.asList(

new Bubble(1), new Bubble(2), new Bubble(3));

System.out.println(

bubbles.stream()

.mapToInt(b -> b.i)

.sum());

Set<String> w = new HashSet<>(Arrays.asList(

"It's a wonderful day for pie!".split(" ")));

w.stream()

.map(x -> x + " ")

.forEach(System.out::print);

System.out.println();

Map<String, Double> m = new HashMap<>();

m.put("pi", 3.14159);

m.put("e", 2.718);

m.put("phi", 1.618);

m.entrySet().stream()

.map(e -> e.getKey() + ": " + e.getValue())

.forEach(System.out::println);



}

}

/* Output:

6

a pie! It's for wonderful day

phi: 1.618

e: 2.718

pi: 3.14159

*/

After creating a List<Bubble> , we simply ask it for a stream(),

the common method for all collections. The intermediate map()

operation takes each element in a stream and applies an operation to

create a new element, which it then passes on down the stream. The

normal map() takes objects and produces objects, but there are

special versions when the output stream holds a numeric type. Here,

mapToInt() converts from an object stream to an IntStream

containing Integers. There are similarly-named operations for



Float and Double.

To define w we take a String and apply the split() function,

which splits the String according to its argument. You’ll see later

that this argument can be quite sophisticated, but here we are just

telling it to split at spaces.

To produce a stream from a Map collection, we first call entrySet()

to produce a stream of objects that each contains both a key and its

associated value, then pull that apart using getKey() and

getValue().

Random Number Streams

The Random class has been enhanced with a set of methods to

produce streams:

// streams/RandomGenerators.java

import java.util.*;

import java.util.stream.*;

public class RandomGenerators {

public static <T> void show(Stream<T> stream) {

stream

.limit(4)

.forEach(System.out::println);



System.out.println("++++++++");

}

public static void main(String[] args) {

Random rand = new Random(47);

show(rand.ints().boxed());

show(rand.longs().boxed());

show(rand.doubles().boxed());

// Control the lower and upper bounds:

show(rand.ints(10, 20).boxed());

show(rand.longs(50, 100).boxed());

show(rand.doubles(20, 30).boxed());

// Control the stream size:

show(rand.ints(2).boxed());

show(rand.longs(2).boxed());

show(rand.doubles(2).boxed());

// Control the stream size and bounds:

show(rand.ints(3, 3, 9).boxed());

show(rand.longs(3, 12, 22).boxed());

show(rand.doubles(3, 11.5, 12.3).boxed());

}



}

/* Output:

-1172028779

1717241110

-2014573909

229403722

++++++++

2955289354441303771

3476817843704654257

-8917117694134521474

4941259272818818752

++++++++

0.2613610344283964

0.0508673570556899

0.8037155449603999

0.7620665811558285

++++++++

16

10

11



12

++++++++

65

99

54

58

++++++++

29.86777681078574

24.83968447804611

20.09247112332014

24.046793846338723

++++++++

1169976606

1947946283

++++++++

2970202997824602425

-2325326920272830366

++++++++

0.7024254510631527

0.6648552384607359



++++++++

6

7

7

++++++++

17

12

20

++++++++

12.27872414236691

11.732085449736195

12.196509449817267

++++++++

*/

To eliminate redundant code, I created the generic method

show(Stream<T> stream) (I’m cheating a bit here by using the

generics feature before its chapter, but the payoff is worth it). The T

type parameter can be anything, so it works with Integer, Long and

Double. However, the Random class only produces the primitive

types int, long and double. Fortunately, the boxed() stream



operation automatically converts the primitives to their boxed

counterparts, thus enabling show() to accept the stream.

We can use Random to create a Supplier for any set of objects.

Here’s an example that supplies String objects, taken from this text

file:

// streams/Cheese.dat

Not much of a cheese shop really, is it?

Finest in the district, sir.

And what leads you to that conclusion?

Well, it's so clean.

It's certainly uncontaminated by cheese.

We use the Files class to read all the lines from a file into a

List<String> :

// streams/RandomWords.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

import java.io.*;

import java.nio.file.*;

public class RandomWords implements Supplier<String> {



List<String> words = new ArrayList<>();

Random rand = new Random(47);

RandomWords(String fname) throws IOException {

List<String> lines =

Files.readAllLines(Paths.get(fname));

// Skip the first line:

for(String line : lines.subList(1, lines.size())) {

for(String word : line.split("[ .?,]+"))

words.add(word.toLowerCase());

}

}

public String get() {

return words.get(rand.nextInt(words.size()));

}

@Override

public String toString() {

return words.stream()

.collect(Collectors.joining(" "));

}

public static void



main(String[] args) throws Exception {

System.out.println(

Stream.generate(new RandomWords("Cheese.dat"))

.limit(10)

.collect(Collectors.joining(" ")));

}

}

/* Output:

it shop sir the much cheese by conclusion district is

*/

Here you see a slightly more sophisticated use of split(). In the

constructor, each line is split() on either a space or any of the

punctuation characters defined within the square brackets. The + after

the closing square bracket indicates “the previous thing, one or more

times.”

You’ll note that the constructor uses imperative programming

(external iteration) for its loops. In future examples you’ll see how we

eliminate even this. The older forms are not particularly bad, but it

often just feels nicer to use streams everywhere.

In toString() and main() you see the collect() operation,



which combines all the stream elements according to its argument.

When you use Collectors.joining(), you get a String result,

with each element separated by the argument to joining(). There

are numerous other Collectors to produce different results.

In main(), we see a preview of Stream.generate(), which takes

any Supplier<T> and produces a stream of T objects.

Ranges of int

The IntStream class provides a range() method to produce a

stream that is a sequence of ints. This can be convenient when

writing loops:

// streams/Ranges.java

import static java.util.stream.IntStream.*;

public class Ranges {

public static void main(String[] args) {

// The traditional way:

int result = 0;

for(int i = 10; i < 20; i++)



result += i;

System.out.println(result);

// for-in with a range:

result = 0;

for(int i : range(10, 20).toArray())

result += i;

System.out.println(result);

// Use streams:

System.out.println(range(10, 20).sum());

}

}

/* Output:

145

145

145

*/

The first approach shown in main() is the traditional way of writing

a for loop. In the second approach, we create a range() and turn it

into an array which then works in a for-in statement. If you’re able,

however, it’s always nice to go full-streams as in the third approach. In



each case, we sum the integers in the range, and, conveniently, there’s

a sum() operation for streams.

Note that IntStream.range() is more limited than

onjava.Range.range(). Because of its optional third step

argument, the latter has the ability to generate ranges that step by

more than one, and that can count down from a higher value to a

lower one.

To replace simple for loops, here’s a repeat() utility:

// onjava/Repeat.java

package onjava;

import static java.util.stream.IntStream.*;

public class Repeat {

public static void repeat(int n, Runnable action) {

range(0, n).forEach(i -> action.run());

}

}

The resulting loops are arguably cleaner:

// streams/Looping.java

import static onjava.Repeat.*;

public class Looping {



static void hi() { System.out.println("Hi!"); }

public static void main(String[] args) {

repeat(3, () -> System.out.println("Looping!"));

repeat(2, Looping::hi);

}

}

/* Output:

Looping!

Looping!

Looping!

Hi!

Hi!

*/

It might not be worth it, however, to include and explain repeat()

in your code. It seems like a reasonably transparent tool, but it

depends on how your team and company works.

generate()



RandomWords.java used Supplier<T> with

Stream.generate(). Here’s a second example:

// streams/Generator.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class Generator implements Supplier<String> {

Random rand = new Random(47);

char[] letters =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();

public String get() {

return "" + letters[rand.nextInt(letters.length)];

}

public static void main(String[] args) {

String word = Stream.generate(new Generator())

.limit(30)

.collect(Collectors.joining());

System.out.println(word);

}

}



/* Output:

YNZBRNYGCFOWZNTCQRGSEGZMMJMROE

*/

The uppercase letters of the alphabet are selected using

Random.nextInt(). The argument tells it the largest acceptable

random number, so the array bounds are respected.

If you want to create a stream of identical objects, simply pass a

lambda that produces those objects to generate():

// streams/Duplicator.java

import java.util.stream.*;

public class Duplicator {

public static void main(String[] args) {

Stream.generate(() -> "duplicate")

.limit(3)

.forEach(System.out::println);

}

}

/* Output:

duplicate

duplicate



duplicate

*/

Here’s the Bubble class used in earlier examples in this chapter. Note

it contains its own static generator method:

// streams/Bubble.java

import java.util.function.*;

public class Bubble {

public final int i;

public Bubble(int n) { i = n; }

@Override

public String toString() {

return "Bubble(" + i + ")";

}

private static int count = 0;

public static Bubble bubbler() {

return new Bubble(count++);

}



}

Because bubbler() is interface-compatible with

Supplier<Bubble> , we can pass its method reference to

Stream.generate():

// streams/Bubbles.java

import java.util.stream.*;

public class Bubbles {

public static void main(String[] args) {

Stream.generate(Bubble::bubbler)

.limit(5)

.forEach(System.out::println);

}

}

/* Output:

Bubble(0)

Bubble(1)

Bubble(2)

Bubble(3)

Bubble(4)

*/



This is an alternative approach to creating a separate factory class. In

many ways it’s neater, but it’s a matter of taste and code organization

—you can always just create a completely different factory class.

iterate()

Stream.iterate() starts with a seed (the first argument) and

passes it to the method (the second argument). The result is added to

the stream and also stored for use as the first argument the next time

iterate() is called, and so on. We can iterate() a Fibonacci

sequence (which you first encountered in the last chapter):

// streams/Fibonacci.java

import java.util.stream.*;

public class Fibonacci {

int x = 1;

Stream<Integer> numbers() {

return Stream.iterate(0, i -> {

int result = x + i;

x = i;

return result;

});

}



public static void main(String[] args) {

new Fibonacci().numbers()

.skip(20) // Don't use the first 20

.limit(10) // Then take 10 of them

.forEach(System.out::println);

}

}

/* Output:

6765

10946

17711

28657

46368

75025

121393

196418

317811

514229

*/

The Fibonacci sequence sums the last two elements in the sequence to



produce the next one. iterate() only remembers the result, so we

must use x to keep track of the other element.

In main(), we use the skip() operation, which you haven’t seen

before. It simply discards the number of stream elements specified by

its argument. Here, we throw away the first 20 items.

Stream Builders

In the Builder design pattern, you create a builder object, give it

multiple pieces of construction information, and finally perform the

“build” act. The Stream library provides such a Builder. Here, we

revisit the process of reading a file and turning it into a stream of

words:

// streams/FileToWordsBuilder.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

public class FileToWordsBuilder {

Stream.Builder<String> builder = Stream.builder();



public FileToWordsBuilder(String filePath)

throws Exception {

Files.lines(Paths.get(filePath))

.skip(1) // Skip the comment line at the beginning

.forEach(line -> {

for(String w : line.split("[ .?,]+"))

builder.add(w);

});

}

Stream<String> stream() { return builder.build(); }

public static void

main(String[] args) throws Exception {

new FileToWordsBuilder("Cheese.dat").stream()

.limit(7)

.map(w -> w + " ")

.forEach(System.out::print);

}

}

/* Output:



Not much of a cheese shop really

*/

Notice that the constructor adds all the words from the file (except the

first line, which is the comment containing the file path information),

but it doesn’t call build(). This means, as long as you don’t call

stream(), you can continue to add words to the builder object. In

a more complete version of this class, you might add a flag to see

whether build() has been called, and a method to add further

words if possible. Trying to add to a Stream.Builder after calling

build() produces an exception.

Arrays

The Arrays class contains static methods named stream() that

convert arrays to streams. We can rewrite main() from

interfaces/Machine.java to create a stream and apply

execute() to each element:

// streams/Machine2.java

import java.util.*;



import onjava.Operations;

public class Machine2 {

public static void main(String[] args) {

Arrays.stream(new Operations[] {

() -> Operations.show("Bing"),

() -> Operations.show("Crack"),

() -> Operations.show("Twist"),

() -> Operations.show("Pop")

}).forEach(Operations::execute);

}

}

/* Output:

Bing

Crack

Twist

Pop

*/

The new Operations[] expression dynamically creates a typed

array of Operations objects.

The stream() methods can also produce an IntStream,



LongStream and DoubleStream:

// streams/ArrayStreams.java

import java.util.*;

import java.util.stream.*;

public class ArrayStreams {

public static void main(String[] args) {

Arrays.stream(

new double[] { 3.14159, 2.718, 1.618 })

.forEach(n -> System.out.format("%f ", n));

System.out.println();

Arrays.stream(new int[] { 1, 3, 5 })

.forEach(n -> System.out.format("%d ", n));

System.out.println();

Arrays.stream(new long[] { 11, 22, 44, 66 })

.forEach(n -> System.out.format("%d ", n));

System.out.println();

// Select a subrange:

Arrays.stream(

new int[] { 1, 3, 5, 7, 15, 28, 37 }, 3, 6)

.forEach(n -> System.out.format("%d ", n));



}

}

/* Output:

3.141590 2.718000 1.618000

1 3 5

11 22 44 66

7 15 28

*/

The last call to stream() has two additional arguments: the first

tells stream() where to start selecting elements from the array, and

the second tells it where to stop. Each different type of stream()

method also has this version.

Regular Expressions

Java’s regular expressions are covered in the Strings chapter. Java 8

added a new method splitAsStream() to the

java.util.regex.Pattern class, which takes a sequence of

characters and splits it into a stream, according to the formula you



hand it. There’s a constraint, which is that the input is a

CharSequence, so you cannot feed a stream into

splitAsStream().

We’ll look again at the process of turning a file into words. This time,

we use streams to turn the file into a single String, then regular

expressions to split the String into a stream of words:

// streams/FileToWordsRegexp.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

import java.util.regex.Pattern;

public class FileToWordsRegexp {

private String all;

public FileToWordsRegexp(String filePath)

throws Exception {

all = Files.lines(Paths.get(filePath))

.skip(1) // First (comment) line

.collect(Collectors.joining(" "));

}

public Stream<String> stream() {



return Pattern

.compile("[ .,?]+").splitAsStream(all);

}

public static void

main(String[] args) throws Exception {

FileToWordsRegexp fw =

new FileToWordsRegexp("Cheese.dat");

fw.stream()

.limit(7)

.map(w -> w + " ")

.forEach(System.out::print);

fw.stream()

.skip(7)

.limit(2)

.map(w -> w + " ")

.forEach(System.out::print);

}

}

/* Output:

Not much of a cheese shop really is it



*/

The constructor reads all the lines in the file (again, skipping the first

comment line) and turns them into a single String). Now, when you

call stream(), you get a stream as before, but this time you can

come back and call stream() multiple times, creating a new stream

from the stored String each time. The limit here is that the whole

file must be stored in memory; most of the time that probably won’t be

an issue but it loses important benefits of streams:

1. They “don’t require storage.” Of course they actually require some

internal storage, but it’s only a fraction of the sequence, and

nothing like what it takes to hold the entire sequence.

2. They are lazily evaluated.

Fortunately, we’ll see how to solve this problem a bit later.



Intermediate

Operations

These operations take objects in from one stream and feed objects out

the back end as another stream, to be connected to other operations.

Tracing and Debugging

The peek() operation is intended as an aid to debugging. It allows

you to view stream objects without modifying them:

// streams/Peeking.java

class Peeking {

public static void

main(String[] args) throws Exception {

FileToWords.stream("Cheese.dat")

.skip(21)

.limit(4)

.map(w -> w + " ")

.peek(System.out::print)

.map(String::toUpperCase)

.peek(System.out::print)

.map(String::toLowerCase)

.forEach(System.out::print);



}

}

/* Output:

Well WELL well it IT it s S s so SO so

*/

FileToWords is defined shortly, but it acts like the versions we’ve

seen already: producing a stream of String objects. We peek() at

them as they travel through the pipeline.

Because peek() takes a function that conforms to the Consumer

functional interface, which has no return value, it’s not possible to

replace the objects in the stream with different ones. You can only look

at them.

Sorting Stream Elements



You saw the use of sorted() with the default comparison in

Randoms.java. There’s a second form of sorted() that takes a

Comparator argument:

// streams/SortedComparator.java

import java.util.*;

public class SortedComparator {

public static void

main(String[] args) throws Exception {

FileToWords.stream("Cheese.dat")

.skip(10)

.limit(10)

.sorted(Comparator.reverseOrder())

.map(w -> w + " ")

.forEach(System.out::print);

}

}

/* Output:

you what to the that sir leads in district And



*/

You can pass in a lambda function as the argument for sorted(),

but there are also pre-defined Comparators—here we use one that

reverses the “natural order.”

Removing Elements

distinct(): In Randoms.java, distinct() removed

duplicates from the stream. Using distinct() is far less work

than creating a Set to eliminate duplicates.

filter(Predicate): The filter operation keeps only the

elements that produce true when passed to the argument: the

filter function.

In this example, the filter function isPrime() detects prime

numbers:

// streams/Prime.java

import java.util.stream.*;

import static java.util.stream.LongStream.*;

public class Prime {

public static boolean isPrime(long n) {

return rangeClosed(2, (long)Math.sqrt(n))

.noneMatch(i -> n % i == 0);



}

public LongStream numbers() {

return iterate(2, i -> i + 1)

.filter(Prime::isPrime);

}

public static void main(String[] args) {

new Prime().numbers()

.limit(10)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

new Prime().numbers()

.skip(90)

.limit(10)

.forEach(n -> System.out.format("%d ", n));

}

}

/* Output:

2 3 5 7 11 13 17 19 23 29

467 479 487 491 499 503 509 521 523 541

*/



rangeClosed() includes the top boundary value. The

noneMatch() operation returns true if no modulus produces zero,

and false if any equal zero. noneMatch() quits after the first

failure rather than trying them all.

Applying a function to every

element

map(Function): Applies Function to every object in the

input stream, passing on the result values as the output stream.

mapToInt(ToIntFunction): As above, but results in an

IntStream.

mapToLong(ToLongFunction): As above, but results in a

LongStream.

mapToDouble(ToDoubleFunction): As above, but results

in a DoubleStream.

Here, we map() various Functions onto a stream of Strings:

// streams/FunctionMap.java

import java.util.*;



import java.util.stream.*;

import java.util.function.*;

class FunctionMap {

static String[] elements = { "12", "", "23", "45" }; static Stream<String>
testStream() {

return Arrays.stream(elements);

}

static void

test(String descr, Function<String, String> func) {

System.out.println(" ---( " + descr + " )---");

testStream()

.map(func)

.forEach(System.out::println);

}

public static void main(String[] args) {

test("add brackets", s -> "[" + s + "]");

test("Increment", s -> {

try {

return Integer.parseInt(s) + 1 + "";

} catch(NumberFormatException e) {

return s;



}

});

test("Replace", s -> s.replace("2", "9"));

test("Take last digit", s -> s.length() > 0 ?

s.charAt(s.length() - 1) + "" : s);

}

}

/* Output:

---( add brackets )---

[12]

[]

[23]

[45]

---( Increment )---

13

24

46

---( Replace )---

19

93



45

---( Take last digit )---

2

3

5

*/

In the “Increment” test, we use Integer.parseInt() to attempt

to turn the String into an Integer. If the String can’t be

represented as an Integer it throws a

NumberFormatException and we just fall back to putting the

original String back on the output stream.

In the above example, the map() maps from a String to a String,

but there’s no reason you can’t produce a different type than you take

in, thus changing the type of the stream from that point on. Here’s

what it looks like:

// streams/FunctionMap2.java

// Different input and output types

import java.util.*;

import java.util.stream.*;

class Numbered {



final int n;

Numbered(int n) { this.n = n; }

@Override

public String toString() {

return "Numbered(" + n + ")";

}

}

class FunctionMap2 {

public static void main(String[] args) {

Stream.of(1, 5, 7, 9, 11, 13)

.map(Numbered::new)

.forEach(System.out::println);

}

}

/* Output:

Numbered(1)

Numbered(5)

Numbered(7)

Numbered(9)

Numbered(11)



Numbered(13)

*/

We take ints and turn them into Numbereds using the constructor

Numbered::new.

If the result type produced by Function is one of the numeric types,

you must use the appropriate mapTo-operations instead:

// streams/FunctionMap3.java

// Producing numeric output streams

import java.util.*;

import java.util.stream.*;

class FunctionMap3 {

public static void main(String[] args) {

Stream.of("5", "7", "9")

.mapToInt(Integer::parseInt)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

Stream.of("17", "19", "23")

.mapToLong(Long::parseLong)

.forEach(n -> System.out.format("%d ", n));

System.out.println();



Stream.of("17", "1.9", ".23")

.mapToDouble(Double::parseDouble)

.forEach(n -> System.out.format("%f ", n));

}

}

/* Output:

5 7 9

17 19 23

17.000000 1.900000 0.230000

*/

It’s unfortunate that the Java designers didn’t make the initial effort to

eliminate primitive types.

Combining Streams During

map()

Suppose you’ve got a stream of incoming elements, and you’re

applying a map() function to them. You’ve found some lovely

functionality for your function you can’t find anywhere else, but



there’s a problem: that functionality produces a stream. What you

want is to produce a stream of elements, but instead you’re producing

a stream of streams of elements.

flatMap() does two things: it takes your stream-producing function

and applies it to incoming elements (just like map() does), then it

takes each stream and “flattens” it into elements. So what comes out is

just elements.

flatMap(Function): Use when Function produces a

stream.

flatMapToInt(Function): For a Function that produces

an IntStream.

flatMapToLong(Function): For a Function that

produces a LongStream.

flatMapToDouble(Function): For a Function that

produces a DoubleStream.

To see how this works, we’ll start with a contrived function for map(),

which takes in an Integer and produces a stream of Strings:

// streams/StreamOfStreams.java

import java.util.stream.*;

public class StreamOfStreams {



public static void main(String[] args) {

Stream.of(1, 2, 3)

.map(i -> Stream.of("Gonzo", "Kermit", "Beaker"))

.map(e-> e.getClass().getName())

.forEach(System.out::println);

}

}

/* Output:

java.util.stream.ReferencePipeline$Head

java.util.stream.ReferencePipeline$Head

java.util.stream.ReferencePipeline$Head

*/

We were naively hoping for a stream of String, but what we got

instead was a stream of “heads” to other streams. We can easily solve

this with flatMap():

// streams/FlatMap.java

import java.util.stream.*;

public class FlatMap {

public static void main(String[] args) {

Stream.of(1, 2, 3)



.flatMap(

i -> Stream.of("Gonzo", "Fozzie", "Beaker"))

.forEach(System.out::println);

}

}

/* Output:

Gonzo

Fozzie

Beaker

Gonzo

Fozzie

Beaker

Gonzo

Fozzie

Beaker

*/

So each stream that comes back from the mapping is automatically

flattened into its component Strings.

Here’s another demonstration. We start with a stream of integer, then

use each one to create that many random numbers:



// streams/StreamOfRandoms.java

import java.util.*;

import java.util.stream.*;

public class StreamOfRandoms {

static Random rand = new Random(47);

public static void main(String[] args) {

Stream.of(1, 2, 3, 4, 5)

.flatMapToInt(i -> IntStream.concat(

rand.ints(0, 100).limit(i), IntStream.of(-1)))

.forEach(n -> System.out.format("%d ", n));

}

}

/* Output:

58 -1 55 93 -1 61 61 29 -1 68 0 22 7 -1 88 28 51 89 9

-1

*/

I’ve introduced concat() here, which combines two streams in

argument order. So, at the end of each stream of random Integer,

I’m adding a -1 to use as a marker, so you can see that the final

stream is indeed being created from a group of flattened streams.



Because rand.ints() produces an IntStream, I must use the

special Integer versions of flatMap(), concat(), and of().

Let’s take one more look at the task of breaking a file into a stream of

words. Our last encounter was FileToWordsRegexp.java, which

had the problem that it required us to read the whole file into a List

of lines—thus requiring storage for that List. What we really want is

to create a stream of words without requiring intermediate storage.

Once again, this is exactly the problem solved by flatMap():

// streams/FileToWords.java

import java.nio.file.*;

import java.util.stream.*;

import java.util.regex.Pattern;

public class FileToWords {

public static Stream<String> stream(String filePath)

throws Exception {

return Files.lines(Paths.get(filePath))

.skip(1) // First (comment) line

.flatMap(line ->

Pattern.compile("\\W+").splitAsStream(line));

}



}

stream() is now a static method because it can accomplish the

whole stream-creation process by itself.

Note the use of \\W+ as the regular-expression pattern. The \\W

means a “non-word character,” and the + means “one or more.”

Lowercase \\w refers to a “word character.”

The problem we had before was that

Pattern.compile().splitAsStream() produces a stream

result, which means invoking map() on the incoming stream of lines

produces a stream of streams of words, when what we want is simply a

stream of words. Fortunately, flatMap() flattens a stream of

streams of elements into a simple stream of elements. Alternatively,

we could have used String.split(), which produces an array,

which can be converted using Arrays.stream():

.flatMap(line -> Arrays.stream(line.split("\\W+"))))

Because we have a true stream (rather than a stream based on a stored



collection as in FileToWordsRegexp.java), every time we want

a new stream we must create it from scratch, because it can’t be

reused:

// streams/FileToWordsTest.java

import java.util.stream.*;

public class FileToWordsTest {

public static void

main(String[] args) throws Exception {

FileToWords.stream("Cheese.dat")

.limit(7)

.forEach(s -> System.out.format("%s ", s));

System.out.println();

FileToWords.stream("Cheese.dat")

.skip(7)

.limit(2)

.forEach(s -> System.out.format("%s ", s));

}

}

/* Output:

Not much of a cheese shop really



is it

*/

Here, the %s in System.out.format() indicates that the

argument is a String.

Optional

Before we can look at terminal operations, we must consider what

happens if you ask for an object in a stream and there’s nothing there.

We like to connect up our streams for the “happy path” and assume

nothing will break. Putting a null in a stream is a good way to break

it. Is there some kind of object we can use that will act as a holder for a

stream element, but can also kindly tell us (that is, no exceptions) if

the element we’re looking for isn’t there?

This idea is implemented as the Optional type. Certain standard

stream operations return Optional objects because they cannot

guarantee the desired result will exist. These include:

findFirst() returns an Optional containing the first

element, or Optional.empty if the stream is empty.

findAny() returns an Optional containing any element, or

Optional.empty if the stream is empty.

max() and min() return an Optional containing the



maximum or minimum values in the stream, or an

Optional.empty if the stream is empty.

The version of reduce() that does not start with an “identity”

object (the “identity” object becomes the default result in the

other version of reduce() so there’s no risk of an empty result)

wraps its return value in an Optional.

For the numerical streams IntStream, LongStream and

DoubleStream, the average() operation wraps its result in

an Optional in case the stream is empty.

Here are simple tests of all of these operations upon empty streams:

// streams/OptionalsFromEmptyStreams.java

import java.util.*;

import java.util.stream.*;

class OptionalsFromEmptyStreams {

public static void main(String[] args) {

System.out.println(Stream.<String>empty()

.findFirst());

System.out.println(Stream.<String>empty()

.findAny());

System.out.println(Stream.<String>empty()



.max(String.CASE_INSENSITIVE_ORDER));

System.out.println(Stream.<String>empty()

.min(String.CASE_INSENSITIVE_ORDER));

System.out.println(Stream.<String>empty()

.reduce((s1, s2) -> s1 + s2));

System.out.println(IntStream.empty()

.average());

}

}

/* Output:

Optional.empty

Optional.empty

Optional.empty

Optional.empty

Optional.empty

OptionalDouble.empty

*/

Instead of throwing an exception because the stream is empty, you get

an Optional.empty object. Optional has a toString() which

displays useful information.



Note the creation of the empty stream via Stream.

<String>empty(). If you just say Stream.empty() without any

context information, Java doesn’t know what the type is; this syntax

solves the problem. If the compiler has enough context information, as

in:

Stream<String> s = Stream.empty();

It can infer the type for the empty() call.

This example shows the two basic activities for an Optional:

// streams/OptionalBasics.java

import java.util.*;

import java.util.stream.*;

class OptionalBasics {

static void test(Optional<String> optString) {

if(optString.isPresent())

System.out.println(optString.get());

else

System.out.println("Nothing inside!");



}

public static void main(String[] args) {

test(Stream.of("Epithets").findFirst());

test(Stream.<String>empty().findFirst());

}

}

/* Output:

Epithets

Nothing inside!

*/

When you receive an Optional, you first discover whether there’s

anything inside by calling isPresent(). If there is, you fetch it

using get().

Convenience Functions

There are a number of convenience functions for unpacking

Optionals, which simplify the above process of “checking and doing

something with the contained object”:

ifPresent(Consumer): Call the Consumer with the value if

it’s there, otherwise do nothing.

orElse(otherObject): Produce the object if it’s there,



otherwise produce otherObject.

orElseGet(Supplier): Produce the object if it’s there,

otherwise produce a replacement object using the Supplier

function.

orElseThrow(Supplier): Produce the object if it’s there,

otherwise produce an exception using the Supplier function.

Here are simple demonstrations for the different convenience

functions:

// streams/Optionals.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

public class Optionals {

static void basics(Optional<String> optString) {

if(optString.isPresent())

System.out.println(optString.get());

else

System.out.println("Nothing inside!");

}

static void ifPresent(Optional<String> optString) {



optString.ifPresent(System.out::println);

}

static void orElse(Optional<String> optString) {

System.out.println(optString.orElse("Nada"));

}

static void orElseGet(Optional<String> optString) {

System.out.println(

optString.orElseGet(() -> "Generated"));

}

static void orElseThrow(Optional<String> optString) {

try {

System.out.println(optString.orElseThrow(

() -> new Exception("Supplied")));

} catch(Exception e) {

System.out.println("Caught " + e);

}

}

static void test(String testName,

Consumer<Optional<String>> cos) {



System.out.println(" === " + testName + " === ");

cos.accept(Stream.of("Epithets").findFirst());

cos.accept(Stream.<String>empty().findFirst());

}

public static void main(String[] args) {

test("basics", Optionals::basics);

test("ifPresent", Optionals::ifPresent);

test("orElse", Optionals::orElse);

test("orElseGet", Optionals::orElseGet);

test("orElseThrow", Optionals::orElseThrow);

}

}

/* Output:

=== basics ===

Epithets

Nothing inside!

=== ifPresent ===



Epithets

=== orElse ===

Epithets

Nada

=== orElseGet ===

Epithets

Generated

=== orElseThrow ===

Epithets

Caught java.lang.Exception: Supplied

*/

The test() method prevents code duplication by taking a

Consumer that matches all the example methods.

orElseThrow() uses the catch keyword in order to capture the

exception that is thrown by orElseThrow(). You’ll learn about this

in detail in the Exceptions chapter.

Creating Optionals

When you’re writing your own code that produces Optionals, there

are three static methods you can use:

empty(): Produces an Optional with nothing inside.



of(value): If you already know that value is not null, use

this to wrap it in an Optional.

ofNullable(value): Use this if you don’t know that value

is not null. It automatically produces Optional.empty if

value is null, and otherwise wraps value inside an

Optional.

You can see how these work:

// streams/CreatingOptionals.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

class CreatingOptionals {

static void

test(String testName, Optional<String> opt) {

System.out.println(" === " + testName + " === ");

System.out.println(opt.orElse("Null"));

}

public static void main(String[] args) {

test("empty", Optional.empty());

test("of", Optional.of("Howdy"));



try {

test("of", Optional.of(null));

} catch(Exception e) {

System.out.println(e);

}

test("ofNullable", Optional.ofNullable("Hi"));

test("ofNullable", Optional.ofNullable(null));

}

}

/* Output:

=== empty ===

Null

=== of ===

Howdy

java.lang.NullPointerException

=== ofNullable ===

Hi



=== ofNullable ===

Null

*/

If we try to create an Optional by passing null to of(), it blows

up. ofNullable() handles null gracefully, so it seems the safest

one to use.

Operations on Optional

Objects

Three methods enable post-processing on Optionals, so if your

stream pipeline produces an Optional you can do one more thing at

the end:

filter(Predicate): Apply the Predicate to the contents

of the Optional and return the result. If the Optional fails

the Predicate, convert it to empty. If the Optional is

already empty, just pass it through.

map(Function): If the Optional is not empty, apply

Function to the contents of the Optional and return the

result. Otherwise, pass through the Optional.empty.

flatMap(Function): Just like map(), but the supplied

mapping function wraps the results in Optional objects so



flatMap() doesn’t do any wrapping at the end.

None of these are available for the numeric Optionals.

The normal stream filter() removes elements from the stream if

the Predicate returns false. Optional.filter() doesn’t

delete the Optional if the Predicate fails—it leaves it, but

converts it to empty. This example explores filter():

// streams/OptionalFilter.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

class OptionalFilter {

static String[] elements = {

"Foo", "", "Bar", "Baz", "Bingo"

};

static Stream<String> testStream() {

return Arrays.stream(elements);

}

static void

test(String descr, Predicate<String> pred) {

System.out.println(" ---( " + descr + " )---");



for(int i = 0; i <= elements.length; i++) {

System.out.println(

testStream()

.skip(i)

.findFirst()

.filter(pred));

}

}

public static void main(String[] args) {

test("true", str -> true);

test("false", str -> false);

test("str != \"\"", str -> str != "");

test("str.length() == 3", str -> str.length() == 3);

test("startsWith(\"B\")",

str -> str.startsWith("B"));

}

}

/* Output:

---( true )---

Optional[Foo]



Optional[]

Optional[Bar]

Optional[Baz]

Optional[Bingo]

Optional.empty

---( false )---

Optional.empty

Optional.empty

Optional.empty

Optional.empty

Optional.empty

Optional.empty

---( str != "" )---

Optional[Foo]

Optional.empty

Optional[Bar]

Optional[Baz]

Optional[Bingo]

Optional.empty

---( str.length() == 3 )---



Optional[Foo]

Optional.empty

Optional[Bar]

Optional[Baz]

Optional.empty

Optional.empty

---( startsWith("B") )---

Optional.empty

Optional.empty

Optional[Bar]

Optional[Baz]

Optional[Bingo]

Optional.empty

*/

Although the output looks like a stream, pay special attention to the

for loop inside test(). It’s restarting the stream each time through

the for loop, and skipping the number of elements set by the for-

loop index, which is what makes it end up on each successive element

in the stream. Then it does a findFirst() to take the first

remaining element, which comes back wrapped in an Optional.



Note that, unlike the usual for loop, this index isn’t bounded by i <

elements.length, but rather i <= elements.length, so the

final element actually overruns the stream. Conveniently, this

automatically becomes an Optional.empty, which you see at the

end of each test.

Like map(), Optional.map() applies a function, but in the case of

Optional, it only applies the mapping function if the Optional is

not empty. It also extracts the contents of the Optional to hand to

the mapping function:

// streams/OptionalMap.java

import java.util.*;

import java.util.stream.*;

import java.util.function.*;

class OptionalMap {

static String[] elements = { "12", "", "23", "45" }; static Stream<String>
testStream() {

return Arrays.stream(elements);

}

static void

test(String descr, Function<String, String> func) {

System.out.println(" ---( " + descr + " )---");



for(int i = 0; i <= elements.length; i++) {

System.out.println(

testStream()

.skip(i)

.findFirst() // Produces an Optional

.map(func));

}

}

public static void main(String[] args) {

// If Optional is not empty, map() first extracts

// the contents which it then passes

// to the function:

test("Add brackets", s -> "[" + s + "]");

test("Increment", s -> {

try {

return Integer.parseInt(s) + 1 + "";

} catch(NumberFormatException e) {

return s;

}

});



test("Replace", s -> s.replace("2", "9"));

test("Take last digit", s -> s.length() > 0 ?

s.charAt(s.length() - 1) + "" : s);

}

// After the function is finished, map() wraps the

// result in an Optional before returning it:

}

/* Output:

---( Add brackets )---

Optional[[12]]

Optional[[]]

Optional[[23]]

Optional[[45]]

Optional.empty

---( Increment )---

Optional[13]

Optional[]

Optional[24]

Optional[46]

Optional.empty



---( Replace )---

Optional[19]

Optional[]

Optional[93]

Optional[45]

Optional.empty

---( Take last digit )---

Optional[2]

Optional[]

Optional[3]

Optional[5]

Optional.empty

*/

The result of the mapping function is automatically wrapped back into

an Optional. As you can see, an Optional.empty is simply

passed through, without applying the mapping function.

The flatMap() for Optional is applied to a mapping function

that already produces an Optional, so flatMap() doesn’t wrap

the result in an Optional, the way map() does:

// streams/OptionalFlatMap.java



import java.util.*;

import java.util.stream.*;

import java.util.function.*;

class OptionalFlatMap {

static String[] elements = { "12", "", "23", "45" }; static Stream<String>
testStream() {

return Arrays.stream(elements);

}

static void test(String descr,

Function<String, Optional<String>> func) {

System.out.println(" ---( " + descr + " )---");

for(int i = 0; i <= elements.length; i++) {

System.out.println(

testStream()

.skip(i)

.findFirst()

.flatMap(func));

}

}

public static void main(String[] args) {

test("Add brackets",



s -> Optional.of("[" + s + "]"));

test("Increment", s -> {

try {

return Optional.of(

Integer.parseInt(s) + 1 + "");

} catch(NumberFormatException e) {

return Optional.of(s);

}

});

test("Replace",

s -> Optional.of(s.replace("2", "9")));

test("Take last digit",

s -> Optional.of(s.length() > 0 ?

s.charAt(s.length() - 1) + ""

: s));

}

}

/* Output:

---( Add brackets )---

Optional[[12]]



Optional[[]]

Optional[[23]]

Optional[[45]]

Optional.empty

---( Increment )---

Optional[13]

Optional[]

Optional[24]

Optional[46]

Optional.empty

---( Replace )---

Optional[19]

Optional[]

Optional[93]

Optional[45]

Optional.empty

---( Take last digit )---



Optional[2]

Optional[]

Optional[3]

Optional[5]

Optional.empty

*/

Like map(), flatMap() unpacks the contents of non-empty

Optionals to hand to the mapping function. The only difference is

that flatMap() doesn’t wrap the result in an Optional, because

the mapping function has already done that. In the above example,

I’ve explicitly done the wrapping inside each mapping function, but

clearly Optional.flatMap() is designed for functions already

producing Optionals by themselves.

Streams of Optionals

Suppose you have a generator that might produce null values. If you

create a stream of these using that generator, you’ll naturally want to

wrap the elements in Optionals. Here’s what it looks like:

// streams/Signal.java

import java.util.*;

import java.util.stream.*;



import java.util.function.*;

public class Signal {

private final String msg;

public Signal(String msg) { this.msg = msg; }

public String getMsg() { return msg; }

@Override

public String toString() {

return "Signal(" + msg + ")";

}

static Random rand = new Random(47);

public static Signal morse() {

switch(rand.nextInt(4)) {

case 1: return new Signal("dot");

case 2: return new Signal("dash");

default: return null;

}

}

public static Stream<Optional<Signal>> stream() {

return Stream.generate(Signal::morse)

.map(signal -> Optional.ofNullable(signal));



}

}

When you use this stream, you’ll have to figure out how you want to

unpack the Optionals:

// streams/StreamOfOptionals.java

import java.util.*;

import java.util.stream.*;

public class StreamOfOptionals {

public static void main(String[] args) {

Signal.stream()

.limit(10)

.forEach(System.out::println);

System.out.println(" ---");

Signal.stream()

.limit(10)

.filter(Optional::isPresent)

.map(Optional::get)

.forEach(System.out::println);

}

}



/* Output:

Optional[Signal(dash)]

Optional[Signal(dot)]

Optional[Signal(dash)]

Optional.empty

Optional.empty

Optional[Signal(dash)]

Optional.empty

Optional[Signal(dot)]

Optional[Signal(dash)]

Optional[Signal(dash)]

---

Signal(dot)



Signal(dot)

Signal(dash)

Signal(dash)

*/

Here, I use filter() to keep only the non-empty Optionals,

then use map() to get() the values. Because each situation requires

you to decide the meaning of “no value,” you usually need a different

approach for each application.

Terminal Operations

These operations take a stream and produce a final result; they do not

feed anything to a back-end stream. Thus, a terminal operation is

always the last thing you can do within a pipeline.

Convert to an Array

toArray(): Converts the stream elements into an array of the

proper type.

toArray(generator): The generator is for allocating

your own array storage, in special cases.

This is useful if the stream operations produce something you must

use in array form. For example, suppose we want to capture random

numbers in a way that we can reuse them as a stream, such that we get



the identical stream each time. We can do this by storing them in an

array:

// streams/RandInts.java

package streams;

import java.util.*;

import java.util.stream.*;

public class RandInts {

private static int[] rints =

new Random(47).ints(0, 1000).limit(100).toArray();

public static IntStream rands() {

return Arrays.stream(rints);

}

}

A stream of 100 random ints between 0 and 1000 is converted to an

array and stored in rints so that each time you call rands() you

get a repeat of the same stream.

Apply a Final Operation to



Every Element

forEach(Consumer): You’ve already seen this used many

times with System.out::println as the Consumer

function.

forEachOrdered(Consumer): This version ensures that the

order on which the elements are operated on by forEach is the

original stream order.

The first form is explicitly designed to operate on elements in any

order, which only makes sense if you introduce the parallel()

operation. We won’t look at this in depth until the Concurrent

Programming chapter, but here’s a quick introduction: parallel() tells Java to
try to run operations on multiple processors. It can do this

precisely because we use streams—it can split the stream into multiple

streams (often, one stream per processor) and run each stream on a

different processor. Because we use internal iteration rather than

external iteration, this is possible.

Before you get too excited about the seeming ease of parallel(),

it’s actually rather tricky to use, so hold off until we get to the

Concurrent Programming chapter.

We can, however, get an idea of the effect and of the need for

forEachOrdered(Consumer) by introducing parallel() into



an example:

// streams/ForEach.java

import java.util.*;

import java.util.stream.*;

import static streams.RandInts.*;

public class ForEach {

static final int SZ = 14;

public static void main(String[] args) {

rands().limit(SZ)

.forEach(n -> System.out.format("%d ", n));

System.out.println();

rands().limit(SZ)

.parallel()

.forEach(n -> System.out.format("%d ", n));

System.out.println();

rands().limit(SZ)

.parallel()

.forEachOrdered(n -> System.out.format("%d ", n));

}

}



/* Output:

258 555 693 861 961 429 868 200 522 207 288 128 551 589

551 861 429 589 200 522 555 693 258 128 868 288 961 207

258 555 693 861 961 429 868 200 522 207 288 128 551 589

*/

I’ve isolated sz to make it easy to try different sizes. However, even a

sz of 14 produces interesting results. In the first stream, we don’t use

parallel() and so display the results in the order they appear from

rands(). The second stream does introduce parallel() and,

even for such a small stream, you see that the output is not in the same

order as before. That’s because multiple processors are working on the

problem, and if you run the program multiple times you’ll see that this

output is different, due to the non-deterministic factors produced by

having more than one processor working on the problem at the same

time.

The final stream still uses parallel() but forces the result back

into its original order using forEachOrdered(). Thus, using



forEachOrdered() for non-parallel() streams doesn’t have

any effect.

Collecting

collect(Collector): Uses the Collector to accumulate

stream elements into a result collection.

collect(Supplier, BiConsumer, BiConsumer): As

above, but Supplier creates a new result collection, the first

BiConsumer is a function for including the next element into

the result, and the second BiConsumer is used for combining

two values.

You’ve only seen a few examples of Collectors objects. If you look

at the documentation for java.util.stream.Collectors,

you’ll see that some of them are quite sophisticated. For example, we

can collect into any specific kind of collection. Suppose we want our

items to end up inside of a TreeSet so they are always sorted.

There’s no specific toTreeSet() method in Collectors, but you

can use Collectors.toCollection() and hand it the

constructor reference for any type of Collection. This program

pulls the words from a file into a TreeSet:

// streams/TreeSetOfWords.java



import java.util.*;

import java.nio.file.*;

import java.util.stream.*;

public class TreeSetOfWords {

public static void

main(String[] args) throws Exception {

Set<String> words2 =

Files.lines(Paths.get("TreeSetOfWords.java"))

.flatMap(s -> Arrays.stream(s.split("\\W+")))

.filter(s -> !s.matches("\\d+")) // No numbers

.map(String::trim)

.filter(s -> s.length() > 2)

.limit(100)

.collect(Collectors.toCollection(TreeSet::new));

System.out.println(words2);

}

}

/* Output:

[Arrays, Collectors, Exception, Files, Output, Paths,

Set, String, System, TreeSet, TreeSetOfWords, args,



class, collect, file, filter, flatMap, get, import,

java, length, limit, lines, main, map, matches, new,

nio, numbers, out, println, public, split, static,

stream, streams, throws, toCollection, trim, util,

void, words2]

*/

Files.lines() opens the Path and turns it into a Stream of

lines. The next line splits those lines on boundaries of one or more

non-word characters (\\W+), which produces an array which is turned

into a Stream with Arrays.stream(), and the result is flat-

mapped back into a Stream of words. The matches(\\d+) finds

and removes Strings that are all digits (note that words2 makes it through).
Next we apply String.trim() to shave off any

surrounding whitespace, filter() out any words less than a length

of three, take only the first 100 words, and finally put them into a

TreeSet.

We can produce a Map from a stream:

// streams/MapCollector.java

import java.util.*;

import java.util.stream.*;

class Pair {



public final Character c;

public final Integer i;

Pair(Character c, Integer i) {

this.c = c;

this.i = i;

}

public Character getC() { return c; }

public Integer getI() { return i; }

@Override

public String toString() {

return "Pair(" + c + ", " + i + ")";

}

}

class RandomPair {

Random rand = new Random(47);

// An infinite iterator of random capital letters:

Iterator<Character> capChars = rand.ints(65,91)

.mapToObj(i -> (char)i)

.iterator();

public Stream<Pair> stream() {



return rand.ints(100, 1000).distinct()

.mapToObj(i -> new Pair(capChars.next(), i));

}

}

public class MapCollector {

public static void main(String[] args) {

Map<Integer, Character> map =

new RandomPair().stream()

.limit(8)

.collect(

Collectors.toMap(Pair::getI, Pair::getC));

System.out.println(map);

}

}

/* Output:

{688=W, 309=C, 293=B, 761=N, 858=N, 668=G, 622=F,

751=N}

*/

Pair is just a basic data object. RandomPair creates a stream of

randomly-generated Pair objects. It would be nice if we could just



somehow combine two streams, but Java fights us on this one. So I

create a stream of ints and use mapToObj to turn that into a stream

of Pairs. The capChars randomly-generated Iterator of capital

letters starts as a stream, then the iterator() method allows us to

use it in the stream() method. As far as I can tell, this is the only

way to combine more than one stream to produce a new stream of

objects.

Here, we use the simplest form of Collectors.toMap(), which

just needs functions to fetch keys and values from the stream. There

are additional forms, one of which takes a function to handle the case

when you get a key collision.

Most of the time, you’ll be able to find a predefined Collector that

will do what you need by looking through

java.util.stream.Collectors. In the rare situation when

you don’t, you can use the second form of collect(). I’ll basically

leave that as a more advanced exercise, but here’s one example to give

the basic idea:



// streams/SpecialCollector.java

import java.util.*;

import java.util.stream.*;

public class SpecialCollector {

public static void

main(String[] args) throws Exception {

ArrayList<String> words =

FileToWords.stream("Cheese.dat")

.collect(ArrayList::new,

ArrayList::add,

ArrayList::addAll);

words.stream()

.filter(s -> s.equals("cheese"))

.forEach(System.out::println);

}

}

/* Output:

cheese

cheese

*/



Here, the ArrayList methods already do what you need but it

seems more likely that if you must use this form of collect() you’ll

have to create special definitions.

Combining All Stream

Elements

reduce(BinaryOperator): Uses BinaryOperator to

combine all stream elements. Returns an Optional because the

stream might be empty.

reduce(identity, BinaryOperator): As above, but

using identity as the initial value for the combination. Thus, if

the stream is empty, you still get identity as the result.

reduce(identity, BiFunction, BinaryOperator):

This is more complicated (so we won’t cover it), but is included

because it can be more efficient. You can usually express this

more simply by combining explicit map() and reduce()

operations.

Here’s a contrived example to demonstrate reduce():

// streams/Reduce.java

import java.util.*;

import java.util.stream.*;



class Frobnitz {

int size;

Frobnitz(int sz) { size = sz; }

@Override

public String toString() {

return "Frobnitz(" + size + ")";

}

// Generator:

static Random rand = new Random(47);

static final int BOUND = 100;

static Frobnitz supply() {

return new Frobnitz(rand.nextInt(BOUND));

}

}

public class Reduce {

public static void main(String[] args) {

Stream.generate(Frobnitz::supply)

.limit(10)

.peek(System.out::println)

.reduce((fr0, fr1) -> fr0.size < 50 ? fr0 : fr1)



.ifPresent(System.out::println);

}

}

/* Output:

Frobnitz(58)

Frobnitz(55)

Frobnitz(93)

Frobnitz(61)

Frobnitz(61)

Frobnitz(29)

Frobnitz(68)

Frobnitz(0)

Frobnitz(22)

Frobnitz(7)

Frobnitz(29)

*/

Frobnitz contains its own generator named supply(); we can

pass a method reference to Stream.generate() because it is

signature-compatible as a Supplier<Frobnitz> (This signature

compatibility is called structural conformance). We use the



reduce() method without the first-argument “starter value”, which

means it produces an Optional. The Optional.ifPresent()

method calls a Consumer<Frobnitz> (println conforms

because it can take a String by converting the Frobnitz via

toString()) only if the result is non-empty.

The first argument in the lambda expression, fr0, is the result that is

carried over from the last invocation of this reduce(), and the

second argument, fr1, is the new value that’s coming in from the

stream.

The reduce() lambda uses a ternary if-else to take fr0 if its size

is less than 50, otherwise it takes fr1, the next one in the sequence.

As a result, you get the first Frobnitz with a size less than 50—it

just keeps holding onto that one once you’ve found it, even though

other candidates appear. Although this is a rather odd constraint, it

does give you a bit more insight into reduce().

Matching

allMatch(Predicate): Returns true if every element of



the stream produces true when provided to the supplied

Predicate. This will short-circuit upon the first false; it

won’t continue the calculation once it finds one false.

anyMatch(Predicate): Returns true if any element of the

stream produces true when provided to the supplied

Predicate. This will short-circuit upon the first true.

noneMatch(Predicate): Returns true if no elements of the

stream produce true when provided to the supplied

Predicate. This will short-circuit upon the first true.

You’ve seen an example of noneMatch() in Prime.java; the

usage of allMatch() and anyMatch() are virtually identical.

Let’s explore the short-circuiting behavior. To create a show()

method that eliminates repeated code, we must first discover how to

generically describe all three of the matcher operations, which we then

turn into an interface called Matcher:

// streams/Matching.java

// Demonstrates short-circuiting of *Match() operations

import java.util.stream.*;

import java.util.function.*;

import static streams.RandInts.*;



interface Matcher extends

BiPredicate<Stream<Integer>, Predicate<Integer>> {}

public class Matching {

static void show(Matcher match, int val) {

System.out.println(

match.test(

IntStream.rangeClosed(1, 9)

.boxed()

.peek(n -> System.out.format("%d ", n)),

n -> n < val));

}

public static void main(String[] args) {

show(Stream::allMatch, 10);

show(Stream::allMatch, 4);

show(Stream::anyMatch, 2);

show(Stream::anyMatch, 0);

show(Stream::noneMatch, 5);

show(Stream::noneMatch, 0);

}

}



/* Output:

1 2 3 4 5 6 7 8 9 true

1 2 3 4 false

1 true

1 2 3 4 5 6 7 8 9 false

1 false

1 2 3 4 5 6 7 8 9 true

*/

BiPredicate is a binary predicate, which only means it takes two

arguments and returns true or false. The first argument is the

stream of numbers we are going to test, and the second argument is

the Predicate itself. Because Matcher fits the pattern of all the

Stream::*Match functions, we can pass each one to show(). The

call to match.test() is translated into an invocation of the

Stream::*Match function.

show() takes a Matcher and a val indicating the maximum

number in the predicate’s test n < val. It generates a stream of

Integers from 1 through 9. The peek() is to show us how far the



test gets before it short-circuits. You can see from the output that the

short-circuiting happens every time.

Selecting an Element

findFirst(): returns an Optional containing the first

element of the stream, or Optional.empty if the stream has

no elements.

findAny(): returns an Optional containing some element of

the stream, or Optional.empty if the stream has no elements.

// streams/SelectElement.java

import java.util.*;

import java.util.stream.*;

import static streams.RandInts.*;

public class SelectElement {

public static void main(String[] args) {

System.out.println(rands().findFirst().getAsInt());

System.out.println(

rands().parallel().findFirst().getAsInt());



System.out.println(rands().findAny().getAsInt());

System.out.println(

rands().parallel().findAny().getAsInt());

}

}

/* Output:

258

258

258

242

*/

findFirst() will always select the first element in the stream,

whether or not the stream is parallel(). For a non-parallel()

stream, findAny() chooses the first element (although from the

definition it has the option to choose any element). In this example,

making the stream parallel() introduces the possibility that

findAny() chooses other than the first element.



If you must select the last element in a stream, use reduce():

// streams/LastElement.java

import java.util.*;

import java.util.stream.*;

public class LastElement {

public static void main(String[] args) {

OptionalInt last = IntStream.range(10, 20)

.reduce((n1, n2) -> n2);

System.out.println(last.orElse(-1));

// Non-numeric object:

Optional<String> lastobj =

Stream.of("one", "two", "three")

.reduce((n1, n2) -> n2);

System.out.println(

lastobj.orElse("Nothing there!"));

}

}

/* Output:

19

three



*/

The argument to reduce() just replaces the last two elements with

the last element, ultimately producing only the last element. If the

stream is numeric, you must use the appropriate numeric optional

type, otherwise you use a typed Optional as in

Optional<String> .

Informational

count(): The number of elements in this stream.

max(Comparator): The “maximum” element of this stream as

determined by the Comparator.

min(Comparator): The “minimum” element of this stream as

determined by the Comparator.

Strings have a predefined Comparator, which simplifies our

example:

// streams/Informational.java

import java.util.stream.*;

import java.util.function.*;

public class Informational {

public static void

main(String[] args) throws Exception {



System.out.println(

FileToWords.stream("Cheese.dat").count());

System.out.println(

FileToWords.stream("Cheese.dat")

.min(String.CASE_INSENSITIVE_ORDER)

.orElse("NONE"));

System.out.println(

FileToWords.stream("Cheese.dat")

.max(String.CASE_INSENSITIVE_ORDER)

.orElse("NONE"));

}

}

/* Output:

32

a

you

*/

min() and max() return Optionals, which I unpack using

orElse();

Information for Numeric Streams



average(): The usual meaning.

max() & min(): These don’t need a Comparator because they

work on numeric streams.

sum(): Add up the values in the stream.

summaryStatistics(): Produces potentially useful data. It’s

not quite clear why they felt the need for this one, since you can

produce all the data yourself with the direct methods.

// streams/NumericStreamInfo.java

import java.util.stream.*;

import static streams.RandInts.*;

public class NumericStreamInfo {

public static void main(String[] args) {

System.out.println(rands().average().getAsDouble());

System.out.println(rands().max().getAsInt());

System.out.println(rands().min().getAsInt());

System.out.println(rands().sum());

System.out.println(rands().summaryStatistics());

}

}

/* Output:



507.94

998

8

50794

IntSummaryStatistics{count=100, sum=50794, min=8,

average=507.940000, max=998}

*/

The same operations are available for LongStreams and

DoubleStreams.

Summary

Streams change—and greatly improve—the nature of Java

programming, and are likely to significantly stem the flow of Java

programmers to functional JVM languages like Scala. We will use

streams whenever possible throughout the rest of this book.

1. I found a number of sites very useful when creating this chapter,

including Java2s and LambdaFAQ↩

http://www.java2s.com/
http://www.lambdafaq.org/


Exceptions

The basic philosophy of Java is that

“badly formed code will not run.”

(At least, that’s what I infer.)

Improved error recovery is one of the most powerful ways you can

increase the robustness of your code. Error recovery is a fundamental

concern for every program you write, but it’s especially important in

Java, a primary goal is to create program components for others to

use.

The ideal time to catch an error is at compile time, before you even try

to run the program. However, not all errors can be detected at compile

time. Other problems must be dealt with at run time through some

formality that allows the originator of the error to pass appropriate

information to a recipient who will know how to handle the difficulty

properly.

To create a robust system, each

component must be robust.

By providing a consistent error-reporting model using exceptions,



Java allows components to reliably communicate problems to client

code.

The goals for exception handling in Java are to simplify the creation of

large, reliable programs using less code than currently possible, and to

do so with more confidence that your application doesn’t have an

unhandled error. Exceptions are not terribly difficult to learn, and can

provide immediate and significant benefits to your project.

Because exception handling is the only official way that Java reports

errors, and is enforced by the Java compiler, you can only go so far

without learning about exception handling. This chapter teaches you

to write code to properly handle exceptions, and to generate your own

exceptions if one of your methods gets into trouble.

Concepts

C and other earlier languages often had multiple error-handling

schemes, and these were generally established by convention and not

as part of the programming language. Typically, you returned a special



value or set a flag, and the recipient determined that something was

amiss by looking at the value or flag. Over time, we realized that

programmers who use a library tend to think of themselves as

invincible—as in “Yes, errors might happen to others, but not in my

code.” So, not too surprisingly, they wouldn’t check for the error

conditions (and sometimes the error conditions were too silly to check

for1). If you did thoroughly check for errors every time you called a method,
your code turned into an unreadable nightmare. Because

programmers could still coax systems out of these languages, they

resisted the truth: that this approach to handling errors is a major

limitation to creating large, robust, maintainable programs.

One solution is to take the casual nature out of error handling and to

enforce formality. This actually has a long history, because

implementations of exception handling go back to operating systems

in the 1960s, and even to BASIC’s “on error goto.” But C++

exception handling was based on Ada, and Java’s is based primarily on



C++ (although it looks more like Object Pascal).

The word “exception” is meant in the sense of “I take exception to

that.” When the problem occurs, you might not know what to do with

it, but you do know you can’t just continue on merrily; you must stop,

and somebody, somewhere, must figure out what to do. But you don’t

have enough information in the current context to fix the problem. So

you hand the problem to a higher context where someone is qualified

to make the proper decision.

Exceptions can reduce some of the complexity of error-handling code.

Without exceptions, you must check for a particular error and deal

with it, possibly at multiple places in your program. With exceptions,

you no longer check for errors at the point of the method call, since the

exception will guarantee that someone catches it. Ideally, you only

handle the problem in one place, in the so-called exception handler.

This can save code, and separate the code that describes your goal

during normal execution from the code executed when things go awry.

Used carefully, reading, writing, and debugging code can be clearer

with exceptions than when using the old ways of error handling.

Basic Exceptions

An exceptional condition is a problem that prevents the continuation



of the current method or scope. It’s important to distinguish an

exceptional condition from a normal problem, when you have enough

information in the current context to somehow cope with the

difficulty. With an exceptional condition, you cannot continue

processing because you don’t have the information necessary to deal

with the problem in the current context. All you can do is jump out of

the current context and relegate that problem to a higher context. This

is what happens when you throw an exception.

Division is a simple example. If you’re about to divide by zero, it’s

worth checking for that condition. But what does it mean that the

denominator is zero? Maybe you know, in the context of the problem

you’re trying to solve in that particular method, how to deal with a

zero denominator. But if it’s an unexpected value, you can’t deal with

it and so must throw an exception rather than continuing along that

execution path.

When you throw an exception, several things happen. First, the

exception object is created in the same way as any Java object: on the

heap, with new. Then the current path of execution (the one you can’t

continue) is stopped and the reference for the exception object is

ejected from the current context. Now the exception-handling



mechanism takes over and begins to look for an appropriate place to

continue executing the program. This appropriate place is the

exception handler, whose job is to recover from the problem so the

program can either try another tack or just continue.

As a simple example of throwing an exception, consider an object

reference called t. You might receive a reference that hasn’t been

initialized, so you check before using that reference. You can send

information about the error into a larger context by creating an object

representing your information and “throwing” it out of your current

context. This is called throwing an exception. Here’s what it looks like:

if(t == null)

throw new NullPointerException();

This throws the exception, which allows you—in the current context—

to abdicate responsibility for the issue. It’s just magically handled

somewhere else. Precisely where is shown shortly.

Exceptions allow you to think of everything you do as a transaction,

and the exceptions guard those transactions: “…the fundamental

premise of transactions is that we needed exception handling in

distributed computations. Transactions are the computer equivalent of

contract law. If anything goes wrong, we’ll just blow away the whole



computation. ”2 You can also think about exceptions as a built-in

“undo” system, because (with some care) you can have various

recovery points in your program. If a part of the program fails, the

exception will “undo” back to a known stable point in the program.

If something bad happens, exceptions don’t allow a program to

continue along its ordinary path. This is a real problem in languages

like C and C++; especially C, which had no way to force a program to

stop going down a path if a problem occurred, so it was possible to

ignore problems for a long time and get into a completely

inappropriate state. Exceptions allow you to (if nothing else) force the

program to stop and tell you what went wrong, or (ideally) force the

program to deal with the problem and return to a stable state.

Exception Arguments

As with any object in Java, you always create exceptions on the heap

using new, which allocates storage and calls a constructor. There are

two constructors in all standard exceptions: The first is the no-arg

constructor, and the second takes a String argument to place



pertinent information in the exception:

throw new NullPointerException("t = null");

This String can later be extracted using various methods, as you’ll

see.

The keyword throw produces a number of interesting results. After

creating an exception object with new, you give the resulting reference

to throw. The object is, in effect, “returned” from the method, even

though that object type isn’t normally what the method is designed to

return. A simplistic way to think about exception handling is as a

different kind of return mechanism, although you’ll have trouble if you

take that analogy too far. You can also exit from ordinary scopes by

throwing an exception. In either case, an exception object is returned,

and the method or scope exits.



Any similarity to an ordinary return from a method ends here, because

where you return to is someplace completely different from where you

return for a normal method call. You end up in an appropriate

exception handler that might be far away—many levels on the call

stack—from where the exception was thrown.

In addition, you can throw any type of Throwable, the exception

root class. Typically, you’ll throw a different class of exception for each

different type of error. The information about the error is represented

both inside the exception object and implicitly in the name of the

exception class, so someone in the bigger context can figure out what

to do with your exception. (Often, the only information is the type

name of the exception, and nothing meaningful is stored within the

exception object itself.)

Catching an Exception

To see how an exception is caught, you must first understand the

concept of a guarded region. This is a section of code that might

produce exceptions, and is followed by the code to handle those

exceptions.

The try Block

If you’re inside a method and you throw an exception (or another



method you call within this method throws an exception), that method

will exit in the process of throwing. If you don’t want a throw to exit

the method, you can set up a special block within that method to

capture the exception. This is called the try block because you “try”

your various method calls there. The try block is an ordinary scope

preceded by the keyword try:

try {

// Code that might generate exceptions

}

If you are carefully checking for errors in a programming language

that doesn’t support exception handling, you surround every method

call with setup and error-testing code, even if you call the same

method several times. With exception handling, you put everything in

a try block and capture all the exceptions in one place. This means

your code can be much easier to write and read, because the goal of the

code is not confused with the error checking.

Exception Handlers



The thrown exception ends up someplace. This “place” is the exception

handler, and you write one for every exception type. Exception

handlers immediately follow the try block and are denoted by the

keyword catch:

try {

// Code that might generate exceptions

} catch(Type1 id1) {

// Handle exceptions of Type1

} catch(Type2 id2) {

// Handle exceptions of Type2

} catch(Type3 id3) {

// Handle exceptions of Type3

}

// etc.

Each catch clause (exception handler) is like a little method that

takes one and only one argument of a particular type. The identifier

(id1, id2, and so on) can be used inside the handler, just like a

method argument. Sometimes you never use the identifier because the

type of the exception gives you enough information to deal with the

exception, but the identifier must still be there.



The handlers must appear directly after the try block. If an exception

is thrown, the exception-handling mechanism goes hunting for the

first handler with an argument that matches the type of the exception.

Then it enters that catch clause, and the exception is considered

handled. The search for handlers stops once the catch clause is

finished. Only the matching catch clause executes; it’s not like a

switch statement when you need a break after each case to

prevent the remaining ones from executing.

Note that within the try block, a number of different method calls

might generate the same exception, but you need only one handler.

Termination vs. Resumption

There are two basic models in exception-handling theory. Java

supports termination, 3 where you assume that the error is so critical there’s
no way to get back to where the exception occurred. Whoever

threw the exception decided there was no way to salvage the situation,

and they don’t want to come back.

The alternative is called resumption. It means the exception handler is

expected to do something to rectify the situation, then the faulting

method is retried, presuming success the second time. If you want

resumption, it means you still hope to continue execution after the

exception is handled.



If you want resumption-like behavior in Java, don’t throw an

exception when you encounter an error. Instead, call a method that

fixes the problem. Alternatively, place your try block inside a while

loop that keeps reentering the try block until the result is

satisfactory.

Historically, programmers using operating systems that supported

resumptive exception handling eventually ended up using

termination-like code and skipping resumption. So although

resumption sounds attractive at first, it isn’t so useful in practice. The

dominant reason is probably the coupling that results: A resumptive

handler would be aware of where the exception is thrown, and contain

non-generic code specific to the throwing location. This makes the

code difficult to write and maintain, especially for large systems where

the exception can be generated from many points.

Creating Your Own

Exceptions



You’re not stuck using the existing Java exceptions. The Java

exception hierarchy can’t foresee all the errors you might report, so

you can create your own to denote a special problem that your library

might encounter.

To create your own exception class, inherit from an existing exception

class, preferably one that is close in meaning to your new exception

(although this is often not possible). The most trivial way to create a

new type of exception is just to let the compiler create the no-arg

constructor for you, so it requires almost no code at all:

// exceptions/InheritingExceptions.java

// Creating your own exceptions

class SimpleException extends Exception {}

public class InheritingExceptions {

public void f() throws SimpleException {

System.out.println(

"Throw SimpleException from f()");

throw new SimpleException();

}

public static void main(String[] args) {

InheritingExceptions sed =



new InheritingExceptions();

try {

sed.f();

} catch(SimpleException e) {

System.out.println("Caught it!");

}

}

}

/* Output:

Throw SimpleException from f()

Caught it!

*/

The compiler creates a no-arg constructor, which automatically (and

invisibly) calls the base-class no-arg constructor. Here you don’t get a

SimpleException(String) constructor, but in practice that

isn’t used much. As you’ll see, the most important thing about an

exception is the class name, so most of the time an exception like the

one shown here is satisfactory.

Here, the result is displayed on the console. You can also send error

output to the standard error stream by writing to System.err. This



is usually a better place to send error information than System.out,

which can be redirected. If you send output to System.err, it is not

redirected along with System.out so the user is more likely to

notice it.

You can also create an exception class that has a constructor with a

String argument:

// exceptions/FullConstructors.java

class MyException extends Exception {

MyException() {}

MyException(String msg) { super(msg); }

}

public class FullConstructors {

public static void f() throws MyException {

System.out.println("Throwing MyException from f()");

throw new MyException();

}

public static void g() throws MyException {

System.out.println("Throwing MyException from g()");

throw new MyException("Originated in g()");

}



public static void main(String[] args) {

try {

f();

} catch(MyException e) {

e.printStackTrace(System.out);

}

try {

g();

} catch(MyException e) {

e.printStackTrace(System.out);

}

}

}

/* Output:

Throwing MyException from f()

MyException

at FullConstructors.f(FullConstructors.java:11)

at

FullConstructors.main(FullConstructors.java:19)

Throwing MyException from g()



MyException: Originated in g()

at FullConstructors.g(FullConstructors.java:15)

at

FullConstructors.main(FullConstructors.java:24)

*/

The added code is small: two constructors that define the way you

create MyException. In the second constructor, the base-class

constructor with a String argument is explicitly invoked using the

super keyword.

In the handlers, one of the Throwable (from which Exception is

inherited) methods is called: printStackTrace(). As shown in

the output, this produces information about the sequence of method

calls to get to the point where the exception happened. Here, the

information is sent to System.out, and automatically captured and

displayed in the output. However, if you call the default version:

e.printStackTrace();

the information goes to the standard error stream.



Exceptions and Logging

You might also log the output using the java.util.logging

facility. Basic logging is straightforward enough to show here.

// exceptions/LoggingExceptions.java

// An exception that reports through a Logger

// {ErrorOutputExpected}

import java.util.logging.*;

import java.io.*;

class LoggingException extends Exception {

private static Logger logger =

Logger.getLogger("LoggingException");

LoggingException() {

StringWriter trace = new StringWriter();

printStackTrace(new PrintWriter(trace));

logger.severe(trace.toString());

}

}

public class LoggingExceptions {

public static void main(String[] args) {

try {



throw new LoggingException();

} catch(LoggingException e) {

System.err.println("Caught " + e);

}

try {

throw new LoggingException();

} catch(LoggingException e) {

System.err.println("Caught " + e);

}

}

}

/* Output:

___[ Error Output ]___

May 09, 2017 6:07:17 AM LoggingException <init>

SEVERE: LoggingException

at

LoggingExceptions.main(LoggingExceptions.java:20)

Caught LoggingException

May 09, 2017 6:07:17 AM LoggingException <init>

SEVERE: LoggingException



at

LoggingExceptions.main(LoggingExceptions.java:25)

Caught LoggingException

*/

The static Logger.getLogger() method creates a Logger

object associated with the String argument (usually the name of the

package and class that the errors are about) which sends its output to

System.err. The easiest way to write to a Logger is just to call the

method associated with the level of logging message; here, severe()

is used. To produce the String for the logging message, we’d like the

stack trace to appear where the exception is thrown, but

printStackTrace() doesn’t produce a String by default. To get

a String, we use the overloaded printStackTrace() that takes

a java.io.PrintWriter object as an argument (PrintWriter

is fully explained in the Appendix: I/O Streams). If we hand the PrintWriter
constructor a java.io.StringWriter object,

the output can be extracted as a String by calling toString().

The approach used by LoggingException is convenient because it

builds all the logging infrastructure into the exception itself, and thus

it works automatically without client programmer intervention.

However, it’s more common to catch and log someone else’s exception,



so you must generate the log message in the exception handler:

// exceptions/LoggingExceptions2.java

// Logging caught exceptions

// {ErrorOutputExpected}

import java.util.logging.*;

import java.io.*;

public class LoggingExceptions2 {

private static Logger logger =

Logger.getLogger("LoggingExceptions2");

static void logException(Exception e) {

StringWriter trace = new StringWriter();

e.printStackTrace(new PrintWriter(trace));

logger.severe(trace.toString());

}

public static void main(String[] args) {

try {

throw new NullPointerException();

} catch(NullPointerException e) {

logException(e);

}



}

}

/* Output:

___[ Error Output ]___

May 09, 2017 6:07:17 AM LoggingExceptions2 logException

SEVERE: java.lang.NullPointerException

at

LoggingExceptions2.main(LoggingExceptions2.java:17)

*/

The process of creating your own exceptions can be taken further. You

can add extra constructors and members:

// exceptions/ExtraFeatures.java

// Further embellishment of exception classes

class MyException2 extends Exception {

private int x;

MyException2() {}

MyException2(String msg) { super(msg); }

MyException2(String msg, int x) {

super(msg);

this.x = x;



}

public int val() { return x; }

@Override

public String getMessage() {

return "Detail Message: "+ x

+ " "+ super.getMessage();

}

}

public class ExtraFeatures {

public static void f() throws MyException2 {

System.out.println(

"Throwing MyException2 from f()");

throw new MyException2();

}

public static void g() throws MyException2 {

System.out.println(

"Throwing MyException2 from g()");

throw new MyException2("Originated in g()");

}

public static void h() throws MyException2 {



System.out.println(

"Throwing MyException2 from h()");

throw new MyException2("Originated in h()", 47);

}

public static void main(String[] args) {

try {

f();

} catch(MyException2 e) {

e.printStackTrace(System.out);

}

try {

g();

} catch(MyException2 e) {

e.printStackTrace(System.out);

}

try {

h();

} catch(MyException2 e) {

e.printStackTrace(System.out);

System.out.println("e.val() = " + e.val());



}

}

}

/* Output:

Throwing MyException2 from f()

MyException2: Detail Message: 0 null

at ExtraFeatures.f(ExtraFeatures.java:24)

at ExtraFeatures.main(ExtraFeatures.java:38)

Throwing MyException2 from g()

MyException2: Detail Message: 0 Originated in g()

at ExtraFeatures.g(ExtraFeatures.java:29)

at ExtraFeatures.main(ExtraFeatures.java:43)

Throwing MyException2 from h()

MyException2: Detail Message: 47 Originated in h()

at ExtraFeatures.h(ExtraFeatures.java:34)

at ExtraFeatures.main(ExtraFeatures.java:48)

e.val() = 47

*/

A field x is added, along with a method to reads that value and an

additional constructor that sets it. In addition,



Throwable.getMessage() is overridden to produce a more

helpful detail message. getMessage() is something like

toString() for exception classes.

Since an exception is just another kind of object, you can continue this

process of embellishing the power of your exception classes. Keep in

mind, however, that all this dressing-up might be lost on the client

programmers using your packages, since they might simply look for

the exception to be thrown and nothing more. (That’s the way most of

the Java library exceptions are used.)

The Exception

Specification

In Java, you’re encouraged to inform the client programmer, who calls

your method, of the exceptions that might be thrown from your

method. This is civilized, because the caller can then know exactly

what code to write to catch all potential exceptions. If the source code

is available, the client programmer can hunt through and look for



throw statements, but a library might not come with sources. To

prevent this from being a problem, Java requires syntax that politely

tells the client programmer what exceptions this method throws, so

the client programmer can handle them. This is the exception

specification and it’s part of the method declaration, appearing after

the argument list.

The exception specification uses an additional keyword, throws,

followed by a list of all the potential exception types. So your method

definition might look like this:

void f() throws TooBig, TooSmall, DivZero { // ...

However, if you say

void f() { // ...

it means no exceptions are thrown from the method ( except for the

exceptions inherited from RuntimeException, which can be

thrown anywhere without exception specifications—these are

described later).



You can’t lie about an exception specification. If the code within your

method causes exceptions, but your method doesn’t handle them, the

compiler will detect this and declare you must either handle the

exception or indicate with an exception specification that it might be

thrown from your method. By enforcing exception specifications from

top to bottom, Java guarantees that a certain level of exception

correctness can be ensured at compile time.

There is one place you can lie: You can claim to throw an exception

you really don’t. The compiler takes your word for it, and forces the

users of your method to treat it as if it really does throw that exception.

This has the beneficial effect of being a placeholder for that exception,

so you can actually start throwing the exception later without

requiring changes to existing code. It’s also important for creating

abstract base classes and interfaces whose derived classes or

implementations might throw exceptions.

Exceptions that are checked and enforced at compile time are called

checked exceptions.

Catching Any

Exception

You can create a handler that catches any type of exception by catching



the base-class exception type Exception. There are other types of

base exceptions, but Exception is the base that’s pertinent to

virtually all programming activities:

catch(Exception e) {

System.out.println("Caught an exception");

}

This will catch any exception, so if you use it, put it at the end of your

list of handlers to avoid preempting any exception handlers that might

otherwise follow.

Since the Exception class is the base of all the exception classes

important to the programmer, you don’t get much specific information

about the exception, but you can call the methods that come from its

base type Throwable:

String getMessage()

String getLocalizedMessage()

: Gets the detail message, or a message adjusted for this particular

locale.

String toString()

Returns a short description of the Throwable, including the

detail message if there is one.



void printStackTrace()

void printStackTrace(PrintStream)

void printStackTrace(java.io.PrintWriter)

: Prints the Throwable and the Throwables call stack trace. The

call stack shows the sequence of method calls that brought you to the

point at which the exception was thrown. The first version prints to

standard error, the second and third print to a stream of your choice

(in the Appendix: I/O Streams, you’ll understand why there are two types of
streams).

Throwable fillInStackTrace()

Records information within this Throwable object about the

current state of the stack frames. Useful when an application is

rethrowing an error or exception (more about this shortly).

In addition, you get some other methods from Throwables base type

Object (everybody’s base type). The one that might come in handy

for exceptions is getClass(), which returns an object representing

the class of this object. You can in turn query this Class object for its

name with getName(), which includes package information, or

getSimpleName(), which produces the class name alone.

Here’s an example that shows the basic Exception methods:

// exceptions/ExceptionMethods.java



// Demonstrating the Exception Methods

public class ExceptionMethods {

public static void main(String[] args) {

try {

throw new Exception("My Exception");

} catch(Exception e) {

System.out.println("Caught Exception");

System.out.println(

"getMessage():" + e.getMessage());

System.out.println("getLocalizedMessage():" +

e.getLocalizedMessage());

System.out.println("toString():" + e);

System.out.println("printStackTrace():");

e.printStackTrace(System.out);

}

}

}

/* Output:

Caught Exception

getMessage():My Exception



getLocalizedMessage():My Exception

toString():java.lang.Exception: My Exception

printStackTrace():

java.lang.Exception: My Exception

at

ExceptionMethods.main(ExceptionMethods.java:7)

*/

The methods provide successively more information—each is

effectively a superset of the previous one.

Multi-Catch

If there are a set of exceptions you want to handle the same way and

they have a common base type, you just catch that. But if those

exceptions don’t have a base type in common, before Java 7 you must

write a catch for each one:

// exceptions/SameHandler.java

class EBase1 extends Exception {}

class Except1 extends EBase1 {}



class EBase2 extends Exception {}

class Except2 extends EBase2 {}

class EBase3 extends Exception {}

class Except3 extends EBase3 {}

class EBase4 extends Exception {}

class Except4 extends EBase4 {}

public class SameHandler {

void x() throws Except1, Except2, Except3, Except4 {}

void process() {}

void f() {

try {

x();

} catch(Except1 e) {

process();

} catch(Except2 e) {

process();

} catch(Except3 e) {

process();

} catch(Except4 e) {

process();



}

}

}

With Java 7 multi-catch handlers, you can “OR” together different

types of exceptions in a single catch:

// exceptions/MultiCatch.java

public class MultiCatch {

void x() throws Except1, Except2, Except3, Except4 {}

void process() {}

void f() {

try {

x();

} catch(Except1 | Except2 | Except3 | Except4 e) {

process();

}

}

}



Or in other combinations:

// exceptions/MultiCatch2.java

public class MultiCatch2 {

void x() throws Except1, Except2, Except3, Except4 {}

void process1() {}

void process2() {}

void f() {

try {

x();

} catch(Except1 | Except2 e) {

process1();

} catch(Except3 | Except4 e) {

process2();

}

}

}

This is a nice contribution to clearer code.

The Stack Trace

The information provided by printStackTrace() can also be



accessed directly using getStackTrace(). This method returns an

array of stack trace elements, each representing one stack frame.

Element zero is the top of the stack, and is the last method invocation

in the sequence (the point this Throwable was created and thrown).

The last element of the array and the bottom of the stack is the first

method invocation in the sequence. This program provides a simple

demonstration:

// exceptions/WhoCalled.java

// Programmatic access to stack trace information

public class WhoCalled {

static void f() {

// Generate an exception to fill in the stack trace

try {

throw new Exception();

} catch(Exception e) {

for(StackTraceElement ste : e.getStackTrace())

System.out.println(ste.getMethodName());

}

}

static void g() { f(); }



static void h() { g(); }

public static void main(String[] args) {

f();

System.out.println("*******");

g();

System.out.println("*******");

h();

}

}

/* Output:

f

main

*******

f

g

main

*******



f

g

h

main

*/

Here, we just print the method name, but you can also print the entire

StackTraceElement, which contains additional information.

Rethrowing an Exception

Sometimes you’ll rethrow the exception you just caught, particularly

when you use Exception to catch any exception. Since you already

have the reference to the current exception, you can rethrow that

reference:

catch(Exception e) {

System.out.println("An exception was thrown");

throw e;

}

Rethrowing an exception causes it to go to the exception handlers in

the next-higher context. Any further catch clauses for the same try

block are still ignored. In addition, everything about the exception

object is preserved, so the handler at the higher context that catches



the specific exception type can extract all the information from that

object.

If you rethrow the current exception, the information you print about

that exception in printStackTrace() will pertain to the

exception’s origin, not the place where you rethrow it. To install new

stack trace information, you can call fillInStackTrace(), which

returns a Throwable object it creates by stuffing the current stack

information into the old exception object. Here’s what it looks like:

// exceptions/Rethrowing.java

// Demonstrating fillInStackTrace()

public class Rethrowing {

public static void f() throws Exception {

System.out.println(

"originating the exception in f()");

throw new Exception("thrown from f()");

}

public static void g() throws Exception {

try {

f();

} catch(Exception e) {



System.out.println(

"Inside g(), e.printStackTrace()");

e.printStackTrace(System.out);

throw e;

}

}

public static void h() throws Exception {

try {

f();

} catch(Exception e) {

System.out.println(

"Inside h(), e.printStackTrace()");

e.printStackTrace(System.out);

throw (Exception)e.fillInStackTrace();

}

}

public static void main(String[] args) {

try {

g();

} catch(Exception e) {



System.out.println("main: printStackTrace()");

e.printStackTrace(System.out);

}

try {

h();

} catch(Exception e) {

System.out.println("main: printStackTrace()");

e.printStackTrace(System.out);

}

}

}

/* Output:

originating the exception in f()

Inside g(), e.printStackTrace()

java.lang.Exception: thrown from f()

at Rethrowing.f(Rethrowing.java:8)

at Rethrowing.g(Rethrowing.java:12)

at Rethrowing.main(Rethrowing.java:32)

main: printStackTrace()

java.lang.Exception: thrown from f()



at Rethrowing.f(Rethrowing.java:8)

at Rethrowing.g(Rethrowing.java:12)

at Rethrowing.main(Rethrowing.java:32)

originating the exception in f()

Inside h(), e.printStackTrace()

java.lang.Exception: thrown from f()

at Rethrowing.f(Rethrowing.java:8)

at Rethrowing.h(Rethrowing.java:22)

at Rethrowing.main(Rethrowing.java:38)

main: printStackTrace()

java.lang.Exception: thrown from f()

at Rethrowing.h(Rethrowing.java:27)

at Rethrowing.main(Rethrowing.java:38)

*/

The line where fillInStackTrace() is called becomes the new

point of origin of the exception.

It’s also possible to rethrow a different exception from the one you

caught. If you do this, you get a similar effect as when you use

fillInStackTrace()—the information about the original site of

the exception is lost, and what you’re left with is the information



pertaining to the new throw:

// exceptions/RethrowNew.java

// Rethrow a different object from the one you caught

class OneException extends Exception {

OneException(String s) { super(s); }

}

class TwoException extends Exception {

TwoException(String s) { super(s); }

}

public class RethrowNew {

public static void f() throws OneException {

System.out.println(

"originating the exception in f()");

throw new OneException("thrown from f()");

}

public static void main(String[] args) {

try {

try {

f();

} catch(OneException e) {



System.out.println(

"Caught in inner try, e.printStackTrace()");

e.printStackTrace(System.out);

throw new TwoException("from inner try");

}

} catch(TwoException e) {

System.out.println(

"Caught in outer try, e.printStackTrace()");

e.printStackTrace(System.out);

}

}

}

/* Output:

originating the exception in f()

Caught in inner try, e.printStackTrace()

OneException: thrown from f()

at RethrowNew.f(RethrowNew.java:16)

at RethrowNew.main(RethrowNew.java:21)

Caught in outer try, e.printStackTrace()

TwoException: from inner try



at RethrowNew.main(RethrowNew.java:26)

*/

The final exception knows only it came from the inner try block and

not from f().

Don’t worry about cleaning up the previous exception, or any

exceptions. They’re all heap-based objects created with new, so the

garbage collector automatically cleans them all up.

Precise Rethrow

Before Java 7, if you caught an exception, you could only rethrow that

type of exception. This caused imprecisions in code that were fixed in

Java 7. So before, this would not compile:

// exceptions/PreciseRethrow.java

class BaseException extends Exception {}

class DerivedException extends BaseException {}

public class PreciseRethrow {

void catcher() throws DerivedException {

try {



throw new DerivedException();

} catch(BaseException e) {

throw e;

}

}

}

Because the catch caught a BaseException, the compiler forced

you to declare that catcher() throws BaseException, even

though it’s actually throwing the more specific

DerivedException. Since Java 7, this code does compile, which is

a small but useful fix.

Exception Chaining

Sometimes you catch one exception and throw another, but still keep

the information about the originating exception—this is called

exception chaining. Prior to Java 1.4, programmers wrote their own code to
preserve the original exception information, but now all

Throwable subclasses have the option to take a cause object in their

constructor. The cause is intended as the originating exception, and by

passing it in you maintain the stack trace back to its origin, even

though you’re creating and throwing a new exception.

The only Throwable subclasses providing the cause argument in the



constructor are the three fundamental exception classes Error (used

by the JVM to report system errors), Exception, and

RuntimeException. To chain any other exception types, use the

initCause() method rather than the constructor.

Here’s an example that dynamically adds fields to a

DynamicFields object at run time:

// exceptions/DynamicFields.java

// A Class that dynamically adds fields to itself to

// demonstrate exception chaining

class DynamicFieldsException extends Exception {}

public class DynamicFields {

private Object[][] fields;

public DynamicFields(int initialSize) {

fields = new Object[initialSize][2];

for(int i = 0; i < initialSize; i++)

fields[i] = new Object[] { null, null };

}

@Override

public String toString() {

StringBuilder result = new StringBuilder();



for(Object[] obj : fields) {

result.append(obj[0]);

result.append(": ");

result.append(obj[1]);

result.append("\n");

}

return result.toString();

}

private int hasField(String id) {

for(int i = 0; i < fields.length; i++)

if(id.equals(fields[i][0]))

return i;

return -1;

}

private int getFieldNumber(String id)

throws NoSuchFieldException {

int fieldNum = hasField(id);

if(fieldNum == -1)

throw new NoSuchFieldException();

return fieldNum;



}

private int makeField(String id) {

for(int i = 0; i < fields.length; i++)

if(fields[i][0] == null) {

fields[i][0] = id;

return i;

}

// No empty fields. Add one:

Object[][] tmp = new Object[fields.length + 1][2];

for(int i = 0; i < fields.length; i++)

tmp[i] = fields[i];

for(int i = fields.length; i < tmp.length; i++)

tmp[i] = new Object[] { null, null };

fields = tmp;

// Recursive call with expanded fields:

return makeField(id);

}

public Object

getField(String id) throws NoSuchFieldException {

return fields[getFieldNumber(id)][1];



}

public Object setField(String id, Object value)

throws DynamicFieldsException {

if(value == null) {

// Most exceptions don't have a "cause"

// constructor. In these cases you must use

// initCause(), available in all

// Throwable subclasses.

DynamicFieldsException dfe =

new DynamicFieldsException();

dfe.initCause(new NullPointerException());

throw dfe;

}

int fieldNumber = hasField(id);

if(fieldNumber == -1)

fieldNumber = makeField(id);

Object result = null;

try {

result = getField(id); // Get old value

} catch(NoSuchFieldException e) {



// Use constructor that takes "cause":

throw new RuntimeException(e);

}

fields[fieldNumber][1] = value;

return result;

}

public static void main(String[] args) {

DynamicFields df = new DynamicFields(3);

System.out.println(df);

try {

df.setField("d", "A value for d");

df.setField("number", 47);

df.setField("number2", 48);

System.out.println(df);

df.setField("d", "A new value for d");

df.setField("number3", 11);

System.out.println("df: " + df);

System.out.println("df.getField(\"d\") : "

+ df.getField("d"));

Object field =



df.setField("d", null); // Exception

} catch(NoSuchFieldException |

DynamicFieldsException e) {

e.printStackTrace(System.out);

}

}

}

/* Output:

null: null

null: null

null: null

d: A value for d

number: 47

number2: 48

df: d: A new value for d

number: 47

number2: 48

number3: 11

df.getField("d") : A new value for d

DynamicFieldsException



at

DynamicFields.setField(DynamicFields.java:65)

at DynamicFields.main(DynamicFields.java:97)

Caused by: java.lang.NullPointerException

at

DynamicFields.setField(DynamicFields.java:67)

... 1 more

*/

Each DynamicFields object contains an array of Object-

Object pairs. The first object is the field identifier (a String), and

the second is the field value, which can be any type except an

unwrapped primitive. When you create the object, you make an

educated guess about how many fields you need. When you call

setField(), it either finds the existing field by that name or creates

a new one, and puts in your value. If it runs out of space, it adds new

space by creating an array of length one longer and copying the old

elements in. If you try to put in a null value, it throws a

DynamicFieldsException by creating one and using

initCause() to insert a NullPointerException as the cause.

As a return value, setField() also fetches out the old value at that



field location using getField(), which could throw a

NoSuchFieldException. If the client programmer calls

getField(), they are responsible for handling

NoSuchFieldException, but if this exception is thrown inside

setField(), it’s a programming error, so the

NoSuchFieldException is converted to a RuntimeException

using the constructor that takes a cause argument.

You’ll notice that toString() uses a StringBuilder to create its

result. You’ll learn more about StringBuilder in the Strings

chapter, but in general you’ll use it whenever you’re writing a

toString() that involves looping, as is the case here.

The catch clause in main() looks different—it handles two

different types of exceptions with the same clause, combined with an

“OR” symbol. This Java 7 feature helps reduce code duplication and

makes it easier to specify the exact types you are catching, rather than

simply catching a base type. You can combine numerous exception



types this way.

Standard Java

Exceptions

The Java class Throwable describes anything that can be thrown as

an exception. There are two general types of Throwable objects

(“types of” = “inherited from”). Error represents compile-time and

system errors you don’t worry about catching (except in very special

cases). Exception is the basic type that can be thrown from any of

the standard Java library class methods and from your methods and

runtime accidents. So the Java programmer’s base type of interest is

usually Exception.

The best way to get an overview of the exceptions is to browse the JDK

documentation. It’s worth doing this once just to get a feel for the

various exceptions, but you’ll soon see there isn’t anything special

between one exception and the next except for the name. Also, the

number of exceptions in Java keeps expanding; basically, it’s pointless

to put them in a book. Any new library you get from a third-party



vendor will probably have its own exceptions as well. The important

thing to understand is the concept and what to do with the exceptions.

The basic idea is that the name of the exception represents the

problem that occurred. The exception name should be relatively self-

explanatory. The exceptions are not all defined in java.lang; some

are created to support other libraries such as util, net, and io,

which you see from their full class names or their base classes. For

example, all I/O exceptions are inherited from

java.io.IOException.

Special Case: RuntimeException

The first example in this chapter was

if(t == null)

throw new NullPointerException();

It can be a bit horrifying to think you must check for null on every

reference that is passed into a method (since you can’t know if the

caller has passed you a valid reference). Fortunately, you don’t—this is

part of the standard runtime checking that Java performs for you, and

if any call is made to a null reference, Java will automatically throw a

NullPointerException. So the above bit of code is always

superfluous, although you might perform other checks to guard



against the appearance of a NullPointerException.

There’s a whole group of exception types in this category. They’re

always thrown automatically by Java and you don’t include them in

your exception specifications. Conveniently enough, they’re all

grouped together by putting them under a single base class called

RuntimeException, a perfect example of inheritance: It

establishes a family of types that have some characteristics and

behaviors in common.

A RuntimeException represents a programming error, which is:

1. An error you cannot anticipate. For example, a null reference

that is outside of your control.

2. An error that you, as a programmer, should have checked for in

your code (such as ArrayIndexOutOfBoundsException

where you should pay attention to the size of the array). An

exception that happens from point #1 often becomes an issue for

point #2.

Exceptions are a tremendous benefit here, since they help in the

debugging process.

You never write an exception specification saying that a method might

throw a RuntimeException (or any type inherited from



RuntimeException), because they are unchecked exceptions.

Because they indicate bugs, you don’t usually catch a

RuntimeException—it’s dealt with automatically. If you were

forced to check for RuntimeExceptions, your code could get too

messy. Even though you don’t typically catch RuntimeExceptions,

in your own packages you might choose to throw some

RuntimeExceptions.

What happens when you don’t catch such exceptions? Since the

compiler doesn’t enforce exception specifications for these, it’s

plausible that a RuntimeException could percolate all the way out

to your main() method without being caught:

// exceptions/NeverCaught.java

// Ignoring RuntimeExceptions

// {ThrowsException}

public class NeverCaught {

static void f() {

throw new RuntimeException("From f()");

}

static void g() {

f();



}

public static void main(String[] args) {

g();

}

}

/* Output:

___[ Error Output ]___

Exception in thread "main" java.lang.RuntimeException:

From f()

at NeverCaught.f(NeverCaught.java:7)

at NeverCaught.g(NeverCaught.java:10)

at NeverCaught.main(NeverCaught.java:13)

*/

If a RuntimeException gets all the way out to main() without

being caught, printStackTrace() is called for that exception as

the program exits.

You can see that a RuntimeException (or anything inherited from

it) is a special case, since the compiler doesn’t require an exception

specification for these types. The output is reported to System.err.

Keep in mind that only exceptions of type RuntimeException (and



subclasses) can be ignored in your coding, since the compiler carefully

enforces the handling of all checked exceptions.

You cannot classify Java exception handling as a single-purpose tool.

Yes, it is designed to handle those pesky runtime errors that occur

from forces outside your code’s control, but it’s also essential for

certain types of programming bugs that the compiler cannot detect.

Performing Cleanup

with finally

There’s often a piece of code you must execute whether or not an

exception is thrown within a try block. This usually pertains to an

operation other than memory recovery (since that’s taken care of by

the garbage collector). To achieve this effect, you use a finally

clause4 at the end of all the exception handlers. The full picture of exception-
handling is thus:

try {

// The guarded region: Dangerous activities



// that might throw A, B, or C

} catch(A a1) {

// Handler for situation A

} catch(B b1) {

// Handler for situation B

} catch(C c1) {

// Handler for situation C

} finally {

// Activities that happen every time

}

This program demonstrate that the finally clause always runs:

// exceptions/FinallyWorks.java

// The finally clause is always executed

class ThreeException extends Exception {}

public class FinallyWorks {

static int count = 0;

public static void main(String[] args) {

while(true) {



try {

// Post-increment is zero first time:

if(count++ == 0)

throw new ThreeException();

System.out.println("No exception");

} catch(ThreeException e) {

System.out.println("ThreeException");

} finally {

System.out.println("In finally clause");

if(count == 2) break; // out of "while"

}

}

}

}

/* Output:

ThreeException

In finally clause



No exception

In finally clause

*/

From the output you see that the finally clause is executed whether

or not an exception is thrown. There’s also a hint for dealing with the

fact that exceptions in Java do not allow you to resume back to where

the exception was thrown, as discussed earlier. If you place your try

block in a loop, you can establish a condition that must be met before

you continue the program. You can also add a static counter or

some other device to allow the loop to try several different approaches

before giving up. This way you can build a greater level of robustness

into your programs.

What’s finally for?

In a language without garbage collection and without automatic

destructor calls,5 finally is important because it allows the programmer to
guarantee the release of memory regardless of what

happens in the try block. But Java has garbage collection, so

releasing memory is virtually never a problem. Also, it has no

destructors to call. So when do you use finally in Java?

The finally clause is necessary to clean up something other than

memory. Examples include an open file or network connection,



something you’ve drawn on the screen, or even a switch in the outside

world:

// exceptions/Switch.java

public class Switch {

private boolean state = false;

public boolean read() { return state; }

public void on() {

state = true;

System.out.println(this);

}

public void off() {

state = false;

System.out.println(this);

}

@Override

public String toString() {

return state ? "on" : "off";

}

}

// exceptions/OnOffException1.java



public class OnOffException1 extends Exception {}

// exceptions/OnOffException2.java

public class OnOffException2 extends Exception {}

// exceptions/OnOffSwitch.java

// Why use finally?

public class OnOffSwitch {

private static Switch sw = new Switch();

public static void f()

throws OnOffException1, OnOffException2 {}

public static void main(String[] args) {

try {

sw.on();

// Code that can throw exceptions...

f();

sw.off();

} catch(OnOffException1 e) {

System.out.println("OnOffException1");

sw.off();

} catch(OnOffException2 e) {

System.out.println("OnOffException2");



sw.off();

}

}

}

/* Output:

on

off

*/

The goal here is to make sure the switch is off when main()

completes, so sw.off() is placed at the end of the try block and at

the end of each exception handler. But an exception might be thrown

that isn’t caught here, so sw.off() would be missed. However, with

finally you can place the cleanup code from a try block in just one

place:

// exceptions/WithFinally.java

// Finally Guarantees cleanup

public class WithFinally {

static Switch sw = new Switch();

public static void main(String[] args) {

try {



sw.on();

// Code that can throw exceptions...

OnOffSwitch.f();

} catch(OnOffException1 e) {

System.out.println("OnOffException1");

} catch(OnOffException2 e) {

System.out.println("OnOffException2");

} finally {

sw.off();

}

}

}

/* Output:

on

off

*/

Here sw.off() is guaranteed to run no matter what happens.

Even in cases when the exception is not caught in the current set of

catch clauses, finally is executed before the exception-handling

mechanism continues its search for a handler at the next higher level:



// exceptions/AlwaysFinally.java

// Finally is always executed

class FourException extends Exception {}

public class AlwaysFinally {

public static void main(String[] args) {

System.out.println("Entering first try block");

try {

System.out.println("Entering second try block");

try {

throw new FourException();

} finally {

System.out.println("finally in 2nd try block");

}

} catch(FourException e) {

System.out.println(

"Caught FourException in 1st try block");

} finally {



System.out.println("finally in 1st try block");

}

}

}

/* Output:

Entering first try block

Entering second try block

finally in 2nd try block

Caught FourException in 1st try block

finally in 1st try block

*/

The finally statement is also executed when break and

continue statements are involved. Together with the labeled break

and labeled continue, finally eliminates the need for a goto

statement in Java.

Using finally During return

Because a finally clause is always executed, it’s possible to return

from multiple points within a method and still guarantee that

important cleanup is performed:

// exceptions/MultipleReturns.java



public class MultipleReturns {

public static void f(int i) {

System.out.println(

"Initialization that requires cleanup");

try {

System.out.println("Point 1");

if(i == 1) return;

System.out.println("Point 2");

if(i == 2) return;

System.out.println("Point 3");

if(i == 3) return;

System.out.println("End");

return;

} finally {

System.out.println("Performing cleanup");

}

}



public static void main(String[] args) {

for(int i = 1; i <= 4; i++)

f(i);

}

}

/* Output:

Initialization that requires cleanup

Point 1

Performing cleanup

Initialization that requires cleanup

Point 1

Point 2

Performing cleanup

Initialization that requires cleanup

Point 1

Point 2

Point 3

Performing cleanup

Initialization that requires cleanup

Point 1



Point 2

Point 3

End

Performing cleanup

*/

The output shows it doesn’t matter where you return, the finally

clause always runs.

Pitfall: the Lost Exception

Unfortunately, there’s a flaw in Java’s exception implementation.

Although exceptions are an indication of a crisis in your program and

should never be ignored, it’s possible for an exception to be lost. This

happens with a particular configuration using a finally clause:

// exceptions/LostMessage.java

// How an exception can be lost

class VeryImportantException extends Exception {

@Override

public String toString() {

return "A very important exception!";

}

}



class HoHumException extends Exception {

@Override

public String toString() {

return "A trivial exception";

}

}

public class LostMessage {

void f() throws VeryImportantException {

throw new VeryImportantException();

}

void dispose() throws HoHumException {

throw new HoHumException();

}

public static void main(String[] args) {

try {

LostMessage lm = new LostMessage();

try {

lm.f();

} finally {

lm.dispose();



}

} catch(VeryImportantException |

HoHumException e) {

System.out.println(e);

}

}

}

/* Output:

A trivial exception

*/

The output shows no evidence of the VeryImportantException,

which is replaced by the HoHumException in the finally clause.

This is a rather serious pitfall, since it means an exception can be

completely lost, and in a far more subtle and difficult-to-detect fashion

than the preceding example. In contrast, C++ treats the situation

where a second exception is thrown before the first one is handled as a



dire programming error. Perhaps a future version of Java will repair

this problem (on the other hand, you typically wrap any method that

throws an exception, such as dispose() in the example above,

inside a try-catch clause).

An even simpler way to lose an exception is just to return from

inside a finally clause:

// exceptions/ExceptionSilencer.java

public class ExceptionSilencer {

public static void main(String[] args) {

try {

throw new RuntimeException();

} finally {

// Using 'return' inside the finally block

// will silence any thrown exception.

return;

}

}

}

If you run this program you’ll see it produces no output, even though

an exception is thrown.



Exception Restrictions

When you override a method, you can throw only the exceptions

specified in the base-class version of the method. This is a useful

restriction, since it means code that works with the base class will

automatically work with any object derived it (a fundamental OOP

concept), including exceptions.

This example demonstrates the kinds of restrictions imposed (at

compile time) for exceptions:

// exceptions/StormyInning.java

// Overridden methods can throw only the exceptions

// specified in their base-class versions, or exceptions

// derived from the base-class exceptions

class BaseballException extends Exception {}

class Foul extends BaseballException {}

class Strike extends BaseballException {}

abstract class Inning {

Inning() throws BaseballException {}

public void event() throws BaseballException {

// Doesn't actually have to throw anything

}



public abstract void atBat() throws Strike, Foul;

public void walk() {} // Throws no checked exceptions

}

class StormException extends Exception {}

class RainedOut extends StormException {}

class PopFoul extends Foul {}

interface Storm {

void event() throws RainedOut;

void rainHard() throws RainedOut;

}

public

class StormyInning extends Inning implements Storm {

// OK to add new exceptions for constructors, but you

// must deal with the base constructor exceptions:

public StormyInning()

throws RainedOut, BaseballException {}

public StormyInning(String s)

throws BaseballException {}

// Regular methods must conform to base class:

//- void walk() throws PopFoul {} //Compile error



// Interface CANNOT add exceptions to existing

// methods from the base class:

//- public void event() throws RainedOut {}

// If the method doesn't already exist in the

// base class, the exception is OK:

@Override

public void rainHard() throws RainedOut {}

// You can choose to not throw any exceptions,

// even if the base version does:

@Override

public void event() {}

// Overridden methods can throw inherited exceptions:

@Override

public void atBat() throws PopFoul {}

public static void main(String[] args) {

try {

StormyInning si = new StormyInning();

si.atBat();

} catch(PopFoul e) {

System.out.println("Pop foul");



} catch(RainedOut e) {

System.out.println("Rained out");

} catch(BaseballException e) {

System.out.println("Generic baseball exception");

}

// Strike not thrown in derived version.

try {

// What happens if you upcast?

Inning i = new StormyInning();

i.atBat();

// You must catch the exceptions from the

// base-class version of the method:

} catch(Strike e) {

System.out.println("Strike");

} catch(Foul e) {

System.out.println("Foul");

} catch(RainedOut e) {

System.out.println("Rained out");

} catch(BaseballException e) {

System.out.println("Generic baseball exception");



}

}

}

In Inning, you see that both the constructor and the event()

method say they will throw an exception, but they never do. This is

legal because it forces the user to catch any exceptions that might be

added in overridden versions of event(). The same idea holds for

abstract methods, as seen in atBat().

The interface Storm contains one method (event()) that is defined

in Inning, and one method that isn’t. Both methods throw a new

type of exception, RainedOut. When StormyInning extends

Inning and implements Storm, the event() method in

Storm cannot change the exception interface of event() in

Inning. Again, this makes sense because otherwise you’d never know

if you were catching the correct thing when working with the base

class. However, if a method described in an interface is not in the base

class, such as rainHard(), there’s no problem if it throws

exceptions.

The restriction on exceptions does not apply to constructors.

StormyInning shows that a constructor can throw anything it



wants, regardless of what the base-class constructor throws. However,

since a base-class constructor must always be called one way or

another (here, the no-arg constructor is called automatically), the

derived-class constructor must declare any base-class constructor

exceptions in its exception specification.

A derived-class constructor cannot catch exceptions thrown by its

base-class constructor.

The reason StormyInning.walk() will not compile is that it

throws an exception, but Inning.walk() does not. If this were

allowed, you could write code that called Inning.walk() without

handling any exceptions. However, when you substituted an object of

a class derived from Inning, exceptions would be thrown so your

code would break. By forcing the derived-class methods to conform to

the exception specifications of the base-class methods, substitutability

of objects is maintained.

The overridden event() method shows that a derived-class version

of a method can choose not to throw any exceptions, even if the base-

class version does. Again, this is fine since it doesn’t break code that is

written assuming the base-class version throws exceptions. Similar

logic applies to atBat(), which throws PopFoul, an exception that



is derived from Foul thrown by the base-class version of atBat().

This way, if you write code that works with Inning and calls

atBat(), you must catch the Foul exception. Since PopFoul is

derived from Foul, the exception handler will also catch PopFoul.

The last point of interest is in main(). Notice that if you’re dealing

with exactly a StormyInning object, the compiler forces you to

catch only the exceptions specific to that class, but if you upcast to the

base type, the compiler (correctly) forces you to catch the exceptions

for the base type. All these constraints produce much more robust

exception-handling code.6

Although exception specifications are enforced by the compiler during

inheritance, the exception specifications are not part of the type of a

method, which comprises only the method name and argument types.

Therefore, you cannot overload methods based on exception

specifications. In addition, just because an exception specification

exists in a base-class version of a method doesn’t mean it must exist in

the derived-class version of the method. This is different from

inheritance rules, where a method in the base class must also exist in



the derived class. Put another way, the “exception specification

interface” for a particular method can narrow during inheritance and

overriding, but it cannot widen—this is precisely the opposite of the

rule for the class interface during inheritance.

Constructors

It’s important that you always ask, “If an exception occurs, will

everything be properly cleaned up?” Most of the time you’re fairly safe,

but with constructors there’s a problem. The constructor puts the

object into a safe starting state, but it might perform some operation—

such as opening a file—that doesn’t get cleaned up until the user is

finished with the object and calls a special cleanup method. If you

throw an exception from inside a constructor, these cleanup behaviors

might not occur properly. This means you must be especially vigilant

when writing a constructor.

You might think finally is the solution. But it’s not that simple,

because finally performs the cleanup code every time. If a



constructor fails partway through its execution, it might not have

successfully created some part of the object that is cleaned up in the

finally clause.

In the following example, a class called InputFile opens a file and

reads it one line at a time. It uses the classes FileReader and

BufferedReader from the Java standard I/O library discussed in

the Appendix: I/O Streams. These classes are simple enough you probably
won’t have any trouble understanding their basic use:

// exceptions/InputFile.java

// Paying attention to exceptions in constructors

import java.io.*;

public class InputFile {

private BufferedReader in;

public InputFile(String fname) throws Exception {

try {

in = new BufferedReader(new FileReader(fname));

// Other code that might throw exceptions

} catch(FileNotFoundException e) {

System.out.println("Could not open " + fname);

// Wasn't open, so don't close it

throw e;



} catch(Exception e) {

// All other exceptions must close it

try {

in.close();

} catch(IOException e2) {

System.out.println("in.close() unsuccessful");

}

throw e; // Rethrow

} finally {

// Don't close it here!!!

}

}

public String getLine() {

String s;

try {

s = in.readLine();

} catch(IOException e) {

throw new RuntimeException("readLine() failed");

}

return s;



}

public void dispose() {

try {

in.close();

System.out.println("dispose() successful");

} catch(IOException e2) {

throw new RuntimeException("in.close() failed");

}

}

}

The constructor for InputFile takes a String argument: the

name of the file to open. Inside a try block, it creates a FileReader

using the file name. A FileReader isn’t particularly useful until you use it to
create a BufferedReader. One of the benefits of

InputFile is that it combines these two actions.

If the FileReader constructor is unsuccessful, it throws a

FileNotFoundException. This is the one case when you don’t

close the file, because it wasn’t successfully opened. Any other catch

clauses must close the file because it was opened by the time those

catch clauses are entered. (This gets trickier if more than one

method can throw a FileNotFoundException. In that case,



you’ll usually break things into several try blocks.) The close()

method might throw an exception so it is tried and caught even though

it’s within the block of another catch clause—it’s just another pair of

curly braces to the Java compiler. After performing local operations,

the exception is rethrown, which is appropriate because this

constructor failed, and you don’t want the calling method to assume

that the object was properly created and is valid.

In this example, the finally clause is definitely not the place to

close() the file, since that would close it every time the constructor

completed. We want the file to be open for the useful lifetime of the

InputFile object.

The getLine() method returns a String containing the next line

in the file. It calls readLine(), which can throw an exception, but

that exception is caught so getLine() doesn’t throw any exceptions.

One of the design issues with exceptions is whether to handle an

exception completely at this level, to handle it partially and pass the

same exception (or a different one) on, or whether to simply pass it on.

Passing it on, when appropriate, can certainly simplify coding. In this

situation, the getLine() method converts the exception to a

RuntimeException to indicate a programming error.



The dispose() method must be called by the user when the

InputFile object is no longer needed. This will release the system

resources (such as file handles) used by the BufferedReader

and/or FileReader objects. You don’t do this until you’re finished

with the InputFile object. You might think of putting such

functionality into a finalize() method, but as mentioned in the

Housekeeping chapter, you can’t always be sure that finalize() is called (even
if you can be sure it gets called, you don’t know when).

This is one of the downsides to Java: All cleanup—other than memory

cleanup—doesn’t happen automatically, so you must inform the client

programmers they are responsible.

The safest way to use a class which might throw an exception during

construction and which requires cleanup is to use nested try blocks:

// exceptions/Cleanup.java

// Guaranteeing proper cleanup of a resource

public class Cleanup {

public static void main(String[] args) {

try {

InputFile in = new InputFile("Cleanup.java");

try {

String s;



int i = 1;

while((s = in.getLine()) != null)

; // Perform line-by-line processing here...

} catch(Exception e) {

System.out.println("Caught Exception in main");

e.printStackTrace(System.out);

} finally {

in.dispose();

}

} catch(Exception e) {

System.out.println(

"InputFile construction failed");

}

}

}

/* Output:

dispose() successful

*/

Look carefully at the logic here: The construction of the InputFile

object is effectively in its own try block. If that construction fails, the



outer catch clause is entered and dispose() is not called.

However, if construction succeeds then you must ensure the object is

cleaned up, so immediately after construction you create a new try

block. The finally that performs cleanup is associated with the

inner try block; this way, the finally clause is not executed if

construction fails, and it is always executed if construction succeeds.

This general cleanup idiom should still be used if the constructor

throws no exceptions. The basic rule is: Right after you create an

object that requires cleanup, begin a try-finally:

// exceptions/CleanupIdiom.java

// Disposable objects must be followed by a try-finally

class NeedsCleanup { // Construction can't fail

private static long counter = 1;

private final long id = counter++;

public void dispose() {

System.out.println(

"NeedsCleanup " + id + " disposed");

}

}

class ConstructionException extends Exception {}



class NeedsCleanup2 extends NeedsCleanup {

// Construction can fail:

NeedsCleanup2() throws ConstructionException {}

}

public class CleanupIdiom {

public static void main(String[] args) {

// [1]:

NeedsCleanup nc1 = new NeedsCleanup();

try {

// ...

} finally {

nc1.dispose();

}

// [2]:

// If construction cannot fail,

// you can group objects:

NeedsCleanup nc2 = new NeedsCleanup();

NeedsCleanup nc3 = new NeedsCleanup();

try {

// ...



} finally {

nc3.dispose(); // Reverse order of construction

nc2.dispose();

}

// [3]:

// If construction can fail you must guard each one:

try {

NeedsCleanup2 nc4 = new NeedsCleanup2();

try {

NeedsCleanup2 nc5 = new NeedsCleanup2();

try {

// ...

} finally {

nc5.dispose();

}

} catch(ConstructionException e) { // nc5 const.

System.out.println(e);

} finally {

nc4.dispose();

}



} catch(ConstructionException e) { // nc4 const.

System.out.println(e);

}

}

}

/* Output:

NeedsCleanup 1 disposed

NeedsCleanup 3 disposed

NeedsCleanup 2 disposed

NeedsCleanup 5 disposed

NeedsCleanup 4 disposed

*/

[1] This is fairly straightforward: You follow a disposable object

with a try-finally. If the object construction cannot fail, no

catch is necessary.

[2] Here you see objects with constructors that cannot fail



grouped together for both construction and cleanup.

[3] This shows how to deal with objects whose constructors can

fail and which need cleanup. To properly handle this situation,

things get messy, because you must surround each construction

with its own try-catch, and each object construction must be

followed by a try-finally to guarantee cleanup.

The messiness of exception handling here is a strong argument for

creating constructors that cannot fail, although this is not always

possible.

Note that if dispose() can throw an exception you might need

additional try blocks. Basically, you must think carefully about all the

possibilities and guard for each one.

Try-With-Resources

The last section might have made your head spin a bit. Figuring out

where to put all the try-catch-finally blocks becomes

intimidating when considering all the ways something can fail. It

seems quite challenging to ensure that none of the failure paths leave

your system in an unstable state.

InputFile.java is a particularly thorny case, because the file is

opened (with all the possible exceptions from that), then it is left open



for the lifetime of the object. Each call to getLine() can cause an

exception, and so can dispose(). This is a good example only

because it shows how messy things can be. It also demonstrates that

you should try your best not to design your code that way (of course,

you often get into situations when it’s not your choice how the code is

designed, so you must still understand it).

A better design for InputFile.java is if the constructor reads the

file and buffers it internally—that way, the opening, reading, and

closing of the file all happen in the constructor. Or, if reading and

storing the file is impractical, you can instead produce a Stream.

Ideally you’d design it more like this:

// exceptions/InputFile2.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

public class InputFile2 {

private String fname;

public InputFile2(String fname) {

this.fname = fname;

}



public

Stream<String> getLines() throws IOException {

return Files.lines(Paths.get(fname));

}

public static void

main(String[] args) throws IOException {

new InputFile2("InputFile2.java").getLines()

.skip(15)

.limit(1)

.forEach(System.out::println);

}

}

/* Output:

main(String[] args) throws IOException {

*/

Now getLines() is solely responsible for opening the file and

creating the Stream.

You can’t always sidestep the problem this easily. Sometimes there are

objects that:

1. Need cleanup.



2. Need cleanup at a particular moment, when you go out of a scope

(by normal means or via an exception).

A common example is java.io.FileInputStream (described in

the Appendix: I/O Streams). To use it properly, you must write some tricky
boilerplate code:

// exceptions/MessyExceptions.java

import java.io.*;

public class MessyExceptions {

public static void main(String[] args) {

InputStream in = null;

try {

in = new FileInputStream(

new File("MessyExceptions.java"));

int contents = in.read();

// Process contents

} catch(IOException e) {

// Handle the error

} finally {

if(in != null) {

try {

in.close();



} catch(IOException e) {

// Handle the close() error

}

}

}

}

}

When the finally clause has its own try block, it feels like things

have become overcomplicated.

Fortunately Java 7 introduces the try-with-resources syntax, which

cleans up the above code remarkably well:

// exceptions/TryWithResources.java

import java.io.*;

public class TryWithResources {

public static void main(String[] args) {

try(

InputStream in = new FileInputStream(

new File("TryWithResources.java"))

) {

int contents = in.read();



// Process contents

} catch(IOException e) {

// Handle the error

}

}

}

Before Java 7, a try was always followed by a {, but now it can be

followed by a parenthesized definition—here our creation of the

FileInputStream object. The part within parentheses is called the

resource specification header. Now in is available throughout the rest

of the try block. More importantly, no matter how you exit the try

block (normally or via exception), the equivalent of the previous

finally clause is executed, but without writing that messy and

tricky code. This is an important improvement.

How does it work? The objects created in the try-with-resources

definition clause (within the parentheses) must implement the

java.lang.AutoCloseable interface, which has a single

method, close(). When AutoCloseable was introduced in Java

7, many interfaces and classes were modified to implement it; look at

the Javadocs for AutoCloseable to see a list, which includes



Stream objects:

// exceptions/StreamsAreAutoCloseable.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

public class StreamsAreAutoCloseable {

public static void

main(String[] args) throws IOException{

try(

Stream<String> in = Files.lines(

Paths.get("StreamsAreAutoCloseable.java"));

PrintWriter outfile = new PrintWriter(

"Results.txt"); // [1]

) {

in.skip(5)

.limit(1)

.map(String::toLowerCase)

.forEachOrdered(outfile::println);

} // [2]

}



}

[1] You can see another feature here: the resource specification

header can contain multiple definitions, separated by semicolons

(the final semicolon is accepted but optional). Each object defined

in the header will have its close() called at the end of the try

block.

[2] The try block for try-with-resources can stand alone,

without a catch or finally. Here, the IOException is

passed out through main() so it doesn’t have to be caught at the

end of the try.

The Java 5 Closeable interface was modified to inherit from

AutoCloseable, so anything that historically supports

Closeable is also supported by try-with-resources.

Revealing the Details

To investigate the underlying mechanisms of try-with-resources, we’ll

create our own AutoCloseable classes:

// exceptions/AutoCloseableDetails.java



class Reporter implements AutoCloseable {

String name = getClass().getSimpleName();

Reporter() {

System.out.println("Creating " + name);

}

public void close() {

System.out.println("Closing " + name);

}

}

class First extends Reporter {}

class Second extends Reporter {}

public class AutoCloseableDetails {

public static void main(String[] args) {

try(

First f = new First();

Second s = new Second()

) {

}

}

}



/* Output:

Creating First

Creating Second

Closing Second

Closing First

*/

Exiting the try block calls close() for both objects and it closes

them in reverse order of creation. The order is important because in

this configuration the Second object might depend on the First

object, so if First is already closed by the time Second closes,

Seconds close() might try to access some feature of First which

is no longer available.

Suppose we define an object within the resource specification header

that is not AutoCloseable:

// exceptions/TryAnything.java

// {WillNotCompile}

class Anything {}

public class TryAnything {

public static void main(String[] args) {

try(



Anything a = new Anything()

) {

}

}

}

As we hope and expect, Java won’t let us do it and emits a compile-

time error.

What if one of the constructors throws an exception?

// exceptions/ConstructorException.java

class CE extends Exception {}

class SecondExcept extends Reporter {

SecondExcept() throws CE {

super();

throw new CE();

}

}

public class ConstructorException {

public static void main(String[] args) {

try(

First f = new First();



SecondExcept s = new SecondExcept();

Second s2 = new Second()

) {

System.out.println("In body");

} catch(CE e) {

System.out.println("Caught: " + e);

}

}

}

/* Output:

Creating First

Creating SecondExcept

Closing First

Caught: CE

*/

Now there are three objects defined in the resource specification

header, and the middle one throws an exception. Because of this, the

compiler forces us to have a catch clause to catch the constructor

exception. This means the resource specification header is actually

enclosed by the try block.



As expected, First is created without incident, and SecondExcept

throws an exception during creation. Notice that close() is not

called for SecondExcept, because if your constructor fails you can’t

assume you can do anything safely with that object, including close it.

Because of the exception from SecondExcept, the Second object s2 is never
created, so it is not cleaned up.

If no constructors throw exceptions but you might get them in the

body of the try, you are again forced to provide a catch clause:

// exceptions/BodyException.java

class Third extends Reporter {}

public class BodyException {

public static void main(String[] args) {

try(

First f = new First();

Second s2 = new Second()

) {

System.out.println("In body");

Third t = new Third();

new SecondExcept();

System.out.println("End of body");

} catch(CE e) {



System.out.println("Caught: " + e);

}

}

}

/* Output:

Creating First

Creating Second

In body

Creating Third

Creating SecondExcept

Closing Second

Closing First

Caught: CE

*/

Notice that the Third object never gets cleaned up. That’s because it

was not created inside the resource specification header, so it is not

guarded. This is important, because Java provides no guidance here in

the form of warnings or errors, so a mistake like this can easily slip

through. Indeed, if you rely on some of the integrated development

environments to automatically rewrite code to use try-with-resources,



they will (at the time of this writing) typically only guard the first

object they come across, and miss the rest.

Finally, let’s look at close() methods that throw exceptions:

// exceptions/CloseExceptions.java

class CloseException extends Exception {}

class Reporter2 implements AutoCloseable {

String name = getClass().getSimpleName();

Reporter2() {

System.out.println("Creating " + name);

}

public void close() throws CloseException {

System.out.println("Closing " + name);

}

}

class Closer extends Reporter2 {

@Override

public void close() throws CloseException {

super.close();

throw new CloseException();

}



}

public class CloseExceptions {

public static void main(String[] args) {

try(

First f = new First();

Closer c = new Closer();

Second s = new Second()

) {

System.out.println("In body");

} catch(CloseException e) {

System.out.println("Caught: " + e);

}

}

}

/* Output:

Creating First



Creating Closer

Creating Second

In body

Closing Second

Closing Closer

Closing First

Caught: CloseException

*/

Technically we’re not forced to provide a catch clause here; you can

instead report that main() throws CloseException. But the

catch clause is the typical place to put the error-handling code.

Notice that, because all three objects were created, they are all closed—

in reverse order—even though Closer.close() throws an

exception. When you think about it, this is what you want to happen,

but if you must code all that logic yourself, you might miss something

and get it wrong. Imagine all the code that’s out there where the

programmers didn’t think through all the implications of cleanup, and

did it wrong. For that reason you should always use try-with-resources

whenever you can. It helps a lot that the feature also makes the

resulting code much cleaner and easier to understand.



Exception Matching

When an exception is thrown, the exception-handling system looks

through the “nearest” handlers in the order they are written. When it

finds a match, the exception is considered handled, and no further

searching occurs.

Matching an exception doesn’t require a perfect match between the

exception and its handler. A derived-class object will match a handler

for the base class:

// exceptions/Human.java

// Catching exception hierarchies

class Annoyance extends Exception {}

class Sneeze extends Annoyance {}

public class Human {

public static void main(String[] args) {

// Catch the exact type:

try {

throw new Sneeze();

} catch(Sneeze s) {

System.out.println("Caught Sneeze");

} catch(Annoyance a) {



System.out.println("Caught Annoyance");

}

// Catch the base type:

try {

throw new Sneeze();

} catch(Annoyance a) {

System.out.println("Caught Annoyance");

}

}

}

/* Output:

Caught Sneeze

Caught Annoyance

*/

The Sneeze exception is caught by the first catch clause it matches,

which is the first one in the sequence. However, if you remove the first

catch clause, leaving only the catch clause for Annoyance, the

code still works because it’s catching the base class of Sneeze. Put

another way, catch(Annoyance a) will catch an Annoyance or

any class derived from it. This is useful because if you decide to add



more derived exceptions to a method, the client programmer’s code

won’t need changing as long as the client catches the base-class

exceptions.

If you try to “mask” the derived-class exceptions by putting the base-

class catch clause first, like this:

try {

throw new Sneeze();

} catch(Annoyance a) {

// ...

} catch(Sneeze s) {

// ...

}

the compiler will give you an error message, since it sees that the

Sneeze catch clause can never be reached.

Alternative

Approaches



An exception-handling system is a trapdoor that allows your program

to abandon execution of the normal sequence of statements. The

trapdoor is used when an “exceptional condition” occurs, such that

normal execution is no longer possible or desirable. Exceptions

represent conditions that the current method is unable to handle. The

reason exception-handling systems were developed is because the

approach of dealing with each possible error condition produced by

each function call was too onerous, and programmers simply weren’t

doing it. As a result, they were ignoring the errors. It’s worth observing

that the issue of programmer convenience in handling errors was a

prime motivation for exceptions in the first place.

One of the important guidelines in exception handling is “Don’t catch

an exception unless you know what to do with it.” In fact, one of the

important goals of exception handling is to move the error-handling

code away from the point where the errors occur. This focuses on your

objective in one section of your code, and how you’re going to deal

with problems in a distinct separate section of your code. As a result,

your mainline code is not cluttered with error-handling logic, and it’s

(hypothetically) much easier to understand and maintain. Exception

handling also tends to reduce the amount of error-handling code, by



allowing one handler to deal with many error sites.

Checked exceptions complicate this scenario a bit, because they force

you to add catch clauses in places where you might not be ready to

handle an error. This results in the “harmful if swallowed” problem:

try {

// ... to do something useful

} catch(ObligatoryException e) {} // Gulp!

Programmers (myself included, in the 1st edition of Thinking in Java)

would just do the simplest thing, and “swallow” the exception—often

unintentionally, but once you do it, the compiler is satisfied, so unless

you remember to revisit and correct the code, the exception is lost. The

exception happens, but it vanishes completely when swallowed.

Because the compiler forces you to write code right away to handle the

exception, this seems like the easiest solution even though it’s

probably the worst thing you can do.

Horrified upon realizing I had done this, in the 2nd edition of

Thinking in Java, I “fixed” the problem by printing the stack trace

inside the handler (as seen—appropriately—in a number of examples

in this chapter). While this is useful to trace the behavior of

exceptions, it still indicates you don’t really know what to do with the



exception at that point in your code. In this section you’ll learn about

some of the issues and complications arising from checked exceptions,

and options you have when dealing with them.

This topic seems simple. But it is not only complicated, it is also an

issue of some volatility. There are people who are staunchly rooted on

either side of the fence and who feel that the correct answer (theirs) is

blatantly obvious. I believe the reason for one of these positions is the

distinct benefit seen in going from a poorly typed language like pre-

ANSI C to a strong, statically typed language (that is, checked at

compile time) like C++ or Java. When you make that transition (as I

did), the benefits are so dramatic it can seem like static type checking

is always the best answer to most problems. My hope is to relate a little

bit of my own evolution that has brought the absolute value of static

type checking into question; clearly, it’s very helpful much of the time,

but there’s a fuzzy line we cross when it begins to get in the way and

become a hindrance (one of my favorite quotes is “All models are

wrong. Some are useful.”).



History

Exception handling originated in systems like PL/1 and Mesa, and

later appeared in CLU, SmallTalk, Modula-3, Ada, Eiffel, C++, Python,

Java, and the post-Java languages Ruby and C#. The Java design is

similar to C++, except in places where the Java designers felt that the

C++ approach caused problems.

To provide programmers with a framework they were more likely to

use for error handling and recovery, exception handling was added to

C++ rather late in the standardization process, promoted by Bjarne

Stroustrup, the language’s original author. The model for C++

exceptions came primarily from CLU. However, other languages

existed at that time that also supported exception handling: Ada,

SmallTalk (both of these had exceptions but no exception

specifications) and Modula-3 (which included both exceptions and

specifications).

In their seminal paper7 on the subject, Liskov and Snyder observe that a
major defect of languages like C, which report errors in a transient

fashion, is that:

“…every invocation must be followed by a

conditional test to determine what the

outcome was. This requirement leads to



programs that are difficult to read, and

probably inefficient as well, thus

discouraging programmers from signaling

and handling exceptions.”

Thus, one of the original motivations of exception handling was to

prevent this requirement, but with checked exceptions in Java we

commonly see exactly this kind of code. They go on to say:

“…requiring that the text of a handler be

attached to the invocation that raises the

exception would lead to unreadable

programs in which expressions were

broken up with handlers.”

Following the CLU approach when designing C++ exceptions,

Stroustrup stated that the goal was to reduce the amount of code

required to recover from errors. I believe that he was observing that

programmers were typically not writing error-handling code in C

because the amount and placement of such code was daunting and

distracting. As a result, they were used to doing it the C way, ignoring

errors in code and using debuggers to track down problems. To use

exceptions, these C programmers had to be convinced to write



“additional” code they weren’t normally writing. Thus, to draw them

into a better way of handling errors, the amount of code they must

“add” cannot be onerous. I think it’s important to keep this goal in

mind when looking at the effects of checked exceptions in Java.

C++ brought an additional idea over from CLU: the exception

specification, to programmatically state in the method signature the

exceptions that could result from calling that method. The exception

specification really has two purposes. It can say, “I’m originating this

exception in my code; you handle it.” But it can also mean, “I’m

ignoring this exception that can occur as a result of my code; you

handle it.” We’ve been focusing on the “you handle it” part when

looking at the mechanics and syntax of exceptions, but here I’m

particularly interested in the fact that we often ignore exceptions and

that’s what the exception specification can state.

In C++ the exception specification is not part of the type information

of a function. The only compile-time checking is to ensure that

exception specifications are used consistently; for example, if a



function or method throws exceptions, the overloaded or derived

versions must also throw those exceptions. Unlike Java, however, no

compile-time checking occurs to determine whether or not the

function or method will actually throw that exception, or whether the

exception specification is complete (that is, whether it accurately

describes all exceptions that might be thrown). That validation does

happen, but only at run time. If an exception is thrown that violates

the exception specification, the C++ program will call the standard

library function unexpected().

Because of templates, exception specifications are not used at all in the

Standard C++ Library. In Java, there are restrictions on the way that

Java generics can be used with exception specifications.

Perspectives

First, it’s worth noting that Java effectively invented the checked

exception (clearly inspired by C++ exception specifications and the

fact that C++ programmers typically don’t bother with them).

However, it was an experiment which no subsequent language has

chosen to duplicate.

Secondly, checked exceptions appear to be an “obvious good thing”

when seen in introductory examples and in small programs. It is



suggested that the subtle difficulties appear when programs begin

getting large. This largeness usually doesn’t happen overnight; it

creeps. Languages that might not be suited for large-scale projects are

used for small projects. These projects grow, and at some point we

realize that things have gone from “manageable” to “difficult.” This,

I’m suggesting, might be the case with too much type checking; in

particular, with checked exceptions.

The scale of the program seems to be a significant issue. This is a

problem because most discussions tend to use small programs as

demonstrations. One of the C# designers observed that:

“Examination of small programs leads to

the conclusion that requiring exception

specifications could both enhance

developer productivity and enhance code

quality, but experience with large

software projects suggests a different

result—decreased productivity and little

or no increase in code quality. ”8

In reference to uncaught exceptions, the CLU creators stated:

“We felt it was unrealistic to require the



programmer to provide handlers in

situations where no meaningful action can

be taken.” 9

When explaining why a function declaration with no specification

means it can throw any exception, rather than no exceptions,

Stroustrup states:

“However, that would require exception

specifications for essentially every

function, would be a significant cause for

recompilation, and would inhibit

cooperation with software written in other

languages. This would encourage

programmers to subvert the exception-

handling mechanisms and to write

spurious code to suppress exceptions. It

would provide a false sense of security to

people who failed to notice the

exception.” 10

We see this very behavior—subverting the exceptions—happening with

checked exceptions in Java.



Martin Fowler (author of UML Distilled, Refactoring, and Analysis

Patterns) wrote the following to me:

“…on the whole I think that exceptions

are good, but Java checked exceptions

are more trouble than they are worth.”

I now think Java’s important step was to unify the error-reporting

model, so all errors are reported using exceptions. This wasn’t

happening with C++, because, for backward compatibility with C, the

old model of just ignoring errors was still available. With consistent

reporting via exceptions, exceptions can be used if desired, and if not,

they will propagate out to the highest level (such as the console). When

Java modified the C++ model so exceptions were the only way to

report errors, the extra enforcement of checked exceptions might have

become less necessary.

In the past, I have believed strongly that both checked exceptions and

static type checking were essential to robust program development.

However, both anecdotal and direct experience11 with languages that are
more dynamic than static led me to think the great benefits

actually come from:

1. A unified error-reporting model via exceptions, regardless of

whether the programmer is forced by the compiler to handle



them.

2. Type checking, regardless of when it takes place. That is, as long as proper
use of a type is enforced, it often doesn’t matter if it

happens at compile time or run time.

On top of this, there are significant productivity benefits to reducing

the compile-time constraints upon the programmer. Indeed, reflection

and generics are required to compensate for the overconstraining

nature of static typing, as you shall see in a number of examples

throughout the book.

I’ve been told by some that what I say here constitutes blasphemy, and

by uttering these words my reputation will be destroyed, civilizations

will fall, and a higher percentage of programming projects will fail.

The belief that the compiler can save your project by pointing out

errors at compile time runs strong, but it’s even more important to

realize the limitation of what the compiler is able to do. I emphasize

the value of an automated build process and unit testing, which give

you far more leverage than you get by trying to turn everything into a

syntax error. It’s worth keeping in mind that:

“A good programming language is one

that helps programmers write good

programs. No programming language will



prevent its users from writing bad

programs.” 12

In any event, the likelihood of checked exceptions ever being removed

from Java seems dim. It’s too radical of a language change, and

proponents appear to be quite strong. Java has a history and policy of

absolute backward compatibility—to give you a sense of this, virtually

all Sun software ran on all Sun hardware, no matter how old.

However, if you find that some checked exceptions are getting in your

way, or especially if you find yourself forced to catch exceptions but

you don’t know what to do with them, there are some alternatives.

Passing Exceptions to the

Console

In simple programs, the easiest way to preserve exceptions without

writing a lot of code is to pass them out of main() to the console. For

example, to open a file for reading (something you’ll learn about in

detail in the Files chapter), you must open and close a

FileInputStream, which throws exceptions. For a simple



program, you can do this (you’ll see this approach used in numerous

places throughout this book):

// exceptions/MainException.java

import java.util.*;

import java.nio.file.*;

public class MainException {

// Pass exceptions to the console:

public static void

main(String[] args) throws Exception {

// Open the file:

List<String> lines = Files.readAllLines(

Paths.get("MainException.java"));

// Use the file ...

}

}

main() is like any method, which means it can also have an

exception specification. Here the type of exception is Exception, the

root class of all checked exceptions. By passing it out to the console,

you are relieved from writing try-catch clauses within the body of

main(). (Unfortunately, some file I/O can be significantly more



complex than it would appear from this example. You’ll learn more in

the Files chapter and the Appendix: I/O Streams).

Converting Checked to

Unchecked Exceptions

Throwing an exception from main() is convenient when you’re

writing simple programs for your own consumption, but is not

generally useful. The real problem is when you are writing an ordinary

method body, and you call another method and realize, “I have no idea

what to do with this exception here, but I can’t swallow it or print

some banal message.” With chained exceptions, a simple solution

presents itself. You “wrap” a checked exception inside a

RuntimeException by passing it to the RuntimeException

constructor, like this:

try {

// ... to do something useful

} catch(IDontKnowWhatToDoWithThisCheckedException e) {

throw new RuntimeException(e);



}

This seems an ideal way to “turn off” the checked exception—you don’t

swallow it, and you don’t put it in your method’s exception

specification, but because of exception chaining you don’t lose any

information from the original exception.

This technique provides the option to ignore the exception and let it

bubble up the call stack without being required to write try-catch

clauses and/or exception specifications. However, you can still catch

and handle the specific exception by using getCause(), as seen

here:

// exceptions/TurnOffChecking.java

// "Turning off" Checked exceptions

import java.io.*;

class WrapCheckedException {

void throwRuntimeException(int type) {

try {

switch(type) {

case 0: throw new FileNotFoundException();

case 1: throw new IOException();

case 2: throw new



RuntimeException("Where am I?");

default: return;

}

} catch(IOException | RuntimeException e) {

// Adapt to unchecked:

throw new RuntimeException(e);

}

}

}

class SomeOtherException extends Exception {}

public class TurnOffChecking {

public static void main(String[] args) {

WrapCheckedException wce =

new WrapCheckedException();

// You can call throwRuntimeException() without

// a try block, and let RuntimeExceptions

// leave the method:

wce.throwRuntimeException(3);

// Or you can choose to catch exceptions:

for(int i = 0; i < 4; i++)



try {

if(i < 3)

wce.throwRuntimeException(i);

else

throw new SomeOtherException();

} catch(SomeOtherException e) {

System.out.println(

"SomeOtherException: " + e);

} catch(RuntimeException re) {

try {

throw re.getCause();

} catch(FileNotFoundException e) {

System.out.println(

"FileNotFoundException: " + e);

} catch(IOException e) {

System.out.println("IOException: " + e);

} catch(Throwable e) {

System.out.println("Throwable: " + e);

}

}



}

}

/* Output:

FileNotFoundException: java.io.FileNotFoundException

IOException: java.io.IOException

Throwable: java.lang.RuntimeException: Where am I?

SomeOtherException: SomeOtherException

*/

WrapCheckedException.throwRuntimeException()

contains code that generates different types of exceptions. These are

caught and wrapped inside RuntimeException objects, so they

become the “cause” of those exceptions.

In TurnOffChecking, you see it’s possible to call

throwRuntimeException() with no try block because the

method does not throw any checked exceptions. However, when you’re

ready to catch exceptions, you still have the ability to catch any

exception you want by putting your code inside a try block. You start

by catching all the exceptions you explicitly know might emerge from

the code in your try block—here, SomeOtherException is caught

first. Lastly, you catch RuntimeException and throw the result



of getCause() (the wrapped exception). This extracts the

originating exceptions, which can then be handled in their own catch

clauses.

The technique of wrapping a checked exception in a

RuntimeException is used when appropriate throughout the rest

of this book. Another solution is to create your own subclass of

RuntimeException. This way, it doesn’t have to be caught, but

someone can catch it if they want.

Exception Guidelines

Use exceptions to:

1. Use try-with-resources whenever possible.

2. Handle problems at the appropriate level. (Avoid catching



exceptions unless you know what to do with them.)

3. Fix the problem and re-call the method that caused the exception.

4. Patch things up and continue without retrying the method.

5. Calculate some alternative result instead of what the method was

supposed to produce.

6. Do whatever you can in the current context and rethrow the same

exception to a higher context.

7. Do whatever you can in the current context and throw a different

exception to a higher context.

8. Terminate the program.

9. Simplify. (If your exception scheme makes things more

complicated, it is painful and annoying to use.)

10. Make your library and program safer. (This is a short-term

investment for debugging, and a long-term investment for

application robustness.)

Summary

Exceptions are integral to programming with Java; you can

accomplish only so much without knowing how to work with them.



Exceptions are introduced now for that reason—there are many

libraries you can’t use without handling exceptions.

One of the advantages of exception handling is that it concentrates on

the problem you’re trying to solve in one place, then deals with the

errors from that code in another place. And although exceptions are

generally explained as tools that allow you to report and recover from

errors at run time, I have come to wonder how often the “recovery”

aspect is implemented, or even possible. My perception is it is less

than 10 percent of the time, and even then it probably amounts to

unwinding the stack to a known stable state rather than actually

performing any kind of resumptive behavior. Whether or not this is

true, I have come to believe that the “reporting” function is where the

essential value of exceptions lie. The fact that Java effectively insists

that all errors be reported in the form of exceptions gives it a great

advantage over languages like C++, which allow you to report errors in

a number of different ways, or not at all. A consistent error-reporting

system means you no longer ask the question “Are errors slipping



through the cracks?” with each piece of code you write (as long as you

don’t “swallow” the exceptions, that is!).

As you will see in future chapters, by laying this question to rest—even

if you do so by throwing a RuntimeException—your design and

implementation efforts can be focused on more interesting and

challenging issues.

Postscript: Exception Bizarro

World

(From a blog post in 2011)

My friend James Ward was trying to create some very straightforward

teaching examples using JDBC, and kept getting foiled by checked

exceptions. He pointed me to Howard Lewis Ship’s post The Tragedy

of Checked Exceptions. In particular, James was frustrated by the all

the hoops he had to jump through to do something that ought to be

simple. Even in the finally block he’s forced to put in more try-

catch clauses because closing the connection can also cause

exceptions. Where does it end? To do something simple you’re forced

to jump through hoop after hoop (Note that the try-with-resources

statement improves this situation significantly).

We started talking about the Go programming language, which I’ve

http://tapestryjava.blogspot.com/2011/05/tragedy-of-checked-exceptions.html
http://tapestryjava.blogspot.com/2011/05/tragedy-of-checked-exceptions.html


been fascinated with because Rob Pike et. al. have clearly asked many

very incisive and fundamental questions about language design.

Basically, they’ve taken everything we’ve started to accept about

languages and asked, “Why?” about each one. Learning this language

really makes you think and wonder.

My impression is that the Go team decided not to make any

assumptions and to evolve the language only when it is clear that a

feature is necessary. They don’t seem to worry about making changes

that break old code—they created a rewriting tool so if they make such

changes it will rewrite the code for you. This frees them to make the

language an ongoing experiment to discover what’s really necessary

rather than doing Big Upfront Design.

One of the most interesting decisions they made is to leave out

exceptions altogether. You read that right—they aren’t just leaving out

checked exceptions. They’re leaving out all exceptions.

The alternative is very simple, and at first it almost seems C-like.

Because Go incorporated tuples from the beginning, you can easily

return two objects from a function call:

result, err := functionCall()

(The := tells Go to define result and err at this point, and to infer their
types).



That’s it: for each call you get back the result object and an error

object. You can check the error right away (which is typical, because if

something fails it’s unlikely you’ll blithely go on to the next step), or

check it later if that works.

At first this seems primitive, a regression to ancient times. But so far

I’ve found that the decisions in Go are very well considered, and worth

pondering. Am I simply reacting because my brain is exception-

addled? How would this affect James’s problem?

It occurs to me I’ve always seen exception handling as kind of a

parallel execution path. If you hit an exception, you jump out of the

normal path into this parallel execution path, a kind of “bizarro world”

where you are no longer doing the things you wrote, and instead

jumping around into catch and finally clauses. It’s this alternate-

execution-path world that causes the problems James is complaining

about.

James creates an object. Ideally, object creation does not cause

potential exceptions, but if it does you have to catch those. You have to

follow creation with a try-finally to make sure cleanup happens (the

Python team realized that cleanup is not really an exceptional

condition, but a separate problem, so they created a different language



construct—with—so as to stop conflating the two). Any call that

causes an exception stops the normal execution path and jumps (via

parallel bizarro-world) to the catch clause.

One of the fundamental assumptions about exceptions are that we

somehow benefit by collecting all the error handling code at the end of

the block rather than handling errors when they occur. In both cases

we stop normal execution, but exception handling has an automatic

mechanism that throws you out of the normal execution path, jumps

you into bizarro-parallel-exception world, then pops you back out

again in the right handler.

Jumping into bizarro world causes the problems for James, and it

adds more work for all programmers: because you can’t know when

something will happen (you can slip into bizarro world at any

moment), you have to add layers of try blocks to ensure that nothing

slips through the cracks. You end up having to do extra programming

to compensate for the exception mechanism (It seems similar to the

extra work required to compensate for shared-memory concurrency).

The Go team made the bold move of questioning all this, and saying,

“Let’s try it without exceptions and see what happens.” Yes, this means

you’re typically going to handle errors where they occur rather than



clumping them all at the end of a try block. But that also means code

that is about one thing is localized, and maybe that’s not so bad. It

might also mean you can’t easily combine common error-handling

code (unless you identified that common code and put it into a

function, also not so bad). But it definitely means you don’t have to

worry about having more than one possible execution path and all that

entails.

1. The C programmer can look up the return value of printf() for

an example of this.↩

2. Jim Gray, Turing Award winner for his team’s contributions on

transactions, in an interview on www.acmqueue.org. ↩

3. As do most languages, including C++, C#, Python, D, etc. ↩

4. C++ exception handling does not have the finally clause

because it relies on destructors to accomplish this sort of

cleanup. ↩

5. A destructor is a function that’s always called when an object

becomes unused. You always know exactly where and when the

destructor gets called. C++ has automatic destructor calls, and C#

(which is much more like Java) has a way that automatic

destruction can occur. ↩



6. ISO C++ added similar constraints that require derived-method

exceptions to be the same as, or derived from, the exceptions

thrown by the base-class method. This is one case where C++ is

actually able to check exception specifications at compile time. ↩

7. Barbara Liskov and Alan Snyder, Exception Handling in CLU,

IEEE Transactions on Software Engineering, Vol. SE-5, No. 6,

November 1979. Available from IEEE or ACM. ↩

http://www.computer.org/csdl/trans/ts/1979/06/01702672-abs.html
http://dl.acm.org/citation.cfm?id=1313862


8. http://discuss.develop.com/archives/wa.e?

A2=ind0011A&L=DOTNET&P=R32820↩

9. Exception Handling in CLU, Liskov & Snyder.↩

10. Bjarne Stroustrup, The C++ Programming Language, 3rd

Edition (Addison-Wesley, 1997), page 376.↩

11. Indirectly with SmallTalk via conversations with many

experienced programmers in that language; directly with Python

( www.Python.org). ↩

12. Kees Koster, designer of the CDL language, as quoted by Bertrand

Meyer, designer of the Eiffel language,

www.elj.com/elj/v1/n1/bm/right/.↩

Validating Your Code

You can never guarantee your code is

correct. You can only prove it’s wrong.



Let’s pause our learning of language features and look at some

programming fundamentals. Specifically, the problem of making sure

your code works properly.

Testing

If it’s not tested, it’s broken.

Because Java is a (mostly1) statically-typed language, programmers often
become too comfortable with the apparent safety of the

language, thinking “if the compiler accepts it, it’s OK.” But static type

checking is a very limited form of testing. It only means the compiler

accepts the syntax and basic type rules of your code. It doesn’t mean

the code satisfies the goals of your program. As you gain more

programming experience, you’ll come to understand that your code

almost never satisfies those goals. The first step towards code

validation is creating tests that check the code behavior against your

goals.

Unit Testing

This is the process of building integrated tests into all code you create,



and running those tests every time you build your system. That way,

the build process checks for more than just syntax errors. You teach it

to check for semantic errors as well.

“Unit” refers to the idea of testing small pieces of your code. Typically,

each class has tests checking the behavior of all its methods. “System”

testing is different, and checks that the finished program satisfies its

requirements.

C-style programming languages, and C++ in particular, traditionally

valued performance over programming safety. The reason that

developing programs in Java is so much faster than in C++ (roughly

twice as fast, by most accounts) is because of Java’s safety net: features

like garbage collection and improved type checking. By integrating

unit testing into your build process, you extend this safety net,

resulting in faster development. You can also more easily and boldly

refactor your code when you discover design or implementation flaws,

and in general produce a better product, more quickly.

My own experience with testing began when I realized that, to

guarantee the correctness of code in a book, every program in that

book must be automatically extracted, then compiled using an

appropriate build system. The build system used in this book is



Gradle, and after you install the JDK, you can just type gradlew
compileJava to compile all the code for the book. The effect of

automatic extraction and compilation on the code quality of the book

was so immediate and dramatic it soon became (in my mind) a

requisite for any programming book—how can you trust code you

didn’t compile? I also discovered that I can make sweeping changes

using search-and-replace throughout the book. I know that if I

introduce a flaw, the code extractor and the build system flushes it out.

As programs became more complex, I found a serious hole in my

system. Compiling programs is clearly an important first step, and for

a published book it seems a fairly revolutionary one (because of

publishing pressures, you can often open a programming book and

discover a coding flaw). However, I received messages from readers

reporting semantic problems in my code. Of course, these problems

could be discovered only by running the code. I took some early

faltering steps toward implementing a system to perform automatic

execution tests, but succumbed to publishing schedules, all the while

knowing there was definitely something wrong with my process that

would come back to bite me in the form of embarrassing bug reports.

I had also gotten regular complaints that I didn’t show enough

program output. I needed to validate the output of a program while

https://gradle.org/


showing the validated output in the book. My previous attitude was

that the reader should be running the programs while reading the

book, and many readers did just that and benefited from it. A hidden

reason for that attitude, however, was I didn’t have a way to prove the

output shown in the book was correct. From experience, I knew that

over time, something would happen so the output was no longer

correct (or, I wouldn’t get it right in the first place). To solve this

problem, I created a tool in the Python language (you will find this tool

in the downloaded examples). Most programs in this book produce

console output, and this tool compares that output to the expected

output shown in the comment at the end of the source-code listing, so

readers can see the expected output, and know this output is verified

by the build process.

JUnit

The original JUnit, published in 2000, was presumably based on Java

1.0 and thus could not make use of Java’s reflection facilities. As a

result, writing unit tests with the old JUnit was a rather busy and

wordy activity. I found the design unpleasant, and wrote my own unit

testing framework as an example for the Annotations chapter. This
framework went to the other extreme, “trying the simplest thing that

could possibly work” (A key phrase from Extreme Programming



(XP)). Since then, JUnit has been vastly improved using reflection and

annotations, which greatly simplifies the process of writing unit test

code. For Java 8, they even added support for lambdas. This book uses

JUnit5, the latest version at the time.

In the simplest use of JUnit, you tag each method that represents a

test with the @Test annotation. JUnit identifies these methods as

individual tests and sets up and runs them one at a time, taking

measures to avoid side effects between tests.

Let’s try a simple example. CountedList inherits ArrayList,

with added information to keep track of how many CountedLists

are created:

// validating/CountedList.java

// Keeps track of how many of itself are created.

package validating;

import java.util.*;

public class CountedList extends ArrayList<String> {

private static int counter = 0;

private int id = counter++;

public CountedList() {

System.out.println("CountedList #" + id);



}

public int getId() { return id; }

}

Standard practice is to put tests in their own subdirectory. Tests must

also be in packages so JUnit can discover them:

// validating/tests/CountedListTest.java

// Simple use of JUnit to test CountedList.

package validating;

import java.util.*;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

public class CountedListTest {

private CountedList list;

@BeforeAll

static void beforeAllMsg() {

System.out.println(">>> Starting CountedListTest");

}

@AfterAll

static void afterAllMsg() {

System.out.println(">>> Finished CountedListTest");



}

@BeforeEach

public void initialize() {

list = new CountedList();

System.out.println("Set up for " + list.getId());

for(int i = 0; i < 3; i++)

list.add(Integer.toString(i));

}

@AfterEach

public void cleanup() {

System.out.println("Cleaning up " + list.getId());

}

@Test

public void insert() {

System.out.println("Running testInsert()");

assertEquals(list.size(), 3);

list.add(1, "Insert");

assertEquals(list.size(), 4);

assertEquals(list.get(1), "Insert");

}



@Test

public void replace() {

System.out.println("Running testReplace()");

assertEquals(list.size(), 3);

list.set(1, "Replace");

assertEquals(list.size(), 3);

assertEquals(list.get(1), "Replace");

}

// A helper method to simplify the code. As

// long as it's not annotated with @Test, it will

// not be automatically executed by JUnit.

private

void compare(List<String> lst, String[] strs) {

assertArrayEquals(lst.toArray(new String[0]), strs);

}

@Test

public void order() {

System.out.println("Running testOrder()");

compare(list, new String[] { "0", "1", "2" });

}



@Test

public void remove() {

System.out.println("Running testRemove()");

assertEquals(list.size(), 3);

list.remove(1);

assertEquals(list.size(), 2);

compare(list, new String[] { "0", "2" });

}

@Test

public void addAll() {

System.out.println("Running testAddAll()");

list.addAll(Arrays.asList(new String[] {

"An", "African", "Swallow"}));

assertEquals(list.size(), 6);

compare(list, new String[] { "0", "1", "2",

"An", "African", "Swallow" });

}

}

/* Output:

>>> Starting CountedListTest



CountedList #0

Set up for 0

Running testRemove()

Cleaning up 0

CountedList #1

Set up for 1

Running testReplace()

Cleaning up 1

CountedList #2

Set up for 2

Running testAddAll()

Cleaning up 2

CountedList #3

Set up for 3

Running testInsert()

Cleaning up 3

CountedList #4

Set up for 4

Running testOrder()

Cleaning up 4



>>> Finished CountedListTest

*/

@BeforeAll annotates a method that runs once before any other

test operations. @AfterAll is for a method that runs once after all

other test operations. Both methods must be static.

@BeforeEach annotates a method typically used to create and

initialize a common set of objects and runs before each test.

Alternatively, you can put all such initialization in the constructor for

the test class, although I think @BeforeEach makes it clearer. JUnit

creates an object for each test to ensure there are no side effects

between test runs. However, all objects for all tests are created at once

(rather than creating the object right before the test), so the only

difference between using @BeforeEach and the constructor is

@BeforeEach is called directly before the test. In most situations

this is not an issue, and you can use the constructor approach if you

prefer.

If you must perform cleanup after each test (if you modify any

statics that need restoring, open files that need closing, open

databases or network connections, etc.), annotate a method with

@AfterEach.



Each test creates a new CountedListTest object, thus any non-

static members are also created at that time. initialize() is

then called for that test, so list is assigned a new CountedList

object which is then initialized with the Strings "0" , "1" , and "2" .

To observe the behavior of @BeforeEach and @AfterEach, those

methods display information about the test as it is initialized and

cleaned up.

insert() and replace() demonstrate typical test methods. JUnit discovers these
methods using the @Test annotation and runs each

one as a test. Inside the methods, you perform any desired operations

and use JUnit assertion methods (which all start with the name

“assert”) to verify the correctness of your tests (the full range of

“assert” statements is found in the JUnit docs). If the assertion fails,

the expression and values that caused the failure are displayed. This is

often enough, but you can also use the overloaded version of each

JUnit assertion statement and include a String for display when the

assertion fails.

The assertion statements are not required; you can also run the test

without assertions and consider it a success if there are no exceptions.

compare() is an example of a “helper method” that is not executed

by JUnit but instead is used by other tests in the class. As long as



there’s no @Test annotation, JUnit doesn’t run it or expect a

particular signature. Here, compare() is private, emphasizing it

is used only within the test class, but it can also be public. The

remaining test methods eliminate duplicate code by refactoring it into

the compare() method.

The build.gradle file for this book controls testing. To run the

tests for this chapter, the command is:

gradlew validating:test

Gradle doesn’t run tests that have already run for that build, so if you

get no test results, first run:

gradlew validating:clean

You can run all tests in the book with the command:

gradlew test

Although you can probably survive with the simplest approach to

JUnit as shown in CountedListTest.java, JUnit contains

numerous additional testing structures you can learn about at

junit.org.

http://junit.org/


JUnit is the most popular unit testing framework for Java, but there

are alternatives. You can explore others via the Internet in case one of

those better suits your needs.

The Illusion of Test Coverage

Test coverage, also called code coverage, measures the test percentage

for your code base. The higher the percentage, the greater the test

coverage. There are a number of approaches for calculating coverage, and a
helpful article describing Java Code Coverage Tools.

It is far too easy for persons without knowledge but in positions of

control to decide that 100% coverage is the only acceptable value. This

is a problem because the number is not really a good measure of

testing effectiveness. You might test everything that needs it, but only

measure 65% test coverage. If someone demands 100% coverage, you

waste a lot of time generating the rest, and more as you add code to

the project.

Test coverage as a rough measure is useful when you’re analyzing an

unknown code base. If a coverage tool reports an especially low value

(say, less than 40%), that tells you the coverage is probably

insufficient. However, a very high value is equally suspicious,

suggesting that someone with inadequate knowledge of the

programming field has forced an arbitrary decision on the team. The

https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Java_Code_Coverage_Tools


best use of coverage tools is to discover untested parts of your

codebase. However, don’t rely on coverage to tell you anything about

the quality of your tests.

Preconditions

The concept of the precondition comes from Design By Contract

(DbC) and is implemented using the basic assertion mechanism. We’ll

start by looking at assertions in Java, then cover DbC, and finally use

the Google Guava library for preconditions.

Assertions

Assertions increase program robustness by verifying that certain

conditions are satisfied during the execution of your program.

For example, suppose you have a numerical field in an object that

represents the month on the Julian calendar. You know this value



must always be in the range 1-12. An assertion can check this and

report an error if it somehow falls outside that range. If you’re inside a

method, you can check the validity of an argument with an assertion.

These are important tests to make sure your program is correct, but

they cannot be checked at compile-time, and they do not fall under the

purview of unit testing.

Java Assertion Syntax

You can simulate the effect of assertions using other programming

constructs, so the point of including assertions in Java is that they are

easy to write. Assertion statements come in two forms:

assert boolean-expression;

assert boolean-expression: information-expression;

Both say “I assert this boolean-expression produces a true value.” If

this is not the case, the assertion produces an AssertionError

exception. This is a Throwable subclass, and as such doesn’t require an
exception specification.

Unfortunately, an exception from the first form of assertion does not

produce any information containing the boolean-expression (in

contrast with most other languages’ assertion mechanisms). Here’s an

example showing the use of the first form:

// validating/Assert1.java



// Non-informative style of assert

// Must run using -ea flag:

// {java -ea Assert1}

// {ThrowsException}

public class Assert1 {

public static void main(String[] args) {

assert false;

}

}

/* Output:

___[ Error Output ]___

Exception in thread "main" java.lang.AssertionError

at Assert1.main(Assert1.java:9)

*/

If you run the program normally, without any special assertion flags,

nothing happens. You must explicitly enable assertions when you run

the program. The easiest way to do this is with the -ea flag, which can

also be spelled out: -enableassertions. This runs the program

and executes any assertion statements.

The output doesn’t contain much in the way of useful information. On



the other hand, if you use the information-expression, you’ll produce a

helpful message as part of the exception stack trace. The most useful

information-expression is typically a String of text directed at the

programmer:

// validating/Assert2.java

// Assert with an information-expression

// {java Assert2 -ea}

// {ThrowsException}

public class Assert2 {

public static void main(String[] args) {

assert false:

"Here's a message saying what happened";

}

}

/* Output:

___[ Error Output ]___

Exception in thread "main" java.lang.AssertionError:

Here's a message saying what happened

at Assert2.main(Assert2.java:8)

*/



The information-expression can produce any kind of object, so you

typically construct a more complex String containing the value(s) of

objects that were involved with the failed assertion.

You can also turn assertions on and off based on the class name or

package name; that is, you can enable or disable assertions for an

entire package. Details for doing this are in the JDK documentation on

assertions. This feature is useful for a large project instrumented with

assertions when you want to turn some of them on or off. However,

Logging or Debugging, described in their respective sections, are probably
better tools for capturing that kind of information.

There’s one other way you can control assertions: programmatically,

by hooking into the ClassLoader object. There are several methods

in ClassLoader that allow the dynamic enabling and disabling of

assertions, including setDefaultAssertionStatus(), which

sets the assertion status for all the classes loaded afterward. So you

might think you can silently turn on assertions like this:

// validating/LoaderAssertions.java

// Using the class loader to enable assertions

// {ThrowsException}

public class LoaderAssertions {

public static void main(String[] args) {



ClassLoader.getSystemClassLoader()

.setDefaultAssertionStatus(true);

new Loaded().go();

}

}

class Loaded {

public void go() {

assert false: "Loaded.go()";

}

}

/* Output:

___[ Error Output ]___

Exception in thread "main" java.lang.AssertionError:

Loaded.go()

at Loaded.go(LoaderAssertions.java:15)

at

LoaderAssertions.main(LoaderAssertions.java:9)

*/

This eliminates the need for the -ea flag on the command line when

running the program. It may be just as straightforward to enable



assertions using the -ea flag. When delivering a standalone product,

you probably have to set up an execution script enabling the user to

start the program anyway, to configure other startup parameters.

It does make sense, however, to decide to require assertions enabled

when the program runs. You can accomplish this with the following

static clause, placed in the main class of your system:

static {

boolean assertionsEnabled = false;

// Note intentional side effect of assignment:

assert assertionsEnabled = true;

if(!assertionsEnabled)

throw new RuntimeException("Assertions disabled");

}

If assertions are enabled, then the assert statement executes and

assertionsEnabled becomes true. The assertion never fails

because the return value of the assignment is the assigned value. If

assertions are not enabled, the assert statement doesn’t execute and

assertionsEnabled remains false, resulting in the exception.

Guava Assertions

Because turning on native Java assertions is a bother, the Guava team



added a Verify class with replacement assertions always enabled.

The team recommends importing the Verify methods statically:

// validating/GuavaAssertions.java

// Assertions that are always enabled.

import com.google.common.base.*;

import static com.google.common.base.Verify.*;

public class GuavaAssertions {

public static void main(String[] args) {

verify(2 + 2 == 4);

try {

verify(1 + 2 == 4);

} catch(VerifyException e) {

System.out.println(e);

}

try {

verify(1 + 2 == 4, "Bad math");

} catch(VerifyException e) {

System.out.println(e.getMessage());

}

try {



verify(1 + 2 == 4, "Bad math: %s", "not 4");

} catch(VerifyException e) {

System.out.println(e.getMessage());

}

String s = "";

s = verifyNotNull(s);

s = null;

try {

verifyNotNull(s);

} catch(VerifyException e) {

System.out.println(e.getMessage());

}

try {

verifyNotNull(

s, "Shouldn't be null: %s", "arg s");

} catch(VerifyException e) {

System.out.println(e.getMessage());

}

}

}



/* Output:

com.google.common.base.VerifyException

Bad math

Bad math: not 4

expected a non-null reference

Shouldn't be null: arg s

*/

There are two methods, verify() and verifyNotNull() with

variations to support useful error messages. Note that

verifyNotNull()’s built-in error message is typically enough,

while verify() is too general to have a useful default error message.

Using Assertions for Design By Contract

Design by Contract (DbC) is a concept developed by Bertrand Meyer,

inventor of the Eiffel programming language, to help create robust

programs by guaranteeing that objects follow certain rules. 2 These rules are
determined by the nature of the problem being solved, which

is outside the scope that the compiler can validate.

Although assertions do not directly implement DBC (as does the Eiffel

language), they create an informal style of DbC programming.

DbC presumes a clearly-specified contract between the supplier of a

service and the consumer or client of that service. In object-oriented



programming, services are usually supplied by objects, and the

boundary of the object—the division between the supplier and

consumer—is the interface of an object’s class. When clients call a

particular public method, they expect certain behavior from that call: a

state change in the object, and a predictable return value. Meyer’s

thesis is that:

1. This behavior can be clearly specified, as if it were a contract.

2. This behavior can be guaranteed by implementing certain run-

time checks, which he calls preconditions, postconditions and

invariants.

Whether or not you agree that point 1 is always true, it does appear

true for enough situations to make DbC a useful approach. (I believe

that, like any solution, there are boundaries to its usefulness. But if

you know these boundaries, you know when to try it.) In particular, a

valuable part of the design process is the expression of DbC

constraints for a particular class; if you are unable to specify the

constraints, you probably don’t know enough about what you’re trying

to build.

Check Instructions

Before looking at DbC in detail, consider the simplest use for



assertions, which Meyer calls the check instruction. A check

instruction states your conviction that a particular property is satisfied

at this point in the code. The idea of the check instruction is to express

non-obvious conclusions in code, not only to verify the test, but also as

documentation for future readers of the code.

In chemistry, you might titrate one clear liquid into another, and when

you reach a certain point, everything turns blue. This is not obvious

from the color of the two liquids; it is part of a complex reaction. A

useful check instruction at the completion of the titration process

would assert that the resulting liquid is blue.

Check instructions are a valuable addition to your code, and should be

used whenever you can test and illuminate the state of your object or

program.

Preconditions

Preconditions ensure the client (the code calling this method) fulfills

its part of the contract. This almost always means checking the

arguments at the very beginning of a method call (before you do

anything else in that method) to guarantee they are appropriate for

use in the method. Since you never know what a client will hand you,

precondition checks are always a good idea.



Postconditions

Postconditions test the results of what you did in the method. This

code is placed at the end of the method call, before the return

statement (if there is one). For long, complex methods where

calculation results should be verified before returning them (that is, in

situations where for some reason you cannot always trust the results),

postcondition checks are essential, but any time you can describe

constraints on the result of the method, it’s wise to express those

constraints in code as a postcondition.

Invariants

An invariant gives guarantees about the state of the object that must

be maintained between method calls. However, it doesn’t restrain a

method from temporarily diverging from those guarantees during the

execution of the method. It just says that the state information of the

object will always obey the stated rules:

1. Upon entry to the method.

2. Before leaving the method.

In addition, the invariant is a guarantee about the state of the object

after construction.

According to this description, an effective invariant is defined as a



method, probably named invariant(), which is invoked after

construction, and at the beginning and end of each method. The

method could be invoked as:

assert invariant();

This way, if you disable assertions for performance reasons, there’s no

overhead.

Relaxing DbC

Although he emphasizes the value of expressing preconditions,

postconditions, and invariants, and the importance of using these

during development, Meyer admits it is not always practical to include

all DbC code in a shipping product. You can relax DbC checking based

on the amount of trust you can place in the code at a particular point.

Here is the order of relaxation, from safest to least safe:

1. The invariant check at the beginning of each method is disabled

first, since the invariant check at the end of each method

guarantees that the object’s state is valid at the beginning of every

method call. That is, you can generally trust that the state of the

object will not change in between method calls. This one is such a

safe assumption that you might choose to write code with

invariant checks only at the end.



2. The postcondition check is disabled next, when you have

reasonable unit testing to verify that your methods are returning

appropriate values. Since the invariant check is watching the state

of the object, the postcondition check is only validating the results

of the calculation during the method, and therefore may be

discarded in favor of unit testing. The unit testing will not be as

safe as a run-time postcondition check, but it may be enough,

especially if you have confidence in the code.

3. The invariant check at the end of a method call can be disabled if

you are confident the method body does not put the object into an

invalid state. It might be possible to verify this with white-box

unit testing (that is, unit tests that have access to private fields, to

validate the object state). Thus, although it may not be as robust

as calls to invariant(), it is possible to “migrate” the invariant

checking from run-time tests to build-time tests (via unit testing),

just as with postconditions.

4. Finally, as a last resort, disable precondition checks. This is the



least safe and least advisable option, because although you know

and have control over your own code, you have no control over

what arguments the client may pass to a method. However, in a

situation where (A) performance is desperately needed and

profiling has pointed at precondition checks as a bottleneck and

(B) you have some kind of reasonable assurance that the client

will not violate preconditions (as in the case where you’ve written

the client code yourself) it may be acceptable to disable

precondition checks.

You shouldn’t remove the code that performs the checks described

here as you disable the checks (just comment it out). If a bug is

discovered, you can easily recover the checks to rapidly discover the

problem.

DbC + Unit Testing

The following example demonstrates the potency of combining

concepts from Design by Contract with unit testing. It shows a small

first-in, first-out (FIFO) queue implemented as a “circular” array—that

is, an array used in a circular fashion. When the end of the array is

reached, the class wraps back around to the beginning.

We can make a number of contractual definitions for this queue:



1. Precondition (for a put()): Null elements are not allowed to

be added to the queue.

2. Precondition (for a put()): It is illegal to put elements into a

full queue.

3. Precondition (for a get()): It is illegal to try to get elements

from an empty queue.

4. Postcondition (for a get()): Null elements cannot be

produced from the array.

5. Invariant: The region that contains objects cannot contain any

null elements.

6. Invariant: The region that doesn’t contain objects must have

only null values.

Here is one way to implement these rules, using explicit method calls

for each type of DbC element. First, we create a dedicated

Exception:

// validating/CircularQueueException.java

package validating;

public class

CircularQueueException extends RuntimeException {

public CircularQueueException(String why) {



super(why);

}

}

This is used to report errors with the CircularQueue class:

// validating/CircularQueue.java

// Demonstration of Design by Contract (DbC)

package validating;

import java.util.*;

public class CircularQueue {

private Object[] data;

private int

in = 0, // Next available storage space

out = 0; // Next gettable object

// Has it wrapped around the circular queue?

private boolean wrapped = false;

public CircularQueue(int size) {

data = new Object[size];

// Must be true after construction:

assert invariant();

}



public boolean empty() {

return !wrapped && in == out;

}

public boolean full() {

return wrapped && in == out;

}

public boolean isWrapped() { return wrapped; }

public void put(Object item) {

precondition(item != null, "put() null item");

precondition(!full(),

"put() into full CircularQueue");

assert invariant();

data[in++] = item;

if(in >= data.length) {

in = 0;

wrapped = true;

}

assert invariant();

}

public Object get() {



precondition(!empty(),

"get() from empty CircularQueue");

assert invariant();

Object returnVal = data[out];

data[out] = null;

out++;

if(out >= data.length) {

out = 0;

wrapped = false;

}

assert postcondition(

returnVal != null,

"Null item in CircularQueue");

assert invariant();

return returnVal;

}

// Design-by-contract support methods:

private static void

precondition(boolean cond, String msg) {

if(!cond) throw new CircularQueueException(msg);



}

private static boolean

postcondition(boolean cond, String msg) {

if(!cond) throw new CircularQueueException(msg);

return true;

}

private boolean invariant() {

// Guarantee that no null values are in the

// region of 'data' that holds objects:

for(int i = out; i != in; i = (i + 1) % data.length)

if(data[i] == null)

throw new CircularQueueException(

"null in CircularQueue");

// Guarantee that only null values are outside the

// region of 'data' that holds objects:

if(full()) return true;

for(int i = in; i != out; i = (i + 1) % data.length)

if(data[i] != null)

throw new CircularQueueException(

"non-null outside of CircularQueue range: "



+ dump());

return true;

}

public String dump() {

return "in = " + in +

", out = " + out +

", full() = " + full() +

", empty() = " + empty() +

", CircularQueue = " + Arrays.asList(data);

}

}

The in counter indicates the place in the array where the next object

goes. The out counter indicates where the next object comes from.

The wrapped flag means in has gone “around the circle” and is now

coming up from behind out. When in and out coincide, the queue is

empty (if wrapped is false) or full (if wrapped is true).

The put() and get() methods call precondition(),

postcondition(), and invariant(), which are private

methods defined further down in the class. precondition() and

postcondition() are helper methods designed to clarify the code.



Note that precondition() returns void, because it is not used

with assert. As previously noted, you’ll generally keep preconditions

in your code. By wrapping them in a precondition() method call,

you have better options if you are reduced to the dire move of turning

them off.

postcondition() and invariant() both return a Boolean

value so they can be used in assert statements. Then, if you disable

assertions for performance reasons, there are no method calls at all.

invariant() performs internal validity checks on the object. This

is an expensive operation if you do it at both the start and end of every

method call, as Meyer suggests. However, it’s valuable to clearly

represent in code, and it helped me debug the implementation. In

addition, if you make any changes to the implementation, the

invariant() ensures you haven’t broken the code. But it’s fairly

trivial to move the invariant tests from the method calls into the unit

test code. If your unit tests are thorough, you have a reasonable level

of confidence that invariants are respected.

The dump() helper method returns a String with all the data,

rather than printing the data directly. This allows more options for

using the information.



Now we can create JUnit tests for the class:

// validating/tests/CircularQueueTest.java

package validating;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

public class CircularQueueTest {

private CircularQueue queue = new CircularQueue(10);

private int i = 0;

@BeforeEach

public void initialize() {

while(i < 5) // Pre-load with some data

queue.put(Integer.toString(i++));

}

// Support methods:

private void showFullness() {

assertTrue(queue.full());

assertFalse(queue.empty());

System.out.println(queue.dump());

}

private void showEmptiness() {



assertFalse(queue.full());

assertTrue(queue.empty());

System.out.println(queue.dump());

}

@Test

public void full() {

System.out.println("testFull");

System.out.println(queue.dump());

System.out.println(queue.get());

System.out.println(queue.get());

while(!queue.full())

queue.put(Integer.toString(i++));

String msg = "";

try {

queue.put("");

} catch(CircularQueueException e) {

msg = e.getMessage();

System.out.println(msg);

}

assertEquals(msg, "put() into full CircularQueue");



showFullness();

}

@Test

public void empty() {

System.out.println("testEmpty");

while(!queue.empty())

System.out.println(queue.get());

String msg = "";

try {

queue.get();

} catch(CircularQueueException e) {

msg = e.getMessage();

System.out.println(msg);

}

assertEquals(msg, "get() from empty CircularQueue");

showEmptiness();

}

@Test

public void nullPut() {

System.out.println("testNullPut");



String msg = "";

try {

queue.put(null);

} catch(CircularQueueException e) {

msg = e.getMessage();

System.out.println(msg);

}

assertEquals(msg, "put() null item");

}

@Test

public void circularity() {

System.out.println("testCircularity");

while(!queue.full())

queue.put(Integer.toString(i++));

showFullness();

assertTrue(queue.isWrapped());

while(!queue.empty())

System.out.println(queue.get());

showEmptiness();

while(!queue.full())



queue.put(Integer.toString(i++));

showFullness();

while(!queue.empty())

System.out.println(queue.get());

showEmptiness();

}

}

/* Output:

testNullPut

put() null item

testCircularity

in = 0, out = 0, full() = true, empty() = false,

CircularQueue =

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

0

1

2

3

4

5



6

7

8

9

in = 0, out = 0, full() = false, empty() = true,

CircularQueue =

[null, null, null, null, null, null, null, null, null,

null]

in = 0, out = 0, full() = true, empty() = false,

CircularQueue =

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

10

11

12

13

14

15

16

17

18



19

in = 0, out = 0, full() = false, empty() = true,

CircularQueue =

[null, null, null, null, null, null, null, null, null,

null]

testFull

in = 5, out = 0, full() = false, empty() = false,

CircularQueue =

[0, 1, 2, 3, 4, null, null, null, null, null]

0

1

put() into full CircularQueue

in = 2, out = 2, full() = true, empty() = false,

CircularQueue =

[10, 11, 2, 3, 4, 5, 6, 7, 8, 9]

testEmpty

0

1

2

3



4

get() from empty CircularQueue

in = 5, out = 5, full() = false, empty() = true,

CircularQueue =

[null, null, null, null, null, null, null, null, null,

null]

*/

The initialize() method adds some data so the

CircularQueue is partially full for each test. The support methods

showFullness() and showEmptiness() indicate that the

CircularQueue is full or empty, respectively. Each of the four test

methods ensures that a different aspect of the CircularQueue

functions correctly.

Note that by combining DbC with unit testing, you not only get the

best of both worlds, but you also have a migration path—you can move

some DbC tests to unit tests rather than simply disabling them, so you

still have some level of testing.



Using Guava Preconditions

In Relaxing DbC, I pointed out that the precondition is the one part of DbC
you don’t want to remove, as it checks the validity of method

arguments. That’s something you have no control over, so you do want

to check them. Because Java disables assertions by default, it’s usually

better to use a different library that’s always validating method

arguments.

Google’s Guava library incorporates a nice set of precondition tests

that are not only easy to use, but also descriptively well-named. Here

you see simple usages of all of them. The library designers recommend

you import the preconditions statically:

// validating/GuavaPreconditions.java

// Demonstrating Guava Preconditions

import java.util.function.*;

import static com.google.common.base.Preconditions.*;

public class GuavaPreconditions {

static void test(Consumer<String> c, String s) {

try {

System.out.println(s);

c.accept(s);

System.out.println("Success");



} catch(Exception e) {

String type = e.getClass().getSimpleName();

String msg = e.getMessage();

System.out.println(type +

(msg == null ? "" : ": " + msg));

}

}

public static void main(String[] args) {

test(s -> s = checkNotNull(s), "X");

test(s -> s = checkNotNull(s), null);

test(s -> s = checkNotNull(s, "s was null"), null);

test(s -> s = checkNotNull(

s, "s was null, %s %s", "arg2", "arg3"), null);

test(s -> checkArgument(s == "Fozzie"), "Fozzie");

test(s -> checkArgument(s == "Fozzie"), "X");

test(s -> checkArgument(s == "Fozzie"), null);

test(s -> checkArgument(

s == "Fozzie", "Bear Left!"), null);

test(s -> checkArgument(

s == "Fozzie", "Bear Left! %s Right!", "Frog"),



null);

test(s -> checkState(s.length() > 6), "Mortimer");

test(s -> checkState(s.length() > 6), "Mort");

test(s -> checkState(s.length() > 6), null);

test(s ->

checkElementIndex(6, s.length()), "Robert");

test(s ->

checkElementIndex(6, s.length()), "Bob");

test(s ->

checkElementIndex(6, s.length()), null);

test(s ->

checkPositionIndex(6, s.length()), "Robert");

test(s ->

checkPositionIndex(6, s.length()), "Bob");

test(s ->

checkPositionIndex(6, s.length()), null);

test(s -> checkPositionIndexes(

0, 6, s.length()), "Hieronymus");

test(s -> checkPositionIndexes(

0, 10, s.length()), "Hieronymus");



test(s -> checkPositionIndexes(

0, 11, s.length()), "Hieronymus");

test(s -> checkPositionIndexes(

-1, 6, s.length()), "Hieronymus");

test(s -> checkPositionIndexes(

7, 6, s.length()), "Hieronymus");

test(s -> checkPositionIndexes(

0, 6, s.length()), null);

}

}

/* Output:

X

Success

null

NullPointerException

null

NullPointerException: s was null

null

NullPointerException: s was null, arg2 arg3

Fozzie



Success

X

IllegalArgumentException

null

IllegalArgumentException

null

IllegalArgumentException: Bear Left!

null

IllegalArgumentException: Bear Left! Frog Right!

Mortimer

Success

Mort

IllegalStateException

null

NullPointerException

Robert

IndexOutOfBoundsException: index (6) must be less than

size (6)

Bob

IndexOutOfBoundsException: index (6) must be less than



size (3)

null

NullPointerException

Robert

Success

Bob

IndexOutOfBoundsException: index (6) must not be

greater than size (3)

null

NullPointerException

Hieronymus

Success

Hieronymus

Success

Hieronymus

IndexOutOfBoundsException: end index (11) must not be

greater than size (10)

Hieronymus

IndexOutOfBoundsException: start index (-1) must not be

negative



Hieronymus

IndexOutOfBoundsException: end index (6) must not be

less than start index (7)

null

NullPointerException

*/

Although Guava preconditions work with all types, I only demonstrate

Strings here. The test() method expects a

Consumer<String> so we can pass a lambda expression as the first

argument, and the String to pass to the lambda as the second

argument. It displays the String in order to orient you when looking

at the output, then passes the String to the lambda expression. The

second println() in the try block is only displayed if the lambda

expression succeeds; otherwise the catch clause displays the error

information. Notice how much duplicate code the test() method

eliminates.

Each precondition has three different overloaded forms: a test with no

message, a test with a simple String message, and a test with a

String and a variable argument list of replacement values. For

efficiency, only %s (String type) replacement tags are allowed. In



the above example, the two forms of String message are only

demonstrated for checkNotNull() and checkArgument(), but

they are the same for all the rest of the precondition methods.

Note that checkNotNull() returns its argument, so you can use it

inline in an expression. Here’s how to use it in a constructor to prevent

object construction containing null values:

// validating/NonNullConstruction.java

import static com.google.common.base.Preconditions.*;

public class NonNullConstruction {

private Integer n;

private String s;

NonNullConstruction(Integer n, String s) {

this.n = checkNotNull(n);

this.s = checkNotNull(s);

}

public static void main(String[] args) {

NonNullConstruction nnc =

new NonNullConstruction(3, "Trousers");

}

}



checkArgument() takes a boolean expression for a more specific

test of an argument, and throws IllegalArgumentException

upon failure. checkState() is for testing the state of the object (for

example, an invariant check), rather than checking the arguments, and

throws IllegalStateException upon failure.

The last three methods throw IndexOutOfBoundsException

upon failure. checkElementIndex() ensures that its first

argument is a valid element index into a list, string, or array with a size

specified by its second argument. checkPositionIndex()

ensures that its first argument is in the range from zero to its second

argument, inclusive. checkPositionIndexes() checks that

[first_arg, second_arg) is a valid subrange of a List,

String, or array with the size specified by the third argument.

All Guava precondition methods have the necessary overloads for

primitive types as well as Objects.

Test-Driven



Development

The premise of Test-Driven Development (TDD) is that if you design

and write your code with testing in mind, you not only create testable

code, it will also be better-designed. In general, this seems to hold

true. If I’m thinking “how will I test this?” it makes my code different,

and oftentimes “testable” translates to “usable.”

TDD purists write tests for a new feature before implementing that

feature; this is called Test-First Development. To demonstrate,

consider a toy example utility that inverts the case of characters in a

String. Let’s add some arbitrary constraints: the String must be

less than or equal to 30 characters, and must contain only letters,

spaces, commas and periods.

This example is different from standard TDD because it’s designed to

accept different implementations of the StringInverter, in order

to show the evolution of the class as we satisfy the tests step-by-step.

To enable this, the StringInverter is represented as an

interface:

// validating/StringInverter.java

package validating;

interface StringInverter {



String invert(String str);

}

Now we can write tests to express our requirements. The following is

not typically the way you’d write your tests, but we have a special

constraint here: we want to test multiple versions of the

StringInverter implementation. To achieve this, we exploit one

of the most sophisticated new features in JUnit5: dynamic test

generation. This is exactly what it sounds like—instead of each test

being coded explicitly, you can write code that generates tests at

runtime. This opens many new possibilities, especially in situations

where writing a full set of tests explicitly might otherwise be

prohibitive.

JUnit5 provides several ways to dynamically generate tests, but the

one used here might be the most complex. The

DynamicTest.stream() method takes:

An iterator over the set of objects that vary from one set of tests to

another. The object produced by that iterator can be of any type,

but there’s only a single object produced so for multiple items that

vary, you must artificially package them into a single type.

A Function that takes the object from the iterator and produces



a String describing the test.

A Consumer that accepts the object from the iterator and

contains the test code based on that object.

In this example, all code that would otherwise be duplicated is

combined in testVersions(). The objects that represent change

and are produced by the iterator are different implementations of

DynamicTest:

// validating/tests/DynamicStringInverterTests.java

package validating;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

import static org.junit.jupiter.api.DynamicTest.*;

class DynamicStringInverterTests {

// Combine operations to prevent code duplication:

Stream<DynamicTest> testVersions(String id,

Function<StringInverter, String> test) {

List<StringInverter> versions = Arrays.asList(



new Inverter1(), new Inverter2(),

new Inverter3(), new Inverter4());

return DynamicTest.stream(

versions.iterator(),

inverter -> inverter.getClass().getSimpleName(),

inverter -> {

System.out.println(

inverter.getClass().getSimpleName() +

": " + id);

try {

if(test.apply(inverter) != "fail")

System.out.println("Success");

} catch(Exception | Error e) {

System.out.println(

"Exception: " + e.getMessage());

}

}

);

}

String isEqual(String lval, String rval) {



if(lval.equals(rval))

return "success";

System.out.println("FAIL: " + lval + " != " + rval);

return "fail";

}

@BeforeAll

static void startMsg() {

System.out.println(

">>> Starting DynamicStringInverterTests <<<");

}

@AfterAll

static void endMsg() {

System.out.println(

">>> Finished DynamicStringInverterTests <<<");

}

@TestFactory

Stream<DynamicTest> basicInversion1() {

String in = "Exit, Pursued by a Bear.";

String out = "eXIT, pURSUED BY A bEAR.";

return testVersions(



"Basic inversion (should succeed)",

inverter -> isEqual(inverter.invert(in), out)

);

}

@TestFactory

Stream<DynamicTest> basicInversion2() {

return testVersions(

"Basic inversion (should fail)",

inverter -> isEqual(inverter.invert("X"), "X"));

}

@TestFactory

Stream<DynamicTest> disallowedCharacters() {

String disallowed = ";-_()*&^%$#@!~`0123456789";

return testVersions(

"Disallowed characters",

inverter -> {

String result = disallowed.chars()

.mapToObj(c -> {

String cc = Character.toString((char)c);

try {



inverter.invert(cc);

return "";

} catch(RuntimeException e) {

return cc;

}

}).collect(Collectors.joining(""));

if(result.length() == 0)

return "success";

System.out.println("Bad characters: " + result);

return "fail";

}

);

}

@TestFactory

Stream<DynamicTest> allowedCharacters() {

String lowcase = "abcdefghijklmnopqrstuvwxyz ,.";

String upcase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ,.";

return testVersions(

"Allowed characters (should succeed)",

inverter -> {



assertEquals(inverter.invert(lowcase), upcase);

assertEquals(inverter.invert(upcase), lowcase);

return "success";

}

);

}

@TestFactory

Stream<DynamicTest> lengthNoGreaterThan30() {

String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

assertTrue(str.length() > 30);

return testVersions(

"Length must be less than 31 (throws exception)",

inverter -> inverter.invert(str)

);

}

@TestFactory

Stream<DynamicTest> lengthLessThan31() {

String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

assertTrue(str.length() < 31);

return testVersions(



"Length must be less than 31 (should succeed)",

inverter -> inverter.invert(str)

);

}

}

In ordinary testing, you’d want a failed test to stop the build. Here,

however, we only want the system to report the issue, but then still

continue so you can see the effects of the different versions of

StringInverter.

Each method annotated with @TestFactory produces a Stream of

DynamicTest objects (via testVersions()), each of which

JUnit executes just like regular @Test methods.

Now that the tests are in place, we can begin implementing the

StringInverter. We start with a dummy class that returns its

argument:

// validating/Inverter1.java

package validating;

public class Inverter1 implements StringInverter {

public String invert(String str) { return str; }

}



Next we implement the inversion operation:

// validating/Inverter2.java

package validating;

import static java.lang.Character.*;

public class Inverter2 implements StringInverter {

public String invert(String str) {

String result = "";

for(int i = 0; i < str.length(); i++) {

char c = str.charAt(i);

result += isUpperCase(c) ?

toLowerCase(c) :

toUpperCase(c);

}

return result;

}

}

Now add code to ensure there are no more than 30 characters:

// validating/Inverter3.java

package validating;

import static java.lang.Character.*;



public class Inverter3 implements StringInverter {

public String invert(String str) {

if(str.length() > 30)

throw new RuntimeException("argument too long!");

String result = "";

for(int i = 0; i < str.length(); i++) {

char c = str.charAt(i);

result += isUpperCase(c) ?

toLowerCase(c) :

toUpperCase(c);

}

return result;

}

}

Finally, we exclude disallowed characters:

// validating/Inverter4.java

package validating;

import static java.lang.Character.*;

public class Inverter4 implements StringInverter {

static final String ALLOWED =



"abcdefghijklmnopqrstuvwxyz ,." +

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

public String invert(String str) {

if(str.length() > 30)

throw new RuntimeException("argument too long!");

String result = "";

for(int i = 0; i < str.length(); i++) {

char c = str.charAt(i);

if(ALLOWED.indexOf(c) == -1)

throw new RuntimeException(c + " Not allowed");

result += isUpperCase(c) ?

toLowerCase(c) :

toUpperCase(c);

}

return result;

}

}

You’ll see from the test output that each version of Inverter is

closer to passing all the tests. This duplicates your experience while

performing test-first development.



DynamicStringInverterTests.java was only used to show

the development of the different StringInverter

implementations during the TDD process. Ordinarily, you just write a

set of tests like the following, and modify a single StringInverter

class until it satisfies all tests:

// validating/tests/StringInverterTests.java

package validating;

import java.util.*;

import java.util.stream.*;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

public class StringInverterTests {

StringInverter inverter = new Inverter4();

@BeforeAll

static void startMsg() {

System.out.println(">>> StringInverterTests <<<");

}

@Test

void basicInversion1() {

String in = "Exit, Pursued by a Bear.";



String out = "eXIT, pURSUED BY A bEAR.";

assertEquals(inverter.invert(in), out);

}

@Test

void basicInversion2() {

expectThrows(Error.class, () -> {

assertEquals(inverter.invert("X"), "X");

});

}

@Test

void disallowedCharacters() {

String disallowed = ";-_()*&^%$#@!~`0123456789";

String result = disallowed.chars()

.mapToObj(c -> {

String cc = Character.toString((char)c);

try {

inverter.invert(cc);

return "";

} catch(RuntimeException e) {

return cc;



}

}).collect(Collectors.joining(""));

assertEquals(result, disallowed);

}

@Test

void allowedCharacters() {

String lowcase = "abcdefghijklmnopqrstuvwxyz ,.";

String upcase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ,.";

assertEquals(inverter.invert(lowcase), upcase);

assertEquals(inverter.invert(upcase), lowcase);

}

@Test

void lengthNoGreaterThan30() {

String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

assertTrue(str.length() > 30);

expectThrows(RuntimeException.class, () -> {

inverter.invert(str);



});

}

@Test

void lengthLessThan31() {

String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

assertTrue(str.length() < 31);

inverter.invert(str);

}

}

By establishing all the desired characteristics within tests as a starting

point, you can add functionality until all the tests pass. Once you’re

finished, you also have the tests to tell you (or anyone else) when

you’ve broken the code in the future, while fixing bugs or adding

features. TDD tends to produce better, more thoughtful tests, whereas

attempting to achieve full test coverage after the fact often produces

hurried or meaningless tests.

Test-Driven vs. Test-First

Although I myself have not achieved the Test-First level of

consciousness, I am most intrigued by the concept of “failing test as

bookmark” that comes from Test-First. When you walk away from



your work for awhile, it can sometimes be challenging to get back into

the groove, or even find where you left off. A failing test, however,

brings you right back to where you stopped. This seems like it makes it

easier to step away without worrying about losing your place.

The main problem with pure test-first programming is it assumes you

know everything about the problem you’re solving, up front. In my

own experience, I usually start by experimenting, and only when I’ve

worked with the problem for awhile do I understand it well enough to

write tests. Certainly, there are occasional problems that are perfectly

defined before you start, but I personally don’t run across such

problems very often. Indeed, it might be worth coining the phrase

Test-Oriented Development to describe the practice of writing code

that tests well.

Logging

Logging reports information about a

running program.



In a debugged program, this can be ordinary status data showing the

progress of the program (for example, an installation program may log

the steps taken during installation, the directories where you stored

files, startup values for the program, etc.).

Logging is also helpful during debugging. Without logging, you might

try to decipher the behavior of a program by inserting println()

statements. Some examples in this book use that very technique, and

in the absence of a debugger (a topic introduced shortly), it’s about all

you have. However, once you decide the program is working properly,

you’ll probably take the println() statements out. Then if you run

into more bugs, you may need to put them back in. It’s much nicer if

you include output statements that are only used when necessary.

Prior to the availability of logging packages, programmers relied on

the fact that the Java compiler optimizes away code that is never

called. If debug is a static final boolean, you can say:

if(debug) {

System.out.println("Debug info");

}

Then, when debug is false, the compiler removes the code within

the braces. Thus, the code has no run-time impact when it isn’t used.



With this approach, you can place trace code throughout your program

and easily turn it on and off. One drawback to the technique, however,

is you must recompile your code to turn your trace statements on and

off. It’s more convenient to turn on the trace without recompiling the

program, via a configuration file you change to modify the logging

properties.

The logging package from the standard Java distribution

(java.util.logging) is almost universally considered a poor

design. Most people choose an alternative logging package instead.

The Simple Logging Facade for Java (SLF4J) provides a facade for

multiple logging frameworks, such as java.util.logging,

logback and log4j. SLF4J allows the end-user to plug in the

desired logging framework at deployment time.

SLF4J provides a sophisticated facility to report information about

your program with almost the same efficiency of the technique in the

preceding example. For very simple informational logging, you can do

something like this:

// validating/SLF4JLogging.java

import org.slf4j.*;

public class SLF4JLogging {



private static Logger log =

LoggerFactory.getLogger(SLF4JLogging.class);

public static void main(String[] args) {

log.info("hello logging");

}

}

/* Output:

2017-05-09T06:07:53.418

[main] INFO SLF4JLogging - hello logging

*/

The format and information in the output, and even whether the

output is considered normal or “error,” depends on the back-end

package connected to SLF4J. In the above example it’s connected to

the logback library (via this book’s build.gradle file) and

appears as standard output.

If we modify build.gradle to instead use the logging package that

comes built into the JDK as the back end, the output appears as error



output, and looks like this:

Aug 16, 2016 5:40:31 PM InfoLogging main

INFO: hello logging

The logging system detects the class name and method name where

the log message originated. It’s not guaranteed that these names are

correct, so don’t rely on their accuracy.

Logging Levels

SLF4J provides multiple levels of reporting. This example shows them

all, in increasing order of “seriousness”:

// validating/SLF4JLevels.java

import org.slf4j.*;

public class SLF4JLevels {

private static Logger log =

LoggerFactory.getLogger(SLF4JLevels.class);

public static void main(String[] args) {

log.trace("Hello");

log.debug("Logging");

log.info("Using");

log.warn("the SLF4J");

log.error("Facade");



}

}

/* Output:

2017-05-09T06:07:52.846

[main] TRACE SLF4JLevels - Hello

2017-05-09T06:07:52.849

[main] DEBUG SLF4JLevels - Logging

2017-05-09T06:07:52.849

[main] INFO SLF4JLevels - Using

2017-05-09T06:07:52.850

[main] WARN SLF4JLevels - the SLF4J

2017-05-09T06:07:52.851

[main] ERROR SLF4JLevels - Facade

*/

These different levels let you look for messages of a certain level. The

level is typically set inside a separate configuration file, so you can

reconfigure without recompiling. The configuration file format

depends on which back-end logging implementation you are using.

Here is one for logback, which uses XML:

<!-- validating/logback.xml -->



<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

<appender name="STDOUT"

class="ch.qos.logback.core.ConsoleAppender" >

<encoder>

<pattern>

%d{yyyy-MM-dd'T'HH:mm:ss.SSS}

[%thread] %-5level %logger - %msg%n

</pattern>

</encoder>

</appender>

<root level="TRACE" >

<appender-ref ref="STDOUT" />

</root>

</configuration>

Try changing the <root level="TRACE"> line to a different level

and re-run the program to see how the output changes. If you provide

no logback.xml file you’ll still get a default configuration.



This has only been the briefest introduction to SLF4J and logging in

general, enough to give you the basics of logging—which will actually

take you a long way. Visit the SLF4J Documentation for more depth.

Debugging

Although judicious use of System.out

statements or logging information

produces valuable insight into the

behavior of a program, for difficult

problems this approach becomes

cumbersome and time-consuming.

You might also need to peek more deeply into the program than print

statements allow. For this, you need a debugger.

In addition to more quickly and easily displaying information than you

http://www.slf4j.org/manual.html


could produce with print statements, a debugger will also set

breakpoints and stop the program when it reaches those breakpoints.

A debugger can display the state of the program at any instant, view

the values of variables, step through the program line-by-line, connect

to a remotely running program, and more. Especially when you start

building larger systems (where bugs can easily become buried), it pays

to become familiar with debuggers.

Debugging with JDB

The Java Debugger (JDB) is a command-line tool that ships with the

JDK. JDB is at least conceptually a descendant of the Gnu Debugger

(GDB, which was inspired by the original Unix DB), in terms of the

instructions for debugging and its command-line interface. JDB is

useful for learning about debugging and performing simple debugging

tasks, and it’s helpful to know it’s always available wherever the JDK is

installed. However, for larger projects you’ll want a graphical

debugger, described later.

Suppose you’ve written the following program:

// validating/SimpleDebugging.java

// {ThrowsException}

public class SimpleDebugging {



private static void foo1() {

System.out.println("In foo1");

foo2();

}

private static void foo2() {

System.out.println("In foo2");

foo3();

}

private static void foo3() {

System.out.println("In foo3");

int j = 1;

j--;

int i = 5 / j;

}

public static void main(String[] args) {

foo1();

}

}

/* Output:

In foo1



In foo2

In foo3

___[ Error Output ]___

Exception in thread "main"

java.lang.ArithmeticException: / by zero

at

SimpleDebugging.foo3(SimpleDebugging.java:17)

at

SimpleDebugging.foo2(SimpleDebugging.java:11)

at SimpleDebugging.foo1(SimpleDebugging.java:7)

at

SimpleDebugging.main(SimpleDebugging.java:20)

*/

If you look at foo3(), the problem is obvious: You’re dividing by

zero. But suppose this code is buried in a large program (as is implied

here by the sequence of calls) and you don’t know where to start

looking for the problem. As it turns out, the exception gives enough

information for you to locate the problem. But let’s suppose things are

more difficult than that, and you must drill into it more deeply and get

more information than what an exception provides.



To run JDB, you first tell the compiler to generate debugging

information by compiling SimpleDebugging.java with the –g

flag. Then you start debugging the program with the command line:

jdb SimpleDebugging

This brings up JDB and gives you a command prompt. You can view

the list of available JDB commands by typing ? at the prompt.

Here’s an interactive debugging trace that shows how to chase down a

problem:

Initializing jdb ...

> catch Exception

The > indicates that JDB is waiting for a command. The command

catch Exception sets a breakpoint any place an exception is

thrown (however, the debugger will stop anyway, even if you don’t

explicitly give this directive—exceptions appear to be default

breakpoints in JDB).

Deferring exception catch Exception.

It will be set after the class is loaded.

> run

Now the program will run until the next breakpoint, which in this case

is where the exception occurs. Here’s the result of the run command:



run SimpleDebugging

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable

>

VM Started: In foo1

In foo2

In foo3

Exception occurred: java.lang.ArithmeticException

(uncaught)"thread=main",

SimpleDebugging.foo3(), line=16 bci=15

16 int i = 5 / j;

The program runs until line 16 where the exception occurs, but JDB

does not exit when it hits the exception. The debugger also displays the

line of code that caused the exception. You can list the point where

execution stopped in the program source using the list command:

main[1] list

12 private static void foo3() {

13 System.out.println("In foo3");

14 int j = 1;

15 j--;



16 => int i = 5 / j;

17 }

18 public static void main(String[] args) {

19 foo1();

20 }

21 }

/* Output:

The pointer (“=> ”) in this listing shows the current point from where

the execution will resume. You could resume the execution with the

cont (continue) command, but that makes JDB exit at the exception,

printing the stack trace.

The locals command dumps the value of all local variables:

main[1] locals

Method arguments:

Local variables:

j = 0

The wherei command prints the stack frames pushed in the method

stack of the current thread:

main[1] wherei

[1] SimpleDebugging.foo3 (SimpleDebugging.java:16), pc = 15



[2] SimpleDebugging.foo2 (SimpleDebugging.java:10), pc = 8

[3] SimpleDebugging.foo1 (SimpleDebugging.java:6), pc = 8

[4] SimpleDebugging.main (SimpleDebugging.java:19), pc = 0

Each line after wherei represents a method call and the point where

the call returns (which is shown by the value of the program counter

pc). Here the calling sequence is main(), foo1(), foo2(), and

foo3().

Because the list command shows where the execution stopped, you

often get a good enough idea of what happened that you can fix it. The

help command will tell you more of what you can do with jdb, but

before you spend too much time learning it, keep in mind that

command-line debuggers tend to require far too much work to get

results. Use jdb to learn the basics of debugging, then move to a



graphical debugger.

Graphical Debuggers

Using a command-line debugger like JDB can be inconvenient. It

requires explicit commands to look at the state of the variables

(locals, dump), list the point of execution in the source code

(list), find out the threads in the system (threads), set

breakpoints (stop in, stop at), etc. A graphical debugger

provides these features with a few clicks, and also displays the latest

details of the program being debugged without using explicit

commands.

Thus, although you may get started by experimenting with JDB, you’ll

probably find it much more productive to learn to use a graphical

debugger to quickly track down your bugs. The IBM Eclipse, Oracle

NetBeans and JetBrains IntelliJ development environments all

contain good graphical debuggers for Java.

Benchmarking

“We should forget about small

efficiencies, say about 97% of the time:

Premature optimization is the root of all

evil.”— Donald Knuth



If you find yourself on the slippery slope of premature optimization,

you can lose months of time if you get ambitious. Usually a simple,

straightforward coding approach is good enough. If you unnecessarily

optimize, you make your code needlessly complicated and hard to

understand.

Benchmarking means timing pieces of code or algorithms to see which

runs faster, as opposed to see Profiling and Optimizing which looks at an
entire program and finds sections where that program spends most

of its time.

Can’t you simply time the execution of a piece of code? In a

straightforward language like C, this approach actually works. In a

language with a complex runtime system like Java, benchmarking

becomes far more challenging. To produce reliable data, the

experimental setup must control variables such as CPU frequency,

power saving features, other processes running on the same machine,

optimizer options, and more.

Microbenchmarking



It’s tempting to write a timing utility to compare speeds of different

pieces of code. It seems like this might produce some useful data.

For example, here is a simple Timer class that can be used two ways:

1. Create a Timer object, perform your operations and then call the

duration() method on your Timer to produce the time

elapsed in milliseconds.

2. Pass a Runnable to the static duration() method. Anything

conforming to the Runnable interface has a functional

method run() with a function signature that takes no arguments

and returns nothing.

// onjava/Timer.java

package onjava;

import static java.util.concurrent.TimeUnit.*;

public class Timer {

private long start = System.nanoTime();

public long duration() {

return NANOSECONDS.toMillis(

System.nanoTime() - start);

}

public static long duration(Runnable test) {



Timer timer = new Timer();

test.run();

return timer.duration();

}

}

This is a straightforward way to time something. Can’t we just run

some code and see how long it takes?

There are many factors that impact your results, even to the point of

producing indicators that are upside-down. Here’s a seemingly-

innocent example using the standard Java Arrays library (described

more fully in Arrays):

// validating/BadMicroBenchmark.java

// {ExcludeFromTravisCI}

import java.util.*;

import onjava.Timer;

public class BadMicroBenchmark {

static final int SIZE = 250_000_000;

public static void main(String[] args) {

try { // For machines with insufficient memory

long[] la = new long[SIZE];



System.out.println("setAll: " +

Timer.duration(() ->

Arrays.setAll(la, n -> n)));

System.out.println("parallelSetAll: " +

Timer.duration(() ->

Arrays.parallelSetAll(la, n -> n)));

} catch(OutOfMemoryError e) {

System.out.println("Insufficient memory");

System.exit(0);

}

}

}

/* Output:

setAll: 272

parallelSetAll: 301

*/

The body of main() is inside a try block because one machine3 ran out of
memory and this would stop the build.

For an array of 250 million longs (just short of producing an “out of

memory” exception on most machines), we “compare” the

performance of Arrays.setAll() and



Arrays.parallelSetAll(). The parallel version attempts to use

multiple processors to get the job done faster. (Although I refer to

some parallel ideas in this section, these concepts are not explained in

detail until the Concurrent Programming chapter). Despite that, the non-
parallel version appears to run faster, although the results may

vary across machines.

Each operation in BadMicroBenchmark.java is independent, but if

your operation depends on a common resource, the parallel version

can end up being much slower, as the separate processes contend for

that resource:

// validating/BadMicroBenchmark2.java

// Relying on a common resource

import java.util.*;

import onjava.Timer;

public class BadMicroBenchmark2 {

// SIZE reduced to make it run faster:

static final int SIZE = 5_000_000;

public static void main(String[] args) {

long[] la = new long[SIZE];

Random r = new Random();

System.out.println("parallelSetAll: " +



Timer.duration(() ->

Arrays.parallelSetAll(la, n -> r.nextLong())));

System.out.println("setAll: " +

Timer.duration(() ->

Arrays.setAll(la, n -> r.nextLong())));

SplittableRandom sr = new SplittableRandom();

System.out.println("parallelSetAll: " +

Timer.duration(() ->

Arrays.parallelSetAll(la, n -> sr.nextLong())));

System.out.println("setAll: " +

Timer.duration(() ->

Arrays.setAll(la, n -> sr.nextLong())));

}

}

/* Output:

parallelSetAll: 1147

setAll: 174

parallelSetAll: 86

setAll: 39

*/



SplittableRandom is designed for parallel algorithms, and it

certainly does seem to run faster than plain Random in

parallelSetAll(). But it still appears to take longer than the

non-parallel setAll(), which seems unlikely (And yet might be

true. We just can’t tell by using bad microbenchmarking).

This only touches the microbenchmark problem. The JVM Hotspot

technologies significantly affect performance. If you don’t “warm up”

the JVM by running your code awhile before you run the test, you can

get “cold” results that don’t reflect the speed after it’s been running

awhile (And what if your running application doesn’t end up using it

enough to “warm up” the JVM? You won’t get the performance you

expect, and might even decrease speed).

The optimizer can sometimes detect when you create something and

don’t use it, or when the result of running some code has no effect on

the program. If it optimizes away your tests then you get bad results.

A good microbenchmarking system automatically compensates for

issues like this (and many others) to produce reasonable results, but



creating such a system is quite tricky and requires deep knowledge.

Introducing JMH

At this writing, the only microbenchmark system for Java that

produces decent results is The Java Microbenchmarking Harness

JMH. This book’s build.gradle automates JMH setup so you can use it
easily.

It’s possible to write JMH code to run it from the command line, but

the recommended approach is to let the JMH system run the tests for

you; the build.gradle file is configured to run JMH tests with a

single command.

JMH attempts to make benchmarks as easy as possible. For example,

we’ll rewrite BadMicroBenchmark.java to use JMH. The only

annotations necessary here are @State and @Benchmark. The

remaining annotations are included to either produce more

understandable output or to make the benchmarks run faster for this

example (JMH benchmarks often take a long time to run):

// validating/jmh/JMH1.java

package validating.jmh;

import java.util.*;

import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;

http://openjdk.java.net/projects/code-tools/jmh/


@State(Scope.Thread)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

// Increase these three for more accuracy:

@Warmup(iterations = 5)

@Measurement(iterations = 5)

@Fork(1)

public class JMH1 {

private long[] la;

@Setup

public void setup() {

la = new long[250_000_000];

}

@Benchmark

public void setAll() {

Arrays.setAll(la, n -> n);

}

@Benchmark

public void parallelSetAll() {

Arrays.parallelSetAll(la, n -> n);



}

}

The default number of “forks” is ten, which means each test set runs

ten times. To speed things up, I’ve used the @Fork annotation to

reduce this to one. I’ve also reduced the number of warmup iterations

and measurement iterations from the default of twenty down to five

using the @Warmup and @Measurement annotations. Although this

reduces the overall accuracy, the results are nearly identical to those

with the default values. Try commenting out the @Warmup,

@Measurement and @Fork annotations to see the default values

and whether the tests show any noticeable variation; normally you

should only see the error factors go down using the longer-running

tests, and not changes in the results.

Running the benchmark requires an explicit gradle command

(executed from the root directory of the example code). This prevents

time-consuming benchmarking from running for any other gradlew

commands:

gradlew validating:jmh

It takes several minutes, depending on your machine (without the

annotation adjustments, it takes hours). The console output displays



the path to a results.txt file, which summarizes the results. Note

that results.txt contains the results for all jmh tests in this

chapter: JMH1.java, JMH2.java, and JMH3.java.

Because the output is in absolute time, results vary between machines

and operating systems. The important factor is not the absolute times.

What we’re really looking for is how one algorithm compares to

another; in particular, how much faster or slower it is. If you run the

tests on your machine, you’ll see different numbers but the same

patterns.

I’ve tested this code on numerous machines, and while the absolute

numbers vary from machine to machine, the relative values stay

reasonably consistent. I only display the appropriate snippets from

results.txt, and I edit the output to make it easier to understand,

and to fit on the page. The Mode for all tests is displayed as avgt for

“Average Time.” The Cnt (number of tests) is 200, although you’ll see

a Cnt of 5 when you run the examples as configured here. The Units

are us/op for “Microseconds per operation”, thus smaller numbers

indicate faster performance.

I’m also showing the output from the default number of warmups,

measurements and forks. I deleted the corresponding annotations



from the examples in order to run my tests with greater accuracy (this

takes hours). The pattern of the numbers should still look the same

regardless of how you run the tests.

Here are the results for JMH1.java:

Benchmark Score

JMH1.setAll 196280.2

JMH1.parallelSetAll 195412.9

Even for a sophisticated benchmarking tool like JMH, the process of

benchmarking is nontrivial and you must exercise care. Here, the test

produces counterintuitive results: the parallel version takes about the

same time as the non-parallel setAll(), and both seem to take a

rather long time.

My assumption when I created the example was that, if we are testing

array initialization, it makes sense to use very large arrays. So I chose

the largest array I could; if you experiment you’ll see that when you

start making the array larger than 250 million4 you begin to get out-of-
memory exceptions. However, it’s possible that performing mass

operations on an array this large is thrashing the memory system and

producing these unexpected results. Whether or not that’s a correct

hypothesis, it does seem that we’re not actually testing what we think

we’re testing.



Consider other factors:

C: The number of client threads performing operations.

P: The amount of parallelism used by a parallel algorithm.

N: The size of the array: 10^(2*k), where k=1..7 is usually

enough to exercise different cache footprints.

Q: The cost of the setter operation.

This C/P/N/Q model surfaced during early JDK 8 Lambda

development, and most parallel Stream operations

(parallelSetAll() is quite similar) agree with these conclusions:

N*Q (basically, the amount of work) is critical to parallel

performance. With less work, the parallel algorithm may actually

run slower.

There are cases where operations are so contended that

parallelism is no help at all, no matter how large N*Q is.

When C is high, P is much less relevant (an abundance of external

parallelism makes internal parallelism redundant). Moreover, in

some cases, the cost of parallel decomposition makes C clients

running a parallel algorithm run slower than the same C clients

running sequential code.

Based on this information, we re-run the test using different array



sizes (values of N):

// validating/jmh/JMH2.java

package validating.jmh;

import java.util.*;

import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;

@State(Scope.Thread)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

@Warmup(iterations = 5)

@Measurement(iterations = 5)

@Fork(1)

public class JMH2 {

private long[] la;

@Param({

"1",

"10",

"100",

"1000",

"10000",



"100000",

"1000000",

"10000000",

"100000000",

"250000000"

})

int size;

@Setup

public void setup() {

la = new long[size];

}

@Benchmark

public void setAll() {

Arrays.setAll(la, n -> n);

}

@Benchmark

public void parallelSetAll() {

Arrays.parallelSetAll(la, n -> n);

}

}



@Param automatically inserts each of its values into the variable it

annotates. The values must be Strings and are converted to the

appropriate type, int in this case.

Here are the edited results along with a calculated speedup:

JMH2 Benchmark Size Score % Speedup

setAll 1 0.001

parallelSetAll 1 0.036 0.028

setAll 10 0.005

parallelSetAll 10 3.965 0.001

setAll 100 0.031

parallelSetAll 100 3.145 0.010

setAll 1000 0.302

parallelSetAll 1000 3.285 0.092

setAll 10000 3.152

parallelSetAll 10000 9.669 0.326

setAll 100000 34.971

parallelSetAll 100000 20.153 1.735

setAll 1000000 420.581

parallelSetAll 1000000 165.388 2.543

setAll 10000000 8160.054



parallelSetAll 10000000 7610.190 1.072

setAll 100000000 79128.752

parallelSetAll 100000000 76734.671 1.031

setAll 250000000 199552.121

parallelSetAll 250000000 191791.927 1.040

Around 100,000 elements, parallelSetAll() starts to pull

ahead, but then drops back to about par. Even when it’s winning, it

doesn’t seem to be enough of an improvement to justify its existence.

Does the amount of work in the calculation performed by

setAll()/parallelSetAll() make a difference? In the

previous examples, all we did was assign the value of the index into the

array location, which is one of the simplest tasks possible. So even

when the N becomes large, N*Q still isn’t that great, so it looks like we

aren’t providing enough opportunity for parallelism. (JMH provides a



way to simulate a variable Q; to learn more, search for

Blackhole.consumeCPU.)

By making the task more complex using the following method f(), we

produce more parallel opportunities:

// validating/jmh/JMH3.java

package validating.jmh;

import java.util.*;

import org.openjdk.jmh.annotations.*;

import java.util.concurrent.TimeUnit;

@State(Scope.Thread)

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.MICROSECONDS)

@Warmup(iterations = 5)

@Measurement(iterations = 5)

@Fork(1)

public class JMH3 {

private long[] la;

@Param({

"1",

"10",



"100",

"1000",

"10000",

"100000",

"1000000",

"10000000",

"100000000",

"250000000"

})

int size;

@Setup

public void setup() {

la = new long[size];

}

public static long f(long x) {

long quadratic = 42 * x * x + 19 * x + 47;

return Long.divideUnsigned(quadratic, x + 1);

}

@Benchmark

public void setAll() {



Arrays.setAll(la, n -> f(n));

}

@Benchmark

public void parallelSetAll() {

Arrays.parallelSetAll(la, n -> f(n));

}

}

f() provides a more complex and time-consuming operation. Now,

instead of simply assigning the index into its corresponding location,

both setAll() and parallelSetAll() have more work to do,

and this definitely affects the results:

JMH3 Benchmark Size Score % Speedup

setAll 1 0.012

parallelSetAll 1 0.047 0.255

setAll 10 0.107

parallelSetAll 10 3.894 0.027

setAll 100 0.990

parallelSetAll 100 3.708 0.267

setAll 1000 133.814

parallelSetAll 1000 11.747 11.391



setAll 10000 97.954

parallelSetAll 10000 37.259 2.629

setAll 100000 988.475

parallelSetAll 100000 276.264 3.578

setAll 1000000 9203.103

parallelSetAll 1000000 2826.974 3.255

setAll 10000000 92144.951

parallelSetAll 10000000 28126.202 3.276

setAll 100000000 921701.863

parallelSetAll 100000000 266750.543 3.455

setAll 250000000 2299127.273

parallelSetAll 250000000 538173.425 4.272

You can see that somewhere around an array size of 1000,

parallelSetAll() pulls ahead of setAll(). It appears that

parallelSetAll() depends heavily on the complexity of the

calculation combined with the size of the array. This is exactly the

value of benchmarking, because we’ve learned subtle things about how

setAll() and parallelSetAll() work and when to use them.

This is not obvious from studying the Javadocs.



Much of the time, simple applications of JMH will produce good

results (as you shall see in examples later in the book), but we’ve

learned here that you can’t assume this is always the case. The JMH

site has samples to help you get started.

Profiling and

Optimizing

Sometimes you must detect where your program spends all its time, to

see whether you can improve the performance of those sections. A

profiler finds the slow spots so you can look for the easiest, most

obvious way to speed things up.

A profiler gathers information showing which parts of the program

consume memory and which methods consume maximum time. Some

profilers even disable the garbage collector to help determine patterns

of memory allocation.

A profiler is also useful for detecting thread deadlock in your program.

Note the difference between profiling and benchmarking. Profiling

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/


looks at your completed program working on your actual data,

whereas benchmarking looks at an isolated fragment of a program,

typically to optimize an algorithm.

The Java Development Kit (JDK) installation comes with a visual

profiler called VisualVM. This is automatically installed in the same

directory as javac, which you should already have in your execution

path. To start VisualVM, the console command is:

> jvisualvm

This command opens a window containing links to help information.

Optimization Guidelines

Avoid sacrificing code readability for performance.

Don’t look at performance in isolation. Weigh the amount of effort

required versus the advantage gained.



The size of the program matters. Performance optimization is

generally valuable only for large projects that run for a long time.

Performance is often not a concern for small projects.

Making the program work is a higher priority than delving into its

performance. Once you have a working program you can, if

necessary, use the profiler to make it more efficient. Consider

performance during the initial design/development process only

if it is a critical factor.

Do not guess where the bottlenecks are. Run a profiler to get that

data.

Whenever possible, explicitly discard an instance by setting it to

null. This can be a useful hint to the garbage collector.

static final variables can be optimized by the JVM to

improve program speed. Program constants should thus be

declared static and final.

Style Checking

When you’re working on a project in a team (including and especially

open-source projects), it’s very helpful if everyone follows the same

coding style. This way, reading code for the project doesn’t produce

mental interrupts due to style differences. However, if you’re used to



coding a different style it can be difficult to remember all the style

guidelines for a particular project. Fortunately, tools exist to point out

places in your code that don’t follow your guidelines.

A popular style checker is Checkstyle. Look at the gradle.build and
checkstyle.xml files in the book’s Example Code to see one way to configure
Checkstyle. checkstyle.xml is a set of common

checks, with some of those checks commented out to allow for the

style used in this book.

To run all the style checks, the command is:

gradlew checkstyleMain

Some files still produce Checkstyle warnings, typically because those

examples demonstrate something you don’t normally do in production

code.

You can also run the style checks for a specific chapter. For example,

here’s how to check the Annotations chapter:

gradlew annotations:checkstyleMain

Static Error Analysis

http://checkstyle.sourceforge.net/
https://github.com/BruceEckel/OnJava8-Examples


Although Java’s static type checking finds basic syntax errors,

additional analysis tools can find more sophisticated bugs that elude

javac. One such tool is Findbugs. This book’s build.gradle file in the
Example Code contains a configuration for Findbugs so you can enter the
command:

gradlew findbugsMain

This produces an HTML report for each chapter, called main.html,

showing potential issues in the code. The Gradle command output

shows you where each report resides.

When you look at the reports you’ll see there are many false positives

suggesting there’s a problem when the code is actually fine. Some of

the positives are indeed correct for files where I was demonstrating

how not to do something.

When I initially reviewed the Findbugs output for the book, I found a

few things that weren’t technically errors but enabled me to improve

the code. If you’re hunting for a bug, it’s worth running Findbugs

before starting up your debugger, as it might quickly find something

http://findbugs.sourceforge.net/
https://github.com/BruceEckel/OnJava8-Examples


that could otherwise require hours.

Code Reviews

Unit Testing finds significant and important classes of bugs.

Checkstyle and Findbugs perform automatic code reviews to find

additional problems. Eventually you reach the point where you must

add human eyeballs to the mix. Code reviews are various ways of

taking a piece of code written by one person or group and having it

read and evaluated by someone else or a group. Initially this can seem

intimidating, and it does require emotional trust, but the goal is

definitely not to shame or ridicule anyone. The objective is to find

program errors, and code reviews are one of the most successful ways

to do this. Alas, they are also usually considered “too expensive” (and

sometimes that excuse can be a way for programmers to avoid the

perceived embarrassment of a review).

Code reviews can be performed as part of pair programming, as part

of the code check-in process (another programmer is automatically

assigned the task of reviewing new code), or with a group, using a

walkthrough, where everyone reads the code and discusses it. This

latter approach has the significant benefit of sharing knowledge and

coding culture.



Pair Programming

Pair programming is the practice of two programmers coding

together. Typically, one programmer “drives” (sits at the keyboard and

types) and the other (the “observer” or “navigator”) reviews and

analyzes the code, and also considers strategies. This produces a kind

of real-time code review. Normally programmers regularly switch

roles.

Pair programming has numerous benefits, but the two most

compelling ones are sharing knowledge and preventing blockage. One

of the best ways to transfer information is by solving problems

together, and I have used pair programming in numerous seminars to

great effect (also, people in the seminar get to know each other this



way). And with two people working together, it’s far easier to keep

moving forward whereas a single programmer can easily get stuck.

Pair programmers generally report higher satisfaction in their work.

Pair programming can sometimes be a difficult sell to managers who

might immediately observe that two programmers working on one

problem are less productive than if they are each working on their own

projects. While this is often true in the short term, the code produced

is of higher quality; along with the other benefits of pair programming

this produces greater productivity if you consider a longer view.

Wikipedia’s pair programming article is a good start if you want more
information.

Refactoring

Technical debt is all those quick-and-dirty solutions that accumulate

in your software and make the design impossible to understand and

the code unreadable. This is particularly problematic when you must

make changes and add features.

Refactoring is the antidote to technical debt. The key to refactoring is

https://en.wikipedia.org/wiki/Pair_programming


that it improves the code design, structure and readability (thus

reducing technical debt), but it doesn’t change the behavior of the

code.

This can be a hard sell to management: “We’re going to put in a lot of

work but we won’t be adding any features and from the outside there

will be no noticeable changes when we’re done. But trust us, things

will be a lot better.” Unfortunately, management only realizes the

value of refactoring at the moment it’s too late: when they ask for “just

one more feature” and you have to tell them it’s impossible because

the code base has become a huge accumulation of hacks and it will

collapse if you try to add another feature, even if you could figure out

how to do it.

Foundations For Refactoring

Before you can start refactoring your code, you must have three

support systems in place:

1. Tests (typically, JUnit tests as a minimum foundation), so you can

ensure your refactorings do not change the behavior of the code.

2. Build automation, so you can easily build the code and run all the

tests. This way it’s effortless to make a small change and verify it

hasn’t broken anything. This book uses the Gradle build system,



and you can find the build.gradle file in the download that contains the
examples.

3. Version control, so you can always provide/go back to a working

version of the code, and keep track of the steps along the way.

This book’s example code is hosted on Github and uses the git version
control system.

Without these three systems, refactoring is virtually impossible.

Indeed, without these, building, maintaining and adding to code in the

first place is a big challenge. Surprisingly, there are many successful

companies that manage to get by for quite awhile without using any of

these three systems. However, with such companies it’s usually just a

matter of time before they run into serious problems.

The Wikipedia article on refactoring provides further details.

Continuous

Integration

In the early days of software development, people could only manage

one step at a time, so they took on the belief that they were always

https://github.com/BruceEckel/OnJava8-Examples
https://github.com/BruceEckel/OnJava8-Examples
https://en.wikipedia.org/wiki/Code_refactoring


traveling “the happy path,” and each development stage was going to

flow seamlessly into the next. This delusion was often called “The

Waterfall Model” of software development. I’ve had people tell me that

Waterfall was their method of choice, as if it were actually a selected

tool and not just wishful thinking.

In this fairy-tale land, each step finished perfectly and on time

according to the made-up schedule, and then the next step could start.

By the time you reached the end, all the pieces would slide seamlessly

together and voila! A shipping product!

In reality, of course, nothing ever went to plan or to schedule.

Believing it should, and then believing harder when it didn’t, just

made the whole thing worse. Denying evidence doesn’t produce good

results.

On top of all this, the product itself often wasn’t something valuable

for customers. Sometimes a whole raft of features were a complete

waste of time, because the need for those features was invented by

someone other than the customer.

Because it came from assembly-line mentality, each development

stage had its own team. Schedule slips from an upstream team were

passed to a downstream team, and by the time you got to testing and



integration, those teams were expected to somehow catch up to the

schedule, and when they inevitably couldn’t they were considered “bad

team players.” The combination of impossible schedules and negative

associations created a self-fulfilling prophecy: only the most desperate

of developers were willing to do those jobs.

On top of this, business schools continued to produce managers who

were only trained to turn the crank on existing processes—processes

based on the ideas of industrial-age manufacturing. Business schools

that teach creativity rather than conformity continue to be very rare.

Eventually people from within the programming ranks couldn’t stand

it anymore and started experimenting. Some of these initial

experiments were called “extreme programming” because they were

very different than industrial-age thinking. As the experiments showed

results the ideas began to look like common sense. These experiments

evolved the now-obvious idea of putting a working product—albeit

very minimal—into the hands of customers and asking them if (A) they

even wanted it (B) if they liked the way it worked and (C) what other

features they might find useful. Then it’s back to development to

produce a new version. Version by version, the project evolves into

something that truly produces value for the customer.



This is completely upside-down from the waterfall approach. You stop

assuming that you handle things like product testing and deployment

“as the final step.” Instead, everything from beginning to end—even

for a product that has virtually no features at the outset (in which case

you’re probably just testing the installation)—must be in play. Doing

so has the huge benefit of finding even more problems early in the

development cycle. In addition, rather than doing a lot of big, up-front

planning and spending time and money on a lot of useless features,

you’re in a constant feedback cycle with the customer. When the

customer doesn’t want any more features, you’re done. This saves lots

of time and money and produces lots of customer satisfaction.

There have been many different pieces and ideas leading up to this

approach, but the current over-arching term is continuous integration

(CI). The difference between CI and the ideas leading up to it is that CI

is a distinct mechanical process that encompasses those ideas; it is a

well-defined way of doing things. So well-defined, in fact, that the

whole process is automated.

The current apex of CI technology is the continuous integration

server. This is a separate machine or virtual machine, and is

commonly a completely separate service hosted by a third-party



company. They typically provide a basic service for free, and if you

need additional features like more processors or memory or

specialized tools or systems, you pay for those. The CI server starts out

as a completely blank slate with only the most minimal operating

system available. This is important because it’s easy to forget if you

have already installed some piece on your development machine, and

then not include that piece in your build and deployment systems.

Just like refactoring, continuous integration requires a foundation of

distributed version control, build automation, and automated testing.

The CI server is typically tied into your version control repository.

When the CI server sees a change in the repository, it checks out the

latest version and begins the process specified in your CI script. This

includes installing all necessary tools and libraries (remember, the CI

server starts with nothing but a clean, basic operating system), so if

there are any problems in that process you discover them. Then it

performs any builds and tests specified in your script; the script

typically uses exactly the same commands that a human will use in the

installation and testing process. If it succeeds or fails the CI server has

numerous ways to report that to you, including a simple badge that

appears on your code repository.



Using Continuous Integration, every change you check into the

repository is automatically validated from beginning to end. This way

you find out immediately if you begin to have problems. Even better,

when you are ready to ship a new version of the product there’s no

delay or any extra steps necessary (being able to deliver at any time is

called Continuous Delivery).

This book’s example code is automatically tested on Travis-CI (for Linux-
based systems) and AppVeyor (for Windows). You can see the pass/fail
badges on the Readme at the Github repository.

Summary

“It works on my machine.” “We are not

shipping your machine!”

Code validation is not a single process or technique. Any one approach

only finds certain categories of bugs, and as you develop as a

programmer you learn that every additional technique adds to the

reliability and robustness of your code. Validation helps you discover

more errors not only during development but also during the project

https://travis-ci.org/BruceEckel/OnJava8-Examples
https://ci.appveyor.com/project/BruceEckel/onjava-examples
https://github.com/BruceEckel/OnJava8-Examples


lifetime, as you add capabilities to your application. Modern

development means much more than just writing code, and every

testing technique you fold into your development process—including

and especially custom tools you create to fit a particular application—

results in better, faster, more pleasant development and improved

value and a more satisfying experience for your customer.

1. I say “mostly” because it’s possible to write code the compiler

can’t check, as shown in Type Information↩

2. Design by contract is described in detail in Chapter 11 of Object-

Oriented Software Construction, 2nd Edition, by Bertrand Meyer

(Prentice Hall, 1997).↩

3. An off-the-shelf Mac Mini with 8Gb of memory↩

4. For limited machine configurations this number can be much

lower.↩

Files

After many years of awkward file I/O

programming, Java finally simplified the

basic act of reading and writing files.



The full details of “the hard way” are in the Appendix: I/O Streams. If you
read that, you might come to the conclusion that the Java

designers didn’t care about the experience of their users. Opening and

reading a file—which is a rather common experience with most

programming languages—required such awkward code that no one

could remember how to open a file without looking up the code every

single time.

Java 7 introduced great improvements, as if the designers had finally

heard the years of pain from their users. These new elements are

packaged under java.nio.file, where the n in nio formerly

meant “new” but now means “non-blocking” (io is for input/output).

The java.nio.file library finally brings Java file manipulation

into the same arena as other programming languages. On top of that,

Java 8 adds streams to the mix, which makes file programming even

nicer.

We shall look at the two basic components to manipulating files:



1. The path to the file or directory.

2. The file itself.

File and Directory

Paths

A Path object represents a path to a file or a directory, abstracted

across operating systems (OSes) and file systems. The intent is that

you don’t have to pay attention to the underlying OS when

constructing a path, and your code will work on different OSes without

rewriting.

The java.nio.file.Paths class contains a single overloaded

static get() method to take either a sequence of Strings or a

Uniform Resource Identifier (URI) and convert it to a Path object:

// files/PathInfo.java

import java.nio.file.*;

import java.net.URI;

import java.io.File;

import java.io.IOException;

public class PathInfo {

static void show(String id, Object p) {

System.out.println(id + ": " + p);



}

static void info(Path p) {

show("toString", p);

show("Exists", Files.exists(p));

show("RegularFile", Files.isRegularFile(p));

show("Directory", Files.isDirectory(p));

show("Absolute", p.isAbsolute());

show("FileName", p.getFileName());

show("Parent", p.getParent());

show("Root", p.getRoot());

System.out.println("******************");

}

public static void main(String[] args) {

System.out.println(System.getProperty("os.name"));

info(Paths.get(

"C:", "path", "to", "nowhere", "NoFile.txt")); Path p =
Paths.get("PathInfo.java");

info(p);

Path ap = p.toAbsolutePath();

info(ap);

info(ap.getParent());



try {

info(p.toRealPath());

} catch(IOException e) {

System.out.println(e);

}

URI u = p.toUri();

System.out.println("URI: " + u);

Path puri = Paths.get(u);

System.out.println(Files.exists(puri));

File f = ap.toFile(); // Don't be fooled

}

}

/* Output:

Windows 10

toString: C:\path\to\nowhere\NoFile.txt

Exists: false

RegularFile: false

Directory: false

Absolute: true

FileName: NoFile.txt



Parent: C:\path\to\nowhere

Root: C:\

******************

toString: PathInfo.java

Exists: true

RegularFile: true

Directory: false

Absolute: false

FileName: PathInfo.java

Parent: null

Root: null

******************

toString: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files\PathInfo.java

Exists: true

RegularFile: true

Directory: false

Absolute: true

FileName: PathInfo.java

Parent: C:\Users\Bruce\Documents\GitHub\on-



java\ExtractedExamples\files

Root: C:\

******************

toString: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files

Exists: true

RegularFile: false

Directory: true

Absolute: true

FileName: files

Parent: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples

Root: C:\

******************

toString: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files\PathInfo.java

Exists: true

RegularFile: true

Directory: false

Absolute: true



FileName: PathInfo.java

Parent: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files

Root: C:\

******************

URI: file:///C:/Users/Bruce/Documents/GitHub/on-

java/ExtractedExamples/files/PathInfo.java

true

*/

I’ve added the first line of main() to appropriate programs in this

chapter to display the OS name, so you can see what differences there

are between one OS and another. Ideally the differences are relatively

few and isolated to expected places, such as whether / or \ is the path
separator. You can see from the output I’m developing on Windows

10.

While toString() produces a full representation of the path, you

can see that getFileName() always produces the name of the file.

Using the Files utility class (which we’ll see more of) you can test to

see whether a file exists, is a “regular” file, is a directory, and more.

The “Nofile.txt” example shows it is possible to describe a file which

isn’t there; this allows you to create a new path. “PathInfo.java” lives



in the current directory, and initially it’s just the file name without a

path, although it still checks out as “existing.” Once we convert it to an

absolute path, we get the full path starting from the “C:” drive (this

was tested on a Windows machine). Now it has a parent, as well.

The definition of the “real” path is a bit vague in the documentation

because it depends on the particular file system. If a filename

comparison is case-insensitive, for example, you might get a positive

match even if the path doesn’t look exactly the same because of casing.

On such a platform, toRealPath() will return the Path with the

actual case. It also removes any redundant elements.

Here, you see what a URI looks like for a file, but it can be used to

describe most things; see Wikipedia for a detailed description. Then we
successfully convert the URI back into a Path.

Finally, you see something slightly deceiving, which is the call to

toFile() to produce a File object. This sounds like you might get

something file-like (it’s called File, after all) but this method exists

for backwards-compatibility to the old-style way of doing things. In

that world, File actually means either a file or a directory—which

sounds like it should have been called “path” instead. Very sloppy and

confusing naming, but you can safely ignore it now that

java.nio.file exists.

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier


Selecting Pieces of a Path

Path objects can easily yield parts of their path:

// files/PartsOfPaths.java

import java.nio.file.*;

public class PartsOfPaths {

public static void main(String[] args) {

System.out.println(System.getProperty("os.name"));

Path p =

Paths.get("PartsOfPaths.java").toAbsolutePath();

for(int i = 0; i < p.getNameCount(); i++)

System.out.println(p.getName(i));

System.out.println("ends with '.java': " +

p.endsWith(".java"));

for(Path pp : p) {

System.out.print(pp + ": ");

System.out.print(p.startsWith(pp) + " : ");

System.out.println(p.endsWith(pp));



}

System.out.println("Starts with " + p.getRoot() +

" " + p.startsWith(p.getRoot()));

}

}

/* Output:

Windows 10

Users

Bruce

Documents

GitHub

on-java

ExtractedExamples

files

PartsOfPaths.java

ends with '.java': false

Users: false : false

Bruce: false : false

Documents: false : false

GitHub: false : false



on-java: false : false

ExtractedExamples: false : false

files: false : false

PartsOfPaths.java: false : true

Starts with C:\ true

*/

You can index into the parts of a Path using getName(), respecting

the upper bound with getNameCount(). A Path also produces an

Iterator so you can step through using for-in. Note that, even

though my path here does end with .java, endsWith() produces

false. This is because endsWith() is comparing the entire path

component, not a substring within the name. This is shown within the

for-in body by checking the current piece of the path using

startsWith() and endsWith(). However, we see that iterating

through the Path does not include the root, and only when we check

startsWith() against the root does it produce true.

Analyzing a Path



The Files utility class contains a full set of tests to discover

information about a Path:

// files/PathAnalysis.java

import java.nio.file.*;

import java.io.IOException;

public class PathAnalysis {

static void say(String id, Object result) {

System.out.print(id + ": ");

System.out.println(result);

}

public static void

main(String[] args) throws IOException {

System.out.println(System.getProperty("os.name"));

Path p =

Paths.get("PathAnalysis.java").toAbsolutePath();

say("Exists", Files.exists(p));

say("Directory", Files.isDirectory(p));

say("Executable", Files.isExecutable(p));

say("Readable", Files.isReadable(p));

say("RegularFile", Files.isRegularFile(p));



say("Writable", Files.isWritable(p));

say("notExists", Files.notExists(p));

say("Hidden", Files.isHidden(p));

say("size", Files.size(p));

say("FileStore", Files.getFileStore(p));

say("LastModified: ", Files.getLastModifiedTime(p));

say("Owner", Files.getOwner(p));

say("ContentType", Files.probeContentType(p));

say("SymbolicLink", Files.isSymbolicLink(p));

if(Files.isSymbolicLink(p))

say("SymbolicLink", Files.readSymbolicLink(p));

if(FileSystems.getDefault()

.supportedFileAttributeViews().contains("posix"))

say("PosixFilePermissions",

Files.getPosixFilePermissions(p));

}

}

/* Output:

Windows 10

Exists: true



Directory: false

Executable: true

Readable: true

RegularFile: true

Writable: true

notExists: false

Hidden: false

size: 1631

FileStore: SSD (C:)

LastModified: : 2017-05-09T12:07:00.428366Z

Owner: MINDVIEWTOSHIBA\Bruce (User)

ContentType: null

SymbolicLink: false

*/

For the final test, I had to figure out whether the file system supported

Posix before calling getPosixFilePermissions(), otherwise it

produces a runtime exception.



Adding and Subtracting Paths

We must be able to construct Path objects by adding and subtracting

pieces to our Path. To subtract the base of a Path we use

relativize() and to add pieces at the end of a Path we use

resolve() (not exactly “discoverable” names).

For this example I use relativize() to remove the base path

from all the output, partly as a demonstration and partly to simplify

the output. It turns out you can only relativize() a Path if it is

absolute.

This version of show includes id numbers to make it easier to track

the output:

// files/AddAndSubtractPaths.java

import java.nio.file.*;

import java.io.IOException;

public class AddAndSubtractPaths {

static Path base = Paths.get("..", "..", "..")

.toAbsolutePath()

.normalize();

static void show(int id, Path result) {

if(result.isAbsolute())



System.out.println("(" + id + ")r " +

base.relativize(result));

else

System.out.println("(" + id + ") " + result);

try {

System.out.println("RealPath: "

+ result.toRealPath());

} catch(IOException e) {

System.out.println(e);

}

}

public static void main(String[] args) {

System.out.println(System.getProperty("os.name"));

System.out.println(base);

Path p = Paths.get("AddAndSubtractPaths.java")

.toAbsolutePath();

show(1, p);

Path convoluted = p.getParent().getParent()

.resolve("strings")

.resolve("..")



.resolve(p.getParent().getFileName());

show(2, convoluted);

show(3, convoluted.normalize());

Path p2 = Paths.get("..", "..");

show(4, p2);

show(5, p2.normalize());

show(6, p2.toAbsolutePath().normalize());

Path p3 = Paths.get(".").toAbsolutePath();

Path p4 = p3.resolve(p2);

show(7, p4);

show(8, p4.normalize());

Path p5 = Paths.get("").toAbsolutePath();

show(9, p5);

show(10, p5.resolveSibling("strings"));

show(11, Paths.get("nonexistent"));

}

}

/* Output:

Windows 10

C:\Users\Bruce\Documents\GitHub



(1)r on-

java\ExtractedExamples\files\AddAndSubtractPaths.java

RealPath: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files\AddAndSubtractPaths.java

(2)r on-java\ExtractedExamples\strings\..\files

RealPath: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files

(3)r on-java\ExtractedExamples\files

RealPath: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files

(4) ..\..

RealPath: C:\Users\Bruce\Documents\GitHub\on-java

(5) ..\..

RealPath: C:\Users\Bruce\Documents\GitHub\on-java

(6)r on-java

RealPath: C:\Users\Bruce\Documents\GitHub\on-java



(7)r on-java\ExtractedExamples\files\.\..\..

RealPath: C:\Users\Bruce\Documents\GitHub\on-java

(8)r on-java

RealPath: C:\Users\Bruce\Documents\GitHub\on-java

(9)r on-java\ExtractedExamples\files

RealPath: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files

(10)r on-java\ExtractedExamples\strings

RealPath: C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\strings

(11) nonexistent

java.nio.file.NoSuchFileException:

C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\files\nonexistent

*/

I’ve also added further tests for toRealPath(). This always

expands and normalizes the Path, except when the path doesn’t exist,

in which case it throws an exception.

Directories

The Files utility class contains most of the operations you’ll need for



directory and file manipulation. For some reason, however, they did

not include a tool to delete directory trees, so we’ll create one and add

it to the onjava library.

// onjava/RmDir.java

package onjava;

import java.nio.file.*;

import java.nio.file.attribute.BasicFileAttributes;

import java.io.IOException;

public class RmDir {

public static void rmdir(Path dir)

throws IOException {

Files.walkFileTree(dir,

new SimpleFileVisitor<Path>() {

@Override

public FileVisitResult

visitFile(Path file, BasicFileAttributes attrs)

throws IOException {

Files.delete(file);

return FileVisitResult.CONTINUE;

}



@Override

public FileVisitResult

postVisitDirectory(Path dir, IOException exc)

throws IOException {

Files.delete(dir);

return FileVisitResult.CONTINUE;

}

});

}

}

This relies on Files.walkFileTree(); “walking” the tree means

looking at every subdirectory and file. The Visitor design pattern

provides a standard mechanism to visit every object in a collection,

then you provide the action you want executed on each of those

objects. This action is defined by how you implement the

FileVisitor argument, which contains:

preVisitDirectory(): Runs on a directory before entries in

the directory are visited.

visitFile(): Runs on each file in the directory.

visitFileFailed(): Called for a file that cannot be visited.



postVisitDirectory(): Runs on a directory after entries in

the directory—including all the subdirectories beneath it—are

visited.

To make things simpler, java.nio.file.SimpleFileVisitor

provides default definitions for all methods. That way, in our

anonymous inner class, we only override the methods with

nonstandard behavior: visitFile() deletes the file, and

postVisitDirectory() deletes the directory. Both return flags

indicate that the walk should continue (this way you can walk only

until you find what you’re looking for).

Now we can conditionally delete an existing directory, as part of our

exploration of creating and populating directories. In the following

example, makeVariant() takes a base directory test and

produces different subdirectory paths by rotating through the parts

list. These rotations are pasted together with the path separator sep

using String.join(), then the result is returned as a Path.

// files/Directories.java

import java.util.*;

import java.nio.file.*;

import onjava.RmDir;



public class Directories {

static Path test = Paths.get("test");

static String sep =

FileSystems.getDefault().getSeparator();

static List<String> parts =

Arrays.asList("foo", "bar", "baz", "bag");

static Path makeVariant() {

Collections.rotate(parts, 1);

return Paths.get("test", String.join(sep, parts));

}

static void refreshTestDir() throws Exception {

if(Files.exists(test))

RmDir.rmdir(test);

if(!Files.exists(test))

Files.createDirectory(test);

}

public static void

main(String[] args) throws Exception {

refreshTestDir();

Files.createFile(test.resolve("Hello.txt"));



Path variant = makeVariant();

// Throws exception (too many levels):

try {

Files.createDirectory(variant);

} catch(Exception e) {

System.out.println("Nope, that doesn't work.");

}

populateTestDir();

Path tempdir =

Files.createTempDirectory(test, "DIR_");

Files.createTempFile(tempdir, "pre", ".non");

Files.newDirectoryStream(test)

.forEach(System.out::println);

System.out.println("*********");

Files.walk(test).forEach(System.out::println);

}

static void populateTestDir() throws Exception {

for(int i = 0; i < parts.size(); i++) {

Path variant = makeVariant();

if(!Files.exists(variant)) {



Files.createDirectories(variant);

Files.copy(Paths.get("Directories.java"),

variant.resolve("File.txt"));

Files.createTempFile(variant, null, null);

}

}

}

}

/* Output:

Nope, that doesn't work.

test\bag

test\bar

test\baz

test\DIR_5142667942049986036

test\foo

test\Hello.txt

*********

test

test\bag

test\bag\foo



test\bag\foo\bar

test\bag\foo\bar\baz

test\bag\foo\bar\baz\8279660869874696036.tmp

test\bag\foo\bar\baz\File.txt

test\bar

test\bar\baz

test\bar\baz\bag

test\bar\baz\bag\foo

test\bar\baz\bag\foo\1274043134240426261.tmp

test\bar\baz\bag\foo\File.txt

test\baz

test\baz\bag

test\baz\bag\foo

test\baz\bag\foo\bar

test\baz\bag\foo\bar\6130572530014544105.tmp

test\baz\bag\foo\bar\File.txt

test\DIR_5142667942049986036

test\DIR_5142667942049986036\pre7704286843227113253.non

test\foo

test\foo\bar



test\foo\bar\baz

test\foo\bar\baz\bag

test\foo\bar\baz\bag\5412864507741775436.tmp

test\foo\bar\baz\bag\File.txt

test\Hello.txt

*/

First, refreshTestDir() checks to see if test already exists. If

so, its whole directory is removed using our new rmdir() utility.

Checking to see whether it exists() is then redundant, but I

wanted to make the point because if you call createDirectory()

for a directory that already exists, you’ll get an exception.

createFile() makes an empty file with the argument Path;

resolve() adds the file name to the end of the test Path.

We attempt to use createDirectory() to create a path with more

than one level, but this throws an exception because that method can

only create a single directory.



I’ve made populateTestDir() a separate method because it’s

reused in a later example. For each variant, we create the full directory

path using createDirectories(), then populate that terminal

directory with a copy of this file but using a different destination

name. Then we add a temporary file generated with

createTempFile(). Here we let the method generate the entire

temporary file name by passing it null for the second two arguments.

After the call to populateTestDir(), we create a temporary

directory underneath test. Note that createTempDirectory()

only has a prefix option for the name, unlike createTempFile()

which we again use to put a temporary file in our new temporary

directory. You can see from the output that if you don’t specify a

postfix, the “.tmp” postfix will automatically be used.

To display the results, we first try newDirectoryStream() which

seems promising, but it turns out to only stream the contents of the

test directory, and no further down. To get a stream of the entire

contents of the directory tree, use Files.walk().

File Systems

For completeness, we need a way to find out the rest of the

information about the file system. Here, we get the “default” file



system using the static FileSystems utility, but you can also call

getFileSystem() on a Path object to get the file system that created that Path.
You can get a file system given a URI, and you can

also construct a new file system (for OSes that support it).

// files/FileSystemDemo.java

import java.nio.file.*;

public class FileSystemDemo {

static void show(String id, Object o) {

System.out.println(id + ": " + o);

}

public static void main(String[] args) {

System.out.println(System.getProperty("os.name"));

FileSystem fsys = FileSystems.getDefault();

for(FileStore fs : fsys.getFileStores())

show("File Store", fs);

for(Path rd : fsys.getRootDirectories())

show("Root Directory", rd);

show("Separator", fsys.getSeparator());

show("UserPrincipalLookupService",

fsys.getUserPrincipalLookupService());

show("isOpen", fsys.isOpen());



show("isReadOnly", fsys.isReadOnly());

show("FileSystemProvider", fsys.provider());

show("File Attribute Views",

fsys.supportedFileAttributeViews());

}

}

/* Output:

Windows 10

File Store: SSD (C:)

Root Directory: C:\

Root Directory: D:\

Separator: \

UserPrincipalLookupService:

sun.nio.fs.WindowsFileSystem$LookupService$1@15db9742

isOpen: true

isReadOnly: false

FileSystemProvider:

sun.nio.fs.WindowsFileSystemProvider@6d06d69c

File Attribute Views: [owner, dos, acl, basic, user]



*/

A FileSystem can also produce a WatchService and a

PathMatcher.

Watching a Path

A WatchService enables you to set up a process that reacts to

changes within a directory. In this example, delTxtFiles() runs

as a separate task that goes through the whole directory tree and

deletes all files that have names ending with .txt, and the

WatchService reacts to file deletions:

// files/PathWatcher.java

// {ExcludeFromGradle}

import java.io.IOException;

import java.nio.file.*;

import static java.nio.file.StandardWatchEventKinds.*;

import java.util.concurrent.*;

public class PathWatcher {



static Path test = Paths.get("test");

static void delTxtFiles() {

try {

Files.walk(test)

.filter(f ->

f.toString().endsWith(".txt"))

.forEach(f -> {

try {

System.out.println("deleting " + f);

Files.delete(f);

} catch(IOException e) {

throw new RuntimeException(e);

}

});

} catch(IOException e) {

throw new RuntimeException(e);

}

}

public static void

main(String[] args) throws Exception {



Directories.refreshTestDir();

Directories.populateTestDir();

Files.createFile(test.resolve("Hello.txt"));

WatchService watcher =

FileSystems.getDefault().newWatchService();

test.register(watcher, ENTRY_DELETE);

Executors.newSingleThreadScheduledExecutor()

.schedule(

PathWatcher::delTxtFiles,

250, TimeUnit.MILLISECONDS);

WatchKey key = watcher.take();

for(WatchEvent evt : key.pollEvents()) {

System.out.println(

"evt.context(): " + evt.context() +

"\nevt.count(): " + evt.count() +

"\nevt.kind(): " + evt.kind());

System.exit(0);

}

}

}



/* Output:

deleting test\bag\foo\bar\baz\File.txt

deleting test\bar\baz\bag\foo\File.txt

deleting test\baz\bag\foo\bar\File.txt

deleting test\foo\bar\baz\bag\File.txt

deleting test\Hello.txt

evt.context(): Hello.txt

evt.count(): 1

evt.kind(): ENTRY_DELETE

*/

The try blocks in delTxtFiles() look redundant, because they’re

both catching the same type of exception, and it seems like the outer

try should be enough. However, Java demands both for some reason

(this might be a bug). Also note that in filter() I must explicitly

convert f.toString(), otherwise I’ll get the endsWith() that compares to an
entire Path object rather than part of its String

name.

Once we get a WatchService from the FileSystem, we register it

with the test Path along with the variable argument list of items

we are interested in—you have a choice of watching for

ENTRY_CREATE, ENTRY_DELETE or ENTRY_MODIFY (creation



and deletion doesn’t qualify as modification).

Because the upcoming call to watcher.take() stops everything

until something happens, I want delTxtFiles() to start running

in parallel so it can generate our event of interest. To do this, I first

procure a ScheduledExecutorService by calling

Executors.newSingleThreadScheduledExecutor(), then

call schedule(), handing it the method reference of the desired

function and how long it should wait before running it.

At this point, watcher.take() sits and waits. When something

happens that fits our target pattern, a WatchKey is returned

containing WatchEvents. The three methods shown are all you can

do with a WatchEvent.

Look at the output and see what happens. Even though we are deleting

files that end with .txt, the WatchService doesn’t get triggered

until Hello.txt gets deleted. You might think that if you say “watch

this directory,” it would naturally include the entire subtree, but it’s

very literal: it only watches that directory, and not everything beneath

it. If you want to watch the entire directory tree, you must put a

WatchService on every subdirectory in the whole tree:

// files/TreeWatcher.java



// {ExcludeFromGradle}

import java.io.IOException;

import java.nio.file.*;

import static java.nio.file.StandardWatchEventKinds.*;

import java.util.concurrent.*;

public class TreeWatcher {

static void watchDir(Path dir) {

try {

WatchService watcher =

FileSystems.getDefault().newWatchService();

dir.register(watcher, ENTRY_DELETE);

Executors.newSingleThreadExecutor().submit(() -> {

try {

WatchKey key = watcher.take();

for(WatchEvent evt : key.pollEvents()) {

System.out.println(

"evt.context(): " + evt.context() +

"\nevt.count(): " + evt.count() +

"\nevt.kind(): " + evt.kind());

System.exit(0);



}

} catch(InterruptedException e) {

return;

}

});

} catch(IOException e) {

throw new RuntimeException(e);

}

}

public static void

main(String[] args) throws Exception {

Directories.refreshTestDir();

Directories.populateTestDir();

Files.walk(Paths.get("test"))

.filter(Files::isDirectory)

.forEach(TreeWatcher::watchDir);

PathWatcher.delTxtFiles();

}

}

/* Output:



deleting test\bag\foo\bar\baz\File.txt

deleting test\bar\baz\bag\foo\File.txt

evt.context(): File.txt

evt.count(): 1

evt.kind(): ENTRY_DELETE

*/

The watchDir() method puts a WatchSevice for

ENTRY_DELETE on its argument, and also starts an independent

process to monitor that WatchService. Here, we don’t

schedule() a task to run later, but instead submit() it to run

right now. We walk the entire directory tree and apply watchDir()

to each subdirectory. Now when we run delTxtFiles(), one of the

WatchServices detects the very first deletion.

Finding Files

To find files up until now, we’ve been using the rather crude approach

of calling toString() on the Path, then using String operations



to look at the result. It turns out that java.nio.file has a better

solution: the PathMatcher. You get one by calling

getPathMatcher() on the FileSystem object, and you pass in

your pattern of interest. There are two options for patterns: glob and

regex. glob is simpler and is actually quite powerful so you’ll be

able to solve many problems using glob. If your problem is more

complex, you can use regex, which is explained in the upcoming

Strings chapter.

Here we use glob to find all the Paths that end with .tmp or .txt:

// files/Find.java

// {ExcludeFromGradle}

import java.nio.file.*;

public class Find {

public static void

main(String[] args) throws Exception {

Path test = Paths.get("test");

Directories.refreshTestDir();

Directories.populateTestDir();

// Creating a *directory*, not a file:

Files.createDirectory(test.resolve("dir.tmp"));



PathMatcher matcher = FileSystems.getDefault()

.getPathMatcher("glob:**/*.{tmp,txt}");

Files.walk(test)

.filter(matcher::matches)

.forEach(System.out::println);

System.out.println("***************");

PathMatcher matcher2 = FileSystems.getDefault()

.getPathMatcher("glob:*.tmp");

Files.walk(test)

.map(Path::getFileName)

.filter(matcher2::matches)

.forEach(System.out::println);

System.out.println("***************");

Files.walk(test) // Only look for files

.filter(Files::isRegularFile)

.map(Path::getFileName)

.filter(matcher2::matches)

.forEach(System.out::println);

}

}



/* Output:

test\bag\foo\bar\baz\5208762845883213974.tmp

test\bag\foo\bar\baz\File.txt

test\bar\baz\bag\foo\7918367201207778677.tmp

test\bar\baz\bag\foo\File.txt

test\baz\bag\foo\bar\8016595521026696632.tmp

test\baz\bag\foo\bar\File.txt

test\dir.tmp

test\foo\bar\baz\bag\5832319279813617280.tmp

test\foo\bar\baz\bag\File.txt

***************

5208762845883213974.tmp

7918367201207778677.tmp

8016595521026696632.tmp

dir.tmp

5832319279813617280.tmp



***************

5208762845883213974.tmp

7918367201207778677.tmp

8016595521026696632.tmp

5832319279813617280.tmp

*/

In matcher, the **/ at the beginning of the glob expression means

“all subdirectories,” and it’s essential if you want to match more than

just Paths ending in the base directory because it matches the full

path up until your desired result. The single * is “anything,” then a

dot, then the curly braces indicate a list of possibilities—we are looking

for anything ending with either .tmp or .txt. You can find further

details in the getPathMatcher() documentation.

matcher2 just uses *.tmp, which would ordinarily not match

anything, but adding the map() operation reduces the full path to just

the name at the end.

Notice in both cases that dir.tmp shows up in the output even

though it’s a directory and not a file. To only find files, you must filter

for them as in the last Files.walk().

Reading & Writing



Files

At this point we can do just about anything with paths and directories.

Now let’s look at manipulating the contents of the files themselves.

If a file is “small,” for some definition of “small” (which just means “it

runs fast enough for you and doesn’t run out of memory”), the

java.nio.file.Files class contains utilities for easily reading

and writing both text and binary files.

Files.readAllLines() reads the whole file in at once (thus, the

importance of it being a “small” file), producing a List<String> .

For an example file, we’ll reuse streams/Cheese.dat:

// files/ListOfLines.java

import java.util.*;

import java.nio.file.*;

public class ListOfLines {

public static void

main(String[] args) throws Exception {

Files.readAllLines(

Paths.get("../streams/Cheese.dat"))

.stream()

.filter(line -> !line.startsWith("//"))



.map(line ->

line.substring(0, line.length()/2))

.forEach(System.out::println);

}

}

/* Output:

Not much of a cheese

Finest in the

And what leads you

Well, it's

It's certainly uncon

*/

Comment lines are skipped, and the rest are only printed halfway.

Notice how easy it is: you just hand a Path to readAllLines() (it

was far messier in the past). There’s an overloaded version of

readAllLines() that includes a Charset argument to establish

the Unicode encoding of the file.

Files.write() is overloaded to write either an array of bytes or

anything Iterable (which also includes a Charset option):

// files/Writing.java



import java.util.*;

import java.nio.file.*;

public class Writing {

static Random rand = new Random(47);

static final int SIZE = 1000;

public static void

main(String[] args) throws Exception {

// Write bytes to a file:

byte[] bytes = new byte[SIZE];

rand.nextBytes(bytes);

Files.write(Paths.get("bytes.dat"), bytes);

System.out.println("bytes.dat: " +

Files.size(Paths.get("bytes.dat")));

// Write an iterable to a file:

List<String> lines = Files.readAllLines(

Paths.get("../streams/Cheese.dat"));

Files.write(Paths.get("Cheese.txt"), lines);

System.out.println("Cheese.txt: " +

Files.size(Paths.get("Cheese.txt")));

}



}

/* Output:

bytes.dat: 1000

Cheese.txt: 199

*/

We use Random to create a thousand random bytes; you can see the

resulting file size is 1000.

A List is written to a file here, but anything Iterable will work.

What if file size is an issue? Perhaps:

1. The file is so big you might run out of memory if you read the

whole thing at once.

2. You only need to work partway through the file to get the results

you want, so reading the whole file wastes time.

Files.lines() conveniently turns a file into a Stream of lines:

// files/ReadLineStream.java

import java.nio.file.*;

public class ReadLineStream {

public static void

main(String[] args) throws Exception {

Files.lines(Paths.get("PathInfo.java"))



.skip(13)

.findFirst()

.ifPresent(System.out::println);

}

}

/* Output:

show("RegularFile", Files.isRegularFile(p));

*/

This streams the first example in this chapter, skips 13 lines, takes the

next line and prints it.

Files.lines() is very useful for processing a file as an incoming

Stream of lines, but what if you want to read, process, and write, all

in a single Stream? This requires slightly more complex code:

// files/StreamInAndOut.java

import java.io.*;

import java.nio.file.*;

import java.util.stream.*;

public class StreamInAndOut {

public static void main(String[] args) {

try(



Stream<String> input =

Files.lines(Paths.get("StreamInAndOut.java"));

PrintWriter output =

new PrintWriter("StreamInAndOut.txt")

) {

input

.map(String::toUpperCase)

.forEachOrdered(output::println);

} catch(Exception e) {

throw new RuntimeException(e);

}

}

}

Because we’re performing all the manipulation within the same block,

both files can be opened within the same try-with-resources

statement. PrintWriter is an old-style java.io class that allows



you to “print to” a file, so it’s ideal for this application. If you look at

StreamInAndOut.txt you’ll see it is indeed in all uppercase.

Summary

Although this has been a fairly thorough introduction to file and

directory manipulation, there are still unexplored features in the

library—be sure to study the Javadocs for java.nio.file,

especially java.nio.file.Files.

The Java 7 & 8 improvements in libraries for working with files and

directories are monumental. If you’re just getting started with Java,

you’re lucky. In the past, it was so unpleasant I was convinced that the

Java designers just didn’t consider file manipulation important

enough to make it easy. It was a definite turnoff for beginner, and for

teaching the language to beginners. I don’t understand why it took so

long to fix this glaring issue but however it happened, I’m glad.

Working with files is now easy and even fun, something you could

never say before.



Strings

String manipulation is arguably one of the

most common activities in computer

programming.

This is especially true in Web systems, where Java is a major player. In

this chapter, we’ll look more deeply at what may be the most heavily

used class in the language, String, along with some of its associated

classes and utilities.

Immutable Strings

Objects of the String class are immutable. If you examine the JDK

documentation for the String class, you’ll see that every method in

the class that appears to modify a String actually creates and

returns a brand new String object containing the modification. The

original String is left untouched.

Consider the following code:

// strings/Immutable.java



public class Immutable {

public static String upcase(String s) {

return s.toUpperCase();

}

public static void main(String[] args) {

String q = "howdy";

System.out.println(q); // howdy

String qq = upcase(q);

System.out.println(qq); // HOWDY

System.out.println(q); // howdy

}

}

/* Output:

howdy

HOWDY

howdy

*/

When q is passed in to upcase() it’s actually a copy of the reference

to q. The object this reference is connected to stays in a single physical

location. The references are copied as they are passed around.



Looking at the definition for upcase(), notice that the reference

that’s passed in has the name s, and it exists for only as long as the

body of upcase() is being executed. When upcase() completes,

the local reference s vanishes. upcase() returns the result: a

reference to the original String, with all the characters set to

uppercase. But the reference it returns is for a new object, and the

original q is left alone.

This behavior is usually what you want. Suppose you say:

String s = "asdf";

String x = Immutable.upcase(s);

Do you really want the upcase() method to change the argument?

To the reader of the code, an argument usually looks like a piece of

information provided to the method, not something to be modified.

This is an important guarantee, since it makes code easier to write and

understand.

Overloading + vs.



StringBuilder

Since String objects are immutable, you can alias to a particular

String as many times as you want. Because a String is read-only,

there’s no possibility that one reference will change something that

affect the other references.

Immutability can have efficiency issues. A case in point is the operator

+ that is overloaded for String objects. Overloading means an

operation has extra meaning when used with a particular class. (The +

and += for String are the only operators overloaded in Java, and

Java does not allow the programmer to overload any others.)1

The + operator concatenates Strings:

// strings/Concatenation.java

public class Concatenation {

public static void main(String[] args) {

String mango = "mango";

String s = "abc" + mango + "def" + 47;

System.out.println(s);

}

}

/* Output:



abcmangodef47

*/

Imagine how this might work. The String “abc” could have a

method append() that creates a new String object containing

“abc” concatenated with the contents of mango. The new String

object would then create another new String that added “def,” and

so on.

This would certainly work, but it requires the creation of many

String objects just to put together this new String, then you have

a bunch of intermediate String objects that must be garbage

collected. I suspect that the Java designers tried this approach first (a

lesson in software design—you don’t really know anything about a

system until you try it out in code and get something working). I also

suspect they discovered it delivered unacceptable performance.

To see what really happens, you can decompile the above code using

the javap tool that comes as part of the JDK. Here’s the command

line:

javap -c Concatenation

The -c flag will produce the JVM bytecodes. After we strip out the

parts we’re not interested in and do a bit of editing, here are the



relevant bytecodes:

public static void main(java.lang.String[]);

Code:

Stack=2, Locals=3, Args_size=1

0: ldc #2; //String mango

2: astore_1

3: new #3; //class StringBuilder

6: dup

7: invokespecial #4; //StringBuilder."<init>":()

10: ldc #5; //String abc

12: invokevirtual #6; //StringBuilder.append:(String)

15: aload_1

16: invokevirtual #6; //StringBuilder.append:(String)

19: ldc #7; //String def

21: invokevirtual #6; //StringBuilder.append:(String)

24: bipush 47

26: invokevirtual #8; //StringBuilder.append:(I)

29: invokevirtual #9; //StringBuilder.toString:()

32: astore_2

33: getstatic #10; //Field System.out:PrintStream;



36: aload_2

37: invokevirtual #11; //PrintStream.println:(String)

40: return

If you’ve had experience with assembly language, this might look

familiar to you—statements like dup and invokevirtual are the

Java Virtual Machine (JVM) equivalent of assembly language. If

you’ve never seen assembly language, don’t worry about it—the

important part to notice is the introduction by the compiler of the

java.lang.StringBuilder class. There was no mention of

StringBuilder in the source code, but the compiler decided to use

it anyway, because it is much more efficient.

here, the compiler creates a StringBuilder object to build the

String s, and calls append() four times, one for each of the

pieces. Finally, it calls toString() to produce the result, which it

stores (with astore_2) as s.

Before you assume you can just use Strings everywhere and that the

compiler will make everything efficient, let’s look a little more closely

at what the compiler is doing. Here’s an example that produces a

String result in two ways: using Strings, and by hand-coding with

StringBuilder:



// strings/WhitherStringBuilder.java

public class WhitherStringBuilder {

public String implicit(String[] fields) {

String result = "";

for(String field : fields) {

result += field;

}

return result;

}

public String explicit(String[] fields) {

StringBuilder result = new StringBuilder();

for(String field : fields) {

result.append(field);

}

return result.toString();

}

}

Now if you run javap -c WitherStringBuilder, you see the

code for the two different methods (I’ve removed needless details).

First, implicit():



public java.lang.String implicit(java.lang.String[]);

0: ldc #2 // String

2: astore_2

3: aload_1

4: astore_3

5: aload_3

6: arraylength

7: istore 4

9: iconst_0

10: istore 5

12: iload 5

14: iload 4

16: if_icmpge 51

19: aload_3

20: iload 5

22: aaload

23: astore 6

25: new #3 // StringBuilder

28: dup

29: invokespecial #4 // StringBuilder."<init>"



32: aload_2

33: invokevirtual #5 // StringBuilder.append:(String)

36: aload 6

38: invokevirtual #5 // StringBuilder.append:(String;)

41: invokevirtual #6 // StringBuilder.toString:()

44: astore_2

45: iinc 5, 1

48: goto 12

51: aload_2

52: areturn

Notice 16: and 35:, which together form a loop. 16: does an

“integer compare greater than or equal to” of the operands on the

stack and jumps to 51: when the loop is done. 48: is a goto back to

the beginning of the loop, at 12:. Notice that the StringBuilder

construction happens inside this loop, which means you’re going to get

a new StringBuilder object every time you pass through the loop.

Here are the bytecodes for explicit():

public java.lang.String explicit(java.lang.String[]);

0: new #3 // StringBuilder

3: dup



4: invokespecial #4 // StringBuilder."<init>"

7: astore_2

8: aload_1

9: astore_3

10: aload_3

11: arraylength

12: istore 4

14: iconst_0

15: istore 5

17: iload 5

19: iload 4

21: if_icmpge 43

24: aload_3

25: iload 5

27: aaload

28: astore 6

30: aload_2

31: aload 6

33: invokevirtual #5 // StringBuilder.append:(String)

36: pop



37: iinc 5, 1

40: goto 17

43: aload_2

44: invokevirtual #6 // StringBuilder.toString:()

47: areturn

Not only is the loop code shorter and simpler, the method only creates

a single StringBuilder object. With an explicit

StringBuilder, you can preallocate its size if you know how big it

might be, so it doesn’t constantly reallocate the buffer.

Thus, when you create a toString() method, if the operations are

simple ones the compiler can figure out on its own, you can generally

rely on it to build the result in a reasonable fashion. But if looping is

involved and performance is an issue, explicitly use a

StringBuilder in your toString(), like this:

// strings/UsingStringBuilder.java

import java.util.*;

import java.util.stream.*;

public class UsingStringBuilder {

public static String string1() {

Random rand = new Random(47);



StringBuilder result = new StringBuilder("[");

for(int i = 0; i < 25; i++) {

result.append(rand.nextInt(100));

result.append(", ");

}

result.delete(result.length()-2, result.length());

result.append("]");

return result.toString();

}

public static String string2() {

String result = new Random(47)

.ints(25, 0, 100)

.mapToObj(Integer::toString)

.collect(Collectors.joining(", "));

return "[" + result + "]";

}

public static void main(String[] args) {

System.out.println(string1());

System.out.println(string2());

}



}

/* Output:

[58, 55, 93, 61, 61, 29, 68, 0, 22, 7, 88, 28, 51, 89,

9, 78, 98, 61, 20, 58, 16, 40, 11, 22, 4]

[58, 55, 93, 61, 61, 29, 68, 0, 22, 7, 88, 28, 51, 89,

9, 78, 98, 61, 20, 58, 16, 40, 11, 22, 4]

*/

In string1(), each piece of the result is added with an append()

statement. If you try to take shortcuts and do something like

append(a + ": " + c), the compiler will jump in and start

making more StringBuilder objects again. If you are in doubt

about which approach to use, you can always run javap to double-

check.

Although StringBuilder has a full complement of methods,

including insert(), replace(), substring() and even

reverse(), the ones you generally use are append() and

toString(). Note how the call to delete() removes the last

comma and space before adding the closing square bracket.

string2() uses Streams and the resulting code is far more

aesthetically pleasing. As it turns out, Collectors.joining()



also uses a StringBuilder internally, so you lose nothing!

StringBuilder was introduced in Java 5. Prior to this, Java used

StringBuffer, which ensured thread safety (see the Concurrent

Programming chapter) and so was significantly more expensive. With
StringBuilder, String operations should be faster.

Unintended Recursion

Because (like every other class) the Java standard collections are

ultimately inherited from Object, they contain a toString()

method. This is overridden so they produce a String representation

of themselves, including the objects they hold.

ArrayList.toString(), for example, steps through the elements

of the ArrayList and calls toString() for each one:

// strings/ArrayListDisplay.java

import java.util.*;

import java.util.stream.*;

import generics.coffee.*;



public class ArrayListDisplay {

public static void main(String[] args) {

List<Coffee> coffees =

Stream.generate(new CoffeeSupplier())

.limit(10)

.collect(Collectors.toList());

System.out.println(coffees);

}

}

/* Output:

[Americano 0, Latte 1, Americano 2, Mocha 3, Mocha 4,

Breve 5, Americano 6, Latte 7, Cappuccino 8, Cappuccino

9]

*/

Suppose you’d like your toString() to print the address of your

class. It seems to make sense to refer to this:

// strings/InfiniteRecursion.java

// Accidental recursion

// {ThrowsException}

// {VisuallyInspectOutput} Throws very long exception



import java.util.*;

import java.util.stream.*;

public class InfiniteRecursion {

@Override

public String toString() {

return

" InfiniteRecursion address: " + this + "\n";

}

public static void main(String[] args) {

Stream.generate(InfiniteRecursion::new)

.limit(10)

.forEach(System.out::println);

}

}

If you create an InfiniteRecursion object, then display it, you’ll

get a very long sequence of exceptions. This is also true if you place the



InfiniteRecursion objects in an ArrayList and print that

ArrayList as shown here. What’s happening is automatic type

conversion for Strings. When you say:

"InfiniteRecursion address: " + this

The compiler sees a String followed by a + and something that’s not

a String, so it tries to convert this to a String. It does this

conversion by calling toString(), which produces a recursive call.

If you really want to print the address of the object, the solution is to

call the Object toString() method, which does just that. So

instead of saying this, say super.toString().

Operations on Strings

Here are most of the methods available for String objects.

Overloaded methods are summarized in a single row:

Arguments,

Method

Use

Overloading

Overloaded:

default, String,

StringBuilder,



Constructor

Creating String

StringBuffer,

objects.

char arrays, byte

arrays.

Number of

length()

characters in the

String.

The char at a

charAt()

int Index

location in the

String.

The beginning and

end from which to

Copy chars or

copy, the array to

getChars(), getBytes()



copy into, an index

bytes into an

into the destination

external array.

array.

Produces a

char[]

toCharArray()

containing the

characters in the

String.

An equality check

on the contents of

equals(),

A String to

the two String

equalsIgnoreCase()

compare with.

Result is true

the contents are



equal.

Result is negative,

zero, or positive

depending on the

lexicographical

compareTo()

A String to

ordering of the

compareToIgnoreCase() compare with.

String and the

argument.

Uppercase and

lowercase are not

equal!

The

Result is true

the argument is

contains()

CharSequence

contained in the



you want to find.

String.

A CharSequence

Result is true

or

contentEquals()

there’s an exact

StringBuffer

match with the

to compare.

argument.

boolean result

indicates whether

isEmpty()

the String is

length 0.

Offset into this

String, the other

boolean result

regionMatches()



String and its

indicates whether

offset and length to

the region

compare. Overload

matches.

adds “ignore case.”

String that it

boolean result

might start with.

indicates whether

startsWith()

Overload adds

the String starts

offset into

argument.

with the argument.

String that

boolean result

endsWith()



might be a suffix of

indicates whether

the argument is a

this String.

suffix.

Returns -1 if the

argument is not

found within this

Overloaded: char,

String;

indexOf()

char and starting

,

otherwise, returns

the index where

lastIndexOf()

index, String,

the argument

String and

starting index.



starts.

lastIndexOf()

searches backward

from end.

Returns boolean

indicating whether

A regular

matches()

expression.

this String

matches the given

regular expression.

A regular

Splits the String

expression.

Optional second

around the regular

split()

argument is

expression.



maximum number

Returns an array

of splits to make.

of results.

Delimiter,

elements. Produces

Pieces become a

join() (introduced in Java

a new String by

new String

8)

joining together

separated by

elements with

delimiter.

delimiter.

Returns a new

Overloaded:

substring() (also

String



starting index;

object

containing the

subSequence())

starting index +

ending index.

specified character

set.

Returns a new

String object

containing the

concat()

The String to

original String

concatenate.

characters

followed by the

characters in the

argument.

The old character



Returns a new

to search for, the

new character to

String object

replace it with. Can

with the

replace()

also replace a

replacements

CharSequence

made. Uses the old

with a

String if no

CharSequence

match is found.

.

A regular

Returns a new

expression to

String



replaceFirst()

search for, the new

object

String

with the

to replace

replacement made.

it with.

A regular

Returns a new

expression to

String object

replaceAll()

search for, the new

with all

String to replace

replacements

it with.

made.

Returns a new



toLowerCase(),

String object

toUpperCase()

with the case of all

letters changed.

Uses the old

String if no

changes are made.

Returns a new

String object

with the

whitespace

trim()

removed from

each end. Uses the

old String if no

changes are made.

Overloaded:

Object, char[],

Returns a String



char[] and offset

containing a

valueOf() (static)

and count,

character

boolean, char,

representation of

int, long,

the argument.

float, double.

Produces one and

only one String

intern()

reference per

unique character

sequence.



Format string and

Produces

arguments for

formatted result

format()

substitution into

String.

the format

specifiers.

Every String method carefully returns a new String object when

it’s necessary to change the contents. If the contents don’t need

changing, the method just returns a reference to the original String.

This saves storage and overhead.

The String methods involving regular expressions are explained

later in this chapter.

Formatting Output

One of the long-awaited features that finally appeared in Java 5 is



output formatting in the style of C’s printf() statement. Not only

does this allow for simplified output code, but it also gives Java

developers powerful control over output formatting and alignment.

printf()

C’s printf() doesn’t assemble strings the way Java does, but takes a

single format string and inserts values into it, formatting as it goes.

Instead of using the overloaded + operator (which C doesn’t overload)

to concatenate quoted text and variables, printf() uses special

placeholders to show where the data should go. The arguments

inserted into the format String follow in a comma-separated list.

For example:

System.out.printf("Row 1: [%d %f]%n", x, y);

At run time, the value of x is inserted into %d and the value of y is inserted
into %f. These placeholders are called format specifiers and,

in addition to telling where to insert the value, they also tell what kind

of variable is inserted and how to format it. For instance, the %d above

says that x is an integer and the %fsays y is a floating point value (a float or
double).



System.out.format()

Java 5 introduced the format() method, available to

PrintStream or PrintWriter objects (which you’ll learn more

about in the Appendix: I/O Streams ), which includes System.out.

The format() method is modeled after C’s printf(). There’s even

a convenience printf() method you can use if you’re feeling

nostalgic, which just calls format(). Here’s a simple example:

// strings/SimpleFormat.java

public class SimpleFormat {

public static void main(String[] args) {

int x = 5;

double y = 5.332542;

// The old way:

System.out.println("Row 1: [" + x + " " + y + "]");

// The new way:

System.out.format("Row 1: [%d %f]%n", x, y);

// or

System.out.printf("Row 1: [%d %f]%n", x, y);

}

}



/* Output:

Row 1: [5 5.332542]

Row 1: [5 5.332542]

Row 1: [5 5.332542]

*/

format() and printf() are equivalent. In both cases, there’s only

a single format String, followed by one argument for each format

specifier.

The String class also has a static format() method which

produces a formatted String.

The Formatter Class

All of Java’s formatting functionality is handled by the Formatter

class in the java.util package. You can think of Formatter as a

translator that converts your format String and data into the

desired result. When you create a Formatter object, you tell it

where you want this result to go by passing that information to the

constructor:



// strings/Turtle.java

import java.io.*;

import java.util.*;

public class Turtle {

private String name;

private Formatter f;

public Turtle(String name, Formatter f) {

this.name = name;

this.f = f;

}

public void move(int x, int y) {

f.format("%s The Turtle is at (%d,%d)%n",

name, x, y);

}

public static void main(String[] args) {

PrintStream outAlias = System.out;

Turtle tommy = new Turtle("Tommy",



new Formatter(System.out));

Turtle terry = new Turtle("Terry",

new Formatter(outAlias));

tommy.move(0,0);

terry.move(4,8);

tommy.move(3,4);

terry.move(2,5);

tommy.move(3,3);

terry.move(3,3);

}

}

/* Output:

Tommy The Turtle is at (0,0)

Terry The Turtle is at (4,8)

Tommy The Turtle is at (3,4)

Terry The Turtle is at (2,5)

Tommy The Turtle is at (3,3)

Terry The Turtle is at (3,3)

*/

The %s format specifier indicates a String argument.



All the tommy output goes to System.out and all the terry output

goes to an alias of System.out. The constructor is overloaded to



take a range of output locations, but the most useful are

PrintStreams (as above), OutputStreams, and Files. You’ll

learn more about these in the Appendix: I/O Streams.

Format Specifiers

To control spacing and alignment when inserting data, you need more

elaborate format specifiers. Here’s the general syntax:

%[argument_index$][flags][width][.precision]conversion

Often, you must control the minimum size of a field. This can be

accomplished by specifying a width. The Formatter guarantees that

a field is at least a certain number of characters wide by padding it

with spaces if necessary. By default, the data is right justified, but this

can be overridden by including a -in the flags section.

The opposite of width is precision, used to specify a maximum. Unlike

the width, which is applicable to all data conversion types and behaves

the same with each, precision has a different meaning for different

types. For Strings, the precision specifies the maximum number of

String characters to print. For floating point numbers, precision

specifies the number of decimal places to display (the default is 6),

rounding if there are too many or adding trailing zeroes if there are too

few. Since integers have no fractional part, precision isn’t applicable to



them and you’ll get an exception if you use precision with an integer

conversion type.

Here, we’ll use format specifiers to print a shopping receipt. This is a

very simple example of the Builder design pattern, where you create a

starting object, add things to it, and finally complete it with the

build() method:

// strings/ReceiptBuilder.java

import java.util.*;

public class ReceiptBuilder {

private double total = 0;

private Formatter f =

new Formatter(new StringBuilder());

public ReceiptBuilder() {

f.format(

"%-15s %5s %10s%n", "Item", "Qty", "Price");

f.format(

"%-15s %5s %10s%n", "----", "---", "-----");

}

public void add(String name, int qty, double price) {

f.format("%-15.15s %5d %10.2f%n", name, qty, price);



total += price * qty;

}

public String build() {

f.format("%-15s %5s %10.2f%n", "Tax", "",

total * 0.06);

f.format("%-15s %5s %10s%n", "", "", "-----");

f.format("%-15s %5s %10.2f%n", "Total", "",

total * 1.06);

return f.toString();

}

public static void main(String[] args) {

ReceiptBuilder receiptBuilder =

new ReceiptBuilder();

receiptBuilder.add("Jack's Magic Beans", 4, 4.25);

receiptBuilder.add("Princess Peas", 3, 5.1);

receiptBuilder.add(

"Three Bears Porridge", 1, 14.29);

System.out.println(receiptBuilder.build());

}

}



/* Output:

Item Qty Price

---- --- -----

Jack's Magic Be 4 4.25

Princess Peas 3 5.10

Three Bears Por 1 14.29

Tax 2.80

-----

Total 49.39

*/

By passing a StringBuilder to the Formatter constructor, I

give it a place to build the String; you can also send it to standard

output or even a file using the constructor argument.

Formatter provides powerful control over spacing and alignment

with fairly concise notation. Here, the format Strings are copied to

produce the appropriate spacing.

Formatter Conversions



These are the conversion characters you’ll come across most

frequently:

d

Integral (as decimal)

c

Unicode character

b

Boolean value

s

String

f

Floating point (as decimal)

Floating point (in scientific

e

notation)

x

Integral (as hex)

h

Hash code (as hex)

%



Literal “%”

Here’s an example that shows these conversions in action:

// strings/Conversion.java

import java.math.*;

import java.util.*;

public class Conversion {

public static void main(String[] args) {

Formatter f = new Formatter(System.out);

char u = 'a';

System.out.println("u = 'a'");

f.format("s: %s%n", u);

// f.format("d: %d%n", u);

f.format("c: %c%n", u);

f.format("b: %b%n", u);

// f.format("f: %f%n", u);

// f.format("e: %e%n", u);

// f.format("x: %x%n", u);

f.format("h: %h%n", u);

int v = 121;

System.out.println("v = 121");



f.format("d: %d%n", v);

f.format("c: %c%n", v);

f.format("b: %b%n", v);

f.format("s: %s%n", v);

// f.format("f: %f%n", v);

// f.format("e: %e%n", v);

f.format("x: %x%n", v);

f.format("h: %h%n", v);

BigInteger w = new BigInteger("50000000000000");

System.out.println(

"w = new BigInteger(\"50000000000000\")");

f.format("d: %d%n", w);

// f.format("c: %c%n", w);

f.format("b: %b%n", w);

f.format("s: %s%n", w);

// f.format("f: %f%n", w);

// f.format("e: %e%n", w);

f.format("x: %x%n", w);

f.format("h: %h%n", w);

double x = 179.543;



System.out.println("x = 179.543");

// f.format("d: %d%n", x);

// f.format("c: %c%n", x);

f.format("b: %b%n", x);

f.format("s: %s%n", x);

f.format("f: %f%n", x);

f.format("e: %e%n", x);

// f.format("x: %x%n", x);

f.format("h: %h%n", x);

Conversion y = new Conversion();

System.out.println("y = new Conversion()");

// f.format("d: %d%n", y);

// f.format("c: %c%n", y);

f.format("b: %b%n", y);

f.format("s: %s%n", y);

// f.format("f: %f%n", y);

// f.format("e: %e%n", y);

// f.format("x: %x%n", y);

f.format("h: %h%n", y);

boolean z = false;



System.out.println("z = false");

// f.format("d: %d%n", z);

// f.format("c: %c%n", z);

f.format("b: %b%n", z);

f.format("s: %s%n", z);

// f.format("f: %f%n", z);

// f.format("e: %e%n", z);

// f.format("x: %x%n", z);

f.format("h: %h%n", z);

}

}

/* Output:

u = 'a'

s: a

c: a

b: true

h: 61

v = 121

d: 121

c: y



b: true

s: 121

x: 79

h: 79

w = new BigInteger("50000000000000")

d: 50000000000000

b: true

s: 50000000000000

x: 2d79883d2000

h: 8842a1a7

x = 179.543

b: true

s: 179.543

f: 179.543000

e: 1.795430e+02

h: 1ef462c

y = new Conversion()

b: true

s: Conversion@15db9742

h: 15db9742



z = false

b: false

s: false

h: 4d5

*/

The commented lines are invalid conversions for that particular

variable type; executing them will trigger an exception.

Notice that the b conversion works for each variable above. Although

it’s valid for any argument type, it might not behave as you’d expect.

For boolean primitives or Boolean objects, the result is true or

false, accordingly. However, for any other argument, as long as the

argument type is not null the result is always true. Even the

numeric value of zero, synonymous with false in many languages

(including C), will produce true, so be careful when using this

conversion with non-boolean types.

There are more obscure conversion types and other format specifier

options. You can read about these in the JDK documentation for the



Formatter class.

String.format()

Java 5 also took a cue from C’s sprintf(), which is used to create

Strings. String.format() is a static method which takes all

the same arguments as Formatters format() but returns a

String. It can come in handy when you only call format() once:

// strings/DatabaseException.java

public class DatabaseException extends Exception {

public DatabaseException(int transactionID,

int queryID, String message) {

super(String.format("(t%d, q%d) %s", transactionID,

queryID, message));

}

public static void main(String[] args) {

try {

throw new DatabaseException(3, 7, "Write failed");

} catch(Exception e) {

System.out.println(e);

}

}



}

/* Output:

DatabaseException: (t3, q7) Write failed

*/

Under the hood, all String.format() does is instantiate a

Formatter and pass your arguments to it, but using this

convenience method can often be clearer and easier than doing it by

hand.

A Hex Dump Tool

As a second example, let’s format the bytes in a binary file as

hexadecimal. Here’s a small utility that displays a binary array of bytes

in a readable hex format, using String.format():

// strings/Hex.java

// {java onjava.Hex}

package onjava;

import java.io.*;

import java.nio.file.*;

public class Hex {

public static String format(byte[] data) {

StringBuilder result = new StringBuilder();



int n = 0;

for(byte b : data) {

if(n % 16 == 0)

result.append(String.format("%05X: ", n));

result.append(String.format("%02X ", b));

n++;

if(n % 16 == 0) result.append("\n");

}

result.append("\n");

return result.toString();

}

public static void

main(String[] args) throws Exception {

if(args.length == 0)

// Test by displaying this class file:

System.out.println(format(

Files.readAllBytes(Paths.get(

"build/classes/main/onjava/Hex.class"))));

else

System.out.println(format(



Files.readAllBytes(Paths.get(args[0]))));

}

}

/* Output: (First 6 Lines)

00000: CA FE BA BE 00 00 00 34 00 61 0A 00 05 00 31 07

00010: 00 32 0A 00 02 00 31 08 00 33 07 00 34 0A 00 35

00020: 00 36 0A 00 0F 00 37 0A 00 02 00 38 08 00 39 0A

00030: 00 3A 00 3B 08 00 3C 0A 00 02 00 3D 09 00 3E 00

00040: 3F 08 00 40 07 00 41 0A 00 42 00 43 0A 00 44 00

00050: 45 0A 00 14 00 46 0A 00 47 00 48 07 00 49 01 00

...

*/

To open and read the binary file, this uses another utility that is



introduced in the Files chapter: Files.readAllBytes(), which returns the entire
file as a byte array.

Regular Expressions

Regular expressions have long been integral to standard Unix utilities

like sed and awk, and languages like Python and Perl (some would

argue they are the predominant reason for Perl’s success). String

manipulation tools were previously delegated to the String,

StringBuffer, and StringTokenizer classes in Java, which

had relatively simple facilities compared to regular expressions.

Regular expressions are powerful and flexible text-processing tools.

They allow you to specify, programmatically, complex patterns of text

that can be discovered in an input String. Once you discover these

patterns, you can then react to them any way you want. Although the

syntax of regular expressions can be intimidating at first, they provide

a compact and dynamic language that can be employed to solve all

sorts of String processing, matching and selection, editing, and

verification problems in a completely general way.

Basics

A regular expression is a way to describe strings in general terms, so

you can say, “If a string has these things in it, it matches my search

criteria.” For example, to say that a number might or might not be



preceded by a minus sign, you put in the minus sign followed by a

question mark, like this:

-?

To describe an integer, you say it’s one or more digits. In regular

expressions, a digit is described by saying \d. If you have any

experience with regular expressions in other languages, you’ll

immediately notice a difference in the way backslashes are handled. In

other languages, \\ means “insert a plain old (literal) backslash in the

regular expression. Don’t give it any special meaning.” In Java, \\

means “I’m inserting a regular expression backslash, so the following

character has special meaning.” For example, to indicate a digit, your

regular expression string is \\d. To insert a literal backslash, you say

\\\. However, things like newlines and tabs just use a single

backslash: \n\t.2

To indicate “one or more of the preceding expression,” you use a +. So

to say, “possibly a minus sign, followed by one or more digits,” you

write:

-?\\d+

The simplest way to use regular expressions is to use the functionality

built into the String class. For example, we can see whether a



String matches the regular expression above:

// strings/IntegerMatch.java

public class IntegerMatch {

public static void main(String[] args) {

System.out.println("-1234".matches("-?\\d+"));

System.out.println("5678".matches("-?\\d+"));

System.out.println("+911".matches("-?\\d+"));

System.out.println("+911".matches("(-|\\+)?\\d+"));

}

}

/* Output:

true

true

false

true

*/

The first two expressions match, but the third one starts with a +, a

legitimate sign but then the number doesn’t match the regular

expression. So we need a way to say, “can start with a + or a -.” In

regular expressions, parentheses have the effect of grouping an



expression, and the vertical bar | means OR. So

(-|\\+)?

means this part of the String can be either a - or a + or nothing

(because of the ? ). Because the + character has special meaning in

regular expressions, it must be escaped with a \\ to appear as an

ordinary character in the expression.

A useful regular expression tool that’s built into String is split(),

which means, “Split this String around matches of the given regular

expression.”

// strings/Splitting.java

import java.util.*;

public class Splitting {

public static String knights =

"Then, when you have found the shrubbery, " +

"you must cut down the mightiest tree in the " +

"forest...with... a herring!";

public static void split(String regex) {

System.out.println(

Arrays.toString(knights.split(regex)));

}



public static void main(String[] args) {

split(" "); // Doesn't have to contain regex chars

split("\\W+"); // Non-word characters

split("n\\W+"); // 'n' followed by non-words

}

}

/* Output:

[Then,, when, you, have, found, the, shrubbery,, you,

must, cut, down, the, mightiest, tree, in, the,

forest...with..., a, herring!]

[Then, when, you, have, found, the, shrubbery, you,

must, cut, down, the, mightiest, tree, in, the, forest,

with, a, herring]

[The, whe, you have found the shrubbery, you must cut

dow, the mightiest tree i, the forest...with... a

herring!]

*/

First, note you can use ordinary characters as regular expressions—a

regular expression doesn’t have to contain special characters, as

shown in the first call to split(), which just splits on whitespace.



The second and third calls to split() use \\W, which means a non-

word character (the lowercase version, \\w, means a word character)

—the punctuation is removed in the second case. The third call to

split() says, “the letter n followed by one or more non-word

characters.” The split patterns do not appear in the result.

An overloaded version of String.split() limits the number of

splits that occur.

With regular expression replacement, you can either replace the first

occurrence, or all of them:

// strings/Replacing.java

public class Replacing {

static String s = Splitting.knights;

public static void main(String[] args) {

System.out.println(

s.replaceFirst("f\\w+", "located"));

System.out.println(

s.replaceAll("shrubbery|tree|herring","banana"));



}

}

/* Output:

Then, when you have located the shrubbery, you must cut

down the mightiest tree in the forest...with... a

herring!

Then, when you have found the banana, you must cut down

the mightiest banana in the forest...with... a banana!

*/

The first expression matches the letter f followed by one or more word

characters (note that the w is lowercase this time). It only replaces the

first match it finds, so the word “found” is replaced by the word

“located.”

The second expression matches any of the three words separated by

the OR vertical bars, and it replaces all matches it finds.

You’ll see that the non-String regular expressions have more

powerful replacement tools—for example, you can call methods to

perform replacements. Non-String regular expressions are also

significantly more efficient if you use the regular expression more than

once.



Creating Regular Expressions

You can begin learning with a subset of the possible constructs for

building regular expressions. A complete list is found in the JDK

documentation for the Pattern class for package

java.util.regex.

B

The specific character B

Character with hex value

\xhh

0xhh

The Unicode character

\uhhhh

with hex representation

0xhhhh

\t

Tab

\n

Newline

\r

Carriage return



\f

Form feed

\e

Escape

The power of regular expressions begins to appear when you are

defining character classes. Here are some typical ways to create

character classes, and some predefined classes:

.

Any character

Any of the characters a, b, or c

[abc]

(same as a|b|c)

[^abc]

Any character except a, b, or c

(negation)

Any character a through z or A

[a-zA-Z]

through Z (range)

Any of a, b, c, h, i, j (same as

[abc[hij]]



a|b|c|h|i|j) (union)

[a-z&&

Either h, i, or j (intersection)

[hij]]

A whitespace character (space,

\s

tab, newline, form feed, carriage

return)

A non-whitespace character

\S

([^\s])

\d

A numeric digit ([0-9])

\D

A non-digit ([^0-9])

A word character ([a-zA-

\w

Z_0-9])

\W

A non-word character ([^\w])



What’s shown here is only a sample; bookmark the JDK

documentation page for java.util.regex.Pattern to easily

access all the possible regular expression patterns.

Logical

Meaning

Operator

XY

X followed by Y

X|Y

X or Y

A capturing group. You can refer

(X)

to the i th captured group later in

the expression with \i.

Here are the different boundary matchers:

Boundary

Meaning

Matcher

^

Beginning of a line



$

End of a line

\b

Word boundary

\B

Non-word boundary

End of the previous

\G

match

As an example, each of the following successfully matches the

character sequence “Rudolph”:

// strings/Rudolph.java

public class Rudolph {

public static void main(String[] args) {

for(String pattern : new String[]{

"Rudolph",

"[rR]udolph",

"[rR][aeiou][a-z]ol.*",

"R.*" })

System.out.println("Rudolph".matches(pattern));



}

}

/* Output:

true

true

true

true

*/

Your goal should not be to create the most obfuscated regular

expression, but rather the simplest one necessary to do the job. You’ll

find that you’ll often use your old code as a reference when writing

new regular expressions.

Quantifiers

A quantifier describes the way that a pattern absorbs input text:

Greedy

Quantifiers are greedy unless otherwise altered. A greedy

expression finds as many possible matches for the pattern as



possible. A typical cause of problems is to assume that your

pattern will only match the first possible group of characters,

when it’s actually greedy and will keep going until it matches the

largest possible String.

Reluctant

Specified with a question mark, this quantifier matches the

minimum number of characters necessary to satisfy the pattern.

Also called lazy, minimal matching, non-greedy, or ungreedy.

Possessive

Currently this is only available in Java (not in other languages)

and is more advanced, so you probably won’t use it right away. As

a regular expression is applied to a String, it generates many

states so it can backtrack if the match fails. Possessive quantifiers

do not keep those intermediate states, and thus prevent

backtracking. They can prevent a regular expression from running

away and also to make it execute more efficiently.

Greedy Reluctant Possessive Matches

X?

X??

X?+



X, one or

none

X*

X*?

X*+

X, zero or

more

X+

X+?

X++

X, one or

more

X{n}

X{n}?

X{n}+

X, exactly n

times

X{n,}

X{n,}?

X{n,}+



X, at least n

times

X, at least n

but not

X{n,m}

X{n,m}?

X{n,m}+

more than m

times

Keep in mind that the expression X must often be surrounded in

parentheses for it to work the way you desire. For example:

abc+

might seem like it would match the sequence abc one or more times,

and if you apply it to the input String abcabcabc, you will in fact

get three matches. However, the expression actually says, “Match ab

followed by one or more occurrences of c.” To match the entire

String abc one or more times, you must say:



(abc)+

You can easily be fooled when using regular expressions; it’s an

orthogonal language, on top of Java.

CharSequence

The interface called CharSequence establishes a generalized

definition of a character sequence abstracted from the CharBuffer,

String, StringBuffer, or StringBuilder classes:

interface CharSequence {

char charAt(int i);

int length();

CharSequence subSequence(int start, int end);

String toString();

}

The aforementioned classes implement this interface. Many regular

expression operations take CharSequence arguments.

Pattern and Matcher

You’ll usually compile regular expression objects rather than using the

fairly limited String utilities. To do this, import

java.util.regex, then compile a regular expression with the

static Pattern.compile() method. This produces a



Pattern object based on its String argument. You use this

Pattern by calling the matcher() method, passing the String to search. The
matcher() method produces a Matcher object, which

has a set of operations to choose from (All of these appear in the JDK

documentation for java.util.regex.Matcher). For example,

replaceAll() replaces all matches with its argument.

As a first example, the following class tests regular expressions against

an input String. The first command-line argument is the input

String to match against, followed by one or more regular

expressions applied to the input. Under Unix/Linux, the regular

expressions must be quoted on the command line. This program can

be useful in testing regular expressions as you construct them, to see

that they produce your intended matching behavior. 3

// strings/TestRegularExpression.java

// Simple regular expression demonstration

// {java TestRegularExpression

// abcabcabcdefabc "abc+" "(abc)+" }

import java.util.regex.*;

public class TestRegularExpression {

public static void main(String[] args) {

if(args.length < 2) {



System.out.println(

"Usage:\njava TestRegularExpression " +

"characterSequence regularExpression+");

System.exit(0);

}

System.out.println("Input: \"" + args[0] + "\"");

for(String arg : args) {

System.out.println(

"Regular expression: \"" + arg + "\"");

Pattern p = Pattern.compile(arg);

Matcher m = p.matcher(args[0]);

while(m.find()) {

System.out.println(

"Match \"" + m.group() + "\" at positions " +

m.start() + "-" + (m.end() - 1));

}

}

}

}

/* Output:



Input: "abcabcabcdefabc"

Regular expression: "abcabcabcdefabc"

Match "abcabcabcdefabc" at positions 0-14

Regular expression: "abc+"

Match "abc" at positions 0-2

Match "abc" at positions 3-5

Match "abc" at positions 6-8

Match "abc" at positions 12-14

Regular expression: "(abc)+"

Match "abcabcabc" at positions 0-8

Match "abc" at positions 12-14

*/

Also try adding "(abc){2,}" to the command line.

A Pattern object represents the compiled version of a regular

expression. As seen in the preceding example, you can use the

matcher() method and the input String to produce a Matcher

object from the compiled Pattern object. Pattern also has a

static method:

static boolean matches(String regex, CharSequence input)

This checks whether regex matches the entire input



CharSequence. There’s also a split() method that produces an

array of String broken around matches of the regex.

A Matcher object is generated by calling Pattern.matcher()

with the input String as an argument. The Matcher object is then

used to access the results with methods to evaluate the success or

failure of different types of matches:

boolean matches()

boolean lookingAt()

boolean find()

boolean find(int start)

The matches() method is successful if the pattern matches the

entire input String, while lookingAt() is successful if the input

String, starting at the beginning, is a match to the pattern.

find()

Matcher.find() discovers multiple pattern matches in the

CharSequence to which it is applied. For example:

// strings/Finding.java

import java.util.regex.*;

public class Finding {

public static void main(String[] args) {



Matcher m = Pattern.compile("\\w+")

.matcher(

"Evening is full of the linnet's wings");

while(m.find())

System.out.print(m.group() + " ");

System.out.println();

int i = 0;

while(m.find(i)) {

System.out.print(m.group() + " ");

i++;

}

}

}

/* Output:

Evening is full of the linnet s wings

Evening vening ening ning ing ng g is is s full full

ull ll l of of f the the he e linnet linnet innet nnet

net et t s s wings wings ings ngs gs s

*/

The pattern \\w+ splits the input into words. find() is like an iterator, moving
forward through the input String. However, the



second version of find() can be given an integer argument that tells

it the character position for the beginning of the search—this version

resets the search position to the value of the argument, as shown in the

output.

Groups

Groups are regular expressions set off by parentheses that can be

called up later with their group number. Group 0 indicates the whole

expression match, group 1 is the first parenthesized group, etc. Thus,

in

A(B(C))D

there are three groups: Group 0 is ABCD, group 1 is BC, and group 2 is

C.

The Matcher object has methods to give you information about

groups:

public int groupCount() returns the number of groups in

this matcher’s pattern. Group 0 is not included in this count.

public String group() returns group 0 (the entire match)

from the previous match operation (find(), for example).

public String group(int i) returns the given group

number during the previous match operation. If the match was



successful, but the group specified failed to match any part of the input

String, null is returned.

public int start(int group) returns the start index of the

group found in the previous match operation.

public int end(int group) returns the index of the last

character, plus one, of the group found in the previous match

operation.

Here’s an example:

// strings/Groups.java

import java.util.regex.*;

public class Groups {

public static final String POEM =

"Twas brillig, and the slithy toves\n" +

"Did gyre and gimble in the wabe.\n" +

"All mimsy were the borogoves,\n" +

"And the mome raths outgrabe.\n\n" +

"Beware the Jabberwock, my son,\n" +

"The jaws that bite, the claws that catch.\n" +

"Beware the Jubjub bird, and shun\n" +

"The frumious Bandersnatch.";



public static void main(String[] args) {

Matcher m = Pattern.compile(

"(?m)(\\S+)\\s+((\\S+)\\s+(\\S+))$")

.matcher(POEM);

while(m.find()) {

for(int j = 0; j <= m.groupCount(); j++)

System.out.print("[" + m.group(j) + "]");

System.out.println();

}

}

}

/* Output:

[the slithy toves][the][slithy toves][slithy][toves]

[in the wabe.][in][the wabe.][the][wabe.]

[were the borogoves,][were][the

borogoves,][the][borogoves,]

[mome raths outgrabe.][mome][raths

outgrabe.][raths][outgrabe.]

[Jabberwock, my son,][Jabberwock,][my son,][my][son,]

[claws that catch.][claws][that catch.][that][catch.]



[bird, and shun][bird,][and shun][and][shun]

[The frumious Bandersnatch.][The][frumious

Bandersnatch.][frumious][Bandersnatch.]

*/

The poem is the first part of Lewis Carroll’s “Jabberwocky,” from

Through the Looking Glass. The regular expression pattern has a

number of parenthesized groups, consisting of any number of non-

whitespace characters (\\S+) followed by any number of whitespace

characters (\\s+). The goal is to capture the last three words on each

line; the end of a line is delimited by \$. However, the normal

behavior is to match \$ with the end of the entire input sequence, so

you must explicitly tell the regular expression to pay attention to

newlines within the input. This is accomplished with the (?m) pattern

flag at the beginning of the sequence (pattern flags are shown shortly).

start() and end()

Following a successful matching operation, start() returns the start

index of the previous match, and end() returns the index of the last

character matched, plus one. Invoking either start() or end()

following an unsuccessful matching operation (or before attempting a

matching operation) produces an IllegalStateException. The



following program also demonstrates matches() and

lookingAt():4

// strings/StartEnd.java

import java.util.regex.*;

public class StartEnd {

public static String input =

"As long as there is injustice, whenever a\n" +

"Targathian baby cries out, wherever a distress\n" +

"signal sounds among the stars " +

"... We'll be there.\n"+

"This fine ship, and this fine crew ...\n" +

"Never give up! Never surrender!";

private static class Display {

private boolean regexPrinted = false;

private String regex;

Display(String regex) { this.regex = regex; }

void display(String message) {

if(!regexPrinted) {

System.out.println(regex);

regexPrinted = true;



}

System.out.println(message);

}

}

static void examine(String s, String regex) {

Display d = new Display(regex);

Pattern p = Pattern.compile(regex);

Matcher m = p.matcher(s);

while(m.find())

d.display("find() '" + m.group() +

"' start = "+ m.start() + " end = " + m.end());

if(m.lookingAt()) // No reset() necessary

d.display("lookingAt() start = "

+ m.start() + " end = " + m.end());

if(m.matches()) // No reset() necessary

d.display("matches() start = "

+ m.start() + " end = " + m.end());

}

public static void main(String[] args) {

for(String in : input.split("\n")) {



System.out.println("input : " + in);

for(String regex : new String[]{"\\w*ere\\w*",

"\\w*ever", "T\\w+", "Never.*?!"})

examine(in, regex);

}

}

}

/* Output:

input : As long as there is injustice, whenever a

\w*ere\w*

find() 'there' start = 11 end = 16

\w*ever

find() 'whenever' start = 31 end = 39

input : Targathian baby cries out, wherever a distress

\w*ere\w*

find() 'wherever' start = 27 end = 35

\w*ever

find() 'wherever' start = 27 end = 35

T\w+

find() 'Targathian' start = 0 end = 10



lookingAt() start = 0 end = 10

input : signal sounds among the stars ... We'll be

there.

\w*ere\w*

find() 'there' start = 43 end = 48

input : This fine ship, and this fine crew ...

T\w+

find() 'This' start = 0 end = 4

lookingAt() start = 0 end = 4

input : Never give up! Never surrender!

\w*ever

find() 'Never' start = 0 end = 5

find() 'Never' start = 15 end = 20

lookingAt() start = 0 end = 5

Never.*?!

find() 'Never give up!' start = 0 end = 14

find() 'Never surrender!' start = 15 end = 31

lookingAt() start = 0 end = 14

matches() start = 0 end = 31

*/



find() will locate the regular expression anywhere in the input, but

lookingAt() and matches() only succeed if the regular

expression starts matching at the very beginning of the input. While

matches() only succeeds if the entire input matches the regular

expression, lookingAt()5 succeeds if only the first part of the input matches.

Pattern Flags

An alternative compile() method accepts flags that affect matching

behavior:

Pattern Pattern.compile(String regex, int flag)

where flag is drawn from among the following Pattern class

constants:

Compile Flag

Effect

Two characters are

considered to match if, and

only if, their full canonical

decompositions match. The

expression \u003F, for

Pattern.CANON_EQ

example, will match the



String ? when this flag is

specified. By default,

matching does not take

canonical equivalence into

account.

By default, case-insensitive

matching assumes that only

characters in the US-ASCII

character set are matched.

This flag allows your pattern

Pattern.CASE_INSENSITIVE to match without regard to

(?i)

case (upper or lower).

Unicode-aware case-

insensitive matching can be

enabled by specifying the

UNICODE_CASE flag in

conjunction with this flag.

In this mode, whitespace is

ignored, and embedded



Pattern.COMMENTS

comments starting with #

are ignored until the end of a

(?x)

line. Unix lines mode can

also be enabled via the

embedded flag expression.

In dotall mode, the

expression . matches any

Pattern.DOTALL

character, including a line

(?s)

terminator. By default, the .

expression does not match

line terminators.

In multiline mode, the

expressions ^ and $ match

the beginning and ending of

a line, respectively. ^ also

matches the beginning of the



Pattern.MULTILINE

input String, and $ also

(?m)

matches the end of the input

String. By default, these

expressions only match at

the beginning and the end of

the entire input String.

Case-insensitive matching,

when enabled by the

CASE_INSENSITIVE flag,

Pattern.UNICODE_CASE

is done in a manner

consistent with the Unicode

(?u)

Standard. By default, case-

insensitive matching

assumes that only characters

in the US-ASCII character

set are matched.



In this mode, only the \n

Pattern.UNIX_LINES

line terminator is recognized

(?d)

in the behavior of . , ^, and

$.

Particularly useful among these flags are

Pattern.CASE_INSENSITIVE, Pattern.MULTILINE, and

Pattern.COMMENTS (helpful for clarity and/or documentation).

Note that the behavior of most of the flags can also be obtained by

inserting the parenthesized characters, shown beneath the flags in the

table, into your regular expression preceding the place where you want

the mode to take effect.

You can combine the effect of these and other flags through an “OR”

(|) operation:

// strings/ReFlags.java

import java.util.regex.*;

public class ReFlags {

public static void main(String[] args) {

Pattern p = Pattern.compile("^java",



Pattern.CASE_INSENSITIVE | Pattern.MULTILINE);

Matcher m = p.matcher(

"java has regex\nJava has regex\n" +

"JAVA has pretty good regular expressions\n" +

"Regular expressions are in Java");

while(m.find())

System.out.println(m.group());

}

}

/* Output:

java

Java

JAVA

*/

This creates a pattern that matches lines starting with “java,” “Java,”

“JAVA,” etc., and attempts a match for lines within a multiline set

(matches starting at the beginning of the character sequence and



following each line terminator within the character sequence). Note

that the group() method only produces the matched portion.

split()

split() divides an input String into an array of String objects,

delimited by the regular expression.

String[] split(CharSequence input)

String[] split(CharSequence input, int limit)

This is a handy way to break input text on a common boundary:

// strings/SplitDemo.java

import java.util.regex.*;

import java.util.*;

public class SplitDemo {

public static void main(String[] args) {

String input =

"This!!unusual use!!of exclamation!!points";

System.out.println(Arrays.toString(

Pattern.compile("!!").split(input)));

// Only do the first three:

System.out.println(Arrays.toString(



Pattern.compile("!!").split(input, 3)));

}

}

/* Output:

[This, unusual use, of exclamation, points]

[This, unusual use, of exclamation!!points]

*/

The second form of split() limits the number of splits that occur.

Replace Operations

Regular expressions are especially useful to replace text. Here are the

available methods:

replaceFirst(String replacement) replaces the first

matching part of the input String with replacement.

replaceAll(String replacement) replaces every matching

part of the input String with replacement.

appendReplacement(StringBuffer sbuf, String

replacement) performs step-by-step replacements into sbuf,



rather than replacing only the first one or all of them, as in

replaceFirst() and replaceAll(), respectively. This is a

very important method, because you can call methods and perform

other processing to produce replacement (replaceFirst()

and replaceAll() are only able to put in fixed Strings). With

this method, you can programmatically pick apart the groups and

create powerful replacements.

appendTail(StringBuffer sbuf) is invoked after one or

more invocations of the appendReplacement() method to copy

the remainder of the input String.

Here’s an example that shows all the replace operations. The block of

commented text at the beginning is extracted and processed with

regular expressions for use as input in the rest of the example:

// strings/TheReplacements.java

import java.util.regex.*;

import java.nio.file.*;

import java.util.stream.*;

/*! Here's a block of text to use as input to

the regular expression matcher. Note that we

first extract the block of text by looking for



the special delimiters, then process the

extracted block. !*/

public class TheReplacements {

public static void

main(String[] args) throws Exception {

String s = Files.lines(

Paths.get("TheReplacements.java"))

.collect(Collectors.joining("\n"));

// Match specially commented block of text above:

Matcher mInput = Pattern.compile(

"/\\*!(.*)!\\*/", Pattern.DOTALL).matcher(s);

if(mInput.find())

s = mInput.group(1); // Captured by parentheses

// Replace two or more spaces with a single space:

s = s.replaceAll(" {2,}", " ");

// Replace 1+ spaces at the beginning of each

// line with no spaces. Must enable MULTILINE mode:

s = s.replaceAll("(?m)^ +", "");

System.out.println(s);

s = s.replaceFirst("[aeiou]", "(VOWEL1)");



StringBuffer sbuf = new StringBuffer();

Pattern p = Pattern.compile("[aeiou]");

Matcher m = p.matcher(s);

// Process the find information as you

// perform the replacements:

while(m.find())

m.appendReplacement(

sbuf, m.group().toUpperCase());

// Put in the remainder of the text:

m.appendTail(sbuf);

System.out.println(sbuf);

}

}

/* Output:

Here's a block of text to use as input to

the regular expression matcher. Note that we

first extract the block of text by looking for

the special delimiters, then process the

extracted block.

H(VOWEL1)rE's A blOck Of tExt tO UsE As InpUt tO



thE rEgUlAr ExprEssIOn mAtchEr. NOtE thAt wE

fIrst ExtrAct thE blOck Of tExt by lOOkIng fOr

thE spEcIAl dElImItErs, thEn prOcEss thE

ExtrActEd blOck.

*/

The file is opened and read using the Files class introduced in the

Files chapter. Files.lines() produces a Stream of lines, and
Collectors.joining() combines them into a single String,

attaching the argument to the end of each line.

mInput matches all the text (notice the grouping parentheses)

between /*! and !*/. Then, more than two spaces are reduced to a

single space, and any space at the beginning of each line is removed (to

do this on all lines and not just the beginning of the input, multiline

mode must be enabled). These two replacements are performed with

the equivalent (but more convenient, in this case) replaceAll()

that’s part of String. Note that since each replacement is only used

once in the program, there’s no extra cost to doing it this way rather

than precompiling it as a Pattern.

replaceFirst() only performs the first replacement it finds. In

addition, the replacement Strings in replaceFirst() and



replaceAll() are just literals, so when performing some

processing on each replacement, they don’t help. In that case, use

appendReplacement() to write any amount of code in the

process of performing the replacement. In the preceding example, a

group() is selected and processed—in this situation, setting the

vowel found by the regular expression to uppercase—as the resulting

sbuf is built. Normally, you step through and perform all the

replacements, then call appendTail(), but to simulate

replaceFirst() (or “replace n”), you only do the replacement one

time, then call appendTail() to put the rest into sbuf.

appendReplacement() also refers to captured groups directly in

the replacement String by saying \$g, where g is the group

number. However, this is for simpler processing and wouldn’t give you

the desired results in the preceding program.

reset()

An existing Matcher object can be applied to a new character

sequence using the reset() methods:



// strings/Resetting.java

import java.util.regex.*;

public class Resetting {

public static void

main(String[] args) throws Exception {

Matcher m = Pattern.compile("[frb][aiu][gx]")

.matcher("fix the rug with bags");

while(m.find())

System.out.print(m.group() + " ");

System.out.println();

m.reset("fix the rig with rags");

while(m.find())

System.out.print(m.group() + " ");

}

}

/* Output:

fix rug bag



fix rig rag

*/

reset() without any arguments sets the Matcher to the beginning

of the current sequence.

Regular Expressions and Java

I/O

Most of the examples so far have shown regular expressions applied to

static Strings. The following example shows one way to apply

regular expressions to search for matches in a file. Inspired by Unix’s

grep, JGrep.java takes two arguments: a file name and the regular

expression to match. The output shows each line where a match occurs

and the match position(s) within the line.

// strings/JGrep.java

// A very simple version of the "grep" program

// {java JGrep

// WhitherStringBuilder.java 'return|for|String'}

import java.util.regex.*;

import java.nio.file.*;

import java.util.stream.*;

public class JGrep {



public static void

main(String[] args) throws Exception {

if(args.length < 2) {

System.out.println(

"Usage: java JGrep file regex");

System.exit(0);

}

Pattern p = Pattern.compile(args[1]);

// Iterate through the lines of the input file:

int index = 0;

Matcher m = p.matcher("");

for(String line :

Files.readAllLines(Paths.get(args[0]))) {

m.reset(line);

while(m.find())

System.out.println(index++ + ": " +

m.group() + ": " + m.start());

}

}

}



/* Output:

0: for: 4

1: for: 4

*/

Files.readAllLines() produces a List<String> , which

means the for-in can iterate through it.

Although it’s possible to create a new Matcher object within the for

loop, it is slightly more optimal to create an empty Matcher object

outside the loop and use the reset() method to assign each line of

the input to the Matcher. The result is scanned with find().

The test arguments open the JGrep.java file to read as input, and

search for words starting with [Ssct].

You can learn much more about regular expressions in Mastering

Regular Expressions, 2nd Edition, by Jeffrey E. F. Friedl (O’Reilly,

2002). There are also numerous introductions to regular expressions

on the Internet, and you can often find helpful information in the

documentation for languages like Perl and Python.



Scanning Input

Until now it was relatively painful to read data from a human-readable

file or from standard input. The usual solution is to read in a line of

text, tokenize it, then use the various parse methods of Integer,

Double, etc., to parse the data:

// strings/SimpleRead.java

import java.io.*;

public class SimpleRead {

public static BufferedReader input =

new BufferedReader(new StringReader(

"Sir Robin of Camelot\n22 1.61803"));

public static void main(String[] args) {

try {

System.out.println("What is your name?");

String name = input.readLine();

System.out.println(name);



System.out.println("How old are you? " +

"What is your favorite double?");

System.out.println("(input: <age> <double>)");

String numbers = input.readLine();

System.out.println(numbers);

String[] numArray = numbers.split(" ");

int age = Integer.parseInt(numArray[0]);

double favorite = Double.parseDouble(numArray[1]);

System.out.format("Hi %s.%n", name);

System.out.format("In 5 years you will be %d.%n",

age + 5);

System.out.format("My favorite double is %f.",

favorite / 2);

} catch(IOException e) {

System.err.println("I/O exception");

}

}

}

/* Output:

What is your name?



Sir Robin of Camelot

How old are you? What is your favorite double?

(input: <age> <double>)

22 1.61803

Hi Sir Robin of Camelot.

In 5 years you will be 27.

My favorite double is 0.809015.

*/

The input field uses classes from java.io which are described in

the Appendix: I/O Streams. A StringReader turns a String into a readable
stream, and this object is used to create a

BufferedReader because BufferedReader has a

readLine() method. The result is that the input object can be

read a line at a time, just as if it were standard input from the console.

readLine() is used to get the String for each line of input. It’s

fairly straightforward when you want one input for each line of data,

but if two input values are on a single line, things get messy—the line

must be split so we can parse each input separately. Here, the splitting

takes place when creating numArray.

The Scanner class, added in Java 5, relieves much of the burden of

scanning input:



// strings/BetterRead.java

import java.util.*;

public class BetterRead {

public static void main(String[] args) {

Scanner stdin = new Scanner(SimpleRead.input);

System.out.println("What is your name?");

String name = stdin.nextLine();

System.out.println(name);

System.out.println(

"How old are you? What is your favorite double?");

System.out.println("(input: <age> <double>)");

int age = stdin.nextInt();

double favorite = stdin.nextDouble();

System.out.println(age);

System.out.println(favorite);

System.out.format("Hi %s.%n", name);

System.out.format("In 5 years you will be %d.%n",

age + 5);

System.out.format("My favorite double is %f.",

favorite / 2);



}

}

/* Output:

What is your name?

Sir Robin of Camelot

How old are you? What is your favorite double?

(input: <age> <double>)

22

1.61803

Hi Sir Robin of Camelot.

In 5 years you will be 27.

My favorite double is 0.809015.

*/

The Scanner constructor can take just about any kind of input

object, including a File object, an InputStream, a String, or in

this case a Readable, an interface introduced in Java 5 to describe

“something that has a read() method.” The BufferedReader

from the previous example falls into this category.

With Scanner, the input, tokenizing, and parsing are all ensconced

in various different kinds of “next” methods. A plain next() returns



the next String token, and there are “next” methods for all the

primitive types (except char) as well as for BigDecimal and

BigInteger. All “next” methods block, meaning they will return

only after a complete data token is available for input. There are also

corresponding “hasNext” methods that return true if the next input

token is of the correct type.

In BetterRead.java there is no try block for IOException.

One of the assumptions made by the Scanner is that an

IOException signals the end of input, and so these are swallowed

by the Scanner. However, the most recent exception is available

through the ioException() method, so you are able to examine it

if necessary.

Scanner Delimiters

By default, a Scanner splits input tokens along whitespace, but you

can also specify your own delimiter pattern in the form of a regular

expression:

// strings/ScannerDelimiter.java



import java.util.*;

public class ScannerDelimiter {

public static void main(String[] args) {

Scanner scanner = new Scanner("12, 42, 78, 99, 42");

scanner.useDelimiter("\\s*,\\s*");

while(scanner.hasNextInt())

System.out.println(scanner.nextInt());

}

}

/* Output:

12

42

78

99

42

*/

This example uses commas (surrounded by arbitrary amounts of

whitespace) as the delimiter when reading from the given String.

This same technique can read from comma-delimited files. In addition



to useDelimiter() for setting the delimiter pattern, there is also

delimiter(), which returns the current Pattern being used as a

delimiter.

Scanning with Regular

Expressions

In addition to scanning for predefined primitive types, you can also

scan for your own user-defined patterns, helpful when scanning more

complex data. This example scans threat data from a log that your

firewall might produce:

// strings/ThreatAnalyzer.java

import java.util.regex.*;

import java.util.*;

public class ThreatAnalyzer {

static String threatData =

"58.27.82.161@08/10/2015\n" +

"204.45.234.40@08/11/2015\n" +

"58.27.82.161@08/11/2015\n" +



"58.27.82.161@08/12/2015\n" +

"58.27.82.161@08/12/2015\n" +

"[Next log section with different data format]";

public static void main(String[] args) {

Scanner scanner = new Scanner(threatData);

String pattern = "(\\d+[.]\\d+[.]\\d+[.]\\d+)@" +

"(\\d{2}/\\d{2}/\\d{4})";

while(scanner.hasNext(pattern)) {

scanner.next(pattern);

MatchResult match = scanner.match();

String ip = match.group(1);

String date = match.group(2);

System.out.format(

"Threat on %s from %s%n", date,ip);

}

}

}



/* Output:

Threat on 08/10/2015 from 58.27.82.161

Threat on 08/11/2015 from 204.45.234.40

Threat on 08/11/2015 from 58.27.82.161

Threat on 08/12/2015 from 58.27.82.161

Threat on 08/12/2015 from 58.27.82.161

*/

When you use next() with a specific pattern, that pattern is matched

against the next input token. The result is made available by the

match() method, and as you see above, it works just like the regular

expression matching you saw earlier.

There’s one caveat when scanning with regular expressions. The

pattern is matched against the next input token only, so if your pattern

contains a delimiter it will never be matched.

StringTokenizer

Before regular expressions (in Java 1.4) or the Scanner class (in Java



5), the way to split a String into parts was to “tokenize” it with

StringTokenizer. But now it’s much easier and more succinct to

do the same thing with regular expressions or the Scanner class.

Here’s a simple comparison of StringTokenizer to the other two

techniques:

// strings/ReplacingStringTokenizer.java

import java.util.*;

public class ReplacingStringTokenizer {

public static void main(String[] args) {

String input =

"But I'm not dead yet! I feel happy!";

StringTokenizer stoke = new StringTokenizer(input);

while(stoke.hasMoreElements())

System.out.print(stoke.nextToken() + " ");

System.out.println();

System.out.println(



Arrays.toString(input.split(" ")));

Scanner scanner = new Scanner(input);

while(scanner.hasNext())

System.out.print(scanner.next() + " ");

}

}

/* Output:

But I'm not dead yet! I feel happy!

[But, I'm, not, dead, yet!, I, feel, happy!]

But I'm not dead yet! I feel happy!

*/

With regular expressions or Scanner objects, you can also split a

String into parts using more complex patterns—something that’s

difficult with StringTokenizer. It seems safe to say that

StringTokenizer is obsolete.

Summary

In the beginning, Java support for String manipulation was

rudimentary, but in later editions of the language we saw far more

sophisticated support adopted from other languages. Now the support

for Strings is reasonably complete, although you must sometimes



pay attention to efficiency details such as the appropriate use of

StringBuilder.

1. C++ allows the programmer to overload operators at will. Because

this can often be a complicated process (see Chapter 10 of

Thinking in C++, 2nd Edition, Prentice Hall, 2000), the Java

designers deemed it a “bad” feature that shouldn’t be included in

Java. It wasn’t so bad they didn’t end up doing it themselves, and

ironically enough, operator overloading would be much easier to

use in Java than in C++. This can be seen in Python (see

www.Python.org) and C#, which have garbage collection and

straightforward operator overloading.↩

2. Java wasn’t designed from the beginning for regular expressions,

so this awkward syntax was all they could shoehorn in.↩

3. There are far more useful and sophisticated regular expression

helper tools on the Internet.↩

4. input is from one of Commander Taggart’s speeches in Galaxy

Quest.↩

5. I have no idea how they came up with this method name, or to

what it refers. This is just one reason that code reviews are

important. ↩

https://en.wikipedia.org/wiki/Galaxy_Quest
https://en.wikipedia.org/wiki/Galaxy_Quest


Type Information

Runtime type information (RTTI)

discovers and uses type information while

a program is running.

It frees you from the constraint of doing type-oriented things only at

compile time, and can enable some very powerful programs. The need

for RTTI uncovers a plethora of interesting (and often perplexing) OO

design issues, and raises fundamental questions about how to

structure your programs.

This chapter looks at the ways that Java discovers information about

objects and classes at run time. This takes two forms: “traditional”

RTTI, which assumes you have all the types available at compile time,

and the reflection mechanism, which discovers and use class

information solely at run time.



The Need for RTTI

Consider the now-familiar example of a class hierarchy that uses

polymorphism. The generic type is the base class Shape, and the

specific derived types are Circle, Square, and Triangle:

This is a typical class hierarchy diagram, with the base class at the top

and the derived classes growing downward. A common goal in object-

oriented programming is to write code that manipulates references to

the base type (Shape, in this case), so if you decide to extend the

program by adding a new class (such as Rhomboid, derived from

Shape), the bulk of the code is not affected. In this example, the

dynamically bound method in the Shape interface is draw(), so the

intent is for the client programmer to call draw() through a generic

Shape reference. In all derived classes, draw() is overridden, and



because it is a dynamically bound method, the proper behavior will

occur even though it is called through a generic Shape reference.

That’s polymorphism.

Thus, you generally create a specific object (Circle, Square, or

Triangle), upcast it to a Shape (forgetting the specific type of the

object), and use that anonymous Shape reference in the rest of the

program.

You might code the Shape hierarchy as follows:

// typeinfo/Shapes.java

import java.util.stream.*;

abstract class Shape {

void draw() { System.out.println(this + ".draw()"); }

@Override

public abstract String toString();

}

class Circle extends Shape {

@Override

public String toString() { return "Circle"; }

}

class Square extends Shape {



@Override

public String toString() { return "Square"; }

}

class Triangle extends Shape {

@Override

public String toString() { return "Triangle"; }

}

public class Shapes {

public static void main(String[] args) {

Stream.of(

new Circle(), new Square(), new Triangle())

.forEach(Shape::draw);

}

}

/* Output:

Circle.draw()

Square.draw()

Triangle.draw()

*/

The base class contains a draw() method that indirectly uses



toString() to print an identifier for the class by passing this to

System.out.println() (toString() is declared abstract

to force inheritors to override it, and to prevent the instantiation of a

plain Shape). If an object appears in a String concatenation

expression (involving + and String objects), the toString() method is
automatically called to produce a String representation

for that object. Each of the derived classes overrides the

toString() method (from Object) so draw() ends up

(polymorphically) printing something different in each case.

In this example, the upcast occurs when the shape is placed into the

(implicit) Stream<Shape> . During the upcast to Shape, the fact

that the objects are specific types of Shape is lost. To the stream, they

are just Shapes.

Technically, the Stream<Shape> is actually holding everything as

an Object. When an element emerges, it is automatically cast back to

a Shape. This is the most basic form of RTTI, because all casts are

checked at run time for correctness. That’s what RTTI means: At run

time, the type of an object is identified.

Here, the RTTI cast is only partial: The Object is cast to a Shape,

and not all the way to a Circle, Square, or Triangle. That’s

because the only thing you know is that the List<Shape> is full of



Shapes. At compile time, this is enforced by the stream and the Java

generic system, but at run time the cast ensures it.

Now polymorphism takes over and the exact code that’s executed for

the Shape is determined by whether the reference is for a Circle,

Square, or Triangle. And in general, this is how it should be; you

want the bulk of your code to know as little as possible about specific

types of objects, and to just deal with the general representation of a

family of objects (in this case, Shape). As a result, your code is easier

to write, read, and maintain, and your designs are easier to

implement, understand, and change. So polymorphism is a general

goal in object-oriented programming.

But what about a special programming problem that’s easiest to solve

if you know the exact type of a generic reference? For example,

suppose you allow your users to highlight all the shapes of any

particular type by turning them a special color. This way, they can find

all the triangles on the screen by highlighting them. Or perhaps your



method must “rotate” a list of shapes, but it makes no sense to rotate a

circle so you’d like to skip the circles. With RTTI, you can ask a Shape

reference the exact type it’s referring to, and thus select and isolate

special cases.

The Class Object

To understand how RTTI works in Java, you must first know how type

information is represented at run time. This is accomplished through a

special kind of object called the Class object, which contains

information about the class. In fact, the Class object is used to create

all “regular” objects of your class. Java performs its RTTI using the

Class object, even if you’re doing something like a cast. The class

Class also has a number of other ways you can use RTTI.

There’s one Class object for each class that is part of your program.

That is, each time you write and compile a new class, a single Class

object is also created (and stored, appropriately enough, in an

identically named .class file). To make an object of that class, the

Java Virtual Machine (JVM) that’s executing your program uses a

subsystem called a class loader.

The class loader subsystem can actually comprise a chain of class

loaders, but there’s only one primordial class loader, part of the JVM



implementation. The primordial class loader loads so-called trusted

classes, including Java API classes, typically from the local disk.

Additional class loaders in the chain are usually not necessary, but for

special needs (such as loading classes in a certain way to support Web

server applications, or downloading classes across a network), you can

hook in additional class loaders.

All classes are loaded into the JVM dynamically, upon the first use of a

class. This happens when the program makes the first reference to a

static member of that class. The constructor is also a static

method of a class, even though the static keyword is not used for a

constructor. Therefore, creating a new object of that class using the

new operator also counts as a reference to a static member of the

class.

Thus, a Java program isn’t completely loaded before it begins, but

instead pieces of it are loaded when necessary. This is different from

many traditional languages. Dynamic loading enables behavior that is

difficult or impossible to duplicate in a statically loaded language like

C++.

The class loader first checks to see if the Class object for that type is

loaded. If not, the default class loader finds the .class file with that



name (an add-on class loader might, for example, look for the

bytecodes in a database instead). As the bytes for the class are loaded,

they are verified to ensure they have not been corrupted and they do

not comprise bad Java code (this is one of the lines of defense for

security in Java).

Once the Class object for that type is in memory, it is used to create

all objects of that type. Here’s a program to prove it:

// typeinfo/SweetShop.java

// Examination of the way the class loader works

class Cookie {

static { System.out.println("Loading Cookie"); }

}

class Gum {

static { System.out.println("Loading Gum"); }

}

class Candy {

static { System.out.println("Loading Candy"); }

}

public class SweetShop {

public static void main(String[] args) {



System.out.println("inside main");

new Candy();

System.out.println("After creating Candy");

try {

Class.forName("Gum");

} catch(ClassNotFoundException e) {

System.out.println("Couldn't find Gum");

}

System.out.println("After Class.forName(\"Gum\")");

new Cookie();

System.out.println("After creating Cookie");

}

}

/* Output:

inside main

Loading Candy

After creating Candy

Loading Gum

After Class.forName("Gum")

Loading Cookie



After creating Cookie

*/

Each of the classes Candy, Gum, and Cookie has a static clause that is
executed as the class is loaded for the first time. Information is

displayed to tell you when loading occurs for that class. In main(),

the object creations are spread out between print statements to help

detect the time of loading.

The output shows that each Class object is loaded only when it’s

needed, and the static initialization is performed upon class

loading.

A particularly interesting line is:

Class.forName("Gum");

All Class objects belong to the class Class. A Class object is like

any other object, so you can get and manipulate a reference to it (that’s

what the loader does). One of the ways to get a reference to the Class

object is the static forName() method, which takes a String

containing the textual name (watch the spelling and capitalization!) of

the your desired class. It returns a Class reference, which is ignored

here; the call to forName() is made here for its side effect: to load

the class Gum if it isn’t already loaded. In the process of loading, Gums

static clause is executed.



In the preceding example, if Class.forName() fails because it

can’t find the class you’re trying to load, it will throw a

ClassNotFoundException. Here, we simply report the problem

and move on, but in more sophisticated programs, you might try to fix

the problem inside the exception handler (there’s an example of this in

the Patterns chapter).

Anytime you use type information at run time, you must first get a

reference to the appropriate Class object. Class.forName() is

one convenient way to do this, because you don’t need an object of that

type to get the Class reference. However, if you already have an

object of the type you’re interested in, you can fetch the Class

reference by calling a method that’s part of the Object root class:

getClass(). This returns the Class reference representing the

actual type of the object. Class has many methods; here are a few:

// typeinfo/toys/ToyTest.java

// Testing class Class

// {java typeinfo.toys.ToyTest}

package typeinfo.toys;

interface HasBatteries {}

interface Waterproof {}



interface Shoots {}

class Toy {

// Comment out the following no-arg

// constructor to see NoSuchMethodError

Toy() {}

Toy(int i) {}

}

class FancyToy extends Toy

implements HasBatteries, Waterproof, Shoots {

FancyToy() { super(1); }

}

public class ToyTest {

static void printInfo(Class cc) {

System.out.println("Class name: " + cc.getName() +

" is interface? [" + cc.isInterface() + "]");

System.out.println(

"Simple name: " + cc.getSimpleName());

System.out.println(

"Canonical name : " + cc.getCanonicalName());

}



public static void main(String[] args) {

Class c = null;

try {

c = Class.forName("typeinfo.toys.FancyToy");

} catch(ClassNotFoundException e) {

System.out.println("Can't find FancyToy");

System.exit(1);

}

printInfo(c);

for(Class face : c.getInterfaces())

printInfo(face);

Class up = c.getSuperclass();

Object obj = null;

try {

// Requires no-arg constructor:

obj = up.newInstance();

} catch(InstantiationException e) {

System.out.println("Cannot instantiate");

System.exit(1);

} catch(IllegalAccessException e) {



System.out.println("Cannot access");

System.exit(1);

}

printInfo(obj.getClass());

}

}

/* Output:

Class name: typeinfo.toys.FancyToy is interface?

[false]

Simple name: FancyToy

Canonical name : typeinfo.toys.FancyToy

Class name: typeinfo.toys.HasBatteries is interface?

[true]

Simple name: HasBatteries

Canonical name : typeinfo.toys.HasBatteries

Class name: typeinfo.toys.Waterproof is interface?

[true]

Simple name: Waterproof

Canonical name : typeinfo.toys.Waterproof

Class name: typeinfo.toys.Shoots is interface? [true]



Simple name: Shoots

Canonical name : typeinfo.toys.Shoots

Class name: typeinfo.toys.Toy is interface? [false]

Simple name: Toy

Canonical name : typeinfo.toys.Toy

*/

FancyToy inherits from Toy and implements the interfaces

HasBatteries, Waterproof, and Shoots. In main(), a

Class reference is created and initialized to the FancyToy Class

using forName() inside an appropriate try block. Notice you must

use the fully qualified name (including the package name) in the

String you pass to forName().

printInfo() uses getName() to produce the fully qualified class

name, and getSimpleName() and getCanonicalName() to

produce the name without the package, and the fully qualified name,

respectively. As its name implies, isInterface() tells you whether

this Class object represents an interface. Thus, with the Class



object you can find out just about everything you want to know about a

type.

The Class.getInterfaces() method called in main() returns

an array of Class objects representing the interfaces contained in the

Class object of interest.

You can also ask a Class object for its direct base class using

getSuperclass(). This returns a Class reference you can

further query. Thus you can discover an object’s entire class hierarchy

at run time.

The newInstance() method of Class is a way to implement a

“virtual constructor,” which says, “I don’t know exactly what type you

are, but create yourself properly anyway.” In the preceding example,

up is just a Class reference with no further type information known

at compile time. And when you create a new instance, you get back an

Object reference. But that reference is pointing to a Toy object.

Before you can send any messages other than those accepted by

Object, you must investigate it a bit and do some casting. In

addition, the class that’s created with newInstance() must have a

no-arg constructor. Later in this chapter, you’ll see how to dynamically

create objects of classes using any constructor, with the Java reflection



API.

Class Literals

Java provides a second way to produce the reference to the Class

object: the class literal. In the preceding program this would look like:

FancyToy.class;

This is not only simpler, but also safer since it’s checked at compile

time (and thus does not have to be placed in a try block). Because it

eliminates the forName() method call, it’s also more efficient.

Class literals work with regular classes as well as interfaces, arrays,

and primitive types. In addition, there’s a standard field called TYPE

that exists for each of the primitive wrapper classes. The TYPE field

produces a reference to the Class object for the associated primitive

type, such that:

is

boolean.class equivalent

Boolean.TYPE

to

is

char.class

equivalent



Character.TYPE

to

is

byte.class

equivalent

Byte.TYPE

to

is

short.class

equivalent

Short.TYPE

to

int.class

is

Integer.TYPE

equivalent

to

is

long.class

equivalent



Long.TYPE

to

is

float.class

equivalent

Float.TYPE

to

is

double.class

equivalent

Double.TYPE

to

is

void.class

equivalent

Void.TYPE

to

My preference is to use the “.class” versions if you can, since

they’re more consistent with regular classes.

Notice that creating a reference to a Class object using “.class”



doesn’t automatically initialize the Class object. There are actually

three steps in preparing a class for use:

1. Loading, performed by the class loader. This finds the bytecodes

(usually, but not necessarily, on your disk in your classpath) and

creates a Class object from those bytecodes.

2. Linking. The link phase verifies the bytecodes in the class,

allocates storage for static fields, and if necessary, resolves all references to
other classes made by this class.

3. Initialization. If there’s a superclass, initialize that. Execute

static initializers and static initialization blocks.

Initialization is delayed until the first reference to a static method

(the constructor is implicitly static) or to a non-constant static

field:

// typeinfo/ClassInitialization.java

import java.util.*;

class Initable {

static final int STATIC_FINAL = 47;

static final int STATIC_FINAL2 =

ClassInitialization.rand.nextInt(1000);

static {

System.out.println("Initializing Initable");



}

}

class Initable2 {

static int staticNonFinal = 147;

static {

System.out.println("Initializing Initable2");

}

}

class Initable3 {

static int staticNonFinal = 74;

static {

System.out.println("Initializing Initable3");

}

}

public class ClassInitialization {

public static Random rand = new Random(47);

public static void

main(String[] args) throws Exception {

Class initable = Initable.class;

System.out.println("After creating Initable ref");



// Does not trigger initialization:

System.out.println(Initable.STATIC_FINAL);

// Does trigger initialization:

System.out.println(Initable.STATIC_FINAL2);

// Does trigger initialization:

System.out.println(Initable2.staticNonFinal);

Class initable3 = Class.forName("Initable3");

System.out.println("After creating Initable3 ref");

System.out.println(Initable3.staticNonFinal);

}

}

/* Output:

After creating Initable ref

47

Initializing Initable

258

Initializing Initable2

147

Initializing Initable3

After creating Initable3 ref



74

*/

Effectively, initialization is “as lazy as possible.” From the creation of

the initable reference, you see that just using the .class syntax

to get a reference to the class doesn’t cause initialization. However,

Class.forName() initializes the class immediately to produce the

Class reference, as seen in the creation of initable3.

If a static final value is a “compile-time constant” such as

Initable.staticFinal, that value can be read without causing

the Initable class to be initialized. Making a field static and

final, however, does not guarantee this behavior: accessing

Initable.staticFinal2 forces class initialization because it

cannot be a compile-time constant.

If a static field is not final, accessing it always requires linking

(to allocate storage for the field) and initialization (to initialize that

storage) before it can be read, as you see in the access to

Initable2.staticNonFinal.



Generic Class References

A Class reference points to a Class object, which manufactures

instances of classes and contains all the method code for those

instances. It also contains the statics for that class. So a Class

reference really does indicate the exact type of what it’s pointing to: an

object of the class Class.

However, the Java designers saw an opportunity to make this a bit

more specific by allowing you to constrain the type of Class object to

which the Class reference points, using the generic syntax. In the

following example, both syntaxes are correct:

// typeinfo/GenericClassReferences.java

public class GenericClassReferences {

public static void main(String[] args) {

Class intClass = int.class;

Class<Integer> genericIntClass = int.class;

genericIntClass = Integer.class; // Same thing

intClass = double.class;

// genericIntClass = double.class; // Illegal

}

}



The ordinary class reference does not produce a warning. Notice,

however, that the ordinary class reference can be reassigned to any

other Class object, whereas the generic class reference can only be

assigned to its declared type. By using the generic syntax, you allow

the compiler to enforce extra type checking.

What if you’d like to loosen the constraint a little? Initially, it seems

like you ought to do something like:

Class<Number> genericNumberClass = int.class;

This would seem to make sense because Integer inherits Number.

But this doesn’t work, because the Integer Class object is not a

subclass of the Number Class object (this can seem like a subtle

distinction; we’ll look into it more deeply in the Generics chapter).

To loosen the constraints when using generic Class references, I use

a wildcard, which is part of Java generics. The wildcard symbol is ? ,

and it indicates “anything.” So we can add wildcards to the ordinary

Class reference in the above example and produce the same results:

// typeinfo/WildcardClassReferences.java

public class WildcardClassReferences {

public static void main(String[] args) {

Class<?> intClass = int.class;



intClass = double.class;

}

}

Class<?> is preferred over plain Class, even though they are

equivalent and the plain Class, as you saw, doesn’t produce a

compiler warning. The benefit of Class<?> is it indicates you aren’t

just using a non-specific class reference by accident, or out of

ignorance. You chose the non-specific version.

To create a Class reference that is constrained to a type or any

subtype, you combine the wildcard with the extends keyword to

create a bound. So instead of just saying Class<Number> , you say:

// typeinfo/BoundedClassReferences.java

public class BoundedClassReferences {

public static void main(String[] args) {

Class<? extends Number> bounded = int.class;

bounded = double.class;

bounded = Number.class;

// Or anything else derived from Number.

}

}



The reason for adding the generic syntax to Class references is only

to provide compile-time type checking, so if you do something wrong

you find out about it a little sooner. You can’t actually go astray with

ordinary Class references, but if you make a mistake you won’t find

out until run time, which can be inconvenient.

Here’s an example that uses the generic class syntax. It stores a class

reference, and later generates objects using newInstance():

// typeinfo/DynamicSupplier.java

import java.util.function.*;

import java.util.stream.*;

class CountedInteger {

private static long counter;

private final long id = counter++;

@Override

public String toString() { return Long.toString(id); }

}

public class DynamicSupplier<T> implements Supplier<T> {

private Class<T> type;

public DynamicSupplier(Class<T> type) {

this.type = type;



}

public T get() {

try {

return type.newInstance();

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

Stream.generate(

new DynamicSupplier<>(CountedInteger.class))

.skip(10)

.limit(5)

.forEach(System.out::println);

}

}

/* Output:

10

11



12

13

14

*/

Notice this class must assume that any type it works with has a no-arg

constructor (one without arguments), and you’ll get an exception if

that isn’t the case. The compiler does not issue any warnings for this

program.

When you use the generic syntax for Class objects,

newInstance() will return the exact type of the object, rather than

just a basic Object as you saw in ToyTest.java. This is



somewhat limited:

// typeinfo/toys/GenericToyTest.java

// Testing class Class

// {java typeinfo.toys.GenericToyTest}

package typeinfo.toys;

public class GenericToyTest {

public static void

main(String[] args) throws Exception {

Class<FancyToy> ftClass = FancyToy.class;

// Produces exact type:

FancyToy fancyToy = ftClass.newInstance();

Class<? super FancyToy> up =

ftClass.getSuperclass();

// This won't compile:

// Class<Toy> up2 = ftClass.getSuperclass();

// Only produces Object:



Object obj = up.newInstance();

}

}

If you get the superclass, the compiler will only allow you to say that

the superclass reference is “some class that is a superclass of

FancyToy” as seen in the expression Class<? super

FancyToy> . It will not accept a declaration of Class<Toy> . This

seems a bit strange because getSuperclass() returns the base

class (not interface) and the compiler knows what that class is at

compile time—here, Toy.class, not just “some superclass of

FancyToy.” In any event, because of the vagueness, the return value

of up.newInstance() is not a precise type, but just an Object.

The cast() Method

There’s also a casting syntax for use with Class references: the

cast() method:

// typeinfo/ClassCasts.java

class Building {}

class House extends Building {}

public class ClassCasts {

public static void main(String[] args) {



Building b = new House();

Class<House> houseType = House.class;

House h = houseType.cast(b);

h = (House)b; // ... or just do this.

}

}

The cast() method takes the argument object and casts it to the

type of the Class reference. However, if you look at the above code it

seems like a lot of extra work compared to the last line in main(),

which does the same thing.

cast() is useful for situations where you can’t just use an ordinary

cast. This usually happens when you’re writing generic code (which

you’ll learn about in the Generics chapter), and you’ve stored a Class
reference to use for casting. This turns out to be a rare thing—I found

only one instance where cast() was used in the entire Java library

(it was in com.sun.mirror.util.DeclarationFilter).



Another feature had no usage in the Java library:

Class.asSubclass(). This casts the class object to a more

specific type.

Checking Before a

Cast

So far, you’ve seen forms of RTTI, including:

1. The classic cast; e.g., “(Shape),” which uses RTTI to make sure

the cast is correct. This will throw a ClassCastException if

you’ve performed a bad cast.

2. The Class object representing the type of your object. The

Class object can be queried for useful runtime information.

In C++, the classic cast “(Shape)” does not perform RTTI. It simply tells the
compiler to treat the object as the new type. In Java, which

does perform the type check, this cast is often called a “type-safe

downcast.” The reason for the term “downcast” is the historical

arrangement of the class hierarchy diagram. If casting a Circle to a

Shape is an upcast, then casting a Shape to a Circle is a downcast.

However, because it knows that a Circle is also a Shape, the

compiler freely allows an upcast assignment, without requiring any

explicit cast syntax. The compiler cannot know, given a Shape, what

that Shape actually is—it could be exactly a Shape, or it could be a



subtype of Shape, such as a Circle, Square, Triangle or some

other type. At compile time, the compiler only sees a Shape. Thus, it

won’t allow you to perform a downcast assignment without using an

explicit cast, to tell the compiler you know this is a particular type (the

compiler will check to see if that downcast is reasonable, so it won’t let

you downcast to a type that’s not actually a subclass).

There’s a third form of RTTI in Java. This is the keyword

instanceof, which tells you if an object is an instance of a

particular type. It returns a boolean so you use it in the form of a

question, like this:

if(x instanceof Dog)

((Dog)x).bark();

The if statement checks to see if the object x belongs to the class Dog

before you cast x to a Dog. It’s important to use instanceof before a
downcast when you don’t have other information that tells you the

type of the object; otherwise, you’ll end up with a

ClassCastException.

Ordinarily, you might be hunting for one type (triangles to turn

purple, for example), but you can easily tally all objects by using

instanceof. For example, suppose you have a family of classes to

describe Pets (and their people, a feature which will come in handy in



a later example). Each Individual in the hierarchy has an id and

an optional name. Although the classes that follow inherit from

Individual, there are some complexities in the Individual

class, so that code is shown and explained in the Appendix: Collection

Topics chapter. You see it’s not really necessary to see the code for

Individual—you know you can create it with or without a name,

and that each Individual has a method id() that returns a

unique identifier (created by counting each object). There’s also a

toString() method; if you don’t provide a name for an

Individual, toString() only produces the simple type name.

Here is the class hierarchy that inherits from Individual:

// typeinfo/pets/Person.java

package typeinfo.pets;

public class Person extends Individual {

public Person(String name) { super(name); }

}

// typeinfo/pets/Pet.java

package typeinfo.pets;

public class Pet extends Individual {

public Pet(String name) { super(name); }



public Pet() { super(); }

}

// typeinfo/pets/Dog.java

package typeinfo.pets;

public class Dog extends Pet {

public Dog(String name) { super(name); }

public Dog() { super(); }

}

// typeinfo/pets/Mutt.java

package typeinfo.pets;

public class Mutt extends Dog {

public Mutt(String name) { super(name); }

public Mutt() { super(); }

}

// typeinfo/pets/Pug.java

package typeinfo.pets;

public class Pug extends Dog {

public Pug(String name) { super(name); }

public Pug() { super(); }

}



// typeinfo/pets/Cat.java

package typeinfo.pets;

public class Cat extends Pet {

public Cat(String name) { super(name); }

public Cat() { super(); }

}

// typeinfo/pets/EgyptianMau.java

package typeinfo.pets;

public class EgyptianMau extends Cat {

public EgyptianMau(String name) { super(name); }

public EgyptianMau() { super(); }

}

// typeinfo/pets/Manx.java

package typeinfo.pets;

public class Manx extends Cat {

public Manx(String name) { super(name); }

public Manx() { super(); }

}

// typeinfo/pets/Cymric.java

package typeinfo.pets;



public class Cymric extends Manx {

public Cymric(String name) { super(name); }

public Cymric() { super(); }

}

// typeinfo/pets/Rodent.java

package typeinfo.pets;

public class Rodent extends Pet {

public Rodent(String name) { super(name); }

public Rodent() { super(); }

}

// typeinfo/pets/Rat.java

package typeinfo.pets;

public class Rat extends Rodent {

public Rat(String name) { super(name); }

public Rat() { super(); }

}

// typeinfo/pets/Mouse.java

package typeinfo.pets;

public class Mouse extends Rodent {

public Mouse(String name) { super(name); }



public Mouse() { super(); }

}

// typeinfo/pets/Hamster.java

package typeinfo.pets;

public class Hamster extends Rodent {

public Hamster(String name) { super(name); }

public Hamster() { super(); }

}

We must explicitly write the no-arg constructor in each case because

we have a constructor with an argument, which precludes the compiler

automatically generating the no-arg constructor.

Next, we need a way to randomly create different types of pets, and for

convenience, to create arrays and Lists of pets. To allow this tool to

evolve through several different implementations, we’ll define it as an

abstract class:

// typeinfo/pets/PetCreator.java

// Creates random sequences of Pets

package typeinfo.pets;

import java.util.*;

import java.util.function.*;



public abstract

class PetCreator implements Supplier<Pet> {

private Random rand = new Random(47);

// The List of the different types of Pet to create:

public abstract List<Class<? extends Pet>> types();

public Pet get() { // Create one random Pet

int n = rand.nextInt(types().size());

try {

return types().get(n).newInstance();

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(e);

}

}

}

The abstract types() method expects a derived class to produce

the List of Class objects (this is a variation of the Template

Method design pattern). Notice that the type of class is specified as

“anything derived from Pet,” so newInstance() produces a Pet

without requiring a cast. get() randomly indexes into the List and



uses the selected Class object to generate a new instance of that class

with Class.newInstance().

You can get two kinds of exceptions when calling newInstance().

You see these handled in the catch clause following the try block.

Again, the names of the exceptions are relatively useful explanations of

what went wrong (IllegalAccessException relates to a

violation of the Java security mechanism, in this case if the no-arg

constructor is private).

When you derive a subclass of PetCreator, you supply the List of

types of Pet to create using get(). The types() method will

normally just return a reference to this static List. Here’s an

implementation using forName():

// typeinfo/pets/ForNameCreator.java

package typeinfo.pets;

import java.util.*;

public class ForNameCreator extends PetCreator {

private static List<Class<? extends Pet>> types =

new ArrayList<>();

// Types you want randomly created:

private static String[] typeNames = {



"typeinfo.pets.Mutt",

"typeinfo.pets.Pug",

"typeinfo.pets.EgyptianMau",

"typeinfo.pets.Manx",

"typeinfo.pets.Cymric",

"typeinfo.pets.Rat",

"typeinfo.pets.Mouse",

"typeinfo.pets.Hamster"

};

@SuppressWarnings("unchecked")

private static void loader() {

try {

for(String name : typeNames)

types.add(

(Class<? extends Pet>)Class.forName(name));

} catch(ClassNotFoundException e) {

throw new RuntimeException(e);

}

}

static { loader(); }



@Override

public List<Class<? extends Pet>> types() {

return types;

}

}

The loader() method creates the List of Class objects using

Class.forName(). This can generate a

ClassNotFoundException, which makes sense since you’re

passing it a String which cannot be validated at compile time. Since

the Pet objects are in package typeinfo, the package name must be

used when referring to the classes.

To produce a typed List of Class objects, a cast is required, which

produces a compile-time warning. The loader() method is defined

separately, then placed inside a static initialization clause because the

@SuppressWarnings annotation cannot be placed directly onto

the static initialization clause.

To count Pets, we need a tool that keeps track of the quantities of

various different types of Pet. A Map is perfect for this; the keys are

the Pet type names and the values are Integers to hold the Pet

quantities. This way, you can say, “How many Hamster objects are



there?” We can use instanceof to count Pets:

// typeinfo/PetCount.java

// Using instanceof

import typeinfo.pets.*;

import java.util.*;

public class PetCount {

static class Counter extends HashMap<String,Integer> {

public void count(String type) {

Integer quantity = get(type);

if(quantity == null)

put(type, 1);

else

put(type, quantity + 1);

}

}

public static void

countPets(PetCreator creator) {

Counter counter = new Counter();

for(Pet pet : Pets.array(20)) {

// List each individual pet:



System.out.print(

pet.getClass().getSimpleName() + " ");

if(pet instanceof Pet)

counter.count("Pet");

if(pet instanceof Dog)

counter.count("Dog");

if(pet instanceof Mutt)

counter.count("Mutt");

if(pet instanceof Pug)

counter.count("Pug");

if(pet instanceof Cat)

counter.count("Cat");

if(pet instanceof EgyptianMau)

counter.count("EgyptianMau");

if(pet instanceof Manx)

counter.count("Manx");

if(pet instanceof Cymric)

counter.count("Cymric");

if(pet instanceof Rodent)

counter.count("Rodent");



if(pet instanceof Rat)

counter.count("Rat");

if(pet instanceof Mouse)

counter.count("Mouse");

if(pet instanceof Hamster)

counter.count("Hamster");

}

// Show the counts:

System.out.println();

System.out.println(counter);

}

public static void main(String[] args) {

countPets(new ForNameCreator());

}

}

/* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse

Pug Mouse Cymric

{EgyptianMau=2, Pug=3, Rat=2, Cymric=5, Mouse=2, Cat=9,



Manx=7, Rodent=5, Mutt=3, Dog=6, Pet=20, Hamster=1}

*/

In countPets(), the static Pets.array() method (which is

defined shortly) produces an array is filled with random Pets. Each

Pet in the array is tested and counted using instanceof.

There’s a rather narrow restriction on instanceof: You can

compare it to a named type only, and not to a Class object. In the

preceding example you might feel it’s tedious to write out all of those

instanceof expressions, and you’re right. But there is no way to

cleverly automate instanceof by creating an array of Class

objects and comparing it to those instead (stay tuned—you’ll see an

alternative). This isn’t as great a restriction as you might think,

because you’ll eventually understand that your design is probably

flawed if you end up writing many instanceof expressions.

Using Class Literals

If we reimplement PetCreator using class literals, the result is

cleaner in many ways:



// typeinfo/pets/LiteralPetCreator.java

// Using class literals

// {java typeinfo.pets.LiteralPetCreator}

package typeinfo.pets;

import java.util.*;

public class LiteralPetCreator extends PetCreator {

// No try block needed.

@SuppressWarnings("unchecked")

public static

final List<Class<? extends Pet>> ALL_TYPES =

Collections.unmodifiableList(Arrays.asList(

Pet.class, Dog.class, Cat.class, Rodent.class,

Mutt.class, Pug.class, EgyptianMau.class,

Manx.class, Cymric.class, Rat.class,

Mouse.class, Hamster.class));

// Types for random creation:

private static final

List<Class<? extends Pet>> TYPES =

ALL_TYPES.subList(ALL_TYPES.indexOf(Mutt.class),

ALL_TYPES.size());



@Override

public List<Class<? extends Pet>> types() {

return TYPES;

}

public static void main(String[] args) {

System.out.println(TYPES);

}

}

/* Output:

[class typeinfo.pets.Mutt, class typeinfo.pets.Pug,

class typeinfo.pets.EgyptianMau, class

typeinfo.pets.Manx, class typeinfo.pets.Cymric, class

typeinfo.pets.Rat, class typeinfo.pets.Mouse, class

typeinfo.pets.Hamster]

*/

In the upcoming PetCount3.java example, we pre-load a Map

with all the Pet types (not just the ones that are randomly generated),

so the ALL_TYPES List is necessary. The types list is the portion

of ALL_TYPES (created using List.subList()) that includes the

exact pet types, so it is used for random Pet generation.



This time, the creation of types is not surrounded by a try block

since it’s evaluated at compile time and thus won’t throw any

exceptions, unlike Class.forName().

We now have two implementations of PetCreator in the

typeinfo.pets library. To provide the second one as a default

implementation, we can create a Façade that utilizes

LiteralPetCreator:

// typeinfo/pets/Pets.java

// Facade to produce a default PetCreator

package typeinfo.pets;

import java.util.*;

import java.util.stream.*;

public class Pets {

public static final PetCreator CREATOR =

new LiteralPetCreator();

public static Pet get() {

return CREATOR.get();

}

public static Pet[] array(int size) {

Pet[] result = new Pet[size];



for(int i = 0; i < size; i++)

result[i] = CREATOR.get();

return result;

}

public static List<Pet> list(int size) {

List<Pet> result = new ArrayList<>();

Collections.addAll(result, array(size));

return result;

}

public static Stream<Pet> stream() {

return Stream.generate(CREATOR);

}

}

This also provides indirection to get(), array() and list(), and

a new method to produce a Stream<Pet> .

Because PetCount.countPets() takes a PetCreator

argument, we can easily test the LiteralPetCreator (via the

above Façade):

// typeinfo/PetCount2.java

import typeinfo.pets.*;



public class PetCount2 {

public static void main(String[] args) {

PetCount.countPets(Pets.CREATOR);

}

}

/* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse

Pug Mouse Cymric

{EgyptianMau=2, Pug=3, Rat=2, Cymric=5, Mouse=2, Cat=9,

Manx=7, Rodent=5, Mutt=3, Dog=6, Pet=20, Hamster=1}

*/

The output is the same as that of PetCount.java.

A Dynamic instanceof

The Class.isInstance() method provides a way to dynamically

test the type of an object. Thus, all those tedious instanceof

statements can be removed from PetCount.java:



// typeinfo/PetCount3.java

// Using isInstance()

import java.util.*;

import java.util.stream.*;

import onjava.*;

import typeinfo.pets.*;

public class PetCount3 {

static class Counter extends

LinkedHashMap<Class<? extends Pet>, Integer> {

Counter() {

super(LiteralPetCreator.ALL_TYPES.stream()

.map(lpc -> Pair.make(lpc, 0))

.collect(

Collectors.toMap(Pair::key, Pair::value)));

}

public void count(Pet pet) {

// Class.isInstance() eliminates instanceofs:

entrySet().stream()

.filter(pair -> pair.getKey().isInstance(pet))

.forEach(pair ->



put(pair.getKey(), pair.getValue() + 1));

}

@Override

public String toString() {

String result = entrySet().stream()

.map(pair -> String.format("%s=%s",

pair.getKey().getSimpleName(),

pair.getValue()))

.collect(Collectors.joining(", "));

return "{" + result + "}";

}

}

public static void main(String[] args) {

Counter petCount = new Counter();

Pets.stream()

.limit(20)

.peek(petCount::count)

.forEach(p -> System.out.print(

p.getClass().getSimpleName() + " "));

System.out.println("\n" + petCount);



}

}

/* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse

Pug Mouse Cymric

{Rat=2, Pug=3, Mutt=3, Mouse=2, Cat=9, Dog=6, Cymric=5,

EgyptianMau=2, Rodent=5, Hamster=1, Manx=7, Pet=20}

*/

To count all the different types of Pet, the Counter Map is pre-

loaded with the types from LiteralPetCreator.ALL_TYPES.

Without pre-loading the Map, you would only end up counting the

randomly-generated types, not the base types like Pet and Cat.

The isInstance() method eliminates the need for the

instanceof expressions. In addition, this means you can add new

types of Pet by changing the LiteralPetCreator.types array;

the rest of the program does not need modification (as it did when

using the instanceof expressions).

The toString() method is overloaded for easier-to-read output

that still matches the typical output you see when printing a Map.



Counting Recursively

The Map in PetCount3.Counter was pre-loaded with all the

different Pet classes. Instead of pre-loading the map, we can use

Class.isAssignableFrom() and create a general-purpose tool

that is not limited to counting Pets:

// onjava/TypeCounter.java

// Counts instances of a type family

package onjava;

import java.util.*;

import java.util.stream.*;

public class

TypeCounter extends HashMap<Class<?>, Integer> {

private Class<?> baseType;

public TypeCounter(Class<?> baseType) {

this.baseType = baseType;

}

public void count(Object obj) {



Class<?> type = obj.getClass();

if(!baseType.isAssignableFrom(type))

throw new RuntimeException(

obj + " incorrect type: " + type +

", should be type or subtype of " + baseType);

countClass(type);

}

private void countClass(Class<?> type) {

Integer quantity = get(type);

put(type, quantity == null ? 1 : quantity + 1);

Class<?> superClass = type.getSuperclass();

if(superClass != null &&

baseType.isAssignableFrom(superClass))

countClass(superClass);

}

@Override

public String toString() {

String result = entrySet().stream()

.map(pair -> String.format("%s=%s",

pair.getKey().getSimpleName(),



pair.getValue()))

.collect(Collectors.joining(", "));

return "{" + result + "}";

}

}

The count() method gets the Class of its argument, and uses

isAssignableFrom() for a runtime check to verify that the object

you passed actually belongs to the hierarchy of interest.

countClass() first counts the exact type of the class. Then, if

baseType is assignable from the superclass, countClass() is

called recursively on the superclass.

// typeinfo/PetCount4.java

import typeinfo.pets.*;

import onjava.*;

public class PetCount4 {

public static void main(String[] args) {

TypeCounter counter = new TypeCounter(Pet.class);

Pets.stream()

.limit(20)

.peek(counter::count)



.forEach(p -> System.out.print(

p.getClass().getSimpleName() + " "));

System.out.println("\n" + counter);

}

}

/* Output:

Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat

EgyptianMau Hamster EgyptianMau Mutt Mutt Cymric Mouse

Pug Mouse Cymric

{Dog=6, Manx=7, Cat=9, Rodent=5, Hamster=1, Rat=2,

Pug=3, Mutt=3, Cymric=5, EgyptianMau=2, Pet=20,

Mouse=2}

*/

The output shows that both base types as well as exact types are

counted.

Registered Factories



A problem with generating objects from the Pet hierarchy is the fact

that every time you add a new type of Pet to the hierarchy you must

remember to add it to the entries in LiteralPetCreator.java.

In a system where you add more classes on a regular basis this can

become problematic.

You might think of adding a static initializer to each subclass, so the

initializer would add its class to a list somewhere. Unfortunately, static

initializers are only called when the class is first loaded, so you have a

chicken-and-egg problem: The generator doesn’t have the class in its

list, so it can never create an object of that class, so the class won’t get

loaded and placed in the list.

Basically, you’re forced to create the list yourself, by hand (unless you

write a tool that searches through and analyzes your source code, then

creates and compiles the list). So the best you can probably do is to put

the list in one central, obvious place. The base class for the hierarchy

of interest is probably the best place.

The other change we’ll make here is to defer the creation of the object

to the class itself, using the Factory Method design pattern. A factory

method can be called polymorphically, and creates an object of the

appropriate type for you. It turns out that



java.util.function.Supplier describes the prototypical

factory method with its T get(). Covariant return types allow

get() to return a different type for each subclass implementation of

Supplier.

In this example, the base class Part contains a static List of

factory objects (Supplier<Part> ). Factories for types that should

be produced by the get() method are “registered” with the base class

by adding them to the prototypes List. These factories are,

oddly enough, instances of the objects themselves. Each object in this

list is a Prototype for creating other objects:

// typeinfo/RegisteredFactories.java

// Registering Factories in the base class

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

class Part implements Supplier<Part> {

@Override

public String toString() {

return getClass().getSimpleName();

}



static List<Supplier<? extends Part>> prototypes =

Arrays.asList(

new FuelFilter(),

new AirFilter(),

new CabinAirFilter(),

new OilFilter(),

new FanBelt(),

new PowerSteeringBelt(),

new GeneratorBelt()

);

private static Random rand = new Random(47);

public Part get() {

int n = rand.nextInt(prototypes.size());

return prototypes.get(n).get();

}

}

class Filter extends Part {}

class FuelFilter extends Filter {

@Override

public FuelFilter get() { return new FuelFilter(); }



}

class AirFilter extends Filter {

@Override

public AirFilter get() { return new AirFilter(); }

}

class CabinAirFilter extends Filter {

@Override

public CabinAirFilter get() {

return new CabinAirFilter();

}

}

class OilFilter extends Filter {

@Override

public OilFilter get() { return new OilFilter(); }

}

class Belt extends Part {}

class FanBelt extends Belt {

@Override

public FanBelt get() { return new FanBelt(); }

}



class GeneratorBelt extends Belt {

@Override

public GeneratorBelt get() {

return new GeneratorBelt();

}

}

class PowerSteeringBelt extends Belt {

@Override

public PowerSteeringBelt get() {

return new PowerSteeringBelt();

}

}

public class RegisteredFactories {

public static void main(String[] args) {

Stream.generate(new Part())

.limit(10)

.forEach(System.out::println);

}

}

/* Output:



GeneratorBelt

CabinAirFilter

GeneratorBelt

AirFilter

PowerSteeringBelt

CabinAirFilter

FuelFilter

PowerSteeringBelt

PowerSteeringBelt

FuelFilter

*/

Not all classes in the hierarchy should be instantiated; here Filter

and Belt are just classifiers so you do not create an instance of either

one, but only of their subclasses (note that if you try to, you get the

behavior of the Part base class).

Because Part implements Supplier<Part> , a Part supplies



other Parts via its get(). If you call get() (or if generate()

calls get()) for a base-class Part, it creates random specific Part

subtypes, each of which are ultimately inherited from Part and

override the appropriate get() to produce one of themselves.

Instanceof vs. Class

Equivalence

When you are querying for type information, there’s an important

difference between either form of instanceof (that is,

instanceof or isInstance(), which produce equivalent results)

and the direct comparison of the Class objects. Here’s an example

that demonstrates the difference:

// typeinfo/FamilyVsExactType.java

// The difference between instanceof and class

// {java typeinfo.FamilyVsExactType}

package typeinfo;

class Base {}

class Derived extends Base {}

public class FamilyVsExactType {

static void test(Object x) {

System.out.println(



"Testing x of type " + x.getClass());

System.out.println(

"x instanceof Base " + (x instanceof Base));

System.out.println(

"x instanceof Derived " + (x instanceof Derived));

System.out.println(

"Base.isInstance(x) " + Base.class.isInstance(x));

System.out.println(

"Derived.isInstance(x) " +

Derived.class.isInstance(x));

System.out.println(

"x.getClass() == Base.class " +

(x.getClass() == Base.class));

System.out.println(

"x.getClass() == Derived.class " +

(x.getClass() == Derived.class));

System.out.println(

"x.getClass().equals(Base.class)) "+

(x.getClass().equals(Base.class)));

System.out.println(



"x.getClass().equals(Derived.class)) " +

(x.getClass().equals(Derived.class)));

}

public static void main(String[] args) {

test(new Base());

test(new Derived());

}

}

/* Output:

Testing x of type class typeinfo.Base

x instanceof Base true

x instanceof Derived false

Base.isInstance(x) true

Derived.isInstance(x) false

x.getClass() == Base.class true

x.getClass() == Derived.class false



x.getClass().equals(Base.class)) true

x.getClass().equals(Derived.class)) false

Testing x of type class typeinfo.Derived

x instanceof Base true

x instanceof Derived true

Base.isInstance(x) true

Derived.isInstance(x) true

x.getClass() == Base.class false

x.getClass() == Derived.class true

x.getClass().equals(Base.class)) false

x.getClass().equals(Derived.class)) true

*/

The test() method performs type checking with its argument using

both forms of instanceof. It then gets the Class reference and

uses == and equals() to test for equality of the Class objects.

Reassuringly, instanceof and isInstance() produce exactly

the same results, as do equals() and ==. But the tests themselves

draw different conclusions. In keeping with the concept of type,

instanceof says, “Are you this class, or a class derived from this

class?” On the other hand, if you compare the actual Class objects



using ==, there is no concern with inheritance—it’s either the exact

type or it isn’t.

Reflection: Runtime

Class Information

If you don’t know the precise type of an object, RTTI will tell you.

However, there’s a limitation: The type must be known at compile

time to detect it using RTTI and do something useful with the

information. Put another way, the compiler must know about all the

classes you use.

This doesn’t seem like that much of a limitation at first, but suppose

you’re given a reference to an object that’s not in your program space.

In fact, the class of that object isn’t even available to your program at

compile time. Perhaps you get a bunch of bytes from a disk file or from

a network connection, and you’re told that those bytes represent a

class. Since this class shows up long after the compiler generates the

code for your program, how can you possibly use such a class?

In a traditional programming environment, this is a far-fetched

scenario. But as we move into a larger programming world, there are

important cases when this happens. The first is component-based

programming, where you build projects using Rapid Application



Development (RAD) in an application builder Integrated

Development Environment (IDE). This is a visual approach to creating

a program by moving icons that represent components onto a form.

These components are then configured by setting some of their values

at program time. This design-time configuration requires that any

component be instantiable, that it exposes parts of itself, and it allows

its properties to be read and modified. In addition, components that

handle Graphical User Interface (GUI) events must expose

information about appropriate methods so the IDE can assist the

programmer in overriding these event-handling methods. Reflection

provides the mechanism to detect the available methods and produce

the method names.

Another compelling motivation for discovering class information at

run time is to provide the ability to create and execute objects on

remote platforms, across a network. This is called Remote Method

Invocation (RMI), and it enables a Java program’s objects to be

distributed across many machines. This distribution can happen for a

number of reasons. If you want to speed up a computation-intensive

task, you can break it into pieces to put onto idle machines. Or you

might place code that handles particular types of tasks (e.g., “Business



Rules” in a multitier client/server architecture) on a particular

machine, so the machine becomes a common repository describing

those actions, and it can be easily changed to affect everyone in the

system. Distributed computing also supports specialized hardware

that might be good at a particular task—matrix inversions, for example

—but inappropriate or too expensive for general-purpose

programming.

The class Class supports the concept of reflection, along with the

java.lang.reflect library which contains the classes Field,

Method, and Constructor (each of which implements the

Member interface). Objects of these types are created by the JVM at

run time to represent the corresponding member in the unknown

class. You can then use the Constructors to create new objects, the

get() and set() methods to read and modify the fields associated

with Field objects, and the invoke() method to call a method

associated with a Method object. In addition, you can call the

convenience methods getFields(), getMethods(),

getConstructors(), etc., to return arrays of objects representing

the fields, methods, and constructors. (You can find out more by

looking up the class Class in the JDK documentation.) Thus, the



class information for anonymous objects can be completely

determined at run time, and nothing need be known at compile time.

It’s important to realize there’s nothing magic about reflection. When

you’re using reflection to interact with an object of an unknown type,

the JVM will look at the object and see it belongs to a particular class

(just like ordinary RTTI). Before anything can be done with it, the

Class object must be loaded. Thus, the .class file for that

particular type must still be available to the JVM, either on the local

machine or across the network. So the true difference between RTTI

and reflection is that with RTTI, the compiler opens and examines the

.class file at compile time. Put another way, you can call all the

methods of an object in the “normal” way. With reflection, the

.class file is unavailable at compile time; it is opened and examined

by the runtime environment.

A Class Method Extractor

Normally you won’t use the reflection tools directly, but they can be

helpful to create more dynamic code. Reflection is in the language to



support other Java features, such as object serialization (see the

Appendix: Object Serialization). However, there are times when it’s useful to
dynamically extract information about a class.

Consider a class method extractor. Looking at a class definition’s

source code or JDK documentation shows only the methods defined or

overridden within that class definition. But there might be dozens

more available to you that have come from base classes. To locate

these is both tedious and time consuming. 1 Fortunately, reflection provides a
way to write a simple tool to automatically show you the

entire interface:

// typeinfo/ShowMethods.java

// Using reflection to show all the methods of a class,

// even if the methods are defined in the base class

// {java ShowMethods ShowMethods}

import java.lang.reflect.*;

import java.util.regex.*;

public class ShowMethods {

private static String usage =

"usage:\n" +

"ShowMethods qualified.class.name\n" +

"To show all methods in class or:\n" +



"ShowMethods qualified.class.name word\n" +

"To search for methods involving 'word'";

private static Pattern p = Pattern.compile("\\w+\\.");

public static void main(String[] args) {

if(args.length < 1) {

System.out.println(usage);

System.exit(0);

}

int lines = 0;

try {

Class<?> c = Class.forName(args[0]);

Method[] methods = c.getMethods();

Constructor[] ctors = c.getConstructors();

if(args.length == 1) {

for(Method method : methods)

System.out.println(

p.matcher(

method.toString()).replaceAll(""));

for(Constructor ctor : ctors)

System.out.println(



p.matcher(ctor.toString()).replaceAll(""));

lines = methods.length + ctors.length;

} else {

for(Method method : methods)

if(method.toString().contains(args[1])) {

System.out.println(p.matcher(

method.toString()).replaceAll(""));

lines++;

}

for(Constructor ctor : ctors)

if(ctor.toString().contains(args[1])) {

System.out.println(p.matcher(

ctor.toString()).replaceAll(""));

lines++;

}

}

} catch(ClassNotFoundException e) {

System.out.println("No such class: " + e);

}

}



}

/* Output:

public static void main(String[])

public final void wait() throws InterruptedException

public final void wait(long,int) throws

InterruptedException

public final native void wait(long) throws

InterruptedException

public boolean equals(Object)

public String toString()

public native int hashCode()

public final native Class getClass()

public final native void notify()

public final native void notifyAll()

public ShowMethods()

*/

The Class methods getMethods() and getConstructors()

return an array of Method and array of Constructor, respectively.

Each of these classes has further methods to dissect the names,

arguments, and return values of the methods they represent. But you



can also just use toString(), as is done here, to produce a String

with the entire method signature. The rest of the code extracts the

command-line information, determines if a particular signature

matches your target String (using indexOf()), and strips off the

name qualifiers using regular expressions (introduced in the Strings

chapter).

The result produced by Class.forName() cannot be known at

compile time, and therefore all the method signature information is

extracted at run time. If you investigate the JDK reflection

documentation, you’ll see there is enough support to actually set up

and make a method call on an object that’s totally unknown at compile

time (there are examples of this later in this book). Although initially

this is something you might not think you’ll ever need, the value of full

reflection can be surprising.

The output above is produced from the command line:

java ShowMethods ShowMethods

The output includes a public no-arg constructor, even though no

constructor was defined. The constructor you see is the one that’s

automatically synthesized by the compiler. If you then make

ShowMethods a non-public class (that is, package access), the



synthesized no-arg constructor no longer shows up in the output. The

synthesized no-arg constructor is automatically given the same access

as the class.

Try running java ShowMethods java.lang.String with an

extra argument of char, int, String, etc.

This tool can be a real time-saver while you’re programming, when

you can’t remember if a class has a particular method and you don’t

want to hunt through the index or class hierarchy in the JDK

documentation, or if you don’t know whether that class can do

anything with, for example, Color objects.

Dynamic Proxies

Proxy is one of the basic design patterns. It is an object you insert in

place of the “real” object to provide additional or different operations

—these usually involve communication with a “real” object, so a proxy

typically acts as a go-between. Here’s a trivial example to show the

structure of a proxy:



// typeinfo/SimpleProxyDemo.java

interface Interface {

void doSomething();

void somethingElse(String arg);

}

class RealObject implements Interface {

@Override

public void doSomething() {

System.out.println("doSomething");

}

@Override

public void somethingElse(String arg) {

System.out.println("somethingElse " + arg);

}

}

class SimpleProxy implements Interface {

private Interface proxied;

SimpleProxy(Interface proxied) {

this.proxied = proxied;

}



@Override

public void doSomething() {

System.out.println("SimpleProxy doSomething");

proxied.doSomething();

}

@Override

public void somethingElse(String arg) {

System.out.println(

"SimpleProxy somethingElse " + arg);

proxied.somethingElse(arg);

}

}

class SimpleProxyDemo {

public static void consumer(Interface iface) {

iface.doSomething();

iface.somethingElse("bonobo");

}

public static void main(String[] args) {

consumer(new RealObject());

consumer(new SimpleProxy(new RealObject()));



}

}

/* Output:

doSomething

somethingElse bonobo

SimpleProxy doSomething

doSomething

SimpleProxy somethingElse bonobo

somethingElse bonobo

*/

Because consumer() accepts an Interface, it can’t know if it’s

getting a RealObject or a SimpleProxy, because both implement

Interface. But the SimpleProxy inserted between the client and the
RealObject performs operations, then calls the identical

method on a RealObject.

A proxy can be helpful anytime you’d like to separate extra operations

into a different place than the “real object,” and especially when you

want to easily change from not using the extra operations to using

them, and vice versa (the point of design patterns is to encapsulate

change—so you must be changing things to justify the pattern). For

example, what if you wanted to track calls to the methods in



RealObject, or to measure the overhead of such calls? This is not

code you want incorporated in your application, and a proxy enables

adding and removing it easily.

Java’s dynamic proxy takes the idea of a proxy one step further, by

both creating the proxy object dynamically and handling calls to the

proxied methods dynamically. All calls made on a dynamic proxy are

redirected to a single invocation handler, which has the job of

discovering what the call is and deciding what to do about it. Here’s

SimpleProxyDemo.java rewritten to use a dynamic proxy:

// typeinfo/SimpleDynamicProxy.java

import java.lang.reflect.*;

class DynamicProxyHandler implements InvocationHandler {

private Object proxied;

DynamicProxyHandler(Object proxied) {

this.proxied = proxied;

}

@Override

public Object

invoke(Object proxy, Method method, Object[] args)

throws Throwable {



System.out.println(

"**** proxy: " + proxy.getClass() +

", method: " + method + ", args: " + args);

if(args != null)

for(Object arg : args)

System.out.println(" " + arg);

return method.invoke(proxied, args);

}

}

class SimpleDynamicProxy {

public static void consumer(Interface iface) {

iface.doSomething();

iface.somethingElse("bonobo");

}

public static void main(String[] args) {

RealObject real = new RealObject();

consumer(real);

// Insert a proxy and call again:

Interface proxy = (Interface)Proxy.newProxyInstance(

Interface.class.getClassLoader(),



new Class[]{ Interface.class },

new DynamicProxyHandler(real));

consumer(proxy);

}

}

/* Output:

doSomething

somethingElse bonobo

**** proxy: class $Proxy0, method: public abstract void

Interface.doSomething(), args: null

doSomething

**** proxy: class $Proxy0, method: public abstract void

Interface.somethingElse(java.lang.String), args:

[Ljava.lang.Object;@6bc7c054

bonobo

somethingElse bonobo

*/

You create a dynamic proxy by calling the static method

Proxy.newProxyInstance(), which requires a class loader (you

can generally just hand it a class loader from an object that has already



been loaded), a list of interfaces (not classes or abstract classes) you

wish the proxy to implement, and an implementation of the interface

InvocationHandler. The dynamic proxy will redirect all calls to

the invocation handler, so the constructor for the invocation handler is

usually given the reference to the “real” object so it can forward

requests once it performs its intermediary task.

The invoke() method is handed the proxy object, in case you must

distinguish where the request came from—but in many cases you

won’t care. However, be careful when calling methods on the proxy

inside invoke(), because calls through the interface are redirected

through the proxy.

In general you perform the proxied operation, then use

Method.invoke() to forward the request to the proxied object,

passing the necessary arguments. This can initially seem limiting, as if

you can only perform generic operations. However, you can filter for

certain method calls, while passing others through:

// typeinfo/SelectingMethods.java

// Looking for particular methods in a dynamic proxy

import java.lang.reflect.*;

class MethodSelector implements InvocationHandler {



private Object proxied;

MethodSelector(Object proxied) {

this.proxied = proxied;

}

@Override

public Object

invoke(Object proxy, Method method, Object[] args)

throws Throwable {

if(method.getName().equals("interesting"))

System.out.println(

"Proxy detected the interesting method");

return method.invoke(proxied, args);

}

}

interface SomeMethods {

void boring1();

void boring2();

void interesting(String arg);

void boring3();

}



class Implementation implements SomeMethods {

@Override

public void boring1() {

System.out.println("boring1");

}

@Override

public void boring2() {

System.out.println("boring2");

}

@Override

public void interesting(String arg) {

System.out.println("interesting " + arg);

}

@Override

public void boring3() {

System.out.println("boring3");

}

}

class SelectingMethods {

public static void main(String[] args) {



SomeMethods proxy =

(SomeMethods)Proxy.newProxyInstance(

SomeMethods.class.getClassLoader(),

new Class[]{ SomeMethods.class },

new MethodSelector(new Implementation()));

proxy.boring1();

proxy.boring2();

proxy.interesting("bonobo");

proxy.boring3();

}

}

/* Output:

boring1

boring2

Proxy detected the interesting method

interesting bonobo

boring3

*/



Here, we are just looking for method names, but you can also look for

other aspects of the method signature, and you can even search for

particular argument values.

The dynamic proxy is not a tool that you’ll use every day, but it can

solve certain types of problems very nicely. You can learn more about

Proxy and other design patterns in Design Patterns, by Erich Gamma

et al. (Addison-Wesley, 1995), and in the Patterns chapter.

Using Optional

When you use the built-in null to indicate the absence of an object,

to be completely safe you must test a reference for null-ness every

time you use it. This can get very tedious and produce ponderous code.

The problem is that null has no behavior of its own except for

producing a NullPointerException if you try to do anything

with it. java.util.Optional, which you first saw in the

Functional Programming chapter, creates a thin proxy to shield potentially
null values. Optional objects prevent your code from



directly causing a NullPointerException.

Although Optionals were introduced in Java 8 to support

Streams, they are a general-purpose tool. We will demonstrate that

in this section by applying them to ordinary classes. The topic is

included in this chapter because it involves run-time detection.

In practice it doesn’t make sense to use Optionals everywhere—

sometimes checking for null is fine, and sometimes you can

reasonably assume you won’t encounter null, and sometimes even

detecting aberrations via NullPointerException is acceptable.

The place where Optionals seem most useful is “closer to the data,”

with objects that represent entities in the problem space. As a simple

example, many systems have a Person class, and there are situations

in the code where you don’t have an actual person (or perhaps you do,

but you don’t have all the information about that person yet), so

traditionally you’d use a null reference and test for it. Instead, we

can use Optional:

// typeinfo/Person.java

// Using Optional with regular classes

import onjava.*;

import java.util.*;



class Person {

public final Optional<String> first;

public final Optional<String> last;

public final Optional<String> address;

// etc.

public final boolean empty;

Person(String first, String last, String address) {

this.first = Optional.ofNullable(first);

this.last = Optional.ofNullable(last);

this.address = Optional.ofNullable(address);

empty = ! this.first.isPresent()

&& ! this.last.isPresent()

&& ! this.address.isPresent();

}

Person(String first, String last) {

this(first, last, null);

}

Person(String last) { this(null, last, null); }

Person() { this(null, null, null); }

@Override



public String toString() {

if(empty)

return "<Empty>";

return (first.orElse("") +

" " + last.orElse("") +

" " + address.orElse("")).trim();

}

public static void main(String[] args) {

System.out.println(new Person());

System.out.println(new Person("Smith"));

System.out.println(new Person("Bob", "Smith"));

System.out.println(new Person("Bob", "Smith",

"11 Degree Lane, Frostbite Falls, MN"));

}

}

/* Output:

<Empty>

Smith

Bob Smith

Bob Smith 11 Degree Lane, Frostbite Falls, MN



*/

The design of Person is sometimes called a “data-transfer object.”

Notice that all the fields are public and final, so there are no

getter and setter methods. That is, Person is immutable—you can

only set the values with the constructor, then read those values, but

you can’t modify them (Strings themselves are inherently

immutable, so you can’t modify the contents of the Strings nor can

you re-assign to the fields). To change a Person, you can only replace

it with a new Person object. The empty field is set during

construction to easily check to see whether this Person represents an

empty object.

Anyone using a Person is forced to use the Optional interface

when accessing the String fields, and so cannot accidentally trigger

a NullPointerException.

Now suppose you’ve been given a big pile of venture funding for your

Amazing Idea. You’re ready to staff up, but while you’re waiting for

positions to be filled, you can use Person Optionals as

placeholders for each Position:

// typeinfo/Position.java

import java.util.*;



class EmptyTitleException extends RuntimeException {}

class Position {

private String title;

private Person person;

Position(String jobTitle, Person employee) {

setTitle(jobTitle);

setPerson(employee);

}

Position(String jobTitle) {

this(jobTitle, null);

}

public String getTitle() { return title; }

public void setTitle(String newTitle) {

// Throws EmptyTitleException if newTitle is null:

title = Optional.ofNullable(newTitle)

.orElseThrow(EmptyTitleException::new);

}

public Person getPerson() { return person; }

public void setPerson(Person newPerson) {

// Uses empty Person if newPerson is null:



person = Optional.ofNullable(newPerson)

.orElse(new Person());

}

@Override

public String toString() {

return "Position: " + title +

", Employee: " + person;

}

public static void main(String[] args) {

System.out.println(new Position("CEO"));

System.out.println(new Position("Programmer",

new Person("Arthur", "Fonzarelli")));

try {

new Position(null);

} catch(Exception e) {

System.out.println("caught " + e);

}

}

}

/* Output:



Position: CEO, Employee: <Empty>

Position: Programmer, Employee: Arthur Fonzarelli

caught EmptyTitleException

*/

This uses Optional in a different way. Notice that title and

person are ordinary fields, unprotected by Optional. However,

the only way to modify those fields is via setTitle() and

setPerson(), both of which use the functionality of Optional to

impose restrictions on the fields.

We want to guarantee that title is never set to null. In

setTitle(), we could check the newTitle argument ourselves.

But a big part of functional programming is the ability to reuse tried-

and-tested functionality, often even if it’s small, to reduce the kinds of

little programming errors you make when you code everything by

hand. So we take newTitle and turn it into an Optional using

ofNullable(), which means that if it’s null it will produce an

Optional.empty(). We then immediately take that Optional

result and apply orElseThrow(), so if newTitle was null,

you’ll get an exception. We never store the field as an Optional, but

we apply the Optional functionality to enforce our desired



constraint on the title field.

EmptyTitleException is a RuntimeException because it

represents a programmer error. You still get an exception with this

scheme, but you get it at the point the error is made—when the null

is passed to setTitle()—and not at some other point in the

program which will force you to debug until you find the problem.

Also, the use of EmptyTitleException further helps localize the

bug.

The person field has a different constraint: if you try to set it to

null, it should automatically get set to an empty Person object instead. We
use the same approach as before of turning it into an

Option, but in this case when we extract the result we use

orElse(new Person()) to insert the empty Person for the

null.

With Position, we don’t make an “empty” flag or method because

the existence of an empty Person in the person field implies an

available Position. Later, you might discover you must add

something explicit here, but YAGNI ( You Aren’t Going to Need It)2

says to “try the simplest thing that could possibly work” for your first

draft, and to wait until some aspect of the program requires you to add

in the extra feature, rather than assuming it’s necessary.



Notice that the Staff class blithely ignores the existence of the

Optionals, although you know they are there, protecting you from

NullPointerExceptions:

// typeinfo/Staff.java

import java.util.*;

public class Staff extends ArrayList<Position> {

public void add(String title, Person person) {

add(new Position(title, person));

}

public void add(String... titles) {

for(String title : titles)

add(new Position(title));

}

public Staff(String... titles) { add(titles); }

public boolean positionAvailable(String title) {

for(Position position : this)

if(position.getTitle().equals(title) &&

position.getPerson().empty)

return true;

return false;



}

public void fillPosition(String title, Person hire) {

for(Position position : this)

if(position.getTitle().equals(title) &&

position.getPerson().empty) {

position.setPerson(hire);

return;

}

throw new RuntimeException(

"Position " + title + " not available");

}

public static void main(String[] args) {

Staff staff = new Staff("President", "CTO",

"Marketing Manager", "Product Manager",

"Project Lead", "Software Engineer",

"Software Engineer", "Software Engineer",

"Software Engineer", "Test Engineer",

"Technical Writer");

staff.fillPosition("President",

new Person("Me", "Last", "The Top, Lonely At"));



staff.fillPosition("Project Lead",

new Person("Janet", "Planner", "The Burbs"));

if(staff.positionAvailable("Software Engineer"))

staff.fillPosition("Software Engineer",

new Person(

"Bob", "Coder", "Bright Light City"));

System.out.println(staff);

}

}

/* Output:

[Position: President, Employee: Me Last The Top, Lonely

At, Position: CTO, Employee: <Empty>, Position:

Marketing Manager, Employee: <Empty>, Position: Product

Manager, Employee: <Empty>, Position: Project Lead,

Employee: Janet Planner The Burbs, Position: Software

Engineer, Employee: Bob Coder Bright Light City,

Position: Software Engineer, Employee: <Empty>,

Position: Software Engineer, Employee: <Empty>,

Position: Software Engineer, Employee: <Empty>,

Position: Test Engineer, Employee: <Empty>, Position:



Technical Writer, Employee: <Empty>]

*/

Notice you might still need to test for Optionals in some places,

which is not that different from checking for null, but in other places

(such as toString() conversions, in this case), you don’t perform

extra tests; you can just assume that all object references are valid.

Tagging Interfaces

Sometimes it’s more convenient to use a tagging interface to indicate

null-ness. A tagging interface has no elements; you just use its name as

a tag:

// onjava/Null.java

package onjava;

public interface Null {}

If you work with interfaces instead of concrete classes, you can use a

DynamicProxy to automatically create the Nulls. Suppose we have

a Robot interface that defines a name, model, and a

List<Operation> that describes what the Robot does:



// typeinfo/Robot.java

import onjava.*;

import java.util.*;

public interface Robot {

String name();

String model();

List<Operation> operations();

static void test(Robot r) {

if(r instanceof Null)

System.out.println("[Null Robot]");

System.out.println("Robot name: " + r.name());

System.out.println("Robot model: " + r.model());

for(Operation operation : r.operations()) {

System.out.println(operation.description.get());

operation.command.run();

}

}

}

You access a Robots services by calling operations(). Robot

also incorporates a static method to perform tests.



Operation contains a description and a command (it’s a type of

Command pattern). These are defined as references to functional

interfaces so you can pass lambda expressions or method references to

the Operation constructor:

// typeinfo/Operation.java

import java.util.function.*;

public class Operation {

public final Supplier<String> description;

public final Runnable command;

public

Operation(Supplier<String> descr, Runnable cmd) {

description = descr;

command = cmd;

}

}

We can now create a Robot that removes snow:

// typeinfo/SnowRemovalRobot.java

import java.util.*;

public class SnowRemovalRobot implements Robot {

private String name;



public SnowRemovalRobot(String name) {

this.name = name;

}

@Override

public String name() { return name; }

@Override

public String model() { return "SnowBot Series 11"; }

private List<Operation> ops = Arrays.asList(

new Operation(

() -> name + " can shovel snow",

() -> System.out.println(

name + " shoveling snow")),

new Operation(

() -> name + " can chip ice",

() -> System.out.println(name + " chipping ice")),

new Operation(

() -> name + " can clear the roof",

() -> System.out.println(

name + " clearing roof")));

public List<Operation> operations() { return ops; }



public static void main(String[] args) {

Robot.test(new SnowRemovalRobot("Slusher"));

}

}

/* Output:

Robot name: Slusher

Robot model: SnowBot Series 11

Slusher can shovel snow

Slusher shoveling snow

Slusher can chip ice

Slusher chipping ice

Slusher can clear the roof

Slusher clearing roof

*/

There will presumably be many different types of Robot, and we’d

like each Null to do something special for each Robot type—here,

incorporate information about the exact type of Robot the Null

represents. This information is captured by the dynamic proxy:

// typeinfo/NullRobot.java

// Using a dynamic proxy to create an Optional



import java.lang.reflect.*;

import java.util.*;

import java.util.stream.*;

import onjava.*;

class NullRobotProxyHandler

implements InvocationHandler {

private String nullName;

private Robot proxied = new NRobot();

NullRobotProxyHandler(Class<? extends Robot> type) {

nullName = type.getSimpleName() + " NullRobot";

}

private class NRobot implements Null, Robot {

@Override

public String name() { return nullName; }

@Override

public String model() { return nullName; }

@Override

public List<Operation> operations() {

return Collections.emptyList();

}



}

@Override

public Object

invoke(Object proxy, Method method, Object[] args)

throws Throwable {

return method.invoke(proxied, args);

}

}

public class NullRobot {

public static Robot

newNullRobot(Class<? extends Robot> type) {

return (Robot)Proxy.newProxyInstance(

NullRobot.class.getClassLoader(),

new Class[]{ Null.class, Robot.class },

new NullRobotProxyHandler(type));

}

public static void main(String[] args) {

Stream.of(

new SnowRemovalRobot("SnowBee"),

newNullRobot(SnowRemovalRobot.class)



).forEach(Robot::test);

}

}

/* Output:

Robot name: SnowBee

Robot model: SnowBot Series 11

SnowBee can shovel snow

SnowBee shoveling snow

SnowBee can chip ice

SnowBee chipping ice

SnowBee can clear the roof

SnowBee clearing roof

[Null Robot]



Robot name: SnowRemovalRobot NullRobot

Robot model: SnowRemovalRobot NullRobot

*/

Whenever you need a null Robot object, you just call

newNullRobot(), passing your desired type of Robot, and it

returns a proxy. The proxy fulfills the requirements of the Robot and

Null interfaces, and provides the specific name of the type it proxies.

Mock Objects & Stubs

Logical variations of Optional are Mock Objects and Stubs. Both of

these are proxies for the “real” object used in the finished program.

Both Mock Object and Stub pretend to be real objects that deliver real

information, rather than a hiding objects including potential nulls,

as Optional does.

The distinction between Mock Object and Stub is one of degree. Mock

Objects tend to be lightweight and self-testing, and usually many of

them are created to handle various testing situations. Stubs just return

stubbed data, are typically heavyweight and are often reused between

tests. Stubs can be configured to change depending on how they are

called. So a Stub is a sophisticated object that does lots of things,

whereas you usually create lots of small, simple Mock Objects if you



must do many things.

Interfaces and Type

Information

An important goal of the interface keyword is to allow the

programmer to isolate components, and thus reduce coupling. If you

write to interfaces, you accomplish this, but with type information it’s

possible to get around that—interfaces are not airtight guarantees of

decoupling. If we start with an interface:

// typeinfo/interfacea/A.java

package typeinfo.interfacea;

public interface A {

void f();

}

This interface is then implemented, and here’s how you sneak around

to the actual implementation type:

// typeinfo/InterfaceViolation.java

// Sneaking around an interface

import typeinfo.interfacea.*;

class B implements A {

public void f() {}



public void g() {}

}

public class InterfaceViolation {

public static void main(String[] args) {

A a = new B();

a.f();

// a.g(); // Compile error

System.out.println(a.getClass().getName());

if(a instanceof B) {

B b = (B)a;

b.g();

}

}

}

/* Output:

B

*/

Using RTTI, we discover that a is implemented as a B. By casting to B, we
can call a method that’s not in A.

This is perfectly legal and acceptable, but you might not want client

programmers to do this, because it gives them an opportunity to



couple more closely to your code than you’d like. That is, you might

think the interface keyword is protecting you, but it isn’t, and the

fact that you’re using B to implement A here is effectively a matter of

public record. 3

One solution is to simply say that programmers are on their own if

they decide to use the actual class rather than the interface. This is

probably reasonable in many cases, but if “probably” isn’t enough, you

might apply more stringent controls.

The easiest approach is to use package access for the implementation,

so clients outside the package cannot see it:

// typeinfo/packageaccess/HiddenC.java

package typeinfo.packageaccess;

import typeinfo.interfacea.*;

class C implements A {

@Override

public void f() {

System.out.println("public C.f()");

}

public void g() {

System.out.println("public C.g()");



}

void u() {

System.out.println("package C.u()");

}

protected void v() {

System.out.println("protected C.v()");

}

private void w() {

System.out.println("private C.w()");

}

}

public class HiddenC {

public static A makeA() { return new C(); }

}

The only public part of this package, HiddenC, produces an A

interface when you call it. Even if you were to return a C from

makeA(), you still couldn’t use anything but an A from outside the

package, since you cannot name C outside the package.

Now if you try to downcast to C, you can’t do it because there is no C

type available outside the package:



// typeinfo/HiddenImplementation.java

// Sneaking around package hiding

import typeinfo.interfacea.*;

import typeinfo.packageaccess.*;

import java.lang.reflect.*;

public class HiddenImplementation {

public static void

main(String[] args) throws Exception {

A a = HiddenC.makeA();

a.f();

System.out.println(a.getClass().getName());

// Compile error: cannot find symbol 'C':

/* if(a instanceof C) {

C c = (C)a;

c.g();

} */

// Oops! Reflection still allows us to call g():

callHiddenMethod(a, "g");

// And even less accessible methods!

callHiddenMethod(a, "u");



callHiddenMethod(a, "v");

callHiddenMethod(a, "w");

}

static void

callHiddenMethod(Object a, String methodName)

throws Exception {

Method g =

a.getClass().getDeclaredMethod(methodName);

g.setAccessible(true);

g.invoke(a);

}

}

/* Output:

public C.f()

typeinfo.packageaccess.C

public C.g()

package C.u()

protected C.v()

private C.w()

*/



It’s still possible to reach in and call all methods using reflection, even

private methods! If you know the name of the method, you can call

setAccessible(true) on the Method object to make it callable,

as seen in callHiddenMethod().

You might think you can prevent this by only distributing compiled

code, but that’s no solution. All you must do is run javap, which is

the decompiler that comes with the JDK. Here’s the command line:

javap -private C

The -private flag indicates that all members should be displayed,

even private ones. Here’s the output:

class typeinfo.packageaccess.C extends

java.lang.Object implements typeinfo.interfacea.A {

typeinfo.packageaccess.C();

public void f();

public void g();

void u();

protected void v();

private void w();

}

So anyone can get the names and signatures of your most private



methods, and call them.

What if you implement the interface as a private inner class? Here’s

what it looks like:

// typeinfo/InnerImplementation.java

// Private inner classes can't hide from reflection

import typeinfo.interfacea.*;

class InnerA {

private static class C implements A {

public void f() {

System.out.println("public C.f()");

}

public void g() {

System.out.println("public C.g()");

}

void u() {

System.out.println("package C.u()");

}

protected void v() {

System.out.println("protected C.v()");

}



private void w() {

System.out.println("private C.w()");

}

}

public static A makeA() { return new C(); }

}

public class InnerImplementation {

public static void

main(String[] args) throws Exception {

A a = InnerA.makeA();

a.f();

System.out.println(a.getClass().getName());

// Reflection still gets into the private class:

HiddenImplementation.callHiddenMethod(a, "g");

HiddenImplementation.callHiddenMethod(a, "u");

HiddenImplementation.callHiddenMethod(a, "v");

HiddenImplementation.callHiddenMethod(a, "w");

}

}

/* Output:



public C.f()

InnerA$C

public C.g()

package C.u()

protected C.v()

private C.w()

*/

That didn’t hide anything from reflection. What about an anonymous

class?

// typeinfo/AnonymousImplementation.java

// Anonymous inner classes can't hide from reflection

import typeinfo.interfacea.*;

class AnonymousA {

public static A makeA() {

return new A() {

public void f() {

System.out.println("public C.f()");

}

public void g() {

System.out.println("public C.g()");



}

void u() {

System.out.println("package C.u()");

}

protected void v() {

System.out.println("protected C.v()");

}

private void w() {

System.out.println("private C.w()");

}

};

}

}

public class AnonymousImplementation {

public static void

main(String[] args) throws Exception {

A a = AnonymousA.makeA();

a.f();

System.out.println(a.getClass().getName());

// Reflection still gets into the anonymous class:



HiddenImplementation.callHiddenMethod(a, "g");

HiddenImplementation.callHiddenMethod(a, "u");

HiddenImplementation.callHiddenMethod(a, "v");

HiddenImplementation.callHiddenMethod(a, "w");

}

}

/* Output:

public C.f()

AnonymousA$1

public C.g()

package C.u()

protected C.v()

private C.w()

*/

There doesn’t seem to be any way to prevent reflection from reaching

in and calling methods that have non-public access. This is also true

for fields, even private fields:

// typeinfo/ModifyingPrivateFields.java

import java.lang.reflect.*;

class WithPrivateFinalField {



private int i = 1;

private final String s = "I'm totally safe";

private String s2 = "Am I safe?";

@Override

public String toString() {

return "i = " + i + ", " + s + ", " + s2;

}

}

public class ModifyingPrivateFields {

public static void

main(String[] args) throws Exception {

WithPrivateFinalField pf =

new WithPrivateFinalField();

System.out.println(pf);

Field f = pf.getClass().getDeclaredField("i");

f.setAccessible(true);

System.out.println(

"f.getInt(pf): " + f.getInt(pf));

f.setInt(pf, 47);

System.out.println(pf);



f = pf.getClass().getDeclaredField("s");

f.setAccessible(true);

System.out.println("f.get(pf): " + f.get(pf));

f.set(pf, "No, you're not!");

System.out.println(pf);

f = pf.getClass().getDeclaredField("s2");

f.setAccessible(true);

System.out.println("f.get(pf): " + f.get(pf));

f.set(pf, "No, you're not!");

System.out.println(pf);

}

}

/* Output:

i = 1, I'm totally safe, Am I safe?

f.getInt(pf): 1

i = 47, I'm totally safe, Am I safe?

f.get(pf): I'm totally safe

i = 47, I'm totally safe, Am I safe?

f.get(pf): Am I safe?

i = 47, I'm totally safe, No, you're not!



*/

However, final fields are actually safe from change. The runtime

system accepts any attempts at change without complaint, but nothing

actually happens.

In general, all these access violations are not the worst thing in the

world. If someone uses such a technique to call methods you marked

with private or package access (meaning, they should not be

called), then it’s difficult for them to complain if you change some

aspect of those methods. On the other hand, the fact you always have a

back door into a class can allow you to solve certain types of problems

that could otherwise be difficult or impossible, and the benefits of

reflection in general are undeniable.

Programmers often become overconfident about the access control

afforded by the language, going so far as to believe that Java is

somehow superior in its safety than other languages that provide

(apparently) less stringent access control4. As you can see, it’s not.



Summary

RTTI discovers type information from an anonymous base-class

reference. Thus, it’s ripe for misuse by the novice, since it might make

sense before polymorphic method calls do. For people coming from a

procedural background, it’s difficult not to organize programs into sets

of switch statements. You can accomplish this with RTTI and thus

lose the important value of polymorphism in code development and

maintenance. The intent of OO programming is to use polymorphic

method calls everywhere you can, and RTTI only when you must.

However, using polymorphic method calls as they are intended

requires you have control of the base-class definition, because at some

point in the extension of your program you might discover that the

base class doesn’t include the method you need. If the base class

comes from someone else’s library, one solution is RTTI: You can

inherit a new type and add your extra method. Elsewhere in the code

you can detect your particular type and call that special method. This

doesn’t destroy the polymorphism and extensibility of the program,

because adding a new type will not require you to hunt for switch

statements in your program. However, when you add code that

requires your new feature, you must use RTTI to detect your particular



type.

Putting a feature in a base class might mean that, for the benefit of one

particular class, the interface becomes less sensible. For example,

consider a class hierarchy representing musical instruments. Suppose

you want to clear the spit valves of all the appropriate instruments in

your orchestra. One option is to put a clearSpitValve() method

in the base class Instrument, but this is confusing because it

implies that Percussion, Stringed and Electronic

instruments also have spit valves. RTTI provides a reasonable solution

because you can place the method in the specific class where it’s

appropriate (Wind, in this case). At the same time, you might discover

there’s a more sensible solution—here, a prepareInstrument()

method in the base class. However, you might not see such a solution

when you’re first solving the problem and could mistakenly assume

you must use RTTI.

Finally, RTTI will sometimes solve efficiency problems. Suppose your

code uses polymorphism, but one of your objects reacts to this

general-purpose code in a horribly inefficient way. You can pick out

that type using RTTI and write case-specific code to improve the

efficiency. Be wary, however, of programming for efficiency too soon.



It’s a seductive trap. It’s best to get the program working first, then

decide if it’s running fast enough, and only then should you attack

efficiency issues—with a profiler.

We’ve also seen that reflection opens up a new world of programming

possibilities by allowing a much more dynamic style of programming.

There are some for whom this dynamic nature of reflection is

disturbing. The fact you can do things that can only be checked at run

time and reported with exceptions seems, to a mind grown

comfortable with the security of static type checking, to be the wrong

direction. Some people go so far as to say that introducing the

possibility of a runtime exception is a clear indicator that such code

should be avoided. I find this sense of security is an illusion—there are

always things that can happen at run time and throw exceptions, even

in a program that contains no try blocks or exception specifications.

Instead, I think the existence of a consistent error-reporting model

empowers us to write dynamic code using reflection. It’s worth trying

to write code that can be statically checked … when you can. But I

believe that dynamic code is one of the important facilities that

separate Java from languages like C++.

1. Especially in the past. However, great improvements in the HTML



Java documentation makes it easier to see base-class methods. ↩

2. A tenet of Extreme Programming (XP), as is “Try the simplest

thing that could possibly work.” ↩

3. The most famous case of this is the Windows operating system,

which had a published API you were supposed to write to, and an

unpublished but visible set of functions you could discover and

call. To solve problems, programmers used the hidden API

functions, which forced Microsoft to maintain them as if they

were part of the public API. This became a source of great cost

and effort for the company. ↩

4. In Python, for example, you put a double underscore __ in front

of any element you want hidden, and the runtime complains if

you try to access it outside the class or package↩

Generics

Ordinary classes and methods work with

specific types: either primitives or class

types. If you write code to use across

more types, this rigidity can be



overconstraining.

Polymorphism is an object-oriented generalization tool. You write a

method that takes a base class object as an argument, then use that

method with any class derived from the base class—including classes

that haven’t been created yet. Now your method is more general, and

useful in more places. The same is true within classes—anyplace you

use a specific type, a base type provides more flexibility. Anything but

a final class (or a class with all private constructors) can be

extended, so this flexibility is automatic much of the time.

A single hierarchy can be too limiting because you must inherit from

that hierarchy to produce an object that fits your method argument. If

a method argument is an interface instead of a class, the limitations

are loosened to include anything that implements the interface. This

gives the client programmer the option of implementing an interface

in combination with an existing class—that is, to adapt an existing

class to fit your method. Interfaces cut across class hierarchies, as long

as you have the option to implement those interfaces to fit.

Sometimes even an interface is too restrictive. An interface still

requires that your code work with that particular interface. You can

write even more general code if you can say that your code works with



“some unspecified type,” rather than a specific interface or class.

This is the concept of generics, one of the more significant changes in

Java 5. Generics produce parameterized types, so you can create

components (most notably collections) that are easy to use with

multiple types. The term “generic” means “pertaining or appropriate

to large groups of classes.” The original intent of generics in

programming languages was to allow the programmer the greatest

amount of expressiveness possible when writing classes or methods,

by loosening type constraints on those classes or methods. As you will

see in this chapter, the Java implementation of generics is not that

broad—indeed, you might question whether the term “generic” is even

appropriate for this feature.

If you’ve never seen any kind of parameterized type mechanism

before, Java generics probably seem like a convenient addition to the

language. When you create an instance of a parameterized type, casts

are automatic and type correctness is ensured at compile time. This is

an improvement.

However, if you’ve had experience with parameterized types, for

example in C++, you’ll find you can’t do everything you might expect

when using Java generics. While using someone else’s generic type is



usually easy, creating your own produces numerous surprises.

This is not to say that Java generics are useless. In many cases they

make code more straightforward and even elegant. But if you’re

coming from a language that has implemented a more pure version of

generics, you might be frustrated. In this chapter, we will examine

strengths and limitations of Java generics. I try to explain how the

feature came to be as it is, so you can use generics more effectively.1

Comparison with C++

The Java designers stated that much of the inspiration for the

language came as a reaction to C++. Despite this, it is possible to teach

Java largely without reference to C++.

Generics require comparison with C++ for two reasons. First,

understanding certain aspects of C++ templates (the main inspiration



for generics, including the basic syntax) illuminates the foundations of

the concept, as well as—and this is very important—the limitations of

Java generics and why those limitations exist. The ultimate goal is a

clear understanding of the boundaries, making you a more powerful

programmer. Knowing what you can’t do, you make better use of what

you can do (partly because you don’t waste time bumping against

walls).

The second reason is there is significant misunderstanding in the Java

community about C++ templates, and this misunderstanding can

further confuse you about the intent of generics.

Thus, I introduce a few C++ template examples in this chapter, but

only when they improve your depth of understanding.

Simple Generics

One of the most compelling initial motivations for generics is to create

collection classes, which you saw in the Collections chapter. A collection is
an object that holds other objects, while you’re working

with them. This is also true of arrays, but collections tend to be more

flexible and have different characteristics than simple arrays. Virtually

all programs require you hold a group of objects while you use them,

so collections are one of the most reusable of class libraries.



Let’s look at a class that holds a single object. The class can specify the

exact type of the object, like this:

// generics/Holder1.java

class Automobile {}

public class Holder1 {

private Automobile a;

public Holder1(Automobile a) { this.a = a; }

Automobile get() { return a; }

}

This is not a very reusable tool, since it can’t be used to hold anything

else. We would prefer not to write a new one of these for every type we

encounter.

Before Java 5, we would simply make it hold an Object:

// generics/ObjectHolder.java

public class ObjectHolder {

private Object a;

public ObjectHolder(Object a) { this.a = a; }

public void set(Object a) { this.a = a; }

public Object get() { return a; }

public static void main(String[] args) {



ObjectHolder h2 =

new ObjectHolder(new Automobile());

Automobile a = (Automobile)h2.get();

h2.set("Not an Automobile");

String s = (String)h2.get();

h2.set(1); // Autoboxes to Integer

Integer x = (Integer)h2.get();

}

}

Now an ObjectHolder can hold anything—and in this example, a

single ObjectHolder holds three different types of objects.

In rare cases, you’ll want a collection to hold multiple types of objects,

but typically you only put one type of object into a particular collection
object. One of the primary motivations for generics is to specify the

type of object a collection holds, and to enforce that specification via

the compiler.

So instead of Object, we’d like to give a type placeholder, to be

decided at a later time. To do this, you put a type parameter inside

angle brackets after the class name, then substitute an actual type

when you use the class. For the “holder” class, it looks like this, where

T is the type parameter:



// generics/GenericHolder.java

public class GenericHolder<T> {

private T a;

public GenericHolder() {}

public void set(T a) { this.a = a; }

public T get() { return a; }

public static void main(String[] args) {

GenericHolder<Automobile> h3 =

new GenericHolder<Automobile>();

h3.set(new Automobile()); // type checked

Automobile a = h3.get(); // No cast needed

//- h3.set("Not an Automobile"); // Error

//- h3.set(1); // Error

}

}

When creating a GenericHolder, you specify the type it holds

using the same angle-bracket syntax, as you see in main(). You are

only allowed to put objects of that type (or a subtype, since the

substitution principle still works with generics) into the holder. When

you call get() to produce a value, it is automatically the right type.



That’s the core idea of Java generics: You tell it what type to use, and it

takes care of the details.

You’ll note that the definition of h3 is rather wordy and redundant. On

the left side of the equals sign, you say

GenericHolder<Automobile> , then you say the same thing

again on the right side of the equals sign. When Java 5 came out, this

noise was explained away as “necessary,” but by Java 7 the designers

had fixed the problem (and this new simplicity then became a touted

feature). So now you can use the simpler form:

// generics/Diamond.java

class Bob {}

public class Diamond<T> {

public static void main(String[] args) {

GenericHolder<Bob> h3 = new GenericHolder<>();

h3.set(new Bob());

}

}



Notice that the right-hand side of the definition of h3 now uses the

empty “diamond” syntax rather than duplicating the type information

from the left. You’ll see this used throughout the rest of the book.

In general, you can treat generics as if they are any other type—they

just happen to have type parameters. To use a generic definition, you

just name it along with its type argument list.

A Tuple Library

You’ll often return multiple objects from a method call. The return

statement only returns a single object, so the solution is to create an

object that holds multiple objects, and return that object. You can

write a special class every time you encounter the situation, but with

generics it’s possible to solve the problem once and save yourself the

effort in the future. At the same time, you are ensuring compile-time

type safety.

This concept is called a tuple, and it is a group of objects wrapped together
into a single object. The recipient of the object is allowed to

read the elements but not put new ones in. (This concept is also called

a Data Transfer Object or Messenger.)

Tuples can typically be any length, and each object in the tuple can be

of a different type. However, we specify the type of each object and

ensure that, when the recipient reads the value, they get the right type.



To deal with the problem of multiple lengths, we create multiple

different tuples. Here’s one that holds two objects:

// onjava/Tuple2.java

package onjava;

public class Tuple2<A, B> {

public final A a1;

public final B a2;

public Tuple2(A a, B b) { a1 = a; a2 = b; }

public String rep() { return a1 + ", " + a2; }

@Override

public String toString() {

return "(" + rep() + ")";

}

}

The constructor captures the object to be stored. The tuple implicitly

keeps its elements in order. Notice that we use the fact that an

identifier can start with an underscore to create numbered identifiers.

Upon first reading, you might think this violates common safety

principles of Java programming. Shouldn’t a1 and a2 be private,

and only accessed with methods named getFirst() and



getSecond()? Consider the “safety” that produces: Clients could

still read the objects and do whatever they want with them, but they

could not assign a1 or a2 to anything else. The final declaration

buys you the same safety, but the above form is shorter and simpler.

Another design observation is that you might want to allow a client

programmer to point a1 or a2 to another object. However, it’s safer to leave it
in the above form, and just force the user to create a new

Tuple2 if they want one that has different elements.

The longer-length tuples can be created with inheritance. Adding more

type parameters is a simple matter:

// onjava/Tuple3.java

package onjava;

public class Tuple3<A, B, C> extends Tuple2<A, B> {

public final C a3;

public Tuple3(A a, B b, C c) {

super(a, b);

a3 = c;

}

@Override

public String rep() {

return super.rep() + ", " + a3;



}

}

// onjava/Tuple4.java

package onjava;

public class Tuple4<A, B, C, D>

extends Tuple3<A, B, C> {

public final D a4;

public Tuple4(A a, B b, C c, D d) {

super(a, b, c);

a4 = d;

}

@Override

public String rep() {

return super.rep() + ", " + a4;

}

}

// onjava/Tuple5.java

package onjava;

public class Tuple5<A, B, C, D, E>

extends Tuple4<A, B, C, D> {



public final E a5;

public Tuple5(A a, B b, C c, D d, E e) {

super(a, b, c, d);

a5 = e;

}

@Override

public String rep() {

return super.rep() + ", " + a5;

}

}

For tuple experiments, we’ll define a couple of classes:

// generics/Amphibian.java

public class Amphibian {}

// generics/Vehicle.java

public class Vehicle {}

To use a tuple, you define the appropriate-length tuple as the return

value for your function, then create and return it. Notice the return

type declarations for the method definitions:

// generics/TupleTest.java

import onjava.*;



public class TupleTest {

static Tuple2<String, Integer> f() {

// Autoboxing converts the int to Integer:

return new Tuple2<>("hi", 47);

}

static Tuple3<Amphibian, String, Integer> g() {

return new Tuple3<>(new Amphibian(), "hi", 47);

}

static

Tuple4<Vehicle, Amphibian, String, Integer> h() {

return

new Tuple4<>(

new Vehicle(), new Amphibian(), "hi", 47);

}

static

Tuple5<Vehicle, Amphibian,

String, Integer, Double> k() {



return new

Tuple5<>(

new Vehicle(), new Amphibian(), "hi", 47, 11.1);

}

public static void main(String[] args) {

Tuple2<String, Integer> ttsi = f();

System.out.println(ttsi);

// ttsi.a1 = "there"; // Compile error: final

System.out.println(g());

System.out.println(h());

System.out.println(k());

}

}

/* Output:

(hi, 47)

(Amphibian@1540e19d, hi, 47)

(Vehicle@7f31245a, Amphibian@6d6f6e28, hi, 47)

(Vehicle@330bedb4, Amphibian@2503dbd3, hi, 47, 11.1)

*/

With generics, you can easily create any tuple to return any group of



types, just by writing the expression.

The final specification on the public fields prevents them from

reassignment after construction, as shown in the failure of the

statement ttsi.a1 = "there" .

The new expressions are a little verbose. Later in this chapter you’ll

see how to simplify them using generic methods.

A Stack Class

Let’s look at something slightly more complicated: the traditional

pushdown stack. In the Collections chapter, you saw this implemented using
a LinkedList as the onjava.Stack class. That example

showed that a LinkedList already has the necessary methods to

create a stack. The Stack was constructed by composing one generic

class (Stack<T> ) with another generic class (LinkedList<T> ). In that
example, notice that (with a few differences we look at later) a

generic type is just another type.

Instead of using LinkedList, we can implement our own internal

linked storage mechanism.

// generics/LinkedStack.java

// A stack implemented with an internal linked structure

public class LinkedStack<T> {

private static class Node<U> {



U item;

Node<U> next;

Node() { item = null; next = null; }

Node(U item, Node<U> next) {

this.item = item;

this.next = next;

}

boolean end() {

return item == null && next == null;

}

}

private Node<T> top = new Node<>(); // End sentinel

public void push(T item) {

top = new Node<>(item, top);

}

public T pop() {

T result = top.item;

if(!top.end())

top = top.next;

return result;



}

public static void main(String[] args) {

LinkedStack<String> lss = new LinkedStack<>();

for(String s : "Phasers on stun!".split(" "))

lss.push(s);

String s;

while((s = lss.pop()) != null)

System.out.println(s);

}

}

/* Output:

stun!

on

Phasers

*/

The inner class Node is also generic, and has its own type parameter.

This example makes use of an end sentinel to determine when the



stack is empty. The end sentinel is created when the LinkedStack is

constructed, and each time you call push() a new Node<T> is

created and linked to the previous Node<T> . When you call pop(),

you always return the top.item, then you discard the current

Node<T> and move to the next one—except when you hit the end

sentinel, when you don’t move. That way, if the client keeps calling

pop(), they keep getting null back to indicate the stack is empty.

RandomList

For another example of a holder, suppose you’d like a special type of

list that randomly selects one of its elements each time you call

select(). To build a tool that works with all objects, use generics:

// generics/RandomList.java

import java.util.*;

import java.util.stream.*;

public class RandomList<T> extends ArrayList<T> {

private Random rand = new Random(47);



public T select() {

return get(rand.nextInt(size()));

}

public static void main(String[] args) {

RandomList<String> rs = new RandomList<>();

Arrays.stream(

("The quick brown fox jumped over " +

"the lazy brown dog").split(" "))

.forEach(rs::add);

IntStream.range(0, 11).forEach(i ->

System.out.print(rs.select() + " "));

}

}

/* Output:

brown over fox quick quick dog brown The brown lazy

brown

*/

By because it inherits ArrayList, RandomList has all the baked-

in behaviors from ArrayList. We’ve only added the select()

method.



Generic Interfaces

Generics also work with interfaces. For example, a generator is a class

that creates objects. The generator actually a specialization of the

Factory Method design pattern, but when you ask a generator for new

object, you don’t pass it any arguments, whereas you typically do pass

arguments to a Factory Method. The generator knows how to create

new objects without any extra information.

Typically, a generator just defines one method, the method that

produces new objects. The java.util.function library defines a

generator as Supplier, and the producer method is called get().

The return type of get() is parameterized to T.

To create a Supplier, we’ll need some classes. Here’s a coffee

hierarchy:

// generics/coffee/Coffee.java

package generics.coffee;

public class Coffee {

private static long counter = 0;

private final long id = counter++;

@Override

public String toString() {



return getClass().getSimpleName() + " " + id;

}

}

// generics/coffee/Latte.java

package generics.coffee;

public class Latte extends Coffee {}

// generics/coffee/Mocha.java

package generics.coffee;

public class Mocha extends Coffee {}

// generics/coffee/Cappuccino.java

package generics.coffee;

public class Cappuccino extends Coffee {}

// generics/coffee/Americano.java

package generics.coffee;

public class Americano extends Coffee {}

// generics/coffee/Breve.java

package generics.coffee;

public class Breve extends Coffee {}

Now we can implement a Supplier<Coffee> that produces

random different types of Coffee objects:



// generics/coffee/CoffeeSupplier.java

// {java generics.coffee.CoffeeSupplier}

package generics.coffee;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class CoffeeSupplier

implements Supplier<Coffee>, Iterable<Coffee> {

private Class<?>[] types = { Latte.class, Mocha.class,

Cappuccino.class, Americano.class, Breve.class, };

private static Random rand = new Random(47);

public CoffeeSupplier() {}

// For iteration:

private int size = 0;

public CoffeeSupplier(int sz) { size = sz; }

@Override

public Coffee get() {

try {

return (Coffee)

types[rand.nextInt(types.length)].newInstance();



// Report programmer errors at run time:

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(e);

}

}

class CoffeeIterator implements Iterator<Coffee> {

int count = size;

@Override

public boolean hasNext() { return count > 0; }

@Override

public Coffee next() {

count--;

return CoffeeSupplier.this.get();

}

@Override

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}

}



@Override

public Iterator<Coffee> iterator() {

return new CoffeeIterator();

}

public static void main(String[] args) {

Stream.generate(new CoffeeSupplier())

.limit(5)

.forEach(System.out::println);

for(Coffee c : new CoffeeSupplier(5))

System.out.println(c);

}

}

/* Output:

Americano 0

Latte 1

Americano 2

Mocha 3

Mocha 4

Breve 5

Americano 6



Latte 7

Cappuccino 8

Cappuccino 9

*/

The parameterized Supplier interface ensures that get() returns

the parameter type. CoffeeSupplier also implements the

Iterable interface, so it can be used in a for-in statement. However,

it must know when to stop, and this is provided by the second

constructor.

Here’s a second implementation of Supplier<T> , this time to

produce Fibonacci numbers:

// generics/Fibonacci.java

// Generate a Fibonacci sequence

import java.util.function.*;

import java.util.stream.*;

public class Fibonacci implements Supplier<Integer> {

private int count = 0;

@Override

public Integer get() { return fib(count++); }

private int fib(int n) {



if(n < 2) return 1;

return fib(n-2) + fib(n-1);

}

public static void main(String[] args) {

Stream.generate(new Fibonacci())

.limit(18)

.map(n -> n + " ")

.forEach(System.out::print);

}

}

/* Output:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

2584

*/

Although we are working with ints both inside and outside the class,

the type parameter is Integer. This brings up one of the limitations

of Java generics: You cannot use primitives as type parameters.

However, Java 5 autoboxing and autounboxing converts from

primitive types to wrapper types and back. You see the effect here

because ints are seamlessly used and produced by the class.



We can go one step further and make an Iterable Fibonacci

generator. One option is to reimplement the class and add the

Iterable interface, but you don’t always have control of the original

code, and you don’t rewrite unless you must. Instead, we can create an

Adapter to produce the desired interface—this design pattern was

introduced earlier in the book.

Adapters can be implemented in multiple ways. For example,

inheritance can generate the adapted class:

// generics/IterableFibonacci.java

// Adapt the Fibonacci class to make it Iterable

import java.util.*;

public class IterableFibonacci

extends Fibonacci implements Iterable<Integer> {

private int n;

public IterableFibonacci(int count) { n = count; }

@Override

public Iterator<Integer> iterator() {

return new Iterator<Integer>() {

@Override

public boolean hasNext() { return n > 0; }



@Override

public Integer next() {

n--;

return IterableFibonacci.this.get();

}

@Override

public void remove() { // Not implemented

throw new UnsupportedOperationException();

}

};

}

public static void main(String[] args) {

for(int i : new IterableFibonacci(18))

System.out.print(i + " ");

}

}

/* Output:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

2584

*/



To use IterableFibonacci in a for-in statement, you give the

constructor a boundary so hasNext() can know when to return

false.

Generic Methods

So far we’ve looked at parameterizing entire classes. You can also

parameterize methods within a class. The class itself might or might

not be generic—this is independent of whether you have a generic

method.

A generic method varies the method independently of the class. As a

guideline, use generic methods “whenever you can.” Making a single

method generic rather than the entire class is generally clearer.

If a method is static, it has no access to the generic type parameters

of the class, so if it uses genericity it must be a generic method.

To define a generic method, place the generic parameter list before the

return value, like this:

// generics/GenericMethods.java



public class GenericMethods {

public <T> void f(T x) {

System.out.println(x.getClass().getName());

}

public static void main(String[] args) {

GenericMethods gm = new GenericMethods();

gm.f("");

gm.f(1);

gm.f(1.0);

gm.f(1.0F);

gm.f('c');

gm.f(gm);

}

}

/* Output:

java.lang.String

java.lang.Integer



java.lang.Double

java.lang.Float

java.lang.Character

GenericMethods

*/

The class GenericMethods is not parameterized, although both a

class and its methods can be parameterized at the same time. But here,

only the method f() has a type parameter, indicated by the

parameter list before the method’s return type.

With a generic class, you must specify the type parameters when you

instantiate the class. With a generic method, you don’t usually specify

the parameter types, because the compiler figures that out for you.

This is called type argument inference. So calls to f() look like

normal method calls, and it appears that f() is infinitely overloaded.

It will even take an argument of the type GenericMethods.

For the calls to f() that use primitive types, autoboxing comes into

play, automatically wrapping the primitive types in their associated

objects.

Varargs and Generic Methods

Generic methods and variable argument lists coexist nicely:



// generics/GenericVarargs.java

import java.util.*;

public class GenericVarargs {

@SafeVarargs

public static <T> List<T> makeList(T... args) {

List<T> result = new ArrayList<>();

for(T item : args)

result.add(item);

return result;

}

public static void main(String[] args) {

List<String> ls = makeList("A");

System.out.println(ls);

ls = makeList("A", "B", "C");

System.out.println(ls);

ls = makeList(

"ABCDEFFHIJKLMNOPQRSTUVWXYZ".split(""));



System.out.println(ls);

}

}

/* Output:

[A]

[A, B, C]

[A, B, C, D, E, F, F, H, I, J, K, L, M, N, O, P, Q, R,

S, T, U, V, W, X, Y, Z]

*/

The makeList() method shown here produces the same

functionality as the standard library’s

java.util.Arrays.asList() method.

The @SafeVarargs annotation promises we are not making any

modifications to the variable argument list, which is true because we

only read from it. Without the annotation the compiler can’t know and

issues a warning.

A General-Purpose Supplier

Here’s a class that produces a Supplier for any class that has a no-

arg constructor. To reduce typing, it also includes a generic method to

produce a BasicSupplier:



// onjava/BasicSupplier.java

// Supplier from a class with a no-arg constructor

package onjava;

import java.util.function.*;

public class BasicSupplier<T> implements Supplier<T> {

private Class<T> type;

public BasicSupplier(Class<T> type) {

this.type = type;

}

@Override

public T get() {

try {

// Assumes type is a public class:

return type.newInstance();

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(e);

}

}

// Produce a default Supplier from a type token:



public static <T> Supplier<T> create(Class<T> type) {

return new BasicSupplier<>(type);

}

}

This class provides a basic implementation to produce objects of a

class that:

1. Is public. Because BasicSupplier is in a separate package,

the class in question must have public and not just package

access.

2. Has a no-arg constructor. To create one of these

BasicSupplier objects, you call the create() method and

pass it the type token for the type you want generated. The generic

create() method provides the syntax

BasicSupplier.create(MyType.class) instead of the

more awkward new BasicSupplier<MyType>

(MyType.class).

For example, here’s a simple class that has a no-arg constructor:

// generics/CountedObject.java

public class CountedObject {

private static long counter = 0;



private final long id = counter++;

public long id() { return id; }

@Override

public String toString() {

return "CountedObject " + id;

}

}

The CountedObject class keeps track of how many instances of

itself are created, and reports these via toString().

BasicSupplier easily creates a Supplier for

CountedObject:

// generics/BasicSupplierDemo.java

import onjava.*;

import java.util.stream.*;

public class BasicSupplierDemo {

public static void main(String[] args) {

Stream.generate(

BasicSupplier.create(CountedObject.class))

.limit(5)

.forEach(System.out::println);



}

}

/* Output:

CountedObject 0

CountedObject 1

CountedObject 2

CountedObject 3

CountedObject 4

*/

The generic method reduces the amount of typing necessary to

produce the Supplier object. Java generics force you to pass in the

Class object, so you might as well use it for type inference in the

create() method.

Simplifying Tuple Use

With type argument inference and static imports, we’ll rewrite the

earlier tuples into a more general-purpose library. Here, we create

tuples using an overloaded static method:



// onjava/Tuple.java

// Tuple library using type argument inference

package onjava;

public class Tuple {

public static <A, B> Tuple2<A, B> tuple(A a, B b) {

return new Tuple2<>(a, b);

}

public static <A, B, C> Tuple3<A, B, C>

tuple(A a, B b, C c) {

return new Tuple3<>(a, b, c);

}

public static <A, B, C, D> Tuple4<A, B, C, D>

tuple(A a, B b, C c, D d) {

return new Tuple4<>(a, b, c, d);

}

public static <A, B, C, D, E>

Tuple5<A, B, C, D, E> tuple(A a, B b, C c, D d, E e) {

return new Tuple5<>(a, b, c, d, e);

}

}



We modify TupleTest.java to test Tuple.java:

// generics/TupleTest2.java

import onjava.*;

import static onjava.Tuple.*;

public class TupleTest2 {

static Tuple2<String, Integer> f() {

return tuple("hi", 47);

}

static Tuple2 f2() { return tuple("hi", 47); }

static Tuple3<Amphibian, String, Integer> g() {

return tuple(new Amphibian(), "hi", 47);

}

static

Tuple4<Vehicle, Amphibian, String, Integer> h() {

return tuple(

new Vehicle(), new Amphibian(), "hi", 47);

}

static

Tuple5<Vehicle, Amphibian,

String, Integer, Double> k() {



return tuple(new Vehicle(), new Amphibian(),

"hi", 47, 11.1);

}

public static void main(String[] args) {

Tuple2<String, Integer> ttsi = f();

System.out.println(ttsi);

System.out.println(f2());

System.out.println(g());

System.out.println(h());

System.out.println(k());

}

}

/* Output:

(hi, 47)

(hi, 47)

(Amphibian@14ae5a5, hi, 47)

(Vehicle@135fbaa4, Amphibian@45ee12a7, hi, 47)

(Vehicle@4b67cf4d, Amphibian@7ea987ac, hi, 47, 11.1)

*/

Notice that f() returns a parameterized Tuple2 object, while f2()



returns an unparameterized Tuple2 object. The compiler doesn’t

warn about f2() here because the return value is not used in a

parameterized fashion; in a sense, it is “upcast” to an unparameterized

Tuple2. However, if you were to try to capture the result of f2()

into a parameterized Tuple2, the compiler would issue a warning.

A Set Utility

For another example of generic methods, consider the mathematical

relationships expressed by Sets. These are conveniently defined as

generic methods for use with all different types:

// onjava/Sets.java

package onjava;

import java.util.*;

public class Sets {

public static <T> Set<T> union(Set<T> a, Set<T> b) {

Set<T> result = new HashSet<>(a);

result.addAll(b);

return result;



}

public static <T>

Set<T> intersection(Set<T> a, Set<T> b) {

Set<T> result = new HashSet<>(a);

result.retainAll(b);

return result;

}

// Subtract subset from superset:

public static <T> Set<T>

difference(Set<T> superset, Set<T> subset) {

Set<T> result = new HashSet<>(superset);

result.removeAll(subset);

return result;

}

// Reflexive--everything not in the intersection:

public static

<T> Set<T> complement(Set<T> a, Set<T> b) {

return difference(union(a, b), intersection(a, b));

}

}



The first three methods duplicate the first argument by copying its

references into a new HashSet object, so the argument Sets are not

directly modified. The return value is thus a new Set object.

The four methods represent mathematical set operations: union()

returns a Set containing the combination of the two arguments,

intersection() returns a Set containing the common elements

between the two arguments, difference() performs a subtraction

of the subset elements from the superset, and complement()

returns a Set of all the elements not in the intersection. As part of a

simple example showing the effects of these methods, here’s an enum

containing different names of watercolors:

// generics/watercolors/Watercolors.java

package generics.watercolors;

public enum Watercolors {

ZINC, LEMON_YELLOW, MEDIUM_YELLOW, DEEP_YELLOW,

ORANGE, BRILLIANT_RED, CRIMSON, MAGENTA,

ROSE_MADDER, VIOLET, CERULEAN_BLUE_HUE,

PHTHALO_BLUE, ULTRAMARINE, COBALT_BLUE_HUE,

PERMANENT_GREEN, VIRIDIAN_HUE, SAP_GREEN,

YELLOW_OCHRE, BURNT_SIENNA, RAW_UMBER,



BURNT_UMBER, PAYNES_GRAY, IVORY_BLACK

}

For convenience (so all the names don’t have to be qualified), this is

imported statically into the following example. This example uses the

EnumSet for easy creation of Sets from enums. (You’ll learn more

about EnumSet in the Enumerations chapter.) Here, the static method
EnumSet.range() is given the first and last elements of

the range to create in the resulting Set:

// generics/WatercolorSets.java

import generics.watercolors.*;

import java.util.*;

import static onjava.Sets.*;

import static generics.watercolors.Watercolors.*;

public class WatercolorSets {

public static void main(String[] args) {

Set<Watercolors> set1 =

EnumSet.range(BRILLIANT_RED, VIRIDIAN_HUE);

Set<Watercolors> set2 =

EnumSet.range(CERULEAN_BLUE_HUE, BURNT_UMBER);

System.out.println("set1: " + set1);

System.out.println("set2: " + set2);



System.out.println(

"union(set1, set2): " + union(set1, set2));

Set<Watercolors> subset = intersection(set1, set2);

System.out.println(

"intersection(set1, set2): " + subset);

System.out.println("difference(set1, subset): " +

difference(set1, subset));

System.out.println("difference(set2, subset): " +

difference(set2, subset));

System.out.println("complement(set1, set2): " +

complement(set1, set2));

}

}

/* Output:

set1: [BRILLIANT_RED, CRIMSON, MAGENTA, ROSE_MADDER,

VIOLET, CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE,

COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE]

set2: [CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE,

COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE,

SAP_GREEN, YELLOW_OCHRE, BURNT_SIENNA, RAW_UMBER,



BURNT_UMBER]

union(set1, set2): [BURNT_SIENNA, BRILLIANT_RED,

YELLOW_OCHRE, MAGENTA, SAP_GREEN, CERULEAN_BLUE_HUE,

ULTRAMARINE, VIRIDIAN_HUE, VIOLET, RAW_UMBER,

ROSE_MADDER, PERMANENT_GREEN, BURNT_UMBER,

PHTHALO_BLUE, CRIMSON, COBALT_BLUE_HUE]

intersection(set1, set2): [PERMANENT_GREEN,

CERULEAN_BLUE_HUE, ULTRAMARINE, VIRIDIAN_HUE,

PHTHALO_BLUE, COBALT_BLUE_HUE]

difference(set1, subset): [BRILLIANT_RED, MAGENTA,

VIOLET, CRIMSON, ROSE_MADDER]

difference(set2, subset): [BURNT_SIENNA, YELLOW_OCHRE,

BURNT_UMBER, SAP_GREEN, RAW_UMBER]

complement(set1, set2): [BURNT_SIENNA, BRILLIANT_RED,

YELLOW_OCHRE, MAGENTA, SAP_GREEN, VIOLET, RAW_UMBER,

ROSE_MADDER, BURNT_UMBER, CRIMSON]

*/

The following example uses Sets.difference() to show the

method differences between various Collection and Map classes in

java.util:



// onjava/CollectionMethodDifferences.java

// {java onjava.CollectionMethodDifferences}

package onjava;

import java.lang.reflect.*;

import java.util.*;

import java.util.stream.*;

public class CollectionMethodDifferences {

static Set<String> methodSet(Class<?> type) {

return Arrays.stream(type.getMethods())

.map(Method::getName)

.collect(Collectors.toCollection(TreeSet::new));

}

static void interfaces(Class<?> type) {

System.out.print("Interfaces in " +

type.getSimpleName() + ": ");

System.out.println(

Arrays.stream(type.getInterfaces())

.map(Class::getSimpleName)

.collect(Collectors.toList()));

}



static Set<String> object = methodSet(Object.class);

static { object.add("clone"); }

static void

difference(Class<?> superset, Class<?> subset) {

System.out.print(superset.getSimpleName() +

" extends " + subset.getSimpleName() +

", adds: ");

Set<String> comp = Sets.difference(

methodSet(superset), methodSet(subset));

comp.removeAll(object); // Ignore 'Object' methods

System.out.println(comp);

interfaces(superset);

}

public static void main(String[] args) {

System.out.println("Collection: " +

methodSet(Collection.class));

interfaces(Collection.class);

difference(Set.class, Collection.class);

difference(HashSet.class, Set.class);

difference(LinkedHashSet.class, HashSet.class);



difference(TreeSet.class, Set.class);

difference(List.class, Collection.class);

difference(ArrayList.class, List.class);

difference(LinkedList.class, List.class);

difference(Queue.class, Collection.class);

difference(PriorityQueue.class, Queue.class);

System.out.println("Map: " + methodSet(Map.class));

difference(HashMap.class, Map.class);

difference(LinkedHashMap.class, HashMap.class);

difference(SortedMap.class, Map.class);

difference(TreeMap.class, Map.class);

}

}

/* Output:

Collection: [add, addAll, clear, contains, containsAll,

equals, forEach, hashCode, isEmpty, iterator,

parallelStream, remove, removeAll, removeIf, retainAll,

size, spliterator, stream, toArray]

Interfaces in Collection: [Iterable]

Set extends Collection, adds: []



Interfaces in Set: [Collection]

HashSet extends Set, adds: []

Interfaces in HashSet: [Set, Cloneable, Serializable]

LinkedHashSet extends HashSet, adds: []

Interfaces in LinkedHashSet: [Set, Cloneable,

Serializable]

TreeSet extends Set, adds: [headSet,

descendingIterator, descendingSet, pollLast, subSet,

floor, tailSet, ceiling, last, lower, comparator,

pollFirst, first, higher]

Interfaces in TreeSet: [NavigableSet, Cloneable,

Serializable]

List extends Collection, adds: [replaceAll, get,

indexOf, subList, set, sort, lastIndexOf, listIterator]

Interfaces in List: [Collection]

ArrayList extends List, adds: [trimToSize,

ensureCapacity]

Interfaces in ArrayList: [List, RandomAccess,

Cloneable, Serializable]

LinkedList extends List, adds: [offerFirst, poll,



getLast, offer, getFirst, removeFirst, element,

removeLastOccurrence, peekFirst, peekLast, push,

pollFirst, removeFirstOccurrence, descendingIterator,

pollLast, removeLast, pop, addLast, peek, offerLast,

addFirst]

Interfaces in LinkedList: [List, Deque, Cloneable,

Serializable]

Queue extends Collection, adds: [poll, peek, offer,

element]

Interfaces in Queue: [Collection]

PriorityQueue extends Queue, adds: [comparator]

Interfaces in PriorityQueue: [Serializable]

Map: [clear, compute, computeIfAbsent,

computeIfPresent, containsKey, containsValue, entrySet,

equals, forEach, get, getOrDefault, hashCode, isEmpty,

keySet, merge, put, putAll, putIfAbsent, remove,

replace, replaceAll, size, values]

HashMap extends Map, adds: []

Interfaces in HashMap: [Map, Cloneable, Serializable]

LinkedHashMap extends HashMap, adds: []



Interfaces in LinkedHashMap: [Map]

SortedMap extends Map, adds: [lastKey, subMap,

comparator, firstKey, headMap, tailMap]

Interfaces in SortedMap: [Map]

TreeMap extends Map, adds: [descendingKeySet,

navigableKeySet, higherEntry, higherKey, floorKey,

subMap, ceilingKey, pollLastEntry, firstKey, lowerKey,

headMap, tailMap, lowerEntry, ceilingEntry,

descendingMap, pollFirstEntry, lastKey, firstEntry,

floorEntry, comparator, lastEntry]

Interfaces in TreeMap: [NavigableMap, Cloneable,

Serializable]

*/

The output of this program was used in the “Summary” section of the

Collections chapter.

Building Complex



Models

An important benefit of generics is the ability to simply and safely

create complex models. For example, we can easily create a List of

tuples:

// generics/TupleList.java

// Combining generic types to make complex generic types

import java.util.*;

import onjava.*;

import java.util.stream.*;

public class TupleList<A, B, C, D>

extends ArrayList<Tuple4<A, B, C, D>> {

public static void main(String[] args) {

TupleList<Vehicle, Amphibian, String, Integer> tl =

new TupleList<>();

tl.add(TupleTest2.h());

tl.add(TupleTest2.h());

tl.forEach(System.out::println);

}

}

/* Output:



(Vehicle@7cca494b, Amphibian@7ba4f24f, hi, 47)

(Vehicle@3b9a45b3, Amphibian@7699a589, hi, 47)

*/

This produces a fairly powerful data structure without too much code.

Here’s a second example. Even though each class is a building block,

the total has many parts. Here, the model is a retail store with aisles,

shelves and products:

// generics/Store.java

// Building a complex model using generic collections

import java.util.*;

import java.util.function.*;

import onjava.*;

class Product {

private final int id;

private String description;

private double price;

Product(int idNumber, String descr, double price) {

id = idNumber;

description = descr;

this.price = price;



System.out.println(toString());

}

@Override

public String toString() {

return id + ": " + description +

", price: $" + price;

}

public void priceChange(double change) {

price += change;

}

public static Supplier<Product> generator =

new Supplier<Product>() {

private Random rand = new Random(47);

@Override

public Product get() {

return new Product(rand.nextInt(1000), "Test",

Math.round(

rand.nextDouble() * 1000.0) + 0.99);

}

};



}

class Shelf extends ArrayList<Product> {

Shelf(int nProducts) {

Suppliers.fill(this, Product.generator, nProducts);

}

}

class Aisle extends ArrayList<Shelf> {

Aisle(int nShelves, int nProducts) {

for(int i = 0; i < nShelves; i++)

add(new Shelf(nProducts));

}

}

class CheckoutStand {}

class Office {}

public class Store extends ArrayList<Aisle> {

private ArrayList<CheckoutStand> checkouts =

new ArrayList<>();

private Office office = new Office();

public Store(

int nAisles, int nShelves, int nProducts) {



for(int i = 0; i < nAisles; i++)

add(new Aisle(nShelves, nProducts));

}

@Override

public String toString() {

StringBuilder result = new StringBuilder();

for(Aisle a : this)

for(Shelf s : a)

for(Product p : s) {

result.append(p);

result.append("\n");

}

return result.toString();

}

public static void main(String[] args) {

System.out.println(new Store(5, 4, 3));

}

}

/* Output: (First 8 Lines)

258: Test, price: $400.99



861: Test, price: $160.99

868: Test, price: $417.99

207: Test, price: $268.99

551: Test, price: $114.99

278: Test, price: $804.99

520: Test, price: $554.99

140: Test, price: $530.99

...

*/

Store.toString() shows the result: many layers of collections

that are nonetheless type-safe and manageable. What’s impressive is it

is not intellectually prohibitive to assemble such a model.

Shelf uses Suppliers.fill(), a utility that takes a

Collection (the first argument) and fills it using a Supplier (the

second argument) with a number n (the third argument) of elements.

The methods in the Suppliers class all perform some variation of



filling, and are used in other examples in this chapter. The class is

defined at the end of the chapter.

The Mystery of

Erasure

As you begin to delve more deeply into generics, there are a number of

issues that won’t initially make sense. For example, although you can

say ArrayList.class, you cannot say

ArrayList<Integer>.class. And consider the following:

// generics/ErasedTypeEquivalence.java

import java.util.*;

public class ErasedTypeEquivalence {

public static void main(String[] args) {

Class c1 = new ArrayList<String>().getClass();

Class c2 = new ArrayList<Integer>().getClass();

System.out.println(c1 == c2);

}

}

/* Output:

true

*/



ArrayList<String> and ArrayList<Integer> should be distinct types.
Different types behave differently. If you try, for

example, to put an Integer into an ArrayList<String> , you

get different behavior (it fails) than if you put an Integer into an

ArrayList<Integer> (it succeeds). And yet the above program

suggests they are the same type.

Here’s an example that adds to this puzzle:

// generics/LostInformation.java

import java.util.*;

class Frob {}

class Fnorkle {}

class Quark<Q> {}

class Particle<POSITION, MOMENTUM> {}

public class LostInformation {

public static void main(String[] args) {

List<Frob> list = new ArrayList<>();

Map<Frob, Fnorkle> map = new HashMap<>();

Quark<Fnorkle> quark = new Quark<>();

Particle<Long, Double> p = new Particle<>();

System.out.println(Arrays.toString(

list.getClass().getTypeParameters()));



System.out.println(Arrays.toString(

map.getClass().getTypeParameters()));

System.out.println(Arrays.toString(

quark.getClass().getTypeParameters()));

System.out.println(Arrays.toString(

p.getClass().getTypeParameters()));

}

}

/* Output:

[E]

[K, V]

[Q]

[POSITION, MOMENTUM]

*/

According to the JDK documentation,

Class.getTypeParameters() “returns an array of

TypeVariable objects that represent the type variables declared by



the generic declaration…” This suggests you can discover the

parameter types. However, as the output shows, you only find out

about identifiers used as the parameter placeholders—not so

interesting.

The cold truth is:

There’s no information about generic

parameter types available inside generic

code.

Thus, you can know things like the identifier of the type parameter and

the bounds of the generic type—you just can’t know the actual type

parameter(s) used to create a particular instance. This fact, especially

frustrating if you’re coming from C++, is the most fundamental issue

you must deal with when working with Java generics.

Java generics are implemented using erasure. This means any specific

type information is erased when you use a generic. Inside the generic,

the only thing you know is that you’re using an object. So

List<String> and List<Integer> are, in fact, the same type at run time. Both
forms are “erased” to their raw type, List.

Understanding erasure and how you must deal with it is one of the

biggest hurdles you face when learning Java generics. We explore

erasure in this section.



The C++ Approach

Here’s a C++ example which uses templates. The syntax for

parameterized types is similar because Java took inspiration from

C++:

// generics/Templates.cpp

#include <iostream>

using namespace std;

template< class T> class Manipulator {

T obj;

public:

Manipulator(T x) { obj = x; }

void manipulate() { obj.f(); }

};

class HasF {

public:

void f() { cout << "HasF::f()" << endl; }

};

int main() {

HasF hf;

Manipulator<HasF> manipulator(hf);



manipulator.manipulate();

}

/* Output:

HasF::f()

*/

The Manipulator class stores an object of type T. The

manipulate() method calls a method f() on obj. How can it

know that the f() method exists for the type parameter T? The C++

compiler checks when you instantiate the template, so at the point of

instantiation of Manipulator<HasF> , it sees that HasF has a

method f(). If it were not the case, you’d get a compile-time error,

preserving type safety.

Writing this kind of code in C++ is straightforward because when a

template is instantiated, the template code knows the type of its

template parameters. Java generics are different. Here’s the

translation of HasF:

// generics/HasF.java

public class HasF {

public void f() {

System.out.println("HasF.f()");



}

}

If we take the rest of the example and translate it to Java, it won’t

compile:

// generics/Manipulation.java

// {WillNotCompile}

class Manipulator<T> {

private T obj;

Manipulator(T x) { obj = x; }

// Error: cannot find symbol: method f():

public void manipulate() { obj.f(); }

}

public class Manipulation {

public static void main(String[] args) {

HasF hf = new HasF();

Manipulator<HasF> manipulator =

new Manipulator<>(hf);

manipulator.manipulate();

}

}



Because of erasure, the Java compiler can’t map the requirement that

manipulate() must call f() on obj to the fact that HasF has a

method f(). To call f(), we must assist the generic class by giving it

a bound that tells the compiler to only accept types that conform to

that bound. This reuses the extends keyword. Because of the bound,

the following compiles:

// generics/Manipulator2.java

class Manipulator2<T extends HasF> {

private T obj;

Manipulator2(T x) { obj = x; }

public void manipulate() { obj.f(); }

}

The bound <T extends HasF> says that T must be of type HasF

or something derived from HasF. If this is true, it is safe to call f()

on obj.

We say that a generic type parameter erases to its first bound

(multiple bounds are possible, as you shall see later). We also talk

about erasure of the type parameter. The compiler actually replaces

the type parameter with its erasure, so in the above case, T erases to

HasF, which is the same as replacing T with HasF in the class body.



You might correctly observe that in Manipulator2.java, generics

do not contribute anything. You can just as easily perform the erasure

yourself and produce a class without generics:

// generics/Manipulator3.java

class Manipulator3 {

private HasF obj;

Manipulator3(HasF x) { obj = x; }

public void manipulate() { obj.f(); }

}

This brings up an important point: Generics are only useful for type

parameters more “generic” than a specific type (and all its subtypes)—

that is, when you want code to work across multiple classes. As a

result, the type parameters and their application in useful generic code

will usually be more complex than simple class replacement. However,

you can’t just say that anything of the form <T extends HasF> is

therefore flawed. For example, if a class has a method that returns T,

generics are helpful, because they will then return the exact type:

// generics/ReturnGenericType.java



class ReturnGenericType<T extends HasF> {

private T obj;

ReturnGenericType(T x) { obj = x; }

public T get() { return obj; }

}

You must look at all your code and determine whether it is “complex

enough” to warrant generics.

We’ll look at bounds in more detail later in the chapter.

Migration Compatibility

To allay any potential confusion about erasure, you must clearly

understand that it is not a language feature. It is a compromise in the

implementation of Java generics, necessary because generics were not

made part of the language from the beginning. This compromise will

cause you pain, so get used to it early and understand why it’s there.

If generics had been part of Java 1.0, the feature would not have been

implemented using erasure—it would have used reification to retain

the type parameters as first-class entities, so you would perform type-



based language and reflective operations on type parameters. You’ll

see later in this chapter that erasure reduces the “genericity” of

generics. Generics are still useful in Java, just not as useful as they

could be, and the reason is erasure.

In an erasure-based implementation, generic types are treated as

second-class types that cannot be used in some important contexts.

The generic types are present only during static type checking, after

which every generic type in the program is erased by replacing it with

a non-generic upper bound. For example, type annotations such as

List<T> are erased to List, and ordinary type variables are erased

to Object unless a bound is specified.

The core motivation for erasure is that you can use generified clients

with non-generified libraries, and vice versa. This is often called

migration compatibility. In the ideal world, everything would be

generified on some designated day. In reality, even if programmers are

only writing generic code, they must deal with non-generic libraries

written before Java 5. The authors of those libraries might never have



the incentive to generify their code, or they might just take their time

in getting to it.

So Java generics must not only support backward compatibility—

existing code and class files are still legal, and continue to mean what

they meant before—but must also support migration compatibility, so

libraries can become generic at their own pace, and when a library

does become generic, it doesn’t break code and applications that

depend upon it. After deciding this was the goal, the Java designers

and the various groups working on the problem decided that erasure

was the only feasible solution. Erasure enables this migration towards

generics by allowing non-generic code to coexist with generic code.

For example, suppose an application uses two libraries, X and Y, and Y

uses library Z. With the advent of Java 5, the creators of this

application and these libraries will probably, eventually, migrate to

generics. Each of them, however, will have different motivations and

constraints as to when that migration happens. To achieve migration

compatibility, each library and application must be independent of all

the others in terms of whether generics are used. Thus, they cannot

detect whether other libraries are or are not using generics. Ergo, the

evidence that a particular library is using generics must be “erased.”



Without some kind of migration path, all the libraries that had been

built up over time stood the chance of being cut off from the

developers that chose to move to Java generics. Libraries are arguably

the part of a programming language that has the greatest productivity

impact, so this was not an acceptable cost. Whether or not erasure was

the best or only migration path is something that only time will tell.

The Problem with Erasure

So the primary justification for erasure is the transition process from

non-generified code to generified code, and to incorporate generics

into the language without breaking existing libraries. Erasure allows

you to continue using existing non-generic client code unchanged,

until clients are ready to rewrite code for generics. This is a noble

motivation, because it doesn’t suddenly break all existing code.

The cost of erasure is significant. Generic types cannot be used in

operations that explicitly refer to runtime types, such as casts,

instanceof operations, and new expressions. Because all type

information about parameters is lost, when writing generic code you

must constantly remind yourself it only appears you have type

information about a parameter.

Consider a piece of code like this:



class Foo<T> {

T var;

}

It appears that when you create an instance of Foo:

Foo<Cat> f = new Foo<>();

the code in class Foo ought to know it is now working with a Cat.

The syntax strongly suggests that the type T is substituted everywhere

throughout the class, as it is in C++. But it isn’t, and you must remind

yourself, “No, it’s just an Object,” whenever you’re writing the code

for the class.

In addition, erasure and migration compatibility mean that using

generics is not enforced when you might want it to be:

// generics/ErasureAndInheritance.java

class GenericBase<T> {

private T element;

public void set(T arg) { element = arg; }

public T get() { return element; }

}

class Derived1<T> extends GenericBase<T> {}

class Derived2 extends GenericBase {} // No warning



// class Derived3 extends GenericBase<?> {}

// Strange error:

// unexpected type

// required: class or interface without bounds

public class ErasureAndInheritance {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

Derived2 d2 = new Derived2();

Object obj = d2.get();

d2.set(obj); // Warning here!

}

}

Derived2 inherits from GenericBase with no generic

parameters, and the compiler doesn’t issue a warning. The warning

doesn’t occur until set() is called.

To turn off the warning, Java provides an annotation, the one you see

in the listing:

@SuppressWarnings("unchecked")

This is placed on the method that generates the warning, rather than

the entire class. It’s best to be as “focused” as possible when you turn



off a warning, so you don’t accidentally cloak a real problem by turning

off warnings too broadly.

Presumably, the error produced by Derived3 means the compiler

expects a raw base class.

Add to this the extra effort of managing bounds when you treat your

type parameter as more than just an Object, and you have far more

effort for much less payoff than you get in parameterized types with

languages like C++, Ada or Eiffel. This is not to say that those

languages in general buy you more than Java does for the majority of

programming problems, but rather that their parameterized type

mechanisms are more flexible and powerful than Java’s.

The Action at the Boundaries

Because of erasure, I find the most confusing aspect of generics is that

you can represent things that have no meaning. For example:

// generics/ArrayMaker.java

import java.lang.reflect.*;

import java.util.*;



public class ArrayMaker<T> {

private Class<T> kind;

public ArrayMaker(Class<T> kind) { this.kind = kind; }

@SuppressWarnings("unchecked")

T[] create(int size) {

return (T[])Array.newInstance(kind, size);

}

public static void main(String[] args) {

ArrayMaker<String> stringMaker =

new ArrayMaker<>(String.class);

String[] stringArray = stringMaker.create(9);

System.out.println(Arrays.toString(stringArray));

}

}

/* Output:

[null, null, null, null, null, null, null, null, null]

*/

Even though kind is stored as Class<T> , erasure means it is

actually just stored as a Class, with no parameter. So, when you do

something with it, as in creating an array, Array.newInstance()



doesn’t actually have the type information that’s implied in kind. It cannot
produce the specific result, which must therefore be cast, which

produces a warning you cannot satisfy.

Note that using Array.newInstance() is the recommended

approach for creating arrays in generics.

It’s different if we create a collection instead of an array:

// generics/ListMaker.java

import java.util.*;

public class ListMaker<T> {

List<T> create() { return new ArrayList<>(); }

public static void main(String[] args) {

ListMaker<String> stringMaker = new ListMaker<>();

List<String> stringList = stringMaker.create();

}

}

The compiler gives no warnings, even though we know (from erasure)

that the <T> in new ArrayList<>() inside create() is

removed—at runtime there’s no <T> inside the class, so it seems

meaningless. But if you follow this idea and change the expression to

new ArrayList(), the compiler gives a warning.

Is it really meaningless here? What if you were to put some objects in



the List while creating it, like this:

// generics/FilledList.java

import java.util.*;

import java.util.function.*;

import onjava.*;

public class FilledList<T> extends ArrayList<T> {

FilledList(Supplier<T> gen, int size) {

Suppliers.fill(this, gen, size);

}

public FilledList(T t, int size) {

for(int i = 0; i < size; i++)

this.add(t);

}

public static void main(String[] args) {

List<String> list = new FilledList<>("Hello", 4);

System.out.println(list);

// Supplier version:

List<Integer> ilist = new FilledList<>(() -> 47, 4);

System.out.println(ilist);

}



}

/* Output:

[Hello, Hello, Hello, Hello]

[47, 47, 47, 47]

*/

Even though the compiler is unable to know anything about T inside

add(), it can still ensure—at compile time—that what you put into

the FilledList is of type T. Thus, even though erasure removes the

information about the actual type inside a method or class, the

compiler can still ensure internal consistency in the way that the type

is used within the method or class.

Because erasure removes type information in the body of a method,

what matters at run time is the boundaries: the points where objects

enter and leave a method. These are the points at which the compiler

performs type checks at compile time, and inserts casting code.

Consider the following non-generic example:

// generics/SimpleHolder.java

public class SimpleHolder {

private Object obj;

public void set(Object obj) { this.obj = obj; }



public Object get() { return obj; }

public static void main(String[] args) {

SimpleHolder holder = new SimpleHolder();

holder.set("Item");

String s = (String)holder.get();

}

}

If we decompile the result with javap -c SimpleHolder, we get

(after editing):

public void set(java.lang.Object);

0: aload_0

1: aload_1

2: putfield #2; //Field obj:Object;

5: return

public java.lang.Object get();

0: aload_0

1: getfield #2; //Field obj:Object;

4: areturn

public static void main(java.lang.String[]);

0: new #3; //class SimpleHolder



3: dup

4: invokespecial #4; //Method "<init>":()V

7: astore_1

8: aload_1

9: ldc #5; //String Item

11: invokevirtual #6; //Method set:(Object;)V

14: aload_1

15: invokevirtual #7; //Method get:()Object;

18: checkcast #8; //class java/lang/String

21: astore_2

22: return

The set() and get() methods store and produce the value, and the

cast is checked at the point of the call to get().

Now incorporate generics into the above code:

// generics/GenericHolder2.java

public class GenericHolder2<T> {

private T obj;

public void set(T obj) { this.obj = obj; }

public T get() { return obj; }

public static void main(String[] args) {



GenericHolder2<String> holder =

new GenericHolder2<>();

holder.set("Item");

String s = holder.get();

}

}

The need for the cast from get() has disappeared, but we also know

that the value passed to set() is type-checked at compile time. Here

are the relevant bytecodes:

public void set(java.lang.Object);

0: aload_0

1: aload_1

2: putfield #2; //Field obj:Object;

5: return

public java.lang.Object get();

0: aload_0

1: getfield #2; //Field obj:Object;

4: areturn

public static void main(java.lang.String[]);

0: new #3; //class GenericHolder2



3: dup

4: invokespecial #4; //Method "<init>":()V

7: astore_1

8: aload_1

9: ldc #5; //String Item

11: invokevirtual #6; //Method set:(Object;)V

14: aload_1

15: invokevirtual #7; //Method get:()Object;

18: checkcast #8; //class java/lang/String

21: astore_2

22: return

The resulting code is identical. The extra work of checking the

incoming type in set() is free, because it is performed by the

compiler. And the cast for the outgoing value of get() is still there,

but it’s no less than you’d do yourself—and it’s automatically inserted

by the compiler, so the code you write (and read) is less noisy.



Since get() and set() produce the same bytecodes, this tells us

that all the action in generics happens at the boundaries—the extra

compile-time check for incoming values, and the inserted cast for

outgoing values. It helps to counter the confusion of erasure to

remember that “the boundaries are where the action takes place.”

Compensating for

Erasure

With erasure, we lose the ability to perform certain operations in

generic code. Anything that requires knowing the exact type at run

time won’t work:

// generics/Erased.java

// {WillNotCompile}

public class Erased<T> {

private final int SIZE = 100;

public void f(Object arg) {

// error: illegal generic type for instanceof

if(arg instanceof T) {}

// error: unexpected type

T var = new T();

// error: generic array creation



T[] array = new T[SIZE];

// warning: [unchecked] unchecked cast

T[] array = (T[])new Object[SIZE];

}

}

Occasionally you can program around these issues, but sometimes you

must compensate for erasure by introducing a type tag. This means

explicitly passing a Class object for your type to use it in type

expressions.

For example, the attempt to use instanceof in the previous

program fails because the type information was erased. A type tag

enables a dynamic isInstance():

// generics/ClassTypeCapture.java

class Building {}

class House extends Building {}

public class ClassTypeCapture<T> {

Class<T> kind;

public ClassTypeCapture(Class<T> kind) {

this.kind = kind;

}



public boolean f(Object arg) {

return kind.isInstance(arg);

}

public static void main(String[] args) {

ClassTypeCapture<Building> ctt1 =

new ClassTypeCapture<>(Building.class);

System.out.println(ctt1.f(new Building()));

System.out.println(ctt1.f(new House()));

ClassTypeCapture<House> ctt2 =

new ClassTypeCapture<>(House.class);

System.out.println(ctt2.f(new Building()));

System.out.println(ctt2.f(new House()));

}

}

/* Output:

true

true

false



true

*/

The compiler ensures that the type tag matches the generic argument.

Creating Instances of Types

The attempt to create a new T() in Erased.java won’t work,

partly because of erasure, and partly because the compiler cannot

verify that T has a default (no-arg) constructor. But in C++ this

operation is natural, straightforward, and safe (it’s checked at compile

time):

// generics/InstantiateGenericType.cpp

// C++, not Java!

template< class T> class Foo {

T x; // Create a field of type T

T* y; // Pointer to T

public:

// Initialize the pointer:

Foo() { y = new T(); }



};

class Bar {};

int main() {

Foo<Bar> fb;

Foo<int> fi; // ... and it works with primitives

}

The solution in Java is to pass in a factory object, and use that to make

the new instance. A convenient factory object is just the Class object,

so if you use a type tag, you can use newInstance() to create a new

object of that type:

// generics/InstantiateGenericType.java

import java.util.function.*;

class ClassAsFactory<T> implements Supplier<T> {

Class<T> kind;

ClassAsFactory(Class<T> kind) {

this.kind = kind;

}

@Override

public T get() {

try {



return kind.newInstance();

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(e);

}

}

}

class Employee {

@Override

public String toString() { return "Employee"; }

}

public class InstantiateGenericType {

public static void main(String[] args) {

ClassAsFactory<Employee> fe =

new ClassAsFactory<>(Employee.class);

System.out.println(fe.get());

ClassAsFactory<Integer> fi =

new ClassAsFactory<>(Integer.class);

try {

System.out.println(fi.get());



} catch(Exception e) {

System.out.println(e.getMessage());

}

}

}

/* Output:

Employee

java.lang.InstantiationException: java.lang.Integer

*/

This compiles, but fails with ClassAsFactory<Integer>

because Integer doesn’t have a no-arg constructor. Because the

error is not caught at compile time, this approach is frowned upon by

the language creators. They suggest instead that you use an explicit

factory (Supplier) and constrain the type so it only takes a class

that implements this factory. Here are two different ways to create the

factory:

// generics/FactoryConstraint.java

import java.util.*;

import java.util.function.*;

import onjava.*;



class IntegerFactory implements Supplier<Integer> {

private int i = 0;

@Override

public Integer get() {

return ++i;

}

}

class Widget {

private int id;

Widget(int n) { id = n; }

@Override

public String toString() {

return "Widget " + id;

}

public static

class Factory implements Supplier<Widget> {

private int i = 0;

@Override

public Widget get() { return new Widget(++i); }

}



}

class Fudge {

private static int count = 1;

private int n = count++;

@Override

public String toString() { return "Fudge " + n; }

}

class Foo2<T> {

private List<T> x = new ArrayList<>();

Foo2(Supplier<T> factory) {

Suppliers.fill(x, factory, 5);

}

@Override

public String toString() { return x.toString(); }

}

public class FactoryConstraint {

public static void main(String[] args) {

System.out.println(

new Foo2<>(new IntegerFactory()));

System.out.println(



new Foo2<>(new Widget.Factory()));

System.out.println(

new Foo2<>(Fudge::new));

}

}

/* Output:

[1, 2, 3, 4, 5]

[Widget 1, Widget 2, Widget 3, Widget 4, Widget 5]

[Fudge 1, Fudge 2, Fudge 3, Fudge 4, Fudge 5]

*/

IntegerFactory is itself a factory by implementing

Supplier<Integer> . Widget contains an inner class which is a

factory. And notice that Fudge does not do anything factory-like, and

yet passing Fudge::new still produces factory behavior, because the

compiler translates a call to the functional method ::new into a call

to get().

Another approach is the Template Method design pattern. In the

following example, create() is the Template Method, overridden in

the subclass to produce an object of that type:



// generics/CreatorGeneric.java

abstract class GenericWithCreate<T> {

final T element;

GenericWithCreate() { element = create(); }

abstract T create();

}

class X {}

class XCreator extends GenericWithCreate<X> {

@Override

X create() { return new X(); }

void f() {

System.out.println(

element.getClass().getSimpleName());

}

}

public class CreatorGeneric {

public static void main(String[] args) {



XCreator xc = new XCreator();

xc.f();

}

}

/* Output:

X

*/

GenericWithCreate contains the element field, and forces its

initialization via the no-arg constructor, which in turn calls the

abstract create() method. This way creation can be defined in

the subclass, at the same time the type of T is established.

Arrays of Generics

As you saw in Erased.java, you can’t create arrays of generics. The

general solution is to use an ArrayList anywhere you are tempted

to create an array of generics:

// generics/ListOfGenerics.java

import java.util.*;

public class ListOfGenerics<T> {

private List<T> array = new ArrayList<>();

public void add(T item) { array.add(item); }



public T get(int index) { return array.get(index); }

}

Here you get the behavior of an array but the compile-time type safety

afforded by generics.

At times, you still create an array of generic types (the ArrayList,

for example, uses arrays internally). You can define a generic reference

to an array in a way that makes the compiler happy:

// generics/ArrayOfGenericReference.java

class Generic<T> {}

public class ArrayOfGenericReference {

static Generic<Integer>[] gia;

}

The compiler accepts this without producing warnings. But you can

never create an array of that exact type (including the type

parameters), so it’s a little confusing. Since all arrays have the same

structure (size of each array slot and array layout) regardless of the

type they hold, it seems like you can create an array of Object and

cast that to the desired array type. This does in fact compile, but it

produces a ClassCastException:

// generics/ArrayOfGeneric.java



public class ArrayOfGeneric {

static final int SIZE = 100;

static Generic<Integer>[] gia;

@SuppressWarnings("unchecked")

public static void main(String[] args) {

try {

gia = (Generic<Integer>[])new Object[SIZE];

} catch(ClassCastException e) {

System.out.println(e.getMessage());

}

// Runtime type is the raw (erased) type:

gia = (Generic<Integer>[])new Generic[SIZE];

System.out.println(gia.getClass().getSimpleName());

gia[0] = new Generic<>();

//- gia[1] = new Object(); // Compile-time error

// Discovers type mismatch at compile time:

//- gia[2] = new Generic<Double>();

}

}

/* Output:



[Ljava.lang.Object; cannot be cast to [LGeneric;

Generic[]

*/

The problem is that arrays keep track of their actual type, and that

type is established at the point of creation of the array. So even though

gia is cast to a Generic<Integer>[], that information only

exists at compile time (and without the @SuppressWarnings

annotation, you’d get a warning for that cast). At run time, it’s still an

array of Object, and that causes problems. The only way to

successfully create an array of a generic type is to create a new array of

the erased type, and cast that.

Let’s look at a slightly more sophisticated example. Consider a simple

generic wrapper around an array:

// generics/GenericArray.java

public class GenericArray<T> {

private T[] array;

@SuppressWarnings("unchecked")

public GenericArray(int sz) {

array = (T[])new Object[sz];

}



public void put(int index, T item) {

array[index] = item;

}

public T get(int index) { return array[index]; }

// Method that exposes the underlying representation:

public T[] rep() { return array; }

public static void main(String[] args) {

GenericArray<Integer> gai = new GenericArray<>(10);

try {

Integer[] ia = gai.rep();

} catch(ClassCastException e) {

System.out.println(e.getMessage());

}

// This is OK:

Object[] oa = gai.rep();

}

}

/* Output:

[Ljava.lang.Object; cannot be cast to

[Ljava.lang.Integer;



*/

As before, we can’t say T[] array = new T[sz], so we create an

array of objects and cast it.

The rep() method returns a T[], which in main() should be an

Integer[] for gai, but if you call it and try to capture the result as

an Integer[] reference, you get a ClassCastException, again

because the actual runtime type is Object[].

If you compile GenericArray.java after commenting out the

@SuppressWarnings annotation, the compiler produces a

warning:

GenericArray.java uses unchecked or unsafe operations.

Recompile with -Xlint:unchecked for details.

Here, we’ve gotten a single warning, and we believe it’s about the cast.

But to really make sure, compile with -Xlint:unchecked:

GenericArray.java:7: warning: [unchecked] unchecked cast

array = (T[])new Object[sz];

^

required: T[]

found: Object[]

where T is a type-variable:



T extends Object declared in class GenericArray

1 warning

It is indeed complaining about that cast. Because warnings become

noise, the best we can possibly do, once we verify that a particular

warning is expected, is to turn it off using @SuppressWarnings.

That way, when a warning does appear, we’ll actually investigate it.

Because of erasure, the runtime type of the array can only be

Object[]. If we immediately cast it to T[], then at compile-time the

actual type of the array is lost, and the compiler can miss out on some

potential error checks. Because of this, it’s better to use an Object[]

inside the collection, and add a cast to T when you use an array

element. Let’s see how that would look with the

GenericArray.java example:

// generics/GenericArray2.java

public class GenericArray2<T> {

private Object[] array;

public GenericArray2(int sz) {

array = new Object[sz];

}

public void put(int index, T item) {



array[index] = item;

}

@SuppressWarnings("unchecked")

public T get(int index) { return (T)array[index]; }

@SuppressWarnings("unchecked")

public T[] rep() {

return (T[])array; // Unchecked cast

}

public static void main(String[] args) {

GenericArray2<Integer> gai =

new GenericArray2<>(10);

for(int i = 0; i < 10; i ++)

gai.put(i, i);

for(int i = 0; i < 10; i ++)

System.out.print(gai.get(i) + " ");

System.out.println();

try {

Integer[] ia = gai.rep();

} catch(Exception e) {

System.out.println(e);



}

}

}

/* Output:

0 1 2 3 4 5 6 7 8 9

java.lang.ClassCastException: [Ljava.lang.Object;

cannot be cast to [Ljava.lang.Integer;

*/

Initially, this doesn’t look very different, just that the cast has moved.

Without the @SuppressWarnings annotations, you still get

“unchecked” warnings. However, the internal representation is now

Object[] rather than T[]. When get() is called, it casts the object

to T, which is in fact the correct type, so that is safe. However, if you

call rep(), it again attempts to cast the Object[] to a T[], still

incorrect, and produces a warning at compile time and an exception at

run time. Thus there’s no way to subvert the type of the underlying

array, which can only be Object[]. The advantage of treating

array internally as Object[] instead of T[] is it’s less likely you’ll forget the
runtime type of the array and accidentally introduce a bug

(although the majority, and perhaps all, of such bugs would be rapidly

detected at run time).



For new code, pass in a type token. In that case, the GenericArray

looks like this:

// generics/GenericArrayWithTypeToken.java

import java.lang.reflect.*;

public class GenericArrayWithTypeToken<T> {

private T[] array;

@SuppressWarnings("unchecked")

public

GenericArrayWithTypeToken(Class<T> type, int sz) {

array = (T[])Array.newInstance(type, sz);

}

public void put(int index, T item) {

array[index] = item;

}

public T get(int index) { return array[index]; }

// Expose the underlying representation:

public T[] rep() { return array; }

public static void main(String[] args) {

GenericArrayWithTypeToken<Integer> gai =

new GenericArrayWithTypeToken<>(



Integer.class, 10);

// This now works:

Integer[] ia = gai.rep();

}

}

The type token Class<T> is passed into the constructor to recover

from the erasure, so we can create the actual type of array we need,

although the warning from the cast must be suppressed with

@SuppressWarnings. Once we get the actual type, we can return it

and produce the desired results, as you see in main(). The runtime

type of the array is the exact type T[].

Unfortunately, if you look at the source code in the Java standard

libraries, you’ll see there are casts from Object arrays to

parameterized types everywhere. For example, here’s the copy-

ArrayList-from-Collection constructor, after cleaning up and

simplifying:

public ArrayList(Collection c) {



size = c.size();

elementData = (E[])new Object[size];

c.toArray(elementData);

}

If you look through ArrayList.java, you’ll find plenty of these

casts. And what happens when we compile it?

Note: ArrayList.java uses unchecked or unsafe operations

Note: Recompile with -Xlint:unchecked for details.

Sure enough, the standard libraries produce lots of warnings. If you’ve

worked with C, especially pre-ANSI C, you remember a particular

effect of warnings: When you discover you can ignore them, you do.

For that reason, it’s best to not issue any kind of message from the

compiler unless the programmer must do something about it.

In his weblog,2 Neal Gafter (one of the lead developers for Java 5) points out
that he was lazy when rewriting the Java libraries, and that

we should not do what he did. Neal also points out that he could not



fix some of the Java library code without breaking the existing

interface. So even if certain idioms appear in the Java library sources,

that’s not necessarily the right way to do it. When you look at library

code, you cannot assume it’s an example to follow in your own code.

Note that the type token technique is recommended in the Java

literature, such as Gilad Bracha’s paper Generics in the Java

Programming Language,3 where he notes, “It’s an idiom that’s used
extensively in the new APIs for manipulating annotations, for

example.” However, I’ve discovered some inconsistency in people’s

comfort level with this technique; some people strongly prefer the

factory approach, which was presented earlier in this chapter.

Bounds

Bounds were briefly introduced earlier in the chapter. Bounds allow

you to place constraints on parameter types used with generics.

Although this can enforce rules about types to which your generics are

applied, a potentially more important effect is that you can call

methods in your bound types.

Because erasure removes type information, the only methods you can

call for an unbounded generic parameter are those available for

Object. If, however, you are able to constrain that parameter to a

subset of types, you can call the methods in that subset. To apply



constraints, Java generics reuse the extends keyword.

It’s important to understand that extends has a significantly

different meaning in the context of generic bounds than it does

ordinarily. This example shows the basics of bounds:

// generics/BasicBounds.java

interface HasColor { java.awt.Color getColor(); }

class WithColor<T extends HasColor> {

T item;

WithColor(T item) { this.item = item; }

T getItem() { return item; }

// The bound allows you to call a method:

java.awt.Color color() { return item.getColor(); }

}

class Coord { public int x, y, z; }

// This fails. Class must be first, then interfaces:

// class WithColorCoord<T extends HasColor & Coord> {

// Multiple bounds:

class WithColorCoord<T extends Coord & HasColor> {

T item;

WithColorCoord(T item) { this.item = item; }



T getItem() { return item; }

java.awt.Color color() { return item.getColor(); }

int getX() { return item.x; }



int getY() { return item.y; }

int getZ() { return item.z; }

}

interface Weight { int weight(); }

// As with inheritance, you can have only one

// concrete class but multiple interfaces:

class Solid<T extends Coord & HasColor & Weight> {

T item;

Solid(T item) { this.item = item; }

T getItem() { return item; }

java.awt.Color color() { return item.getColor(); }

int getX() { return item.x; }

int getY() { return item.y; }

int getZ() { return item.z; }

int weight() { return item.weight(); }

}

class Bounded

extends Coord implements HasColor, Weight {

@Override

public java.awt.Color getColor() { return null; }



@Override

public int weight() { return 0; }

}

public class BasicBounds {

public static void main(String[] args) {

Solid<Bounded> solid =

new Solid<>(new Bounded());

solid.color();

solid.getY();

solid.weight();

}

}

You might observe that BasicBounds.java seems to contain

redundancies that could be eliminated through inheritance. Here, each

level of inheritance also adds bounds constraints:

// generics/InheritBounds.java

class HoldItem<T> {

T item;

HoldItem(T item) { this.item = item; }

T getItem() { return item; }



}

class WithColor2<T extends HasColor>

extends HoldItem<T> {

WithColor2(T item) { super(item); }

java.awt.Color color() { return item.getColor(); }

}

class WithColorCoord2<T extends Coord & HasColor>

extends WithColor2<T> {

WithColorCoord2(T item) { super(item); }

int getX() { return item.x; }

int getY() { return item.y; }

int getZ() { return item.z; }

}

class Solid2<T extends Coord & HasColor & Weight>

extends WithColorCoord2<T> {

Solid2(T item) { super(item); }

int weight() { return item.weight(); }

}

public class InheritBounds {

public static void main(String[] args) {



Solid2<Bounded> solid2 =

new Solid2<>(new Bounded());

solid2.color();

solid2.getY();

solid2.weight();

}

}

HoldItem holds an object, so this behavior is inherited into

WithColor2, which also requires its parameter conforms to

HasColor. WithColorCoord2 and Solid2 further extend the

hierarchy and add bounds at each level. Now the methods are

inherited and they’re not repeated in each class.

Here’s an example with more layers:

// generics/EpicBattle.java

// Bounds in Java generics

import java.util.*;

interface SuperPower {}

interface XRayVision extends SuperPower {

void seeThroughWalls();

}



interface SuperHearing extends SuperPower {

void hearSubtleNoises();

}

interface SuperSmell extends SuperPower {

void trackBySmell();

}

class SuperHero<POWER extends SuperPower> {

POWER power;

SuperHero(POWER power) { this.power = power; }

POWER getPower() { return power; }

}

class SuperSleuth<POWER extends XRayVision>

extends SuperHero<POWER> {

SuperSleuth(POWER power) { super(power); }

void see() { power.seeThroughWalls(); }

}

class

CanineHero<POWER extends SuperHearing & SuperSmell>

extends SuperHero<POWER> {

CanineHero(POWER power) { super(power); }



void hear() { power.hearSubtleNoises(); }

void smell() { power.trackBySmell(); }

}

class SuperHearSmell

implements SuperHearing, SuperSmell {

@Override

public void hearSubtleNoises() {}

@Override

public void trackBySmell() {}

}

class DogPerson extends CanineHero<SuperHearSmell> {

DogPerson() { super(new SuperHearSmell()); }

}

public class EpicBattle {

// Bounds in generic methods:

static <POWER extends SuperHearing>



void useSuperHearing(SuperHero<POWER> hero) {

hero.getPower().hearSubtleNoises();

}

static <POWER extends SuperHearing & SuperSmell>

void superFind(SuperHero<POWER> hero) {

hero.getPower().hearSubtleNoises();

hero.getPower().trackBySmell();

}

public static void main(String[] args) {

DogPerson dogPerson = new DogPerson();

useSuperHearing(dogPerson);

superFind(dogPerson);

// You can do this:

List<? extends SuperHearing> audioPeople;

// But you can't do this:

// List<? extends SuperHearing & SuperSmell> dogPs;

}

}

Wildcards, which we shall investigate next, are limited to a single

bound.



Wildcards

You’ve already seen some simple uses of wildcards—question marks in

generic argument expressions—in the Collections chapter and more in the
Type Information chapter. This section will explore the feature

more deeply.

We’ll start with an example that shows a particular behavior of arrays:

You can assign an array of a derived type to an array reference of the

base type:

// generics/CovariantArrays.java

class Fruit {}

class Apple extends Fruit {}

class Jonathan extends Apple {}

class Orange extends Fruit {}

public class CovariantArrays {

public static void main(String[] args) {

Fruit[] fruit = new Apple[10];

fruit[0] = new Apple(); // OK

fruit[1] = new Jonathan(); // OK

// Runtime type is Apple[], not Fruit[] or Orange[]:

try {

// Compiler allows you to add Fruit:



fruit[0] = new Fruit(); // ArrayStoreException

} catch(Exception e) { System.out.println(e); }

try {

// Compiler allows you to add Oranges:

fruit[0] = new Orange(); // ArrayStoreException

} catch(Exception e) { System.out.println(e); }

}

}

/* Output:

java.lang.ArrayStoreException: Fruit

java.lang.ArrayStoreException: Orange

*/

The first line in main() creates an array of Apple and assigns it to a

reference to an array of Fruit. This makes sense—an Apple is a

kind of Fruit, so an array of Apple should also be an array of

Fruit.

However, if the actual array type is Apple[], you can place an

Apple or a subtype of Apple into the array, which in fact works at

both compile time and run time. But you can also place a Fruit

object into the array. This makes sense to the compiler, because it has



a Fruit[] reference—why shouldn’t it allow a Fruit object, or

anything descended from Fruit, such as Orange, to be placed into

the array? So at compile time, this is allowed. The runtime array

mechanism, however, knows it’s dealing with an Apple[] and

throws an exception when a foreign type is placed into the array.

“Upcast” is a misnomer here. What you’re really doing is assigning one

array to another. The array behavior is to hold other objects, but

because we are able to upcast, it’s clear that the array objects can

preserve the rules about the type of objects they contain. It’s as if the

arrays are conscious of what they are holding, so between the compile-

time checks and the runtime checks, you can’t abuse them.

This arrangement for arrays is not so terrible, because you do find out

at run time that you’ve inserted an improper type. But one of the

primary goals of generics is to move such error detection to compile

time. So what happens when we try to use generic collections instead

of arrays?

// generics/NonCovariantGenerics.java

// {WillNotCompile}

import java.util.*;

public class NonCovariantGenerics {



// Compile Error: incompatible types:

List<Fruit> flist = new ArrayList<Apple>();

}

Although you might at first read this as saying, “You can’t assign a

collection of Apple to a collection of Fruit,” remember that

generics are not just about collections. What it’s really saying is, “You

can’t assign a generic involving Apples to a generic involving

Fruit.” If, as in the case of arrays, the compiler knew enough about the code
to determine that collections were involved, perhaps it could

give some leeway. But it doesn’t know anything like that, so it refuses

to allow the “upcast.” But it really isn’t an “upcast” anyway—a List of

Apple is not a List of Fruit. A List of Apple will hold Apples and subtypes
of Apple, and a List of Fruit will hold any kind of

Fruit. Yes, including Apples, but that doesn’t make it a List of

Apple; it’s still a List of Fruit. A List of Apple is not type-equivalent to a
List of Fruit, even if an Apple is a type of Fruit.

The real issue is that we are talking about the type of the collection,

rather than the type that the collection is holding. Unlike arrays,

generics do not have built-in covariance. This is because arrays are

completely defined in the language and can thus have both compile-

time and runtime checks built in, but with generics, the compiler and



runtime system cannot know what to do with your types and what the

rules should be.

Sometimes, however, you’d like to establish some kind of upcasting

relationship between the two. Wildcards produce this relationship.

// generics/GenericsAndCovariance.java

import java.util.*;

public class GenericsAndCovariance {

public static void main(String[] args) {

// Wildcards allow covariance:

List<? extends Fruit> flist = new ArrayList<>();

// Compile Error: can't add any type of object:

// flist.add(new Apple());

// flist.add(new Fruit());

// flist.add(new Object());

flist.add(null); // Legal but uninteresting

// We know it returns at least Fruit:

Fruit f = flist.get(0);

}

}



The type of flist is now List<? extends Fruit> , which you

can read as “a list of any type that’s inherited from Fruit.” This

doesn’t actually mean that the List will hold any type of Fruit,

however. The wildcard refers to a definite type, so it means “some

specific type which the flist reference doesn’t specify.” So the List

that’s assigned must hold some specified type such as Fruit or

Apple, but to upcast to flist, that type is a “don’t actually care.”

The List must hold a specific Fruit or subtype of Fruit, but if you

don’t actually care what it is, what can you do with such a List? If

you don’t know what type the List is holding, how can you safely add

an object? Just as with the “upcast” array in

CovariantArrays.java, you can’t, except that the compiler

prevents it from happening rather than the runtime system. You

discover the problem sooner.

You might argue that things have gone a bit overboard, because now

you can’t even add an Apple to a List you just said would hold

Apples. Yes, but the compiler doesn’t know that. A List<?



extends Fruit> could legally point to a List<Orange> . Once

you do this kind of “upcast,” you lose the ability to pass anything in,

even an Object.

On the other hand, if you call a method that returns Fruit, that’s safe

because you know that anything in the List must at least be of type

Fruit, so the compiler allows it.

How Smart is the Compiler?

Now, you might guess you are prevented from calling any methods

that take arguments, but consider this:

// generics/CompilerIntelligence.java

import java.util.*;

public class CompilerIntelligence {

public static void main(String[] args) {

List<? extends Fruit> flist =

Arrays.asList(new Apple());

Apple a = (Apple)flist.get(0); // No warning

flist.contains(new Apple()); // Argument is 'Object'

flist.indexOf(new Apple()); // Argument is 'Object'

}

}



Here, calls to contains() and indexOf() take Apple objects as

arguments, and those are just fine. Does this mean that the compiler

actually examines the code to see if a particular method modifies its

object?

By looking at the documentation for ArrayList, we find that the

compiler is not that smart. While add() takes an argument of the

generic parameter type, contains() and indexOf() take

arguments of type Object. So when you specify an ArrayList<?

extends Fruit> , the argument for add() becomes ? extends

Fruit. From that description, the compiler cannot know which

specific subtype of Fruit is required there, so it won’t accept any type

of Fruit. It doesn’t matter if you upcast the Apple to a Fruit first

—the compiler simply refuses to call a method (such as add()) if a

wildcard is involved in the argument list.

With contains() and indexOf(), the arguments are of type

Object, so there are no wildcards involved and the compiler allows

the call. This means it’s up to the generic class designer to decide

which calls are “safe,” and to use Object types for their arguments.

To disallow a call when the type is used with wildcards, use the type

parameter in the argument list.



A very simple Holder class will demonstrate:

// generics/Holder.java

import java.util.Objects;

public class Holder<T> {

private T value;

public Holder() {}

public Holder(T val) { value = val; }

public void set(T val) { value = val; }

public T get() { return value; }

@Override

public boolean equals(Object o) {

return o instanceof Holder &&

Objects.equals(value, ((Holder)o).value);

}

@Override

public int hashCode() {

return Objects.hashCode(value);

}

public static void main(String[] args) {

Holder<Apple> apple = new Holder<>(new Apple());



Apple d = apple.get();

apple.set(d);

// Holder<Fruit> Fruit = apple; // Cannot upcast

Holder<? extends Fruit> fruit = apple; // OK

Fruit p = fruit.get();

d = (Apple)fruit.get(); // Returns 'Object'

try {

Orange c = (Orange)fruit.get(); // No warning

} catch(Exception e) { System.out.println(e); }

// fruit.set(new Apple()); // Cannot call set()

// fruit.set(new Fruit()); // Cannot call set()

System.out.println(fruit.equals(d)); // OK

}

}

/* Output:

java.lang.ClassCastException: Apple cannot be cast to

Orange



false

*/

Holder has a set() which takes a T, a get() which returns a T, and an
equals() that takes an Object. As you’ve already seen, if

you create a Holder<Apple> , you cannot upcast it to a

Holder<Fruit> , but you can upcast to a Holder<? extends

Fruit> . If you call get(), it only returns a Fruit—that’s as much as it knows
given the “anything that extends Fruit” bound. If you

know more about what’s there, you can cast to a specific type of

Fruit and there won’t be any warning about it, but you risk a

ClassCastException. The set() method won’t work with either

an Apple or a Fruit, because the set() argument is also “?

Extends Fruit,” which means it can be anything and the compiler

can’t verify type safety for “anything.”

However, the equals() method works fine because it takes an

Object instead of a T as an argument. Thus, the compiler is only

paying attention to the types of objects that are passed and returned. It

is not analyzing the code to see if you perform any actual writes or

reads.

Java 7 introduced the java.util.Objects library for the

purpose, among other things, of making it easier to create equals()



and hashCode() methods. The canonical form of equals() shown

here is described in the Appendix: Understanding equals() and

hashCode().

Contravariance

It’s also possible to go the other way, and use supertype wildcards.

Here, you say that the wildcard is bounded by any base class of a

particular class, by specifying <? super MyClass> or even using a

type parameter: <? super T> (although you cannot give a generic

parameter a supertype bound; that is, you cannot say <T super

MyClass> ). This safely passes a typed object into a generic type.

Thus, with supertype wildcards you can write into a Collection:

// generics/SuperTypeWildcards.java

import java.util.*;

public class SuperTypeWildcards {

static void writeTo(List<? super Apple> apples) {

apples.add(new Apple());

apples.add(new Jonathan());

// apples.add(new Fruit()); // Error

}

}



The argument apples is a List of some type that is the base type of

Apple; thus you know it is safe to add an Apple or a subtype of

Apple. Since the lower bound is Apple, however, you don’t know it

is safe to add Fruit to such a List, because that would allow the

List to be opened up to the addition of non-Apple types, which

would violate static type safety.

This example provides a review of covariance and wildcards:

// generics/GenericReading.java

import java.util.*;

public class GenericReading {

static List<Apple> apples =

Arrays.asList(new Apple());

static List<Fruit> fruit = Arrays.asList(new Fruit());

static <T> T readExact(List<T> list) {

return list.get(0);

}

// A static method adapts to each call:

static void f1() {

Apple a = readExact(apples);

Fruit f = readExact(fruit);



f = readExact(apples);

}

// A class type is established

// when the class is instantiated:

static class Reader<T> {

T readExact(List<T> list) { return list.get(0); }

}

static void f2() {

Reader<Fruit> fruitReader = new Reader<>();

Fruit f = fruitReader.readExact(fruit);

//- Fruit a = fruitReader.readExact(apples);

// error: incompatible types: List<Apple>

// cannot be converted to List<Fruit>

}

static class CovariantReader<T> {

T readCovariant(List<? extends T> list) {

return list.get(0);

}

}

static void f3() {



CovariantReader<Fruit> fruitReader =

new CovariantReader<>();

Fruit f = fruitReader.readCovariant(fruit);

Fruit a = fruitReader.readCovariant(apples);

}

public static void main(String[] args) {

f1(); f2(); f3();

}

}

readExact() uses the precise type. If you use the precise type with

no wildcards, you can both write and read that precise type into and

out of a List. In addition, for the return value, the static generic

method readExact() effectively “adapts” to each method call, and

returns an Apple from a List<Apple> and a Fruit from a

List<Fruit> , as you see in f1(). Thus, if you can get away with a

static generic method, you don’t necessarily need covariance if

you’re just reading.



With a generic class, however, the parameter is established for the

class when you make an instance of that class. As shown in f2(), the

fruitReader instance can read a piece of Fruit from a

List<Fruit> , since that is its exact type. But a List<Apple>

should also produce Fruit objects, and the fruitReader doesn’t

allow this.

To fix the problem, the CovariantReader.readCovariant()

method takes a List<? extends T> . It’s safe to read a T from

that list because you know that everything in that list is at least a T,

and possibly something derived from a T. In f3() you see it’s now

possible to read a Fruit from a List<Apple> .

Unbounded Wildcards

The unbounded wildcard <?> appears to mean “anything,” and so

using an unbounded wildcard looks equivalent to using a raw type.

Indeed, the compiler seems at first to agree with this assessment:

// generics/UnboundedWildcards1.java

import java.util.*;

public class UnboundedWildcards1 {

static List list1;

static List<?> list2;



static List<? extends Object> list3;

static void assign1(List list) {

list1 = list;

list2 = list;

//- list3 = list;

// warning: [unchecked] unchecked conversion

// list3 = list;

// ^

// required: List<? extends Object>

// found: List

}

static void assign2(List<?> list) {

list1 = list;

list2 = list;

list3 = list;

}

static void assign3(List<? extends Object> list) {

list1 = list;

list2 = list;

list3 = list;



}

public static void main(String[] args) {

assign1(new ArrayList());

assign2(new ArrayList());

//- assign3(new ArrayList());

// warning: [unchecked] unchecked method invocation:

// method assign3 in class UnboundedWildcards1

// is applied to given types

// assign3(new ArrayList());

// ^

// required: List<? extends Object>

// found: ArrayList

// warning: [unchecked] unchecked conversion

// assign3(new ArrayList());

// ^

// required: List<? extends Object>

// found: ArrayList

// 2 warnings

assign1(new ArrayList<>());

assign2(new ArrayList<>());



assign3(new ArrayList<>());

// Both forms are acceptable as List<?>:

List<?> wildList = new ArrayList();

wildList = new ArrayList<>();

assign1(wildList);

assign2(wildList);

assign3(wildList);

}

}

There are many cases like the ones you see here where the compiler

could care less whether you use a raw type or <?> . In those cases, <?> can
be thought of as a decoration; and yet it is valuable because, in

effect, it says, “I wrote this code with Java generics in mind, and I

don’t mean here I’m using a raw type, but that in this case the generic

parameter can hold any type.”

A second example shows an important use of unbounded wildcards.

When you are dealing with multiple generic parameters, it’s

sometimes necessary to allow one parameter to be any type while

establishing a particular type for the other parameter:

// generics/UnboundedWildcards2.java

import java.util.*;



public class UnboundedWildcards2 {

static Map map1;

static Map<?,?> map2;

static Map<String,?> map3;

static void assign1(Map map) { map1 = map; }

static void assign2(Map<?,?> map) { map2 = map; }

static void assign3(Map<String,?> map) { map3 = map; }

public static void main(String[] args) {

assign1(new HashMap());

assign2(new HashMap());

//- assign3(new HashMap());

// warning: [unchecked] unchecked method invocation:

// method assign3 in class UnboundedWildcards2

// is applied to given types

// assign3(new HashMap());

// ^

// required: Map<String,?>

// found: HashMap

// warning: [unchecked] unchecked conversion

// assign3(new HashMap());



// ^

// required: Map<String,?>

// found: HashMap

// 2 warnings

assign1(new HashMap<>());

assign2(new HashMap<>());

assign3(new HashMap<>());

}

}

But again, when you have all unbounded wildcards, as seen in

Map<?,?> , the compiler doesn’t seem to distinguish it from a raw

Map. In addition, UnboundedWildcards1.java shows that the

compiler treats List<?> and List<? extends Object>

differently.

What’s confusing is that the compiler doesn’t always care about

differences between, for example, List and List<?> , so they can

seem like the same thing. Indeed, since a generic argument erases to

its first bound, List<?> would seem equivalent to List<Object> , and List is
effectively List<Object> as well—except neither of

those statements is exactly true. List actually means “a raw List

that holds any Object type,” whereas List<?> means “a non-raw



List of some specific type, but we just don’t know what that type is.”

When does the compiler actually care about differences between raw

types and types involving unbounded wildcards? The following

example uses the previously defined Holder<T> class. It contains

methods that take Holder as an argument, but in various forms: as a

raw type, with a specific type parameter, and with an unbounded

wildcard parameter:

// generics/Wildcards.java

// Exploring the meaning of wildcards

public class Wildcards {

// Raw argument:

static void rawArgs(Holder holder, Object arg) {

//- holder.set(arg);

// warning: [unchecked] unchecked call to set(T)

// as a member of the raw type Holder

// holder.set(arg);

// ^

// where T is a type-variable:

// T extends Object declared in class Holder

// 1 warning



// Can't do this; don't have any 'T':

// T t = holder.get();

// OK, but type information is lost:

Object obj = holder.get();

}

// Like rawArgs(), but errors instead of warnings:

static void

unboundedArg(Holder<?> holder, Object arg) {

//- holder.set(arg);

// error: method set in class Holder<T>

// cannot be applied to given types;

// holder.set(arg);

// ^

// required: CAP#1

// found: Object

// reason: argument mismatch;

// Object cannot be converted to CAP#1

// where T is a type-variable:

// T extends Object declared in class Holder

// where CAP#1 is a fresh type-variable:



// CAP#1 extends Object from capture of ?

// 1 error

// Can't do this; don't have any 'T':

// T t = holder.get();

// OK, but type information is lost:

Object obj = holder.get();

}

static <T> T exact1(Holder<T> holder) {

return holder.get();

}

static <T> T exact2(Holder<T> holder, T arg) {

holder.set(arg);

return holder.get();

}

static <T>

T wildSubtype(Holder<? extends T> holder, T arg) {

//- holder.set(arg);

// error: method set in class Holder<T#2>

// cannot be applied to given types;

// holder.set(arg);



// ^

// required: CAP#1

// found: T#1

// reason: argument mismatch;

// T#1 cannot be converted to CAP#1

// where T#1,T#2 are type-variables:

// T#1 extends Object declared in method

// <T#1>wildSubtype(Holder<? extends T#1>,T#1)

// T#2 extends Object declared in class Holder

// where CAP#1 is a fresh type-variable:

// CAP#1 extends T#1 from

// capture of ? extends T#1

// 1 error

return holder.get();

}

static <T>

void wildSupertype(Holder<? super T> holder, T arg) {

holder.set(arg);

//- T t = holder.get();

// error: incompatible types:



// CAP#1 cannot be converted to T

// T t = holder.get();

// ^

// where T is a type-variable:

// T extends Object declared in method

// <T>wildSupertype(Holder<? super T>,T)

// where CAP#1 is a fresh type-variable:

// CAP#1 extends Object super:

// T from capture of ? super T

// 1 error

// OK, but type information is lost:

Object obj = holder.get();

}

public static void main(String[] args) {

Holder raw = new Holder<>();

// Or:

raw = new Holder();

Holder<Long> qualified = new Holder<>();

Holder<?> unbounded = new Holder<>();

Holder<? extends Long> bounded = new Holder<>();



Long lng = 1L;

rawArgs(raw, lng);

rawArgs(qualified, lng);

rawArgs(unbounded, lng);

rawArgs(bounded, lng);

unboundedArg(raw, lng);

unboundedArg(qualified, lng);

unboundedArg(unbounded, lng);

unboundedArg(bounded, lng);

//- Object r1 = exact1(raw);

// warning: [unchecked] unchecked method invocation:

// method exact1 in class Wildcards is applied

// to given types

// Object r1 = exact1(raw);

// ^

// required: Holder<T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>exact1(Holder<T>)



// warning: [unchecked] unchecked conversion

// Object r1 = exact1(raw);

// ^

// required: Holder<T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>exact1(Holder<T>)

// 2 warnings

Long r2 = exact1(qualified);

Object r3 = exact1(unbounded); // Must return Object

Long r4 = exact1(bounded);

//- Long r5 = exact2(raw, lng);

// warning: [unchecked] unchecked method invocation:

// method exact2 in class Wildcards is

// applied to given types

// Long r5 = exact2(raw, lng);

// ^

// required: Holder<T>,T

// found: Holder,Long



// where T is a type-variable:

// T extends Object declared in

// method <T>exact2(Holder<T>,T)

// warning: [unchecked] unchecked conversion

// Long r5 = exact2(raw, lng);

// ^

// required: Holder<T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>exact2(Holder<T>,T)

// 2 warnings

Long r6 = exact2(qualified, lng);

//- Long r7 = exact2(unbounded, lng);

// error: method exact2 in class Wildcards

// cannot be applied to given types;

// Long r7 = exact2(unbounded, lng);

// ^

// required: Holder<T>,T

// found: Holder<CAP#1>,Long



// reason: inference variable T has

// incompatible bounds

// equality constraints: CAP#1

// lower bounds: Long

// where T is a type-variable:

// T extends Object declared in

// method <T>exact2(Holder<T>,T)

// where CAP#1 is a fresh type-variable:

// CAP#1 extends Object from capture of ?

// 1 error

//- Long r8 = exact2(bounded, lng);

// error: method exact2 in class Wildcards

// cannot be applied to given types;

// Long r8 = exact2(bounded, lng);

// ^

// required: Holder<T>,T

// found: Holder<CAP#1>,Long

// reason: inference variable T

// has incompatible bounds

// equality constraints: CAP#1



// lower bounds: Long

// where T is a type-variable:

// T extends Object declared in

// method <T>exact2(Holder<T>,T)

// where CAP#1 is a fresh type-variable:

// CAP#1 extends Long from

// capture of ? extends Long

// 1 error

//- Long r9 = wildSubtype(raw, lng);

// warning: [unchecked] unchecked method invocation:

// method wildSubtype in class Wildcards

// is applied to given types

// Long r9 = wildSubtype(raw, lng);

// ^

// required: Holder<? extends T>,T

// found: Holder,Long

// where T is a type-variable:

// T extends Object declared in

// method <T>wildSubtype(Holder<? extends T>,T)

// warning: [unchecked] unchecked conversion



// Long r9 = wildSubtype(raw, lng);

// ^

// required: Holder<? extends T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>wildSubtype(Holder<? extends T>,T)

// 2 warnings

Long r10 = wildSubtype(qualified, lng);

// OK, but can only return Object:

Object r11 = wildSubtype(unbounded, lng);

Long r12 = wildSubtype(bounded, lng);

//- wildSupertype(raw, lng);

// warning: [unchecked] unchecked method invocation:

// method wildSupertype in class Wildcards

// is applied to given types

// wildSupertype(raw, lng);

// ^

// required: Holder<? super T>,T

// found: Holder,Long



// where T is a type-variable:

// T extends Object declared in

// method <T>wildSupertype(Holder<? super T>,T)

// warning: [unchecked] unchecked conversion

// wildSupertype(raw, lng);

// ^

// required: Holder<? super T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>wildSupertype(Holder<? super T>,T)

// 2 warnings

wildSupertype(qualified, lng);

//- wildSupertype(unbounded, lng);

// error: method wildSupertype in class Wildcards

// cannot be applied to given types;

// wildSupertype(unbounded, lng);

// ^

// required: Holder<? super T>,T

// found: Holder<CAP#1>,Long



// reason: cannot infer type-variable(s) T

// (argument mismatch; Holder<CAP#1>

// cannot be converted to Holder<? super T>)

// where T is a type-variable:

// T extends Object declared in

// method <T>wildSupertype(Holder<? super T>,T)

// where CAP#1 is a fresh type-variable:

// CAP#1 extends Object from capture of ?

// 1 error

//- wildSupertype(bounded, lng);

// error: method wildSupertype in class Wildcards

// cannot be applied to given types;

// wildSupertype(bounded, lng);

// ^

// required: Holder<? super T>,T

// found: Holder<CAP#1>,Long

// reason: cannot infer type-variable(s) T

// (argument mismatch; Holder<CAP#1>

// cannot be converted to Holder<? super T>)

// where T is a type-variable:



// T extends Object declared in

// method <T>wildSupertype(Holder<? super T>,T)

// where CAP#1 is a fresh type-variable:

// CAP#1 extends Long from capture of

// ? extends Long

// 1 error

}

}

In rawArgs(), the compiler knows that Holder is a generic type, so

even though it is expressed as a raw type here, the compiler knows that

passing an Object to set() is unsafe. Since it’s a raw type, you can

pass an object of any type into set(), and that object is upcast to

Object. So anytime you have a raw type, you give up compile-time

checking. The call to get() shows the same issue: There’s no T, so

the result can only be an Object.

It’s easy to start thinking that a raw Holder and a Holder<?> are

roughly the same thing. But unboundedArg() emphasizes that they

are different—it discovers the same kind of problems, but reports them

as errors rather than warnings, because the raw Holder will hold a

combination of any types, whereas a Holder<?> holds a



homogeneous collection of some specific type, and thus you can’t just

pass in an Object.

In exact1() and exact2(), you see the exact generic parameters

used—no wildcards. You’ll see that exact2() has different

limitations than exact1(), because of the extra argument.

In wildSubtype(), the constraints on the type of Holder are

relaxed to include a Holder of anything that extends T. Again,

this means T could be Fruit, while holder could legitimately be a

Holder<Apple> . To prevent putting an Orange in a

Holder<Apple> , the call to set() (or any method that takes an

argument of the type parameter) is disallowed. However, you still

know that anything that comes out of a Holder<? extends

Fruit> will at least be Fruit, so get() (or any method that

produces a return value of the type parameter) is allowed.

Supertype wildcards are shown in wildSupertype(), which shows

the opposite behavior of wildSubtype(): holder can be a

collection that holds any type that’s a base class of T. Thus, set() can

accept a T, since anything that works with a base type will

polymorphically work with a derived type (thus a T). However, trying

to call get() is not helpful, because the type held by holder can be



any supertype at all, so the only safe one is Object.

This example also shows the limitations on what you can and can’t do

with an unbounded parameter in unbounded(): You can’t get()

or set() a T because you don’t have a T.

In main() you see which of these methods can accept which types of

arguments without errors and warnings. For migration compatibility,

rawArgs() will take all the different variations of Holder without

producing warnings. The unboundedArg() method is equally

accepting of all types, although, as previously noted, it handles them

differently inside the body of the method.

If you pass a raw Holder reference into a method that takes an

“exact” generic type (no wildcards), you get a warning because the

exact argument is expecting information that doesn’t exist in the raw

type. And if you pass an unbounded reference to exact1(), there’s

no type information to establish the return type.

exact2() has the most constraints, since it wants exactly a

Holder<T> and an argument of type T, and because of this it



generates errors or warnings unless you give it the exact arguments.

Sometimes this is OK, but if it’s overconstraining, you can use

wildcards, depending on whether you get typed return values from

your generic argument (as seen in wildSubtype()) or you pass

typed arguments to your generic argument (as seen in

wildSupertype()).

The benefit of using exact types instead of wildcard types is that you

can do more with the generic parameters. But wildcards accepts a

broader range of parameterized types as arguments. You must decide

which trade-off is more appropriate for your needs on a case-by-case

basis.

Capture Conversion

One situation in particular requires <?> rather than a raw type. If you pass a
raw type to a method that uses <?> , it’s possible for the

compiler to infer the actual type parameter, so the method can turn

around and call another method that uses the exact type. The

following example demonstrates this technique, called capture

conversion because the unspecified wildcard type is captured and

converted to an exact type. Here, the comments about warnings only

take effect when the @SuppressWarnings annotation is removed:

// generics/CaptureConversion.java



public class CaptureConversion {

static <T> void f1(Holder<T> holder) {

T t = holder.get();

System.out.println(t.getClass().getSimpleName());

}

static void f2(Holder<?> holder) {

f1(holder); // Call with captured type

}

@SuppressWarnings("unchecked")

public static void main(String[] args) {

Holder raw = new Holder<>(1);

f1(raw);

// warning: [unchecked] unchecked method invocation:

// method f1 in class CaptureConversion

// is applied to given types

// f1(raw);

// ^

// required: Holder<T>

// found: Holder

// where T is a type-variable:



// T extends Object declared in

// method <T>f1(Holder<T>)

// warning: [unchecked] unchecked conversion

// f1(raw);

// ^

// required: Holder<T>

// found: Holder

// where T is a type-variable:

// T extends Object declared in

// method <T>f1(Holder<T>)

// 2 warnings

f2(raw); // No warnings

Holder rawBasic = new Holder();

rawBasic.set(new Object());

// warning: [unchecked] unchecked call to set(T)

// as a member of the raw type Holder

// rawBasic.set(new Object());

// ^



// where T is a type-variable:

// T extends Object declared in class Holder

// 1 warning

f2(rawBasic); // No warnings

// Upcast to Holder<?>, still figures it out:

Holder<?> wildcarded = new Holder<>(1.0);

f2(wildcarded);

}

}

/* Output:

Integer

Integer

Object

Double

*/

The type parameters in f1() are all exact, without wildcards or



bounds. In f2(), the Holder parameter is an unbounded wildcard,

so it would seem to be effectively unknown. However, within f2(),

f1() is called and f1() requires a known parameter. What’s

happening is that the parameter type is captured in the process of

calling f2(), and used in the call to f1().

You might wonder if this technique could be used for writing, but that

would require you to pass a specific type along with the Holder<?> .

Capture conversion only works in situations where, within the method,

you must work with the exact type. Notice you can’t return T from

f2(), because T is unknown for f2(). Capture conversion is

interesting, but limited.

Issues

This section addresses an assorted set of issues that appear when you

use Java generics.

No Primitives as Type

Parameters

As mentioned earlier in this chapter, one of the limitations in Java



generics is you cannot use primitives as type parameters. So you

cannot, for example, create an ArrayList<int> .

The solution is to use the primitive wrapper classes in conjunction

with autoboxing. If you create an ArrayList<Integer> and use

primitive ints with this collection, you’ll discover that autoboxing

does the conversion to and from Integer automatically—so it’s

almost as if you have an ArrayList<int> :

// generics/ListOfInt.java

// Autoboxing compensates for the inability

// to use primitives in generics

import java.util.*;

import java.util.stream.*;

public class ListOfInt {

public static void main(String[] args) {

List<Integer> li = IntStream.range(38, 48)

.boxed() // Converts ints to Integers

.collect(Collectors.toList());

System.out.println(li);

}

}



/* Output:

[38, 39, 40, 41, 42, 43, 44, 45, 46, 47]

*/

In general this solution works fine—you’re able to successfully store

and retrieve ints, and autoboxing hides the conversions. However, if

performance is a problem, you can use a specialized version of the

collections adapted for primitive types; one open-source version of

this is org.apache.commons.collections.primitives.

Here’s another approach, which creates a Set of Bytes:

// generics/ByteSet.java

import java.util.*;

public class ByteSet {

Byte[] possibles = { 1,2,3,4,5,6,7,8,9 };

Set<Byte> mySet =

new HashSet<>(Arrays.asList(possibles));

// But you can't do this:

// Set<Byte> mySet2 = new HashSet<>(

// Arrays.<Byte>asList(1,2,3,4,5,6,7,8,9));

}

Autoboxing solves some problems, but not all.



In the following example, the FillArray interface contains

generic methods that use Suppliers to fill arrays with objects

(making the class generic wouldn’t work here because the method is

static). The Supplier implementations come from the Arrays

chapter, and in main() you see FillArray.fill() used to fill

arrays with objects:

// generics/PrimitiveGenericTest.java

import onjava.*;

import java.util.*;

import java.util.function.*;

// Fill an array using a generator:

interface FillArray {

static <T> T[] fill(T[] a, Supplier<T> gen) {

Arrays.setAll(a, n -> gen.get());

return a;

}

static int[] fill(int[] a, IntSupplier gen) {

Arrays.setAll(a, n -> gen.getAsInt());

return a;



}

static long[] fill(long[] a, LongSupplier gen) {

Arrays.setAll(a, n -> gen.getAsLong());

return a;

}

static double[] fill(double[] a, DoubleSupplier gen) {

Arrays.setAll(a, n -> gen.getAsDouble());

return a;

}

}

public class PrimitiveGenericTest {

public static void main(String[] args) {

String[] strings = FillArray.fill(

new String[5], new Rand.String(9));

System.out.println(Arrays.toString(strings));

int[] integers = FillArray.fill(

new int[9], new Rand.Pint());



System.out.println(Arrays.toString(integers));

}

}

/* Output:

[btpenpccu, xszgvgmei, nneeloztd, vewcippcy, gpoalkljl]

[635, 8737, 3941, 4720, 6177, 8479, 6656, 3768, 4948]

*/

Autoboxing doesn’t apply to arrays, so we have to create overloaded

versions of FillArray.fill(), or create generators that produced

the Wrapped output.

FillArray is only slightly more useful than

java.util.Arrays.setAll() because it returns the filled

array.

Implementing Parameterized

Interfaces

A class cannot implement two variants of the same generic interface.

Because of erasure, these are both the same interface. Here’s a



situation where this clash occurs:

// generics/MultipleInterfaceVariants.java

// {WillNotCompile}

package generics;

interface Payable<T> {}

class Employee implements Payable<Employee> {}

class Hourly extends Employee

implements Payable<Hourly> {}

Hourly won’t compile because erasure reduces

Payable<Employee> and Payable<Hourly> to the same class,

Payable, and the above code would mean that you’d be

implementing the same interface twice. If you remove the generic

parameters from both uses of Payable—as the compiler does during

erasure—the code compiles.

This issue becomes annoying when working with some of the more

fundamental Java interfaces, such as Comparable<T> , as you’ll see

a little later in this section.

Casting and Warnings

Using a cast or instanceof with a generic type parameter doesn’t

have any effect. The following collection stores values internally as



Objects and casts them back to T when you fetch them:

// generics/GenericCast.java

import java.util.*;

import java.util.stream.*;

class FixedSizeStack<T> {

private final int size;

private Object[] storage;

private int index = 0;

FixedSizeStack(int size) {

this.size = size;

storage = new Object[size];

}

public void push(T item) {

if(index < size)

storage[index++] = item;

}

@SuppressWarnings("unchecked")

public T pop() {

return index == 0 ? null : (T)storage[--index];

}



@SuppressWarnings("unchecked")

Stream<T> stream() {

return (Stream<T>)Arrays.stream(storage);

}

}

public class GenericCast {

static String[] letters =

"ABCDEFGHIJKLMNOPQRS".split("");

public static void main(String[] args) {

FixedSizeStack<String> strings =

new FixedSizeStack<>(letters.length);

Arrays.stream("ABCDEFGHIJKLMNOPQRS".split(""))

.forEach(strings::push);

System.out.println(strings.pop());

strings.stream()

.map(s -> s + " ")

.forEach(System.out::print);

}

}

/* Output:



S

A B C D E F G H I J K L M N O P Q R S

*/

Without the @SuppressWarnings annotations, the compiler will

produce an “unchecked cast” warning for pop() and stream().

Because of erasure, it can’t know whether the cast is safe. T is erased to

its first bound, Object by default, so pop() is actually just casting

an Object to an Object.

There are times when generics do not eliminate the need to cast, and

this generates a warning by the compiler which is inappropriate. For

example:

// generics/NeedCasting.java

import java.io.*;

import java.util.*;

public class NeedCasting {

@SuppressWarnings("unchecked")

public void f(String[] args) throws Exception {

ObjectInputStream in = new ObjectInputStream(

new FileInputStream(args[0]));

List<Widget> shapes = (List<Widget>)in.readObject();



}

}

As you’ll learn in the Appendix: Object Serialization, readObject() cannot
know what it is reading, so it returns an Object that must be

cast. But when you comment out the @SuppressWarnings

annotation and compile the program, you get a warning:

NeedCasting.java uses unchecked or unsafe operations.

Recompile with -Xlint:unchecked for details.

And if you follow the instructions and recompile with -

Xlint:unchecked:

NeedCasting.java:10: warning: [unchecked] unchecked cast

List<Widget> shapes = (List<Widget>)in.readObject();

^

required: List<Widget>

found: Object

1 warning

You’re forced to cast, and yet you’re told not to. To solve the problem,



you must use a form of cast introduced in Java 5, the cast via a generic

class:

// generics/ClassCasting.java

import java.io.*;

import java.util.*;

public class ClassCasting {

@SuppressWarnings("unchecked")

public void f(String[] args) throws Exception {

ObjectInputStream in = new ObjectInputStream(

new FileInputStream(args[0]));

// Won't Compile:

// List<Widget> lw1 =

// List<>.class.cast(in.readObject());

List<Widget> lw2 = List.class.cast(in.readObject());

}

}

However, you can’t cast to the actual type (List<Widget> ). That is,

you can’t say:

List<Widget>.class.cast(in.readObject())

and even if you add another cast like this:



(List<Widget>)List.class.cast(in.readObject())

you’ll still get a warning.

Overloading

This won’t compile, even though it seems reasonable:

// generics/UseList.java

// {WillNotCompile}

import java.util.*;

public class UseList<W, T> {

void f(List<T> v) {}

void f(List<W> v) {}

}

Overloading the method produces the identical type signature because

of erasure.

Instead, you must provide distinct method names when the erased

arguments do not produce a unique argument list:

// generics/UseList2.java

import java.util.*;



public class UseList2<W, T> {

void f1(List<T> v) {}

void f2(List<W> v) {}

}

Fortunately, this kind of problem is detected by the compiler.

Base Class Hijacks an

Interface

Suppose you have a Pet class that is Comparable to other Pet

objects:

// generics/ComparablePet.java

public class ComparablePet

implements Comparable<ComparablePet> {

@Override

public int compareTo(ComparablePet arg) {

return 0;

}

}

It makes sense to try to narrow the comparison type for a subclass of

ComparablePet. For example, a Cat should only be Comparable

with other Cats:



// generics/HijackedInterface.java

// {WillNotCompile}

class Cat

extends ComparablePet implements Comparable<Cat>{

// error: Comparable cannot be inherited with

// different arguments: <Cat> and <ComparablePet>

// class Cat

// ^

// 1 error

public int compareTo(Cat arg) { return 0; }

}

Unfortunately, this won’t work. Once the ComparablePet argument

is established for Comparable, no other implementing class can ever

be compared to anything but a ComparablePet:

// generics/RestrictedComparablePets.java

class Hamster extends ComparablePet

implements Comparable<ComparablePet> {

public int compareTo(ComparablePet arg) {

return 0;

}



}

// Or just:

class Gecko extends ComparablePet {

public int compareTo(ComparablePet arg) {

return 0;

}

}

Hamster shows it is possible to reimplement the same interface that

is in ComparablePet, as long as it is exactly the same, including the

parameter types. However, this is the same as just overriding the

methods in the base class, as seen in Gecko.

Self-Bounded Types

There’s one rather mind-bending idiom that appears periodically in



Java generics. Here’s what it looks like:

class SelfBounded<T extends SelfBounded<T>> { // ...

This has the dizzying effect of two mirrors pointed at each other, a

kind of infinite reflection. The class SelfBounded takes a generic

argument T, T is constrained by a bound, and that bound is

SelfBounded, with T as an argument.

This is difficult to parse when you first see it, and it emphasizes that

the extends keyword, when used with bounds, is definitely different

than when it is used to create subclasses.

Curiously Recurring Generics

To understand what a self-bounded type means, let’s start with a

simpler version of the idiom, without the self-bound.

You can’t inherit directly from a generic parameter. However, you can

inherit from a class that uses that generic parameter in its own

definition. That is, you can say:

// generics/CuriouslyRecurringGeneric.java

class GenericType<T> {}

public class CuriouslyRecurringGeneric

extends GenericType<CuriouslyRecurringGeneric> {}

This could be called curiously recurring generics (CRG) after Jim



Coplien’s Curiously Recurring Template Pattern in C++. The

“curiously recurring” part refers to the fact that your class appears,

rather curiously, in its own base class.

To understand what this means, try saying it aloud: “I’m creating a

new class that inherits from a generic type that takes my class name as

its parameter.” What can the generic base type accomplish when given

the derived class name? Well, generics in Java are about arguments

and return types, so it can produce a base class that uses the derived

type for its arguments and return types. It can also use the derived

type for field types, even though those are erased to Object. Here’s a

generic class that expresses this:

// generics/BasicHolder.java

public class BasicHolder<T> {

T element;

void set(T arg) { element = arg; }

T get() { return element; }

void f() {

System.out.println(

element.getClass().getSimpleName());

}



}

It’s an ordinary generic type with methods that both accept and

produce objects of the parameter type, along with a method that

operates on the stored field (although it only performs Object

operations on that field).

We can use BasicHolder in a curiously recurring generic:

// generics/CRGWithBasicHolder.java

class Subtype extends BasicHolder<Subtype> {}

public class CRGWithBasicHolder {

public static void main(String[] args) {

Subtype

st1 = new Subtype(),

st2 = new Subtype();

st1.set(st2);

Subtype st3 = st1.get();

st1.f();

}



}

/* Output:

Subtype

*/

Notice something important here: The new class Subtype takes

arguments and returns values of Subtype, not just the base class

BasicHolder. This is the essence of CRG: The base class substitutes

the derived class for its parameters. This means the generic base class

becomes a kind of template for common functionality for all its

derived classes, but this functionality will use the derived type for all of

its arguments and return values. That is, the exact type instead of the

base type is used in the resulting class. So in Subtype, both the

argument to set() and the return type of get() are exactly

Subtypes.

Self-Bounding

The BasicHolder can use any type as its generic parameter, as seen

here:

// generics/Unconstrained.java

class Other {}

class BasicOther extends BasicHolder<Other> {}



public class Unconstrained {

public static void main(String[] args) {

BasicOther b = new BasicOther();

BasicOther b2 = new BasicOther();

b.set(new Other());

Other other = b.get();

b.f();

}

}

/* Output:

Other

*/

Self-bounding takes the extra step of forcing the generic to be used as

its own bound argument. Look at how the resulting class can and can’t

be used:

// generics/SelfBounding.java

class SelfBounded<T extends SelfBounded<T>> {

T element;

SelfBounded<T> set(T arg) {

element = arg;



return this;

}

T get() { return element; }

}

class A extends SelfBounded<A> {}

class B extends SelfBounded<A> {} // Also OK

class C extends SelfBounded<C> {

C setAndGet(C arg) { set(arg); return get(); }

}

class D {}

// Can't do this:

// class E extends SelfBounded<D> {}

// Compile error:

// Type parameter D is not within its bound

// Alas, you can do this, so you cannot force the idiom:

class F extends SelfBounded {}

public class SelfBounding {

public static void main(String[] args) {

A a = new A();

a.set(new A());



a = a.set(new A()).get();

a = a.get();

C c = new C();

c = c.setAndGet(new C());

}

}

What self-bounding does is require the class in an inheritance

relationship:

class A extends SelfBounded<A> {}

This forces you to pass the class you are defining as a parameter to the

base class.

What’s the added value in self-bounding the parameter? The type

parameter must be the same as the class being defined. As you see in

the definition of class B, you can also derive from a SelfBounded

that uses a parameter of another SelfBounded, although the

predominant use seems to be the one you see for class A. The attempt

to define E shows you cannot use a type parameter that is not a

SelfBounded.

Unfortunately, F compiles without warnings, so the self-bounding

idiom is not enforceable. If it’s really important, it can require an



external tool to ensure that raw types are not used in place of

parameterized types.

Notice you can remove the constraint and all the classes will still

compile, but E will also compile:

// generics/NotSelfBounded.java

public class NotSelfBounded<T> {

T element;

NotSelfBounded<T> set(T arg) {

element = arg;

return this;

}

T get() { return element; }

}

class A2 extends NotSelfBounded<A2> {}

class B2 extends NotSelfBounded<A2> {}

class C2 extends NotSelfBounded<C2> {

C2 setAndGet(C2 arg) { set(arg); return get(); }

}

class D2 {}

// Now this is OK:



class E2 extends NotSelfBounded<D2> {}

Clearly, the self-bounding constraint serves only to force the

inheritance relationship. If you use self-bounding, you know that the

type parameter used by the class is the same basic type as the class

that’s using that parameter. It forces anyone using that class to follow

that form.

It’s also possible to use self-bounding for generic methods:

// generics/SelfBoundingMethods.java

public class SelfBoundingMethods {

static <T extends SelfBounded<T>> T f(T arg) {

return arg.set(arg).get();

}

public static void main(String[] args) {

A a = f(new A());

}

}

This prevents the method from being applied to anything but a self-



bounded argument of the form shown.

Argument Covariance

The value of self-bounding types is that they produce covariant

argument types—method argument types vary to follow the

subclasses.

Although self-bounding types also produce return types that are the

same as the subclass type, this is not so important because covariant

return types were introduced in Java 5:

// generics/CovariantReturnTypes.java

class Base {}

class Derived extends Base {}

interface OrdinaryGetter {

Base get();

}

interface DerivedGetter extends OrdinaryGetter {

// Overridden method return type can vary:

@Override

Derived get();

}

public class CovariantReturnTypes {



void test(DerivedGetter d) {

Derived d2 = d.get();

}

}

The get() method in DerivedGetter overrides get() in

OrdinaryGetter and returns a type that is derived from the type

returned by OrdinaryGetter.get(). Although this is perfectly

logical—a derived type method can return a more specific type than

the base type method it’s overriding—it was illegal in earlier versions

of Java.

A self-bounded generic does in fact produce the exact derived type as a

return value, as seen here with get():

// generics/GenericsAndReturnTypes.java

interface GenericGetter<T extends GenericGetter<T>> {

T get();

}

interface Getter extends GenericGetter<Getter> {}

public class GenericsAndReturnTypes {

void test(Getter g) {

Getter result = g.get();



GenericGetter gg = g.get(); // Also the base type

}

}

Notice this code would not have compiled unless covariant return

types had been added in Java 5.

In non-generic code, however, the argument types cannot be made to

vary with the subtypes:

// generics/OrdinaryArguments.java

class OrdinarySetter {

void set(Base base) {

System.out.println("OrdinarySetter.set(Base)");

}

}

class DerivedSetter extends OrdinarySetter {

void set(Derived derived) {

System.out.println("DerivedSetter.set(Derived)");

}

}

public class OrdinaryArguments {

public static void main(String[] args) {



Base base = new Base();

Derived derived = new Derived();

DerivedSetter ds = new DerivedSetter();

ds.set(derived);

// Compiles--overloaded, not overridden!:

ds.set(base);

}

}

/* Output:

DerivedSetter.set(Derived)

OrdinarySetter.set(Base)

*/

Both set(derived) and set(base) are legal, so

DerivedSetter.set() is not overriding

OrdinarySetter.set(), but instead it is overloading that

method. The output shows there are two methods in

DerivedSetter, so the base-class version is still available, thus

verifying it was overloaded.

However, with self-bounding types, there is only one method in the

derived class, and that method takes the derived type as its argument,



not the base type:

// generics/SelfBoundingAndCovariantArguments.java

interface

SelfBoundSetter<T extends SelfBoundSetter<T>> {

void set(T arg);

}

interface Setter extends SelfBoundSetter<Setter> {}

public class SelfBoundingAndCovariantArguments {

void

testA(Setter s1, Setter s2, SelfBoundSetter sbs) {

s1.set(s2);

//- s1.set(sbs);

// error: method set in interface SelfBoundSetter<T>

// cannot be applied to given types;

// s1.set(sbs);

// ^

// required: Setter

// found: SelfBoundSetter

// reason: argument mismatch;

// SelfBoundSetter cannot be converted to Setter



// where T is a type-variable:

// T extends SelfBoundSetter<T> declared in

// interface SelfBoundSetter

// 1 error

}

}

The compiler doesn’t recognize the attempt to pass in the base type as

an argument to set(), because there is no method with that

signature. The argument has, in effect, been overridden.

Without self-bounding, the ordinary inheritance mechanism steps in

and you get overloading, just as with the non-generic case:

// generics/PlainGenericInheritance.java

class GenericSetter<T> { // Not self-bounded

void set(T arg) {

System.out.println("GenericSetter.set(Base)");

}

}

class DerivedGS extends GenericSetter<Base> {

void set(Derived derived) {

System.out.println("DerivedGS.set(Derived)");



}

}

public class PlainGenericInheritance {

public static void main(String[] args) {

Base base = new Base();

Derived derived = new Derived();

DerivedGS dgs = new DerivedGS();

dgs.set(derived);

dgs.set(base); // Overloaded, not overridden!

}

}

/* Output:

DerivedGS.set(Derived)

GenericSetter.set(Base)

*/

This code mimics OrdinaryArguments.java; in that example,



DerivedSetter inherits from OrdinarySetter which contains

a set(Base). Here, DerivedGS inherits from

GenericSetter<Base> which also contains a set(Base),

created by the generic. And just like OrdinaryArguments.java,

the output shows that DerivedGS contains two overloaded versions

of set(). Without self-bounding, you overload on argument types. If

you use self-bounding, you only end up with one version of a method,

which takes the exact argument type.

Dynamic Type Safety

Because you can pass generic collections to pre-Java 5 code, there’s

still the possibility that old-style code can corrupt your collections.

Java 5 added a set of utilities in java.util.Collections to

solve the type-checking problem in this situation: the static

methods checkedCollection(), checkedList(),

checkedMap(), checkedSet(), checkedSortedMap() and

checkedSortedSet(). Each of these takes the collection to

dynamically check as the first argument and the type to enforce as the

second argument.

A checked collection will throw a ClassCastException when you

try to insert an improper object, as opposed to a pre-generic (raw)



collection which would inform you there was a problem when you

pulled the object out. In the latter case, you know there’s a problem

but you don’t know who the culprit is, but with checked collections you

find out who tried to insert the bad object.

Let’s look at the problem of “putting a cat in a list of dogs” using a

checked collection. Here, oldStyleMethod() represents legacy

code because it takes a raw List, and the

@SuppressWarnings("unchecked") annotation is necessary to

silence the resulting warning:

// generics/CheckedList.java

// Using Collection.checkedList()

import typeinfo.pets.*;

import java.util.*;

public class CheckedList {

@SuppressWarnings("unchecked")

static void oldStyleMethod(List probablyDogs) {

probablyDogs.add(new Cat());

}

public static void main(String[] args) {

List<Dog> dogs1 = new ArrayList<>();



oldStyleMethod(dogs1); // Quietly accepts a Cat

List<Dog> dogs2 = Collections.checkedList(

new ArrayList<>(), Dog.class);

try {

oldStyleMethod(dogs2); // Throws an exception

} catch(Exception e) {

System.out.println("Expected: " + e);

}

// Derived types work fine:

List<Pet> pets = Collections.checkedList(

new ArrayList<>(), Pet.class);

pets.add(new Dog());

pets.add(new Cat());

}

}

/* Output:



Expected: java.lang.ClassCastException: Attempt to

insert class typeinfo.pets.Cat element into collection

with element type class typeinfo.pets.Dog

*/

When you run the program you’ll see that the insertion of a Cat goes

unchallenged by dogs1, but dogs2 immediately throws an exception

upon the insertion of an incorrect type. You can also see it’s fine to put

derived-type objects into a checked collection that is checking for the

base type.

Exceptions

Because of erasure, a catch clause cannot catch an exception of a

generic type, because the exact type of the exception must be known at

both compile time and run time. Also, a generic class can’t directly or

indirectly inherit from Throwable (this further prevents you from

trying to define generic exceptions that can’t be caught).

However, type parameters can be used in the throws clause of a

method declaration. This means you can write generic code that varies

with the type of a checked exception:

// generics/ThrowGenericException.java

import java.util.*;



interface Processor<T, E extends Exception> {

void process(List<T> resultCollector) throws E;

}

class ProcessRunner<T, E extends Exception>

extends ArrayList<Processor<T, E>> {

List<T> processAll() throws E {

List<T> resultCollector = new ArrayList<>();

for(Processor<T, E> processor : this)

processor.process(resultCollector);

return resultCollector;

}

}

class Failure1 extends Exception {}

class Processor1

implements Processor<String, Failure1> {

static int count = 3;

@Override

public void process(List<String> resultCollector)

throws Failure1 {

if(count-- > 1)



resultCollector.add("Hep!");

else

resultCollector.add("Ho!");

if(count < 0)

throw new Failure1();

}

}

class Failure2 extends Exception {}

class Processor2

implements Processor<Integer, Failure2> {

static int count = 2;

@Override

public void process(List<Integer> resultCollector)

throws Failure2 {

if(count-- == 0)

resultCollector.add(47);

else {

resultCollector.add(11);

}

if(count < 0)



throw new Failure2();

}

}

public class ThrowGenericException {

public static void main(String[] args) {

ProcessRunner<String, Failure1> runner =

new ProcessRunner<>();

for(int i = 0; i < 3; i++)

runner.add(new Processor1());

try {

System.out.println(runner.processAll());

} catch(Failure1 e) {

System.out.println(e);

}

ProcessRunner<Integer, Failure2> runner2 =

new ProcessRunner<>();



for(int i = 0; i < 3; i++)

runner2.add(new Processor2());

try {

System.out.println(runner2.processAll());

} catch(Failure2 e) {

System.out.println(e);

}

}

}

/* Output:

[Hep!, Hep!, Ho!]

Failure2

*/

A Processor performs a process() and might throw an

exception of type E. The result of the process() is stored in the

List<T> resultCollector (this is called a collecting

parameter). A ProcessRunner has a processAll() method

that executes every Process object it holds, and returns the

resultCollector.

Unless you can parameterize the thrown exceptions, you can’t write



this code generically because of the checked exceptions.

Mixins

The term mixin has acquired numerous meanings, but the

fundamental concept is that of mixing capabilities from multiple

classes to produce a resulting class that represents all the types of the

mixins. This is often something you do at the last minute, which makes

it convenient to easily assemble classes.

One value of mixins is they consistently apply characteristics and

behaviors across multiple classes. As a bonus, if you change something

in a mixin class, those changes are applied across all the classes where

the mixin is used. Because of this, mixins have part of the flavor of

aspect-oriented programming (AOP), and aspects are often suggested

to solve the mixin problem.

Mixins in C++

One of the strongest arguments made for multiple inheritance in C++

is for mixins. A more elegant approach to mixins uses parameterized

types, whereby a mixin is a class that inherits from its type parameter.



In C++, you can easily create mixins because C++ remembers the type

of its template parameters.

Here’s a C++ example with two mixin types: one that mixes in the

property of having a time stamp, and another that mixes in a serial

number for each object instance:

// generics/Mixins.cpp

#include <string>

#include <ctime>

#include <iostream>

using namespace std;

template< class T> class TimeStamped : public T {

long timeStamp;

public:

TimeStamped() { timeStamp = time(0); }

long getStamp() { return timeStamp; }

};

template< class T> class SerialNumbered : public T {

long serialNumber;

static long counter;

public:



SerialNumbered() { serialNumber = counter++; }

long getSerialNumber() { return serialNumber; }

};

// Define and initialize the static storage:

template< class T> long SerialNumbered<T>::counter = 1;

class Basic {

string value;

public:

void set(string val) { value = val; }

string get() { return value; }

};

int main() {

TimeStamped<SerialNumbered<Basic>> mixin1, mixin2;

mixin1.set("test string 1");

mixin2.set("test string 2");

cout << mixin1.get() << " " << mixin1.getStamp() <<

" " << mixin1.getSerialNumber() << endl;

cout << mixin2.get() << " " << mixin2.getStamp() <<

" " << mixin2.getSerialNumber() << endl;

}



/* Output:

test string 1 1452987605 1

test string 2 1452987605 2

*/

In main(), the resulting type of mixin1 and mixin2 has all the

methods of the mixed-in types. You can think of a mixin as a function

that maps existing classes to new subclasses. Notice how trivial it is to

create a mixin using this technique; basically, you just say, “Here’s

what I want,” and it happens:

TimeStamped<SerialNumbered<Basic>> mixin1, mixin2;

Very unfortunately, Java generics don’t permit this. Erasure forgets

the base-class type, so:

A generic class cannot inherit directly

from a generic parameter.

This highlights one of the big problems I have with any number of

Java language design decisions (and the marketing that went along

with those features): There’s a lot of promise, but when you actually



try to do something interesting, you discover you can’t.

Mixing with Interfaces

A commonly suggested solution is to use interfaces to produce the

effect of mixins, like this:

// generics/Mixins.java

import java.util.*;

interface TimeStamped { long getStamp(); }

class TimeStampedImp implements TimeStamped {

private final long timeStamp;

TimeStampedImp() {

timeStamp = new Date().getTime();

}

@Override

public long getStamp() { return timeStamp; }

}

interface SerialNumbered { long getSerialNumber(); }

class SerialNumberedImp implements SerialNumbered {

private static long counter = 1;

private final long serialNumber = counter++;

@Override



public long getSerialNumber() { return serialNumber; }

}

interface Basic {

void set(String val);

String get();

}

class BasicImp implements Basic {

private String value;

@Override

public void set(String val) { value = val; }

@Override

public String get() { return value; }

}

class Mixin extends BasicImp

implements TimeStamped, SerialNumbered {

private TimeStamped timeStamp = new TimeStampedImp();

private SerialNumbered serialNumber =

new SerialNumberedImp();

@Override

public long getStamp() {



return timeStamp.getStamp();

}

@Override

public long getSerialNumber() {

return serialNumber.getSerialNumber();

}

}

public class Mixins {

public static void main(String[] args) {

Mixin mixin1 = new Mixin(), mixin2 = new Mixin();

mixin1.set("test string 1");

mixin2.set("test string 2");

System.out.println(mixin1.get() + " " +

mixin1.getStamp() + " " +

mixin1.getSerialNumber());

System.out.println(mixin2.get() + " " +

mixin2.getStamp() + " " +

mixin2.getSerialNumber());

}

}



/* Output:

test string 1 1494331663026 1

test string 2 1494331663027 2

*/

The Mixin class is basically using delegation, so each mixed-in type

requires a field in Mixin, and you must write all the necessary

methods in Mixin to forward calls to the appropriate object. This

example uses trivial classes, but with a more complex mixin the code

grows rapidly. 4

Using the Decorator Pattern

When you look at the way it is used, the concept of a mixin seems

closely related to the Decorator design pattern. Decorators are often

used when, to satisfy every possible combination, simple subclassing

produces so many classes it becomes impractical.

The Decorator pattern uses layered objects to dynamically and

transparently add responsibilities to individual objects. The pattern

specifies that all objects that wrap around your initial object have the



same basic interface. Something is decoratable, and you layer on

functionality by wrapping other classes around the decoratable. This

makes the decorators transparent—there are a set of common

messages you can send to an object whether or not it is decorated. A

decorating class can also add methods, but as you shall see, this is

limited.

Decorators are implemented using composition and formal structures

(the decoratable/decorator hierarchy), whereas mixins are

inheritance-based. Think of parameterized-type-based mixins as a

generic decorator mechanism that does not require the inheritance

structure of the Decorator design pattern.

The previous example can be recast using Decorator:

// generics/decorator/Decoration.java

// {java generics.decorator.Decoration}

package generics.decorator;

import java.util.*;

class Basic {

private String value;

public void set(String val) { value = val; }

public String get() { return value; }



}

class Decorator extends Basic {

protected Basic basic;

Decorator(Basic basic) { this.basic = basic; }

@Override

public void set(String val) { basic.set(val); }

@Override

public String get() { return basic.get(); }

}

class TimeStamped extends Decorator {

private final long timeStamp;

TimeStamped(Basic basic) {

super(basic);

timeStamp = new Date().getTime();

}

public long getStamp() { return timeStamp; }

}

class SerialNumbered extends Decorator {

private static long counter = 1;

private final long serialNumber = counter++;



SerialNumbered(Basic basic) { super(basic); }

public long getSerialNumber() { return serialNumber; }

}

public class Decoration {

public static void main(String[] args) {

TimeStamped t = new TimeStamped(new Basic());

TimeStamped t2 = new TimeStamped(

new SerialNumbered(new Basic()));

//- t2.getSerialNumber(); // Not available

SerialNumbered s = new SerialNumbered(new Basic());

SerialNumbered s2 = new SerialNumbered(

new TimeStamped(new Basic()));

//- s2.getStamp(); // Not available

}

}

The class resulting from a mixin contains all the methods of interest,

but the type of the object that results from using decorators is the last



type it was decorated with. That is, although it’s possible to add more

than one layer, the final layer is the actual type, so only the final layer’s

methods are visible, whereas the type of the mixin is all the types that

get mixed together. So a significant drawback to Decorator is it only

effectively works with one layer of decoration (the final one), and the

mixin approach is arguably more natural. Thus, Decorator is only a

limited solution to the problem addressed by mixins.

Mixins with Dynamic Proxies

It’s possible to use a dynamic proxy to create a mechanism that more

closely models mixins than does the Decorator (see the Type

Information chapter for an explanation of how Java’s dynamic proxies work).
With a dynamic proxy, the dynamic type of the resulting class

is the combined types that were mixed.

Because of the constraints of dynamic proxies, each class that is mixed

in must be the implementation of an interface:

// generics/DynamicProxyMixin.java

import java.lang.reflect.*;

import java.util.*;

import onjava.*;

import static onjava.Tuple.*;

class MixinProxy implements InvocationHandler {



Map<String, Object> delegatesByMethod;

@SuppressWarnings("unchecked")

MixinProxy(Tuple2<Object, Class<?>> ... pairs) {

delegatesByMethod = new HashMap<>();

for(Tuple2<Object, Class<?>> pair : pairs) {

for(Method method : pair.a2.getMethods()) {

String methodName = method.getName();

// The first interface in the map

// implements the method.

if(!delegatesByMethod.containsKey(methodName))

delegatesByMethod.put(methodName, pair.a1);

}

}

}

@Override

public Object invoke(Object proxy, Method method,

Object[] args) throws Throwable {

String methodName = method.getName();

Object delegate = delegatesByMethod.get(methodName);

return method.invoke(delegate, args);



}

@SuppressWarnings("unchecked")

public static Object newInstance(Tuple2... pairs) {

Class[] interfaces = new Class[pairs.length];

for(int i = 0; i < pairs.length; i++) {

interfaces[i] = (Class)pairs[i].a2;

}

ClassLoader cl =

pairs[0].a1.getClass().getClassLoader();

return Proxy.newProxyInstance(

cl, interfaces, new MixinProxy(pairs));

}

}

public class DynamicProxyMixin {

public static void main(String[] args) {

Object mixin = MixinProxy.newInstance(

tuple(new BasicImp(), Basic.class),

tuple(new TimeStampedImp(), TimeStamped.class),

tuple(new SerialNumberedImp(),

SerialNumbered.class));



Basic b = (Basic)mixin;

TimeStamped t = (TimeStamped)mixin;

SerialNumbered s = (SerialNumbered)mixin;

b.set("Hello");

System.out.println(b.get());

System.out.println(t.getStamp());

System.out.println(s.getSerialNumber());

}

}

/* Output:

Hello

1494331653339

1

*/

Because only the dynamic type, and not the static type, includes all the

mixed-in types, this is still not as nice as the C++ approach, because



you’re forced to downcast to the appropriate type before you can call

methods for it. However, it is significantly closer to a true mixin.

There is a fair amount of work done towards the support of mixins for

Java, including the creation of at least one language add-on, the Jam

language, specifically for supporting mixins.

Latent Typing

The beginning of this chapter introduced the idea of writing code to

apply as generally as possible. To do this, we need ways to loosen the

constraints on the types our code works with, without losing the

benefits of static type checking. We can then write code for use in

more situations—that is, more “generic” code.

Java generics appear to take a further step in this direction. When you

are writing or using generics that simply hold objects, the code works

with any type (except for primitives, although autoboxing can fix this).

Or, put another way, “holder” generics are able to say, “I don’t care

what type you are.” Code that doesn’t care what type it works with can

indeed be applied everywhere, and is thus quite “generic.”

You’ve seen the problem that arises when you perform manipulations

on generic types (other than calling Object methods). Erasure forces

you to specify the bounds of your generic types in order to safely call



specific methods for the generic objects in your code. This is a

significant limitation to the concept of “generic” because you must

constrain your generic types so they inherit from particular classes or

implement particular interfaces. In some cases you might end up using

an ordinary class or interface instead, because a bounded generic

might be no different from specifying a class or interface.

One solution that some programming languages provide is called

latent typing or structural typing. A more whimsical term is duck

typing, as in, “If it walks like a duck and talks like a duck, you might as

well treat it like a duck.” Duck typing has become a fairly popular

term, possibly because it doesn’t carry the historical baggage that



other terms do.

Generic code typically only calls a few methods on a generic type, and

a language with latent typing loosens the constraint (and produces

more generic code) by only requiring that a subset of methods be

implemented, not a particular class or interface. Because of this, latent

typing cuts across class hierarchies, calling methods that are not part

of a common interface. So a piece of code might say, in effect, “I don’t

care what type you are as long as you can speak() and sit().” By

not requiring a specific type, your code is more generic.

Latent typing is a code organization and reuse mechanism. With it you

can write a piece of code that is easier to reuse than without it. Code

organization and reuse are the foundational levers of all computer

programming: Write it once, use it more than once, and keep the code

in one place. Because I am not required to name an exact interface that

my code operates upon, with latent typing I can write less code and

apply it more easily in more places.

Languages that support latent typing include Python (from

www.Python.org), C++, Ruby, SmallTalk, and Go. Python is a

dynamically typed language (virtually all the type checking happens at

run time), while C++ and Go are statically typed languages (the type



checking happens at compile time), so latent typing does not require

either static or dynamic type checking.

Latent Typing in Python

If we take the description of latent typing and express it in Python, it

looks like this:

# generics/DogsAndRobots.py

class Dog:

def speak(self):

print("Arf!")

def sit(self):

print("Sitting")

def reproduce(self):

pass

class Robot:

def speak(self):

print("Click!")

def sit(self):



print("Clank!")

def oilChange(self):

pass

def perform(anything):

anything.speak()

anything.sit()

a = Dog()

b = Robot()

perform(a)

perform(b)

output = """

Arf!

Sitting

Click!

Clank!

"""

Python uses indentation to determine scope (so no curly braces are



needed), and a colon to begin a new scope. A # indicates a comment to

the end of the line, like // in Java. The methods of a class explicitly

specify the equivalent of the this reference as the first argument,

called self by convention. Constructor calls do not require any sort

of “new” keyword. And Python allows regular (non-member)

functions, as evidenced by perform().

In perform(anything), notice there is no type information for

anything, and anything is just an identifier. It must execute the

operations that perform() asks of it, so an interface is implied. But

you never explicitly write out that interface—it’s latent. perform()

doesn’t care about the type of its argument, so I can pass any object to

it as long as it supports the speak() and sit() methods. If you

pass an object to perform() that does not support these operations,

you’ll get a runtime exception.

The output assignment uses triple quotes to create a string with

embedded newlines.

Latent Typing in C++

We can produce the same effect in C++:

// generics/DogsAndRobots.cpp

#include <iostream>



using namespace std;

class Dog {

public:

void speak() { cout << "Arf!" << endl; }

void sit() { cout << "Sitting" << endl; }

void reproduce() {}

};

class Robot {

public:

void speak() { cout << "Click!" << endl; }

void sit() { cout << "Clank!" << endl; }

void oilChange() {}

};

template< class T> void perform(T anything) {

anything.speak();

anything.sit();

}

int main() {

Dog d;

Robot r;



perform(d);

perform(r);

}

/* Output:

Arf!

Sitting

Click!

Clank!

*/

In both Python and C++, Dog and Robot have nothing in common—

they just happen to have two methods with identical signatures. From

a type standpoint, they are completely distinct types. However,

perform() doesn’t care about the specific type of its argument, and

latent typing allows it to accept both types of object.

The C++ compiler ensures it can actually send those messages. It gives

you an error message if you try to pass the wrong type (these error

messages have historically been terrible and verbose, and are the

primary reason that C++ templates have a poor reputation). Although

they do it at different times—C++ at compile time, and Python at run

time—both languages ensure that types cannot be misused and are



thus considered strongly typed. 5 Latent typing does not compromise strong
typing.

Latent Typing in Go

Here’s the same program written in Go:

// generics/dogsandrobots.go

package main

import "fmt"

type Dog struct {}

func (this Dog) speak() { fmt.Printf("Arf!\n")}

func (this Dog) sit() { fmt.Printf("Sitting\n")}

func (this Dog) reproduce() {}

type Robot struct {}

func (this Robot) speak() { fmt.Printf("Click!\n") }

func (this Robot) sit() { fmt.Printf("Clank!\n") }

func (this Robot) oilChange() {}

func perform(speaker interface { speak(); sit() }) {

speaker.speak();



speaker.sit();

}

func main() {

perform(Dog{})

perform(Robot{})

}

/* Output:

Arf!

Sitting

Click!

Clank!

*/

Go has no class keyword, but you can create the equivalent of basic

classes using the above form: what you would ordinarily define as a

class, you instead define as a struct, within which dwell your data

fields (there are none here). For each method, you start with the func

keyword, then—in order to attach the method to your class—you put



parentheses containing the object reference, which can be any

identifier but I use this here to remind you that it’s like the this in

C++ or Java. Then you define the rest of the function as you do for any

other function in Go.

There’s also no inheritance in Go, so this form of “object-orientedness”

is relatively primitive, and probably the main thing that keeps me from

spending more time with the language. Composition, however, is

straightforward.

The perform() function uses latent typing: the exact type of the

argument is unimportant as long as it contains a speak() and

sit() method. The interface is define here anonymously, inline,

as seen in the argument list to perform().

main() demonstrates that perform() is indeed indifferent to the

exact type of its argument, as long as speak() and sit() can be

called on that argument. However, just like C++ template functions,

the types are checked at compile time.

The syntax Dog{} and Robot{} creates anonymous Dog and

Robot structs.

Direct Latent Typing in Java

Because generics were added to Java late in the game, there was no



chance that any kind of latent typing could be implemented, so Java

has no support for this feature. As a result, it initially seems that Java’s

generic mechanism is “less generic” than a language that supports

latent typing (The implementation of Java’s generics using erasure is

sometimes called second-class generic types). For example, if we try to

implement the dogs-and-robots example before Java 8, we must use a

class or an interface and specify it in a bounds expression:

// generics/Performs.java

public interface Performs {

void speak();

void sit();

}

// generics/DogsAndRobots.java

// No (direct) latent typing in Java

import typeinfo.pets.*;

class PerformingDog extends Dog implements Performs {

@Override

public void speak() { System.out.println("Woof!"); }

@Override

public void sit() { System.out.println("Sitting"); }



public void reproduce() {}

}

class Robot implements Performs {

public void speak() { System.out.println("Click!"); }

public void sit() { System.out.println("Clank!"); }

public void oilChange() {}

}

class Communicate {

public static <T extends Performs>

void perform(T performer) {

performer.speak();

performer.sit();

}

}

public class DogsAndRobots {

public static void main(String[] args) {

Communicate.perform(new PerformingDog());

Communicate.perform(new Robot());

}

}



/* Output:

Woof!

Sitting

Click!

Clank!

*/

However, note that perform() does not need generics to work. It

can be specified to accept a Performs object:

// generics/SimpleDogsAndRobots.java

// Removing the generic; code still works

class CommunicateSimply {

static void perform(Performs performer) {

performer.speak();

performer.sit();

}

}



public class SimpleDogsAndRobots {

public static void main(String[] args) {

CommunicateSimply.perform(new PerformingDog());

CommunicateSimply.perform(new Robot());

}

}

/* Output:

Woof!

Sitting

Click!

Clank!

*/

Here, generics were not necessary because the classes were already

forced to implement the Performs interface.

Compensating for the

Lack of (Direct) Latent

Typing



Although Java does not directly support latent typing, this does not

mean your generic code cannot be applied across different type

hierarchies. You can create truly generic code, but it takes some extra

effort.

Reflection

One approach you can use is reflection. Here’s a reflective

perform() that implements latent typing:

// generics/LatentReflection.java

// Using reflection for latent typing

import java.lang.reflect.*;

// Does not implement Performs:

class Mime {

public void walkAgainstTheWind() {}

public void sit() {

System.out.println("Pretending to sit");

}

public void pushInvisibleWalls() {}

@Override

public String toString() { return "Mime"; }

}



// Does not implement Performs:

class SmartDog {

public void speak() { System.out.println("Woof!"); }

public void sit() { System.out.println("Sitting"); }

public void reproduce() {}

}

class CommunicateReflectively {

public static void perform(Object speaker) {

Class<?> spkr = speaker.getClass();

try {

try {

Method speak = spkr.getMethod("speak");

speak.invoke(speaker);

} catch(NoSuchMethodException e) {

System.out.println(speaker + " cannot speak");

}

try {

Method sit = spkr.getMethod("sit");

sit.invoke(speaker);

} catch(NoSuchMethodException e) {



System.out.println(speaker + " cannot sit");

}

} catch(SecurityException |

IllegalAccessException |

IllegalArgumentException |

InvocationTargetException e) {

throw new RuntimeException(speaker.toString(), e);

}

}

}

public class LatentReflection {

public static void main(String[] args) {

CommunicateReflectively.perform(new SmartDog());

CommunicateReflectively.perform(new Robot());

CommunicateReflectively.perform(new Mime());

}

}

/* Output:

Woof!

Sitting



Click!

Clank!

Mime cannot speak

Pretending to sit

*/

Here, the classes are completely disjoint and have no base classes

(other than Object) or interfaces in common. Through reflection,

CommunicateReflectively.perform() is able to

dynamically establish whether the desired methods are available and

call them. It is even able to deal with the fact that Mime only has one

of the necessary methods, and partially fulfills its goal.

Applying a Method to a

Sequence

Reflection has useful possibilities, but it relegates all the type checking

to run time, and is thus undesirable in many situations. If you can

achieve compile-time type checking, that’s usually more desirable. But

can you have both compile-time type checking and latent typing?



Let’s look at an example that explores the problem. Suppose you create

an apply() method that applies any method to every object in a

sequence. This is a situation where interfaces don’t seem to fit. You

want to apply any method to a collection of objects, and interfaces

constrain you too much to describe “any method.” How do you do this

in Java?

Initially, we can solve the problem with reflection, which turns out to

be fairly elegant using varargs:

// generics/Apply.java

import java.lang.reflect.*;

import java.util.*;

public class Apply {

public static <T, S extends Iterable<T>>

void apply(S seq, Method f, Object... args) {

try {

for(T t: seq)

f.invoke(t, args);

} catch(IllegalAccessException |

IllegalArgumentException |

InvocationTargetException e) {



// Failures are programmer errors

throw new RuntimeException(e);

}

}

}

Exceptions are converted to RuntimeExceptions because there’s

not much of a way to recover from exceptions—they really do

represent programmer errors here.

Why don’t we just use a Java 8 method reference (this is shown later)

instead of the reflective Method f? Notice that invoke(), and thus

apply(), have the advantage that they can take any number of

arguments. There are situations when that flexibility might be

essential.

To test Apply, we’ll first create a Shape class:

// generics/Shape.java

public class Shape {

private static long counter = 0;

private final long id = counter++;

@Override

public String toString() {



return getClass().getSimpleName() + " " + id;

}

public void rotate() {

System.out.println(this + " rotate");

}

public void resize(int newSize) {

System.out.println(this + " resize " + newSize);

}

}

Followed by a subclass:

// generics/Square.java

public class Square extends Shape {}

Using these, we can test Apply:

// generics/ApplyTest.java

import java.util.*;

import java.util.function.*;

import onjava.*;

public class ApplyTest {

public static

void main(String[] args) throws Exception {



List<Shape> shapes =

Suppliers.create(ArrayList::new, Shape::new, 3);

Apply.apply(shapes,

Shape.class.getMethod("rotate"));

Apply.apply(shapes,

Shape.class.getMethod("resize", int.class), 7);

List<Square> squares =

Suppliers.create(ArrayList::new, Square::new, 3);

Apply.apply(squares,

Shape.class.getMethod("rotate"));

Apply.apply(squares,

Shape.class.getMethod("resize", int.class), 7);

Apply.apply(new FilledList<>(Shape::new, 3),

Shape.class.getMethod("rotate"));

Apply.apply(new FilledList<>(Square::new, 3),

Shape.class.getMethod("rotate"));

SimpleQueue<Shape> shapeQ = Suppliers.fill(

new SimpleQueue<>(), SimpleQueue::add,

Shape::new, 3);

Suppliers.fill(shapeQ, SimpleQueue::add,



Square::new, 3);

Apply.apply(shapeQ,

Shape.class.getMethod("rotate"));

}

}

/* Output:

Shape 0 rotate

Shape 1 rotate

Shape 2 rotate

Shape 0 resize 7

Shape 1 resize 7

Shape 2 resize 7

Square 3 rotate

Square 4 rotate

Square 5 rotate

Square 3 resize 7

Square 4 resize 7

Square 5 resize 7

Shape 6 rotate

Shape 7 rotate



Shape 8 rotate

Square 9 rotate

Square 10 rotate

Square 11 rotate

Shape 12 rotate

Shape 13 rotate

Shape 14 rotate

Square 15 rotate

Square 16 rotate

Square 17 rotate

*/

In Apply, we get lucky because there happens to be an Iterable

interface built into Java, used by the Java collections library. Because

of this, the apply() method can accept anything that implements

the Iterable interface, which includes all the Collection classes

such as List. But it can also accept anything else, as long as you

make it Iterable—for example, the SimpleQueue class defined

here and used above in main():

// generics/SimpleQueue.java

// A different kind of Iterable collection



import java.util.*;

public class SimpleQueue<T> implements Iterable<T> {

private LinkedList<T> storage = new LinkedList<>();

public void add(T t) { storage.offer(t); }

public T get() { return storage.poll(); }

@Override

public Iterator<T> iterator() {

return storage.iterator();

}

}

As elegant as the reflection solution seems, we must observe that

reflection (although improved significantly in recent versions of Java)

is usually slower than a non-reflection implementation, since so much

is happening at run time. This should not stop you from trying the

solution, but it’s certainly a point for consideration.

You’d almost certainly use the Java 8 functional approach first, and

only resort to reflection if it solved a special need. Here’s

ApplyTest.java rewritten to take advantage of Java 8 streams

and functional tools:

// generics/ApplyFunctional.java



import java.util.*;

import java.util.stream.*;

import java.util.function.*;

import onjava.*;

public class ApplyFunctional {

public static void main(String[] args) {

Stream.of(

Stream.generate(Shape::new).limit(2),

Stream.generate(Square::new).limit(2))

.flatMap(c -> c) // flatten into one stream

.peek(Shape::rotate)

.forEach(s -> s.resize(7));

new FilledList<>(Shape::new, 2)

.forEach(Shape::rotate);

new FilledList<>(Square::new, 2)

.forEach(Shape::rotate);

SimpleQueue<Shape> shapeQ = Suppliers.fill(

new SimpleQueue<>(), SimpleQueue::add,

Shape::new, 2);

Suppliers.fill(shapeQ, SimpleQueue::add,



Square::new, 2);

shapeQ.forEach(Shape::rotate);

}

}

/* Output:

Shape 0 rotate

Shape 0 resize 7

Shape 1 rotate

Shape 1 resize 7

Square 2 rotate

Square 2 resize 7

Square 3 rotate

Square 3 resize 7

Shape 4 rotate

Shape 5 rotate

Square 6 rotate

Square 7 rotate

Shape 8 rotate

Shape 9 rotate

Square 10 rotate



Square 11 rotate

*/

Because of Java 8, there’s no need for Apply.apply().

We start by generating two Streams: one of Shape and one of

Square, and flattening them into a single stream. Although Java is

missing the flatten() often found in functional languages, we can

produce the same result with flatMap(c -> c), which uses a

identity mapping to reduce the operation to only “flatten.”

We use peek() for the call to rotate() because peek() performs

an operation (here, for its side effect) and passes the object on

unchanged.

Notice how much cleaner the call to forEach() is with the

FilledLists and shapeQ than Apply.apply().

The result is far preferable to the previous approach, just in code

simplicity and readability alone. Also there is now no possibility of an

exception being thrown from main().



Assisted Latent Typing

in Java 8

The prior statements about Java’s lack of support for latent typing are

strictly true before Java 8. However, unbound method references in

Java 8 allow us to produce a form of latent typing that satisfies the

requirement of creating a single piece of code that works across

unrelated types. Since Java wasn’t originally designed to do this the

result is—as you might expect by now—slightly more awkward than in

other languages. But it is now possible, which I consider just short of

amazing.

I have not encountered this technique elsewhere, so I shall call it

assisted latent typing.

We’ll rewrite DogsAndRobots.java to demonstrate this

technique. To make things look as similar as possible to the original

example, I’ve simply added an A to each of the original class names:

// generics/DogsAndRobotMethodReferences.java

// "Assisted Latent Typing"

import typeinfo.pets.*;

import java.util.function.*;

class PerformingDogA extends Dog {



public void speak() { System.out.println("Woof!"); }

public void sit() { System.out.println("Sitting"); }

public void reproduce() {}

}

class RobotA {

public void speak() { System.out.println("Click!"); }

public void sit() { System.out.println("Clank!"); }

public void oilChange() {}

}

class CommunicateA {

public static <P> void perform(P performer,

Consumer<P> action1, Consumer<P> action2) {

action1.accept(performer);

action2.accept(performer);

}

}

public class DogsAndRobotMethodReferences {

public static void main(String[] args) {

CommunicateA.perform(new PerformingDogA(),

PerformingDogA::speak, PerformingDogA::sit);



CommunicateA.perform(new RobotA(),

RobotA::speak, RobotA::sit);

CommunicateA.perform(new Mime(),

Mime::walkAgainstTheWind,

Mime::pushInvisibleWalls);

}

}

/* Output:

Woof!

Sitting

Click!

Clank!

*/

PerformingDogA and RobotA are the same as they are in

DogsAndRobots.java, except they do not inherit the common

interface Performs, so they have no commonality.

CommunicateA.perform() is generified on P which has no

constraints. It can be anything as long as there are Consumer<P> s

available for it—here, those Consumer<P> s represent unbound

method references for P methods that take no arguments. When you



call Consumer’s accept() method, it binds the method reference

to the performer object and calls that method. Because of the “magic”

described in the Functional Programming chapter, we can pass any signature-
conforming unbound method references to

CommunicateA.perform().

The reason for calling it “assisted” is because you must explicitly give

perform() the method references to use; it can’t just call the

methods by name.

Although passing the unbound method references might seem like a

lot of extra hand-holding, the ultimate goal of latent typing is

achieved. We have created a single piece of code,

CommunicateA.perform(), which works on any types that have

signature-conformant method references. Notice this is somewhat

different than latent typing in other languages we’ve seen, because

those languages require not just the signature to conform, but also the

method names. Thus, this technique arguably produces even more

generic code.



Just to prove the point, I’ve also thrown in a Mime from

LatentReflection.java.

Generic Methods to Use with

Suppliers

With assisted latent typing, we can define the Suppliers class used

in other parts of this chapter. This class contains utility methods that

use generators to fill Collections. It makes sense to “generify”

these operations:

// onjava/Suppliers.java

// A utility to use with Suppliers

package onjava;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class Suppliers {

// Create a collection and fill it:

public static <T, C extends Collection<T>> C

create(Supplier<C> factory, Supplier<T> gen, int n) {

return Stream.generate(gen)

.limit(n)



.collect(factory, C::add, C::addAll);

}

// Fill an existing collection:

public static <T, C extends Collection<T>>

C fill(C coll, Supplier<T> gen, int n) {

Stream.generate(gen)

.limit(n)

.forEach(coll::add);

return coll;

}

// Use an unbound method reference to

// produce a more general method:

public static <H, A> H fill(H holder,

BiConsumer<H, A> adder, Supplier<A> gen, int n) {

Stream.generate(gen)

.limit(n)

.forEach(a -> adder.accept(holder, a));

return holder;

}

}



create() makes a new Collection subtype for you, while the

first version of fill() puts elements into an existing subtype of

Collection. Notice the exact type of container passed in is also

returned, so the type information is not lost.6

The first two methods are generically constrained to work with

Collection subtypes. The second version of fill() works with a

holder of any type. It takes an additional argument: the unbound

method reference adder. fill() uses assisted latent typing to make

it work with any holder type that has a method to add elements.

Because this unbound method adder must take an argument (the

element to add to the holder), adder must be a BiConsumer<H,

A> where H is the type of the holder object to bind to, and A is the type of
element being added. The call to accept() invokes the

unbound method adder on the object holder with the argument a.

The Suppliers utility is tested within a little simulation that also

uses RandomList, defined earlier in the chapter:

// generics/BankTeller.java

// A very simple bank teller simulation

import java.util.*;

import onjava.*;

class Customer {



private static long counter = 1;

private final long id = counter++;

@Override

public String toString() {

return "Customer " + id;

}

}

class Teller {

private static long counter = 1;

private final long id = counter++;

@Override

public String toString() {

return "Teller " + id;

}

}

class Bank {

private List<BankTeller> tellers =

new ArrayList<>();

public void put(BankTeller bt) {

tellers.add(bt);



}

}

public class BankTeller {

public static void serve(Teller t, Customer c) {

System.out.println(t + " serves " + c);

}

public static void main(String[] args) {

// Demonstrate create():

RandomList<Teller> tellers =

Suppliers.create(

RandomList::new, Teller::new, 4);

// Demonstrate fill():

List<Customer> customers = Suppliers.fill(

new ArrayList<>(), Customer::new, 12);

customers.forEach(c ->

serve(tellers.select(), c));

// Demonstrate assisted latent typing:

Bank bank = Suppliers.fill(

new Bank(), Bank::put, BankTeller::new, 3);

// Can also use second version of fill():



List<Customer> customers2 = Suppliers.fill(

new ArrayList<>(),

List::add, Customer::new, 12);

}

}

/* Output:

Teller 3 serves Customer 1

Teller 2 serves Customer 2

Teller 3 serves Customer 3

Teller 1 serves Customer 4

Teller 1 serves Customer 5

Teller 3 serves Customer 6

Teller 1 serves Customer 7

Teller 2 serves Customer 8

Teller 3 serves Customer 9

Teller 3 serves Customer 10

Teller 2 serves Customer 11

Teller 4 serves Customer 12

*/



You can see that create() generates a new Collection object,

while fill() adds to an existing Collection. The second version

of fill() is shown not only working with the new and unrelated

type Bank, but also with a List—thus the first version of fill() is

not technically necessary but provides shorter syntax when working

with Collections.

Summary: Is Casting

Really So Bad?

Having worked to explain C++ templates since their inception, I have

probably been putting forward the following argument longer than

most people. Only recently have I stopped to wonder how often this

argument is valid—how many times does the problem I’m about to

describe really slip through the cracks?

The argument goes like this. One of the most compelling places to use

a generic type mechanism is with collection classes such as the Lists,

Sets, Maps, etc. you saw in Collections and you shall see more of in the



Appendix: Collection Topics. Before Java 5, when you put an object into a
collection, it was upcast to Object, so you’d lose the

type information. When you wanted to pull it back out to do

something with it, you had to cast it back down to the proper type. My

example was a List of Cat (a variation of this using apples and

oranges is shown at the beginning of the Collections chapter). Without the
Java 5 generic version of the collection, you put Objects in and

you get Objects out, so it’s easily possible to put a Dog in a List of Cat.

However, pre-generic Java wouldn’t let you misuse the objects you put

into a collection. If you threw a Dog into a collection of Cats, then tried to
treat everything in the collection as a Cat, you’d get a

RuntimeException when you pulled the Dog reference out of the

Cat collection and tried to cast it to a Cat. You’d still discover the

problem, but at run time rather than compile time.

In earlier times, I went on to argue:

This is more than just an annoyance. It’s

something that can create difficult-to-find

bugs. If one part (or several parts) of a

program inserts objects into a collection,

and you discover only in a separate part

of the program through an exception that



a bad object was placed in the collection,

then you must find out where the bad

insert occurred.

However, upon further examination of the argument, I began to

wonder about it. First, how often does it happen? I don’t remember

this kind of thing ever happening to me, and when I asked people at

conferences, I didn’t hear anyone say it had happened to them.

Another book used an example of a list called files that contained

String objects—in this example it seemed perfectly natural to add a

File object to files, so a better name for the object might be

fileNames. No matter how much type checking Java provides, it’s

still possible to write obscure programs, and a badly written program

that compiles is still a badly written program. Perhaps most people use

well-named collections such as cats that provide a visual warning to

the programmer who would try to add a non-Cat. And even if it did

happen, how long would the issue really stay buried? It would seem

that as soon as you started running tests with real data, you’d see an

exception pretty quickly.

One author even asserted that such a bug could “remain buried for

years.” But I do not recall any deluge of reports of people having great



difficulty finding “dog in cat list” bugs, or even producing them very

often. With Concurrent Programming, it is easy and common for bugs to
appear extremely rarely, and only give you a vague idea of what’s

wrong. So is the “dog in cat list” argument really the reason this very

significant and fairly complex feature was added to Java?

I believe the intent of the general-purpose language feature called

“generics” is expressiveness, not just creating type-safe collections.

Type-safe collections come as a side effect of the ability to create more

general-purpose code.

So even though the “dog in cat list” argument is often used to justify

generics, it is questionable. And as I’ve asserted throughout this

chapter, I do not believe this is what the concept of generics is really

about. Instead, generics are as their name implies—a way to write

more “generic” code that is less constrained by the types it can work

with, so a single piece of code can be applied to more types. As you

have seen in this chapter, it is fairly easy to write truly generic “holder”

classes (which the Java collections are). To write generic code that

manipulates its generic types requires extra effort, on the part of both

the class creator and the class consumer, who must understand the

concept and implementation of such code. That extra effort reduces

the ease of use of the feature, and can thus make it less applicable in



places where it might otherwise have added value.

Also note that because generics were back-engineered into Java

instead of designed into the language from the start, some of the

collections cannot be made as robust as they should be. For example,

look at Map, in particular the methods containsKey(Object

key) and get(Object key). If these classes had been designed

with pre-existing generics, these methods would have used

parameterized types instead of Object, thus affording the compile-

time checking that generics are meant to provide. In C++ maps, for

example, the key type is always checked at compile time.

It is clear that introducing any kind of generic mechanism in a later

version of a language, after that language has come into general use, is

a very, very messy proposition, and one that cannot be accomplished

without pain. In C++, templates were introduced in the initial ISO

version of the language (although even that caused some distress

because there was an earlier non-template version in use before the

first Standard C++ appeared), so in effect templates were always a



part of the language. In Java, generics were not introduced until

almost 10 years after the language was first released, so the issues of

migrating to generics are considerable, and have made a significant

impact on the design of generics. The result is that you, the

programmer, will suffer because of the lack of vision exhibited by the

Java designers when they created version 1.0. When Java was first

created, the designers knew about C++ templates, and they even

considered including them in the language, but for one reason or

another decided to leave them out (indications are they were in a

hurry). As a result, both the language and the programmers that use it

will suffer. Only time will show the ultimate impact that Java’s

approach to generics have on the language.

Some languages have incorporated cleaner and less impactful

approaches to parameterized types. It’s not impossible to imagine such

a language becoming a successor to Java, because it takes exactly the

approach that C++ did with C: Use what’s there and improve upon it.

Further Reading

The introductory document for generics is Generics in the Java

Programming Language, by Gilad Bracha, located at

http://java.oracle.com (search from there).



Angelika Langer’s Java Generics FAQs is a very helpful resource,

located at

www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html.

You can find out more about wildcards in Adding Wildcards to

the Java Programming Language, by Torgerson, Ernst, Hansen,

von der Ahe, Bracha and Gafter, located at

www.jot.fm/issues/issue_2004_12/article5.

Neal Gafter’s opinions on Java problems (erasure in particular)

can be found at http://www.infoq.com/articles/neal-gafter-on-

java.

1. Angelika Langer’s Java Generics FAQ as well as her other writings

(together with Klaus Kreft) were invaluable during the

preparation of this chapter. ↩

2. http://gafter.blogspot.com/2004/09/puzzling-through-erasure-

answer.html↩

3. See citation at the end of this chapter. ↩

4. Note that some programming environments, such as Eclipse and

IntelliJ Idea, will automatically generate delegation code. ↩

5. Because you can use casts, which effectively disable the type

system, some people argue that C++ is weakly typed, but that’s



extreme. It’s probably safer to say that C++ is “strongly typed with

a trap door.” ↩

6. Once again, I got help from Brian Goetz.↩

Arrays

At the end of the Housekeeping chapter,

you learned to define and initialize an

array.

The simple view of arrays is that you create and populate them, you

select elements from them using int indexes, and they don’t change

their size. Most of the time that’s all you must know, but sometimes

you must perform more sophisticated operations on arrays, and you

might also evaluate an array vs. a more flexible Collection. This

chapter looks at arrays in more depth.

Note: As Java Collections and Streams have added more high-



level capabilities, the need to use arrays in day-to-day programming

has diminished, so you can safely skim or even skip this chapter for

the time being. Ultimately, however, there will come a time when—

even if you avoid using arrays yourself—you will need to read and

understand someone else’s array code. At that time, this chapter will

still be here, waiting for you.

Why Arrays are

Special

There are a number of other ways to hold objects, so what makes an

array special?

There are three issues that distinguish arrays from other types of

Collections: efficiency, type, and the ability to hold primitives. The

array is Java’s most efficient way to store and randomly access a

sequence of object references. The array is a simple linear sequence,

which makes element access fast. The cost of this speed is that the size

of an array object is fixed and cannot be changed for the lifetime of

that array.

Speed is not usually an issue, and if it is, the way you hold and retrieve

objects is rarely the culprit. You should always start with an

ArrayList (from Collections), which uses and manages an array internally.
When necessary, it automatically allocates more array



space, creating a new array and moving all the references from the old

array to the new array. This flexibility has overhead, so an

ArrayList is less efficient than an array. In the rare cases where

this is an issue, you can use arrays directly.

Both arrays and Collections guarantee you can’t abuse them.

Whether you’re using an array or a Collection, you’ll get a

RuntimeException if you exceed the bounds, indicating a

programmer error.

Before generics, the other Collection classes dealt with objects as

if they had no specific type. That is, they treated them as type

Object, the root class of all classes in Java. Arrays are superior to

pre-generic Collections because you create an array to hold a

specific type. This means you get compile-time type checking to

prevent you from inserting the wrong type or mistaking the type that

you’re extracting. Of course, Java prevents you from sending

inappropriate messages to objects at either compile time or run time.

So it’s not riskier one way or the other; it’s just nicer if the compiler

points it out to you, and there’s less likelihood that the end user will

get surprised by an exception.

An array can hold primitives, whereas a pre-generic Collection



could not. With generics, however, Collections can specify and

check the type of objects they hold, and with autoboxing

Collections can act as if they are able to hold primitives, since the

conversion is automatic. Here’s a comparison between arrays and

generic Collections:

// arrays/CollectionComparison.java

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

class BerylliumSphere {

private static long counter;

private final long id = counter++;

@Override

public String toString() {

return "Sphere " + id;

}

}

public class CollectionComparison {

public static void main(String[] args) {

BerylliumSphere[] spheres =



new BerylliumSphere[10];

for(int i = 0; i < 5; i++)

spheres[i] = new BerylliumSphere();

show(spheres);

System.out.println(spheres[4]);

List<BerylliumSphere> sphereList = Suppliers.create(

ArrayList::new, BerylliumSphere::new, 5);

System.out.println(sphereList);

System.out.println(sphereList.get(4));

int[] integers = { 0, 1, 2, 3, 4, 5 };

show(integers);

System.out.println(integers[4]);

List<Integer> intList = new ArrayList<>(

Arrays.asList(0, 1, 2, 3, 4, 5));

intList.add(97);

System.out.println(intList);

System.out.println(intList.get(4));

}

}

/* Output:



[Sphere 0, Sphere 1, Sphere 2, Sphere 3, Sphere 4,

null, null, null, null, null]

Sphere 4

[Sphere 5, Sphere 6, Sphere 7, Sphere 8, Sphere 9]

Sphere 9

[0, 1, 2, 3, 4, 5]

4

[0, 1, 2, 3, 4, 5, 97]

4

*/

Suppliers.create() was defined in the Generics chapter.

Both ways of holding objects are type-checked, and the only apparent

difference is that arrays use [ ] for accessing elements, and a List

uses methods such as add() and get(). The similarity between

arrays and the ArrayList is intentional, so it’s conceptually easy to

switch between the two. But as you saw in the Collections chapter,
Collections have significantly more functionality than arrays.

With the advent of autoboxing, Collections are nearly as easy to

use for primitives as arrays. The only remaining advantage to arrays is

efficiency. However, when you’re solving a more general problem,

arrays can be too restrictive, and in those cases you use a



Collection class.

A Utility for Displaying Arrays

Throughout this chapter we must display arrays. Java provides

Arrays.toString() to convert an array into a readable string,

which we can then display on the console. However, this is visually

noisy so we’ll create a little library to do the work:

// onjava/ArrayShow.java

package onjava;

import java.util.*;

public interface ArrayShow {

static void show(Object[] a) {

System.out.println(Arrays.toString(a));

}

static void show(boolean[] a) {

System.out.println(Arrays.toString(a));

}

static void show(byte[] a) {



System.out.println(Arrays.toString(a));

}

static void show(char[] a) {

System.out.println(Arrays.toString(a));

}

static void show(short[] a) {

System.out.println(Arrays.toString(a));

}

static void show(int[] a) {

System.out.println(Arrays.toString(a));

}

static void show(long[] a) {

System.out.println(Arrays.toString(a));

}

static void show(float[] a) {

System.out.println(Arrays.toString(a));

}

static void show(double[] a) {

System.out.println(Arrays.toString(a));

}



// Start with a description:

static void show(String info, Object[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, boolean[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, byte[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, char[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, short[] a) {

System.out.print(info + ": ");

show(a);



}

static void show(String info, int[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, long[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, float[] a) {

System.out.print(info + ": ");

show(a);

}

static void show(String info, double[] a) {

System.out.print(info + ": ");

show(a);

}

}

The first version works for Object arrays, including arrays of



wrapped primitives. All the overloaded versions are necessary for the

various different primitive types.

The second overloaded group is so you can prefix the array display

with an information String.

For simplicity, you’ll normally import this statically.

Arrays are First-Class

Objects

Regardless of what type of array you’re working with, the array

identifier is actually a reference to a true object that’s created on the

heap. This is the object that holds the references to the other objects,

and it can be created either implicitly, as part of the array initialization

syntax, or explicitly with a new expression. Part of the array object (in

fact, the only field or method you can access) is the read-only length

member that tells how many elements can be stored in that array

object. The [] syntax is the only other access you have to the array

object.



The following example summarizes the various ways to initialize an

array, and how to assign array references to different array objects. It

also shows that arrays of objects and arrays of primitives are almost

identical in use. The only difference is that arrays of objects hold

references, but arrays of primitives hold the primitive values directly.

// arrays/ArrayOptions.java

// Initialization & re-assignment of arrays

import java.util.*;

import static onjava.ArrayShow.*;

public class ArrayOptions {

public static void main(String[] args) {

// Arrays of objects:

BerylliumSphere[] a; // Uninitialized local

BerylliumSphere[] b = new BerylliumSphere[5];

// The references inside the array are

// automatically initialized to null:

show("b", b);

BerylliumSphere[] c = new BerylliumSphere[4];

for(int i = 0; i < c.length; i++)

if(c[i] == null) // Can test for null reference



c[i] = new BerylliumSphere();

// Aggregate initialization:

BerylliumSphere[] d = {

new BerylliumSphere(),

new BerylliumSphere(),

new BerylliumSphere()

};

// Dynamic aggregate initialization:

a = new BerylliumSphere[]{

new BerylliumSphere(), new BerylliumSphere(),

};

// (Trailing comma is optional)

System.out.println("a.length = " + a.length);

System.out.println("b.length = " + b.length);

System.out.println("c.length = " + c.length);

System.out.println("d.length = " + d.length);

a = d;

System.out.println("a.length = " + a.length);

// Arrays of primitives:

int[] e; // Null reference



int[] f = new int[5];

// The primitives inside the array are

// automatically initialized to zero:

show("f", f);

int[] g = new int[4];

for(int i = 0; i < g.length; i++)

g[i] = i*i;

int[] h = { 11, 47, 93 };

// Compile error: variable e not initialized:

//- System.out.println("e.length = " + e.length);

System.out.println("f.length = " + f.length);

System.out.println("g.length = " + g.length);

System.out.println("h.length = " + h.length);

e = h;

System.out.println("e.length = " + e.length);

e = new int[]{ 1, 2 };

System.out.println("e.length = " + e.length);

}

}

/* Output:



b: [null, null, null, null, null]

a.length = 2

b.length = 5

c.length = 4

d.length = 3

a.length = 3

f: [0, 0, 0, 0, 0]

f.length = 5

g.length = 4

h.length = 3

e.length = 3

e.length = 2

*/

The array a is an uninitialized local variable, and the compiler

prevents you from doing anything with this reference until you’ve

properly initialized it. The array b is initialized to point to an array of

BerylliumSphere references, but no actual BerylliumSphere

objects are ever placed in that array. However, you can still ask what

the size of the array is, since b is pointing to a legitimate object. This

brings up a slight drawback: You can’t find out how many elements are



actually in the array, since length tells you only how many elements

can be placed in the array; that is, the size of the array object, not the

number of elements it actually holds. However, when you create an

array object, its references are automatically initialized to null, so

you test whether a particular array slot has an object in it by checking

to see whether it’s null. Similarly, an array of primitives is

automatically initialized to zero for numeric types, (char)0 for

char, and false for boolean.

Array c shows the creation of the array object followed by the

assignment of BerylliumSphere objects to all the slots in the

array. Array d shows the “aggregate initialization” syntax that causes

the array object to be created (implicitly with new on the heap, just

like for array c) and initialized with BerylliumSphere objects, all

in one statement.

The next array initialization can be thought of as a “dynamic aggregate

initialization.” The aggregate initialization used by d must be used at

the point of ds definition, but with the second syntax you can create

and initialize an array object anywhere. For example, suppose

hide() is a method that takes an array of BerylliumSphere

objects. You call it by saying:



hide(d);

You can also dynamically create the array you pass as the argument:

hide(new BerylliumSphere[]{

new BerylliumSphere(),

new BerylliumSphere()

});

In many situations this syntax is a more convenient way to write code.

The expression:

a = d;

shows how you can take a reference that’s attached to one array object

and assign it to another array object, just as you can do with any other

type of object reference. Now both a and d are pointing to the same

array object on the heap.

The second part of ArrayOptions.java shows that primitive

arrays work just like object arrays except that primitive arrays hold the

primitive values directly.



Returning an Array

Suppose you write a method that returns not one element, but many

elements. Languages like C and C++ make this difficult because you

can’t just return an array, only a pointer to an array. This introduces

problems because it becomes messy to control the lifetime of the array,

which leads to memory leaks.

In Java, you just return the array. You never worry about

responsibility for that array—it is around as long as you need it, and

the garbage collector will clean it up when you’re done.

Here, we return an array of String:

// arrays/IceCreamFlavors.java

// Returning arrays from methods

import java.util.*;

import static onjava.ArrayShow.*;

public class IceCreamFlavors {

private static SplittableRandom rand =

new SplittableRandom(47);

static final String[] FLAVORS = {

"Chocolate", "Strawberry", "Vanilla Fudge Swirl",

"Mint Chip", "Mocha Almond Fudge", "Rum Raisin",



"Praline Cream", "Mud Pie"

};

public static String[] flavorSet(int n) {

if(n > FLAVORS.length)

throw new IllegalArgumentException("Set too big");

String[] results = new String[n];

boolean[] picked = new boolean[FLAVORS.length];

for(int i = 0; i < n; i++) {

int t;

do

t = rand.nextInt(FLAVORS.length);

while(picked[t]);

results[i] = FLAVORS[t];

picked[t] = true;

}

return results;

}

public static void main(String[] args) {

for(int i = 0; i < 7; i++)

show(flavorSet(3));



}

}

/* Output:

[Praline Cream, Mint Chip, Vanilla Fudge Swirl]

[Strawberry, Vanilla Fudge Swirl, Mud Pie]

[Chocolate, Strawberry, Vanilla Fudge Swirl]

[Rum Raisin, Praline Cream, Chocolate]

[Mint Chip, Rum Raisin, Mocha Almond Fudge]

[Mocha Almond Fudge, Mud Pie, Vanilla Fudge Swirl]

[Mocha Almond Fudge, Mud Pie, Mint Chip]

*/

flavorSet() creates an array of String called results. The

size of this array is n, determined by the argument you pass into the

method. Then it chooses flavors randomly from the array FLAVORS

and places them into results, which it returns. Returning an array

is just like returning any other object—it’s a reference. It’s not

important that the array was created within flavorSet(), or that

the array was created anyplace else, for that matter. The garbage

collector takes care of cleaning up the array when you’re done with it,

and the array will persist for as long as you need it.



If you must return a number of elements of different types, you can

instead use the tuple utilities introduced in Generics.

As an aside, when flavorSet() chooses flavors randomly, it

ensures that a particular choice hasn’t already been selected. This is

performed in a do loop that keeps making random choices until it

finds one not already in the picked array. (A String comparison

would also show whether the random choice is already in the

results array.) If it’s successful, it adds the entry and finds the next

one (i gets incremented). The output shows that flavorSet()

chooses flavors in a random order each time.

Up to this point in the book, random numbers have been generated by

the java.util.Random class that has been with the language since

version 1.0, and has even been updated to provide Java 8 streams.

Now we introduce the Java 8 SplittableRandom, which not only

works with parallel operations (which you’ll learn about eventually),

but provides higher-quality random numbers. We’ll use



SplittableRandom throughout the rest of the book.

Multidimensional

Arrays

To create a multidimensional array of primitives, you delimit each

vector in the array using curly braces:

// arrays/MultidimensionalPrimitiveArray.java

import java.util.*;

public class MultidimensionalPrimitiveArray {

public static void main(String[] args) {

int[][] a = {

{ 1, 2, 3, },

{ 4, 5, 6, },

};

System.out.println(Arrays.deepToString(a));

}

}

/* Output:

[[1, 2, 3], [4, 5, 6]]

*/

Each nested set of curly braces moves you into the next level of the



array.

This example uses the Arrays.deepToString() method, which

turns multidimensional arrays into Strings, as shown in the output.

You can also allocate an array using new. Here’s a three-dimensional

array allocated in a new expression:

// arrays/ThreeDWithNew.java

import java.util.*;

public class ThreeDWithNew {

public static void main(String[] args) {

// 3-D array with fixed length:

int[][][] a = new int[2][2][4];

System.out.println(Arrays.deepToString(a));

}

}

/* Output:

[[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0,

0]]]

*/

Primitive array values are automatically initialized if you don’t give

them an explicit initialization value. Arrays of objects are initialized to



null.

Each vector in the arrays that make up the matrix can be of any length

(this is called a ragged array):

// arrays/RaggedArray.java

import java.util.*;

public class RaggedArray {

static int val = 1;

public static void main(String[] args) {

SplittableRandom rand = new SplittableRandom(47);

// 3-D array with varied-length vectors:

int[][][] a = new int[rand.nextInt(7)][][];

for(int i = 0; i < a.length; i++) {

a[i] = new int[rand.nextInt(5)][];

for(int j = 0; j < a[i].length; j++) {

a[i][j] = new int[rand.nextInt(5)];

Arrays.setAll(a[i][j], n -> val++); // [1]

}

}

System.out.println(Arrays.deepToString(a));

}



}

/* Output:

[[[1], []], [[2, 3, 4, 5], [6]], [[7, 8, 9], [10, 11,

12], []]]

*/

The first new creates an array with a random-length first element and

the rest undetermined. The second new inside the for loop fills out

the elements but leaves the third index undetermined until you hit the

third new.

[1] Java 8 added Arrays.setAll() which uses a generator to

produce values inserted into the array. This generator conforms to

the functional interface IntUnaryOperator with a single non-

default method applyAsInt(int operand).

Arrays.setAll() passes the current array index as the

operand, so one option is to provide a lambda of n -> n to

show the index in the array (it’s easy to try in the above code).

Here, we ignore the index and simply insert the value of an

incremented counter.

Arrays of non-primitive objects can also be defined as ragged arrays.

Here, we collect many new expressions using curly braces:



// arrays/MultidimensionalObjectArrays.java

import java.util.*;

public class MultidimensionalObjectArrays {

public static void main(String[] args) {

BerylliumSphere[][] spheres = {

{ new BerylliumSphere(), new BerylliumSphere() },

{ new BerylliumSphere(), new BerylliumSphere(),

new BerylliumSphere(), new BerylliumSphere() },

{ new BerylliumSphere(), new BerylliumSphere(),

new BerylliumSphere(), new BerylliumSphere(),

new BerylliumSphere(), new BerylliumSphere(),

new BerylliumSphere(), new BerylliumSphere() },

};

System.out.println(Arrays.deepToString(spheres));

}

}

/* Output:

[[Sphere 0, Sphere 1], [Sphere 2, Sphere 3, Sphere 4,

Sphere 5], [Sphere 6, Sphere 7, Sphere 8, Sphere 9,

Sphere 10, Sphere 11, Sphere 12, Sphere 13]]



*/

Autoboxing works with array initializers:

// arrays/AutoboxingArrays.java

import java.util.*;

public class AutoboxingArrays {

public static void main(String[] args) {

Integer[][] a = { // Autoboxing:

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },

{ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 },

{ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 },

{ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 },

};

System.out.println(Arrays.deepToString(a));

}

}

/* Output:

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [21, 22, 23, 24, 25,

26, 27, 28, 29, 30], [51, 52, 53, 54, 55, 56, 57, 58,

59, 60], [71, 72, 73, 74, 75, 76, 77, 78, 79, 80]]

*/



Here’s how an array of non-primitive objects can be built up piece-by-

piece:

// arrays/AssemblingMultidimensionalArrays.java

// Creating multidimensional arrays

import java.util.*;

public class AssemblingMultidimensionalArrays {

public static void main(String[] args) {

Integer[][] a;

a = new Integer[3][];

for(int i = 0; i < a.length; i++) {

a[i] = new Integer[3];

for(int j = 0; j < a[i].length; j++)

a[i][j] = i * j; // Autoboxing

}

System.out.println(Arrays.deepToString(a));

}

}

/* Output:

[[0, 0, 0], [0, 1, 2], [0, 2, 4]]

*/



The i * j is only there to put an interesting value into the

Integer.

The Arrays.deepToString() method works with both primitive

arrays and object arrays:

// arrays/MultiDimWrapperArray.java

// Multidimensional arrays of "wrapper" objects

import java.util.*;

public class MultiDimWrapperArray {

public static void main(String[] args) {

Integer[][] a1 = { // Autoboxing

{ 1, 2, 3, },

{ 4, 5, 6, },

};

Double[][][] a2 = { // Autoboxing

{ { 1.1, 2.2 }, { 3.3, 4.4 } },

{ { 5.5, 6.6 }, { 7.7, 8.8 } },



{ { 9.9, 1.2 }, { 2.3, 3.4 } },

};

String[][] a3 = {

{ "The", "Quick", "Sly", "Fox" },

{ "Jumped", "Over" },

{ "The", "Lazy", "Brown", "Dog", "&", "friend" },

};

System.out.println(

"a1: " + Arrays.deepToString(a1));

System.out.println(

"a2: " + Arrays.deepToString(a2));

System.out.println(

"a3: " + Arrays.deepToString(a3));

}

}

/* Output:

a1: [[1, 2, 3], [4, 5, 6]]

a2: [[[1.1, 2.2], [3.3, 4.4]], [[5.5, 6.6], [7.7,

8.8]], [[9.9, 1.2], [2.3, 3.4]]]

a3: [[The, Quick, Sly, Fox], [Jumped, Over], [The,



Lazy, Brown, Dog, &, friend]]

*/

Again, in the Integer and Double arrays, autoboxing creates the

wrapper objects for you.

Arrays and Generics

In general, arrays and generics do not mix well. You cannot instantiate

arrays of parameterized types:

Peel<Banana>[] peels = new Peel<Banana>[10]; // Illegal

Erasure removes the parameter type information, and arrays must

know the exact type they hold, to enforce type safety.

However, you can parameterize the type of the array itself:

// arrays/ParameterizedArrayType.java

class ClassParameter<T> {

public T[] f(T[] arg) { return arg; }

}

class MethodParameter {

public static <T> T[] f(T[] arg) { return arg; }

}

public class ParameterizedArrayType {

public static void main(String[] args) {



Integer[] ints = { 1, 2, 3, 4, 5 };

Double[] doubles = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Integer[] ints2 =

new ClassParameter<Integer>().f(ints);

Double[] doubles2 =

new ClassParameter<Double>().f(doubles);

ints2 = MethodParameter.f(ints);

doubles2 = MethodParameter.f(doubles);

}

}

It’s convenient to use a parameterized method instead of a

parameterized class. You don’t instantiate a class with a parameter for

each different type you apply it to, and you can make it static. You

can’t always choose to use a parameterized method instead of a

parameterized class, but it’s usually preferable.

It’s not precisely correct to say you cannot create arrays of generic

types. True, the compiler won’t let you instantiate an array of a generic

type. However, it will let you create a reference to such an array. For

example:

List<String>[] ls;



This passes through the compiler without complaint. And although

you cannot create an actual array object that holds generics, you can

create an array of the non-generified type and cast it:

// arrays/ArrayOfGenerics.java

import java.util.*;

public class ArrayOfGenerics {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

List<String>[] ls;

List[] la = new List[10];

ls = (List<String>[])la; // Unchecked cast

ls[0] = new ArrayList<>();

//- ls[1] = new ArrayList<Integer>();

// error: incompatible types: ArrayList<Integer>

// cannot be converted to List<String>

// ls[1] = new ArrayList<Integer>();

// ^

// The problem: List<String> is a subtype of Object

Object[] objects = ls; // So assignment is OK

// Compiles and runs without complaint:



objects[1] = new ArrayList<>();

// However, if your needs are straightforward it is

// possible to create an array of generics, albeit

// with an "unchecked cast" warning:

List<BerylliumSphere>[] spheres =

(List<BerylliumSphere>[])new List[10];

Arrays.setAll(spheres, n -> new ArrayList<>());

}

}

Once you have a reference to a List<String>[], you see you get

some compile-time checking. The problem is that arrays are covariant,

so a List<String>[] is also an Object[], and you can use this

to assign an ArrayList<Integer> into your array, with no error

at either compile time or run time.

If you know you’re not going to upcast and your needs are relatively

simple, however, it is possible to create an array of generics, which will



provide basic compile-time type checking. However, a generic

Collection will virtually always be a better choice than an array of

generics.

In general you’ll find that generics are effective at the boundaries of a

class or method. In the interiors, erasure usually makes generics

unusable. So you cannot, for example, create an array of a generic

type:

// arrays/ArrayOfGenericType.java

public class ArrayOfGenericType<T> {

T[] array; // OK

@SuppressWarnings("unchecked")

public ArrayOfGenericType(int size) {

// error: generic array creation:

//- array = new T[size];

array = (T[])new Object[size]; // unchecked cast

}

// error: generic array creation:

//- public <U> U[] makeArray() { return new U[10]; }

}

Erasure gets in the way again—this example attempts to create arrays



of types that have been erased, and are thus unknown types. You can

create an array of Object, and cast it, but without the

@SuppressWarnings annotation you get an “unchecked” warning

at compile time because the array doesn’t really hold or dynamically

check for type T. That is, if I create a String[], Java will enforce, at

both compile time and run time, that I can only place String objects

in that array. However, if I create an Object[], I can put anything

into that array except primitive types.

Arrays.fill()

When experimenting with arrays, and with programs in general, it’s

helpful to easily generate arrays filled with test data. The Java

standard library Arrays class includes a trivial fill() method that

duplicates a single value into each location, or in the case of objects,

copies the same reference into each location:

// arrays/FillingArrays.java

// Using Arrays.fill()

import java.util.*;

import static onjava.ArrayShow.*;

public class FillingArrays {

public static void main(String[] args) {



int size = 6;

boolean[] a1 = new boolean[size];

byte[] a2 = new byte[size];

char[] a3 = new char[size];

short[] a4 = new short[size];

int[] a5 = new int[size];

long[] a6 = new long[size];

float[] a7 = new float[size];

double[] a8 = new double[size];

String[] a9 = new String[size];

Arrays.fill(a1, true);

show("a1", a1);

Arrays.fill(a2, (byte)11);

show("a2", a2);

Arrays.fill(a3, 'x');

show("a3", a3);

Arrays.fill(a4, (short)17);

show("a4", a4);

Arrays.fill(a5, 19);

show("a5", a5);



Arrays.fill(a6, 23);

show("a6", a6);

Arrays.fill(a7, 29);

show("a7", a7);

Arrays.fill(a8, 47);

show("a8", a8);

Arrays.fill(a9, "Hello");

show("a9", a9);

// Manipulating ranges:

Arrays.fill(a9, 3, 5, "World");

show("a9", a9);

}

}

/* Output:

a1: [true, true, true, true, true, true]

a2: [11, 11, 11, 11, 11, 11]



a3: [x, x, x, x, x, x]

a4: [17, 17, 17, 17, 17, 17]

a5: [19, 19, 19, 19, 19, 19]

a6: [23, 23, 23, 23, 23, 23]

a7: [29.0, 29.0, 29.0, 29.0, 29.0, 29.0]

a8: [47.0, 47.0, 47.0, 47.0, 47.0, 47.0]

a9: [Hello, Hello, Hello, Hello, Hello, Hello]

a9: [Hello, Hello, Hello, World, World, Hello]

*/

You can either fill the entire array or, as the last two statements show,

fill a range of elements. But since you can only call Arrays.fill()

with a single data value, the results are not especially useful.

Arrays.setAll()

Introduced in RaggedArray.java and used again in

ArrayOfGenerics.java, Arrays.setAll() was added in

Java 8. It takes a generator and produces different values, optionally

based on the index element of the array (with access to the current

index, your generator can read the array value and modify it). The

overloaded signatures of the static Arrays.setAll() are:

void setAll(int[] a, IntUnaryOperator gen)



void setAll(long[] a, IntToLongFunction gen)

void setAll(double[] a, IntToDoubleFunction

gen)

<T> void setAll(T[] a, IntFunction<? extends

T> gen)

There are special versions for int, long, and double, and

everything else is handled by the generic version. The generators are

not Suppliers because those take no arguments, and these must

take the int array index as an argument.

This very simple setAll() example uses trivial lambda expressions

and method references:

// arrays/SimpleSetAll.java

import java.util.*;

import static onjava.ArrayShow.*;

class Bob {

final int id;

Bob(int n) { id = n; }

@Override

public String toString() { return "Bob" + id; }

}



public class SimpleSetAll {

public static final int SZ = 8;

static int val = 1;

static char[] chars = "abcdefghijklmnopqrstuvwxyz"

.toCharArray();

static char getChar(int n) { return chars[n]; }

public static void main(String[] args) {

int[] ia = new int[SZ];

long[] la = new long[SZ];

double[] da = new double[SZ];

Arrays.setAll(ia, n -> n); // [1]

Arrays.setAll(la, n -> n);

Arrays.setAll(da, n -> n);

show(ia);

show(la);

show(da);

Arrays.setAll(ia, n -> val++); // [2]

Arrays.setAll(la, n -> val++);

Arrays.setAll(da, n -> val++);

show(ia);



show(la);

show(da);

Bob[] ba = new Bob[SZ];

Arrays.setAll(ba, Bob::new); // [3]

show(ba);

Character[] ca = new Character[SZ];

Arrays.setAll(ca, SimpleSetAll::getChar); // [4]

show(ca);

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7]

[0, 1, 2, 3, 4, 5, 6, 7]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

[1, 2, 3, 4, 5, 6, 7, 8]

[9, 10, 11, 12, 13, 14, 15, 16]

[17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0]

[Bob0, Bob1, Bob2, Bob3, Bob4, Bob5, Bob6, Bob7]

[a, b, c, d, e, f, g, h]

*/



[1] Here, we just insert the array index as the value. This is

automatically converted for the long and double versions.

[2] The function only needs to accept the index and produce an

appropriate result. Here we ignore the index value and produce

the result using val.

[3] The method reference works because Bob’s constructor takes

an int argument. As long as the function we pass takes an int

argument and produces the expected result, it does the job.

[4] To deal with a primitive type other than int, long, or

double, make the array of the wrapper type for your primitive.

Then the generic version of setAll() is used. Notice that

getChar() produces the primitive type, so this is autoboxed to

Character.

Incremental

Generators

Here is a package of methods to produce incremental values for



different types.

These are written as inner classes to produce easy-to-remember

names; for example, to use the Integer tool you say new

Count.Integer(), and if you want the primitive int tool you say

new Count.Pint() (the primitive names could not be used

directly, so they are all preceded by a P for “primitive”—my first choice

was to use the primitive name followed by a trailing underscore, such

as int_ and double_, but that violates Java naming conventions).

Each generator for a wrapper class also implements its associated

Supplier with a get() method. To work with

Arrays.setAll(), an overloaded get(int n) method takes

(and ignores) its argument so it accepts the index value passed by

setAll().

Note that, by using the name of a wrapper class as an inner class

name, we must qualify the name of the actual wrapper with

java.lang:

// onjava/Count.java

// Generate incremental values of different types

package onjava;

import java.util.*;



import java.util.function.*;

import static onjava.ConvertTo.*;

public interface Count {

class Boolean

implements Supplier<java.lang.Boolean> {

private boolean b = true;

@Override

public java.lang.Boolean get() {

b = !b;

return java.lang.Boolean.valueOf(b);

}

public java.lang.Boolean get(int n) {

return get();

}

public java.lang.Boolean[] array(int sz) {

java.lang.Boolean[] result =

new java.lang.Boolean[sz];

Arrays.setAll(result, n -> get());

return result;

}



}

class Pboolean {

private boolean b = true;

public boolean get() {

b = !b;

return b;

}

public boolean get(int n) { return get(); }

public boolean[] array(int sz) {

return primitive(new Boolean().array(sz));

}

}

class Byte

implements Supplier<java.lang.Byte> {

private byte b;

@Override

public java.lang.Byte get() { return b++; }

public java.lang.Byte get(int n) {

return get();

}



public java.lang.Byte[] array(int sz) {

java.lang.Byte[] result =

new java.lang.Byte[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pbyte {

private byte b;

public byte get() { return b++; }

public byte get(int n) { return get(); }

public byte[] array(int sz) {

return primitive(new Byte().array(sz));

}

}

char[] CHARS =

"abcdefghijklmnopqrstuvwxyz".toCharArray();

class Character

implements Supplier<java.lang.Character> {

private int i;



@Override

public java.lang.Character get() {

i = (i + 1) % CHARS.length;

return CHARS[i];

}

public java.lang.Character get(int n) {

return get();

}

public java.lang.Character[] array(int sz) {

java.lang.Character[] result =

new java.lang.Character[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pchar {

private int i;

public char get() {

i = (i + 1) % CHARS.length;

return CHARS[i];



}

public char get(int n) { return get(); }

public char[] array(int sz) {

return primitive(new Character().array(sz));

}

}

class Short

implements Supplier<java.lang.Short> {

short s;

@Override

public java.lang.Short get() { return s++; }

public java.lang.Short get(int n) {

return get();

}

public java.lang.Short[] array(int sz) {

java.lang.Short[] result =

new java.lang.Short[sz];

Arrays.setAll(result, n -> get());

return result;

}



}

class Pshort {

short s;

public short get() { return s++; }

public short get(int n) { return get(); }

public short[] array(int sz) {

return primitive(new Short().array(sz));

}

}

class Integer

implements Supplier<java.lang.Integer> {

int i;

@Override

public java.lang.Integer get() { return i++; }

public java.lang.Integer get(int n) {

return get();

}

public java.lang.Integer[] array(int sz) {

java.lang.Integer[] result =

new java.lang.Integer[sz];



Arrays.setAll(result, n -> get());

return result;

}

}

class Pint implements IntSupplier {

int i;

public int get() { return i++; }

public int get(int n) { return get(); }

@Override

public int getAsInt() { return get(); }

public int[] array(int sz) {

return primitive(new Integer().array(sz));

}

}

class Long

implements Supplier<java.lang.Long> {

private long l;

@Override

public java.lang.Long get() { return l++; }

public java.lang.Long get(int n) {



return get();

}

public java.lang.Long[] array(int sz) {

java.lang.Long[] result =

new java.lang.Long[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Plong implements LongSupplier {

private long l;

public long get() { return l++; }

public long get(int n) { return get(); }

@Override

public long getAsLong() { return get(); }

public long[] array(int sz) {

return primitive(new Long().array(sz));

}

}

class Float



implements Supplier<java.lang.Float> {

private int i;

@Override

public java.lang.Float get() {

return java.lang.Float.valueOf(i++);

}

public java.lang.Float get(int n) {

return get();

}

public java.lang.Float[] array(int sz) {

java.lang.Float[] result =

new java.lang.Float[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pfloat {

private int i;

public float get() { return i++; }

public float get(int n) { return get(); }



public float[] array(int sz) {

return primitive(new Float().array(sz));

}

}

class Double

implements Supplier<java.lang.Double> {

private int i;

@Override

public java.lang.Double get() {

return java.lang.Double.valueOf(i++);

}

public java.lang.Double get(int n) {

return get();

}

public java.lang.Double[] array(int sz) {

java.lang.Double[] result =

new java.lang.Double[sz];

Arrays.setAll(result, n -> get());

return result;

}



}

class Pdouble implements DoubleSupplier {

private int i;

public double get() { return i++; }

public double get(int n) { return get(); }

@Override

public double getAsDouble() { return get(0); }

public double[] array(int sz) {

return primitive(new Double().array(sz));

}

}

}

For the three primitive types int, long and double where special

Supplier interfaces are available, Pint, Plong and Pdouble

implement those interfaces.

Here is a test for Count, which also gives examples of how to use it:

// arrays/TestCount.java

// Test counting generators

import java.util.*;

import java.util.stream.*;



import onjava.*;

import static onjava.ArrayShow.*;

public class TestCount {

static final int SZ = 5;

public static void main(String[] args) {

System.out.println("Boolean");

Boolean[] a1 = new Boolean[SZ];

Arrays.setAll(a1, new Count.Boolean()::get);

show(a1);

a1 = Stream.generate(new Count.Boolean())

.limit(SZ + 1).toArray(Boolean[]::new);

show(a1);

a1 = new Count.Boolean().array(SZ + 2);

show(a1);

boolean[] a1b =

new Count.Pboolean().array(SZ + 3);

show(a1b);

System.out.println("Byte");

Byte[] a2 = new Byte[SZ];

Arrays.setAll(a2, new Count.Byte()::get);



show(a2);

a2 = Stream.generate(new Count.Byte())

.limit(SZ + 1).toArray(Byte[]::new);

show(a2);

a2 = new Count.Byte().array(SZ + 2);

show(a2);

byte[] a2b = new Count.Pbyte().array(SZ + 3);

show(a2b);

System.out.println("Character");

Character[] a3 = new Character[SZ];

Arrays.setAll(a3, new Count.Character()::get);

show(a3);

a3 = Stream.generate(new Count.Character())

.limit(SZ + 1).toArray(Character[]::new);

show(a3);

a3 = new Count.Character().array(SZ + 2);

show(a3);

char[] a3b = new Count.Pchar().array(SZ + 3);

show(a3b);

System.out.println("Short");



Short[] a4 = new Short[SZ];

Arrays.setAll(a4, new Count.Short()::get);

show(a4);

a4 = Stream.generate(new Count.Short())

.limit(SZ + 1).toArray(Short[]::new);

show(a4);

a4 = new Count.Short().array(SZ + 2);

show(a4);

short[] a4b = new Count.Pshort().array(SZ + 3);

show(a4b);

System.out.println("Integer");

int[] a5 = new int[SZ];

Arrays.setAll(a5, new Count.Integer()::get);

show(a5);

Integer[] a5b =

Stream.generate(new Count.Integer())

.limit(SZ + 1).toArray(Integer[]::new);

show(a5b);

a5b = new Count.Integer().array(SZ + 2);

show(a5b);



a5 = IntStream.generate(new Count.Pint())

.limit(SZ + 1).toArray();

show(a5);

a5 = new Count.Pint().array(SZ + 3);

show(a5);

System.out.println("Long");

long[] a6 = new long[SZ];

Arrays.setAll(a6, new Count.Long()::get);

show(a6);

Long[] a6b = Stream.generate(new Count.Long())

.limit(SZ + 1).toArray(Long[]::new);

show(a6b);

a6b = new Count.Long().array(SZ + 2);

show(a6b);

a6 = LongStream.generate(new Count.Plong())

.limit(SZ + 1).toArray();

show(a6);

a6 = new Count.Plong().array(SZ + 3);

show(a6);

System.out.println("Float");



Float[] a7 = new Float[SZ];

Arrays.setAll(a7, new Count.Float()::get);

show(a7);

a7 = Stream.generate(new Count.Float())

.limit(SZ + 1).toArray(Float[]::new);

show(a7);

a7 = new Count.Float().array(SZ + 2);

show(a7);

float[] a7b = new Count.Pfloat().array(SZ + 3);

show(a7b);

System.out.println("Double");

double[] a8 = new double[SZ];

Arrays.setAll(a8, new Count.Double()::get);

show(a8);

Double[] a8b =

Stream.generate(new Count.Double())

.limit(SZ + 1).toArray(Double[]::new);

show(a8b);

a8b = new Count.Double().array(SZ + 2);

show(a8b);



a8 = DoubleStream.generate(new Count.Pdouble())

.limit(SZ + 1).toArray();

show(a8);

a8 = new Count.Pdouble().array(SZ + 3);

show(a8);

}

}

/* Output:



Boolean

[false, true, false, true, false]

[false, true, false, true, false, true]

[false, true, false, true, false, true, false]

[false, true, false, true, false, true, false, true]

Byte

[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6]

[0, 1, 2, 3, 4, 5, 6, 7]

Character

[b, c, d, e, f]

[b, c, d, e, f, g]

[b, c, d, e, f, g, h]

[b, c, d, e, f, g, h, i]

Short

[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6]

[0, 1, 2, 3, 4, 5, 6, 7]



Integer

[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6, 7]

Long

[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6]

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6, 7]

Float

[0.0, 1.0, 2.0, 3.0, 4.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

Double

[0.0, 1.0, 2.0, 3.0, 4.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]



[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

*/

Notice the primitive array types int[], long[] and double[] can

be filled directly using Arrays.setAll(), but all other primitives

require arrays of their wrapper types.

The wrapped arrays created via Stream.generate() show the

overloaded use of toArray(), where you provide it with the

constructor for the type of array to create.

Random Generators

We can follow the structure of Count.java to create a tool that

produces random values:

// onjava/Rand.java

// Generate random values of different types

package onjava;



import java.util.*;

import java.util.function.*;

import static onjava.ConvertTo.*;

public interface Rand {

int MOD = 10_000;

class Boolean

implements Supplier<java.lang.Boolean> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Boolean get() {

return r.nextBoolean();

}

public java.lang.Boolean get(int n) {

return get();

}

public java.lang.Boolean[] array(int sz) {

java.lang.Boolean[] result =

new java.lang.Boolean[sz];

Arrays.setAll(result, n -> get());

return result;



}

}

class Pboolean {

public boolean[] array(int sz) {

return primitive(new Boolean().array(sz));

}

}

class Byte

implements Supplier<java.lang.Byte> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Byte get() {

return (byte)r.nextInt(MOD);

}

public java.lang.Byte get(int n) {

return get();

}

public java.lang.Byte[] array(int sz) {

java.lang.Byte[] result =

new java.lang.Byte[sz];



Arrays.setAll(result, n -> get());

return result;

}

}

class Pbyte {

public byte[] array(int sz) {

return primitive(new Byte().array(sz));

}

}

class Character

implements Supplier<java.lang.Character> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Character get() {

return (char)r.nextInt('a', 'z' + 1);

}

public java.lang.Character get(int n) {

return get();

}

public java.lang.Character[] array(int sz) {



java.lang.Character[] result =

new java.lang.Character[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pchar {

public char[] array(int sz) {

return primitive(new Character().array(sz));

}

}

class Short

implements Supplier<java.lang.Short> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Short get() {

return (short)r.nextInt(MOD);

}

public java.lang.Short get(int n) {

return get();



}

public java.lang.Short[] array(int sz) {

java.lang.Short[] result =

new java.lang.Short[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pshort {

public short[] array(int sz) {

return primitive(new Short().array(sz));

}

}

class Integer

implements Supplier<java.lang.Integer> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Integer get() {

return r.nextInt(MOD);

}



public java.lang.Integer get(int n) {

return get();

}

public java.lang.Integer[] array(int sz) {

int[] primitive = new Pint().array(sz);

java.lang.Integer[] result =

new java.lang.Integer[sz];

for(int i = 0; i < sz; i++)

result[i] = primitive[i];

return result;

}

}

class Pint implements IntSupplier {

SplittableRandom r = new SplittableRandom(47);

@Override

public int getAsInt() {

return r.nextInt(MOD);

}

public int get(int n) { return getAsInt(); }

public int[] array(int sz) {



return r.ints(sz, 0, MOD).toArray();

}

}

class Long

implements Supplier<java.lang.Long> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Long get() {

return r.nextLong(MOD);

}

public java.lang.Long get(int n) {

return get();

}

public java.lang.Long[] array(int sz) {

long[] primitive = new Plong().array(sz);

java.lang.Long[] result =

new java.lang.Long[sz];

for(int i = 0; i < sz; i++)

result[i] = primitive[i];

return result;



}

}

class Plong implements LongSupplier {

SplittableRandom r = new SplittableRandom(47);

@Override

public long getAsLong() {

return r.nextLong(MOD);

}

public long get(int n) { return getAsLong(); }

public long[] array(int sz) {

return r.longs(sz, 0, MOD).toArray();

}

}

class Float

implements Supplier<java.lang.Float> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Float get() {

return (float)trim(r.nextDouble());

}



public java.lang.Float get(int n) {

return get();

}

public java.lang.Float[] array(int sz) {

java.lang.Float[] result =

new java.lang.Float[sz];

Arrays.setAll(result, n -> get());

return result;

}

}

class Pfloat {

public float[] array(int sz) {

return primitive(new Float().array(sz));

}

}

static double trim(double d) {

return

((double)Math.round(d * 1000.0)) / 100.0;

}

class Double



implements Supplier<java.lang.Double> {

SplittableRandom r = new SplittableRandom(47);

@Override

public java.lang.Double get() {

return trim(r.nextDouble());

}

public java.lang.Double get(int n) {

return get();

}

public java.lang.Double[] array(int sz) {

double[] primitive =

new Rand.Pdouble().array(sz);

java.lang.Double[] result =

new java.lang.Double[sz];

for(int i = 0; i < sz; i++)

result[i] = primitive[i];

return result;

}

}

class Pdouble implements DoubleSupplier {



SplittableRandom r = new SplittableRandom(47);

@Override

public double getAsDouble() {

return trim(r.nextDouble());

}

public double get(int n) {

return getAsDouble();

}

public double[] array(int sz) {

double[] result = r.doubles(sz).toArray();

Arrays.setAll(result,

n -> result[n] = trim(result[n]));

return result;

}

}

class String

implements Supplier<java.lang.String> {

SplittableRandom r = new SplittableRandom(47);

private int strlen = 7; // Default length

public String() {}



public String(int strLength) {

strlen = strLength;

}

@Override

public java.lang.String get() {

return r.ints(strlen, 'a', 'z' + 1)

.collect(StringBuilder::new,

StringBuilder::appendCodePoint,

StringBuilder::append).toString();

}

public java.lang.String get(int n) {

return get();

}

public java.lang.String[] array(int sz) {

java.lang.String[] result =

new java.lang.String[sz];

Arrays.setAll(result, n -> get());

return result;

}

}



}

For all primitive generators except for int, long and double, only

arrays are generated rather than the full set of operations seen in

Count. This is just a design choice, because the book doesn’t need the

extra features.

Here’s a test for all the Rand tools:

// arrays/TestRand.java

// Test random generators

import java.util.*;

import java.util.stream.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class TestRand {

static final int SZ = 5;

public static void main(String[] args) {

System.out.println("Boolean");

Boolean[] a1 = new Boolean[SZ];

Arrays.setAll(a1, new Rand.Boolean()::get);

show(a1);

a1 = Stream.generate(new Rand.Boolean())



.limit(SZ + 1).toArray(Boolean[]::new);

show(a1);

a1 = new Rand.Boolean().array(SZ + 2);

show(a1);

boolean[] a1b =

new Rand.Pboolean().array(SZ + 3);

show(a1b);

System.out.println("Byte");

Byte[] a2 = new Byte[SZ];

Arrays.setAll(a2, new Rand.Byte()::get);

show(a2);

a2 = Stream.generate(new Rand.Byte())

.limit(SZ + 1).toArray(Byte[]::new);

show(a2);

a2 = new Rand.Byte().array(SZ + 2);

show(a2);

byte[] a2b = new Rand.Pbyte().array(SZ + 3);

show(a2b);

System.out.println("Character");

Character[] a3 = new Character[SZ];



Arrays.setAll(a3, new Rand.Character()::get);

show(a3);

a3 = Stream.generate(new Rand.Character())

.limit(SZ + 1).toArray(Character[]::new);

show(a3);

a3 = new Rand.Character().array(SZ + 2);

show(a3);

char[] a3b = new Rand.Pchar().array(SZ + 3);

show(a3b);

System.out.println("Short");

Short[] a4 = new Short[SZ];

Arrays.setAll(a4, new Rand.Short()::get);

show(a4);

a4 = Stream.generate(new Rand.Short())

.limit(SZ + 1).toArray(Short[]::new);

show(a4);

a4 = new Rand.Short().array(SZ + 2);

show(a4);

short[] a4b = new Rand.Pshort().array(SZ + 3);

show(a4b);



System.out.println("Integer");

int[] a5 = new int[SZ];

Arrays.setAll(a5, new Rand.Integer()::get);

show(a5);

Integer[] a5b =

Stream.generate(new Rand.Integer())

.limit(SZ + 1).toArray(Integer[]::new);

show(a5b);

a5b = new Rand.Integer().array(SZ + 2);

show(a5b);

a5 = IntStream.generate(new Rand.Pint())

.limit(SZ + 1).toArray();

show(a5);

a5 = new Rand.Pint().array(SZ + 3);

show(a5);

System.out.println("Long");

long[] a6 = new long[SZ];

Arrays.setAll(a6, new Rand.Long()::get);

show(a6);

Long[] a6b = Stream.generate(new Rand.Long())



.limit(SZ + 1).toArray(Long[]::new);

show(a6b);

a6b = new Rand.Long().array(SZ + 2);

show(a6b);

a6 = LongStream.generate(new Rand.Plong())

.limit(SZ + 1).toArray();

show(a6);

a6 = new Rand.Plong().array(SZ + 3);

show(a6);

System.out.println("Float");

Float[] a7 = new Float[SZ];

Arrays.setAll(a7, new Rand.Float()::get);

show(a7);

a7 = Stream.generate(new Rand.Float())

.limit(SZ + 1).toArray(Float[]::new);

show(a7);

a7 = new Rand.Float().array(SZ + 2);

show(a7);

float[] a7b = new Rand.Pfloat().array(SZ + 3);

show(a7b);



System.out.println("Double");

double[] a8 = new double[SZ];

Arrays.setAll(a8, new Rand.Double()::get);

show(a8);

Double[] a8b =

Stream.generate(new Rand.Double())

.limit(SZ + 1).toArray(Double[]::new);

show(a8b);

a8b = new Rand.Double().array(SZ + 2);

show(a8b);

a8 = DoubleStream.generate(new Rand.Pdouble())

.limit(SZ + 1).toArray();

show(a8);

a8 = new Rand.Pdouble().array(SZ + 3);

show(a8);

System.out.println("String");

String[] s = new String[SZ - 1];

Arrays.setAll(s, new Rand.String()::get);

show(s);

s = Stream.generate(new Rand.String())



.limit(SZ).toArray(String[]::new);

show(s);

s = new Rand.String().array(SZ + 1);

show(s);

Arrays.setAll(s, new Rand.String(4)::get);

show(s);

s = Stream.generate(new Rand.String(4))

.limit(SZ).toArray(String[]::new);

show(s);

s = new Rand.String(4).array(SZ + 1);

show(s);

}

}

/* Output:

Boolean

[true, false, true, true, true]

[true, false, true, true, true, false]

[true, false, true, true, true, false, false]

[true, false, true, true, true, false, false, true]

Byte



[123, 33, 101, 112, 33]

[123, 33, 101, 112, 33, 31]

[123, 33, 101, 112, 33, 31, 0]

[123, 33, 101, 112, 33, 31, 0, -72]

Character

[b, t, p, e, n]

[b, t, p, e, n, p]

[b, t, p, e, n, p, c]

[b, t, p, e, n, p, c, c]

Short

[635, 8737, 3941, 4720, 6177]

[635, 8737, 3941, 4720, 6177, 8479]

[635, 8737, 3941, 4720, 6177, 8479, 6656]

[635, 8737, 3941, 4720, 6177, 8479, 6656, 3768]

Integer

[635, 8737, 3941, 4720, 6177]

[635, 8737, 3941, 4720, 6177, 8479]

[635, 8737, 3941, 4720, 6177, 8479, 6656]

[635, 8737, 3941, 4720, 6177, 8479]

[635, 8737, 3941, 4720, 6177, 8479, 6656, 3768]



Long

[6882, 3765, 692, 9575, 4439]

[6882, 3765, 692, 9575, 4439, 2638]

[6882, 3765, 692, 9575, 4439, 2638, 4011]

[6882, 3765, 692, 9575, 4439, 2638]

[6882, 3765, 692, 9575, 4439, 2638, 4011, 9610]

Float

[4.83, 2.89, 2.9, 1.97, 3.01]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18, 0.99]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18, 0.99, 8.28]

Double

[4.83, 2.89, 2.9, 1.97, 3.01]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18, 0.99]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18, 0.99, 8.28]

String

[btpenpc, cuxszgv, gmeinne, eloztdv]

[btpenpc, cuxszgv, gmeinne, eloztdv, ewcippc]



[btpenpc, cuxszgv, gmeinne, eloztdv, ewcippc, ygpoalk]

[btpe, npcc, uxsz, gvgm, einn, eelo]

[btpe, npcc, uxsz, gvgm, einn]

[btpe, npcc, uxsz, gvgm, einn, eelo]

*/

Notice that (with the exception of the String section), this code is

identical to that in TestCount.java, with Count replaced by

Rand.

Generics and Primitive

Arrays

Earlier in this chapter we were reminded that generics don’t work with

primitives. It’s not uncommon to encounter situations where we must

convert from arrays of primitives to arrays of wrapped types, and also

to convert in the other direction. Here’s a converter that performs both

operations for all types:

// onjava/ConvertTo.java



package onjava;

public interface ConvertTo {

static boolean[] primitive(Boolean[] in) {

boolean[] result = new boolean[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i]; // Autounboxing

return result;

}

static char[] primitive(Character[] in) {

char[] result = new char[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static byte[] primitive(Byte[] in) {

byte[] result = new byte[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}



static short[] primitive(Short[] in) {

short[] result = new short[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static int[] primitive(Integer[] in) {

int[] result = new int[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static long[] primitive(Long[] in) {

long[] result = new long[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static float[] primitive(Float[] in) {

float[] result = new float[in.length];



for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static double[] primitive(Double[] in) {

double[] result = new double[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

// Convert from primitive array to wrapped array:

static Boolean[] boxed(boolean[] in) {

Boolean[] result = new Boolean[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i]; // Autoboxing

return result;

}

static Character[] boxed(char[] in) {

Character[] result = new Character[in.length];

for(int i = 0; i < in.length; i++)



result[i] = in[i];

return result;

}

static Byte[] boxed(byte[] in) {

Byte[] result = new Byte[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static Short[] boxed(short[] in) {

Short[] result = new Short[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static Integer[] boxed(int[] in) {

Integer[] result = new Integer[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;



}

static Long[] boxed(long[] in) {

Long[] result = new Long[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static Float[] boxed(float[] in) {

Float[] result = new Float[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

static Double[] boxed(double[] in) {

Double[] result = new Double[in.length];

for(int i = 0; i < in.length; i++)

result[i] = in[i];

return result;

}

}



Each version of primitive() creates an appropriate primitive array

of the correct length, then copies the elements from the in array of

wrapper types. If any of the wrapped-array elements is null, you’ll

get an exception (this is reasonable—what value would you substitute

that has meaning?). Notice how autounboxing takes place during

assignment.

Here’s a test for each method in ConvertTo:

// arrays/TestConvertTo.java

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

import static onjava.ConvertTo.*;

public class TestConvertTo {

static final int SIZE = 6;

public static void main(String[] args) {

Boolean[] a1 = new Boolean[SIZE];

Arrays.setAll(a1, new Rand.Boolean()::get);

boolean[] a1p = primitive(a1);

show("a1p", a1p);

Boolean[] a1b = boxed(a1p);



show("a1b", a1b);

Byte[] a2 = new Byte[SIZE];

Arrays.setAll(a2, new Rand.Byte()::get);

byte[] a2p = primitive(a2);

show("a2p", a2p);

Byte[] a2b = boxed(a2p);

show("a2b", a2b);

Character[] a3 = new Character[SIZE];

Arrays.setAll(a3, new Rand.Character()::get);

char[] a3p = primitive(a3);

show("a3p", a3p);

Character[] a3b = boxed(a3p);

show("a3b", a3b);

Short[] a4 = new Short[SIZE];

Arrays.setAll(a4, new Rand.Short()::get);

short[] a4p = primitive(a4);

show("a4p", a4p);

Short[] a4b = boxed(a4p);

show("a4b", a4b);

Integer[] a5 = new Integer[SIZE];



Arrays.setAll(a5, new Rand.Integer()::get);

int[] a5p = primitive(a5);

show("a5p", a5p);

Integer[] a5b = boxed(a5p);

show("a5b", a5b);

Long[] a6 = new Long[SIZE];

Arrays.setAll(a6, new Rand.Long()::get);

long[] a6p = primitive(a6);

show("a6p", a6p);

Long[] a6b = boxed(a6p);

show("a6b", a6b);

Float[] a7 = new Float[SIZE];

Arrays.setAll(a7, new Rand.Float()::get);

float[] a7p = primitive(a7);

show("a7p", a7p);

Float[] a7b = boxed(a7p);

show("a7b", a7b);

Double[] a8 = new Double[SIZE];

Arrays.setAll(a8, new Rand.Double()::get);

double[] a8p = primitive(a8);



show("a8p", a8p);

Double[] a8b = boxed(a8p);

show("a8b", a8b);

}

}

/* Output:

a1p: [true, false, true, true, true, false]

a1b: [true, false, true, true, true, false]

a2p: [123, 33, 101, 112, 33, 31]

a2b: [123, 33, 101, 112, 33, 31]

a3p: [b, t, p, e, n, p]

a3b: [b, t, p, e, n, p]

a4p: [635, 8737, 3941, 4720, 6177, 8479]

a4b: [635, 8737, 3941, 4720, 6177, 8479]

a5p: [635, 8737, 3941, 4720, 6177, 8479]

a5b: [635, 8737, 3941, 4720, 6177, 8479]

a6p: [6882, 3765, 692, 9575, 4439, 2638]

a6b: [6882, 3765, 692, 9575, 4439, 2638]

a7p: [4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

a7b: [4.83, 2.89, 2.9, 1.97, 3.01, 0.18]



a8p: [4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

a8b: [4.83, 2.89, 2.9, 1.97, 3.01, 0.18]

*/

In each case, the original array is created for the wrapper type and

filled using Arrays.setAll() as we did in TestCounter.java

(this also verifies that Arrays.setAll() works with the wrapper

arrays for Integer, Long, and Double). Then

ConvertTo.primitive() converts the wrapper array to its

corresponding primitive array, and ConvertTo.boxed() converts

it back.

Modifying Existing

Array Elements

The generator function passed to Arrays.setAll() can modify

existing array elements by using the array index it receives:

// arrays/ModifyExisting.java

import java.util.*;



import onjava.*;

import static onjava.ArrayShow.*;

public class ModifyExisting {

public static void main(String[] args) {

double[] da = new double[7];

Arrays.setAll(da, new Rand.Double()::get);

show(da);

Arrays.setAll(da, n -> da[n] / 100); // [1]

show(da);

}

}

/* Output:

[4.83, 2.89, 2.9, 1.97, 3.01, 0.18, 0.99]

[0.0483, 0.028900000000000002, 0.028999999999999998,

0.0197, 0.0301, 0.0018, 0.009899999999999999]

*/

[1] Lambdas are particularly useful here because the array will

always be within the scope of the lambda expression.



An Aside On

Parallelism

We are soon forced to encounter the topic of parallelism. For example,

the word “parallel” is used in a number of Java library methods. You

might have heard something like “parallel programs run faster,” and it

makes sense—why have only a single processor working on your

program when you can have many? You can easily be forgiven for

thinking you should just take advantage of anything with “parallel” in

it.

It would be lovely if it were that simple. Unfortunately, by taking this

approach you can quite easily write code that runs slower than the

non-parallel version. And until you understand all the issues quite

deeply, it could very well seem like parallel programming is more art



than science.

Here’s the short version: Write code the easy and simple way. Don’t

start wrestling with parallelism unless it becomes a problem.

You’ll still encounter parallelism. In this chapter we’ll introduce some

of the Java library methods written for parallel execution. So you must

understand it enough for basic discussions, and to avoid the pitfalls.

After you read the Concurrent Programming chapter, you’ll

understand it more deeply (but, alas, never enough. It turns out to be

impossible to understand this topic enough).

There are also some situations where the parallel implementation is

either the only one, or the best or logical choice regardless of whether

you’re explicitly trying to be parallel or not, or even if you only have a

single processor. It’s the one to use all the time, so you must

understand the issues around it.

Strategies

It’s probably best to think about parallelism in terms of data. For a lot

of data (and with extra processors available), parallel might help. But



it might not, and you could also make things worse.

Throughout the rest of the book, we will encounter different

situations:

1. The only option provided is the parallel one. That’s easy because

we have no choice but to use it. This is rare.

2. There are multiple options but the parallel version (often the most

recent version) is designed to be used everywhere (even in code

that otherwise doesn’t care about parallelism), as in case #1. We’ll

use the parallel version as intended.

3. Cases #1 and #2 don’t happen that often. Instead, you’ll

encounter two versions of the algorithm, one for parallel usage

and one for normal usage. I’ll describe the parallel one but won’t

use it in normal code because of all the possible problems it could

produce.

I recommend you adopt this approach for your own code.

For further insights into why this is a hard problem, see Doug Lea’s

Article.

parallelSetAll()

The Stream approach produces elegant code. For example, suppose

we’d like to create an array of long filled with values counted up from

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html
http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html


zero:

// arrays/CountUpward.java

import java.util.*;

import java.util.stream.*;

import static onjava.ArrayShow.*;

public class CountUpward {

static long[] fillCounted(int size) {

return LongStream.iterate(0, i -> i + 1)

.limit(size).toArray();

}

public static void main(String[] args) {

long[] l1 = fillCounted(20); // No problem

show(l1);

// On my machine, this runs out of heap space:

//- long[] l2 = fillCounted(10_000_000);

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19]



*/

Streams actually work up to nearly ten million, but then starts

running out of heap space. Regular setAll() works but it’s nice if

we can do it faster with such large numbers.

We can initialize bigger arrays using setAll(). If speed becomes an

issue, Arrays.parallelSetAll() will (probably) perform the

initialization faster (keeping in mind the problems described in An

Aside On Parallelism):

// arrays/ParallelSetAll.java

import java.util.*;

import onjava.*;

public class ParallelSetAll {

static final int SIZE = 10_000_000;

static void intArray() {

int[] ia = new int[SIZE];

Arrays.setAll(ia, new Rand.Pint()::get);

Arrays.parallelSetAll(ia, new Rand.Pint()::get);

}

static void longArray() {

long[] la = new long[SIZE];



Arrays.setAll(la, new Rand.Plong()::get);

Arrays.parallelSetAll(la, new Rand.Plong()::get);

}

public static void main(String[] args) {

intArray();

longArray();

}

}

The array allocations and initializations are performed in separate

methods, because if both arrays are allocated in main(), it runs out

of memory (on my machine, anyway. Also, there are ways of telling

Java to allocate more memory on startup).

Arrays Utilities

You’ve already seen fill() and setAll()/parallelSetAll()

from java.util.Arrays. That class contains a number of other

useful static utility methods that we shall explore. Here’s an



overview:

asList(): Takes any sequence or array and turns it into a List

Collection—this method was covered in the Collections

chapter.

copyOf(): Makes a new copy of an existing array, with a new

length.

copyOfRange(): Makes a new copy of a section of an existing

array.

equals(): Compare two arrays for equality.

deepEquals(): Equality comparison for multidimensional

arrays.

stream(): Produce a Stream of the array elements.

hashCode(): Produce the hash value of an array (you’ll learn

what this means in the Appendix: Understanding equals() and

hashCode()).

deepHashCode(): Hash value for a multidimensional array.

sort(): Sort an array.

parallelSort(): Sort an array in parallel, to increase speed.

binarySearch(): Find an element in a sorted array.

parallelPrefix(): Accumulate using the supplied function,



in parallel (for speed). Basically, a reduce() for arrays.

spliterator(): Produces a Spliterator from the array;

this is an advanced part of Streams not covered in this book.

toString(): Produce a String representation for an array.

You’ve seen this used regularly throughout the chapter.

deepToString(): Produce a String for a multidimensional

array. You’ve seen this used regularly throughout the chapter.

All these methods are overloaded for all the primitive types and for

Objects.

Copying an Array

copyOf() and copyOfRange() copy arrays far more quickly than

if you use a for loop to perform the copy by hand. These methods are

overloaded to handle all types. We start by copying arrays of int and

Integer:

// arrays/ArrayCopying.java

// Demonstrate Arrays.copy() and Arrays.copyOf()



import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

class Sup { // Superclass

private int id;

Sup(int n) { id = n; }

@Override

public String toString() {

return getClass().getSimpleName() + id;

}

}

class Sub extends Sup { // Subclass

Sub(int n) { super(n); }

}

public class ArrayCopying {

public static final int SZ = 15;

public static void main(String[] args) {

int[] a1 = new int[SZ];

Arrays.setAll(a1, new Count.Integer()::get);

show("a1", a1);



int[] a2 = Arrays.copyOf(a1, a1.length); // [1]

// Prove they are distinct arrays:

Arrays.fill(a1, 1);

show("a1", a1);

show("a2", a2);

// Create a shorter result:

a2 = Arrays.copyOf(a2, a2.length/2); // [2]

show("a2", a2);

// Allocate more space:

a2 = Arrays.copyOf(a2, a2.length + 5);

show("a2", a2);

// Also copies wrapped arrays:

Integer[] a3 = new Integer[SZ]; // [3]

Arrays.setAll(a3, new Count.Integer()::get);

Integer[] a4 = Arrays.copyOfRange(a3, 4, 12);

show("a4", a4);

Sub[] d = new Sub[SZ/2];

Arrays.setAll(d, Sub::new);

// Produce Sup[] from Sub[]:

Sup[] b =



Arrays.copyOf(d, d.length, Sup[].class); // [4]

show(b);

// This "downcast" works fine:

Sub[] d2 =

Arrays.copyOf(b, b.length, Sub[].class); // [5]

show(d2);

// Bad "downcast" compiles but throws exception:

Sup[] b2 = new Sup[SZ/2];

Arrays.setAll(b2, Sup::new);

try {

Sub[] d3 = Arrays.copyOf(

b2, b2.length, Sub[].class); // [6]

} catch(Exception e) {

System.out.println(e);

}

}

}

/* Output:

a1: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

a1: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]



a2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

a2: [0, 1, 2, 3, 4, 5, 6]

a2: [0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0]

a4: [4, 5, 6, 7, 8, 9, 10, 11]

[Sub0, Sub1, Sub2, Sub3, Sub4, Sub5, Sub6]

[Sub0, Sub1, Sub2, Sub3, Sub4, Sub5, Sub6]

java.lang.ArrayStoreException

*/

[1] Here’s the basic way to make a copy; just give it the size of the

result. This is helpful if you’re writing an algorithm that needs to

resize storage. After the copy, we set all the elements of a1 to 1, to

demonstrate that this doesn’t change anything in a2.

[2] By changing the result size (the last argument), we can

shorten or lengthen the resulting array.

[3] Both copyOf() and copyOfRange() also work with

wrapped types. copyOfRange() requires a start and end index.

[4] Both copyOf() and copyOfRange() have a version that

creates an array of a different type, by adding the destination type

at the end of the method call. I first though this might be a way to

produce a wrapped array from a primitive array, and vice-versa.



But that doesn’t work. What it’s actually for is “upcasting” and

“downcasting” arrays. That is, if you have an array of a subtype

(derived type) and you’d like an array of the base type instead,

these methods will produce the desired array.

[5] You can even successfully “downcast” and produce an array of

the subtype from an array of the supertype. This version works

fine because we just “upcast.”

[6] This “array cast” will compile, but if the types are

incompatible, you’ll get a runtime exception. Here, forcing the

base type to pretend it’s a derived type is illegal because there are

probably data and methods in the derived objects that are not in

the base objects.

The example shows that both primitive arrays and object arrays can be

copied. However, if you copy arrays of objects, then only the references

get copied—there’s no duplication of the objects themselves. This is

called a shallow copy (see the Appendix: Passing and Returning



Objects for more details).

There’s also a method System.arraycopy() that copies one array

into another, already allocated, array. This will not perform

autoboxing or autounboxing—the two arrays must be of exactly the

same type.

Comparing Arrays

Arrays provides equals() to compare one-dimensional arrays for

equality, and deepEquals() to compare multi-dimensional arrays.

These methods are overloaded for all the primitives and for Object.

To be equal, the arrays must have the same number of elements, and

each element must be equivalent to each corresponding element in the

other array, using the equals() for each element (For primitives,

that primitive’s wrapper class equals() is used; for example,

Integer.equals() for int).

// arrays/ComparingArrays.java

// Using Arrays.equals()

import java.util.*;

import onjava.*;

public class ComparingArrays {

public static final int SZ = 15;



static String[][] twoDArray() {

String[][] md = new String[5][];

Arrays.setAll(md, n -> new String[n]);

for(int i = 0; i < md.length; i++)

Arrays.setAll(md[i], new Rand.String()::get);

return md;

}

public static void main(String[] args) {

int[] a1 = new int[SZ], a2 = new int[SZ];

Arrays.setAll(a1, new Count.Integer()::get);

Arrays.setAll(a2, new Count.Integer()::get);

System.out.println(

"a1 == a2: " + Arrays.equals(a1, a2));

a2[3] = 11;

System.out.println(

"a1 == a2: " + Arrays.equals(a1, a2));

Integer[] a1w = new Integer[SZ],

a2w = new Integer[SZ];

Arrays.setAll(a1w, new Count.Integer()::get);

Arrays.setAll(a2w, new Count.Integer()::get);



System.out.println(

"a1w == a2w: " + Arrays.equals(a1w, a2w));

a2w[3] = 11;

System.out.println(

"a1w == a2w: " + Arrays.equals(a1w, a2w));

String[][] md1 = twoDArray(), md2 = twoDArray();

System.out.println(Arrays.deepToString(md1));

System.out.println("deepEquals(md1, md2): " +

Arrays.deepEquals(md1, md2));

System.out.println(

"md1 == md2: " + Arrays.equals(md1, md2));

md1[4][1] = "#$#$#$#";

System.out.println(Arrays.deepToString(md1));

System.out.println("deepEquals(md1, md2): " +

Arrays.deepEquals(md1, md2));

}

}

/* Output:

a1 == a2: true

a1 == a2: false



a1w == a2w: true

a1w == a2w: false

[[], [btpenpc], [btpenpc, cuxszgv], [btpenpc, cuxszgv,

gmeinne], [btpenpc, cuxszgv, gmeinne, eloztdv]]

deepEquals(md1, md2): true

md1 == md2: false

[[], [btpenpc], [btpenpc, cuxszgv], [btpenpc, cuxszgv,

gmeinne], [btpenpc, #$#$#$#, gmeinne, eloztdv]]

deepEquals(md1, md2): false

*/

Originally, a1 and a2 are exactly equal, so the output is true, but

then one of the elements is changed, which makes the result false.

a1w and a2w repeat the exercise for a wrapped array.

md1 and md2 are multidimensional String arrays initialized

identically via twoDArray(). Notice that deepEquals()

produces true because it performs a proper comparison, while the



normal equals() incorrectly produces false. If we change one of

the elements in the array, deepEquals() detects it.

Streams and Arrays

The stream() method easily produces a Stream of elements from

some types of arrays:

// arrays/StreamFromArray.java

import java.util.*;

import onjava.*;

public class StreamFromArray {

public static void main(String[] args) {

String[] s = new Rand.String().array(10);

Arrays.stream(s)

.skip(3)

.limit(5)

.map(ss -> ss + "!")

.forEach(System.out::println);

int[] ia = new Rand.Pint().array(10);

Arrays.stream(ia)

.skip(3)

.limit(5)



.map(i -> i * 10)

.forEach(System.out::println);

Arrays.stream(new long[10]);

Arrays.stream(new double[10]);

// Only int, long and double work:

//- Arrays.stream(new boolean[10]);

//- Arrays.stream(new byte[10]);

//- Arrays.stream(new char[10]);

//- Arrays.stream(new short[10]);

//- Arrays.stream(new float[10]);

// For the other types you must use wrapped arrays:

float[] fa = new Rand.Pfloat().array(10);

Arrays.stream(ConvertTo.boxed(fa));

Arrays.stream(new Rand.Float().array(10));

}

}

/* Output:

eloztdv!

ewcippc!

ygpoalk!



ljlbynx!

taprwxz!

47200

61770

84790

66560

37680

*/

Only the “primary” supported types int, long and double work

with Arrays.stream(); for the others you must somehow get a

wrapped array.

Often it is easier to turn an array into a Stream to produce your

desired results, instead of manipulating the array directly. Note that

even though the Stream is “used up” (you can’t repeat it), you still

have the array so you can use that in other ways—including generating

another Stream.



Sorting Arrays

Sorting performs comparisons based on the actual type of the object.

One approach is to write a different sorting method for every different

type, but such code is not reusable for new types.

A primary goal of programming design is to “separate things that

change from things that stay the same,” and here, the code that stays

the same is the general sort algorithm, but the thing that changes from

one use to the next is the way objects are compared. So instead of

placing the comparison code into many different sort routines, the

Strategy design pattern is used. 1 With a Strategy, the part of the code that
varies is encapsulated inside a separate class (the Strategy object).

You hand a Strategy object to the code that’s always the same, which

uses the Strategy to fulfill its algorithm. That way, you can make

different objects expressing different ways of comparison and feed

them to the same sorting code.

Java has two ways to provide comparison functionality. The first is

with the “natural” comparison method that is imparted to a class by

implementing the java.lang.Comparable interface. This is a

very simple interface with a single method, compareTo(). This

method takes another object of the same type as an argument and

produces a negative value if the current object is less than the



argument, zero if the argument is equal, and a positive value if the

current object is greater than the argument.

Here’s a class that implements Comparable and demonstrates

comparability using the Java standard library method

Arrays.sort():

// arrays/CompType.java

// Implementing Comparable in a class

import java.util.*;

import java.util.function.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class CompType implements Comparable<CompType> {

int i;

int j;

private static int count = 1;

public CompType(int n1, int n2) {

i = n1;

j = n2;

}

@Override



public String toString() {

String result = "[i = " + i + ", j = " + j + "]";

if(count++ % 3 == 0)

result += "\n";

return result;

}

@Override

public int compareTo(CompType rv) {

return (i < rv.i ? -1 : (i == rv.i ? 0 : 1));

}

private static SplittableRandom r =

new SplittableRandom(47);

public static CompType get() {

return new CompType(r.nextInt(100), r.nextInt(100));

}

public static void main(String[] args) {

CompType[] a = new CompType[12];

Arrays.setAll(a, n -> get());

show("Before sorting", a);

Arrays.sort(a);



show("After sorting", a);

}

}

/* Output:

Before sorting: [[i = 35, j = 37], [i = 41, j = 20], [i

= 77, j = 79]

, [i = 56, j = 68], [i = 48, j = 93], [i = 70, j = 7]

, [i = 0, j = 25], [i = 62, j = 34], [i = 50, j = 82]

, [i = 31, j = 67], [i = 66, j = 54], [i = 21, j = 6]

]

After sorting: [[i = 0, j = 25], [i = 21, j = 6], [i =

31, j = 67]

, [i = 35, j = 37], [i = 41, j = 20], [i = 48, j = 93]

, [i = 50, j = 82], [i = 56, j = 68], [i = 62, j = 34]

, [i = 66, j = 54], [i = 70, j = 7], [i = 77, j = 79]

]

*/

When you define the comparison method, you are responsible for

deciding what it means to compare one of your objects to another.

Here, only the i values are used in the comparison, and the j values



are ignored.

The get() method builds CompType objects by initializing them

with random values. In main(), get() is used with

Arrays.setAll() to fill an array of CompType, which is then

sorted. If Comparable hadn’t been implemented, you’d get a

ClassCastException at run time when you tried to call sort().

This is because sort() casts its argument to Comparable.

Now suppose someone hands you a class that doesn’t implement

Comparable, or hands you this class that does implement

Comparable, but you decide you don’t like the way it works and

would rather have a different comparison method for the type. To

solve the problem, create a separate class that implements the

Comparator interface (briefly introduced in the Collections

chapter). It has two methods, compare() and equals(). However,

you don’t implement equals() except for special performance

needs, because anytime you create a class, it is implicitly inherited

from Object, which has an equals(). You can just use the default

Object equals() and satisfy the contract imposed by the

interface.

The Collections class (note the plural; we’ll look at it more in the next
chapter) contains a method reverseOrder() that produces a



Comparator to reverse the natural sorting order. This can be

applied to CompType:

// arrays/Reverse.java

// The Collections.reverseOrder() Comparator

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class Reverse {

public static void main(String[] args) {

CompType[] a = new CompType[12];

Arrays.setAll(a, n -> CompType.get());

show("Before sorting", a);

Arrays.sort(a, Collections.reverseOrder());

show("After sorting", a);

}

}

/* Output:

Before sorting: [[i = 35, j = 37], [i = 41, j = 20], [i

= 77, j = 79]

, [i = 56, j = 68], [i = 48, j = 93], [i = 70, j = 7]



, [i = 0, j = 25], [i = 62, j = 34], [i = 50, j = 82]

, [i = 31, j = 67], [i = 66, j = 54], [i = 21, j = 6]

]

After sorting: [[i = 77, j = 79], [i = 70, j = 7], [i =

66, j = 54]

, [i = 62, j = 34], [i = 56, j = 68], [i = 50, j = 82]

, [i = 48, j = 93], [i = 41, j = 20], [i = 35, j = 37]

, [i = 31, j = 67], [i = 21, j = 6], [i = 0, j = 25]

]

*/

You can also write your own Comparator. This one compares

CompType objects based on their j values rather than their i values:

// arrays/ComparatorTest.java

// Implementing a Comparator for a class

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;



class CompTypeComparator

implements Comparator<CompType> {

public int compare(CompType o1, CompType o2) {

return (o1.j < o2.j ? -1 : (o1.j == o2.j ? 0 : 1));

}

}

public class ComparatorTest {

public static void main(String[] args) {

CompType[] a = new CompType[12];

Arrays.setAll(a, n -> CompType.get());

show("Before sorting", a);

Arrays.sort(a, new CompTypeComparator());

show("After sorting", a);

}

}

/* Output:

Before sorting: [[i = 35, j = 37], [i = 41, j = 20], [i

= 77, j = 79]

, [i = 56, j = 68], [i = 48, j = 93], [i = 70, j = 7]

, [i = 0, j = 25], [i = 62, j = 34], [i = 50, j = 82]



, [i = 31, j = 67], [i = 66, j = 54], [i = 21, j = 6]

]

After sorting: [[i = 21, j = 6], [i = 70, j = 7], [i =

41, j = 20]

, [i = 0, j = 25], [i = 62, j = 34], [i = 35, j = 37]

, [i = 66, j = 54], [i = 31, j = 67], [i = 56, j = 68]

, [i = 77, j = 79], [i = 50, j = 82], [i = 48, j = 93]

]

*/

Using Arrays.sort()

With the built-in sorting methods, you can sort any array of

primitives, or any array of objects that either implements

Comparable or has an associated Comparator. Here we generate an array
of random String objects and sort it:2

// arrays/StringSorting.java

// Sorting an array of Strings

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class StringSorting {

public static void main(String[] args) {



String[] sa = new Rand.String().array(20);

show("Before sort", sa);

Arrays.sort(sa);

show("After sort", sa);

Arrays.sort(sa, Collections.reverseOrder());

show("Reverse sort", sa);

Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);

show("Case-insensitive sort", sa);

}

}

/* Output:

Before sort: [btpenpc, cuxszgv, gmeinne, eloztdv,

ewcippc, ygpoalk, ljlbynx, taprwxz, bhmupju, cjwzmmr,

anmkkyh, fcjpthl, skddcat, jbvlgwc, mvducuj, ydpulcq,

zehpfmm, zrxmclh, qgekgly, hyoubzl]

After sort: [anmkkyh, bhmupju, btpenpc, cjwzmmr,

cuxszgv, eloztdv, ewcippc, fcjpthl, gmeinne, hyoubzl,

jbvlgwc, ljlbynx, mvducuj, qgekgly, skddcat, taprwxz,

ydpulcq, ygpoalk, zehpfmm, zrxmclh]

Reverse sort: [zrxmclh, zehpfmm, ygpoalk, ydpulcq,



taprwxz, skddcat, qgekgly, mvducuj, ljlbynx, jbvlgwc,

hyoubzl, gmeinne, fcjpthl, ewcippc, eloztdv, cuxszgv,

cjwzmmr, btpenpc, bhmupju, anmkkyh]

Case-insensitive sort: [anmkkyh, bhmupju, btpenpc,

cjwzmmr, cuxszgv, eloztdv, ewcippc, fcjpthl, gmeinne,

hyoubzl, jbvlgwc, ljlbynx, mvducuj, qgekgly, skddcat,

taprwxz, ydpulcq, ygpoalk, zehpfmm, zrxmclh]

*/

Notice the output in the String sorting algorithm. It’s lexicographic,

so it puts all the words starting with uppercase letters first, followed by

all the words starting with lowercase letters. (Telephone books are

typically sorted this way.) To group the words together regardless of

case, use String.CASE_INSENSITIVE_ORDER as shown in the

last call to sort().

The sorting algorithm that’s used in the Java standard library is

designed to be optimal for the particular type you’re sorting—a

Quicksort for primitives, and a stable merge sort for objects.



Sorting in Parallel

If sorting performance is an issue, you can use the Java 8

parallelSort(), which has overloaded versions for all

contingencies, including sorting regions of an array or using a

Comparator. To see the benefits of parallelSort() vs. the

ordinary sort(), we use JMH which was introduced in Validating

Your Code:

// arrays/jmh/ParallelSort.java

package arrays.jmh;

import java.util.*;

import onjava.*;

import org.openjdk.jmh.annotations.*;

@State(Scope.Thread)

public class ParallelSort {

private long[] la;

@Setup

public void setup() {

la = new Rand.Plong().array(100_000);

}

@Benchmark



public void sort() {

Arrays.sort(la);

}

@Benchmark

public void parallelSort() {

Arrays.parallelSort(la);

}

}

The parallelSort() algorithm breaks the large array into smaller

arrays until the array size reaches a limit, at which point it uses the

ordinary Arrays.sort() method. Then the results are merged. The

algorithm requires additional working space, but this is no larger than

the space of the original array.

You might see different results, but on my machine the parallel sort

sped things up about 3 times. Since the parallel version is trivial to

use, it’s tempting to consider using it everywhere, in preference to



Arrays.sort(). Of course, it might not be that simple—see

Microbenchmarking.

Searching with

Arrays.binarySearch()

Once an array is sorted, you can perform a fast search for a particular

item by using Arrays.binarySearch(). However, if you try to

use binarySearch() on an unsorted array the results are

unpredictable. The following example uses the Rand.Pint class to

create an array filled with random int values, then calls

getAsInt() (because Rand.Pint is an IntSupplier) to

produce search values:

// arrays/ArraySearching.java

// Using Arrays.binarySearch()

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class ArraySearching {

public static void main(String[] args) {

Rand.Pint rand = new Rand.Pint();

int[] a = new Rand.Pint().array(25);



Arrays.sort(a);

show("Sorted array", a);

while(true) {

int r = rand.getAsInt();

int location = Arrays.binarySearch(a, r);

if(location >= 0) {

System.out.println(

"Location of " + r + " is " + location +

", a[" + location + "] is " + a[location]);

break; // Out of while loop

}

}

}

}

/* Output:

Sorted array: [125, 267, 635, 650, 1131, 1506, 1634,

2400, 2766, 3063, 3768, 3941, 4720, 4762, 4948, 5070,

5682, 5807, 6177, 6193, 6656, 7021, 8479, 8737, 9954]

Location of 635 is 2, a[2] is 635

*/



In the while loop, random values are generated as search items until

one of them is found in the array.

Arrays.binarySearch() produces a value greater than or equal

to zero if the search item is found. Otherwise, it produces a negative

value representing the place that the element should be inserted if you

are maintaining the sorted array by hand. The value produced is

-(insertion point) - 1

The insertion point is the index of the first element greater than the

key, or a.size(), if all elements in the array are less than the

specified key.

If an array contains duplicate elements, there is no guarantee which of

those duplicates are found. The search algorithm is not designed to

support duplicate elements, but rather to tolerate them. If you need a

sorted list of non-duplicated elements, use a TreeSet (to maintain

sorted order) or LinkedHashSet (to maintain insertion order).

Those classes take care of all the details for you automatically. Only in

cases of performance bottlenecks should you replace one of these

classes with a hand-maintained array.

If you sort an object array using a Comparator (primitive arrays do

not allow sorting with a Comparator), you must include that same



Comparator when you perform a binarySearch() (using the

overloaded version of binarySearch()). For example, the

StringSorting.java program can be modified to perform a

search:

// arrays/AlphabeticSearch.java

// Searching with a Comparator import

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class AlphabeticSearch {

public static void main(String[] args) {

String[] sa = new Rand.String().array(30);

Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER);

show(sa);

int index = Arrays.binarySearch(sa,

sa[10], String.CASE_INSENSITIVE_ORDER);

System.out.println(

"Index: "+ index + "\n"+ sa[index]);

}

}



/* Output:

[anmkkyh, bhmupju, btpenpc, cjwzmmr, cuxszgv, eloztdv,

ewcippc, ezdeklu, fcjpthl, fqmlgsh, gmeinne, hyoubzl,

jbvlgwc, jlxpqds, ljlbynx, mvducuj, qgekgly, skddcat,

taprwxz, uybypgp, vjsszkn, vniyapk, vqqakbm, vwodhcf,

ydpulcq, ygpoalk, yskvett, zehpfmm, zofmmvm, zrxmclh]

Index: 10

gmeinne

*/

The Comparator must be passed to the overloaded

binarySearch() as the third argument. In this example, success is

guaranteed because the search item is selected from the array itself.

Accumulating with

parallelPrefix()

There’s no “prefix()” method, only a parallelPrefix(). This is

like the reduce() method from the Stream class: it performs an



operation on the previous and current elements, and puts the result

into the current element location:

// arrays/ParallelPrefix1.java

import java.util.*;

import onjava.*;

import static onjava.ArrayShow.*;

public class ParallelPrefix1 {

public static void main(String[] args) {

int[] nums = new Count.Pint().array(10);

show(nums);

System.out.println(Arrays.stream(nums)

.reduce(Integer::sum).getAsInt());

Arrays.parallelPrefix(nums, Integer::sum);

show(nums);

System.out.println(Arrays.stream(

new Count.Pint().array(6))

.reduce(Integer::sum).getAsInt());

}

}

/* Output:



[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

45

[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

15

*/

Here we apply Integer::sum to the array. In location zero, it puts

the previously-calculated value (zero, as there is no previous)

combined with the value in location zero of the original array. In

location one, it takes the previously-calculated value (which it just

stored in location zero) and combines it with the value previously in

location one. And so on.

With the Stream.reduce(), you only get the final result, whereas

with Arrays.parallelPrefix() you also get all the

intermediate calculations in case those are useful. Notice how the

result of the second Stream.reduce() calculation is already in the

array calculated by parallelPrefix().

It might be clearer using Strings:

// arrays/ParallelPrefix2.java

import java.util.*;

import onjava.*;



import static onjava.ArrayShow.*;

public class ParallelPrefix2 {

public static void main(String[] args) {

String[] strings = new Rand.String(1).array(8);

show(strings);

Arrays.parallelPrefix(strings, (a, b) -> a + b);

show(strings);

}

}

/* Output:

[b, t, p, e, n, p, c, c]

[b, bt, btp, btpe, btpen, btpenp, btpenpc, btpenpcc]

*/

As noted previously, initialization using Streams is elegant, but for

large arrays that approach can run out of heap space. Performing

initialization using setAll() is more memory-efficient:



// arrays/ParallelPrefix3.java

// {ExcludeFromTravisCI}

import java.util.*;

public class ParallelPrefix3 {

static final int SIZE = 10_000_000;

public static void main(String[] args) {

long[] nums = new long[SIZE];

Arrays.setAll(nums, n -> n);

Arrays.parallelPrefix(nums, Long::sum);

System.out.println("First 20: " + nums[19]);

System.out.println("First 200: " + nums[199]);

System.out.println("All: " + nums[nums.length-1]);

}

}

/* Output:

First 20: 190

First 200: 19900

All: 49999995000000

*/

Because it can be rather complicated to get right,



parallelPrefix() should generally only be used when you have

memory or speed issues (or both). Otherwise, Stream.reduce()

should be your first choice.

Summary

Java provides reasonable support for fixed-sized, low-level arrays.

This kind of array emphasizes performance over flexibility, just like

the C and C++ array model. In the initial version of Java, fixed-sized,

low-level arrays were absolutely necessary, not only because the Java

designers chose to include primitive types (also for performance), but

because the support for Collections in that version was very

minimal. Thus, in early versions of Java, it was always reasonable to

choose arrays.

In subsequent versions of Java, Collection support improved

significantly, and now Collections tend to outshine arrays in all

ways except for performance, and even then, the performance of

Collections is significantly improved. As stated in other places in

this book, performance problems are usually never where you imagine

them to be, anyway.

With autoboxing and generics, holding primitives in Collections is

effortless, which further encourages you to replace low-level arrays



with Collections. Because generics produce type-safe

Collections, arrays no long have an advantage on that front,

either.

As noted in this chapter and as you’ll see when you try to use them,

generics are fairly hostile towards arrays. Often, even when you can

get generics and arrays to work together in some form (as you’ll see in

the next chapter), you’ll still end up with “unchecked” warnings during

compilation.

On several occasions I heard directly from Java language designers

that I should be using Collections instead of arrays, when we were

discussing particular examples (I was using arrays to demonstrate

specific techniques so I did not have that option).

All these issues indicate you should “prefer Collections to arrays”

when programming in recent versions of Java. Only when you prove

that performance is an issue (and that switching to an array will

actually make a significant difference) should you refactor to arrays.

This is a rather bold statement, but some languages have no fixed-

sized, low-level arrays at all. They only have resizable collections with

significantly more functionality than C/C++/Java-style arrays. Python,

for example, has a list type that uses basic array syntax, but with

http://www.Python.org


much greater functionality—you can even inherit from it:

# arrays/PythonLists.py

aList = [1, 2, 3, 4, 5]

print(type(aList)) # <type 'list'>

print(aList) # [1, 2, 3, 4, 5]

print(aList[4]) # 5 Basic list indexing

aList.append(6) # lists can be resized

aList += [7, 8] # Add a list to a list

print(aList) # [1, 2, 3, 4, 5, 6, 7, 8]

aSlice = aList[2:4]

print(aSlice) # [3, 4]

class MyList(list): # Inherit from list

# Define a method; 'this' pointer is explicit:

def getReversed(self):

reversed = self[:] # Copy list using slices

reversed.reverse() # Built-in list method

return reversed

# No 'new' necessary for object creation:

list2 = MyList(aList)

print(type(list2)) # <class '__main__.MyList'>



print(list2.getReversed()) # [8, 7, 6, 5, 4, 3, 2, 1]

output = """

<class 'list'>

[1, 2, 3, 4, 5]

5

[1, 2, 3, 4, 5, 6, 7, 8]

[3, 4]

<class '__main__.MyList'>

[8, 7, 6, 5, 4, 3, 2, 1]

"""

Basic Python syntax was introduced in the previous chapter. Here, a

list is created by surrounding a comma-separated sequence of objects

with square brackets. The result is an object with a runtime type of

list (the output of the print statements is shown as comments on the same
line). The result of printing a list is the same as that of

using Arrays.toString() in Java.

Creating a sub-sequence of a list is accomplished with slicing, by

placing the : operator inside the index operation. The list type has

many more built-in operations, to the point where it’s usually all you

need for a sequence type.

MyList is a class definition; the base classes are placed within the



parentheses. Inside the class, def statements produce methods, and

the first argument to the method is automatically the equivalent of

this in Java, except that in Python it’s explicit and the identifier

self is used by convention (it’s not a keyword). Notice how the

constructor is automatically inherited.

Although everything in Python really is an object (including integral

and floating point types), you still have an escape hatch because you

can optimize performance-critical portions of your code by writing

extensions in C, C++ or using special tools designed to easily speed up

your Python code (of which there are many). This way you can have

object purity without being prevented from performance

improvements.

The PHP language3 goes even further by having only a single array type,
which acts as both an int-indexed array and an associative

array (a Map).

It’s interesting to speculate, after this many years of Java evolution,

whether the designers would put primitives and low-level arrays in the

language if they were to start over again (the Scala language, which

also runs on the JVM, does not include these). If these were left out, it

would be possible to make a truly pure object-oriented language

(despite claims, Java is not a pure OO language, precisely because of



the low-level detritus). The initial argument for efficiency is always

compelling, but over time we have seen an evolution away from this

idea and towards higher-level components like Collections. Add to

this the fact that if Collections can be built into the core language

as they are in some languages, the compiler has a much better

opportunity to optimize.

“Green-fields” speculation aside, we are certainly stuck with arrays,

and you see them when reading code. Collections, however, are

almost always a better choice.

1. See the Patterns chapter at the end of this book.↩

2. Surprisingly, there was no support in Java 1.0 or 1.1 for sorting

Strings. ↩

3. See www.php.net. ↩

Enumerations



The enum keyword creates a new type with

a restricted set of named values, and

treats those values as regular program

components. This turns out to be very

useful. 1

Enumerations were introduced briefly at the end of Housekeeping.

However, now that you understand some of the deeper issues in Java,

we can take a more detailed look at Java’s enumerations. You’ll see

that enums can be very useful, but this chapter should also give you

more insight into other language features, such as generics and

reflection. You’ll also learn a few more design patterns.

Basic enum Features

As shown in Housekeeping, you can step through the list of enum constants
by calling values() on the enum. The values()

method produces an array of the enum constants in the order in which

they were declared, so you can use the resulting array in (for example)

a for-in loop.

When you create an enum, an associated class is produced for you by

the compiler. This class is automatically inherited from

java.lang.Enum, which provides certain capabilities shown in this

example:



// enums/EnumClass.java

// Capabilities of the Enum class

enum Shrubbery { GROUND, CRAWLING, HANGING }

public class EnumClass {

public static void main(String[] args) {

for(Shrubbery s : Shrubbery.values()) {

System.out.println(

s + " ordinal: " + s.ordinal());

System.out.print(

s.compareTo(Shrubbery.CRAWLING) + " ");

System.out.print(

s.equals(Shrubbery.CRAWLING) + " ");

System.out.println(s == Shrubbery.CRAWLING);

System.out.println(s.getDeclaringClass());

System.out.println(s.name());

System.out.println("********************");

}

// Produce an enum value from a String name:

for(String s :

"HANGING CRAWLING GROUND".split(" ")) {



Shrubbery shrub =

Enum.valueOf(Shrubbery.class, s);

System.out.println(shrub);

}

}

}

/* Output:

GROUND ordinal: 0

-1 false false

class Shrubbery

GROUND

********************

CRAWLING ordinal: 1

0 true true

class Shrubbery

CRAWLING

********************



HANGING ordinal: 2

1 false false

class Shrubbery

HANGING

********************

HANGING

CRAWLING

GROUND

*/

The ordinal() method produces an int indicating the declaration

order of each enum instance, starting from zero. You can always safely

compare enum instances using ==, and equals() and

hashCode() are automatically created for you. The Enum class is

Comparable, so there’s a compareTo() method, and it is also

Serializable.

If you call getDeclaringClass() on an enum instance, you’ll

find out the enclosing enum class.

The name() method produces the name exactly as it is declared, and

this is what you get with toString(), as well. valueOf() is a

static member of Enum, and produces the enum instance that



corresponds to the String name you pass to it, or throws an

exception if there’s no match.

Using static Imports with

enums

Consider a variation of Burrito.java from the Housekeeping

chapter:

// enums/SpicinessEnum.java

package enums;

public enum SpicinessEnum {

NOT, MILD, MEDIUM, HOT, FLAMING

}

// enums/Burrito2.java

// {java enums.Burrito2}

package enums;

import static enums.SpicinessEnum.*;

public class Burrito2 {

SpicinessEnum degree;

public Burrito2(SpicinessEnum degree) {

this.degree = degree;

}



@Override

public String toString() {

return "Burrito is "+ degree;

}

public static void main(String[] args) {

System.out.println(new Burrito2(NOT));

System.out.println(new Burrito2(MEDIUM));

System.out.println(new Burrito2(HOT));

}

}

/* Output:

Burrito is NOT

Burrito is MEDIUM

Burrito is HOT

*/

The static import brings all the enum instance identifiers into

the local namespace, so they don’t need qualification. Is this a good

idea, or is it better to be explicit and qualify all enum instances? It



probably depends on the complexity of your code. The compiler

certainly won’t let you use the wrong type, so your only concern is

whether the code is confusing to the reader. In many situations it will

probably be fine but evaluate it on an individual basis.

Note it is not possible to use this technique if the enum is defined in

the same file or the default package (apparently there were some

arguments within Sun about whether to allow this).

Adding Methods to an

enum

Except for the fact you can’t inherit from it, an enum can be treated

much like a regular class. This means you can add methods to an

enum. It’s even possible for an enum to have a main().

You might produce different descriptions for an enumeration than the

default toString(), which simply produces the name of that enum

instance, as you’ve seen. To do this, you can provide a constructor to

capture extra information, and additional methods to provide an



extended description, like this:

// enums/OzWitch.java

// The witches in the land of Oz

public enum OzWitch {

// Instances must be defined first, before methods:

WEST("Miss Gulch, aka the Wicked Witch of the West"),

NORTH("Glinda, the Good Witch of the North"),

EAST("Wicked Witch of the East, wearer of the Ruby " +

"Slippers, crushed by Dorothy's house"),

SOUTH("Good by inference, but missing");

private String description;

// Constructor must be package or private access:

private OzWitch(String description) {

this.description = description;

}

public String getDescription() { return description; }

public static void main(String[] args) {



for(OzWitch witch : OzWitch.values())

System.out.println(

witch + ": " + witch.getDescription());

}

}

/* Output:

WEST: Miss Gulch, aka the Wicked Witch of the West

NORTH: Glinda, the Good Witch of the North

EAST: Wicked Witch of the East, wearer of the Ruby

Slippers, crushed by Dorothy's house

SOUTH: Good by inference, but missing

*/

If you are going to define methods you must end the sequence of enum

instances with a semicolon. Also, Java forces you to define the

instances first within the enum. You’ll get a compile-time error if you

try to define them after any of the methods or fields.

The constructor and methods have the same form as a regular class,

because with a few restrictions this is a regular class. You can do pretty

much anything you want with enums (although you’ll usually keep

them pretty ordinary).



Although the constructor here is private as an example, it doesn’t

make much difference what access you use—the constructor can only

be used to create the enum instances you declare inside the enum

definition; the compiler won’t let you use it to create any new

instances once the enum definition is complete.

Overriding enum Methods

Here’s another approach to producing different String values for

enumerations. Here, the instance names are OK but we want to

reformat them for display. Overriding the toString() method for

an enum is the same as overriding it for a regular class:

// enums/SpaceShip.java

import java.util.stream.*;

public enum SpaceShip {

SCOUT, CARGO, TRANSPORT,

CRUISER, BATTLESHIP, MOTHERSHIP;

@Override



public String toString() {

String id = name();

String lower = id.substring(1).toLowerCase();

return id.charAt(0) + lower;

}

public static void main(String[] args) {

Stream.of(values())

.forEach(System.out::println);

}

}

/* Output:

Scout

Cargo

Transport

Cruiser

Battleship

Mothership

*/

The toString() method gets the SpaceShip name by calling

name(), and modifies the result so only the first letter is capitalized.



enums in switch

Statements

One very convenient capability of enums is the way they can be used in
switch statements. Ordinarily, a switch only works with an

integral value, but since enums have an established integral order and

the order of an instance can be produced with the ordinal()

method (apparently the compiler does something like this), enums can

be used in switch statements.

Although normally you must qualify an enum instance with its type,

you don’t do this in a case statement. Here’s an example that uses an

enum to create a little state machine:

// enums/TrafficLight.java

// Enums in switch statements

// Define an enum type:

enum Signal { GREEN, YELLOW, RED, }

public class TrafficLight {

Signal color = Signal.RED;

public void change() {

switch(color) {

// Note you don't have to say Signal.RED

// in the case statement:



case RED: color = Signal.GREEN;

break;

case GREEN: color = Signal.YELLOW;

break;

case YELLOW: color = Signal.RED;

break;

}

}

@Override

public String toString() {

return "The traffic light is " + color;

}

public static void main(String[] args) {

TrafficLight t = new TrafficLight();

for(int i = 0; i < 7; i++) {

System.out.println(t);



t.change();

}

}

}

/* Output:

The traffic light is RED

The traffic light is GREEN

The traffic light is YELLOW

The traffic light is RED

The traffic light is GREEN

The traffic light is YELLOW

The traffic light is RED

*/

The compiler does not complain because there is no default

statement inside the switch, but that’s not because it notices you

have case statements for each Signal instance. If you comment out

one of the case statements it still won’t complain. This means you

must pay attention and ensure you cover all the cases on your own. On

the other hand, if you are calling return from case statements, the

compiler will complain if you don’t have a default—even if you’ve



covered all the possible values of the enum.

The Mystery of values()

As noted earlier, all enum classes are created for you by the compiler

and extend the Enum class. However, if you look at Enum, you’ll see

there is no values() method, even though we’ve been using it. Are

there any other “hidden” methods? We can write a small reflection

program to find out:

// enums/Reflection.java

// Analyzing enums using reflection

import java.lang.reflect.*;

import java.util.*;

import onjava.*;

enum Explore { HERE, THERE }

public class Reflection {

public static

Set<String> analyze(Class<?> enumClass) {

System.out.println(

"_____ Analyzing " + enumClass + " _____");

System.out.println("Interfaces:");

for(Type t : enumClass.getGenericInterfaces())



System.out.println(t);

System.out.println(

"Base: " + enumClass.getSuperclass());

System.out.println("Methods: ");

Set<String> methods = new TreeSet<>();

for(Method m : enumClass.getMethods())

methods.add(m.getName());

System.out.println(methods);

return methods;

}

public static void main(String[] args) {

Set<String> exploreMethods =

analyze(Explore.class);

Set<String> enumMethods = analyze(Enum.class);

System.out.println(

"Explore.containsAll(Enum)? " +

exploreMethods.containsAll(enumMethods));

System.out.print("Explore.removeAll(Enum): ");

exploreMethods.removeAll(enumMethods);

System.out.println(exploreMethods);



// Decompile the code for the enum:

OSExecute.command(

"javap -cp build/classes/main Explore");

}

}

/* Output:

_____ Analyzing class Explore _____

Interfaces:

Base: class java.lang.Enum

Methods:

[compareTo, equals, getClass, getDeclaringClass,

hashCode, name, notify, notifyAll, ordinal, toString,

valueOf, values, wait]

_____ Analyzing class java.lang.Enum _____

Interfaces:

java.lang.Comparable<E>

interface java.io.Serializable

Base: class java.lang.Object

Methods:

[compareTo, equals, getClass, getDeclaringClass,



hashCode, name, notify, notifyAll, ordinal, toString,

valueOf, wait]

Explore.containsAll(Enum)? true

Explore.removeAll(Enum): [values]

Compiled from "Reflection.java"

final class Explore extends java.lang.Enum<Explore> {

public static final Explore HERE;

public static final Explore THERE;

public static Explore[] values();

public static Explore valueOf(java.lang.String);

static {};

}

*/

So the answer is that values() is a static method that is added

by the compiler. Note that valueOf() is also added to Explore in

the process of creating the enum. This is slightly confusing, because

there’s also a valueOf() that is part of the Enum class, but that

method has two arguments and the added method only has one.

However, the Set method here is only looking at method names, and

not signatures, so after calling Explore.removeAll(Enum), the



only thing that remains is [values].

The output shows that Explore is made final by the compiler, so

you cannot inherit from an enum. There’s also a static initialization

clause, which as you’ll see later can be redefined.

Because of erasure (described in the Generics chapter), the decompiler does
not have full information about Enum, so it shows the base class

of Explore as a raw Enum rather than the actual Enum<Explore> .

Because values() is a static method inserted into the enum

definition by the compiler, if you upcast an enum type to Enum, the

values() method is not available. Notice, however, there is a

getEnumConstants() method in Class, so even if values() is

not part of the interface of Enum, you can still get the enum instances

via the Class object:

// enums/UpcastEnum.java

// No values() method if you upcast an enum

enum Search { HITHER, YON }

public class UpcastEnum {

public static void main(String[] args) {

Search[] vals = Search.values();

Enum e = Search.HITHER; // Upcast

// e.values(); // No values() in Enum



for(Enum en : e.getClass().getEnumConstants())

System.out.println(en);

}

}

/* Output:

HITHER

YON

*/

Because getEnumConstants() is a method of Class, you can call

it for a class that has no enumerations:

// enums/NonEnum.java

public class NonEnum {

public static void main(String[] args) {

Class<Integer> intClass = Integer.class;

try {

for(Object en : intClass.getEnumConstants())



System.out.println(en);

} catch(Exception e) {

System.out.println("Expected: " + e);

}

}

}

/* Output:

Expected: java.lang.NullPointerException

*/

The method returns null, so you get an exception if you try to use the

result.

Implements, not

Inherits

We’ve established that all enums extend java.lang.Enum. Since

Java does not support multiple inheritance, this means you cannot

create an enum via inheritance:

enum NotPossible extends Pet { ... // Won't work



However, it is possible to create an enum that implements one or

more interfaces:

// enums/cartoons/EnumImplementation.java

// An enum can implement an interface

// {java enums.cartoons.EnumImplementation}

package enums.cartoons;

import java.util.*;

import java.util.function.*;

enum CartoonCharacter

implements Supplier<CartoonCharacter> {

SLAPPY, SPANKY, PUNCHY,

SILLY, BOUNCY, NUTTY, BOB;

private Random rand =

new Random(47);

@Override

public CartoonCharacter get() {



return values()[rand.nextInt(values().length)];

}

}

public class EnumImplementation {

public static <T> void printNext(Supplier<T> rg) {

System.out.print(rg.get() + ", ");

}

public static void main(String[] args) {

// Choose any instance:

CartoonCharacter cc = CartoonCharacter.BOB;

for(int i = 0; i < 10; i++)

printNext(cc);

}

}

/* Output:

BOB, PUNCHY, BOB, SPANKY, NUTTY, PUNCHY, SLAPPY, NUTTY,

NUTTY, SLAPPY,

*/

The result is slightly odd, because to call a method you must have an

instance of the enum to call it on. However, a CartoonCharacter



can now be accepted by any method that takes a Supplier; for

example, printNext().

Random Selection

Many of the examples in this chapter require random selection from

among enum instances, as you saw in

CartoonCharacter.get(). It’s possible to generalize this task

using generics and put the result in the common library:

// onjava/Enums.java

package onjava;

import java.util.*;

public class Enums {

private static Random rand = new Random(47);

public static

<T extends Enum<T>> T random(Class<T> ec) {

return random(ec.getEnumConstants());

}

public static <T> T random(T[] values) {

return values[rand.nextInt(values.length)];

}

}



The rather odd syntax <T extends Enum<T>> describes T as an

enum instance. By passing in Class<T> , we make the class object

available, and the array of enum instances can thus be produced. The

overloaded random() method must only know it gets a T[] because

it doesn’t perform Enum operations; it only selects an array element at

random. The return type is the exact type of the enum.

Here’s a simple test of the random() method:

// enums/RandomTest.java

import onjava.*;

enum Activity { SITTING, LYING, STANDING, HOPPING,

RUNNING, DODGING, JUMPING, FALLING, FLYING }

public class RandomTest {

public static void main(String[] args) {

for(int i = 0; i < 20; i++)

System.out.print(

Enums.random(Activity.class) + " ");

}

}



/* Output:

STANDING FLYING RUNNING STANDING RUNNING STANDING LYING

DODGING SITTING RUNNING HOPPING HOPPING HOPPING
RUNNING

STANDING LYING FALLING RUNNING FLYING LYING

*/

Although Enums is a small class, you’ll see it prevents a fair amount of

duplication in this chapter. Duplication tends to produce mistakes, so

eliminating duplication is a useful pursuit.

Using Interfaces for

Organization

The inability to inherit from an enum can be a bit frustrating at times.

The motivation for inheriting from an enum comes partly from

wanting to extend the number of elements in the original enum, and

partly from wanting to create subcategories by using subtypes.

You can categorize elements by grouping then together inside an



interface and creating an enumeration based on that interface. For

example, suppose you have different classes of food that you’d like to

create as enums, but you’d still like each one to be a type of Food.

Here’s what it looks like:

// enums/menu/Food.java

// Subcategorization of enums within interfaces

package enums.menu;

public interface Food {

enum Appetizer implements Food {

SALAD, SOUP, SPRING_ROLLS;

}

enum MainCourse implements Food {

LASAGNE, BURRITO, PAD_THAI,

LENTILS, HUMMOUS, VINDALOO;

}

enum Dessert implements Food {

TIRAMISU, GELATO, BLACK_FOREST_CAKE,

FRUIT, CREME_CARAMEL;

}

enum Coffee implements Food {



BLACK_COFFEE, DECAF_COFFEE, ESPRESSO,

LATTE, CAPPUCCINO, TEA, HERB_TEA;

}

}

Since the only subtyping available for an enum is that of interface

implementation, each nested enum implements the surrounding

interface Food. Now it’s possible to say that “everything is a type of

Food” as shown here:

// enums/menu/TypeOfFood.java

// {java enums.menu.TypeOfFood}

package enums.menu;

import static enums.menu.Food.*;

public class TypeOfFood {

public static void main(String[] args) {

Food food = Appetizer.SALAD;

food = MainCourse.LASAGNE;

food = Dessert.GELATO;

food = Coffee.CAPPUCCINO;

}

}



The upcast to Food works for each enum type that implements

Food, so they are all types of Food.

An interface, however, is not as useful as an enum when you deal with

a set of types. For an “enum of enums” you can create a surrounding

enum with one instance for each enum in Food:

// enums/menu/Course.java

package enums.menu;

import onjava.*;

public enum Course {

APPETIZER(Food.Appetizer.class),

MAINCOURSE(Food.MainCourse.class),

DESSERT(Food.Dessert.class),

COFFEE(Food.Coffee.class);

private Food[] values;

private Course(Class<? extends Food> kind) {

values = kind.getEnumConstants();

}

public Food randomSelection() {

return Enums.random(values);

}



}

Each of the above enums takes the corresponding Class object as a

constructor argument, from which it can extract and store all the

enum instances using getEnumConstants(). These instances are

later used in randomSelection(), so now we can create a

randomly generated meal by selecting one Food item from each

Course:

// enums/menu/Meal.java

// {java enums.menu.Meal}

package enums.menu;

public class Meal {

public static void main(String[] args) {

for(int i = 0; i < 5; i++) {

for(Course course : Course.values()) {

Food food = course.randomSelection();

System.out.println(food);

}

System.out.println("***");

}

}



}

/* Output:

SPRING_ROLLS

VINDALOO

FRUIT

DECAF_COFFEE

***

SOUP

VINDALOO

FRUIT

TEA

***

SALAD

BURRITO

FRUIT

TEA

***

SALAD

BURRITO

CREME_CARAMEL



LATTE

***

SOUP

BURRITO

TIRAMISU

ESPRESSO

***

*/

Here, the value of creating an enum of enums is to iterate through

each Course. Later, in the VendingMachine.java example,

you’ll see another approach to categorization dictated by different

constraints.

Another, more compact, approach to the problem of categorization is

to nest enums within enums, like this:

// enums/SecurityCategory.java

// More succinct subcategorization of enums

import onjava.*;

enum SecurityCategory {

STOCK(Security.Stock.class),

BOND(Security.Bond.class);



Security[] values;

SecurityCategory(Class<? extends Security> kind) {

values = kind.getEnumConstants();

}

interface Security {

enum Stock implements Security {

SHORT, LONG, MARGIN

}

enum Bond implements Security {

MUNICIPAL, JUNK

}

}

public Security randomSelection() {

return Enums.random(values);

}

public static void main(String[] args) {

for(int i = 0; i < 10; i++) {

SecurityCategory category =

Enums.random(SecurityCategory.class);

System.out.println(category + ": " +



category.randomSelection());

}

}

}

/* Output:

BOND: MUNICIPAL

BOND: MUNICIPAL

STOCK: MARGIN

STOCK: MARGIN

BOND: JUNK

STOCK: SHORT

STOCK: LONG

STOCK: LONG

BOND: MUNICIPAL

BOND: JUNK

*/

The Security interface is necessary to collect the contained enums

together as a common type. These are then categorized into the enums

within SecurityCategory.

If we take this approach with the Food example, the result is:



// enums/menu/Meal2.java

// {java enums.menu.Meal2}

package enums.menu;

import onjava.*;

public enum Meal2 {

APPETIZER(Food.Appetizer.class),

MAINCOURSE(Food.MainCourse.class),

DESSERT(Food.Dessert.class),

COFFEE(Food.Coffee.class);

private Food[] values;

private Meal2(Class<? extends Food> kind) {

values = kind.getEnumConstants();

}

public interface Food {

enum Appetizer implements Food {

SALAD, SOUP, SPRING_ROLLS;

}

enum MainCourse implements Food {

LASAGNE, BURRITO, PAD_THAI,

LENTILS, HUMMOUS, VINDALOO;



}

enum Dessert implements Food {

TIRAMISU, GELATO, BLACK_FOREST_CAKE,

FRUIT, CREME_CARAMEL;

}

enum Coffee implements Food {

BLACK_COFFEE, DECAF_COFFEE, ESPRESSO,

LATTE, CAPPUCCINO, TEA, HERB_TEA;

}

}

public Food randomSelection() {

return Enums.random(values);

}

public static void main(String[] args) {

for(int i = 0; i < 5; i++) {

for(Meal2 meal : Meal2.values()) {

Food food = meal.randomSelection();

System.out.println(food);

}



System.out.println("***");

}

}

}

/* Output:

SPRING_ROLLS

VINDALOO

FRUIT

DECAF_COFFEE

***

SOUP

VINDALOO

FRUIT

TEA

***

SALAD



BURRITO

FRUIT

TEA

***

SALAD

BURRITO

CREME_CARAMEL

LATTE

***

SOUP

BURRITO

TIRAMISU

ESPRESSO

***

*/

In the end, it’s only a reorganization of the code but it can produce a

clearer structure in some cases.

Using EnumSet Instead

of Flags

A Set is a kind of collection that only allows one of each type of object to be
added. An enum requires that all its members be unique, so



seems to have set behavior, but since you can’t add or remove

elements it’s not very useful as a set. The EnumSet was added to work

in concert with enums to create a replacement for traditional int-

based “bit flags.” Such flags are used to indicate some kind of on-off

information, but you end up manipulating bits rather than concepts,

so it’s easy to write confusing code.

The EnumSet is designed for speed, because it must compete

effectively with bit flags (operations are typically much faster than a

HashSet). Internally, it is represented by (if possible) a single long

that is treated as a bit-vector, so it’s extremely fast and efficient. The

benefit is that you now have a much more expressive way to indicate

the presence or absence of a binary feature, without worrying about

performance.

The elements of an EnumSet must come from a single enum. A

possible example uses an enum of positions in a building where alarm

sensors are present:

// enums/AlarmPoints.java

package enums;

public enum AlarmPoints {

STAIR1, STAIR2, LOBBY, OFFICE1, OFFICE2, OFFICE3,



OFFICE4, BATHROOM, UTILITY, KITCHEN

}

The EnumSet keeps track of the alarm status:

// enums/EnumSets.java

// Operations on EnumSets

// {java enums.EnumSets}

package enums;

import java.util.*;

import static enums.AlarmPoints.*;

public class EnumSets {

public static void main(String[] args) {

EnumSet<AlarmPoints> points =

EnumSet.noneOf(AlarmPoints.class); // Empty

points.add(BATHROOM);

System.out.println(points);

points.addAll(

EnumSet.of(STAIR1, STAIR2, KITCHEN));

System.out.println(points);

points = EnumSet.allOf(AlarmPoints.class);

points.removeAll(



EnumSet.of(STAIR1, STAIR2, KITCHEN));

System.out.println(points);

points.removeAll(

EnumSet.range(OFFICE1, OFFICE4));

System.out.println(points);

points = EnumSet.complementOf(points);

System.out.println(points);

}

}

/* Output:

[BATHROOM]

[STAIR1, STAIR2, BATHROOM, KITCHEN]

[LOBBY, OFFICE1, OFFICE2, OFFICE3, OFFICE4, BATHROOM,

UTILITY]

[LOBBY, BATHROOM, UTILITY]

[STAIR1, STAIR2, OFFICE1, OFFICE2, OFFICE3, OFFICE4,

KITCHEN]

*/

A static import is used to simplify using enum constants. The

method names are fairly self-explanatory, and you can find the full



details in the JDK documentation. When you look at this

documentation, you’ll see that the of() method is overloaded both

with varargs and with individual methods taking two through five

explicit arguments. This is an indication of the concern for

performance with EnumSet, because a single of() method using

varargs could have solved the problem, but it’s slightly less efficient

than having explicit arguments. Thus, if you call of() with two

through five arguments you get the explicit (slightly faster) method

calls, but if you call it with one argument or more than five, you get the

varargs version of of(). Notice that if you call it with one argument,

the compiler will not construct the varargs array and so there is no

extra overhead for calling that version with a single argument.

EnumSets are built on top of longs, a long is 64 bits, and each

enum instance requires one bit to indicate presence or absence. This

means you can have an EnumSet for an enum of up to 64 elements

without going beyond a single long. What happens for more than 64

elements in your enum?

// enums/BigEnumSet.java

import java.util.*;

public class BigEnumSet {



enum Big { A0, A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, A11, A12, A13, A14, A15, A16, A17, A18, A19,

A20, A21, A22, A23, A24, A25, A26, A27, A28, A29,

A30, A31, A32, A33, A34, A35, A36, A37, A38, A39,

A40, A41, A42, A43, A44, A45, A46, A47, A48, A49,

A50, A51, A52, A53, A54, A55, A56, A57, A58, A59,

A60, A61, A62, A63, A64, A65, A66, A67, A68, A69,

A70, A71, A72, A73, A74, A75 }

public static void main(String[] args) {

EnumSet<Big> bigEnumSet = EnumSet.allOf(Big.class);

System.out.println(bigEnumSet);

}

}

/* Output:

[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12,

A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23,

A24, A25, A26, A27, A28, A29, A30, A31, A32, A33, A34,

A35, A36, A37, A38, A39, A40, A41, A42, A43, A44, A45,

A46, A47, A48, A49, A50, A51, A52, A53, A54, A55, A56,

A57, A58, A59, A60, A61, A62, A63, A64, A65, A66, A67,



A68, A69, A70, A71, A72, A73, A74, A75]

*/

The EnumSet clearly has no problem with an enum that has more

than 64 elements, so we can presume it adds another long when

necessary.

Using EnumMap

An EnumMap is a specialized Map that requires its keys be from a

single enum. Because of the constraints on an enum, an EnumMap can

be implemented internally as an array. Thus they are extremely fast, so

you can freely use EnumMaps for enum-based lookups.

You can only call put() for keys in your enum, but other than that

it’s like using an ordinary Map.

Here’s an example that demonstrates the Command design pattern.

This pattern starts with an interface containing (typically) a single

method, and creates multiple implementations with different behavior

for that method. You install Command objects, and your program calls



them when necessary:

// enums/EnumMaps.java

// Basics of EnumMaps

// {java enums.EnumMaps}

package enums;

import java.util.*;

import static enums.AlarmPoints.*;

interface Command { void action(); }

public class EnumMaps {

public static void main(String[] args) {

EnumMap<AlarmPoints,Command> em =

new EnumMap<>(AlarmPoints.class);

em.put(KITCHEN,

() -> System.out.println("Kitchen fire!"));

em.put(BATHROOM,

() -> System.out.println("Bathroom alert!"));

for(Map.Entry<AlarmPoints,Command> e:

em.entrySet()) {

System.out.print(e.getKey() + ": ");

e.getValue().action();



}

try { // If there's no value for a particular key:

em.get(UTILITY).action();

} catch(Exception e) {

System.out.println("Expected: " + e);

}

}

}

/* Output:

BATHROOM: Bathroom alert!

KITCHEN: Kitchen fire!

Expected: java.lang.NullPointerException

*/

Just as with EnumSet, the order of elements in the EnumMap is

determined by their order of definition in the enum.

The last part of main() shows there is always a key entry for each of

the enums, but the value is null unless you have called put() for

that key.

One advantage of EnumMap over constant-specific methods

(described next) is that with an EnumMap you can change the value



objects, whereas you’ll see that constant-specific methods are fixed at

compile time.

As you’ll see later in the chapter, EnumMaps can perform multiple

dispatching for situations where you have multiple types of enums

interacting with each other.

Constant-Specific

Methods

Java enums can give each enum instance different behavior by

creating methods for each one. To do this, you define one or more

abstract methods as part of the enum, then define the methods for

each enum instance. For example:

// enums/ConstantSpecificMethod.java

import java.util.*;

import java.text.*;

public enum ConstantSpecificMethod {

DATE_TIME {



@Override

String getInfo() {

return

DateFormat.getDateInstance()

.format(new Date());

}

},

CLASSPATH {

@Override

String getInfo() {

return System.getenv("CLASSPATH");

}

},

VERSION {

@Override

String getInfo() {

return System.getProperty("java.version");

}

};

abstract String getInfo();



public static void main(String[] args) {

for(ConstantSpecificMethod csm : values())

System.out.println(csm.getInfo());

}

}

/* Output:

May 9, 2017

C:\Users\Bruce\Documents\GitHub\on-

java\ExtractedExamples\\gradle\wrapper\gradle-

wrapper.jar

1.8.0_112

*/

You can look up and call methods via their associated enum instance.

This is often called table-driven code (and note the similarity to the

aforementioned Command pattern).

In object-oriented programming, different behavior is associated with

different classes. Because each instance of an enum can have its own

behavior via constant-specific methods, this suggests that each

instance is a distinct type. In the above example, each enum instance

is treated as the “base type” ConstantSpecificMethod but you



get polymorphic behavior with the method call getInfo().

However, you can only take the similarity so far. You cannot treat

enum instances as class types:

// enums/NotClasses.java

// {javap -c LikeClasses}

enum LikeClasses {

WINKEN {

@Override

void behavior() {

System.out.println("Behavior1");

}

},

BLINKEN {

@Override

void behavior() {

System.out.println("Behavior2");

}

},

NOD {

@Override



void behavior() {

System.out.println("Behavior3");

}

};

abstract void behavior();

}

public class NotClasses {

// void f1(LikeClasses.WINKEN instance) {} // Nope

}

/* Output: (First 12 Lines)

Compiled from "NotClasses.java"

abstract class LikeClasses extends

java.lang.Enum<LikeClasses> {

public static final LikeClasses WINKEN;

public static final LikeClasses BLINKEN;

public static final LikeClasses NOD;

public static LikeClasses[] values();

Code:

0: getstatic #2 // Field

$VALUES:[LLikeClasses;



3: invokevirtual #3 // Method

"[LLikeClasses;".clone:()Ljava/lang/Object;

...

*/

In f1(), the compiler doesn’t allow you to use an enum instance as a

class type, which makes sense if you consider the code generated by

the compiler—each enum element is a static final instance of

LikeClasses.

Also, because they are static, enum instances of inner enums do

not behave like ordinary inner classes; you cannot access non-

static fields or methods in the outer class.

Now consider a car wash. Each customer is given a menu of choices for

their wash, and each option performs a different action. A constant-

specific method can be associated with each option, and an EnumSet

holds the customer’s selections:

// enums/CarWash.java

import java.util.*;

public class CarWash {

public enum Cycle {

UNDERBODY {



@Override

void action() {

System.out.println("Spraying the underbody");

}

},

WHEELWASH {

@Override

void action() {

System.out.println("Washing the wheels");

}

},

PREWASH {

@Override

void action() {

System.out.println("Loosening the dirt");

}

},

BASIC {

@Override

void action() {



System.out.println("The basic wash");

}

},

HOTWAX {

@Override

void action() {

System.out.println("Applying hot wax");

}

},

RINSE {

@Override

void action() {

System.out.println("Rinsing");

}

},

BLOWDRY {

@Override

void action() {

System.out.println("Blowing dry");

}



};

abstract void action();

}

EnumSet<Cycle> cycles =

EnumSet.of(Cycle.BASIC, Cycle.RINSE);

public void add(Cycle cycle) {

cycles.add(cycle);

}

public void washCar() {

for(Cycle c : cycles)

c.action();

}

@Override

public String toString() {

return cycles.toString();

}

public static void main(String[] args) {

CarWash wash = new CarWash();

System.out.println(wash);

wash.washCar();



// Order of addition is unimportant:

wash.add(Cycle.BLOWDRY);

wash.add(Cycle.BLOWDRY); // Duplicates ignored

wash.add(Cycle.RINSE);

wash.add(Cycle.HOTWAX);

System.out.println(wash);

wash.washCar();

}

}

/* Output:

[BASIC, RINSE]

The basic wash

Rinsing

[BASIC, HOTWAX, RINSE, BLOWDRY]

The basic wash

Applying hot wax

Rinsing

Blowing dry

*/

The syntax for defining a constant-specific method is effectively that of



an anonymous inner class, but more succinct.

This example also shows more characteristics of EnumSets. Since it’s

a set, it will only hold one of each item, so duplicate calls to add()

with the same argument are ignored (this makes sense, since you can

only flip a bit “on” once). Also, the order you add enum instances is

unimportant—the output order is determined by the declaration order

of the enum.

Is it possible to override constant-specific methods, instead of

implementing an abstract method? Yes, as seen here:

// enums/OverrideConstantSpecific.java

public enum OverrideConstantSpecific {

NUT, BOLT,

WASHER {

@Override

void f() {

System.out.println("Overridden method");

}

};

void f() {

System.out.println("default behavior");



}

public static void main(String[] args) {

for(OverrideConstantSpecific ocs : values()) {

System.out.print(ocs + ": ");

ocs.f();

}

}

}

/* Output:

NUT: default behavior

BOLT: default behavior

WASHER: Overridden method

*/

Although enums do prevent certain types of code, in general,

experiment with them as if they were classes.

Chain of Responsibility with

enums



In the Chain of Responsibility design pattern, you create a number of

different ways to solve a problem and chain them together. When a

request occurs, it is passed along the chain until one of the solutions

can handle the request.

You can easily implement a simple Chain of Responsibility with

constant-specific methods. Consider a model of a post office, which

tries to deal with each piece of mail in the most general way possible,

but must keep trying until it ends up treating the mail as a dead letter.

Each attempt can be thought of as a Strategy (another design pattern),

and the entire list together is a Chain of Responsibility.

We start by describing a piece of mail. All the different characteristics

of interest can be expressed using enums. Because Mail objects are

randomly generated, the easiest way to reduce the probability of (for

example) a piece of mail being given a YES for GeneralDelivery

is to create more non-YES instances, so the enum definitions look a

little funny at first.

Within Mail, you’ll see randomMail(), which creates random

pieces of test mail. The generator() method produces an

Iterable object that uses randomMail() to produce a number of mail objects,
one each time you call next() via the iterator. This

construct allows the simple creation of a for-in loop by calling



Mail.generator():

// enums/PostOffice.java

// Modeling a post office

import java.util.*;

import onjava.*;

class Mail {

// The NO's reduce probability of random selection:

enum GeneralDelivery {YES,NO1,NO2,NO3,NO4,NO5}

enum Scannability {UNSCANNABLE,YES1,YES2,YES3,YES4}

enum Readability {ILLEGIBLE,YES1,YES2,YES3,YES4}

enum Address {INCORRECT,OK1,OK2,OK3,OK4,OK5,OK6}

enum ReturnAddress {MISSING,OK1,OK2,OK3,OK4,OK5}

GeneralDelivery generalDelivery;

Scannability scannability;

Readability readability;

Address address;

ReturnAddress returnAddress;

static long counter = 0;

long id = counter++;

@Override



public String toString() { return "Mail " + id; }

public String details() {

return toString() +

", General Delivery: " + generalDelivery +

", Address Scanability: " + scannability +

", Address Readability: " + readability +

", Address Address: " + address +

", Return address: " + returnAddress;

}

// Generate test Mail:

public static Mail randomMail() {

Mail m = new Mail();

m.generalDelivery =

Enums.random(GeneralDelivery.class);

m.scannability =

Enums.random(Scannability.class);

m.readability =

Enums.random(Readability.class);

m.address = Enums.random(Address.class);

m.returnAddress =



Enums.random(ReturnAddress.class);

return m;

}

public static

Iterable<Mail> generator(final int count) {

return new Iterable<Mail>() {

int n = count;

@Override

public Iterator<Mail> iterator() {

return new Iterator<Mail>() {

@Override

public boolean hasNext() {

return n-- > 0;

}

@Override

public Mail next() {

return randomMail();

}

@Override

public void remove() { // Not implemented



throw new UnsupportedOperationException();

}

};

}

};

}

}

public class PostOffice {

enum MailHandler {

GENERAL_DELIVERY {

@Override

boolean handle(Mail m) {

switch(m.generalDelivery) {

case YES:

System.out.println(

"Using general delivery for " + m);

return true;

default: return false;

}

}



},

MACHINE_SCAN {

@Override

boolean handle(Mail m) {

switch(m.scannability) {

case UNSCANNABLE: return false;

default:

switch(m.address) {

case INCORRECT: return false;

default:

System.out.println(

"Delivering "+ m + " automatically");

return true;

}

}

}

},

VISUAL_INSPECTION {

@Override

boolean handle(Mail m) {



switch(m.readability) {

case ILLEGIBLE: return false;

default:

switch(m.address) {

case INCORRECT: return false;

default:

System.out.println(

"Delivering " + m + " normally");

return true;

}

}

}

},

RETURN_TO_SENDER {

@Override

boolean handle(Mail m) {

switch(m.returnAddress) {

case MISSING: return false;

default:

System.out.println(



"Returning " + m + " to sender");

return true;

}

}

};

abstract boolean handle(Mail m);

}

static void handle(Mail m) {

for(MailHandler handler : MailHandler.values())

if(handler.handle(m))

return;

System.out.println(m + " is a dead letter");

}

public static void main(String[] args) {

for(Mail mail : Mail.generator(10)) {

System.out.println(mail.details());

handle(mail);

System.out.println("*****");

}

}



}

/* Output:

Mail 0, General Delivery: NO2, Address Scanability:

UNSCANNABLE, Address Readability: YES3, Address

Address: OK1, Return address: OK1

Delivering Mail 0 normally

*****

Mail 1, General Delivery: NO5, Address Scanability:

YES3, Address Readability: ILLEGIBLE, Address Address:

OK5, Return address: OK1

Delivering Mail 1 automatically

*****

Mail 2, General Delivery: YES, Address Scanability:

YES3, Address Readability: YES1, Address Address: OK1,

Return address: OK5

Using general delivery for Mail 2

*****

Mail 3, General Delivery: NO4, Address Scanability:

YES3, Address Readability: YES1, Address Address:

INCORRECT, Return address: OK4



Returning Mail 3 to sender

*****

Mail 4, General Delivery: NO4, Address Scanability:

UNSCANNABLE, Address Readability: YES1, Address

Address: INCORRECT, Return address: OK2

Returning Mail 4 to sender

*****

Mail 5, General Delivery: NO3, Address Scanability:

YES1, Address Readability: ILLEGIBLE, Address Address:

OK4, Return address: OK2

Delivering Mail 5 automatically

*****

Mail 6, General Delivery: YES, Address Scanability:

YES4, Address Readability: ILLEGIBLE, Address Address:

OK4, Return address: OK4

Using general delivery for Mail 6

*****



Mail 7, General Delivery: YES, Address Scanability:

YES3, Address Readability: YES4, Address Address: OK2,

Return address: MISSING

Using general delivery for Mail 7

*****

Mail 8, General Delivery: NO3, Address Scanability:

YES1, Address Readability: YES3, Address Address:

INCORRECT, Return address: MISSING

Mail 8 is a dead letter

*****

Mail 9, General Delivery: NO1, Address Scanability:

UNSCANNABLE, Address Readability: YES2, Address

Address: OK1, Return address: OK4

Delivering Mail 9 normally

*****

*/

The Chain of Responsibility is expressed in enum MailHandler,

and the order of the enum definitions determines the order in which

the strategies are attempted on each piece of mail. Each strategy is

tried in turn until one succeeds or they all fail, in which case you have



a dead letter.

State Machines with enums

Enumerated types can be ideal for creating state machines. A state machine
can be in a finite number of specific states. The machine

normally moves from one state to the next based on an input, but

there are also transient states; the machine moves out of these as soon

as their task is performed.

There are certain allowable inputs for each state, and different inputs

change the state of the machine to different new states. Because

enums restrict the set of possible cases, they are useful for

enumerating the different states and inputs.

Each state also typically has some kind of associated output.

A vending machine is a good example of a state machine. First, we

define the various inputs in an enum:

// enums/Input.java

import java.util.*;

public enum Input {

NICKEL(5), DIME(10), QUARTER(25), DOLLAR(100),

TOOTHPASTE(200), CHIPS(75), SODA(100), SOAP(50),

ABORT_TRANSACTION {

@Override



public int amount() { // Disallow

throw new RuntimeException("ABORT.amount()");

}

},

STOP { // This must be the last instance.

@Override

public int amount() { // Disallow

throw new

RuntimeException("SHUT_DOWN.amount()");

}

};

int value; // In cents

Input(int value) { this.value = value; }

Input() {}

int amount() { return value; }; // In cents

static Random rand = new Random(47);

public static Input randomSelection() {

// Don't include STOP:

return

values()[rand.nextInt(values().length - 1)];



}

}

Note that two of the Inputs have an associated amount, so

amount() is defined in the interface. However, it is inappropriate to

call amount() for the other two Input types, so they throw an

exception if you call amount(). Although this is a bit of an odd setup

(define a method in an interface, then throw an exception if you call it

for certain implementations), it is imposed upon us because of the

constraints of enums.

The VendingMachine reacts to these inputs by first categorizing

them via the Category enum, so it can switch on the categories.

This example shows how enums make code clearer and easier to

manage:

// enums/VendingMachine.java

// {java VendingMachine VendingMachineInput.txt}

import java.util.*;

import java.io.IOException;

import java.util.function.*;

import java.nio.file.*;

import java.util.stream.*;



enum Category {

MONEY(Input.NICKEL, Input.DIME,

Input.QUARTER, Input.DOLLAR),

ITEM_SELECTION(Input.TOOTHPASTE, Input.CHIPS,

Input.SODA, Input.SOAP),

QUIT_TRANSACTION(Input.ABORT_TRANSACTION),

SHUT_DOWN(Input.STOP);

private Input[] values;

Category(Input... types) { values = types; }

private static EnumMap<Input,Category> categories =

new EnumMap<>(Input.class);

static {

for(Category c : Category.class.getEnumConstants())

for(Input type : c.values)

categories.put(type, c);

}

public static Category categorize(Input input) {

return categories.get(input);

}

}



public class VendingMachine {

private static State state = State.RESTING;

private static int amount = 0;

private static Input selection = null;

enum StateDuration { TRANSIENT } // Tagging enum

enum State {

RESTING {

@Override

void next(Input input) {

switch(Category.categorize(input)) {

case MONEY:

amount += input.amount();

state = ADDING_MONEY;

break;

case SHUT_DOWN:

state = TERMINAL;

default:

}

}

},



ADDING_MONEY {

@Override

void next(Input input) {

switch(Category.categorize(input)) {

case MONEY:

amount += input.amount();

break;

case ITEM_SELECTION:

selection = input;

if(amount < selection.amount())

System.out.println(

"Insufficient money for " + selection);

else state = DISPENSING;

break;

case QUIT_TRANSACTION:

state = GIVING_CHANGE;

break;

case SHUT_DOWN:

state = TERMINAL;

default:



}

}

},

DISPENSING(StateDuration.TRANSIENT) {

@Override

void next() {

System.out.println("here is your " + selection);

amount -= selection.amount();

state = GIVING_CHANGE;

}

},

GIVING_CHANGE(StateDuration.TRANSIENT) {

@Override

void next() {

if(amount > 0) {

System.out.println("Your change: " + amount);

amount = 0;

}

state = RESTING;

}



},

TERMINAL {@Override

void output() { System.out.println("Halted"); } };

private boolean isTransient = false;

State() {}

State(StateDuration trans) { isTransient = true; }

void next(Input input) {

throw new RuntimeException("Only call " +

"next(Input input) for non-transient states");

}

void next() {

throw new RuntimeException(

"Only call next() for " +

"StateDuration.TRANSIENT states");

}

void output() { System.out.println(amount); }

}

static void run(Supplier<Input> gen) {

while(state != State.TERMINAL) {

state.next(gen.get());



while(state.isTransient)

state.next();

state.output();

}

}

public static void main(String[] args) {

Supplier<Input> gen = new RandomInputSupplier();

if(args.length == 1)

gen = new FileInputSupplier(args[0]);

run(gen);

}

}

// For a basic sanity check:

class RandomInputSupplier implements Supplier<Input> {

@Override

public Input get() {

return Input.randomSelection();

}

}

// Create Inputs from a file of ';'-separated strings:



class FileInputSupplier implements Supplier<Input> {

private Iterator<String> input;

FileInputSupplier(String fileName) {

try {

input = Files.lines(Paths.get(fileName))

.skip(1) // Skip the comment line

.flatMap(s -> Arrays.stream(s.split(";")))

.map(String::trim)

.collect(Collectors.toList())

.iterator();

} catch(IOException e) {

throw new RuntimeException(e);

}

}

@Override

public Input get() {

if(!input.hasNext())

return null;

return Enum.valueOf(

Input.class, input.next().trim());



}

}

/* Output:

25

50

75

here is your CHIPS

0

100

200

here is your TOOTHPASTE

0

25

35

Your change: 35

0

25

35

Insufficient money for SODA

35



60

70

75

Insufficient money for SODA

75

Your change: 75

0

Halted

*/

Because selecting among enum instances is most often accomplished

with a switch statement (notice the extra effort that the language

goes to make a switch on enums easy), one of the most common

questions to ask when you are organizing multiple enums is “What do

I want to switch on?” Here, it’s easiest to work back from the

VendingMachine by noting that in each State, you switch on the basic
categories of input action: inserting money, item selection,

aborting the transaction, and turning off the machine. However,

within those categories, you have different types of money that can be

inserted and different items that can be selected. The Category

enum groups the different types of Input so the categorize()

method can produce the appropriate Category inside a switch.



This method uses an EnumMap to efficiently and safely perform the

lookup.

If you study class VendingMachine, you see how each state is

different, and responds differently to input. Also note the two

transient states; in run() the machine waits for an Input and

doesn’t stop moving through states until it is no longer in a transient

state.

The VendingMachine can be tested in two ways, by using two

different Supplier objects. The RandomInputSupplier just

keeps producing inputs, everything except SHUT_DOWN. By running

this for a long time you get a kind of sanity check to help ensure that

the machine will not wander into a bad state. The

FileInputSupplier takes a file describing inputs in text form,

turns them into enum instances, and creates Input objects. Here’s

the text file used to produce the output shown above:

// enums/VendingMachineInput.txt

QUARTER; QUARTER; QUARTER; CHIPS;

DOLLAR; DOLLAR; TOOTHPASTE;

QUARTER; DIME; ABORT_TRANSACTION;

QUARTER; DIME; SODA;



QUARTER; DIME; NICKEL; SODA;

ABORT_TRANSACTION;

STOP;

The FileInputSupplier constructor turns this file into a

Stream of lines, skipping the comment line. Then it uses

String.split() to break each line into parts at the semicolons.

This produces an array of String, which can be fed into the Stream

by first converting it to a Stream, then applying flatMap(). The

results have any spaces trimmed off and are turned into a

List<String> from which an Iterator<String> is procured.

One limitation to this design is that the fields in VendingMachine

accessed by enum State instances must be static, which means

you can only have a single VendingMachine instance. This might

not be that big of an issue if you think about an actual (embedded

Java) implementation, since you are likely to have only one

application per machine.



Multiple Dispatching

When you are dealing with multiple interacting types, a program can

get particularly messy. For example, consider a system that parses and

executes mathematical expressions. You want to say

Number.plus(Number), Number.multiply(Number), etc.,

where Number is the base class for a family of numerical objects. But

when you say a.plus(b), and you don’t know the exact type of

either a or b, how can you get them to interact properly?

The answer starts with something you probably don’t think about:

Java only performs single dispatching. That is, if you are performing

an operation on more than one object whose type is unknown, Java

can invoke the dynamic binding mechanism on only one of those

types. This doesn’t solve the problem described here, so you end up

detecting some types manually and effectively producing your own

dynamic binding behavior.

The solution is multiple dispatching (here called double dispatching

because there are only two dispatches). Polymorphism can only occur

via method calls, so if you want double dispatching, there must be two

method calls: the first to determine the first unknown type, and the

second to determine the second unknown type. With multiple



dispatching, you must have a virtual call for each of the types—if you

are working with two different interacting type hierarchies, you’ll need

a virtual call in each hierarchy. Generally, you’ll set up a configuration

such that a single method call produces more than one virtual method

call and thus services more than one type in the process. To get this

effect, you work with more than one method: You’ll need a method call

for each dispatch. The methods in the following example (which

implements the “paper, scissors, rock” game, traditionally called

RoShamBo) are called compete() and eval() and are both

members of the same type. They produce one of three possible

outcomes:

// enums/Outcome.java

package enums;

public enum Outcome { WIN, LOSE, DRAW }

// enums/RoShamBo1.java

// Demonstration of multiple dispatching

// {java enums.RoShamBo1}

package enums;

import java.util.*;

import static enums.Outcome.*;



interface Item {

Outcome compete(Item it);

Outcome eval(Paper p);

Outcome eval(Scissors s);

Outcome eval(Rock r);

}

class Paper implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override

public Outcome eval(Paper p) { return DRAW; }

@Override

public Outcome eval(Scissors s) { return WIN; }

@Override

public Outcome eval(Rock r) { return LOSE; }

@Override

public String toString() { return "Paper"; }

}



class Scissors implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override

public Outcome eval(Paper p) { return LOSE; }

@Override

public Outcome eval(Scissors s) { return DRAW; }

@Override

public Outcome eval(Rock r) { return WIN; }

@Override

public String toString() { return "Scissors"; }

}

class Rock implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override



public Outcome eval(Paper p) { return WIN; }

@Override

public Outcome eval(Scissors s) { return LOSE; }

@Override

public Outcome eval(Rock r) { return DRAW; }

@Override

public String toString() { return "Rock"; }

}

public class RoShamBo1 {

static final int SIZE = 20;

private static Random rand = new Random(47);

public static Item newItem() {

switch(rand.nextInt(3)) {

default:

case 0: return new Scissors();

case 1: return new Paper();

case 2: return new Rock();

}

}

public static void match(Item a, Item b) {



System.out.println(

a + " vs. " + b + ": " + a.compete(b));

}

public static void main(String[] args) {

for(int i = 0; i < SIZE; i++)

match(newItem(), newItem());

}

}

/* Output:

Rock vs. Rock: DRAW

Paper vs. Rock: WIN

Paper vs. Rock: WIN

Paper vs. Rock: WIN

Scissors vs. Paper: WIN

Scissors vs. Scissors: DRAW

Scissors vs. Paper: WIN

Rock vs. Paper: LOSE

Paper vs. Paper: DRAW

Rock vs. Paper: LOSE

Paper vs. Scissors: LOSE



Paper vs. Scissors: LOSE

Rock vs. Scissors: WIN

Rock vs. Paper: LOSE

Paper vs. Rock: WIN

Scissors vs. Paper: WIN

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

Paper vs. Scissors: LOSE

*/

Item is the interface for the multiply-dispatched types.

RoShamBo1.match() takes two Item objects and begins the

double-dispatching process by calling the Item.compete()

function. The virtual mechanism determines the type of a, so it wakes

up inside the compete() function of as concrete type. The

compete() function performs the second dispatch by calling

eval() on the remaining type. Passing itself (this) as an argument



to eval() produces a call to the overloaded eval() function, thus

preserving the type information of the first dispatch. When the second

dispatch is completed, you know the exact types of both Item objects.

It requires a lot of ceremony to set up multiple dispatching, but keep

in mind that the benefit is the syntactic elegance achieved when

making the call—instead of writing awkward code to determine the

type of one or more objects during a call, you simply say, “You two! I

don’t care what types you are, interact properly with each other!”

Make sure this kind of elegance is important to you before embarking

on multiple dispatching, however.

Dispatching with enums

Performing a straight translation of RoShamBo1.java into an

enum-based solution is problematic because enum instances are not

types, so the overloaded eval() methods won’t work—you can’t use

enum instances as argument types. However, there are a number of

different approaches to implementing multiple dispatching which

benefit from enums.

One approach uses a constructor to initialize each enum instance with

a “row” of outcomes; taken together this produces a kind of lookup

table:



// enums/RoShamBo2.java

// Switching one enum on another

// {java enums.RoShamBo2}

package enums;

import static enums.Outcome.*;

public enum RoShamBo2 implements Competitor<RoShamBo2> {

PAPER(DRAW, LOSE, WIN),

SCISSORS(WIN, DRAW, LOSE),

ROCK(LOSE, WIN, DRAW);

private Outcome vPAPER, vSCISSORS, vROCK;

RoShamBo2(Outcome paper,

Outcome scissors, Outcome rock) {

this.vPAPER = paper;

this.vSCISSORS = scissors;

this.vROCK = rock;

}

@Override

public Outcome compete(RoShamBo2 it) {

switch(it) {

default:



case PAPER: return vPAPER;

case SCISSORS: return vSCISSORS;

case ROCK: return vROCK;

}

}

public static void main(String[] args) {

RoShamBo.play(RoShamBo2.class, 20);

}

}

/* Output:

ROCK vs. ROCK: DRAW

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

PAPER vs. PAPER: DRAW

PAPER vs. SCISSORS: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. SCISSORS: DRAW

ROCK vs. SCISSORS: WIN



SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. PAPER: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

*/

Once both types are determined in compete(), the only action is the

return of the resulting Outcome. However, you can also call another

method, even (for example) via a Command object that was assigned

in the constructor.

RoShamBo2.java is much smaller and more straightforward than

the original example, and thus easier to keep track of. Notice that

you’re still using two dispatches to determine the type of both objects.

In RoShamBo1.java, both dispatches were performed using virtual

method calls, but here, only the first dispatch uses a virtual method



call. The second dispatch uses a switch, but is safe because the

enum limits the choices in the switch statement.

The code that drives the enum is separate so it can be used in the other

examples. First, the Competitor interface defines a type that

competes with another Competitor:

// enums/Competitor.java

// Switching one enum on another

package enums;

public interface Competitor<T extends Competitor<T>> {

Outcome compete(T competitor);

}

Then we define two static methods (static to avoid specifying

the parameter type explicitly). First, match() calls compete() for

one Competitor vs. another, and you see that here the type

parameter need only be a Competitor<T> . But in play(), the

type parameter must be both an Enum<T> because it is used in

Enums.random(), and a Competitor<T> because it is passed to

match():

// enums/RoShamBo.java

// Common tools for RoShamBo examples



package enums;

import onjava.*;

public class RoShamBo {

public static <T extends Competitor<T>>

void match(T a, T b) {

System.out.println(

a + " vs. " + b + ": " + a.compete(b));

}

public static <T extends Enum<T> & Competitor<T>>

void play(Class<T> rsbClass, int size) {

for(int i = 0; i < size; i++)

match(

Enums.random(rsbClass),Enums.random(rsbClass));

}

}

The play() method does not have a return value that involves the

type parameter T, so it seems like you might use wildcards inside the

Class<T> type instead of using the leading parameter description.

However, wildcards cannot extend more than one base type, so we



must use the above expression.

Using Constant-Specific

Methods

Because constant-specific methods allow you to provide different

method implementations for each enum instance, they might seem

like a perfect solution for setting up multiple dispatching. But even

though they can be given different behavior in this way, enum

instances are not types, so you cannot use them as argument types in

method signatures. The best you can do for this example is to set up a

switch statement:

// enums/RoShamBo3.java

// Using constant-specific methods

// {java enums.RoShamBo3}

package enums;

import static enums.Outcome.*;

public enum RoShamBo3 implements Competitor<RoShamBo3> {

PAPER {



@Override

public Outcome compete(RoShamBo3 it) {

switch(it) {

default: // To placate the compiler

case PAPER: return DRAW;

case SCISSORS: return LOSE;

case ROCK: return WIN;

}

}

},

SCISSORS {

@Override

public Outcome compete(RoShamBo3 it) {

switch(it) {

default:

case PAPER: return WIN;

case SCISSORS: return DRAW;

case ROCK: return LOSE;

}

}



},

ROCK {

@Override

public Outcome compete(RoShamBo3 it) {

switch(it) {

default:

case PAPER: return LOSE;

case SCISSORS: return WIN;

case ROCK: return DRAW;

}

}

};

@Override

public abstract Outcome compete(RoShamBo3 it);

public static void main(String[] args) {

RoShamBo.play(RoShamBo3.class, 20);

}

}

/* Output:

ROCK vs. ROCK: DRAW



SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

PAPER vs. PAPER: DRAW

PAPER vs. SCISSORS: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. SCISSORS: DRAW

ROCK vs. SCISSORS: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. PAPER: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

*/



Although this is functional and not unreasonable, the solution of

RoShamBo2.java seems to require less code when adding a new

type, and thus seems more straightforward.

However, RoShamBo3.java can be simplified and compressed:

// enums/RoShamBo4.java

// {java enums.RoShamBo4}

package enums;

public enum RoShamBo4 implements Competitor<RoShamBo4> {

ROCK {

@Override

public Outcome compete(RoShamBo4 opponent) {

return compete(SCISSORS, opponent);

}

},

SCISSORS {

@Override

public Outcome compete(RoShamBo4 opponent) {

return compete(PAPER, opponent);

}

},



PAPER {

@Override

public Outcome compete(RoShamBo4 opponent) {

return compete(ROCK, opponent);

}

};

Outcome compete(RoShamBo4 loser, RoShamBo4 opponent) {

return ((opponent == this) ? Outcome.DRAW

: ((opponent == loser) ? Outcome.WIN

: Outcome.LOSE));

}

public static void main(String[] args) {

RoShamBo.play(RoShamBo4.class, 20);

}

}

/* Output:

PAPER vs. PAPER: DRAW



SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. SCISSORS: WIN

ROCK vs. ROCK: DRAW

ROCK vs. SCISSORS: WIN

PAPER vs. SCISSORS: LOSE

SCISSORS vs. SCISSORS: DRAW

PAPER vs. SCISSORS: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. ROCK: WIN

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

ROCK vs. SCISSORS: WIN

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

*/



Here, the second dispatch is performed by the two-argument version

of compete(), which performs a sequence of comparisons and is

thus similar to the action of a switch. It’s smaller, but a bit

confusing. For a large system this confusion can become debilitating.

Dispatching with EnumMaps

It’s possible to perform a “true” double dispatch using the EnumMap

class, which is specifically designed to work very efficiently with

enums. Since the goal is to switch on two unknown types, an

EnumMap of EnumMaps produces the double dispatch:

// enums/RoShamBo5.java

// Multiple dispatching using an EnumMap of EnumMaps

// {java enums.RoShamBo5}

package enums;

import java.util.*;

import static enums.Outcome.*;

enum RoShamBo5 implements Competitor<RoShamBo5> {

PAPER, SCISSORS, ROCK;

static EnumMap<RoShamBo5,EnumMap<RoShamBo5,Outcome>>

table = new EnumMap<>(RoShamBo5.class);

static {



for(RoShamBo5 it : RoShamBo5.values())

table.put(it, new EnumMap<>(RoShamBo5.class));

initRow(PAPER, DRAW, LOSE, WIN);

initRow(SCISSORS, WIN, DRAW, LOSE);

initRow(ROCK, LOSE, WIN, DRAW);

}

static void initRow(RoShamBo5 it,

Outcome vPAPER, Outcome vSCISSORS, Outcome vROCK) {

EnumMap<RoShamBo5,Outcome> row =

RoShamBo5.table.get(it);

row.put(RoShamBo5.PAPER, vPAPER);

row.put(RoShamBo5.SCISSORS, vSCISSORS);

row.put(RoShamBo5.ROCK, vROCK);

}

@Override

public Outcome compete(RoShamBo5 it) {

return table.get(this).get(it);

}

public static void main(String[] args) {

RoShamBo.play(RoShamBo5.class, 20);



}

}

/* Output:

ROCK vs. ROCK: DRAW

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

PAPER vs. PAPER: DRAW

PAPER vs. SCISSORS: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. SCISSORS: DRAW

ROCK vs. SCISSORS: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. PAPER: LOSE

ROCK vs. SCISSORS: WIN



SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

*/

The EnumMap is initialized using a static clause; you see the table-

like structure of the calls to initRow(). Notice the compete()

method, where both dispatches happen in a single statement.

Using a 2-D Array

We can simplify the solution even more by noting that each enum

instance has a fixed value (based on its declaration order) and that

ordinal() produces this value. A two-dimensional array mapping

the competitors onto the outcomes produces the smallest and most

straightforward solution (and possibly the fastest, although remember

that EnumMap uses an internal array):

// enums/RoShamBo6.java

// Enums using "tables" instead of multiple dispatch

// {java enums.RoShamBo6}



package enums;

import static enums.Outcome.*;

enum RoShamBo6 implements Competitor<RoShamBo6> {

PAPER, SCISSORS, ROCK;

private static Outcome[][] table = {

{ DRAW, LOSE, WIN }, // PAPER

{ WIN, DRAW, LOSE }, // SCISSORS

{ LOSE, WIN, DRAW }, // ROCK

};

@Override

public Outcome compete(RoShamBo6 other) {

return table[this.ordinal()][other.ordinal()];

}

public static void main(String[] args) {

RoShamBo.play(RoShamBo6.class, 20);

}

}

/* Output:

ROCK vs. ROCK: DRAW

SCISSORS vs. ROCK: LOSE



SCISSORS vs. ROCK: LOSE

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

PAPER vs. PAPER: DRAW

PAPER vs. SCISSORS: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. SCISSORS: DRAW

ROCK vs. SCISSORS: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

ROCK vs. PAPER: LOSE

ROCK vs. SCISSORS: WIN

SCISSORS vs. ROCK: LOSE

PAPER vs. SCISSORS: LOSE

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

SCISSORS vs. PAPER: WIN

*/

The table has exactly the same order as the calls to initRow() in



the previous example.

The small size of this code holds great appeal over the previous

examples, partly because it seems much easier to understand and

modify but also because it just seems more straightforward. However,

it’s not as “safe” as the previous examples because it uses an array.

With a larger array, you might get the size wrong, and if your tests do

not cover all possibilities something could slip through the cracks.

All these solutions are different types of tables, but it’s worth exploring

the expression of the tables to find the one that fits best. Note that

even though the above solution is the most compact, it is also fairly

rigid because it can only produce a constant output given constant

inputs. However, there’s nothing that prevents you from having

table produce a function object. For certain types of problems, the

concept of “table-driven code” can be very powerful.

Summary

Even though enumerated types are not terribly complex in themselves,



this chapter was postponed until later in the book because of what you

can do with enums in combination with features like polymorphism,

generics, and reflection.

Although they are significantly more sophisticated than enums in C or

C++, enums are still a “small” feature, something the language has

survived (a bit awkwardly) without for many years. And yet this

chapter shows the valuable impact that a “small” feature can have—

sometimes it gives you just the right leverage to solve a problem

elegantly and clearly, and as I say throughout this book, elegance is

important, and clarity can make the difference between a successful

solution and one that fails because others cannot understand it.

On the subject of clarity, an unfortunate source of confusion comes

from the poor choice in Java 1.0 of the term “enumeration” instead of

the common and well-accepted term “iterator” to indicate an object

that selects each element of a sequence (as shown in Collections).

Some languages even refer to enumerated data types as

“enumerators!” This mistake has since been rectified in Java, but the

Enumeration interface could not, of course, simply be removed and

so is still hanging around in old (and sometimes new!) code, the

library, and documentation.



1. Joshua Bloch was extremely helpful in developing this chapter.↩

Annotations

Annotations (also known as metadata)

provide a formalized way to add

information to your code so you can

easily use that data at some later point.1

Annotations are partly motivated by a general trend toward combining

metadata with source-code files, instead of keeping it in external

documents. They are also a response to feature pressure from other

languages like C#.

Annotations are one of the fundamental language changes introduced

in Java 5. They provide information that cannot be expressed in Java,

but that you need to fully describe your program. Thus, annotations

allow you to store extra information about your program in a format

validated by the compiler. Annotations can generate descriptor files or

even new class definitions and help ease the burden of writing

“boilerplate” code. Using annotations, you can keep this metadata in

the Java source code, and have the advantage of cleaner looking code,



compile-time type checking and the annotation API for building

processing tools for your annotations. Although a few types of

metadata come predefined in Java, in general the kind of annotations

you add and what you do with them are entirely up to you.

The syntax of annotations is reasonably simple and consists mainly of

the addition of the @ symbol to the language. Java 5 introduced the

first three general-purpose built-in annotations, defined in

java.lang:

@Override, to indicate that a method definition is intended to

override a method in the base class. This generates a compiler error if

you accidentally misspell the method name or give an improper

signature.2

@Deprecated, to produce a compiler warning if this element is

used.

@SuppressWarnings, to turn off inappropriate compiler warnings.

@SafeVarargs, added in Java 7 to suppress warnings for callers of a

method or constructor with a generics varargs parameter.

@FunctionalInterface, added in Java 8 to specify that the type

declaration is a functional interface.

Five additional annotation types support the creation of new



annotations; you learn about these in this chapter.

Whenever you create classes or interfaces that involve repetitive work,

you can usually use annotations to automate and simplify the process.

Much of the extra work in Enterprise JavaBeans (EJBs), for example,

is eliminated through annotations in EJB3.

Annotations can replace existing systems like XDoclet, an independent

doclet tool that creates annotation-style doclets. In contrast,

annotations are true language constructs and hence are structured and

also type-checked at compile time. Keeping all the information in the

actual source code and not in comments makes the code neater and

easier to maintain. By using and extending the annotation API and

tools, or with external bytecode manipulation libraries as you will see

in this chapter, you can perform powerful inspection and



manipulation of your source code as well as the bytecode.

Basic Syntax

In the example below, the method testExecute() is annotated

with @Test. This doesn’t do anything by itself, but the compiler

ensures you have a definition for the @Test annotation in your

CLASSPATH. Later in the chapter, we create a tool to run this method

via reflection.

// annotations/Testable.java

package annotations;

import onjava.atunit.*;

public class Testable {

public void execute() {

System.out.println("Executing..");

}

@Test

void testExecute() { execute(); }

}

Annotated methods are no different from other methods. The @Test

annotation in this example can be used in combination with any of the

modifiers like public or static or void. Syntactically,



annotations are used in much the same way as modifiers.

Defining Annotations

Here is the definition of the annotation above. Annotation definitions

look a lot like interface definitions. In fact, they compile to class files

like any other Java interface:

// onjava/atunit/Test.java

// The @Test tag

package onjava.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Test {}

Apart from the @ symbol, the definition of @Test is much like that of

an empty interface. An annotation definition also requires the meta-

annotations @Target and @Retention. @Target defines where

you can apply this annotation (a method or a field, for example).

@Retention defines whether the annotations are available in the

source code (SOURCE), in the class files (CLASS), or at runtime

(RUNTIME).

Annotations usually contain elements that specify values. A program



or tool can use these parameters when processing your annotations.

Elements look like interface methods, except you can declare default

values.

An annotation without any elements, such as @Test above, is called a

marker annotation.

Here is a simple annotation that tracks use cases in a project.

Programmers annotate each method or set of methods that fulfill the

requirements of a particular use case. A project manager can get an

idea of project progress by counting the implemented use cases, and

developers maintaining the project can easily find use cases to update,

or they can debug business rules within the system.

// annotations/UseCase.java

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface UseCase {

int id();

String description() default "no description";

}

Notice that id and description resemble method declarations.



Because id is type-checked by the compiler, it is a reliable way of

linking a tracking database to the use case document and the source

code. The element description has a default value picked up by

the annotation processor if no value is specified when a method is

annotated.

Here is a class with three methods annotated as use cases:

// annotations/PasswordUtils.java

import java.util.*;

public class PasswordUtils {

@UseCase(id = 47, description =

"Passwords must contain at least one numeric")

public boolean validatePassword(String passwd) {

return (passwd.matches("\\w*\\d\\w*"));

}

@UseCase(id = 48)

public String encryptPassword(String passwd) {

return new StringBuilder(passwd)

.reverse().toString();

}

@UseCase(id = 49, description =



"New passwords can't equal previously used ones")

public boolean checkForNewPassword(

List<String> prevPasswords, String passwd) {

return !prevPasswords.contains(passwd);

}

}

The values of the annotation elements are expressed as name-value

pairs in parentheses after the @UseCase declaration. The annotation

for encryptPassword() is not passed a value for the

description element here, so the default value defined in the

@interface UseCase will appear when the class runs through an

annotation processor.

Imagine using an approach like this to “sketch” out your system, then

filling in the functionality as you build it.

Meta-Annotations

There are currently only five standard annotations (described earlier)

and five meta-annotations defined in the Java language. The meta-



annotations are for annotating annotations:

Where this annotation can be

applied. The possible

ElementType arguments

are:

CONSTRUCTOR: Constructor

declaration

FIELD: Field declaration

(includes enum constants)

@Target

LOCAL_VARIABLE: Local

variable declaration

METHOD: Method declaration

PACKAGE: Package declaration

PARAMETER: Parameter

declaration

TYPE: Class, interface

(including annotation type), or

enum declaration



How long the annotation

information is kept. The

possible RetentionPolicy

arguments are:

SOURCE: Annotations are

discarded by the compiler.

CLASS: Annotations are

@Retention

available in the class file by the

compiler but can be discarded

by the VM.

RUNTIME: Annotations are

retained by the VM at run time,

so they can be read reflectively.

Include this annotation in the

@Documented



Javadocs.

Allow subclasses to inherit

@Inherited

parent annotations.

Can apply more than once to

@Repeatable

the same declaration (Java 8).

Most of the time, you define your own annotations and write your own

processors to deal with them.

Writing Annotation

Processors

Without tools to read them, annotations are hardly more useful than

comments. An important part of the process of using annotations is to

create and use annotation processors. Java provides extensions to the

reflection API to help you create these tools. It also provides a javac

compiler hook to use annotations at compile time.

Here is a very simple annotation processor that reads the annotated

PasswordUtils class and uses reflection to look for @UseCase

tags. Given a list of id values, it lists the use cases it finds and reports

any that are missing:



// annotations/UseCaseTracker.java

import java.util.*;

import java.util.stream.*;

import java.lang.reflect.*;

public class UseCaseTracker {

public static void

trackUseCases(List<Integer> useCases, Class<?> cl) {

for(Method m : cl.getDeclaredMethods()) {

UseCase uc = m.getAnnotation(UseCase.class);

if(uc != null) {

System.out.println("Found Use Case " +

uc.id() + "\n " + uc.description());

useCases.remove(Integer.valueOf(uc.id()));

}

}

useCases.forEach(i ->

System.out.println("Missing use case " + i));

}

public static void main(String[] args) {

List<Integer> useCases = IntStream.range(47, 51)



.boxed().collect(Collectors.toList());

trackUseCases(useCases, PasswordUtils.class);

}

}

/* Output:

Found Use Case 48

no description

Found Use Case 47

Passwords must contain at least one numeric

Found Use Case 49

New passwords can't equal previously used ones

Missing use case 50

*/

This uses both the reflection method getDeclaredMethods()

and the method getAnnotation(), which comes from the

AnnotatedElement interface (classes like Class, Method and

Field all implement this interface). This method returns the



annotation object of the specified type, in this case “UseCase.” If

there are no annotations of that particular type on the annotated

method, a null value is returned. The element values are extracted by

calling id() and description(). Remember that no description

was specified in the annotation for the encryptPassword()

method, so the processor above finds the default value “no

description” when it calls the description() method on that

particular annotation.

Annotation Elements

The @UseCase tag defined in UseCase.java contains the int

element id and String element description. Here is a list of the

allowed types for annotation elements:

All primitives (int, float, boolean etc.)

String

Class

enums

Annotations



Arrays of any of the above

The compiler will report an error if you try to use any other types. Note

you are not allowed to use any of the wrapper classes, but because of



autoboxing this isn’t really a limitation. You can also have elements

that are themselves annotations. As you will see a bit later, nested

annotations can be very helpful.

Default Value Constraints

The compiler is picky about default element values. No element can

have an unspecified value. This means elements must either have

default values or values provided by the class that uses the annotation.

There is another restriction: none of the non-primitive type elements

are allowed to take null as a value, either when declared in the

source code or when defined as a default value in the annotation

interface. This makes it hard to write a processor that acts on the

presence or absence of an element, because every element is effectively

present in every annotation declaration. You can get around this by

checking for specific values, like empty Strings or negative values:

// annotations/SimulatingNull.java

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SimulatingNull {

int id() default -1;



String description() default "";

}

This is a typical idiom in annotation definitions.

Generating External Files

Annotations are especially useful when working with frameworks that

require some sort of additional information to accompany your source

code. Technologies like Enterprise JavaBeans (prior to EJB3) require

numerous interfaces and deployment descriptors which are

“boilerplate” code, defined in the same way for every bean. Web

services, custom tag libraries and object/relational mapping tools like

Toplink and Hibernate often require XML descriptors external to the

code. After defining a Java class, the programmer must undergo the

tedium of respecifying information like the name, package and so on—

information that already exists in the original class. Whenever you use

an external descriptor file, you end up with two separate sources of

information about a class, which usually leads to code synchronization

problems. This also requires that programmers working on the project



must know about editing the descriptor as well as how to write Java

programs.

Suppose you want basic object/relational mapping functionality to

automate the creation of a database table. You can use an XML

descriptor file to specify the name of the class, each member, and

information about its database mapping. Using annotations, however,

you can keep all information in a single source-code file. To do this,

you need annotations to define the name of the database table, the

columns, and the SQL types to map to properties.

Here is an annotation that tells the annotation processor it should

create a database table:

// annotations/database/DBTable.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.TYPE) // Applies to classes only

@Retention(RetentionPolicy.RUNTIME)

public @interface DBTable {

String name() default "";

}

Each ElementType you specify in the @Target annotation is a



restriction that tells the compiler that your annotation can only be

applied to that particular type. You can specify a single value of the

enum ElementType, or you can specify a comma-separated list of

any combination of values. To apply the annotation to any

ElementType, you can leave out the @Target annotation

altogether, although this is uncommon.

Note that @DBTable has a name() element so the annotation can

supply a name for the database table that the processor will create.

Here are the annotations for the fields:

// annotations/database/Constraints.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Constraints {

boolean primaryKey() default false;

boolean allowNull() default true;

boolean unique() default false;

}

// annotations/database/SQLString.java



package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SQLString {

int value() default 0;

String name() default "";

Constraints constraints() default @Constraints;

}

// annotations/database/SQLInteger.java

package annotations.database;

import java.lang.annotation.*;

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

public @interface SQLInteger {

String name() default "";

Constraints constraints() default @Constraints;

}

The @Constraints annotation allows the processor to extract the

metadata about the database table. This represents a small subset of



the constraints generally offered by databases, but it gives you the

general idea. The elements primaryKey(), allowNull() and

unique() are given sensible default values so in most cases a user of

the annotation won’t have to type too much.

The other two @interfaces define SQL types. Again, for this

framework to be more useful, you define an annotation for each

additional SQL type. Here, two types are enough.

These types each have a name() element and a constraints()

element. The latter makes use of the nested annotation feature to

embed the information about the column type’s database constraints.

Note that the default value for the constraints() element is

@Constraints. Since there are no element values specified in

parentheses after this annotation type, the default value of

constraints() is actually a @Constraints annotation with its

own default values set. To make a nested @Constraints annotation

with uniqueness set to true by default, you can define its element like this:

// annotations/database/Uniqueness.java

// Sample of nested annotations

package annotations.database;

public @interface Uniqueness {



Constraints constraints()

default @Constraints(unique = true);

}

Here is a simple class that uses these annotations:

// annotations/database/Member.java

package annotations.database;

@DBTable(name = "MEMBER")

public class Member {

@SQLString(30) String firstName;

@SQLString(50) String lastName;

@SQLInteger Integer age;

@SQLString(value = 30,

constraints = @Constraints(primaryKey = true))

String reference;

static int memberCount;

public String getReference() { return reference; }

public String getFirstName() { return firstName; }

public String getLastName() { return lastName; }

@Override

public String toString() { return reference; }



public Integer getAge() { return age; }

}

The @DBTable class annotation is given the value MEMBER, which is

used as the table name. The properties firstName and lastName

are both annotated with @SQLStrings and have element values of

30 and 50, respectively. These annotations are interesting for two

reasons: First, they use the default value on the nested

@Constraints annotation, and second, they use a shortcut feature.

If you define an element on an annotation with the name value, then

as long as it is the only element type specified, you don’t need the

name-value pair syntax; you can just specify the value within

parentheses. This can be applied to any of the legal element types. This

limits you to naming your element “value” but in the case above, it

does allow for the semantically meaningful and easy-to-read

annotation specification:

@SQLString(30)

The processor will use this value to set the size of the SQL column it

will create.

As neat as the default-value syntax is, it quickly becomes complex.

Look at the annotation on the field reference. This has an



@SQLString annotation, but it must also be a primary key on the

database, so the element type primaryKey must be set on the nested

@Constraint annotation. This is where it gets messy. You are now

forced to use the rather long-winded name-value pair form for this

nested annotation, respecifying the element name and the

@interface name. But because the specially named element

value is no longer the only element value specified, you can’t use the

shortcut form. As you see, the result is not pretty.

Alternative Solutions

There are other ways of creating annotations for this task. You can, for

example, have a single annotation class called @TableColumn with

an enum element which defines values like STRING, INTEGER,

FLOAT, etc. This eliminates the need for an @interface for each

SQL type, but makes it impossible to qualify your types with additional



elements like size, or precision, which is probably more useful.

You can also use a String element to describe the actual SQL type,

e.g., “VARCHAR(30)” or “INTEGER”. This does allow you to qualify

the types, but it ties up the mapping from Java type to SQL type in

your code, which is not good design. You don’t want to recompile

classes if you change databases; it would be more elegant just to tell

your annotation processor you use a different “flavor” of SQL, and it

let it take that into account when processing the annotations.

A third workable solution is to use two annotation types together,

@Constraints and the relevant SQL type (for example,

@SQLInteger), to annotate the desired field. This is slightly messy

but the compiler allows as many different annotations as you like on

an annotation target. In Java 8, when using multiple annotations, you

are allowed to use the same annotation more than once.

Annotations Don’t Support

Inheritance

You cannot use the extends keyword with @interfaces. This is a



pity, because an elegant solution would have been to define an

annotation @TableColumn, as suggested above, with a nested

annotation of type @SQLType. That way, you can inherit all your SQL

types, like @SQLInteger and @SQLString, from @SQLType. This

would reduce typing and neaten the syntax. There doesn’t seem to be

any suggestion of annotations supporting inheritance in future

releases, so the examples above seem the best you can do under the

circumstances.

Implementing the Processor

Here is an example of an annotation processor which reads in a class

file, checks for its database annotations and generates the SQL

command for making the database:

// annotations/database/TableCreator.java

// Reflection-based annotation processor

// {java annotations.database.TableCreator

// annotations.database.Member}

package annotations.database;

import java.lang.annotation.*;

import java.lang.reflect.*;

import java.util.*;



public class TableCreator {

public static void

main(String[] args) throws Exception {

if(args.length < 1) {

System.out.println(

"arguments: annotated classes");

System.exit(0);

}

for(String className : args) {

Class<?> cl = Class.forName(className);

DBTable dbTable = cl.getAnnotation(DBTable.class);

if(dbTable == null) {

System.out.println(

"No DBTable annotations in class " +

className);

continue;

}

String tableName = dbTable.name();

// If the name is empty, use the Class name:

if(tableName.length() < 1)



tableName = cl.getName().toUpperCase();

List<String> columnDefs = new ArrayList<>();

for(Field field : cl.getDeclaredFields()) {

String columnName = null;

Annotation[] anns =

field.getDeclaredAnnotations();

if(anns.length < 1)

continue; // Not a db table column

if(anns[0] instanceof SQLInteger) {

SQLInteger sInt = (SQLInteger) anns[0];

// Use field name if name not specified

if(sInt.name().length() < 1)

columnName = field.getName().toUpperCase();

else

columnName = sInt.name();

columnDefs.add(columnName + " INT" +

getConstraints(sInt.constraints()));

}

if(anns[0] instanceof SQLString) {

SQLString sString = (SQLString) anns[0];



// Use field name if name not specified.

if(sString.name().length() < 1)

columnName = field.getName().toUpperCase();

else

columnName = sString.name();

columnDefs.add(columnName + " VARCHAR(" +

sString.value() + ")" +

getConstraints(sString.constraints()));

}

StringBuilder createCommand = new StringBuilder(

"CREATE TABLE " + tableName + "(");

for(String columnDef : columnDefs)

createCommand.append(

"\n " + columnDef + ",");

// Remove trailing comma

String tableCreate = createCommand.substring(

0, createCommand.length() - 1) + ");";

System.out.println("Table Creation SQL for " +

className + " is:\n" + tableCreate);

}



}

}

private static

String getConstraints(Constraints con) {

String constraints = "";

if(!con.allowNull())

constraints += " NOT NULL";

if(con.primaryKey())

constraints += " PRIMARY KEY";

if(con.unique())

constraints += " UNIQUE";

return constraints;

}

}

/* Output:

Table Creation SQL for annotations.database.Member is:

CREATE TABLE MEMBER(

FIRSTNAME VARCHAR(30));

Table Creation SQL for annotations.database.Member is:

CREATE TABLE MEMBER(



FIRSTNAME VARCHAR(30),

LASTNAME VARCHAR(50));

Table Creation SQL for annotations.database.Member is:

CREATE TABLE MEMBER(

FIRSTNAME VARCHAR(30),

LASTNAME VARCHAR(50),

AGE INT);

Table Creation SQL for annotations.database.Member is:

CREATE TABLE MEMBER(

FIRSTNAME VARCHAR(30),

LASTNAME VARCHAR(50),

AGE INT,

REFERENCE VARCHAR(30) PRIMARY KEY);

*/

The main() method cycles through each of the class names on the

command line. Each class is loaded using forName() and checked to

see if it has the @DBTable annotation on it with

getAnnotation(DBTable.class). If it does, then the table

name is found and stored. All fields in the class are then loaded and

checked using getDeclaredAnnotations(). This method



returns an array of all defined annotations for a particular method.

The instanceof operator is used to determine if these annotations

are of type @SQLInteger and @SQLString, and in each case the

relevant String fragment is then created with the name of the table

column. Note that because there is no inheritance of annotation

interfaces, using getDeclaredAnnotations() is the only way

you can approximate polymorphic behavior.

The nested @Constraint annotation is passed to the

getConstraints() which builds up a String containing the

SQL constraints.

It is worth mentioning that the technique shown above is a somewhat

naïve way of defining an object/relational mapping. Having an

annotation of type @DBTable which takes the table name as a

parameter forces you to recompile your Java code to change the table

name. This might not be desirable. There are many available

frameworks for mapping objects to relational databases, and more and



more of them are making use of annotations.

Using javac to Process

Annotations

Through javac, you can work with annotations on Java source files

rather than compiled classes, by creating compile-time annotation

processors. There’s an important limitation, however: you cannot

change the source code via the annotation processor. The only way to

influence the outcome is by creating new files.

If your annotation processor creates a new source file, that file is itself

checked for annotations in a new round of processing. The tool will

continue round after round of processing until no more source files are

created. It then compiles all the source files.

Each annotation you write will need its own processor, but javac can

easily group several annotation processors together. You can specify

multiple classes to be processed, and you can add listeners to receive

notifications when an annotation processing round is complete.

The examples in this section will get you started but if you must go

deeper, be ready to thrash around a bit, with plenty of visits to Google



and StackOverflow.

The Simplest Processor

Let’s start by defining the simplest processor we can imagine, just for

something to compile and test. Here’s the annotation definition:

// annotations/simplest/Simple.java

// A bare-bones annotation

package annotations.simplest;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

@Retention(RetentionPolicy.SOURCE)

@Target({ElementType.TYPE, ElementType.METHOD,

ElementType.CONSTRUCTOR,

ElementType.ANNOTATION_TYPE,

ElementType.PACKAGE, ElementType.FIELD,

ElementType.LOCAL_VARIABLE})



public @interface Simple {

String value() default "-default-";

}

The @Retention is now SOURCE, which means the annotations do

not survive into the compiled code. This is not necessary to

manipulate annotations at compile time—it just makes the point that,

here, javac is the only agent with the opportunity to process

annotations.

The @Target declaration shows almost all the possible target types

(except for PACKAGE), again just for demonstration.

Here’s an example to test it:

// annotations/simplest/SimpleTest.java

// Test the "Simple" annotation

// {java annotations.simplest.SimpleTest}

package annotations.simplest;

@Simple

public class SimpleTest {

@Simple

int i;

@Simple



public SimpleTest() {}

@Simple

public void foo() {

System.out.println("SimpleTest.foo()");

}

@Simple

public void bar(String s, int i, float f) {

System.out.println("SimpleTest.bar()");

}

@Simple

public static void main(String[] args) {

@Simple

SimpleTest st = new SimpleTest();

st.foo();

}

}

/* Output:

SimpleTest.foo()

*/

Here, we annotate everything that @Simple is allowed by its



@Target declaration.

SimpleTest.java only requires Simple.java to compile

successfully. Nothing happens when we compile it, though. javac

allows the @Simple annotation (as long as it exists) but it doesn’t do

anything with it until we create an annotation processor and hook it

into the compiler.

Here’s a very simple processor. All it does is print information about

the annotations:

// annotations/simplest/SimpleProcessor.java

// A bare-bones annotation processor

package annotations.simplest;

import javax.annotation.processing.*;

import javax.lang.model.SourceVersion;

import javax.lang.model.element.*;

import java.util.*;

@SupportedAnnotationTypes(

"annotations.simplest.Simple")

@SupportedSourceVersion(SourceVersion.RELEASE_8)

public class SimpleProcessor

extends AbstractProcessor {



@Override

public boolean process(

Set<? extends TypeElement> annotations,

RoundEnvironment env) {

for(TypeElement t : annotations)

System.out.println(t);

for(Element el :

env.getElementsAnnotatedWith(Simple.class))

display(el);

return false;

}

private void display(Element el) {

System.out.println("==== " + el + " ====");

System.out.println(el.getKind() +

" : " + el.getModifiers() +

" : " + el.getSimpleName() +

" : " + el.asType());

if(el.getKind().equals(ElementKind.CLASS)) {

TypeElement te = (TypeElement)el;

System.out.println(te.getQualifiedName());



System.out.println(te.getSuperclass());

System.out.println(te.getEnclosedElements());

}

if(el.getKind().equals(ElementKind.METHOD)) {

ExecutableElement ex = (ExecutableElement)el;

System.out.print(ex.getReturnType() + " ");

System.out.print(ex.getSimpleName() + "(");

System.out.println(ex.getParameters() + ")");

}

}

}

The (old, defunct) apt version of annotation processors required

extra methods to establish which annotations were supported, and

which Java version is supported. Now, however, you can simply use

the annotations @SupportedAnnotationTypes and

@SupportedSourceVersion. (This is a good example of how

annotations simplify your code).

The only method you must implement is process(), where all the

action happens. The first argument tells you which annotations are

present, and the second argument contains all the rest of the



information. All we do here is print the annotations (there’s only one)

but see the TypeElement documentation for other actions.

Using the second process() argument, we loop through all the

elements annotated with @Simple, and call our display() method

on each one. Every Element can produce basic information about

itself; for example, getModifiers() tells you if it’s public and

static.

Element can only do things common to all basic objects parsed by

the compiler, whereas things like classes and methods have additional

information to extract. So (and perhaps this was obvious if you read

the right document, but it wasn’t in any documentation I found—I had

to find clues via StackOverflow) you check to see what ElementKind

it is, then downcast it to the more specific type of element—here,

TypeElement for CLASS and ExecutableElement for

METHOD. At that point, you can call the additional methods for those

Element types.

A dynamic downcast (which is not checked at compile-time) is a very

un-Java-like way of doing things, thus un-intuitive and probably why I

never thought of doing it. Instead, I spent several days cycling around

trying to discover how you were supposed to access the information



that had seemed at least somewhat straightforward with the defunct

apt approach. I still haven’t come across anything that says the above

is the canonical form, but it seems to me it is.

If you just compile SimpleTest.java the normal way, you won’t

get any results. To get the annotation output, you have to add the –

processor flag and the annotation processor class:

javac -processor annotations.simplest.SimpleProcessor SimpleTest.java

Now the compiler produces:

annotations.simplest.Simple

==== annotations.simplest.SimpleTest ====

CLASS : [public] : SimpleTest : annotations.simplest.SimpleTest

annotations.simplest.SimpleTest

java.lang.Object

i,SimpleTest(),foo(),bar(java.lang.String,int,float),main(java.lang.String[])

==== i ====

FIELD : [] : i : int

==== SimpleTest() ====

CONSTRUCTOR : [public] : <init> : ()void

==== foo() ====

METHOD : [public] : foo : ()void



void foo()

==== bar(java.lang.String,int,float) ====

METHOD : [public] : bar : (java.lang.String,int,float)void

void bar(s,i,f)

==== main(java.lang.String[]) ====

METHOD : [public, static] : main : (java.lang.String[])void

void main(args)

This gives you a flavor of the kinds of things you can discover,

including argument names and types, return value, etc.

A More Complex Processor

When you create an annotation processor for use with javac, you

can’t use the reflection features in Java because you are working with

source code, not compiled classes. The various mirrors3 solve this problem
by allowing you to view methods, fields and types in

uncompiled source code.

Here is an annotation for extracting the public methods from a class,

so they can be turned into an interface:



// annotations/ifx/ExtractInterface.java

// javac-based annotation processing

package annotations.ifx;

import java.lang.annotation.*;

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.SOURCE)

public @interface ExtractInterface {

String interfaceName() default "-!!-";

}

The RetentionPolicy is SOURCE because there is no point in

keeping this annotation in the class file after we have extracted the

interface from the class. The following test class provides some public

methods which can become part of an interface:

// annotations/ifx/Multiplier.java

// javac-based annotation processing

// {java annotations.ifx.Multiplier}

package annotations.ifx;

@ExtractInterface(interfaceName="IMultiplier")

public class Multiplier {

public boolean flag = false;



private int n = 0;

public int multiply(int x, int y) {

int total = 0;

for(int i = 0; i < x; i++)

total = add(total, y);

return total;

}

public int fortySeven() { return 47; }

private int add(int x, int y) {

return x + y;

}

public double timesTen(double arg) {

return arg * 10;

}

public static void main(String[] args) {

Multiplier m = new Multiplier();

System.out.println(

"11 * 16 = " + m.multiply(11, 16));

}

}



/* Output:

11 * 16 = 176

*/

The Multiplier class (which only works with positive integers) has

a multiply() method which calls the private add() method

numerous times to perform multiplication. The add() method is not

public, so is not part of the interface. The other methods provide some

syntax variety. The annotation is given the interfaceName of

IMultiplier as the name of the interface to create.

Here’s a compile-time processor that extracts the methods of interest

and creates the new interface source-code file (which will in turn be

automatically compiled as part of the “rounds”):

// annotations/ifx/IfaceExtractorProcessor.java

// javac-based annotation processing

package annotations.ifx;

import javax.annotation.processing.*;

import javax.lang.model.SourceVersion;

import javax.lang.model.element.*;

import javax.lang.model.util.*;

import java.util.*;



import java.util.stream.*;

import java.io.*;

@SupportedAnnotationTypes(

"annotations.ifx.ExtractInterface")

@SupportedSourceVersion(SourceVersion.RELEASE_8)

public class IfaceExtractorProcessor

extends AbstractProcessor {

private ArrayList<Element>

interfaceMethods = new ArrayList<>();

Elements elementUtils;

private ProcessingEnvironment processingEnv;

@Override

public void init(

ProcessingEnvironment processingEnv) {

this.processingEnv = processingEnv;

elementUtils = processingEnv.getElementUtils();

}

@Override

public boolean process(

Set<? extends TypeElement> annotations,



RoundEnvironment env) {

for(Element elem:env.getElementsAnnotatedWith(

ExtractInterface.class)) {

String interfaceName = elem.getAnnotation(

ExtractInterface.class).interfaceName();

for(Element enclosed :

elem.getEnclosedElements()) {

if(enclosed.getKind()

.equals(ElementKind.METHOD) &&

enclosed.getModifiers()

.contains(Modifier.PUBLIC) &&

!enclosed.getModifiers()

.contains(Modifier.STATIC)) {

interfaceMethods.add(enclosed);

}

}

if(interfaceMethods.size() > 0)

writeInterfaceFile(interfaceName);

}

return false;



}

private void

writeInterfaceFile(String interfaceName) {

try(

Writer writer = processingEnv.getFiler()

.createSourceFile(interfaceName)

.openWriter()

) {

String packageName = elementUtils

.getPackageOf(interfaceMethods

.get(0)).toString();

writer.write(

"package " + packageName + ";\n");

writer.write("public interface " +

interfaceName + " {\n");

for(Element elem : interfaceMethods) {

ExecutableElement method =

(ExecutableElement)elem;

String signature = " public ";

signature += method.getReturnType() + " ";



signature += method.getSimpleName();

signature += createArgList(

method.getParameters());

System.out.println(signature);

writer.write(signature + ";\n");

}

writer.write("}");

} catch(Exception e) {

throw new RuntimeException(e);

}

}

private String createArgList(

List<? extends VariableElement> parameters) {

String args = parameters.stream()

.map(p -> p.asType() + " " + p.getSimpleName())

.collect(Collectors.joining(", "));

return "(" + args + ")";

}

}

The Elements object elementUtils is a collection of static



tools; we use it to find the package name within

writeInterfaceFile().

The getEnclosedElements() method produces all the elements

“enclosed” by a particular element. Here, the class encloses all its

components. Using getKind() we find all public and static

methods, and add those to the interfaceMethods list. Then

writeInterfaceFile() uses that list to produce the new

interface definition. Note the downcast to ExecutableElement in

writeInterfaceFile(), which enables us to extract all the

method information. createArgList() is a helper method to

generate the argument list.

The Filer (produced by getFiler()) is a kind of PrintWriter

which creates new files. The reason you use a Filer object, rather

than a plain PrintWriter, is that it allows javac to keep track of

any new files you create, so it can check them for annotations and

compile them in an additional “round.”

Here’s the command line to compile using the processor:

javac -processor annotations.ifx.IfaceExtractorProcessor Multiplier.java

The generated IMultiplier.java file, as you might guess by

looking at the println() statements in the processor above, looks



like this:

package annotations.ifx;

public interface IMultiplier {

public int multiply(int x, int y);

public int fortySeven();

public double timesTen(double arg);

}

This file is also compiled by javac (as part of the “rounds”), so you

see the file IMultiplier.class in the same directory.

Annotation-Based Unit

Testing

Unit testing is the practice of creating one or more tests for each

method in a class, to regularly test the portions of a class for correct

behavior. The most popular tool used for unit testing in Java is called

JUnit (see Validating Your Code). JUnit version 4 incorporates annotations.
4 One of the main problems with pre-annotation versions of JUnit is the
amount of “ceremony” necessary to set up and run



JUnit tests. This has reduced over time, but annotations move testing

closer to “the simplest unit testing system that can possibly work.”

With pre-annotation versions of JUnit, you must create a separate

class to hold your unit tests. With annotations we can include the unit

tests inside the class to be tested, and thus reduce the time and trouble

of unit testing to a minimum. This approach has the additional benefit

of testing private methods as easily as public ones.

Since this example test framework is annotation-based, it’s called

@Unit. The most basic form of testing, and one which you will

probably use much of the time, only needs the @Test annotation to

indicate which methods should be tested. One option is for the test

methods to take no arguments and return a boolean to indicate

success or failure. You can use any name you like for test methods.

Also, @Unit test methods can have any access that you’d like,

including private.

To use @Unit, you import onjava.atunit, mark the appropriate

methods and fields with @Unit test tags (which you’ll learn about in

the following examples), then have your build system run @Unit on

the resulting class. Here’s a simple example:

// annotations/AtUnitExample1.java



// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AtUnitExample1.class}

package annotations;

import onjava.atunit.*;

import onjava.*;

public class AtUnitExample1 {

public String methodOne() {

return "This is methodOne";

}

public int methodTwo() {

System.out.println("This is methodTwo");

return 2;

}

@Test

boolean methodOneTest() {

return methodOne().equals("This is methodOne");

}

@Test

boolean m2() { return methodTwo() == 2; }

@Test



private boolean m3() { return true; }

// Shows output for failure:

@Test

boolean failureTest() { return false; }

@Test

boolean anotherDisappointment() {

return false;

}

}

/* Output:

annotations.AtUnitExample1

. m3

. methodOneTest

. m2 This is methodTwo

. failureTest (failed)

. anotherDisappointment (failed)

(5 tests)

>>> 2 FAILURES <<<

annotations.AtUnitExample1: failureTest

annotations.AtUnitExample1: anotherDisappointment



*/

Classes to be @Unit tested must be placed in packages.

The @Test annotation preceding the methods methodOneTest(),

m2(), m3(), failureTest() and

anotherDisappointment() tells @Unit to run these methods

as unit tests. It will also ensure that those methods take no arguments

and return a boolean or void. Your only responsibility when you

write the unit test is to determine whether the test succeeds or fails

and returns true or false, respectively (for methods that return

boolean).

If you’re familiar with JUnit, you’ll also note @Units more

informative output—you see the test that’s currently running so the

output from that test is more useful, and at the end it tells you the

classes and tests that caused failures.

You’re not forced to embed test methods inside your classes, if that

doesn’t work for you. The easiest way to create non-embedded tests is

with inheritance:

// annotations/AUExternalTest.java

// Creating non-embedded tests

// {java onjava.atunit.AtUnit



// build/classes/main/annotations/AUExternalTest.class}

package annotations;

import onjava.atunit.*;

import onjava.*;

public class

AUExternalTest extends AtUnitExample1 {

@Test

boolean tMethodOne() {

return methodOne().equals("This is methodOne");

}

@Test

boolean tMethodTwo() {

return methodTwo() == 2;

}

}

/* Output:

annotations.AUExternalTest

. tMethodOne

. tMethodTwo This is methodTwo

OK (2 tests)



*/

This example also demonstrates the value of flexible naming. Here,

@Test methods that directly test another method are given the name

of that method starting with an underscore (I’m not suggesting this is

an ideal style, just showing a possibility).

You can also use composition to create non-embedded tests:

// annotations/AUComposition.java

// Creating non-embedded tests

// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AUComposition.class}

package annotations;

import onjava.atunit.*;

import onjava.*;

public class AUComposition {

AtUnitExample1 testObject = new AtUnitExample1();

@Test

boolean tMethodOne() {

return testObject.methodOne()

.equals("This is methodOne");

}



@Test

boolean tMethodTwo() {

return testObject.methodTwo() == 2;

}

}

/* Output:

annotations.AUComposition

. tMethodTwo This is methodTwo

. tMethodOne

OK (2 tests)

*/

A new member testObject is created for each test, since an

AUComposition object is created for each test.

There are no special “assert” methods as there are in JUnit, but the

second form of the @Test method returns void (or boolean, if you

still want to return true or false here). To test for success, you can

use Java assert statements. Java assertions are normally enabled

with the -ea flag on the java command line, but @Unit

automatically enables them. To indicate failure, you can even use an

exception. One of the @Unit design goals is to require as little



additional syntax as possible, and Java’s assert and exceptions are

all that is necessary to report errors. A failed assert or an exception

that emerges from the test method is treated as a failed test, but

@Unit does not halt here—it continues until all the tests are run.

Here’s an example:

// annotations/AtUnitExample2.java

// Assertions and exceptions can be used in @Tests

// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AtUnitExample2.class}

package annotations;

import java.io.*;

import onjava.atunit.*;

import onjava.*;

public class AtUnitExample2 {

public String methodOne() {

return "This is methodOne";

}

public int methodTwo() {

System.out.println("This is methodTwo");

return 2;



}

@Test

void assertExample() {

assert methodOne().equals("This is methodOne");

}

@Test

void assertFailureExample() {

assert 1 == 2: "What a surprise!";

}

@Test

void exceptionExample() throws IOException {

try(FileInputStream fis =

new FileInputStream("nofile.txt")) {} // Throws

}

@Test

boolean assertAndReturn() {

// Assertion with message:

assert methodTwo() == 2: "methodTwo must equal 2";

return methodOne().equals("This is methodOne");

}



}

/* Output:

annotations.AtUnitExample2

. exceptionExample java.io.FileNotFoundException:

nofile.txt (The system cannot find the file specified)

(failed)

. assertExample

. assertAndReturn This is methodTwo

. assertFailureExample java.lang.AssertionError: What

a surprise!

(failed)

(4 tests)

>>> 2 FAILURES <<<

annotations.AtUnitExample2: exceptionExample

annotations.AtUnitExample2: assertFailureExample

*/

Here’s an example using non-embedded tests with assertions,

performing some simple tests of java.util.HashSet:

// annotations/HashSetTest.java

// {java onjava.atunit.AtUnit



// build/classes/main/annotations/HashSetTest.class}

package annotations;

import java.util.*;

import onjava.atunit.*;

import onjava.*;

public class HashSetTest {

HashSet<String> testObject = new HashSet<>();

@Test

void initialization() {

assert testObject.isEmpty();

}

@Test

void tContains() {

testObject.add("one");

assert testObject.contains("one");

}

@Test

void tRemove() {

testObject.add("one");

testObject.remove("one");



assert testObject.isEmpty();

}

}

/* Output:

annotations.HashSetTest

. initialization

. tRemove

. tContains

OK (3 tests)

*/

The inheritance approach seems simpler, in the absence of other

constraints.

For each unit test, @Unit creates an object of the class under test

using the no-arg constructor. The test is called for that object, then the

object is discarded to prevent side effects from leaking into other unit

tests. This relies on the no-arg constructor to create the objects. If you

don’t have a no-arg constructor or you need more sophisticated

construction for objects, create a static method to build the object

and attach the @TestObjectCreate annotation, like this:

// annotations/AtUnitExample3.java



// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AtUnitExample3.class}

package annotations;

import onjava.atunit.*;

import onjava.*;

public class AtUnitExample3 {

private int n;

public AtUnitExample3(int n) { this.n = n; }

public int getN() { return n; }

public String methodOne() {

return "This is methodOne";

}

public int methodTwo() {

System.out.println("This is methodTwo");

return 2;

}

@TestObjectCreate

static AtUnitExample3 create() {

return new AtUnitExample3(47);

}



@Test

boolean initialization() { return n == 47; }

@Test

boolean methodOneTest() {

return methodOne().equals("This is methodOne");

}

@Test

boolean m2() { return methodTwo() == 2; }

}

/* Output:

annotations.AtUnitExample3

. initialization

. m2 This is methodTwo

. methodOneTest

OK (3 tests)

*/

The @TestObjectCreate method must be static and must

return an object of the type that you’re testing—the @Unit program

will ensure this is true.

Sometimes you need additional fields to support unit testing. The



@TestProperty annotation can tag fields that are only used for

unit testing (so they can be optionally removed before you deliver the

product to the client). Here’s an example that reads values from a

String that is broken up using the String.split() method.

This input is used to produce test objects:

// annotations/AtUnitExample4.java

// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AtUnitExample4.class}

// {VisuallyInspectOutput}

package annotations;

import java.util.*;

import onjava.atunit.*;

import onjava.*;

public class AtUnitExample4 {

static String theory = "All brontosauruses " +

"are thin at one end, much MUCH thicker in the " +

"middle, and then thin again at the far end.";

private String word;

private Random rand = new Random(); // Time-based seed

public AtUnitExample4(String word) {



this.word = word;

}

public String getWord() { return word; }

public String scrambleWord() {

List<Character> chars = Arrays.asList(

ConvertTo.boxed(word.toCharArray()));

Collections.shuffle(chars, rand);

StringBuilder result = new StringBuilder();

for(char ch : chars)

result.append(ch);

return result.toString();

}

@TestProperty

static List<String> input =

Arrays.asList(theory.split(" "));

@TestProperty

static Iterator<String> words = input.iterator();

@TestObjectCreate

static AtUnitExample4 create() {

if(words.hasNext())



return new AtUnitExample4(words.next());

else

return null;

}

@Test

boolean words() {

System.out.println("'" + getWord() + "'");

return getWord().equals("are");

}

@Test

boolean scramble1() {

// Use specific seed to get verifiable results:

rand = new Random(47);

System.out.println("'" + getWord() + "'");

String scrambled = scrambleWord();

System.out.println(scrambled);

return scrambled.equals("lAl");

}

@Test

boolean scramble2() {



rand = new Random(74);

System.out.println("'" + getWord() + "'");

String scrambled = scrambleWord();

System.out.println(scrambled);

return scrambled.equals("tsaeborornussu");

}

}

/* Output:

annotations.AtUnitExample4

. words 'All'

(failed)

. scramble1 'brontosauruses'

ntsaueorosurbs

(failed)

. scramble2 'are'

are

(failed)

(3 tests)

>>> 3 FAILURES <<<

annotations.AtUnitExample4: words



annotations.AtUnitExample4: scramble1

annotations.AtUnitExample4: scramble2

*/

@TestProperty can also be used to tag methods that can be used

during testing, but are not tests themselves.

This program relies on the execution order of the tests, which is in

general not a good practice.

If your test object creation performs initialization that requires later

cleanup, you can optionally add a static @TestObjectCleanup

method to perform cleanup when you are finished with the test object.

In this next example, @TestObjectCreate opens a file to create

each test object, so the file must be closed before the test object is

discarded:

// annotations/AtUnitExample5.java

// {java onjava.atunit.AtUnit

// build/classes/main/annotations/AtUnitExample5.class}

package annotations;

import java.io.*;

import onjava.atunit.*;

import onjava.*;



public class AtUnitExample5 {

private String text;

public AtUnitExample5(String text) {

this.text = text;

}

@Override

public String toString() { return text; }

@TestProperty

static PrintWriter output;

@TestProperty

static int counter;

@TestObjectCreate

static AtUnitExample5 create() {

String id = Integer.toString(counter++);

try {

output = new PrintWriter("Test" + id + ".txt");

} catch(IOException e) {

throw new RuntimeException(e);

}

return new AtUnitExample5(id);



}

@TestObjectCleanup

static void cleanup(AtUnitExample5 tobj) {

System.out.println("Running cleanup");

output.close();

}

@Test

boolean test1() {

output.print("test1");

return true;

}

@Test

boolean test2() {

output.print("test2");

return true;

}

@Test



boolean test3() {

output.print("test3");

return true;

}

}

/* Output:

annotations.AtUnitExample5

. test1

Running cleanup

. test3

Running cleanup

. test2

Running cleanup

OK (3 tests)

*/

The output shows that the cleanup method is automatically run after

each test.

Using @Unit with Generics

Generics pose a special problem, because you can’t “test generically.”

You must test for a specific type parameter or set of parameters. The



solution is simple: Inherit a test class from a specified version of the

generic class.

Here’s a simple implementation of a stack:

// annotations/StackL.java

// A stack built on a LinkedList

package annotations;

import java.util.*;

public class StackL<T> {

private LinkedList<T> list = new LinkedList<>();

public void push(T v) { list.addFirst(v); }

public T top() { return list.getFirst(); }

public T pop() { return list.removeFirst(); }

}

To test a String version, inherit a test class from

StackL<String> :

// annotations/StackLStringTst.java

// Applying @Unit to generics

// {java onjava.atunit.AtUnit

// build/classes/main/annotations/StackLStringTst.class}

package annotations;



import onjava.atunit.*;

import onjava.*;

public class

StackLStringTst extends StackL<String> {

@Test

void tPush() {

push("one");

assert top().equals("one");

push("two");

assert top().equals("two");

}

@Test

void tPop() {

push("one");

push("two");

assert pop().equals("two");

assert pop().equals("one");

}

@Test

void tTop() {



push("A");

push("B");

assert top().equals("B");

assert top().equals("B");

}

}

/* Output:

annotations.StackLStringTst

. tTop

. tPush

. tPop

OK (3 tests)

*/

The only potential drawback to inheritance is that you lose the ability

to access private methods in the class under test. If this is a

problem, you can either make the method in question protected, or

add a non-private @TestProperty method that calls the private



method (the @TestProperty method will then be stripped out of

the production code by the AtUnitRemover tool that is shown later

in this chapter).

@Unit searches for class files containing the appropriate annotations,

then executes the @Test methods. Much of my goal with the @Unit

testing system is to make it incredibly transparent, so people can begin

using it by adding @Test methods, with no other special code or

knowledge (modern versions of JUnit follow this practice). It’s hard

enough to write tests without adding any new hurdles, so @Unit tries

to make it trivial. This way, you’re more likely to actually write the

tests.

Implementing @Unit

First, we define all the annotation types. These are simple tags, and

have no fields. The @Test tag was defined at the beginning of the

chapter, and here are the rest of the annotations:

// onjava/atunit/TestObjectCreate.java

// The @Unit @TestObjectCreate tag

package onjava.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)



@Retention(RetentionPolicy.RUNTIME)

public @interface TestObjectCreate {}

// onjava/atunit/TestObjectCleanup.java

// The @Unit @TestObjectCleanup tag

package onjava.atunit;

import java.lang.annotation.*;

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface TestObjectCleanup {}

// onjava/atunit/TestProperty.java

// The @Unit @TestProperty tag

package onjava.atunit;

import java.lang.annotation.*;

// Both fields and methods can be tagged as properties:

@Target({ElementType.FIELD, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

public @interface TestProperty {}

All the tests have RUNTIME retention because the @Unit system

must discover the tests in compiled code.

To implement the system that runs the tests, we use reflection to



extract the annotations. The program uses this information to decide

how to build the test objects and run tests on them. Annotations make

the result surprisingly small and straightforward:

// onjava/atunit/AtUnit.java

// An annotation-based unit-test framework

// {java onjava.atunit.AtUnit}

package onjava.atunit;

import java.lang.reflect.*;

import java.io.*;

import java.util.*;

import java.nio.file.*;

import java.util.stream.*;

import onjava.*;

public class AtUnit implements ProcessFiles.Strategy {

static Class<?> testClass;

static List<String> failedTests= new ArrayList<>();

static long testsRun = 0;

static long failures = 0;

public static void

main(String[] args) throws Exception {



ClassLoader.getSystemClassLoader()

.setDefaultAssertionStatus(true); // Enable assert

new ProcessFiles(new AtUnit(), "class").start(args);

if(failures == 0)

System.out.println("OK (" + testsRun + " tests)");

else {

System.out.println("(" + testsRun + " tests)");

System.out.println(

"\n>>> " + failures + " FAILURE" +

(failures > 1 ? "S" : "") + " <<<");

for(String failed : failedTests)

System.out.println(" " + failed);

}

}

@Override

public void process(File cFile) {

try {

String cName = ClassNameFinder.thisClass(

Files.readAllBytes(cFile.toPath()));

if(!cName.startsWith("public:"))



return;

cName = cName.split(":")[1];

if(!cName.contains("."))

return; // Ignore unpackaged classes

testClass = Class.forName(cName);

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

TestMethods testMethods = new TestMethods();

Method creator = null;

Method cleanup = null;

for(Method m : testClass.getDeclaredMethods()) {

testMethods.addIfTestMethod(m);

if(creator == null)

creator = checkForCreatorMethod(m);

if(cleanup == null)

cleanup = checkForCleanupMethod(m);

}

if(testMethods.size() > 0) {

if(creator == null)



try {

if(!Modifier.isPublic(testClass

.getDeclaredConstructor()

.getModifiers())) {

System.out.println("Error: " + testClass +

" no-arg constructor must be public");

System.exit(1);

}

} catch(NoSuchMethodException e) {

// Synthesized no-arg constructor; OK

}

System.out.println(testClass.getName());

}

for(Method m : testMethods) {

System.out.print(" . " + m.getName() + " ");

try {

Object testObject = createTestObject(creator);

boolean success = false;

try {

if(m.getReturnType().equals(boolean.class))



success = (Boolean)m.invoke(testObject);

else {

m.invoke(testObject);

success = true; // If no assert fails

}

} catch(InvocationTargetException e) {

// Actual exception is inside e:

System.out.println(e.getCause());

}

System.out.println(success ? "" : "(failed)");

testsRun++;

if(!success) {

failures++;

failedTests.add(testClass.getName() +

": " + m.getName());

}

if(cleanup != null)

cleanup.invoke(testObject, testObject);

} catch(IllegalAccessException |

IllegalArgumentException |



InvocationTargetException e) {

throw new RuntimeException(e);

}

}

}

public static

class TestMethods extends ArrayList<Method> {

void addIfTestMethod(Method m) {

if(m.getAnnotation(Test.class) == null)

return;

if(!(m.getReturnType().equals(boolean.class) ||

m.getReturnType().equals(void.class)))

throw new RuntimeException("@Test method" +

" must return boolean or void");

m.setAccessible(true); // If it's private, etc.

add(m);

}

}

private static

Method checkForCreatorMethod(Method m) {



if(m.getAnnotation(TestObjectCreate.class) == null)

return null;

if(!m.getReturnType().equals(testClass))

throw new RuntimeException("@TestObjectCreate " +

"must return instance of Class to be tested");

if((m.getModifiers() &

java.lang.reflect.Modifier.STATIC) < 1)

throw new RuntimeException("@TestObjectCreate " +

"must be static.");

m.setAccessible(true);

return m;

}

private static

Method checkForCleanupMethod(Method m) {

if(m.getAnnotation(TestObjectCleanup.class) == null)

return null;

if(!m.getReturnType().equals(void.class))

throw new RuntimeException("@TestObjectCleanup " +

"must return void");

if((m.getModifiers() &



java.lang.reflect.Modifier.STATIC) < 1)

throw new RuntimeException("@TestObjectCleanup " +

"must be static.");

if(m.getParameterTypes().length == 0 ||

m.getParameterTypes()[0] != testClass)

throw new RuntimeException("@TestObjectCleanup " +

"must take an argument of the tested type.");

m.setAccessible(true);

return m;

}

private static Object

createTestObject(Method creator) {

if(creator != null) {

try {

return creator.invoke(testClass);

} catch(IllegalAccessException |

IllegalArgumentException |

InvocationTargetException e) {

throw new RuntimeException("Couldn't run " +

"@TestObject (creator) method.");



}

} else { // Use the no-arg constructor:

try {

return testClass.newInstance();

} catch(InstantiationException |

IllegalAccessException e) {

throw new RuntimeException(

"Couldn't create a test object. " +

"Try using a @TestObject method.");

}

}

}

}

Although it might be “premature refactoring,” (because it’s only used

once in the book) AtUnit.java uses another tool called

ProcessFiles to step through each argument on the command

line, decide whether it’s a directory or a file, and act accordingly. It can

be applied to different solutions because it contains a Strategy

interface for customization:

// onjava/ProcessFiles.java



package onjava;

import java.io.*;

import java.nio.file.*;

public class ProcessFiles {

public interface Strategy {

void process(File file);

}

private Strategy strategy;

private String ext;

public ProcessFiles(Strategy strategy, String ext) {

this.strategy = strategy;

this.ext = ext;

}

public void start(String[] args) {

try {

if(args.length == 0)

processDirectoryTree(new File("."));

else

for(String arg : args) {

File fileArg = new File(arg);



if(fileArg.isDirectory())

processDirectoryTree(fileArg);

else {

// Allow user to leave off extension:

if(!arg.endsWith("." + ext))

arg += "." + ext;

strategy.process(

new File(arg).getCanonicalFile());

}

}

} catch(IOException e) {

throw new RuntimeException(e);

}

}

public void

processDirectoryTree(File root) throws IOException {

PathMatcher matcher = FileSystems.getDefault()

.getPathMatcher("glob:**/*.{" + ext + "}");

Files.walk(root.toPath())

.filter(matcher::matches)



.forEach(p -> strategy.process(p.toFile()));

}

}

The AtUnit class implements ProcessFiles.Strategy,

containing the method process(). This way, an instance of

AtUnit can be passed to the ProcessFiles constructor. The

second constructor argument tells ProcessFiles to look for all

files that have “class” extensions.

Here’s a simple usage example:

// annotations/DemoProcessFiles.java

import onjava.ProcessFiles;

public class DemoProcessFiles {

public static void main(String[] args) {

new ProcessFiles(file -> System.out.println(file),

"java").start(args);

}

}

/* Output:

.\AtUnitExample1.java

.\AtUnitExample2.java



.\AtUnitExample3.java

.\AtUnitExample4.java

.\AtUnitExample5.java

.\AUComposition.java

.\AUExternalTest.java

.\database\Constraints.java

.\database\DBTable.java

.\database\Member.java

.\database\SQLInteger.java

.\database\SQLString.java

.\database\TableCreator.java

.\database\Uniqueness.java

.\DemoProcessFiles.java

.\HashSetTest.java

.\ifx\ExtractInterface.java

.\ifx\IfaceExtractorProcessor.java

.\ifx\Multiplier.java

.\PasswordUtils.java

.\simplest\Simple.java

.\simplest\SimpleProcessor.java



.\simplest\SimpleTest.java

.\SimulatingNull.java

.\StackL.java

.\StackLStringTst.java

.\Testable.java

.\UseCase.java

.\UseCaseTracker.java

*/

With no command-line argument, the program traverses the current

directory tree. You can also provide multiple arguments which can be

either class files (with or without the .class extension) or

directories.

Returning to our discussion of AtUnit.java, since @Unit

automatically finds the testable classes and methods, no “suite”

mechanism is necessary.5

One of the problems AtUnit.java must solve when it discovers

class files is that the qualified class name (including package) is not

evident from the class file name. To discover this information, the

class file must be analyzed—not trivial, but not impossible, either.6

When a .class file is found, it is opened and its binary data is read



and handed to ClassNameFinder.thisClass(). Here, we are

moving into the realm of “bytecode engineering,” because we are

actually analyzing the contents of a class file:

// onjava/atunit/ClassNameFinder.java

// {java onjava.atunit.ClassNameFinder}

package onjava.atunit;

import java.io.*;

import java.nio.file.*;

import java.util.*;

import onjava.*;

public class ClassNameFinder {

public static String thisClass(byte[] classBytes) {

Map<Integer,Integer> offsetTable = new HashMap<>();

Map<Integer,String> classNameTable =

new HashMap<>();

try {

DataInputStream data = new DataInputStream(

new ByteArrayInputStream(classBytes));

int magic = data.readInt(); // 0xcafebabe

int minorVersion = data.readShort();



int majorVersion = data.readShort();

int constantPoolCount = data.readShort();

int[] constantPool = new int[constantPoolCount];

for(int i = 1; i < constantPoolCount; i++) {

int tag = data.read();

// int tableSize;

switch(tag) {

case 1: // UTF

int length = data.readShort();

char[] bytes = new char[length];

for(int k = 0; k < bytes.length; k++)

bytes[k] = (char)data.read();

String className = new String(bytes);

classNameTable.put(i, className);

break;

case 5: // LONG

case 6: // DOUBLE

data.readLong(); // discard 8 bytes

i++; // Special skip necessary

break;



case 7: // CLASS

int offset = data.readShort();

offsetTable.put(i, offset);

break;

case 8: // STRING

data.readShort(); // discard 2 bytes

break;

case 3: // INTEGER

case 4: // FLOAT

case 9: // FIELD_REF

case 10: // METHOD_REF

case 11: // INTERFACE_METHOD_REF

case 12: // NAME_AND_TYPE

case 18: // Invoke Dynamic

data.readInt(); // discard 4 bytes

break;

case 15: // Method Handle

data.readByte();

data.readShort();

break;



case 16: // Method Type

data.readShort();

break;

default:

throw

new RuntimeException("Bad tag " + tag);

}

}

short accessFlags = data.readShort();

String access = (accessFlags & 0x0001) == 0 ?

"nonpublic:" : "public:";

int thisClass = data.readShort();

int superClass = data.readShort();

return access + classNameTable.get(

offsetTable.get(thisClass)).replace('/', '.');

} catch(IOException | RuntimeException e) {

throw new RuntimeException(e);

}

}

// Demonstration:



public static void

main(String[] args) throws Exception {

PathMatcher matcher = FileSystems.getDefault()

.getPathMatcher("glob:**/*.class");

// Walk the entire tree:

Files.walk(Paths.get("."))

.filter(matcher::matches)

.map(p -> {

try {

return thisClass(Files.readAllBytes(p));

} catch(Exception e) {

throw new RuntimeException(e);

}

})

.filter(s -> s.startsWith("public:"))

// .filter(s -> s.indexOf('$') >= 0)

.map(s -> s.split(":")[1])

.filter(s -> !s.startsWith("enums."))

.filter(s -> s.contains("."))

.forEach(System.out::println);



}

}

/* Output:

onjava.ArrayShow

onjava.atunit.AtUnit$TestMethods

onjava.atunit.AtUnit

onjava.atunit.ClassNameFinder

onjava.atunit.Test

onjava.atunit.TestObjectCleanup

onjava.atunit.TestObjectCreate

onjava.atunit.TestProperty

onjava.BasicSupplier

onjava.CollectionMethodDifferences

onjava.ConvertTo

onjava.Count$Boolean

onjava.Count$Byte

onjava.Count$Character

onjava.Count$Double

onjava.Count$Float

onjava.Count$Integer



onjava.Count$Long

onjava.Count$Pboolean

onjava.Count$Pbyte

onjava.Count$Pchar

onjava.Count$Pdouble

onjava.Count$Pfloat

onjava.Count$Pint

onjava.Count$Plong

onjava.Count$Pshort

onjava.Count$Short

onjava.Count

onjava.CountingIntegerList

onjava.CountMap

onjava.Countries

onjava.Enums

onjava.FillMap

onjava.HTMLColors

onjava.MouseClick

onjava.Nap

onjava.Null



onjava.Operations

onjava.OSExecute

onjava.OSExecuteException

onjava.Pair

onjava.ProcessFiles$Strategy

onjava.ProcessFiles

onjava.Rand$Boolean

onjava.Rand$Byte

onjava.Rand$Character

onjava.Rand$Double

onjava.Rand$Float

onjava.Rand$Integer

onjava.Rand$Long

onjava.Rand$Pboolean

onjava.Rand$Pbyte

onjava.Rand$Pchar

onjava.Rand$Pdouble

onjava.Rand$Pfloat

onjava.Rand$Pint

onjava.Rand$Plong



onjava.Rand$Pshort

onjava.Rand$Short

onjava.Rand$String

onjava.Rand

onjava.Range

onjava.Repeat

onjava.RmDir

onjava.Sets

onjava.Stack

onjava.Suppliers

onjava.TimedAbort

onjava.Timer

onjava.Tuple

onjava.Tuple2

onjava.Tuple3

onjava.Tuple4

onjava.Tuple5

onjava.TypeCounter

*/

Although it’s not possible to go into full detail here, each class file



follows a particular format and I’ve tried to use meaningful field

names for the pieces of data picked out of the

ByteArrayInputStream; you can also see the size of each piece

by the length of the read performed on the input stream. For example,

the first 32 bits of any class file is always the “magic number” hex

0xcafebabe,7 and the next two shorts are version information. The constant
pool contains the constants for the program and so is of

variable size; the next short tells how big it is, so an appropriate-

sized array can be allocated. Each entry in the constant pool can be a

fixed-size or variable-sized value, so we must examine the tag that

begins each one to find out what to do with it—that’s the switch

statement. Here, we are not trying to accurately analyze all the data in

the class file, but merely to step through and store the pieces of

interest, so you’ll notice that a fair amount of data is discarded.

Information about classes is stored in the classNameTable and the

offsetTable. After the constant pool is read, the thisClass

information is found. It is an index into the offsetTable, which

produces an index into the classNameTable, which produces the

class name.

Back in AtUnit.java, process() now has the class name and

can look to see if it contains a . , which means it’s in a package.



Unpackaged classes are ignored. If a class is in a package, the standard

class loader is used to load the class with Class.forName(). Now

the class can be analyzed for @Unit annotations.

We only look for three things: @Test methods, which are stored in a

TestMethods list, and whether there’s an @TestObjectCreate

and @TestObjectCleanup method. These are discovered through

the associated method calls you see in the code, which look for the

annotations.

If any @Test methods are found, the name of the class is displayed so

the viewer can see what’s happening, then each test is executed. This

means printing the method name, then calling

createTestObject(), which will use the

@TestObjectCreate method if one exists, or will fall back to the

no-arg constructor otherwise. Once the test object is created, the test

method is invoked upon that object. If the test returns a boolean,

the result is captured. If not, we assume success if there is no



exception (which would happen in the case of a failed assert or any

other kind of exception). If an exception is thrown, the exception

information is printed to show the cause. If any failure occurs, the

failure count is increased and the class name and method are added to

failedTests so these can be reported at the end of the run.

Summary

Annotations are a welcome addition to Java. They are a structured and

type-checked means of adding metadata to your code without

rendering it unreadable and messy. They can help remove the tedium

of writing deployment descriptors and other generated files. The fact

that the @deprecated Javadoc tag is superseded by the

@Deprecated annotation is just one indication of how much better

suited annotations are for describing information about code

components than are comments.

Only a small handful of annotations come with Java. This means if you

can’t find a library elsewhere, you create annotations and the

associated logic. With annotation processors attached to javac, you

can compile newly generated files in one step, easing the build process.

Providers of APIs and frameworks will start including annotations as

part of their toolkits. As you can imagine by seeing the @Unit system,



it is very likely that annotations will cause significant changes in our

Java programming experience.

1. Jeremy Meyer came to Crested Butte and spent two weeks with

me working on this chapter. His help was invaluable. ↩

2. This was no doubt inspired by a similar feature in C#. The C#

feature is a keyword and not an annotation, and is enforced by the

compiler. That is, when you override a method in C#, you must

use the override keyword, whereas in Java the @Override

annotation is optional. ↩

3. The Java designers coyly suggest that a mirror is where you find a

reflection. ↩

4. I originally had thoughts of making a “better JUnit” based on the

design shown here. However, it appears that JUnit4 also includes

many of the ideas presented here, so it remains easier to go along

with that.↩

5. It is not clear why the no-arg constructor for the class under test

must be public, but if it isn’t, the call to newInstance() just

hangs (doesn’t throw an exception). ↩

6. Jeremy Meyer and I spent most of a day figuring this out.↩

7. Various legends surround the meaning of this, but since Java was



predominantly created by male nerds we can make a reasonable

guess it had something to do with fantasizing about a woman in a

coffee shop. ↩

Concurrent

Programming

“But I don’t want to go among mad

people,” Alice remarked. “Oh, you can’t

help that,” said the Cat. “We’re all mad

here. I’m mad. You’re mad.” “How do you

know I’m mad?” said Alice. “You must

be,” said the Cat, “or you wouldn’t have

come here.” — Alice’s Adventures in

Wonderland, Chapter 6.

Up to this point we’ve been programming in a fashion much like the

stream-of-consciousness narrative device in literature: first one thing

happens, then the next. We’re in complete control of all the steps and

the order they occur. It would be very surprising if we were to set a

value to 5, then at some point later come back and find it was 47.



We now enter the strange world of concurrency, where this result is

not surprising at all. Everything you’re comfortable believing is no

longer reliable. It might work and it might not. Most likely it will work

under some conditions and not in others, and you’ll have to know and

understand these situations in order to determine what works.

As an analogy, your normal life takes place in the world of Newtonian

Mechanics. Objects have mass: they fall and transfer their momentum.

Wires have resistance, and light travels in straight lines. But if you

enter the world of the very small, very hot, very cold or very massive

(where we can’t exist) things change. We can’t tell whether something

is a particle or a wave, light is affected by gravity, and some things

become superconductors.

Rather than a single stream-of-consciousness narrative, we’re inside a

spy novel that has numerous stories running at the same time, one for

each character. One spy leaves microfilm under a special rock, and

when the second spy comes to retrieve the package, it might already

have been taken by a third spy. But this particular novel doesn’t neatly

tie things up; you can easily get to the end and never figure out what

happens.

Building concurrent applications is much like the game Jenga, where every
time you pull out a block and place it on the tower, the whole

https://en.wikipedia.org/wiki/Jenga


thing can come crashing down. Every tower, and every application, is

unique, with its own requirements. What you learn from building one

system might not apply to the next one.

This chapter is a very basic introduction to concurrency. Although I

use the most modern Java 8 tools available to demonstrate the

principles, the chapter is far from a comprehensive treatment of the

topic. My goal is to give you enough of the fundamentals that you can

grasp the complexity—and danger—of the issues, to engender a

healthy respect for the difficulty of wading into these shark-infested

waters.

For more of the messy, low-level details, see the Appendix: Low-Level

Concurrency. To venture further into this domain, you must also read

Java Concurrency in Practice by Brian Goetz et. al. Although at this

writing, that book is over ten years old, it still contains essentials you

must know and understand. Ideally, this chapter and the appendix is a

good preparation for that book. Another valuable resource is Bill



Venners’ Inside the Java Virtual Machine, which describes in detail

the innermost workings of the JVM, including threads.

The Terminology

Problem

The terms concurrent, parallel, multitasking, multiprocessing,
multithreading, distributed systems (and probably others) are used in

numerous conflicting ways throughout programming literature, and

are often conflated. After pointing this out in his 2016 presentation

From Concurrent to Parallel, Brian Goetz suggests a reasonable dichotomy:

Concurrency is about correctly and efficiently controlling access

to shared resources.

Parallelism uses additional resources to produce an answer faster.

These are good definitions, but there are decades of confusion-

producing history that fight against fixing the problem. In general,

when people use the word “concurrency,” they mean “everything, the

entire mess,” and I’ll probably fall into that practice myself in many

places—indeed, most books, including Brian Goetz’ Java Concurrency

in Practice, use the word in the title.

Concurrency often means “more than one task is making progress,”

while parallelism almost always means “more than one task is

executing simultaneously.” You can immediately see the problem with

https://www.youtube.com/watch?v=NsDE7E8sIdQ


these definitions: parallelism also has more than one task “making

progress.” The distinction is the details, in exactly how that “progress”

is happening. Also, the overlap: a program written for parallelism can

still sometimes run on a single processor, while some concurrent-

programming systems can take advantage of more than one processor.

Here’s another approach, writing the definitions around where the

slowdown occurs:

Concurrency

Accomplishing more than one task at the same time. One task

doesn’t need to complete before you start working on other tasks.

Concurrency solves problems where blocking occurs—when a task

can’t progress further until something outside its control changes.

The most common example is I/O, where a task must wait for

some input (in which case it is said to be blocked). A problem like

this is said to be I/O bound.

Parallelism

Accomplishing more than one task in multiple places at the same

time. This solves so-called compute-bound problems, where a

program can run faster if you split it into multiple parts and run

those different parts on different processors.



The reason the terminology is confusing is shown in the definitions

above: the core of both is “accomplishing more than one task at the

same time.” Parallelism adds distribution across multiple processors.

More importantly, the two solve different types of problems: taking an

I/O-bound problem and parallelizing might not do you any good

because the problem is not overall speed, it’s blocking. And taking a

compute-bound problem and trying to solve it using concurrency on a

single processor might be a similar waste of time. Both approaches try

to accomplish more in less time, but the way they achieve speedup is

different, and depends upon constraints imposed by the problem.

A major reason that the two concepts get mixed together is that many

programming languages including Java use the same mechanism—the

thread—to implement both concurrency and parallelism.

We can even try to add more granularity to the definitions (however,

this is not standardized terminology):

Purely Concurrent: Tasks still run on a single CPU. A purely

concurrent system produces results faster than a sequential

system, but doesn’t run any faster if there are more processors.

Concurrent-Parallel: Using concurrency techniques, the

resulting program takes advantage of more processors and



produces results faster.

Parallel-Concurrent: Written using parallel programming

techniques, the resulting program can still run if there is only a

single processor (Java 8 Streams are a good example).

Purely Parallel: Won’t run unless there is more than one

processor.

This might be a useful taxonomy in some situations.

Language and library support for concurrency seem like perfect

candidates for the term Leaky Abstraction. The goal of an abstraction is to
“abstract away” pieces that are not essential to the idea at hand, to

shield you from needless detail. If the abstraction is leaky, those pieces

and details keep re-asserting themselves as important, regardless of

how much you try to hide them.

I’ve started to wonder whether there’s really any abstraction at all.

When writing these kinds of programs you are never shielded from

any of the underlying systems and tools, even details about how the

CPU cache works. Ultimately, if you’ve been very careful, what you

create works in a particular situation, but it won’t work in other

situations. Sometimes the difference is the way two machines are

configured, or the estimated load for the program. This is not specific

to Java per se—it is the nature of concurrent and parallel

https://en.wikipedia.org/wiki/Leaky_abstraction


programming.

You might argue that a pure functional language doesn’t have these
restrictions. Indeed, a pure functional language solves a large number

of concurrency problems, so if you are tackling a difficult concurrency

problem you might consider writing that portion in a pure functional

language. But ultimately, if you write a system that uses a queue, for

example, if it isn’t tuned properly and the input rate either isn’t

estimated correctly or throttled (and throttling means different things

and has different impacts in different situations), that queue will

either fill up and block, or overflow. In the end, you must understand

all the details, and any issue can break your system. It’s a very

different kind of programming.

A New Definition of

Concurrency

For decades, I have periodically grappled with concurrency in various

forms, and one of the biggest challenges has always been simply

defining it. While writing this chapter, I finally had an insight which I

https://en.wikipedia.org/wiki/Purely_functional


think captures it:

Concurrency is a collection of

performance techniques focused on the

reduction of waiting.

This is actually a rather dense statement, so I’ll break it down:

It’s a collection: there are many different approaches to solving

the problem. This is one of the issues that makes defining

concurrency so challenging, because the techniques vary widely.

These are performance techniques: That’s it. The whole point of

concurrency is to get your program to run faster. In Java,

concurrency is very tricky and difficult, so absolutely do not use it

unless you have a significant performance problem—and even

then, use the easiest approach that produces the performance you

need, because concurrency rapidly becomes unmanageable.

The “reduction of waiting” part is important and subtle.

Regardless of (for example) how many processors you are running



on, you can only produce a benefit when some kind of waiting is

taking place. If you ask for I/O and instantly get a result, there’s

no delay and thus nothing to improve. If you are running multiple

tasks on multiple processors and each is running at full capacity

and no task is waiting on any other, there’s no point in trying to

increase your throughput. The only opportunity for concurrency is

if some part of your program is forced to wait. That waiting can

appear in many forms—which explains why there are so many

different approaches to concurrency.

It’s worth emphasizing that the effectiveness of this definition hinges

on the word waiting. If nothing is waiting there’s no opportunity for

speedups. And if something is waiting, there are numerous approaches

to speeding things up and these depend on multiple factors including

the configuration of the system where it’s running, the type of problem

you’re solving, and any number of other issues.

Concurrency

Superpowers

Imagine you’re inside a science-fiction movie. You must search a tall

building for a single item that is carefully and cleverly hidden in one of

the ten million rooms of the building. You enter the building and move



down a corridor. The corridor divides.

By yourself it will take a hundred lifetimes to accomplish this task.

Now suppose you have a strange superpower. You can split yourself in

two, and send one of yourself down one corridor while you continue

down the other. Every time you encounter a divide in a corridor or a

staircase to the next level, you repeat this splitting-in-two trick.

Eventually there is one of you for every terminating corridor in the

entire building.

Each corridor contains a thousand rooms. Your superpower is getting

stretched a little thin, so you only make 50 of yourself to search the

rooms in parallel.

Once a clone enters a room, it must search through all the cracks and

hidden pockets of the room. It switches to a second superpower. It

divides into a million nanobots, each of which flies or crawls to some

unseen spot in the room. You don’t understand this power—it just

works, once you start it. Under their own control, the nanobots go,

search the room and come back and reassemble into you, and

suddenly, somehow, you just know whether the item is in the room or

not.

I’d love to be able to say, “Your superpower in the science-fiction



movie? That’s what concurrency is.” That it’s as simple as splitting

yourself in two every time you have more tasks to solve. The problem

is that any model we use to describe this phenomenon ends up being a

leaky abstraction.

Here’s one of those leaks: In an ideal world, every time you cloned

yourself, you would also duplicate a hardware processor to run that

clone. But of course that isn’t what happens—you actually might have

four or eight processors on your machine (typical when this was

written). You might also have more, and there are still lots of

situations where you have only one processor. In the abstraction under

discussion, the way physical processors are allocated not only leaks

through but can even dominate your decisions.

Let’s change something in our science-fiction movie. Now when each

clone searcher eventually reaches a door they must knock on it and

wait until someone answers. If we have one processor per searcher,

this is no problem—the processor just idles until the door is answered.

But if we only have eight processors and thousands of searchers, we

don’t want a processor to be idle just because a searcher happens to be

blocked, waiting for a door to be answered. Instead, we want that

processor applied to a searcher where it can do some real work, so we



need mechanisms to switch processors from one task to another.

Many models are able to effectively hide the number of processors and

allow you to pretend you have a very large number. But there are

situations where this breaks down, when you must know the number

of processors so you can work around that number.

One of the biggest impacts depends on whether you have a single

processor or more than one. If you only have one processor, then the

cost of task-switching is also borne by that processor, and applying

concurrency techniques to your system can make it run slower.

This might make you decide that, in the case of a single processor, it

never makes sense to write concurrent code. However, there are

situations where the model of concurrency produces much simpler

code and it’s actually worth having it run slower to achieve that.

In the case of the clones knocking on doors and waiting, even the

single-processor system benefits from concurrency because it can

switch from a task that is waiting ( blocked) to one that is ready to go.

But if all the tasks can run all the time, then the cost of switching will

slow everything down, and in that case concurrency usually only

makes sense if you do have multiple processors.

Suppose you are trying to crack some kind of encryption. The more



workers trying to crack it at the same time, the better chance you have

of finding the answer sooner. Here, each worker can constantly use as

much processor time as you can give it, and the best situation is when

each worker has their own processor—in this case (a compute-bound

problem), you should write the code so you only have as many workers

as you have processors.

In a customer-service department that takes phone calls, you only

have a certain number of people, but you can have lots of phone calls.

Those people (the processors) must work on one phone call at a time

until it is complete, and extra calls must be queued.



In the fairy tale of “The Shoemaker and the Elves,” the shoemaker had

too much work to do and when he was asleep, a group of elves came

and made shoes for him. Here the work is distributed, but even with a

large number of physical processors the limitation comes when

building certain parts of the shoe—if, for example, the sole takes the

longest to make, that limits the rate of shoe creation and changes the

way you design your solution.

Thus, the problem you’re trying to solve drives the design of the

solution. There’s the lovely abstraction of breaking a problem into

subtasks that “run independently,” then there’s the reality of how it’s

actually going to happen. The physical reality keeps intruding upon,

and shaking up, that abstraction.

That’s only part of the problem. Consider a factory that makes cakes.

We’ve somehow distributed the cake-making task among workers, but

now it’s time for a worker to put their cake in a box. There’s a box

sitting there, ready to receive a cake. But before the worker can put the

cake into the box, another worker darts in and puts their cake in the

box instead! Our worker is already putting the cake in, and bam! The

two cakes are smashed together and ruined. This is the common

“shared memory” problem that produces what we call a race



condition, where the result depends on which worker can get their

cake in the box first (you typically solve the problem using a locking

mechanism so one worker can grab the box first and prevent cake-

smashing).

The problem occurs when tasks that execute “at the same time”

interfere with each other. This can happen in such a subtle and

occasional manner it’s probably fair to say that concurrency is

“arguably deterministic but effectively nondeterministic.” That is, you

can hypothetically write concurrent programs that, through care and

code inspection, work correctly. In practice, however, it’s much more

common to write concurrent programs that only appear to work, but

given the right conditions, will fail. These conditions might never

actually occur, or occur so infrequently you never see them during

testing. In fact, it’s often impossible to write test code to generate

failure conditions for your concurrent program. The resulting failures

often only occur occasionally, and as a result they appear in the form

of customer complaints. This is one of the strongest arguments for

studying concurrency: If you ignore it, you’re likely to get bitten.



Concurrency thus seems fraught with peril, and if that makes you a bit

fearful, this is probably a good thing. Although Java 8 makes large

improvements in concurrency, there are still no safety nets like

compile-time verification or checked exceptions to tell you when you

make a mistake. With concurrency, you’re on your own, and only by

being knowledgeable, suspicious and aggressive can you write reliable

concurrent code in Java.

Concurrency is for

Speed

After hearing about the pitfalls of concurrent programming, you may

rightly be wondering if it’s worth the trouble. The answer is “no, unless

your program isn’t running fast enough.” And you’ll want to think

carefully before deciding it isn’t. Do not casually jump into the well of

grief that is concurrent programming. If there’s a way to run your

program on a faster machine or if you can profile it and discover the

bottleneck and swap in a faster algorithm in that spot, do that instead.



Only if there’s clearly no other choice should you begin using

concurrency, and then only in isolated places.

The speed issue sounds simple at first: If you want a program to run

faster, break it into pieces and run each piece on a separate processor.

With our ability to increase clock speeds running out of steam (at least

for conventional chips), speed improvements are appearing in the

form of multicore processors rather than faster chips. To make your

programs run faster, you’ll have to learn to take advantage of those

extra processors, and that’s one thing that concurrency gives you.

With a multiprocessor machine, multiple tasks can be distributed

across those processors, which can dramatically improve throughput.

This is often the case with powerful multiprocessor Web servers,

which can distribute large numbers of user requests across CPUs in a

program that allocates one thread per request.

However, concurrency can often improve the performance of

programs running on a single processor. This can sound a bit

counterintuitive. If you think about it, a concurrent program running

on a single processor should actually have more overhead than if all

the parts of the program ran sequentially, because of the added cost of

the context switch (changing from one task to another). On the



surface, it would appear cheaper to run all the parts of the program as

a single task and save the cost of context switching.

The issue that can make a difference is blocking. If one task in your

program is unable to continue because of some condition outside of

the control of the program (typically I/O), we say that the task or the

thread blocks (in our science-fiction story, the clone has knocked on

the door and is waiting for it to open). Without concurrency, the whole

program comes to a stop until the external condition changes. If the

program is written using concurrency, however, the other tasks in the

program can continue to execute when one task is blocked, so the

program continues to move forward. In fact, from a performance

standpoint, it makes no sense to use concurrency on a single-processor

machine unless one of the tasks might block.

A common example of performance improvements in single-processor

systems is event-driven programming, in particular user-interface

programming. Consider a program that performs some long-running

operation and thus ends up ignoring user input and being

unresponsive. If you have a “quit” button, you don’t want to poll it in

every piece of code you write. This produces awkward code, without

any guarantee that a programmer won’t forget to perform the check.



Without concurrency, the only way to produce a responsive user

interface is for all tasks to periodically check for user input. By

creating a separate thread of execution to respond to user input, the

program guarantees a certain level of responsiveness.

A straightforward way to implement concurrency is at the operating

system level, using processes, which are different from threads. A

process is a self-contained program running within its own address

space. Processes are attractive because the operating system usually

isolates one process from another so they cannot interfere with each

other, which makes programming with processes relatively easy. In

contrast, threads share resources like memory and I/O, so a

fundamental difficulty in writing multithreaded programs is

coordinating these resources between different thread-driven tasks, so

they cannot be accessed by more than one task at a time.

Some people go so far as to advocate processes as the only reasonable

approach to concurrency,1 but unfortunately there are generally quantity and
overhead limitations to processes that prevent their

applicability across the concurrency spectrum. (Eventually you get

used to the standard concurrency refrain, “That approach works in

some cases but not in other cases”).

Some programming languages are designed to isolate concurrent tasks



from each other. These are generally called functional languages,

where each function call produces no side effects (and so cannot

interfere with other functions) and can thus be driven as an

independent task. Erlang is one such language, and it includes safe

mechanisms for one task to communicate with another. If you find

that a portion of your program must make heavy use of concurrency

and you are running into excessive problems trying to build that

portion, you might consider creating that part of your program in a

dedicated concurrency language.

Java took the more traditional approach of adding support for

threading on top of a sequential language.2 Instead of forking external
processes in a multitasking operating system, threading creates tasks

within the single process represented by the executing program.

Concurrency imposes costs, including complexity costs, but can be

outweighed by improvements in program design, resource balancing,

and user convenience. In general, concurrency enables you to create a

more loosely coupled design; otherwise, parts of your code would be

forced to pay explicit attention to operations that would normally be

handled by concurrency.



The Four Maxims of

Java Concurrency

After grappling with Java concurrency over many years, I developed

these four maxims:

1. Don’t do it

2. Nothing is true and everything matters

3. Just because it works doesn’t mean it’s

not broken

4. You must still understand it

These are specifically about problems in the design of Java, although

they can be applied to some other languages as well. However, there

do exist languages that are designed to prevent these issues.

1. Don’t do it



(And don’t do it yourself).

The easiest way to avoid entangling yourself in the profound problems

produced by concurrency is not to do it. Although it can be seductive

and seem safe enough to try something simple, the pitfalls are myriad

and subtle. If you can avoid it, your life will be much easier.

The only thing that justifies concurrency is speed. If your program

isn’t running fast enough—and be careful here, because just wanting it

to run faster isn’t justification—first apply a profiler (see Profiling and

Optimizing) to discover whether there’s some other optimization you

can perform.

If you’re compelled into concurrency, take the simplest, safest

approach to the problem. Use well-known libraries and write as little

of your own code as possible. With concurrency, there’s no such thing



as “too simple.” Cleverness is your enemy.

2. Nothing is true and

everything matters

Programming without concurrency, you’ve come to expect a certain

order and consistency in your world. With something as simple as

setting a variable to a value, it’s obvious it should always work

properly.

In concurrency-land, some things might be true and others are not, to

the point where you must assume that nothing is true. You must

question everything. Even setting a variable to a value might or might

not work the way you expect, and it goes downhill from there. I’ve

become familiar with the feeling of discovering that something I

thought should obviously work, actually doesn’t.

All kinds of things you can ignore in non-concurrent programming

suddenly become important with concurrency. For example, you must

now know about the processor cache and the problems of keeping the

local cache consistent with main memory. You must understand the

deep complexities of object construction so that your constructor

doesn’t accidentally expose data to change by other threads. The list

goes on.



Although these topics are too complex to give you expertise in this

chapter (again, see Java Concurrency in Practice), you must be aware

of them.

3. Just because it works

doesn’t mean it’s not broken

You can easily write a concurrent program that appears to work but is

actually broken, and the problem only reveals itself under the rarest of

conditions—inevitably as a user problem after you’ve deployed the

program.

You can’t prove a concurrent program is correct, you can only

(sometimes) prove it is incorrect.

Most of the time you can’t even do that: If it’s broken you

probably won’t be able to detect it.

You can’t usually write useful tests, so you must rely on code

inspection combined with deep knowledge of concurrency in

order to discover bugs.

Even working programs only work under their design parameters.

Most concurrent programs fail in some way when those design

parameters are exceeded.

In other Java topics, we develop a sense of determinism. Everything



happens as promised (or implied) by the language, which is

comforting and expected—after all, the point of a programming

language is to get the machine to do what we want. Moving from the

world of deterministic programming into the realm of concurrent

programming, we encounter a cognitive bias called the Dunning-

Kruger Effect which can be summed up as “the less you know, the

more you think you know.” It means “…relatively unskilled persons

suffer illusory superiority, mistakenly assessing their ability to be

much higher than it really is.”

My own experience is that, no matter how certain you are that your

code is thread-safe, it’s probably broken. It’s all too easy to be very

sure you understand all the issues, then months or years later you

discover some concept that makes you realize that most everything

you’ve written is actually vulnerable to concurrency bugs. The

compiler doesn’t tell you when something is incorrect. To get it right

you must hold all the issues of concurrency in your forebrain as you

study your code.

https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect


In all the non-concurrent areas of Java, “no obvious bugs and no

compiler complaints” seems to mean that everything is OK. With

concurrency, it means nothing. The very worst thing you can be in this

situation is “confident.”

4. You must still understand

it.

After maxims 1-3 you might be properly frightened of concurrency,

and think, “I’ve avoided it up until now, perhaps I can just continue

avoiding it.”

This is a rational reaction. You might know about other programming

languages that are better designed to build concurrent programs—

even ones that run on the JVM (and thus provide easy communication

with Java) such as Clojure or Scala. Why not write the concurrent

parts in those languages and use Java for everything else?

Alas, you cannot escape so easily:

Even if you never explicitly create a thread, frameworks you use

might—for example, the Swing Graphical User Interface (GUI)

library, or something as simple as the Timer class.

Here’s the worst thing: when you create components, you must

assume those components might be reused in a multithreading



environment. Even if your solution is to give up and declare that

your components are “not thread-safe,” you must still know

enough to realize that such a statement is important and what it

means.

People sometimes suggest that concurrency is too advanced to include

in a book that introduces the language. They argue that concurrency is

a discrete topic that can be treated independently, and the few cases

where it appears in daily programming (such as graphical user

interfaces) can be handled with special idioms. Why introduce such a

complex topic if you can avoid it?

Alas, if only it were so. Unfortunately, you don’t get to choose when

threads appear in your Java programs. Just because you never start a

thread yourself doesn’t mean you can avoid writing threaded code. For

example, Web systems are one of the most common Java applications,

and are inherently multithreaded—Web servers typically contain

multiple processors, and parallelism is an ideal way to utilize these



processors. As simple as such a system might seem, you must

understand concurrency to write it properly.

Java is a multithreaded language, and concurrency issues are present

whether you are aware of them or not. As a result, there are many Java

programs in use that either just work by accident, or work most of the

time and mysteriously break every now and again because of

undiscovered flaws. Sometimes this breakage is relatively benign, but

sometimes it means the loss of valuable data, and if you aren’t at least

aware of concurrency issues, you can end up assuming the problem is

somewhere else rather than in your code. These kinds of issues can

also be exposed or amplified if a program is moved to a multiprocessor

system. Basically, knowing about concurrency makes you aware that

apparently correct programs can exhibit incorrect behavior.

The Brutal Truth

When humans began cooking their food, they dramatically reduced

the amount of energy their bodies required to break down and digest

that food. Cooking created an “externalized stomach,” thus freeing up

that energy for other pursuits. The technology of fire enabled

civilization.

We have now begun a second fundamental shift by creating an



“externalized brain” through the technology of computers and

networks. We’ve only scratched the surface, but have already triggered

other shifts such as the ability to design biological mechanisms, and

have seen a dramatic acceleration in cultural evolution (in the past,

people had to travel to mix cultures, but now they are beginning to mix

on the Internet). The impact and benefits of these shifts have far

exceeded the abilities of science-fiction writers to predict them (they

have an especially hard time predicting cultural and personal changes,

or even secondary effects from technology shifts).

With such a fundamental human change, it is unsurprising to see

numerous disruptions and failed experiments. Indeed, evolution relies

on myriad experiments, most of which fail. Those experiments are

essential to move forward.

Java was created in an atmosphere of confidence, enthusiasm, and

urgency. When inventing a programming language, it’s all too easy to

feel like the initial plasticity of the language will persist, that you can

try something out and if it doesn’t work out, fix it. Programming

languages are unique this way—they go through water-like phase

changes: gaseous, liquid and finally solid. During the gaseous phase

the flexibility seems infinite, and it’s easy to think it will always be that



way. Once people start using your language, changes have bigger

impacts and the environment becomes more viscous. The process of

language design is itself an art.

The urgency came from the initial rise of the internet. It seemed like a

race, and the first one to get through the starting gate would “win”

(indeed, the popularity of languages like Java, JavaScript and PHP

seem to bear this out). Alas, the cognitive load and technical debt

produced by designing languages in a hurry eventually catches up with

us.

Turing-completeness is not enough; languages need something more: they
must enable creative expression, not weigh us down with needless

detail. It is pointless to liberate our mental capacity only to turn

around and bog it down again. I acknowledge that we have

accomplished amazing things despite these issues, but also I see how

much more we can do without them.

Enthusiasm caused the original Java designers to throw in features

because they seemed necessary. Confidence (and the gaseousness of

the original language) let them think that any problems could be fixed

later. Somewhere along the timeline, someone decided that anything

added to Java is fixed and permanent—this is confidence squared, to

believe that the first decision would always be the right one, and so we

https://en.wikipedia.org/wiki/Turing_completeness


see the landscape of Java littered with poor decisions. Some of these

decisions ultimately do have little consequence; you can tell people not

to use Vector, for example, but leave it in the language to support

old code.

Threads were included in Java 1.0. Certainly, concurrency is a

fundamental language design decision that affects far corners of the

language, and it’s hard to imagine adding it later. To be fair, at the

time it wasn’t clear just how fundamental concurrency is. Other

languages like C were able to treat threads as an add-on feature, so the

Java designers followed suit, including a Thread class and the

necessary JVM support (which is more complex than you might

imagine).

The C language is primitive, and this limits your ambitions. These

limits make add-on threading libraries reasonable. The much grander

ambitions of Java rapidly exposed fundamental problems when taking

a primitive model and pasting it into a sophisticated language. This

mismatch is made obvious in the deprecation of many of the methods

in the Thread class, and in subsequent waves of higher-level libraries

that attempt to provide better abstractions for concurrency.

Unfortunately, to get concurrency right in a higher-level language, all



language features are affected, including the most basic ones like

whether an identifier represents a changeable value. Making

everything invariant and preventing side-effects in functions and

methods produces a sea-change in the simplification of concurrent

programming (these are foundations of pure functional programming

languages), but at the time seemed like strange ideas for creators of a

mainstream language. The original Java designers were either

unaware of these choices or decided they were too different and would

turn away many potential adopters of the language. We can be

generous and say that the language-design community simply didn’t

have enough experience at the time to understand the impact of

patching in a threading library.

The Java experiment has shown us that the results are quietly

disastrous. Programmers easily fall into the trap of thinking that Java

threads aren’t that difficult. Programs that seem to work are riddled

with subtle concurrency bugs.

To get concurrency right, language features must be designed from the

ground up with concurrency in mind. That ship has sailed; Java will

never be a language designed for concurrency, but simply a language

that allows it.



What’s impressive is how far it has come despite these fundamental

unfixable flaws. Subsequent versions of Java have added libraries to

raise the level of abstraction when working with concurrency. In fact, I

never would have thought it possible to make the improvements in

Java 8: parallel streams and CompletableFutures—this was a

magic trick of epic proportions, the like of which I will be very

surprised to see repeated3.

These improvements are very helpful, and we will focus on parallel

streams and CompletableFutures in this chapter. Although they

can greatly simplify the way you think about concurrency and the

subsequent code, the fundamental issues still exist: all parts of your

code are still vulnerable because of the original design of the Java

language, and you must still understand these complicated and subtle

issues. Threading in Java can never be simple or safe; that experience

must be relegated to another, newer language.

The Rest of the



Chapter

Here’s what we’ll cover in the remainder of this chapter. Remember

that the emphasis of this chapter is on using the most recent and high-

level Java concurrency constructs. Using these makes your life much

easier than the older alternatives. However, there are still some low-

level tools that you will encounter in legacy code. On occasion, you

might be forced to use some of these yourself. The Appendix: Low-

Level Concurrency contains an introduction to some of the more

primitive Java concurrency elements.

Parallel Streams

Up to this point in the book, I’ve emphasized the improved syntax

provided by Java 8 Streams. Now that you’re comfortable with (and I

hope, a fan of) that syntax, you can reap additional benefits: You can

parallelize a stream by simply adding parallel() into the

expression. This is a simple, powerful, and frankly rather amazing way

to take advantage of multiple processors.

Adding parallel() to increase speed seems trivial, but alas, it can

never be that simple, as you just learned in The Brutal Truth. I’ll demonstrate
and explain some of the pitfalls that come from blindly

adding parallel() to a Stream expression.

Creating and Running Tasks



A task is a piece of code that can be run independently. In order to

explain some of the basics of creating and running tasks, this section

introduces a less-sophisticated mechanism than parallel streams or

CompletableFutures: the Executor. Executors manage a

pool of low-level Thread objects (the most primitive form of

concurrency in Java). You create a task, then hand it to an Executor

to be run.

There are multiple types of Executors for different purposes. Here,

we will show canonical forms representing the simplest and best

approaches to creating and running tasks.

Terminating Long-Running Tasks

Tasks run independently and thus need a mechanism to shut them

down. The typical approach uses a flag, and this introduces the

problem of shared memory, which we’ll sidestep using Java’s “Atomic”

library.

Completable Futures

When you take clothing to a dry cleaner, they give you a receipt. You

continue with other tasks, and eventually your clothing is clean and

you can pick it up. The receipt is your connection to the task

performed in the background by the dry cleaner. This is the approach



taken by the Future introduced in Java 5.

The Future was somewhat more convenient than the previous

approach, but you must still show up and fetch your dry-cleaning with

the ticket, and wait if the task hasn’t completed. For a pipeline of

operations, Futures don’t really help that much.

The Java 8 CompletableFuture is a much better solution: it

allows you to chain operations together so you don’t have to write the

code to interface sequenced operations. With

CompletableFutures it becomes much easier to do something

like “procure ingredients, combine ingredients, cook food, serve food,

clean up dishes, store dishes” as a sequence of chained operations.

Deadlock

Some tasks must wait— block—for results from other tasks. A blocked

task has the potential of waiting for another blocked task, which is

waiting for another one, etc. If the chain of blocked tasks loops around

to the first one, no one can make any progress and you get deadlock.



The biggest problems happen if the deadlock doesn’t show up right

away when you run the program. Your system can be deadlock-prone,

and will only deadlock under certain conditions. A program might run

just fine on a certain platform, for example your development

machine, but then start deadlocking when you deploy it to different

hardware.

Deadlock typically arises from subtle programming errors; a sequence

of innocent decisions that ends up accidentally creating a dependency

loop. This section contains a classic example that demonstrates the

elusive nature of deadlocking.

Effort, Complexity, Cost

We’ll finish the chapter by simulating the process of creating a pizza,

first implementing it using parallel streams, then

CompletableFutures. This is not just a comparison of the two

approaches, but more importantly an exploration of how much work

you should invest in trying to speed up a program.

Parallel Streams

One significant benefit of Java 8 streams is that, in some cases, they

can be easily parallelized. This comes from careful library design, in

particular the way streams use internal iteration—that is, they control



their own iterators. In particular, they use a special kind of iterator

called a Spliterator which is constrained to be easily and automatically

dividable. This produces the rather magical result of being able to

simply say .parallel() and suddenly everything in your stream is

running as a set of parallel tasks. If your code is written using

Streams, parallelizing to increase speed seems trivial.

For example, consider Prime.java from Streams. Finding prime numbers can
be a time-consuming process, as we can see by timing a

rewrite of that program:

// concurrent/ParallelPrime.java

import java.util.*;

import java.util.stream.*;

import static java.util.stream.LongStream.*;

import java.io.*;

import java.nio.file.*;

import onjava.Timer;

public class ParallelPrime {

static final int COUNT = 100_000;

public static boolean isPrime(long n) {

return rangeClosed(2, (long)Math.sqrt(n))

.noneMatch(i -> n % i == 0);



}

public static void main(String[] args)

throws IOException {

Timer timer = new Timer();

List<String> primes =

iterate(2, i -> i + 1)

.parallel() // [1]

.filter(ParallelPrime::isPrime)

.limit(COUNT)

.mapToObj(Long::toString)

.collect(Collectors.toList());

System.out.println(timer.duration());

Files.write(Paths.get("primes.txt"), primes,

StandardOpenOption.CREATE);

}

}

/* Output:

1224

*/

Notice this is not a microbenchmark, since we are timing the whole



program. We save the data on disk to guard against aggressive

optimization; if we didn’t do anything with the result a wily compiler

might observe that the program is pointless and eliminate the

calculation (this is unlikely but not impossible). Note the simplicity of

writing a file using the nio2 library (described in the Files chapter).

When I comment out the [1] parallel() line, my results take

roughly three times as long as with parallel() in place.

Parallel streams seem like a sweet deal. All you need do is cast your

programming problems into streams, then insert parallel() to

speed things up. Indeed, sometimes it’s just that easy. But

unfortunately there are numerous pitfalls.

parallel() is not a Panacea

As an exploration of the uncertainties of streams and parallel streams,

let’s look at a problem that seems simple: summing an incremental

sequence of numbers. There turns out to be a surprising number of

ways to do this, and I’ll take the risk of comparing them through

timing—trying to be careful, but acknowledging I might fall into one of



the many fundamental pitfalls when timing code execution. The

results may have some flaws (there’s no “warming up” of the JVM, for

example), but I think it nonetheless gives some useful indications.

I’ll start with a timing method timeTest() which takes a

LongSupplier, measures the length of the getAsLong() call,

compares the result with a checkValue and displays the results.

Note that everything must rigorously use longs; I spent a bit of time

chasing down quiet overflows before realizing I had missed ’long’s in

important places.

All the numbers and discussions about time and memory refer to “my

machine.” Your experience will probably be different.

// concurrent/Summing.java

import java.util.stream.*;

import java.util.function.*;

import onjava.Timer;

public class Summing {

static void timeTest(String id, long checkValue,

LongSupplier operation) {

System.out.print(id + ": ");

Timer timer = new Timer();



long result = operation.getAsLong();

if(result == checkValue)

System.out.println(timer.duration() + "ms");

else

System.out.format("result: %d%ncheckValue: %d%n",

result, checkValue);

}

public static final int SZ = 100_000_000;

// This even works:

// public static final int SZ = 1_000_000_000;

public static final long CHECK =

(long)SZ * ((long)SZ + 1)/2; // Gauss's formula

public static void main(String[] args) {

System.out.println(CHECK);

timeTest("Sum Stream", CHECK, () ->

LongStream.rangeClosed(0, SZ).sum());

timeTest("Sum Stream Parallel", CHECK, () ->

LongStream.rangeClosed(0, SZ).parallel().sum());

timeTest("Sum Iterated", CHECK, () ->

LongStream.iterate(0, i -> i + 1)



.limit(SZ+1).sum());

// Slower & runs out of memory above 1_000_000:

// timeTest("Sum Iterated Parallel", CHECK, () ->

// LongStream.iterate(0, i -> i + 1)

// .parallel()

// .limit(SZ+1).sum());

}

}

/* Output:

5000000050000000

Sum Stream: 167ms

Sum Stream Parallel: 46ms

Sum Iterated: 284ms

*/

The CHECK value is calculated using the formula created by Carl

Friedrich Gauss while still in primary school in the late 1700’s.

This first version of main() uses the straightforward approach of

generating a Stream and calling sum(). We see the benefits of

streams in that a SZ of a billion is handled without overflow (I use a

smaller number so the program doesn’t take so long to run). Using the



basic range operation with parallel() is notably faster.

If iterate() is used to produce the sequence the slowdown is

dramatic, probably because the lambda must be called each time a

number is generated. But if we try to parallelize that, the result not

only takes longer than the non-parallel version but it also runs out of

memory (on some machines) when SZ gets above a million. Of course

you wouldn’t use iterate() when you could use range(), but if

you’re generating something other than a simple sequence you must

use iterate(). Applying parallel() is a reasonable thing to

attempt, but produces these surprising results. We shall explore the

reason for the memory limitation in a later section, but we can make

some initial observations regarding the stream parallel algorithms:

Stream parallelism divides the incoming data into pieces so the

algorithm(s) can be applied to those separate pieces.

Arrays split cheaply, evenly and with perfect knowledge of split

sizes.

Linked Lists have none of these properties; “splitting” a linked list

only means dividing it into “first element” and “rest of list,” which

is relatively useless.

Stateless generators behave like arrays; the use of range above is stateless.



Iterative generators behave like linked lists; iterate() is an

iterative generator.

Now let’s try solving the problem by filling an array with values, then

summing over the array. Because the array is only allocated once, it

seems unlikely we’ll run into garbage collection timing issues.

First we’ll try an array filled with primitive longs:

// concurrent/Summing2.java

// {ExcludeFromTravisCI}

import java.util.*;

public class Summing2 {

static long basicSum(long[] ia) {

long sum = 0;

int size = ia.length;

for(int i = 0; i < size; i++)

sum += ia[i];

return sum;

}

// Approximate largest value of SZ before

// running out of memory on my machine:

public static final int SZ = 20_000_000;



public static final long CHECK =

(long)SZ * ((long)SZ + 1)/2;

public static void main(String[] args) {

System.out.println(CHECK);

long[] la = new long[SZ+1];

Arrays.parallelSetAll(la, i -> i);

Summing.timeTest("Array Stream Sum", CHECK, () ->

Arrays.stream(la).sum());

Summing.timeTest("Parallel", CHECK, () ->

Arrays.stream(la).parallel().sum());

Summing.timeTest("Basic Sum", CHECK, () ->

basicSum(la));

// Destructive summation:

Summing.timeTest("parallelPrefix", CHECK, () -> {

Arrays.parallelPrefix(la, Long::sum);

return la[la.length - 1];

});

}

}

/* Output:



200000010000000

Array Stream Sum: 104ms

Parallel: 81ms

Basic Sum: 106ms

parallelPrefix: 265ms

*/

The first limitation is memory size; because the array is allocated up

front, we can’t create anything nearly as large as the previous version.

Parallelizing speeds things up, even a bit faster than just looping

through using basicSum(). Interestingly,

Arrays.parallelPrefix() seems to actually slow things down.

However, any of these techniques might be more useful under other

conditions—that’s why you can’t make any deterministic statements

about what to do, other than “you must try it out.”

Finally, consider the effect of using boxed Longs instead:

// concurrent/Summing3.java

// {ExcludeFromTravisCI}

import java.util.*;

public class Summing3 {

static long basicSum(Long[] ia) {



long sum = 0;

int size = ia.length;

for(int i = 0; i < size; i++)

sum += ia[i];

return sum;

}

// Approximate largest value of SZ before

// running out of memory on my machine:

public static final int SZ = 10_000_000;

public static final long CHECK =

(long)SZ * ((long)SZ + 1)/2;

public static void main(String[] args) {

System.out.println(CHECK);

Long[] aL = new Long[SZ+1];

Arrays.parallelSetAll(aL, i -> (long)i);

Summing.timeTest("Long Array Stream Reduce",

CHECK, () ->

Arrays.stream(aL).reduce(0L, Long::sum));

Summing.timeTest("Long Basic Sum", CHECK, () ->

basicSum(aL));



// Destructive summation:

Summing.timeTest("Long parallelPrefix",CHECK, ()-> {

Arrays.parallelPrefix(aL, Long::sum);

return aL[aL.length - 1];

});

}

}

/* Output:

50000005000000

Long Array Stream Reduce: 1038ms

Long Basic Sum: 21ms

Long parallelPrefix: 3616ms

*/

Now the amount of memory available is approximately cut in half, and

the amount of time required has exploded in all cases except

basicSum(), which simply loops through the array. Surprisingly,

Arrays.parallelPrefix() takes significantly longer than any

other approach.

I separated the parallel() version because running it inside the

above program caused a lengthy garbage collection, distorting the



results:

// concurrent/Summing4.java

// {ExcludeFromTravisCI}

import java.util.*;

public class Summing4 {

public static void main(String[] args) {

System.out.println(Summing3.CHECK);

Long[] aL = new Long[Summing3.SZ+1];

Arrays.parallelSetAll(aL, i -> (long)i);

Summing.timeTest("Long Parallel",

Summing3.CHECK, () ->

Arrays.stream(aL)

.parallel()

.reduce(0L,Long::sum));

}

}

/* Output:

50000005000000

Long Parallel: 1014ms

*/



It’s slightly faster than the non-parallel() version, but not

significantly.

A big reason for this increase in time is the processor memory cache.

With the primitive longs in Summing2.java, the array la is

contiguous memory. The processor can more easily anticipate the use

of this array and keep the cache filled with the array elements that are

needed next. Accessing the cache is much, much faster than going out

to main memory. It appears that the Long parallelPrefix

calculation suffers because it reads two array elements for each

calculation, plus writes the result back into the array, and each of these

produces an out-of-cache reference for the Long.

With Summing3.java and Summing4.java, aL is an array of

Long, which is not a contiguous array of data, but a contiguous array

of references to Long objects. Even though that array will probably be

kept in cache, the objects pointed to will almost always be out-of-

cache.

These examples used different SZ values to show the memory limits.



To do a time comparison, here are the results with SZ set to the

smallest value of 10 million:

Sum Stream: 69ms

Sum Stream Parallel: 18ms

Sum Iterated: 277ms

Array Stream Sum: 57ms

Parallel: 14ms

Basic Sum: 16ms

parallelPrefix: 28ms

Long Array Stream Reduce: 1046ms

Long Basic Sum: 21ms

Long parallelPrefix: 3287ms

Long Parallel: 1008ms

While Java 8’s various built-in “parallel” tools are terrific, I’ve seen

them treated as magical panaceas: “Just add parallel() and it will

run faster!” I hope I’ve begun to show that this is not the case at all,

and that blindly applying the built-in “parallel” operations can

sometimes even make things run noticeably slower.

The parallel()/limit()

Intersection



There’s a further complication when using parallel(). Streams, as

taken from other languages, are designed around an infinite stream

model. If you have a finite number of elements you use a collection

and the associated algorithms designed for limited-sized collections. If

you use infinite streams, you use those algorithms, optimized for

streams.

Java 8 conflates the two. For example, Collections have no built-

in map() operation. The only stream-like batch operation in

Collection and Map is forEach(). If you want to perform

operations like map() and reduce(), you must first turn the

Collection into a Stream where those operations exist:

// concurrent/CollectionIntoStream.java

import onjava.*;

import java.util.*;

import java.util.stream.*;

public class CollectionIntoStream {

public static void main(String[] args) {

List<String> strings =

Stream.generate(new Rand.String(5))

.limit(10)



.collect(Collectors.toList());

strings.forEach(System.out::println);

// Convert to a Stream for many more options:

String result = strings.stream()

.map(String::toUpperCase)

.map(s -> s.substring(2))

.reduce(":", (s1, s2) -> s1 + s2);

System.out.println(result);

}

}

/* Output:

btpen

pccux

szgvg

meinn

eeloz

tdvew

cippc

ygpoa

lkljl



bynxt

:PENCUXGVGINNLOZVEWPPCPOALJLNXT

*/

Collections do have some batch operations like removeAll(), removeIf() and
retainAll(), but these are destructive actions.

ConcurrentHashMap has special extensive support for forEach

and reduce operations.

In many cases, there’s no problem with just calling stream() or

parallelStream() on a collection. Sometimes, however,

conflating Stream with Collection can produce surprises. Here’s

an interesting puzzle:

// concurrent/ParallelStreamPuzzle.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class ParallelStreamPuzzle {

static class IntGenerator

implements Supplier<Integer> {

private int current = 0;

public Integer get() {

return current++;



}

}

public static void main(String[] args) {

List<Integer> x =

Stream.generate(new IntGenerator())

.limit(10)

.parallel() // [1]

.collect(Collectors.toList());

System.out.println(x);

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

*/

If you run this with the [1] commented, it produces the expected:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Every time. But with the .parallel() included, it seems like a

random-number generator, with outputs (that differ from one run to

the next) like:

[0, 3, 6, 8, 11, 14, 17, 20, 23, 26]



How can such a simple program seem so broken? Let’s consider what

we’re trying to achieve here: “parallel generation.”" What does that

even mean? A bunch of threads all pulling at a single generator, then

somehow selecting a limited set of the results? The code makes it look

simple, but it turns out to be an especially messy problem.

To see it, we’ll add some instrumentation. Since we’re dealing with

threads, we must capture any trace information into a concurrent data

structure. Here I use a ConcurrentLinkedDeque:

// concurrent/ParallelStreamPuzzle2.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import java.nio.file.*;

public class ParallelStreamPuzzle2 {

public static final Deque<String> trace =

new ConcurrentLinkedDeque<>();

static class

IntGenerator implements Supplier<Integer> {



private AtomicInteger current =

new AtomicInteger();

public Integer get() {

trace.add(current.get() + ": " +

Thread.currentThread().getName());

return current.getAndIncrement();

}

}

public static void

main(String[] args) throws Exception {

List<Integer> x =

Stream.generate(new IntGenerator())

.limit(10)

.parallel()

.collect(Collectors.toList());

System.out.println(x);

Files.write(Paths.get("PSP2.txt"), trace);

}

}

/* Output:



[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

*/

current is defined using the thread-safe AtomicInteger class, to

prevent race conditions; parallel() allows get() to be called by

multiple threads.

You might be surprised when looking at PSP2.txt.

IntGenerator.get() is called 1024 times!

0: main

1: ForkJoinPool.commonPool-worker-1

2: ForkJoinPool.commonPool-worker-2

3: ForkJoinPool.commonPool-worker-2

4: ForkJoinPool.commonPool-worker-1

5: ForkJoinPool.commonPool-worker-1

6: ForkJoinPool.commonPool-worker-1

7: ForkJoinPool.commonPool-worker-1

8: ForkJoinPool.commonPool-worker-4

9: ForkJoinPool.commonPool-worker-4

10: ForkJoinPool.commonPool-worker-4

11: main

12: main



13: main

14: main

15: main

...

1017: ForkJoinPool.commonPool-worker-1

1018: ForkJoinPool.commonPool-worker-6

1019: ForkJoinPool.commonPool-worker-6

1020: ForkJoinPool.commonPool-worker-1

1021: ForkJoinPool.commonPool-worker-1

1022: ForkJoinPool.commonPool-worker-1

1023: ForkJoinPool.commonPool-worker-1

This block size appears to be part of the internal implementation (try

different arguments to limit() to see different block sizes).

Combining parallel() with limit() tells it to prefetch a bunch

of values, to be fed out as the stream.

Try to imagine what’s happening here: a stream abstracts an infinite

sequence, produced on-demand. When you ask it to produce the

stream in parallel, you’re asking all those threads to call get()

whenever they can. Add in limit() and you’re saying “just take

some of these.” Basically, you’re asking for random output when you



combine parallel() with limit()—which might be just fine for

the problem you’re solving. But you must understand that when you

do this. It’s an experts-only feature, and not something to be thrown

out to argue that “Java gets it wrong.”

What’s a more reasonable way to approach the problem? Well, if you

want to produce a stream of int, you can use

IntStream.range(), like this:

// concurrent/ParallelStreamPuzzle3.java

// {VisuallyInspectOutput}

import java.util.*;

import java.util.stream.*;

public class ParallelStreamPuzzle3 {

public static void main(String[] args) {

List<Integer> x = IntStream.range(0, 30)

.peek(e -> System.out.println(e + ": " +

Thread.currentThread().getName()))

.limit(10)

.parallel()

.boxed()

.collect(Collectors.toList());



System.out.println(x);

}

}

/* Output:

8: main

6: ForkJoinPool.commonPool-worker-5

3: ForkJoinPool.commonPool-worker-7

5: ForkJoinPool.commonPool-worker-5

1: ForkJoinPool.commonPool-worker-3

2: ForkJoinPool.commonPool-worker-6

4: ForkJoinPool.commonPool-worker-1

0: ForkJoinPool.commonPool-worker-4

7: ForkJoinPool.commonPool-worker-1

9: ForkJoinPool.commonPool-worker-2

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

*/

To show that .parallel() is indeed working, I’ve added a call to

peek(), a stream function that is predominantly intended for

debugging: it pulls a value out of the stream and does something with

it, but doesn’t affect the elements that are passed down the stream.



Note that this interferes with thread behavior, but I’m just trying to

show something here, not actually debug anything.

You can also see the addition of boxed(), which takes the stream of

int and turns it into a stream of Integer.

Now we get multiple threads producing the different values, but it’s

also only producing 10 values as requested, rather than 1024 in order

to produce 10.

Is it any faster? A better question is: When does it start to make sense?

Certainly not with a set this small; the expense of context switching is

likely to far outweigh any speedups from parallelism. It’s a little hard

to imagine when a simple sequence of numbers will make sense to

generate in parallel. If you’re using something with expensive

generation, it might make sense—but that’s all speculation. The only



way to know is through testing. Remember the maxim: “First make it

work, then make it fast—but only if you must.” Combining

parallel() and limit() is for experts only (and to be clear, I

don’t consider myself an expert here).

Parallel Streams Only Look

Easy

Actually, in many cases parallel streams do in fact effortlessly produce

results faster. But as you’ve seen, just slapping parallel() onto

your Stream operations is not necessarily a safe thing to do. Before

you use parallel(), you must understand how parallelism might

help or hurt your operations. The fundamental error here is thinking

that parallelism is always a good idea. It’s not. Streams mean you don’t

need to rewrite all your code in order to run it in parallel. What

streams don’t do is replace the need to understand how parallelism

works, and whether it will help achieve your goal.

Creating and Running

Tasks



If you cannot achieve concurrency with parallel streams then you must

create and run your own tasks. Later you’ll see that the ideal Java 8

approach for running tasks is the CompletableFuture, but we’ll

introduce the concepts using more basic tools.

The history of Java concurrency starts with very primitive and

problematic mechanisms, and is littered with various attempts at

improvement. Those are primarily relegated to the Appendix: Low-

Level Concurrency. Here, we will show a canonical form representing the
simplest and best approaches to creating and running tasks. As

with everything in concurrency, there are all kinds of variations, but

these are either relegated to that appendix or beyond the scope of this

book.

Tasks and Executors

In early versions of Java you used threads by creating your own

Thread objects directly, even subclassing them to create your own

specific “task-thread” objects. You called constructors by hand and

started the threads yourself.

The overhead of creating all those threads turned out to be significant,

and the hands-on approach is now discouraged. In Java 5, classes were

added to handle thread pooling for you. Instead of creating a new

subtype of Thread for each different type of task, you create a task as



a separate type, then hand it to an ExecutorService to run that

task. The ExecutorService manages the threads for you, and

recycles threads rather than throwing them away after they’ve run a

task.

To start, we’ll create a task that does almost nothing. It “sleeps”

(suspends execution) for 100 milliseconds, displays its identifier and

the name of the Thread that’s executing the task, then finishes:

// concurrent/NapTask.java

import onjava.Nap;

public class NapTask implements Runnable {

final int id;

public NapTask(int id) { this.id = id; }

@Override

public void run() {

new Nap(0.1); // Seconds

System.out.println(this + " " +

Thread.currentThread().getName());

}

@Override

public String toString() {



return "NapTask[" + id + "]";

}

}

This is simply a Runnable: a class containing a run() method. It

doesn’t include a mechanism for actually running the task.

We “sleep” using the Nap class:

// onjava/Nap.java

package onjava;

import java.util.concurrent.*;

public class Nap {

public Nap(double t) { // Seconds

try {

TimeUnit.MILLISECONDS.sleep((int)(1000 * t));

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

}

public Nap(double t, String msg) {

this(t);

System.out.println(msg);



}

}

To eliminate the visual noise of the exception handling, this is defined

as a utility. The second constructor displays a message when it times

out.

The call to TimeUnit.MILLISECONDS.sleep() gets the

“current thread” and puts it to sleep for the time in the argument,

which means that thread is suspended. This does not mean that the

underlying processor stops. The OS switches it to some other task, for

example running another window on your computer. Periodically the

OS task manager checks to see if the sleep() has timed out. When

it does, the thread is “woken up” and given more processing time.

You can see that sleep() throws a checked

InterruptedException; this is an artifact from the original Java

design that terminated tasks by abruptly breaking out of them.

Because it tends to produce unstable states, termination has

subsequently been discouraged. However, we must catch the exception

for situations when termination is required or still happens.

To execute tasks, we’ll start with the simplest approach, the

SingleThreadExecutor:



// concurrent/SingleThreadExecutor.java

import java.util.concurrent.*;

import java.util.stream.*;

import onjava.*;

public class SingleThreadExecutor {

public static void main(String[] args) {

ExecutorService exec =

Executors.newSingleThreadExecutor();

IntStream.range(0, 10)

.mapToObj(NapTask::new)

.forEach(exec::execute);

System.out.println("All tasks submitted");

exec.shutdown();

while(!exec.isTerminated()) {

System.out.println(

Thread.currentThread().getName() +

" awaiting termination");

new Nap(0.1);

}

}



}

/* Output:

All tasks submitted

main awaiting termination

main awaiting termination

NapTask[0] pool-1-thread-1

main awaiting termination

NapTask[1] pool-1-thread-1

main awaiting termination

NapTask[2] pool-1-thread-1

main awaiting termination

NapTask[3] pool-1-thread-1

main awaiting termination

NapTask[4] pool-1-thread-1

main awaiting termination

NapTask[5] pool-1-thread-1

main awaiting termination

NapTask[6] pool-1-thread-1

main awaiting termination

NapTask[7] pool-1-thread-1



main awaiting termination

NapTask[8] pool-1-thread-1

main awaiting termination

NapTask[9] pool-1-thread-1

*/

First note there is no SingleThreadExecutor class.

newSingleThreadExecutor() is a factory in Executors that

creates that particular kind of ExecutorService. 4

I create ten NapTasks and submit them to the ExecutorService,

which means they start running on their own. In the meantime,

however, main() continues doing things. When I call

exec.shutdown(), that tells the ExecutorService to finish

tasks that have already been submitted, but not to accept any new

tasks. At this point those tasks are still running, however, so we must

wait until they complete before exiting main(). This is achieved by

checking exec.isTerminated(), which becomes true after all

the tasks complete.

Notice that the name of the thread in main() is main, and there is

only one other thread, pool-1-thread-1. Also, the interleaved

output shows that the two threads are indeed running concurrently.



If you simply call exec.shutdown(), the program will complete

once all the tasks finish. That is,

while(!exec.isTerminated()) is not required:

// concurrent/SingleThreadExecutor2.java

import java.util.concurrent.*;

import java.util.stream.*;

public class SingleThreadExecutor2 {

public static void main(String[] args)

throws InterruptedException {

ExecutorService exec =

Executors.newSingleThreadExecutor();

IntStream.range(0, 10)

.mapToObj(NapTask::new)

.forEach(exec::execute);

exec.shutdown();

}

}

/* Output:

NapTask[0] pool-1-thread-1

NapTask[1] pool-1-thread-1



NapTask[2] pool-1-thread-1

NapTask[3] pool-1-thread-1

NapTask[4] pool-1-thread-1

NapTask[5] pool-1-thread-1

NapTask[6] pool-1-thread-1

NapTask[7] pool-1-thread-1

NapTask[8] pool-1-thread-1

NapTask[9] pool-1-thread-1

*/

Once you call exec.shutdown(), trying to submit new tasks will

throw a RejectedExecutionException:

// concurrent/MoreTasksAfterShutdown.java

import java.util.concurrent.*;

public class MoreTasksAfterShutdown {

public static void main(String[] args) {

ExecutorService exec =

Executors.newSingleThreadExecutor();



exec.execute(new NapTask(1));

exec.shutdown();

try {

exec.execute(new NapTask(99));

} catch(RejectedExecutionException e) {

System.out.println(e);

}

}

}

/* Output:

java.util.concurrent.RejectedExecutionException: Task

NapTask[99] rejected from java.util.concurrent.ThreadPo

olExecutor@4e25154f[Shutting down, pool size = 1,

active threads = 1, queued tasks = 0, completed tasks =

0]

NapTask[1] pool-1-thread-1

*/

The alternative to exec.shutdown() is exec.shutdownNow(),

which, in addition to not accepting new tasks, will also try to stop any

currently-running tasks by interrupting them. Again, interruption is



messy, error-prone and discouraged.

Using More Threads

The point of using threads is (almost always) to get things done faster,

so why should we limit ourselves to the SingleThreadExecutor? Look

at the Javadoc for Executors and you’ll see more options. For

example CachedThreadPool:

// concurrent/CachedThreadPool.java

import java.util.concurrent.*;

import java.util.stream.*;

public class CachedThreadPool {

public static void main(String[] args) {

ExecutorService exec =

Executors.newCachedThreadPool();

IntStream.range(0, 10)

.mapToObj(NapTask::new)

.forEach(exec::execute);

exec.shutdown();

}

}

/* Output:



NapTask[7] pool-1-thread-8

NapTask[4] pool-1-thread-5

NapTask[1] pool-1-thread-2

NapTask[3] pool-1-thread-4

NapTask[0] pool-1-thread-1

NapTask[8] pool-1-thread-9

NapTask[2] pool-1-thread-3

NapTask[9] pool-1-thread-10

NapTask[6] pool-1-thread-7

NapTask[5] pool-1-thread-6

*/

When you run this program, you’ll notice it finishes more quickly. This

makes sense because, instead of using the same thread to sequentially

run each task, every task gets its own thread so they all run in parallel.

There seems to be no downside and it’s hard to see why anyone would

use a SingleThreadExecutor.

To understand the problem, we need a more complex task:

// concurrent/InterferingTask.java

public class InterferingTask implements Runnable {

final int id;



private static Integer val = 0;

public InterferingTask(int id) { this.id = id; }

@Override

public void run() {

for(int i = 0; i < 100; i++)

val++;

System.out.println(id + " " +

Thread.currentThread().getName() + " " + val);

}

}

Each task increments val one hundred times. This seems simple

enough. Let’s try it with a CachedThreadPool:

// concurrent/CachedThreadPool2.java

import java.util.concurrent.*;

import java.util.stream.*;

public class CachedThreadPool2 {

public static void main(String[] args) {

ExecutorService exec =

Executors.newCachedThreadPool();

IntStream.range(0, 10)



.mapToObj(InterferingTask::new)

.forEach(exec::execute);

exec.shutdown();

}

}

/* Output:

0 pool-1-thread-1 200

1 pool-1-thread-2 200

4 pool-1-thread-5 300

5 pool-1-thread-6 400

8 pool-1-thread-9 500

9 pool-1-thread-10 600

2 pool-1-thread-3 700

7 pool-1-thread-8 800

3 pool-1-thread-4 900

6 pool-1-thread-7 1000

*/

The output is not what we expect and it varies from one run to the

next. The problem is that all the tasks are trying to write to the single

instance of val, and they are stepping on each other’s toes. We say



that such a class is not thread-safe. Let’s see what happens with a

SingleThreadExecutor:

// concurrent/SingleThreadExecutor3.java

import java.util.concurrent.*;

import java.util.stream.*;

public class SingleThreadExecutor3 {

public static void main(String[] args)

throws InterruptedException {

ExecutorService exec =

Executors.newSingleThreadExecutor();

IntStream.range(0, 10)

.mapToObj(InterferingTask::new)

.forEach(exec::execute);

exec.shutdown();

}

}

/* Output:

0 pool-1-thread-1 100

1 pool-1-thread-1 200

2 pool-1-thread-1 300



3 pool-1-thread-1 400

4 pool-1-thread-1 500

5 pool-1-thread-1 600

6 pool-1-thread-1 700

7 pool-1-thread-1 800

8 pool-1-thread-1 900

9 pool-1-thread-1 1000

*/

Now we get consistent results, every time, despite the lack of thread-

safety in InterferingTask. This is the primary benefit of a

SingleThreadExecutor—because it runs one task at a time, those tasks

never interfere with each other so thread safety is imposed. This

phenomenon is called thread confinement because running tasks on a

single thread confines their effects. Thread confinement limits

speedup but can save a lot of difficult debugging and rewriting.

Producing Results

Because InterferingTask is a Runnable, it has no return value



and can thus only produce results using side effects—manipulating its

environment rather than returning a result. Side effects are one of the

main problems in concurrent programming, for the reason we saw in

CachedThreadPool2.java. The val in InterferingTask is

called mutable shared state, and that’s what gives you trouble:

multiple tasks modifying the same variable at the same time produce

what is called a race condition. The result depends on which task races

to the finish line first and modifies the variable (and the myriad

variations of other possibilities).

The best way to avoid race conditions is to avoid mutable shared state.

We might call this the selfish child principle: Share nothing.

With InterferingTask, it would be nice to remove the side effects

and just return a result from the task. To do this, we create a

Callable rather than a Runnable:

// concurrent/CountingTask.java

import java.util.concurrent.*;

public class CountingTask implements Callable<Integer> {

final int id;

public CountingTask(int id) { this.id = id; }

@Override



public Integer call() {

Integer val = 0;

for(int i = 0; i < 100; i++)

val++;

System.out.println(id + " " +

Thread.currentThread().getName() + " " + val);

return val;

}

}

call() produces its result entirely

independently of all other CountingTasks, which

means there is no mutable shared state.

An ExecutorService allows you to start every Callable in a

collection using invokeAll():

// concurrent/CachedThreadPool3.java

import java.util.*;

import java.util.concurrent.*;

import java.util.stream.*;

public class CachedThreadPool3 {

public static Integer



extractResult(Future<Integer> f) {

try {

return f.get();

} catch(Exception e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args)

throws InterruptedException {

ExecutorService exec =

Executors.newCachedThreadPool();

List<CountingTask> tasks =

IntStream.range(0, 10)

.mapToObj(CountingTask::new)

.collect(Collectors.toList());

List<Future<Integer>> futures =

exec.invokeAll(tasks);

Integer sum = futures.stream()

.map(CachedThreadPool3::extractResult)

.reduce(0, Integer::sum);



System.out.println("sum = " + sum);

exec.shutdown();

}

}

/* Output:

1 pool-1-thread-2 100

0 pool-1-thread-1 100

4 pool-1-thread-5 100

5 pool-1-thread-6 100

8 pool-1-thread-9 100

9 pool-1-thread-10 100

2 pool-1-thread-3 100

3 pool-1-thread-4 100

6 pool-1-thread-7 100

7 pool-1-thread-8 100

sum = 1000

*/

Only after all the tasks are complete does invokeAll() return a

List of Future, one Future for each task. A Future is a

mechanism introduced in Java 5 that allows you to submit a task



without waiting for it to complete. Here, we use

ExecutorService.submit():

// concurrent/Futures.java

import java.util.*;

import java.util.concurrent.*;

import java.util.stream.*;

public class Futures {

public static void main(String[] args)

throws InterruptedException, ExecutionException {

ExecutorService exec =

Executors.newSingleThreadExecutor();

Future<Integer> f =

exec.submit(new CountingTask(99));

System.out.println(f.get()); // [1]

exec.shutdown();

}

}

/* Output:

99 pool-1-thread-1 100

100



*/

[1] When you call get() on a Future whose task hasn’t

completed yet, the call blocks (waits) until the result is available.

But this means, in CachedThreadPool3.java, that Future

seems redundant because invokeAll() doesn’t even return until all

the tasks have completed. However, here the Future is not used for

the delayed result, but rather to capture any exceptions that might

happen.

Notice also the messiness of extracting the results in

CachedThreadPool3.java. get() throws exceptions, so

extractResult() performs this extraction within a Stream.

Because a Future blocks when you call get(), it only puts off the

problem of waiting for tasks to finish. Ultimately, Futures were

deemed an ineffective solution and are now discouraged, in favor of

Java 8’s CompletableFuture, which we explore later in this

chapter. Of course, you’ll still encounter Futures in legacy libraries.

We can solve this problem in a much simpler and more elegant fashion

using parallel Streams:

// concurrent/CountingStream.java

// {VisuallyInspectOutput}



import java.util.*;

import java.util.concurrent.*;

import java.util.stream.*;

public class CountingStream {

public static void main(String[] args) {

System.out.println(

IntStream.range(0, 10)

.parallel()

.mapToObj(CountingTask::new)

.map(ct -> ct.call())

.reduce(0, Integer::sum));

}

}

/* Output:

1 ForkJoinPool.commonPool-worker-3 100

8 ForkJoinPool.commonPool-worker-2 100

0 ForkJoinPool.commonPool-worker-6 100



2 ForkJoinPool.commonPool-worker-1 100

4 ForkJoinPool.commonPool-worker-5 100

9 ForkJoinPool.commonPool-worker-7 100

6 main 100

7 ForkJoinPool.commonPool-worker-4 100

5 ForkJoinPool.commonPool-worker-2 100

3 ForkJoinPool.commonPool-worker-3 100

1000

*/

Not only is this much easier to understand, all we needed to do was

insert parallel() into an otherwise sequential operation and

suddenly everything is running concurrently.

Lambdas and Method

References as Tasks

With lambdas and method references, you’re not constrained to using

only Runnables and Callables. Because Java 8 supports lambdas

and method references by matching signatures (that is, it supports

structural conformance), we can pass arguments that are not

Runnables or Callables to an ExecutorService:

// concurrent/LambdasAndMethodReferences.java



import java.util.concurrent.*;

class NotRunnable {

public void go() {

System.out.println("NotRunnable");

}

}

class NotCallable {

public Integer get() {

System.out.println("NotCallable");

return 1;

}

}

public class LambdasAndMethodReferences {

public static void main(String[] args)

throws InterruptedException {

ExecutorService exec =



Executors.newCachedThreadPool();

exec.submit(() -> System.out.println("Lambda1"));

exec.submit(new NotRunnable()::go);

exec.submit(() -> {

System.out.println("Lambda2");

return 1;

});

exec.submit(new NotCallable()::get);

exec.shutdown();

}

}

/* Output:

Lambda1

NotCallable

NotRunnable

Lambda2

*/

Here, the first two submit() calls can instead be calls to

execute(). All submit() calls return Futures, which you can

use to extract the result in the case of the second two calls.



Terminating Long-

Running Tasks

Concurrent programs commonly use long-running tasks. A

Callable task returns a value upon completion; although this gives

it a finite lifetime, that can still be long. Runnable tasks are

sometimes set up as background processes that run forever. You often

need a way to stop both Runnable and Callable tasks before their

normal completion, such as when you’re shutting down a program.

The original Java design provided mechanisms (which, for backwards

compatibility, still exist) to interrupt running tasks; the interruption

mechanisms include issues around blocking. Interrupting tasks is

messy and complicated because you must understand all possible

states from which that interruption might occur, along with the

possible resulting data loss. Using interruption is considered an

antipattern, but we are still forced to catch

InterruptedException because of the backward-compatibility

residue of the design.

The best approach to task termination is to set a flag that the task

periodically checks. Then the task can go through its own shutdown

process and terminate gracefully. Instead of pulling the plug on a task



at some random time, you ask the task to terminate itself when it

reaches a good point. This always produces better results than

interruption, along with more sensible code that is easier to

understand.

Terminating a task this way sounds simple enough: set a boolean

flag that the task can see. Write the task so it periodically checks the

flag and performs graceful termination. That is in fact what you do,

but there’s a complication: Our old nemesis, shared mutable state. If

the flag can be manipulated by another task, then there are collision

possibilities.

When studying Java literature you’ll find numerous approaches to this

problem, very often using the volatile keyword. We shall use a

simpler technique and avoid all the vagaries of volatile, which are

only covered in Appendix: Low-Level Concurrency.

Java 5 introduced the Atomic classes, which provide a set of types

you can use without worrying about concurrency problems. We’ll add

an AtomicBoolean flag that tells a task to clean itself up and exit:

// concurrent/QuittableTask.java

import java.util.concurrent.atomic.AtomicBoolean;

import onjava.Nap;



public class QuittableTask implements Runnable {

final int id;

public QuittableTask(int id) { this.id = id; }

private AtomicBoolean running =

new AtomicBoolean(true);

public void quit() { running.set(false); }

@Override

public void run() {

while(running.get()) // [1]

new Nap(0.1);

System.out.print(id + " "); // [2]

}

}

Although multiple tasks can successfully call quit() at the same

instant, the AtomicBoolean prevents more than one of those tasks

from actually modifying running at the same time, rendering the

quit() method thread-safe.

[1]: As long as the running flag is true, this task’s run()

method will continue.

[2]: The display only happens as the task exits.



The need to make running an AtomicBoolean demonstrates one

of the most fundamental difficulties when writing concurrent Java

programs. If you make running an ordinary boolean, you might

never see the problem in an executing program. Indeed, in this

example the chances are that you’d never have any problems—and yet

that code would still be unsafe. It can be difficult or impossible to write

a test that demonstrates that problem. Thus you don’t have any

immediate feedback to tell you that you’ve done something wrong.

Often, the only way for you to write thread-safe code is just by

knowing all the subtle places where things can go wrong.

As a test, we’ll start a lot of QuittableTasks and then shut them

down. Try playing with larger values of COUNT:

// concurrent/QuittingTasks.java

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;

import onjava.Nap;

public class QuittingTasks {

public static final int COUNT = 150;

public static void main(String[] args) {



ExecutorService es =

Executors.newCachedThreadPool();

List<QuittableTask> tasks =

IntStream.range(1, COUNT)

.mapToObj(QuittableTask::new)

.peek(qt -> es.execute(qt))

.collect(Collectors.toList());

new Nap(1);

tasks.forEach(QuittableTask::quit);

es.shutdown();

}

}

/* Output:

24 27 31 8 11 7 19 12 16 4 23 3 28 32 15 20 63 60 68 67

64 39 47 52 51 55 40 43 48 59 44 56 36 35 71 72 83 103

96 92 88 99 100 87 91 79 75 84 76 115 108 112 104 107

111 95 80 147 120 127 119 123 144 143 116 132 124 128



136 131 135 139 148 140 2 126 6 5 1 18 129 17 14 13 21

22 9 10 30 33 58 37 125 26 34 133 145 78 137 141 138 62

74 142 86 65 73 146 70 42 149 121 110 134 105 82 117

106 113 122 45 114 118 38 50 29 90 101 89 57 53 94 41

61 66 130 69 77 81 85 93 25 102 54 109 98 49 46 97

*/

I use peek() to pass the QuittableTasks to the

ExecutorService before collecting those tasks into a List.

main() prevents the program from exiting as long as any tasks

remain running. The tasks don’t shut down in the same order they

were created, even though the quit() method is called for each task

in order. Independently-running tasks don’t respond to signals

deterministically.

CompletableFutures

As an introduction, here’s a translation of QuittingTasks.java

using CompletableFutures:



// concurrent/QuittingCompletable.java

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;

import onjava.Nap;

public class QuittingCompletable {

public static void main(String[] args) {

List<QuittableTask> tasks =

IntStream.range(1, QuittingTasks.COUNT)

.mapToObj(QuittableTask::new)

.collect(Collectors.toList());

List<CompletableFuture<Void>> cfutures =

tasks.stream()

.map(CompletableFuture::runAsync)

.collect(Collectors.toList());

new Nap(1);

tasks.forEach(QuittableTask::quit);

cfutures.forEach(CompletableFuture::join);

}

}



/* Output:

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 6 35 4 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

99 100 101 102 103 104 105 106 107 108 109 110 111 112

1 113 114 116 117 118 119 120 121 122 123 124 125 126

127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 5 115 37 36 2 3

*/

tasks is a List<QuittableTask> just as in

QuittingTasks.java, but in this example, there’s no peek()

that submits each QuittableTask to an ExecutorService.

Instead, during the creation of cfutures each task is handed to

CompletableFuture::runAsync. This executes

QuittableTask.run() and returns a

CompletableFuture<Void> . Because run() doesn’t return

anything, I only use the CompletableFuture in this case to call

join() to wait for it to finish.



The important thing to notice in this example is that no

ExecutorService is required to run the tasks. This is managed by

the CompletableFuture (although there are options to provide

your own ExecutorService). You also don’t need to call

shutdown(); in fact, unless you explicitly call join() as I do here,

the program will exit as soon as it can, without waiting for tasks to

complete.

This example is just a starting point. You’ll soon see that

CompletableFutures are capable of much more.

Basic Usage

Here’s a class with a static method work() that performs some

kind of work on objects of that class:

// concurrent/Machina.java

import onjava.Nap;

public class Machina {

public enum State {

START, ONE, TWO, THREE, END;



State step() {

if(equals(END)) return END;

return values()[ordinal() + 1];

}

}

private State state = State.START;

private final int id;

public Machina(int id) { this.id = id; }

public static Machina work(Machina m) {

if(!m.state.equals(State.END)){

new Nap(0.1);

m.state = m.state.step();

}

System.out.println(m);

return m;

}

@Override

public String toString() {

return "Machina" + id + ": " +

(state.equals(State.END)? "complete" : state);



}

}

This is a finite state machine, a trivial one because it has no

branches…it just traverses a single path from beginning to end. The

work() method moves the machine from one state to the next and

requires 100 milliseconds to do that “work.”

One thing we can do with a CompletableFuture is to wrap it

around an object of interest using completedFuture():

// concurrent/CompletedMachina.java

import java.util.concurrent.*;

public class CompletedMachina {

public static void main(String[] args) {

CompletableFuture<Machina> cf =

CompletableFuture.completedFuture(

new Machina(0));

try {

Machina m = cf.get(); // Doesn't block

} catch(InterruptedException |

ExecutionException e) {

throw new RuntimeException(e);



}

}

}

completedFuture() creates a CompletableFuture which is

“already complete.” The only useful thing to do with such a future is to

get() the object inside, so this doesn’t seem that helpful at first.

Note that the CompletableFuture is typed to the object it

contains. This is important.

Normally, get() blocks the calling thread while it waits on the result.

This block can be broken out of via either an

InterruptedException or an ExecutionException. In this

case, the blocking never happens because the CompletableFuture

is already complete, so the answer is instantly available.

Things get much more interesting when, once we’ve wrapped our

Machina in a CompletableFuture, we discover that we can add operations
onto that CompletableFuture to work on the

contained object:

// concurrent/CompletableApply.java

import java.util.concurrent.*;

public class CompletableApply {

public static void main(String[] args) {



CompletableFuture<Machina> cf =

CompletableFuture.completedFuture(

new Machina(0));

CompletableFuture<Machina> cf2 =

cf.thenApply(Machina::work);

CompletableFuture<Machina> cf3 =

cf2.thenApply(Machina::work);

CompletableFuture<Machina> cf4 =

cf3.thenApply(Machina::work);

CompletableFuture<Machina> cf5 =

cf4.thenApply(Machina::work);

}

}

/* Output:

Machina0: ONE

Machina0: TWO

Machina0: THREE

Machina0: complete

*/

thenApply() applies a Function that takes an input and



produces an output. In this case, the work() Function produces

the same type that it takes in, so each resulting

CompletableFuture is still typed as Machina, but (similar to

map() in Streams) the Function can also return different types,

which would be reflected in the return type.

You see something essential about CompletableFutures here:

They automatically unwrap and re-wrap the object they are carrying

when you perform an operation. This way you don’t get caught up in

messy details, which makes writing and understanding code much

easier.

We can eliminate the intermediate variables and just chain the

operations together, the way we do with Streams:

// concurrent/CompletableApplyChained.java

import java.util.concurrent.*;

import onjava.Timer;

public class CompletableApplyChained {

public static void main(String[] args) {

Timer timer = new Timer();

CompletableFuture<Machina> cf =

CompletableFuture.completedFuture(



new Machina(0))

.thenApply(Machina::work)

.thenApply(Machina::work)

.thenApply(Machina::work)

.thenApply(Machina::work);

System.out.println(timer.duration());

}

}

/* Output:

Machina0: ONE

Machina0: TWO

Machina0: THREE

Machina0: complete

514

*/

Here we’ve also added a Timer which shows us that each step adds

100 milliseconds, and there’s some additional overhead.

One important benefit of CompletableFutures is that they

encourage the use of the selfish child principle (share nothing). By

default, using thenApply() to apply a function doesn’t



communicate with anyone—it just takes an argument and returns a

result. This is a foundation of functional programming, and one

reason it works so well for concurrency. 5 Parallel streams and
CompletableFutures are designed to support these principles. As

long as you don’t decide to share data anyway (sharing is very easy to

do, even accidentally) you can write relatively safe concurrent

programs.

Calling thenApply() starts the operation, and in this case the

creation of the CompletableFuture isn’t finished until all the

tasks are completed. Although this is sometimes useful, it’s typically

more valuable to start all tasks so you can move on and do something

else while they run. We accomplish this by adding Async to the end of

the operation:

// concurrent/CompletableApplyAsync.java

import java.util.concurrent.*;

import onjava.*;

public class CompletableApplyAsync {

public static void main(String[] args) {

Timer timer = new Timer();

CompletableFuture<Machina> cf =

CompletableFuture.completedFuture(



new Machina(0))

.thenApplyAsync(Machina::work)

.thenApplyAsync(Machina::work)

.thenApplyAsync(Machina::work)

.thenApplyAsync(Machina::work);

System.out.println(timer.duration());

System.out.println(cf.join());

System.out.println(timer.duration());

}

}

/* Output:

116

Machina0: ONE

Machina0: TWO

Machina0: THREE

Machina0: complete

Machina0: complete

552

*/

A synchronous call (the kind we normally make) means “return when



you are finished working,” whereas an asynchronous call means

“return right away but keep working in the background.” As you can

see, the creation of cf happens much faster now. Each call to

thenApplyAsync() returns immediately so the next call can be

made, and the whole chaining sequence completes much more quickly

than before.

So quickly, in fact, that without the call to cf.join() the program

exits before finishing its work (try taking out that line). The call to

join() blocks the main() thread from progressing until the cf

operations complete, and we can see that most of the time was indeed

spent there.

This async ability to “return right away” requires some undercover

work by the CompletableFuture library. In particular, it must

store the chain of operations you require as a set of callbacks. When

the first background operation completes and returns, the second one

must take the resulting Machina and begin work, and when that one

completes, the next operation takes over, etc. But without our ordinary

sequence of function calls, controlled via the program call stack, this

order would be lost so it is instead stored using callbacks—a table of

function addresses.



Fortunately, that’s all you need to know about callbacks. Programmers

refer to the mess you get into doing it by hand as “callback hell.” With

Async calls, the CompletableFuture manages all the callbacks

for you. And unless you know something specific about your system

that changes things, you’ll probably want to use Async calls.

Other Operations

When you look at the Javadocs for CompletableFuture, you’ll see

it has many methods, but the majority of this number come from

variations on the different operations. For example, there’s

thenApply(), thenApplyAsync(), and a second form of

thenApplyAsync() that takes an Executor on which to run the

tasks (in this book we ignore the Executor option).

Here’s an example that shows all the “basic” operations, ones that

don’t involve either combining two CompletableFutures or

exceptions (we shall look at those later). First, here are two utilities we

shall reuse to provide brevity and convenience:

// concurrent/CompletableUtilities.java



package onjava;

import java.util.concurrent.*;

public class CompletableUtilities {

// Get and show value stored in a CF:

public static void showr(CompletableFuture<?> c) {

try {

System.out.println(c.get());

} catch(InterruptedException

| ExecutionException e) {

throw new RuntimeException(e);

}

}

// For CF operations that have no value:

public static void voidr(CompletableFuture<Void> c) {

try {

c.get(); // Returns void

} catch(InterruptedException

| ExecutionException e) {

throw new RuntimeException(e);

}



}

}

showr() calls get() on a CompletableFuture<Integer> and displays the
result, catching the two possible exceptions.

voidr() is a version of showr() for

CompletableFuture<Void> , that is, CompletableFutures

that only exist to show when a task completes or fails.

For simplicity, the following CompletableFutures just wrap

Integers. cfi() is a convenience method that wraps an int inside

a completed CompletableFuture<Integer> :

// concurrent/CompletableOperations.java

import java.util.concurrent.*;

import static onjava.CompletableUtilities.*;

public class CompletableOperations {

static CompletableFuture<Integer> cfi(int i) {

return

CompletableFuture.completedFuture(

Integer.valueOf(i));

}

public static void main(String[] args) {

showr(cfi(1)); // Basic test



voidr(cfi(2).runAsync(() ->

System.out.println("runAsync")));

voidr(cfi(3).thenRunAsync(() ->

System.out.println("thenRunAsync")));

voidr(CompletableFuture.runAsync(() ->

System.out.println("runAsync is static")));

showr(CompletableFuture.supplyAsync(() -> 99));

voidr(cfi(4).thenAcceptAsync(i ->

System.out.println("thenAcceptAsync: " + i)));

showr(cfi(5).thenApplyAsync(i -> i + 42));

showr(cfi(6).thenComposeAsync(i -> cfi(i + 99)));

CompletableFuture<Integer> c = cfi(7);

c.obtrudeValue(111);

showr(c);

showr(cfi(8).toCompletableFuture());

c = new CompletableFuture<>();

c.complete(9);

showr(c);

c = new CompletableFuture<>();

c.cancel(true);



System.out.println("cancelled: " +

c.isCancelled());

System.out.println("completed exceptionally: " +

c.isCompletedExceptionally());

System.out.println("done: " + c.isDone());

System.out.println(c);

c = new CompletableFuture<>();

System.out.println(c.getNow(777));

c = new CompletableFuture<>();

c.thenApplyAsync(i -> i + 42)

.thenApplyAsync(i -> i * 12);

System.out.println("dependents: " +

c.getNumberOfDependents());

c.thenApplyAsync(i -> i / 2);

System.out.println("dependents: " +

c.getNumberOfDependents());

}

}

/* Output:

1



runAsync

thenRunAsync

runAsync is static

99

thenAcceptAsync: 4

47

105

111

8

9

cancelled: true

completed exceptionally: true

done: true

java.util.concurrent.CompletableFuture@6d311334[Complet

ed exceptionally]

777

dependents: 1

dependents: 2

*/

main() contains a sequence of tests that can be referred to by their int values.
cfi(1) demonstrates that showr() works properly.



cfi(2) is an example of calling runAsync(). Since a Runnable

produces no return value, the result is a

CompletableFuture<Void> so voidr() is used.

Notice with cfi(3) that thenRunAsync() appears to be the same

as runAsync(). The difference is shown in the subsequent test:

runAsync() is a static method, so you normally wouldn’t call it

as in cfi(2). Instead you’d use it as in

QuittingCompletable.java. The subsequent test shows that

supplyAsync() is also static, but requires a Supplier rather

than a Runnable and produces a

CompletableFuture<Integer> instead of a

CompletableFuture<Void> .

The “then” methods apply further operations to an existing

CompletableFuture<Integer> . Unlike thenRunAsync(),

the “then” methods for cfi(4), cfi(5) and cfi(6) are handed

the unwrapped Integer as their argument. As you can see by the use

of voidr(), thenAcceptAsync() takes a Consumer and so

doesn’t produce a result. thenApplyAsync() takes a Function

and so produces a result (which can be of a different type than its

argument). thenComposeAsync() is quite similar to



thenApplyAsync() except that its Function must produce a

result that is already wrapped in a CompletableFuture.

The cfi(7) example demonstrates obtrudeValue(), which

forces a value in as the result. cfi(8) uses

toCompletableFuture() which produces a

CompletableFuture from this CompletionStage.

c.complete(9) shows how you can complete a future by giving it a

result (versus obtrudeValue() which could then force its result in

to replace this one).

If you cancel() a CompletableFuture, it also becomes done

and is completed exceptionally.

The getNow() method returns either the completed value of the

CompletableFuture, or the substitute argument of getNow() if

the future hasn’t yet completed.

Finally, we look at the concept of dependents. If we chain two

thenApplyAsync() calls onto a CompletableFuture, the

number of dependents is still one. But if we attach another



thenApplyAsync() directly to c, we now have two dependents:

The chain of two and the additional one. This shows that you can have

a single CompletionStage that, when it completes, can fork

multiple new tasks based on its result.

Combining CompletableFutures

The second category of CompletableFuture methods takes two

CompletableFutures and combines them in various ways. One

CompletableFuture typically finishes before another, as if the

two are in a race. These methods allow you to handle the results in

different ways.

To test this, we’ll create a task that takes as one of its arguments the

amount of time to complete, so we can control which

CompletableFuture finishes first:

// concurrent/Workable.java

import java.util.concurrent.*;

import onjava.Nap;

public class Workable {

String id;

final double duration;

public Workable(String id, double duration) {



this.id = id;

this.duration = duration;

}

@Override

public String toString() {

return "Workable[" + id + "]";

}

public static Workable work(Workable tt) {

new Nap(tt.duration); // Seconds



tt.id = tt.id + "W";

System.out.println(tt);

return tt;

}

public static CompletableFuture<Workable>

make(String id, double duration) {

return

CompletableFuture.completedFuture(

new Workable(id, duration))

.thenApplyAsync(Workable::work);

}

}

In make(), the work() method is applied to the

CompletableFuture. work() takes duration to complete,

then it attaches the letter W to id to indicate that work has been

completed.

Now we can create multiple competing CompletableFutures and

connect them using the various methods in the

CompletableFuture library:

// concurrent/DualCompletableOperations.java



import java.util.concurrent.*;

import static onjava.CompletableUtilities.*;

public class DualCompletableOperations {

static CompletableFuture<Workable> cfA, cfB;

static void init() {

cfA = Workable.make("A", 0.15);

cfB = Workable.make("B", 0.10); // Always wins

}

static void join() {

cfA.join();

cfB.join();

System.out.println("*****************");

}

public static void main(String[] args) {

init();

voidr(cfA.runAfterEitherAsync(cfB, () ->

System.out.println("runAfterEither")));

join();

init();

voidr(cfA.runAfterBothAsync(cfB, () ->



System.out.println("runAfterBoth")));

join();

init();

showr(cfA.applyToEitherAsync(cfB, w -> {

System.out.println("applyToEither: " + w);

return w;

}));

join();

init();

voidr(cfA.acceptEitherAsync(cfB, w -> {

System.out.println("acceptEither: " + w);

}));

join();

init();

voidr(cfA.thenAcceptBothAsync(cfB, (w1, w2) -> {

System.out.println("thenAcceptBoth: "

+ w1 + ", " + w2);

}));

join();

init();



showr(cfA.thenCombineAsync(cfB, (w1, w2) -> {

System.out.println("thenCombine: "

+ w1 + ", " + w2);

return w1;

}));

join();

init();

CompletableFuture<Workable>

cfC = Workable.make("C", 0.08),

cfD = Workable.make("D", 0.09);

CompletableFuture.anyOf(cfA, cfB, cfC, cfD)

.thenRunAsync(() ->

System.out.println("anyOf"));

join();

init();

cfC = Workable.make("C", 0.08);

cfD = Workable.make("D", 0.09);

CompletableFuture.allOf(cfA, cfB, cfC, cfD)

.thenRunAsync(() ->

System.out.println("allOf"));



join();

}

}

/* Output:

Workable[BW]

runAfterEither

Workable[AW]

*****************

Workable[BW]

Workable[AW]

runAfterBoth

*****************

Workable[BW]

applyToEither: Workable[BW]

Workable[BW]

Workable[AW]

*****************

Workable[BW]

acceptEither: Workable[BW]

Workable[AW]



*****************

Workable[BW]

Workable[AW]

thenAcceptBoth: Workable[AW], Workable[BW]

*****************

Workable[BW]

Workable[AW]

thenCombine: Workable[AW], Workable[BW]

Workable[AW]

*****************

Workable[CW]

anyOf

Workable[DW]

Workable[BW]

Workable[AW]

*****************

Workable[CW]

Workable[DW]

Workable[BW]

Workable[AW]



*****************

allOf

*/

For easy access, cfA and cfB are static. init() initializes the two with "B"
always given the shorter delay and thus always

“winning.” join() is another convenience method to call join()

on both methods and display a border.

All of these “dual” methods take one CompletableFuture as the

object to call the method upon, and a second CompletableFuture

as the first argument, followed by the operation to perform.

You can see by the use of showr() and voidr() that “run” and

“accept” are terminal operations, while “apply” and “combine”

produce new payload-bearing CompletableFutures.

The names of the methods are self-explanatory, and you can verify this

by looking at the output. One particularly interesting method is

combineAsync(), which waits for both CompletableFutures

to complete and then hands both of them to a BiFunction which



can then join the results into the payload of the resulting

CompletableFuture.

A Simulation

As an example of how you might wire together a sequence of

operations using CompletableFutures, let us simulate the process

of making a cake. In the first stage, we prepare and combine the

ingredients into a batter:

// concurrent/Batter.java

import java.util.concurrent.*;

import onjava.Nap;

public class Batter {

static class Eggs {}

static class Milk {}

static class Sugar {}

static class Flour {}

static <T> T prepare(T ingredient) {

new Nap(0.1);

return ingredient;

}

static <T> CompletableFuture<T> prep(T ingredient) {



return CompletableFuture

.completedFuture(ingredient)

.thenApplyAsync(Batter::prepare);

}

public static CompletableFuture<Batter> mix() {

CompletableFuture<Eggs> eggs = prep(new Eggs());

CompletableFuture<Milk> milk = prep(new Milk());

CompletableFuture<Sugar> sugar = prep(new Sugar());

CompletableFuture<Flour> flour = prep(new Flour());

CompletableFuture

.allOf(eggs, milk, sugar, flour)

.join();

new Nap(0.1); // Mixing time

return

CompletableFuture.completedFuture(new Batter());

}

}

Each ingredient takes some time to prepare. allOf() waits for all

ingredients to be ready, then some more time is required to mix it into

a batter.



Next we put the single batch of batter into four pans and bake it. The

product is returned as a Stream of CompletableFutures:

// concurrent/Baked.java

import java.util.concurrent.*;

import java.util.stream.*;

import onjava.Nap;

public class Baked {

static class Pan {}

static Pan pan(Batter b) {

new Nap(0.1);

return new Pan();

}

static Baked heat(Pan p) {

new Nap(0.1);

return new Baked();

}

static CompletableFuture<Baked>

bake(CompletableFuture<Batter> cfb) {

return cfb

.thenApplyAsync(Baked::pan)



.thenApplyAsync(Baked::heat);

}

public static

Stream<CompletableFuture<Baked>> batch() {

CompletableFuture<Batter> batter = Batter.mix();

return Stream.of(bake(batter), bake(batter),

bake(batter), bake(batter));

}

}

Finally, we create a batch of Frosting and frost our cakes with it:

// concurrent/FrostedCake.java

import java.util.concurrent.*;

import java.util.stream.*;

import onjava.Nap;

final class Frosting {

private Frosting() {}

static CompletableFuture<Frosting> make() {

new Nap(0.1);

return CompletableFuture

.completedFuture(new Frosting());



}

}

public class FrostedCake {

public FrostedCake(Baked baked, Frosting frosting) {

new Nap(0.1);

}

@Override

public String toString() { return "FrostedCake"; }

public static void main(String[] args) {

Baked.batch().forEach(baked -> baked

.thenCombineAsync(Frosting.make(),

(cake, frosting) ->

new FrostedCake(cake, frosting))

.thenAcceptAsync(System.out::println)

.join());

}

}

Once you’re comfortable with the ideas behind



CompletableFutures they are relatively easy to use.

Exceptions

The same way a CompletableFuture wraps the objects within the

processing chain, it also buffers you from exceptions. These don’t

appear to the caller while processing, but only when you try to extract

the result. To show how they work, we’ll start by creating a class that

throws an exception under certain conditions:

// concurrent/Breakable.java

import java.util.concurrent.*;

public class Breakable {

String id;

private int failcount;

public Breakable(String id, int failcount) {

this.id = id;

this.failcount = failcount;

}

@Override



public String toString() {

return "Breakable_" + id +

" [" + failcount + "]";

}

public static Breakable work(Breakable b) {

if(--b.failcount == 0) {

System.out.println(

"Throwing Exception for " + b.id + "");

throw new RuntimeException(

"Breakable_" + b.id + " failed");

}

System.out.println(b);

return b;

}

}

With a positive failcount, every time you pass the object to the

work() method it decrements that failcount. When it goes to zero, work()
throws an exception. If you give it a failcount of

zero, it never throws an exception.

Notice that it reports throwing an exception as that exception is

thrown.



In the following test() method, work() is applied to a

Breakable multiple times, so if failcount is within range the

exception is thrown. However, in tests A through E, you can see from

the output that the exceptions are thrown, but they never emerge:

// concurrent/CompletableExceptions.java

import java.util.concurrent.*;

public class CompletableExceptions {

static CompletableFuture<Breakable>

test(String id, int failcount) {

return

CompletableFuture.completedFuture(

new Breakable(id, failcount))

.thenApply(Breakable::work)

.thenApply(Breakable::work)

.thenApply(Breakable::work)

.thenApply(Breakable::work);

}

public static void main(String[] args) {

// Exceptions don't appear ...

test("A", 1);



test("B", 2);

test("C", 3);

test("D", 4);

test("E", 5);

// ... until you try to fetch the value:

try {

test("F", 2).get(); // or join()

} catch(Exception e) {

System.out.println(e.getMessage());

}

// Test for exceptions:

System.out.println(

test("G", 2).isCompletedExceptionally());

// Counts as "done":

System.out.println(test("H", 2).isDone());

// Force an exception:

CompletableFuture<Integer> cfi =

new CompletableFuture<>();

System.out.println("done? " + cfi.isDone());

cfi.completeExceptionally(



new RuntimeException("forced"));

try {

cfi.get();

} catch(Exception e) {

System.out.println(e.getMessage());

}

}

}

/* Output:

Throwing Exception for A

Breakable_B [1]

Throwing Exception for B

Breakable_C [2]

Breakable_C [1]

Throwing Exception for C

Breakable_D [3]

Breakable_D [2]

Breakable_D [1]

Throwing Exception for D

Breakable_E [4]



Breakable_E [3]

Breakable_E [2]

Breakable_E [1]

Breakable_F [1]

Throwing Exception for F

java.lang.RuntimeException: Breakable_F failed

Breakable_G [1]

Throwing Exception for G

true

Breakable_H [1]

Throwing Exception for H

true

done? false

java.lang.RuntimeException: forced

*/

Tests A through E run up to the point they throw their exception, and

then … nothing. Only when calling get() in test F do we see the

thrown exception.

Test G shows that you can check first to see whether an exception was

thrown during processing, without throwing that exception. However,



test H tells us that an exception still qualifies as being “done,”

regardless of whether it was actually successful.

The last section of code shows how you can insert an exception into a

CompletableFuture, regardless of whether there’s any failure.

Rather than using a crude try-catch when joining or getting the result,

we use the more sophisticated mechanisms provided by

CompletableFuture to automatically respond to exceptions. You

do this using the same form we’ve seen for all

CompletableFutures: Insert a CompletableFuture call in

the chain. There are three options: exceptionally(), handle(),

and whenComplete():

// concurrent/CatchCompletableExceptions.java

import java.util.concurrent.*;

public class CatchCompletableExceptions {

static void handleException(int failcount) {

// Call the Function only if there's an

// exception, must produce same type as came in:

CompletableExceptions

.test("exceptionally", failcount)

.exceptionally((ex) -> { // Function



if(ex == null)

System.out.println("I don't get it yet");

return new Breakable(ex.getMessage(), 0);

})

.thenAccept(str ->

System.out.println("result: " + str));

// Create a new result (recover):

CompletableExceptions

.test("handle", failcount)

.handle((result, fail) -> { // BiFunction

if(fail != null)

return "Failure recovery object";

else

return result + " is good";

})

.thenAccept(str ->

System.out.println("result: " + str));

// Do something but pass the same result through:

CompletableExceptions

.test("whenComplete", failcount)



.whenComplete((result, fail) -> { // BiConsumer

if(fail != null)

System.out.println("It failed");

else

System.out.println(result + " OK");

})

.thenAccept(r ->

System.out.println("result: " + r));

}

public static void main(String[] args) {

System.out.println("**** Failure Mode ****");

handleException(2);

System.out.println("**** Success Mode ****");

handleException(0);

}

}

/* Output:

**** Failure Mode ****

Breakable_exceptionally [1]

Throwing Exception for exceptionally



result: Breakable_java.lang.RuntimeException:

Breakable_exceptionally failed [0]

Breakable_handle [1]

Throwing Exception for handle

result: Failure recovery object

Breakable_whenComplete [1]

Throwing Exception for whenComplete

It failed

**** Success Mode ****

Breakable_exceptionally [-1]

Breakable_exceptionally [-2]

Breakable_exceptionally [-3]

Breakable_exceptionally [-4]

result: Breakable_exceptionally [-4]

Breakable_handle [-1]

Breakable_handle [-2]

Breakable_handle [-3]

Breakable_handle [-4]

result: Breakable_handle [-4] is good

Breakable_whenComplete [-1]



Breakable_whenComplete [-2]

Breakable_whenComplete [-3]

Breakable_whenComplete [-4]

Breakable_whenComplete [-4] OK

result: Breakable_whenComplete [-4]

*/

The exceptionally() argument only runs if there’s been an

exception up to that point. exceptionally() is restrictive in that

the Function can only return a value of the same type that came in.

exceptionally() recovers to a workable state by inserting a good

object back into the stream.

handle() is always called, and you must check if fail is true to see

whether an exception occurred. But handle() can produce any new

type, so it allows you to perform processing and not just recover as

with exceptionally().

whenComplete() is like handle() in that you must test for

failure, but the argument is a consumer and doesn’t modify the

result object that’s being passed through.

Stream Exceptions

Let’s see how CompletableFuture exceptions differ from those



for Streams by modifying CompletableExceptions.java:

// concurrent/StreamExceptions.java

import java.util.concurrent.*;

import java.util.stream.*;

public class StreamExceptions {

static Stream<Breakable>

test(String id, int failcount) {

return

Stream.of(new Breakable(id, failcount))

.map(Breakable::work)

.map(Breakable::work)

.map(Breakable::work)

.map(Breakable::work);

}

public static void main(String[] args) {

// No operations are even applied ...

test("A", 1);

test("B", 2);

Stream<Breakable> c = test("C", 3);

test("D", 4);



test("E", 5);

// ... until there's a terminal operation:

System.out.println("Entering try");

try {

c.forEach(System.out::println); // [1]

} catch(Exception e) {

System.out.println(e.getMessage());

}

}

}

/* Output:

Entering try

Breakable_C [2]

Breakable_C [1]

Throwing Exception for C

Breakable_C failed

*/

With CompletableFutures we saw progress in tests A through E,

but with Streams, nothing even begins until you apply a terminal

operation, such as the forEach() at [1]. A CompletableFuture



performs work and captures any exceptions for later retrieval. It’s not

quite straightforward to compare the two, because of the way a

Stream doesn’t do anything at all without a terminal operation—but

a Stream definitely doesn’t store its exceptions.

Checked Exceptions

Neither CompletableFutures nor parallel Streams support

operations containing checked exceptions. Instead, you must handle

the checked exception at the point you invoke the operation, which

produces much less elegant code:

// concurrent/ThrowsChecked.java

import java.util.stream.*;

import java.util.concurrent.*;

public class ThrowsChecked {

class Checked extends Exception {}

static ThrowsChecked nochecked(ThrowsChecked tc) {

return tc;

}

static ThrowsChecked

withchecked(ThrowsChecked tc) throws Checked {

return tc;



}

static void testStream() {

Stream.of(new ThrowsChecked())

.map(ThrowsChecked::nochecked)

// .map(ThrowsChecked::withchecked); // [1]

.map(tc -> {

try {

return withchecked(tc);

} catch(Checked e) {

throw new RuntimeException(e);

}

});

}

static void testCompletableFuture() {

CompletableFuture

.completedFuture(new ThrowsChecked())



.thenApply(ThrowsChecked::nochecked)

// .thenApply(ThrowsChecked::withchecked); // [2]

.thenApply(tc -> {

try {

return withchecked(tc);

} catch(Checked e) {

throw new RuntimeException(e);

}

});

}

}

The compiler complains at [1] and [2] if you try to use method

references for withchecked() as you can with nochecked().

Instead, you must write out the lambda expression (or write a wrapper

method that doesn’t throw the exception).

Deadlock

Because tasks can become blocked, it’s possible for one task to get

stuck waiting for another task, which in turn waits for another task,

and so on, until the chain leads back to a task waiting on the first one.

You get a continuous loop of tasks waiting on each other, and no one



can move. This is called deadlock. 6

If you try running a program and it deadlocks right away, you can

immediately track down the bug. The real problem is when your

program seems to be working fine but has the hidden potential to

deadlock. Here, you might not get any indication that deadlocking is

possible, so the flaw is latent in your program until it unexpectedly

happens—typically to a customer (in a way almost certainly difficult to

reproduce). Thus, preventing deadlock through careful program

design is a critical part of developing concurrent systems.

The Dining Philosophers problem, invented by Edsger Dijkstra, is the

classic demonstration of deadlock. The basic description specifies five

philosophers (the example shown here allows any number). These

philosophers spend part of their time thinking and part of their time

eating. While they are thinking, they don’t need any shared resources,

but they eat using a limited number of utensils. In the original

problem description, the utensils are forks, and two forks are required

to get spaghetti from a bowl in the middle of the table. A more

convincing version uses chopsticks; clearly, each philosopher requires

two chopsticks to eat.

A difficulty is introduced: As philosophers, they have very little money,



so they can only afford five chopsticks (more generally, the same

number of chopsticks as philosophers). These are spaced around the

table between them. When a philosopher wants to eat, that

philosopher must pick up the chopstick to the left and the one to the

right. If the philosopher on either side is using a desired chopstick, our

philosopher must wait until the necessary chopsticks become

available.

The StickHolder class manages a single Chopstick by keeping it

in a BlockingQueue of size one. A BlockingQueue is a

collection, designed to be safely used in concurrent programs, that

blocks (waits) if you call take() and the queue is empty. Once a new

element is placed in the queue, the block is released and that value is

returned:

// concurrent/StickHolder.java

import java.util.concurrent.*;

public class StickHolder {

private static class Chopstick {}

private Chopstick stick = new Chopstick();

private BlockingQueue<Chopstick> holder =

new ArrayBlockingQueue<>(1);



public StickHolder() { putDown(); }

public void pickUp() {

try {

holder.take(); // Blocks if unavailable

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

}

public void putDown() {

try {

holder.put(stick);

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

}

}

For simplicity, the Chopstick is never actually produced by the

StickHolder, but kept private within the class. If you call

pickUp() and the stick is unavailable, pickUp() blocks until the

stick is returned by another Philosopher calling putDown().



Note that all thread safety in this class is achieved through the

BlockingQueue.

Each Philosopher is a task that attempts to pickUp() the

chopstick to both its right and left so it can eat, then releases those

chopsticks with putDown():

// concurrent/Philosopher.java

public class Philosopher implements Runnable {

private final int seat;

private final StickHolder left, right;

public Philosopher(int seat,

StickHolder left, StickHolder right) {

this.seat = seat;

this.left = left;

this.right = right;

}

@Override

public String toString() {

return "P" + seat;

}

@Override



public void run() {

while(true) {

// System.out.println("Thinking"); // [1]

right.pickUp();

left.pickUp();

System.out.println(this + " eating");

right.putDown();

left.putDown();

}

}

}

No two Philosophers can successfully take() the same chopstick

at the same time. In addition, if a chopstick has already been taken by

one Philosopher, the next Philosopher trying to take that same

chopstick will block, waiting for it to be released.

The result is a seemingly-innocent program that deadlocks. I’ve used

arrays here instead of collections only because the resulting syntax is

cleaner:

// concurrent/DiningPhilosophers.java

// Hidden deadlock



// {ExcludeFromGradle} Gradle has trouble

import java.util.*;

import java.util.concurrent.*;

import onjava.Nap;

public class DiningPhilosophers {

private StickHolder[] sticks;

private Philosopher[] philosophers;

public DiningPhilosophers(int n) {

sticks = new StickHolder[n];

Arrays.setAll(sticks, i -> new StickHolder());

philosophers = new Philosopher[n];

Arrays.setAll(philosophers, i ->

new Philosopher(i,

sticks[i], sticks[(i + 1) % n])); // [1]

// Fix by reversing stick order for this one:

// philosophers[1] = // [2]

// new Philosopher(0, sticks[0], sticks[1]);

Arrays.stream(philosophers)

.forEach(CompletableFuture::runAsync); // [3]

}



public static void main(String[] args) {

// Returns right away:

new DiningPhilosophers(5); // [4]

// Keeps main() from exiting:

new Nap(3, "Shutdown");

}

}

When you stop seeing output, the program is deadlocked. Depending

on your machine configuration, however, you might not see

deadlocking. It appears this depends on the number of cores7 on your
machine. Two cores don’t seem to produce deadlocking, but more than

two appear to readily produce deadlock. This behavior makes the

example an even better demonstration of deadlock, because you might

be writing your program on a machine that has two cores (if that is

indeed what causes the issue) and become convinced that it is working

correctly, only to have it start deadlocking when you install it on a

different machine. And note that just because you can’t easily see the

deadlock doesn’t mean the program can’t deadlock on a two-core

machine. The program is still deadlock-prone, it just happens rarely—

arguably the worst situation because the problem doesn’t present itself

easily.



In the DiningPhilosophers constructor, each Philosopher is

given a reference to a left and right StickHolder. Every

Philosopher except the last one is initialized by situating that

Philosopher between the next pair of chopsticks. The last

Philosopher is given the zeroth chopstick for its right chopstick, so

the round table is completed. That’s because the last Philosopher

is sitting right next to the first one, and they both share that zeroth

chopstick. [1] shows the right-hand stick selected with a modulus of n,

wrapping the last Philosopher around to be next to the first one.

Now all Philosophers can try to eat, each waiting on the

Philosopher next to them to put down its chopstick.

To start each Philosopher running at [3], I call runAsync()

which means that the DiningPhilosophers constructor returns

right away at [4]. Without anything to keep main() from

completing, the program simply exits and doesn’t do much. The Nap

object blocks main() from exiting, then after three seconds forces an

exit from the (presumably) deadlocked program.

In the configuration as given, the Philosophers spend virtually no

time thinking. Thus they all compete for chopsticks while trying to eat,

and deadlock tends to happen quickly. You can change this:



1. Add more Philosophers by increasing the value at [4].

2. Uncomment line [1] in Philosopher.java.

Either one will make deadlock less likely, which shows the danger of

writing a concurrent program and believing it’s safe because it seems

to “run OK on my machine.” You can easily convince yourself the

program is deadlock free, even though it isn’t. This example is

interesting precisely because it demonstrates that a program can

appear to run correctly while still prone to deadlock.

To repair the problem, we observe that deadlock occurs when four

conditions are simultaneously met:

1. Mutual exclusion. At least one resource used by the tasks must

not be shareable. Here, a chopstick can be used by only one

Philosopher at a time.

2. At least one task must hold a resource and wait to acquire a

resource currently held by another task. That is, for deadlock to

occur, a Philosopher must hold one chopstick and be waiting

for a second one.

3. A resource cannot be preemptively taken away from a task. Tasks

only release resources as a normal event. Our Philosophers

are polite and they don’t grab chopsticks from other



Philosophers.

4. A circular wait can happen, whereby a task waits on a resource

held by another task, which in turn is waiting on a resource held

by another task, and so on, until one of the tasks is waiting on a

resource held by the first task, thus gridlocking everything. In

DiningPhilosophers.java, the circular wait happens

because each Philosopher tries to get the right chopstick first,

then the left.

Because all these conditions must be met to cause deadlock, you must

only prevent one of them to prohibit deadlock. In this program, an

easy way to prevent deadlock is to break the fourth condition. This

condition happens because each Philosopher tries to pick up its

chopsticks in a particular sequence: first right, then left. Because of

that, it’s possible for each Philosopher to hold its right chopstick

while waiting for the left, causing the circular wait condition. However,

if one of the Philosophers tries instead to get the left chopstick

first, that Philosopher never prevents the Philosopher on the

immediate right from picking up a chopstick, precluding the circular



wait.

In DiningPhilosophers.java, uncomment the line at [1] and

the one following it. This replaces the original philosophers[1]

with a Philosopher that has its chopsticks reversed. By ensuring

that the second Philosopher picks up and puts down the left

chopstick before the right, we remove the potential for deadlock.

This is only one solution to the problem. You can also solve it by

preventing one of the other conditions.

There is no language support to help prevent deadlock; it’s up to you

to avoid it by careful design. These are not comforting words to the

person who’s trying to debug a deadlocking program. And of course

the easiest and best way to avoid concurrency problems is never share

resources—unfortunately that’s not always possible.

Constructors are not

Thread-Safe

When you imagine the construction process, it can be easy to think



that it’s thread-safe. After all, no one can even see the new object

before it finishes initialization, so how could there be contention over

that object? Indeed, the Java Language specification (JLS) confidently states:

“There is no practical need for a constructor to be synchronized,

because it would lock the object under construction, which is

normally not made available to other threads until all constructors

for the object have completed their work.”

Unfortunately, object construction is as vulnerable to shared-memory

concurrency problems as anything else. The mechanisms can be more

subtle, however.

Consider the automatic creation of a unique identifier for each object

using a static field. To test different implementations, we’ll start

with an interface:

// concurrent/HasID.java

public interface HasID {

int getID();

}

Then implement that interface in an obvious way:

// concurrent/StaticIDField.java

public class StaticIDField implements HasID {

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.3


private static int counter = 0;

private int id = counter++;

public int getID() { return id; }

}

This is about as simple and innocuous a class as you can imagine. It

doesn’t even have an explicit constructor to cause problems. To see

what happens when we make multiple concurrent tasks that create

these objects, here’s a test harness:

// concurrent/IDChecker.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import java.util.concurrent.*;

import com.google.common.collect.Sets;

public class IDChecker {

public static final int SIZE = 100_000;

static class MakeObjects

implements Supplier<List<Integer>> {

private Supplier<HasID> gen;

MakeObjects(Supplier<HasID> gen) {



this.gen = gen;

}

@Override

public List<Integer> get() {

return

Stream.generate(gen)

.limit(SIZE)

.map(HasID::getID)

.collect(Collectors.toList());

}

}

public static void test(Supplier<HasID> gen) {

CompletableFuture<List<Integer>>

groupA = CompletableFuture

.supplyAsync(new MakeObjects(gen)),

groupB = CompletableFuture

.supplyAsync(new MakeObjects(gen));

groupA.thenAcceptBoth(groupB, (a, b) -> {

System.out.println(

Sets.intersection(



Sets.newHashSet(a),

Sets.newHashSet(b)).size());

}).join();

}

}

The MakeObjects class is a Supplier with a get() that

produces a List<Integer> . This List is generated by extracting

the id from each HasID object. The test() method creates two

parallel CompletableFutures that run MakeObjects suppliers,

then takes the results of each and uses the Guava library

Sets.intersection() to find out how many ids are common

between the two List<Integer> (Guava is much faster than using

retainAll()).

Now we can test the StaticIDField:

// concurrent/TestStaticIDField.java

public class TestStaticIDField {

public static void main(String[] args) {

IDChecker.test(StaticIDField::new);

}

}



/* Output:

13287

*/

That’s a rather large number of duplicates. Clearly, a plain static

int is not safe to use for construction. Let’s make it thread-safe using

an AtomicInteger:

// concurrent/GuardedIDField.java

import java.util.concurrent.atomic.*;

public class GuardedIDField implements HasID {

private static AtomicInteger counter =

new AtomicInteger();

private int id = counter.getAndIncrement();

public int getID() { return id; }

public static void main(String[] args) {

IDChecker.test(GuardedIDField::new);

}

}

/* Output:

0

*/



Constructors have an even more subtle way to share state: through

constructor arguments:

// concurrent/SharedConstructorArgument.java

import java.util.concurrent.atomic.*;

interface SharedArg {

int get();

}

class Unsafe implements SharedArg {

private int i = 0;

public int get() { return i++; }

}

class Safe implements SharedArg {

private static AtomicInteger counter =

new AtomicInteger();

public int get() {

return counter.getAndIncrement();

}

}

class SharedUser implements HasID {

private final int id;



SharedUser(SharedArg sa) {

id = sa.get();

}

@Override

public int getID() { return id; }

}

public class SharedConstructorArgument {

public static void main(String[] args) {

Unsafe unsafe = new Unsafe();

IDChecker.test(() -> new SharedUser(unsafe));

Safe safe = new Safe();

IDChecker.test(() -> new SharedUser(safe));

}

}

/* Output:

24838

0

*/

Here, the SharedUser constructors share the same argument. Even

though SharedUser is using its argument in a completely innocent



and reasonable fashion, the way the constructor is called causes

collisions. SharedUser cannot even know it is being used this way,

much less control it!

synchronized constructors are not supported by the language, but

it’s possible to create your own using a synchronized block (see

the Appendix: Low-Level Concurrency to learn about the

synchronized keyword). Although the JLS states that “… it would

lock the object under construction”, this is not true—the constructor is

effectively a static method, so a synchronized constructor

would actually lock the class object. We can reproduce this by creating

our own static object and locking on that:

// concurrent/SynchronizedConstructor.java

import java.util.concurrent.atomic.*;

class SyncConstructor implements HasID {

private final int id;

private static Object

constructorLock = new Object();

SyncConstructor(SharedArg sa) {

synchronized(constructorLock) {

id = sa.get();



}

}

@Override

public int getID() { return id; }

}

public class SynchronizedConstructor {

public static void main(String[] args) {

Unsafe unsafe = new Unsafe();

IDChecker.test(() ->

new SyncConstructor(unsafe));

}

}

/* Output:

0

*/

The shared use of the Unsafe class is now safe.

An alternate approach is to make the constructors private (thus



preventing inheritance) and provide a static Factory Method to

produce new objects:

// concurrent/SynchronizedFactory.java

import java.util.concurrent.atomic.*;

final class SyncFactory implements HasID {

private final int id;

private SyncFactory(SharedArg sa) {

id = sa.get();

}

@Override

public int getID() { return id; }

public static synchronized

SyncFactory factory(SharedArg sa) {

return new SyncFactory(sa);

}

}



public class SynchronizedFactory {

public static void main(String[] args) {

Unsafe unsafe = new Unsafe();

IDChecker.test(() ->

SyncFactory.factory(unsafe));

}

}

/* Output:

0

*/

By synchronizing the static Factory Method you lock on the class

object during construction.

These examples emphasize how insidiously difficult it is to detect and

manage shared state in concurrent Java programs. Even if you take

the “share nothing” strategy, it’s remarkably easy for accidental

sharing to take place.

Effort, Complexity,

Cost

Suppose you are making a pizza. The amount of work required to get

from the current step in the process to the next one is represented here



as part of an enumeration:

// concurrent/Pizza.java

import java.util.function.*;

import onjava.Nap;

public class Pizza {

public enum Step {

DOUGH(4), ROLLED(1), SAUCED(1), CHEESED(2),

TOPPED(5), BAKED(2), SLICED(1), BOXED(0);

int effort; // Needed to get to the next step

Step(int effort) { this.effort = effort; }

Step forward() {

if(equals(BOXED)) return BOXED;

new Nap(effort * 0.1);

return values()[ordinal() + 1];

}

}

private Step step = Step.DOUGH;

private final int id;

public Pizza(int id) { this.id = id; }

public Pizza next() {



step = step.forward();

System.out.println("Pizza " + id + ": " + step);

return this;

}

public Pizza next(Step previousStep) {

if(!step.equals(previousStep))

throw new IllegalStateException("Expected " +

previousStep + " but found " + step);

return next();

}

public Pizza roll() { return next(Step.DOUGH); }

public Pizza sauce() { return next(Step.ROLLED); }

public Pizza cheese() { return next(Step.SAUCED); }

public Pizza toppings() { return next(Step.CHEESED); }

public Pizza bake() { return next(Step.TOPPED); }

public Pizza slice() { return next(Step.BAKED); }

public Pizza box() { return next(Step.SLICED); }

public boolean complete() {

return step.equals(Step.BOXED);

}



@Override

public String toString() {

return "Pizza" + id + ": " +

(step.equals(Step.BOXED)? "complete" : step);

}

}

This is another trivial state machine, like Machina.java. The

endpoint is reached when the pizza is in a box.

If one person is making one pizza, all the steps happen linearly, one

after the other:

// concurrent/OnePizza.java

import onjava.Timer;

public class OnePizza {

public static void main(String[] args) {

Pizza za = new Pizza(0);

System.out.println(

Timer.duration(() -> {

while(!za.complete())

za.next();

}));



}

}

/* Output:

Pizza 0: ROLLED

Pizza 0: SAUCED

Pizza 0: CHEESED

Pizza 0: TOPPED

Pizza 0: BAKED

Pizza 0: SLICED

Pizza 0: BOXED

1622

*/

The time is in milliseconds and agrees with what we’d expect by

adding up the effort for all the steps.

If you made five pizzas this way, you’d expect it to take five times as

long. But what if that isn’t fast enough for you? We can start by trying

the parallel stream approach:

// concurrent/PizzaStreams.java

import java.util.*;

import java.util.stream.*;



import onjava.Timer;

public class PizzaStreams {

static final int QUANTITY = 5;

public static void main(String[] args) {

Timer timer = new Timer();

IntStream.range(0, QUANTITY)

.mapToObj(Pizza::new)

.parallel() // [1]

.forEach(za -> {

while(!za.complete())

za.next();

});

System.out.println(timer.duration());

}

}

/* Output:

Pizza 2: ROLLED

Pizza 0: ROLLED

Pizza 1: ROLLED

Pizza 4: ROLLED



Pizza 3: ROLLED

Pizza 2: SAUCED

Pizza 1: SAUCED

Pizza 0: SAUCED

Pizza 4: SAUCED

Pizza 3: SAUCED

Pizza 2: CHEESED

Pizza 1: CHEESED

Pizza 0: CHEESED

Pizza 4: CHEESED

Pizza 3: CHEESED

Pizza 2: TOPPED

Pizza 1: TOPPED

Pizza 0: TOPPED

Pizza 4: TOPPED

Pizza 3: TOPPED

Pizza 2: BAKED

Pizza 1: BAKED

Pizza 0: BAKED

Pizza 4: BAKED



Pizza 3: BAKED

Pizza 2: SLICED

Pizza 1: SLICED

Pizza 0: SLICED

Pizza 4: SLICED

Pizza 3: SLICED

Pizza 2: BOXED

Pizza 1: BOXED

Pizza 0: BOXED

Pizza 4: BOXED

Pizza 3: BOXED

1739

*/

Now we’ve created five pizzas in about the same amount of time as it

took to create a single pizza. Try removing the line marked [1] to verify

that it takes five times longer otherwise. Also try changing QUANTITY

to 4, 8, 10, 16, and 17 to see the difference, and guess why it happens

that way.

PizzaStreams.java does all the work inside its forEach().

Would it make any difference if we mapped the individual steps?



// concurrent/PizzaParallelSteps.java

import java.util.*;

import java.util.stream.*;

import onjava.Timer;

public class PizzaParallelSteps {

static final int QUANTITY = 5;

public static void main(String[] args) {

Timer timer = new Timer();

IntStream.range(0, QUANTITY)

.mapToObj(Pizza::new)

.parallel()

.map(Pizza::roll)

.map(Pizza::sauce)

.map(Pizza::cheese)

.map(Pizza::toppings)

.map(Pizza::bake)

.map(Pizza::slice)

.map(Pizza::box)

.forEach(za -> System.out.println(za));

System.out.println(timer.duration());



}

}

/* Output:

Pizza 2: ROLLED

Pizza 0: ROLLED

Pizza 1: ROLLED

Pizza 4: ROLLED

Pizza 3: ROLLED

Pizza 1: SAUCED

Pizza 0: SAUCED

Pizza 2: SAUCED

Pizza 3: SAUCED

Pizza 4: SAUCED

Pizza 1: CHEESED

Pizza 0: CHEESED

Pizza 2: CHEESED

Pizza 3: CHEESED

Pizza 4: CHEESED

Pizza 0: TOPPED

Pizza 2: TOPPED



Pizza 1: TOPPED

Pizza 3: TOPPED

Pizza 4: TOPPED

Pizza 1: BAKED

Pizza 2: BAKED

Pizza 0: BAKED

Pizza 4: BAKED

Pizza 3: BAKED

Pizza 0: SLICED

Pizza 2: SLICED

Pizza 1: SLICED

Pizza 3: SLICED

Pizza 4: SLICED

Pizza 1: BOXED

Pizza1: complete

Pizza 2: BOXED

Pizza 0: BOXED

Pizza2: complete

Pizza0: complete

Pizza 3: BOXED



Pizza 4: BOXED

Pizza4: complete

Pizza3: complete

1738

*/

The answer is “no,” and in hindsight this is not surprising because

each pizza requires the steps to be executed in order, so there’s no

opportunity for a further speedup by doing things in discrete steps as

in PizzaParallelSteps.java.

We can rewrite the example using CompletableFutures:

// concurrent/CompletablePizza.java

import java.util.*;

import java.util.concurrent.*;

import java.util.stream.*;

import onjava.Timer;

public class CompletablePizza {

static final int QUANTITY = 5;

public static CompletableFuture<Pizza>

makeCF(Pizza za) {

return CompletableFuture



.completedFuture(za)

.thenApplyAsync(Pizza::roll)

.thenApplyAsync(Pizza::sauce)

.thenApplyAsync(Pizza::cheese)

.thenApplyAsync(Pizza::toppings)

.thenApplyAsync(Pizza::bake)

.thenApplyAsync(Pizza::slice)

.thenApplyAsync(Pizza::box);

}

public static void

show(CompletableFuture<Pizza> cf) {

try {

System.out.println(cf.get());

} catch(Exception e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

Timer timer = new Timer();

List<CompletableFuture<Pizza>> pizzas =



IntStream.range(0, QUANTITY)

.mapToObj(Pizza::new)

.map(CompletablePizza::makeCF)

.collect(Collectors.toList());

System.out.println(timer.duration());

pizzas.forEach(CompletablePizza::show);

System.out.println(timer.duration());

}

}

/* Output:

169

Pizza 0: ROLLED

Pizza 1: ROLLED

Pizza 2: ROLLED

Pizza 4: ROLLED

Pizza 3: ROLLED

Pizza 1: SAUCED

Pizza 0: SAUCED

Pizza 2: SAUCED

Pizza 4: SAUCED



Pizza 3: SAUCED

Pizza 0: CHEESED

Pizza 4: CHEESED

Pizza 1: CHEESED

Pizza 2: CHEESED

Pizza 3: CHEESED

Pizza 0: TOPPED

Pizza 4: TOPPED

Pizza 1: TOPPED

Pizza 2: TOPPED

Pizza 3: TOPPED

Pizza 0: BAKED

Pizza 4: BAKED

Pizza 1: BAKED

Pizza 3: BAKED

Pizza 2: BAKED

Pizza 0: SLICED

Pizza 4: SLICED

Pizza 1: SLICED

Pizza 3: SLICED



Pizza 2: SLICED

Pizza 4: BOXED

Pizza 0: BOXED

Pizza0: complete

Pizza 1: BOXED

Pizza1: complete

Pizza 3: BOXED

Pizza 2: BOXED

Pizza2: complete

Pizza3: complete

Pizza4: complete

1797

*/

Parallel streams and CompletableFutures are the most well-

developed techniques in the Java concurrency toolbox. You should

always choose one of these first. The parallel stream approach is most

appropriate when a problem is embarrassingly parallel, that is, when

it is trivially easy to break your data into identical, easy-to-process

pieces (when doing this yourself you must roll up your sleeves and

delve into the Spliterator documentation).



CompletableFutures work best when the pieces of work are

distinct. CompletableFuture seems more task-oriented than

data-oriented.

With the pizza problem, the results don’t seem that different—in fact,

the parallel stream approach looks cleaner, and for that reason alone I

find parallel streams more attractive as a first attempt.

It takes a certain amount of time to make a pizza. No matter what

concurrency approach you use, the best you can do is create n pizzas in

the same amount of time it takes to create one pizza. It’s easy to see

that here, but when you’re working on a more sophisticated problem

you can miss it. Often, a back-of-the-envelope calculation at the

beginning of a project quickly shows the maximum possible

throughput, which prevents you from spinning your wheels trying to

make it faster.

If you really do need to use concurrency, parallel Streams and

CompletableFutures might easily produce significant benefits,



but be careful when trying to push it further. The cost and effort can

easily become far greater than any advantages you might wring out.

Summary

The only justification for concurrency is “too much waiting.” This can

also include the responsiveness of user interfaces, but as Java is

effectively not used to build user interfaces, 8 this simply means “your
program isn’t running fast enough.”

If concurrency were easy, there would be no reason to avoid it.

Because it is hard, you should consider carefully whether it’s worth the

effort. Can you speed things up some other way? For example, move to

faster hardware (which can be a lot less expensive than lost

programmer time) or break your program into pieces and run those

pieces on different machines?

Occam’s (or Ockham’s) razor is an oft-misunderstood principle. I’ve

seen at least one movie where they define it as “the simplest solution is

the correct one,” as if it’s some kind of law. It’s actually a guideline:

When faced with a number of approaches, first try the one that

requires the fewest assumptions. In the programming world, this has

evolved into “try the simplest thing that could possibly work.” When

you know something about a particular tool—as you now know



something about concurrency—it can be quite tempting to use it, or to

specify ahead of time that your solution must “run fast,” to justify

designing in concurrency from the beginning. But our programming

version of Occam’s razor says that you should try the simplest

approach first (which will also be cheaper to develop) and see if it’s

good enough.

As I came from a low-level background (physics and computer

engineering), I was prone to imagining the cost of all the little wheels

turning. I can’t count the number of times I was certain the simplest

approach could never be fast enough, only to discover upon trying that

it was more than adequate.

Drawbacks

The main drawbacks to concurrency are:

1. Slowdown while threads wait for shared resources.

2. Additional CPU overhead for thread management.

3. Unrewarded complexity from poor design decisions.

4. Pathologies such as starving, racing, deadlock, and livelock



(multiple threads working individual tasks that the ensemble can’t

finish).

5. Inconsistencies across platforms. With some examples, I

discovered race conditions that quickly appeared on some

computers but not on others. If you develop a program on the

latter, you might get badly surprised when you distribute it.

In addition, there’s an art to the application of concurrency. Java is

designed to allow you to create as many objects as necessary to solve

your problem—at least in theory.9 However, Threads are not typical objects:
each has its own execution environment including a stack and

other necessary elements, making it much larger than a normal object.

In most environments it’s only possible to create a few thousand

Thread objects before running out of memory. You normally only

need a handful of threads to solve a problem, so this is typically not

much of a limit, but for some designs it becomes a constraint that

might force you to use an entirely different scheme.

The Shared-Memory Pitfall

One of the main difficulties with concurrency occurs because more

than one task might be sharing a resource—such as the memory in an

object—and you must ensure that multiple tasks don’t simultaneously

read and change that resource.



I have spent years studying and struggling with concurrency. I’ve

learned you can never believe that a program using shared-memory

concurrency is working correctly. You can discover it’s wrong, but you

can never prove it’s right. This is one of the well-know maxims of

concurrency. 10

I’ve met numerous people who have an impressive amount of

confidence in their ability to write correct threaded programs. I

occasionally start thinking I can get it right, too. For one particular

program, I initially wrote it when we only had single-CPU machines. I

was able to convince myself that, because of the promises I thought I

understood about Java tools, the program was correct. And it didn’t

fail on my single-CPU machine.

Fast forward to machines with multiple CPUs. I was surprised when

the program broke, but that’s one of the problems. It’s not Java’s fault;

“write once, run everywhere” cannot possibly extend to concurrency

on single vs. multicore machines. It’s a fundamental problem with

concurrency. You can actually discover some concurrency problems on

a single-CPU machine, but there are other problems that won’t appear

until you try it on a multi-CPU machine, where your threads are

actually running in parallel.



As another example, the dining philosophers problem can easily be

adjusted so deadlock rarely happens, giving you the impression that

everything is copacetic.

You can never let yourself become too confident about your

programming abilities when it comes to shared-memory concurrency.

This Albatross is Big

If feel overwhelmed about Java concurrency, it turns out you’re in

good company. Go to the Javadoc page for the Thread class. Now look and
see how many of the methods are Deprecated. These are

things that the Java language designers got wrong, because they

didn’t understand enough about concurrency when they were

designing the language.

A number of library solutions added in subsequent versions of Java

have turned out to be ineffective or even useless. Fortunately, both

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


parallel Streams and CompletableFutures in Java 8 are quite

valuable, but you will still encounter the old solutions when you work

with legacy code.

Elsewhere in this book I’ve talked about one of the essential problems

in Java: every failed experiment is forever embedded in the language

or library. Java concurrency emphasizes this issue. It’s not so much

that there are lots of mistakes—although there are those—as there are

lots of different attempts to solve the problem. The upside is that these

attempts have yielded better and simpler designs. The downside is that

you can easily get lost in the older designs before finding your way to

the good stuff.

Other Libraries

This chapter focused on the relatively safe and easy tools of parallel

streams and CompletableFutures and only touched on some of

the more fine-grained tools in the Java standard library. To keep from

overwhelming you, I didn’t cover some libraries you might actually use

in practice. We used a couple of the Atomic classes,



ConcurrentLinkedDeque, ExecutorService and

ArrayBlockingQueue. The Appendix: Low-Level Concurrency

covers a few others, but you’ll also want to explore the

java.util.concurrent Javadocs. Be wary, however, as some of

the library components have been superseded with new and better

ones.

Consider a Language

Designed for Concurrency

In general, use concurrency carefully and sparingly. If you need to use

it, try as hard as possible to use the most modern approaches: parallel

streams or CompletableFutures. These are designed to—as much

as possible given Java’s world—keep you out of trouble, assuming you

don’t attempt to share memory.

If your concurrency issues get larger and more complex than what

high-level Java constructs can support, consider using a language

designed for concurrency. It might be possible to use such a language

only for the portions of your program that demand concurrency. At

this writing, the purest functional languages on the JVM are Clojure (a

version of Lisp) and Frege (an implementation of Haskell). These

allow you to write the concurrent parts of your application in that



language and easily interact with your main Java code via the JVM.

Alternatively, you might choose the more complex approach of

communicating off-JVM via a foreign function interface (FFI) to a

different language that is designed for concurrency. 11

Its easy to become attached to a language and contort yourself trying

to do everything using that language. A common example is building

HTML/JavaScript user interfaces; those tools are indeed ugly and

unpleasant to use, and there are numerous libraries that allow you to

generate those by writing code in your favorite language (for example,

Scala.js allows you to do it in Scala).

Mental convenience is a valid consideration. However, I hope I’ve

shown in this chapter (and the Appendix: Low-Level Concurrency) that Java
concurrency is a deep hole from which you might not escape.

The knowledge required to visually inspect code while remembering

all the pitfalls is more difficult than for any other part of the Java

language.

Regardless of how simple concurrency can seem using a particular



language or library, consider it a black art. There’s always something

that can bite you when you least expect it.

Further Reading

Java Concurrency in Practice, by Brian Goetz, Tim Peierls, Joshua

Bloch, Joseph Bowbeer, David Holmes, and Doug Lea (Addison-

Wesley, 2006)—basically, the “who’s who” in the Java concurrency

world.

Concurrent Programming in Java, Second Edition, by Doug Lea

(Addison-Wesley, 2000). Although this book significantly predates

Java 5, much of Doug’s work became the java.util.concurrent

libraries, so this book is essential for a complete understanding of

concurrency issues. It goes beyond Java and discusses concurrency

across languages and technologies. Although it can be obtuse in places,

it merits rereading several times (preferably with months in between

to internalize the information). Doug is one of the few people in the

world who actually understands concurrency, so this is a worthwhile

endeavor.

1. Eric Raymond, for example, makes a strong case in The Art of

UNIX Programming (Addison-Wesley, 2004). ↩

2. It could be argued that trying to bolt concurrency onto a



sequential language is a doomed approach, but you’ll have to draw

your own conclusions. ↩

3. There is talk of making some similarly fundamental

improvements in Java 10 around generics, which would be quite

amazing↩

4. This is an interesting, albeit inconsistent, approach. Normally we

expect different behavior on a common interface to be expressed

with an explicit class↩

5. And no, there can never be a pure functional Java. The best we

can hope for is an entirely new language that runs on the JVM.↩

6. You can also have livelock when two tasks are able to change their

state so that they don’t block, but they never make any useful

progress.↩

7. Not hyperthreads; there are often two hyperthreads per core and

when asked for the number of cores, the version of Java used for

this book would report the number of hyperthreads instead.

Hyperthreads produce much faster context switching, but only

actual cores do the work. ↩

8. The libraries are there and the language was intended to be used

for this purpose but in practice it happens so rarely as to be able



to say “never.” ↩

9. Creating millions of objects for finite-element analysis in

engineering, for example, might not be practical in Java without

the Flyweight design pattern.↩

10. In science, a theory is never proved, but to be valid it must be

falsifiable. With concurrency, we can’t even get falsifiability most

of the time.↩

11. Although the Go language shows promise with FFIs, at this

writing it did not provide a solution across all platforms.↩

Patterns

The object-oriented design patterns

movement is chronicled in the book

Design Patterns, by Gamma, Helm,

Johnson & Vlissides (Addison-Wesley



1995). 1

That book shows 23 different solutions to particular classes of

problems. In this chapter, the basic concepts of design patterns are

introduced through examples. This should whet your appetite to read

Design Patterns (a source of what has become an important

vocabulary for OOP programmers).

The latter part of this chapter contains an example of the design

evolution process, starting with an initial solution and moving through

the logic and process of evolving the solution to more appropriate

designs. The program shown (a trash sorting simulation) has evolved

over time, and you can look at that evolution as a prototype for the

way your own design can start as an adequate solution to a particular

problem and evolve into a flexible approach to a class of problems.

The Pattern Concept

Initially, you can think of a pattern as an especially clever and

insightful way of solving a particular class of problems. That is, it looks

like many people have worked out all the angles of a problem and have

come up with the most general, flexible solution for it. The problem

could be one you have seen and solved before, but your solution

probably didn’t have the kind of completeness you’ll see embodied in a



pattern.

Although they’re called “design patterns,” they really aren’t tied to the

realm of design. A pattern seems to stand apart from the traditional

way of thinking about analysis, design, and implementation. Instead, a

pattern embodies a complete idea within a program, and thus it can

sometimes appear at the analysis phase or high-level design phase.

Because a pattern has a direct implementation in code, you might not

expect it to show up before low-level design or implementation (and

often you don’t realize you need a particular pattern until you get to

those phases).

The basic concept of a pattern can also be seen as the basic concept of

program design: adding a layer of abstraction. Whenever you abstract

something you’re isolating particular details, and one of the most

compelling motivations behind this is to:

Separate things that change from things

that stay the same.

Another way to put this is that once you find some part of your

program that’s likely to change for one reason or another, you’ll keep

those changes from propagating other changes throughout your code.

If code is simpler to understand, it is cheaper to maintain.



Often, the most difficult part of developing an elegant and cheap-to-

maintain design is in discovering what I call the vector of change.

(Here, “vector” refers to the maximum gradient and not a collection

class.) This means finding the most important thing that changes in

your system, or put another way, discovering where your greatest cost

is. Once you discover the vector of change, you have the focal point

around which to structure your design.

So the goal of design patterns is to isolate changes in your code. If you

look at it this way, you’ve already seen design patterns in this book.

For example, inheritance can be thought of as a design pattern (albeit

one implemented by the compiler). It allows you to express differences

in behavior (that’s the thing that changes) in objects that all have the

same interface (that’s what stays the same). Composition can also be

considered a pattern, since it allows you to change—dynamically or

statically—the objects that implement your class, and thus the way

that class works.

You’ve also seen another pattern that appears in Design Patterns: the

iterator (Java 1.0 and 1.1 capriciously called it the Enumeration;

Java 2 collections use Iterator). This hides the particular

implementation of the collection as you’re stepping through and



selecting the elements one by one. The iterator allows you to write

generic code that performs an operation on all elements in a sequence

without regard to the way that sequence is built. Thus your generic

code can be used with any collection that can produce an iterator.

Although patterns are very helpful, some people assert that:

Design patterns represent language

failures.

This is an important insight. Just because a pattern makes sense in

C++, for example it might not be necessary in Java or in another

language. For that reason, just because a pattern appears in the Design

Patterns book, it doesn’t mean it is helpful when applied to your

language.

I find the “language failure” observation useful, but I also think it’s an

oversimplification. If you’re trying to solve a particular problem and

the language doesn’t have direct support for the technique you’re

using, you could argue that it’s a failure of the language. But how often

do you actually use that particular technique? Perhaps the balance is



just right: while you must work harder when you use the technique,

maybe you don’t need it enough to justify including support in the

language. On the other hand, without language support, it might be

too messy to use the technique on a regular basis, but with language

support you might change the way you program (Java 8 streams

achieve this, for example).

Singleton

Possibly the simplest design pattern is the Singleton, which is a way to

provide one and only one instance of an object. This is used in the Java

libraries, but here’s a more direct example:

// patterns/SingletonPattern.java

interface Resource {

int getValue();

void setValue(int x);

}

// Since this isn't inherited from a Cloneable

// base class and cloneability isn't added,

// making it final prevents cloneability from

// being added through inheritance. This also

// implements thread-safe lazy initialization:



final class Singleton {

private static final class

ResourceImpl implements Resource {

private int i;

private ResourceImpl(int i) {

this.i = i;

}

public synchronized int getValue() {

return i;

}

public synchronized void setValue(int x) {

i = x;

}

}

private static class ResourceHolder {

private static Resource resource =

new ResourceImpl(47);

}

public static Resource getResource() {

return ResourceHolder.resource;



}

}

public class SingletonPattern {

public static void main(String[] args) {

Resource r = Singleton.getResource();

System.out.println(r.getValue());

Resource s2 = Singleton.getResource();

s2.setValue(9);

System.out.println(r.getValue());

try {

// Can't do this: compile-time error.

// Singleton s3 = (Singleton)s2.clone();

} catch(Exception e) {

throw new RuntimeException(e);

}

}

}

/* Output:

47

9



*/

The key to creating a singleton is to prevent the client programmer

from creating an object directly. Here, this is accomplished by making

the implementation of Resource a private class inside Singleton.

At this point, you decide how you’re going to create your object. Here,

it’s created on demand, the first time the client programmer asks for

one. The object should be stored privately, accessed only through the

public getResource() method.

The reason the object is created lazily is that the nested private

class resourceHolder is not loaded until it is first referenced

(within getResource()). When it loads, the static initializers

are called. Because of the way the JVM works, this static

initialization is thread-safe. To complete the thread-safety, the getters

and setters in Resource are synchronized.

For non-lazy (a.k.a. eager) initialization, simply move the definition of

resource outside of ResourceHolder.

Java also allows the creation of objects through cloning (see the



Appendix: Passing and Returning Objects). In this example, making the class
final prevents cloning. Since Singleton is inherited

directly from Object, the clone() method remains protected

so it cannot be used (doing so produces a compile-time error).

However, if you’re inheriting from a class hierarchy that has

overridden clone() as public and implemented Cloneable, the

way to prevent cloning is to override clone() and throw a

CloneNotSupportedException as described in the Appendix:

Passing and Returning Objects. (You can also override clone() and

simply return this, but that’s deceiving since the client programmer

thinks they are cloning the object, but instead are still dealing with the

original.)

Note you aren’t restricted to creating only one object. This is also a

technique to create a limited pool of objects. In that situation,

however, you can be confronted with the problem of sharing objects in

the pool. If this is an issue, you can create a solution involving a check-

out and check-in of the shared objects.

Classifying Patterns

The Design Patterns book discusses 23 different patterns, classified under
three purposes (all of which revolve around the particular

aspect that can vary). The three purposes are:



1. Creational: How an object is created. This often involves

isolating the details of object creation so your code isn’t

dependent on what types of objects there are and thus doesn’t

change when you add a new type of object. The Singleton is

classified as a creational pattern, and later in this chapter you’ll

see examples of Factory Method.

2. Structural: Designing objects to satisfy particular project

constraints. These work with the way objects are connected with

other objects to ensure that changes in the system don’t require

changes to those connections.

3. Behavioral: Objects that handle particular types of actions

within a program. These encapsulate processes to perform, such

as interpreting a language, fulfilling a request, moving through a

sequence (as in an iterator), or implementing an algorithm. This

chapter contains examples of the Observer and the Visitor

patterns.

The Design Patterns book has a section on each of its 23 patterns

along with one or more examples for each, typically in C++ but

sometimes in SmallTalk. This chapter does not repeat all the patterns

shown in Design Patterns since that book stands on its own and



should be studied separately. Instead, you’ll see some examples that

should provide you with a decent feel for what patterns are about and

why they are so important.

After years of looking at these things, it began to occur to me that the

patterns themselves use basic principles of organization, other than

(and more fundamental than) those described in Design Patterns.

These principles are based on the structure of the implementations,

which is where I have seen great similarities between patterns (more

than those expressed in Design Patterns). Although we generally try to

avoid implementation in favor of interface, I find it’s often easier to

think about, and especially to learn about, the patterns in terms of

these structural principles. This chapter will attempt to present the

patterns based on their structure instead of the categories presented in



Design Patterns.

Building Application

Frameworks

An application framework allows you to start with a class or set of

classes and create a new application, reusing most of the code in the

existing classes and overriding one or more methods to customize the

application to your needs.

Template Method

A fundamental concept in the application framework is the Template

Method, which is typically hidden beneath the covers and drives the

application by calling the various methods in the base class (some of

which you have overridden to create the application).

An important characteristic of the Template Method is it is defined in

the base class and cannot be changed. It’s sometimes a private

method but it’s virtually always final. It calls other base-class

methods (the ones you override) to do its job, but it is usually called

only as part of an initialization process (and thus the client

programmer isn’t necessarily able to call it directly).

// patterns/TemplateMethod.java

// Simple demonstration of Template Method



import java.util.stream.*;

abstract class ApplicationFramework {

ApplicationFramework() {

templateMethod();

}

abstract void customize1();

abstract void customize2();

// "private" means automatically "final":

private void templateMethod() {

IntStream.range(0, 5).forEach(

n -> { customize1(); customize2(); });

}

}

// Create a new "application":

class MyApp extends ApplicationFramework {

@Override

void customize1() {

System.out.print("Hello ");

}

@Override



void customize2() {

System.out.println("World!");

}

}

public class TemplateMethod {

public static void main(String[] args) {

new MyApp();

}

}

/* Output:

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

*/

The base-class constructor is responsible for performing the necessary

initialization, then starting the “engine” (the template method) that

runs the application (in a GUI application, this “engine” is the main

event loop). The client programmer simply provides definitions for



customize1() and customize2() and the “application” is ready

to run.

Fronting for an

Implementation

Both Proxy and Bridge provide a surrogate class you use in your code;

the real class that does the work is hidden behind this surrogate class.

When you call a method in the surrogate, it simply turns around and

calls the method in the implementing class. These two patterns are so



similar that the Proxy is simply a special case of Bridge. One is

tempted to just lump the two together into a pattern called Surrogate,

but the term “proxy” has a long-standing and specialized meaning,

which probably explains the reason for the two different patterns.

The basic idea is simple: from a base class, the surrogate is derived

along with the class or classes that provide the actual implementation:

When a surrogate object is created, it is given an implementation to

send all of its method calls.

Structurally, the difference between Proxy and Bridge is simple: a

Proxy has only one implementation, while Bridge has more than one.

The application of the patterns is considered (in Design Patterns) to

be distinct: Proxy is used to control access to its implementation,

while Bridge allows you to change the implementation dynamically.

However, if you expand your notion of “controlling access to

implementation” then the two fit neatly together.

Proxy

If we implement Proxy by following the above diagram, it looks like



this:

// patterns/ProxyDemo.java

// Simple demonstration of the Proxy pattern

interface ProxyBase {

void f();

void g();

void h();

}

class Proxy implements ProxyBase {

private ProxyBase implementation;

Proxy() {

implementation = new Implementation();

}

// Pass method calls to the implementation:

@Override

public void f() { implementation.f(); }

@Override

public void g() { implementation.g(); }

@Override

public void h() { implementation.h(); }



}

class Implementation implements ProxyBase {

public void f() {

System.out.println("Implementation.f()");

}

public void g() {

System.out.println("Implementation.g()");

}

public void h() {

System.out.println("Implementation.h()");

}

}

public class ProxyDemo {

public static void main(String[] args) {

Proxy p = new Proxy();

p.f();

p.g();



p.h();

}

}

/* Output:

Implementation.f()

Implementation.g()

Implementation.h()

*/

It isn’t necessary that Implementation have the same interface as

Proxy; as long as Proxy is somehow “speaking for” the class it refers

method calls to, then the basic idea is satisfied. However, it is

convenient to have a common interface so Implementation is

forced to fulfill all the methods that Proxy must call.

State

The State pattern adds more implementations to Proxy, along with a

way to switch from one implementation to another during the lifetime

of the surrogate:

// patterns/StateDemo.java

// Simple demonstration of the State pattern

interface StateBase {



void f();

void g();

void h();

void changeImp(StateBase newImp);

}

class State implements StateBase {

private StateBase implementation;

State(StateBase imp) {

implementation = imp;

}

@Override

public void changeImp(StateBase newImp) {

implementation = newImp;

}

// Pass method calls to the implementation:

@Override

public void f() { implementation.f(); }

@Override

public void g() { implementation.g(); }

@Override



public void h() { implementation.h(); }

}

class Implementation1 implements StateBase {

@Override

public void f() {

System.out.println("Implementation1.f()");

}

@Override

public void g() {

System.out.println("Implementation1.g()");

}

@Override

public void h() {

System.out.println("Implementation1.h()");

}

@Override

public void changeImp(StateBase newImp) {}

}

class Implementation2 implements StateBase {

@Override



public void f() {

System.out.println("Implementation2.f()");

}

@Override

public void g() {

System.out.println("Implementation2.g()");

}

@Override

public void h() {

System.out.println("Implementation2.h()");

}

@Override

public void changeImp(StateBase newImp) {}

}

public class StateDemo {

static void test(StateBase b) {

b.f();

b.g();

b.h();

}



public static void main(String[] args) {

StateBase b =

new State(new Implementation1());

test(b);

b.changeImp(new Implementation2());

test(b);

}

}

/* Output:

Implementation1.f()

Implementation1.g()

Implementation1.h()

Implementation2.f()

Implementation2.g()

Implementation2.h()

*/

In main(), the first implementation is used for a bit, then the second

implementation is swapped in.

The difference between Proxy and State is in the problems they solve.

The common uses for Proxy as described in Design Patterns are:



1. Remote proxy. This proxies for an object in a different address

space. A remote proxy is created for you automatically by the

Remote Method Invocation (RMI) compiler rmic.

2. Virtual proxy. This provides “lazy initialization” to create

expensive objects on demand.

3. Protection proxy. Used when you don’t want the client

programmer to have full access to the proxied object.

4. Smart reference. To add additional actions when the proxied

object is accessed. For example, to keep track of the number of

references held for a particular object, to implement the copy-on-

write idiom and prevent object aliasing. A simpler example is

keeping track of the number of calls to a particular method.

You can look at a Java reference as a kind of protection proxy, since it

controls access to the actual object on the heap (and ensures, for

example, that you don’t use a null reference).

In Design Patterns, Proxy and Bridge are not seen as related to each other
because the two are given (what I consider arbitrarily) different



structures. Bridge, in particular, uses a separate implementation

hierarchy but this seems unnecessary to me, unless you have decided

that the implementation is not under your control (certainly a

possibility, but if you own all the code there’s no reason not to benefit

from the elegance and helpfulness of the single base class). In

addition, Proxy need not use the same base class for its

implementation, as long as the proxy object is controlling access to the

object for which it “fronts.” Regardless of the specifics, in both Proxy

and Bridge a surrogate is passing method calls through to an

implementation object.

StateMachine

While Bridge allows the client programmer to change the

implementation, StateMachine imposes a structure to automatically

change the implementation from one object to the next. The current

implementation represents the state that a system is in, and the

system behaves differently from one state to the next (because it uses

Bridge). Basically, this is a “state machine” using objects.

The code that moves the system from one state to the next is often a

Template Method, as seen in this example:

// patterns/state/StateMachineDemo.java



// The StateMachine pattern and Template method

// {java patterns.state.StateMachineDemo}

package patterns.state;

import onjava.Nap;

interface State {

void run();

}

abstract class StateMachine {

protected State currentState;

protected abstract boolean changeState();

// Template method:

protected final void runAll() {

while(changeState()) // Customizable

currentState.run();

}

}

// A different subclass for each state:

class Wash implements State {

@Override

public void run() {



System.out.println("Washing");

new Nap(0.5);

}

}

class Spin implements State {

@Override

public void run() {

System.out.println("Spinning");

new Nap(0.5);

}

}

class Rinse implements State {

@Override

public void run() {

System.out.println("Rinsing");

new Nap(0.5);

}

}

class Washer extends StateMachine {

private int i = 0;



// The state table:

private State[] states = {

new Wash(), new Spin(),

new Rinse(), new Spin(),

};

Washer() { runAll(); }

@Override

public boolean changeState() {

if(i < states.length) {

// Change the state by setting the

// surrogate reference to a new object:

currentState = states[i++];

return true;

} else

return false;

}

}



public class StateMachineDemo {

public static void main(String[] args) {

new Washer();

}

}

/* Output:

Washing

Spinning

Rinsing

Spinning

*/

Here, the class that controls the states (StateMachine in this case)

is responsible for deciding the next state. However, the state objects

themselves may also decide what state to move to next, typically based

on some kind of input to the system. This is the more flexible solution.

Factories:



Encapsulating Object

Creation

When you discover you must add new types to a system, a sensible

first step is to use polymorphism to create a common interface to those

new types. This separates the rest of the code in your system from the

knowledge of the specific types you are adding. New types may be

added without disturbing existing code … or so it seems. At first it

would appear that the only place you must change the code in such a

design is the place where you inherit a new type, but this is not quite

true. You must still create an object of your new type, and at the point

of creation you must specify the exact constructor to use. Thus, if the

code that creates objects is distributed throughout your application,

you have the same problem when adding new types—you must still

chase down all the points of your code where type matters. It happens

to be the creation of the type that matters here rather than the use of

the type (which is taken care of by polymorphism), but the effect is the

same: adding a new type can cause problems.

The solution is to force the creation of objects to occur through a

common factory rather than to allow the creational code to spread

throughout your system. If all the code in your program must go



through this factory to create one of your objects, then when you add a

new class, you modify the factory.

Since every object-oriented program creates objects, and since it’s very

likely you will extend your program by adding new types, factories are

one of the most universally useful kinds of design patterns.

As an example, let’s revisit the Shape system. First, we need a basic

framework to use with all the examples. If a Shape cannot be created,

we need an appropriate exception:

// patterns/shapes/BadShapeCreation.java

package patterns.shapes;

public class BadShapeCreation

extends RuntimeException {

public BadShapeCreation(String msg) {

super(msg);

}

}

Next, the basic Shape class:

// patterns/shapes/Shape.java

package patterns.shapes;

public class Shape {



private static int counter = 0;

private int id = counter++;

@Override

public String toString() {

return

getClass().getSimpleName() + "[" + id + "]";

}

public void draw() {

System.out.println(this + " draw");

}

public void erase() {

System.out.println(this + " erase");

}

}

This automatically creates a unique id for each Shape.

toString() uses runtime information to discover the name of the

specific Shape subtype.

Now we can quickly create some Shape classes:

// patterns/shapes/Circle.java

package patterns.shapes;



public class Circle extends Shape {}

// patterns/shapes/Square.java

package patterns.shapes;

public class Square extends Shape {}

// patterns/shapes/Triangle.java

package patterns.shapes;

public class Triangle extends Shape {}

A Factory is a class that has a method to create objects. We have

several example versions so we’ll define an interface:

// patterns/shapes/FactoryMethod.java

package patterns.shapes;

public interface FactoryMethod {

Shape create(String type);

}

create() takes an argument that allows it to determine what type of

Shape to create; it happens to be a String here but it could be any

set of data. The initialization data (Strings, in this case) for the

objects will presumably come from somewhere outside the system.

This will exercise the factory:

// patterns/shapes/FactoryTest.java



package patterns.shapes;

import java.util.stream.*;

public class FactoryTest {

public static void test(FactoryMethod factory) {

Stream.of("Circle", "Square", "Triangle",

"Square", "Circle", "Circle", "Triangle")

.map(factory::create)

.peek(Shape::draw)

.peek(Shape::erase)

.count(); // Terminal operation

}

}

In main(), remember that a Stream doesn’t do anything until you

put a terminal operation on the end. Here, the value of count() is

thrown away.

One approach to creating a Factory is to explicitly create each type:

// patterns/ShapeFactory1.java

// A simple static factory method

import java.util.*;

import java.util.stream.*;



import patterns.shapes.*;

public class ShapeFactory1 implements FactoryMethod {

public Shape create(String type) {

switch(type) {

case "Circle": return new Circle();

case "Square": return new Square();

case "Triangle": return new Triangle();

default:

throw new BadShapeCreation(type);

}

}

public static void main(String[] args) {

FactoryTest.test(new ShapeFactory1());

}

}

/* Output:

Circle[0] draw



Circle[0] erase

Square[1] draw

Square[1] erase

Triangle[2] draw

Triangle[2] erase

Square[3] draw

Square[3] erase

Circle[4] draw

Circle[4] erase

Circle[5] draw

Circle[5] erase

Triangle[6] draw

Triangle[6] erase

*/

create() is now the only other code in the system that needs

changing when a new type of Shape is added.

A Dynamic Factory

The static create() method in the previous example forces all

the creation operations to be focused in one spot, so that’s the only

place you must change the code when you add a new type of Shape.



This is certainly a reasonable solution, as it throws a box around the

process of creating objects. However, it would be nice if you didn’t

have to modify anything when you add a new class. The following

version uses reflection to dynamically load the Constructor for a

Shape into the factories list the first time it is needed:

// patterns/ShapeFactory2.java

import java.util.*;

import java.lang.reflect.*;

import java.util.stream.*;

import patterns.shapes.*;

public class ShapeFactory2 implements FactoryMethod {

Map<String, Constructor> factories =

new HashMap<>();

static Constructor load(String id) {

System.out.println("loading " + id);

try {

return Class.forName("patterns.shapes." + id)

.getConstructor();

} catch(ClassNotFoundException |

NoSuchMethodException e) {



throw new BadShapeCreation(id);

}

}

public Shape create(String id) {

try {

return (Shape)factories

.computeIfAbsent(id, ShapeFactory2::load)

.newInstance();

} catch(InstantiationException |

IllegalAccessException |

InvocationTargetException e) {

throw new BadShapeCreation(id);

}

}

public static void main(String[] args) {

FactoryTest.test(new ShapeFactory2());

}

}

/* Output:

loading Circle



Circle[0] draw

Circle[0] erase

loading Square

Square[1] draw

Square[1] erase

loading Triangle

Triangle[2] draw

Triangle[2] erase

Square[3] draw

Square[3] erase

Circle[4] draw

Circle[4] erase

Circle[5] draw

Circle[5] erase

Triangle[6] draw

Triangle[6] erase

*/



As before, the create() method generates new Shapes based on

the String argument you pass it, but here it does so by looking up

the String as a key in a HashMap. The value returned is a

Constructor, which is used to create the new Shape object by

calling newInstance().

However, when you begin running the program the factories map

is empty. create() uses Map’s computeIfAbsent() method to

either find the Constructor if it’s already in the Map, or compute it

using load() and insert it in the Map if it isn’t. You can see from the

output that each specific type of Shape is only loaded the first time it

is requested, and from then on it is simply retrieved from the Map.

Polymorphic Factories

The Design Patterns book emphasizes that the reason for the Factory

Method pattern is that different types of factories can be subclassed

from the basic factory. Here is the example again, modified so the

factory methods are in separate classes:

// patterns/ShapeFactory3.java

// Polymorphic factory methods

import java.util.*;

import java.util.function.*;



import java.util.stream.*;

import patterns.shapes.*;

interface PolymorphicFactory {

Shape create();

}

class RandomShapes implements Supplier<Shape> {

private final PolymorphicFactory[] factories;

private Random rand = new Random(42);

RandomShapes(PolymorphicFactory... factories) {

this.factories = factories;

}

public Shape get() {

return factories[

rand.nextInt(factories.length)].create();

}

}

public class ShapeFactory3 {

public static void main(String[] args) {

RandomShapes rs = new RandomShapes(

Circle::new, Square::new, Triangle::new



);

Stream.generate(rs)

.limit(6)

.peek(Shape::draw)

.peek(Shape::erase)

.count();

}

}

/* Output:

Triangle[0] draw

Triangle[0] erase

Circle[1] draw

Circle[1] erase

Circle[2] draw

Circle[2] erase

Triangle[3] draw

Triangle[3] erase

Circle[4] draw

Circle[4] erase

Square[5] draw



Square[5] erase

*/

RandomShapes is a Supplier<Shape> so it can be used to create

a Stream with Stream.generate(). Its constructor takes a

variable argument list of PolymorphicFactory objects. A variable

argument list comes through as an array, so that is how the list is

stored internally. The get() method randomly indexes into this

array and calls create() on the result to produce a new Shape.

The RandomShapes constructor is the only place that requires

changing when we add a new type of Shape. Notice that this

constructor expects Supplier<Shape> s. We pass it Shape

constructor method references, which fulfill the Supplier<Shape>

contract because Java 8 supports structural conformance.

Whereas ShapeFactory2.java could potentially throw

exceptions, there are none in this approach—it is deterministic at

compile time.

Abstract Factories



The Abstract Factory pattern looks like the factory objects we’ve seen

previously, with not one but several factory methods. Each of the

factory methods creates a different kind of object. The idea is that at

the point of creation of the factory object, you decide how all the

objects created by that factory are used. The example given in Design

Patterns implements portability across various graphical user

interfaces (GUIs): you create a factory object appropriate to the GUI

that you’re working with, and from then on when you ask it for a

menu, button, slider, etc., it will automatically create the appropriate

version of that item for the GUI. Thus you’re able to isolate, in one

place, the effect of changing from one GUI to another.

As another example suppose you are creating a general-purpose

gaming environment to support different types of games. Here’s how it

might look using an abstract factory:

// patterns/abstractfactory/GameEnvironment.java

// An example of the Abstract Factory pattern

// {java patterns.abstractfactory.GameEnvironment}

package patterns.abstractfactory;

import java.util.function.*;

interface Obstacle {



void action();

}

interface Player {

void interactWith(Obstacle o);

}

class Kitty implements Player {

@Override

public void interactWith(Obstacle ob) {

System.out.print("Kitty has encountered a ");

ob.action();

}

}

class KungFuGuy implements Player {

@Override

public void interactWith(Obstacle ob) {

System.out.print("KungFuGuy now battles a ");

ob.action();

}

}

class Puzzle implements Obstacle {



@Override

public void action() {

System.out.println("Puzzle");

}

}

class NastyWeapon implements Obstacle {

@Override

public void action() {

System.out.println("NastyWeapon");

}

}

// The Abstract Factory:

class GameElementFactory {

Supplier<Player> player;

Supplier<Obstacle> obstacle;

}

// Concrete factories:

class KittiesAndPuzzles

extends GameElementFactory {

KittiesAndPuzzles() {



player = Kitty::new;

obstacle = Puzzle::new;

}

}

class KillAndDismember

extends GameElementFactory {

KillAndDismember() {

player = KungFuGuy::new;

obstacle = NastyWeapon::new;

}

}

public class GameEnvironment {

private Player p;

private Obstacle ob;

public

GameEnvironment(GameElementFactory factory) {

p = factory.player.get();

ob = factory.obstacle.get();

}

public void play() {



p.interactWith(ob);

}

public static void main(String[] args) {

GameElementFactory

kp = new KittiesAndPuzzles(),

kd = new KillAndDismember();

GameEnvironment

g1 = new GameEnvironment(kp),

g2 = new GameEnvironment(kd);

g1.play();

g2.play();

}

}

/* Output:

Kitty has encountered a Puzzle

KungFuGuy now battles a NastyWeapon



*/

In this environment, Player objects interact with Obstacle

objects, but there are different types of players and obstacles

depending on the kind of game you’re playing. You determine the kind

of game by choosing a particular GameElementFactory, then the

GameEnvironment controls the setup and play of the game. In this

example, the setup and play is very simple, but those activities (the

initial conditions and the state change) can determine much of the

game’s outcome. Here, GameEnvironment is not designed for

inheritance, although it could very possibly make sense to do that.

This also contains examples of Double Dispatching and the Factory

Method, both of which are explained later.

Function Objects

A Function Object encapsulates a function. The point is to decouple

the choice of function to be called from the site where that function is

called.

This term is mentioned but not used in Design Patterns. However, the

theme of the Function Object is repeated in a number of patterns in

that book.



Command

This is the Function Object in its purest sense: a method that’s an

object. You pass a Function Object to a method or an object as a

parameter, to vary the operation.

Before Java 8, to produce the effect of a standalone functions you had

to explicitly wrap a method into an object, which required a lot of

ceremony. With Java 8 lambdas, the Command pattern becomes

almost trivial:

// patterns/CommandPattern.java

import java.util.*;

public class CommandPattern {

public static void main(String[] args) {

List<Runnable> macro = Arrays.asList(

() -> System.out.print("Hello "),

() -> System.out.print("World! "),

() -> System.out.print("I'm the command pattern!")

);



macro.forEach(Runnable::run);

}

}

/* Output:

Hello World! I'm the command pattern!

*/

The primary point of Command is to allow you to hand a desired

action to a method or object. In the above example, this object is

macro, and Command provides a way to queue a set of actions to be

performed collectively. Here, it allows you to dynamically create new

behavior, something you can normally only do by writing new code but

in the above example could be done by interpreting a script (see the

Interpreter pattern if what you must do gets very complex).

Design Patterns says that “Commands are an object-oriented

replacement for callbacks.” However, I think the word “back” is an

essential part of the concept of callbacks. That is, I think a callback

actually reaches back to the creator of the callback. On the other hand,



with a Command object you typically just create it and hand it to some

method or object, and are not otherwise connected over time to the

Command object. That’s my take on it, anyway. Later in this chapter, I

combine a group of design patterns under the heading of “callbacks.”

Strategy

Strategy appears to be a family of Command classes, all inherited

from the same base. But if you look at Command, you’ll see it has the

same structure: a hierarchy of Function Object s. The difference is in

the way this hierarchy is used. As seen in io/DirList.java, you

use Command to solve a particular problem—in that case, selecting

files from a list. The “thing that stays the same” is the body of the

method that’s called, and the part that varies is isolated in the

Function Object. I suggest that Command provides flexibility while

you’re writing the program, whereas Strategy’s flexibility is at run-

time. Nonetheless, it seems a rather fragile distinction.

Strategy also adds a “Context” which can be a surrogate class that

controls the selection and use of the particular strategy object—just

like Bridge! Here’s what it looks like:

// patterns/strategy/StrategyPattern.java

// {java patterns.strategy.StrategyPattern}



package patterns.strategy;

import java.util.function.*;

import java.util.*;

// The common strategy base type:

class FindMinima {

Function<List<Double>, List<Double>> algorithm;

}

// The various strategies:

class LeastSquares extends FindMinima {

LeastSquares() {

// Line is a sequence of points (Dummy data):

algorithm = (line) -> Arrays.asList(1.1, 2.2);

}

}

class Perturbation extends FindMinima {

Perturbation() {

algorithm = (line) -> Arrays.asList(3.3, 4.4);

}

}

class Bisection extends FindMinima {



Bisection() {

algorithm = (line) -> Arrays.asList(5.5, 6.6);

}

}

// The "Context" controls the strategy:

class MinimaSolver {

private FindMinima strategy;

MinimaSolver(FindMinima strat) {

strategy = strat;

}

List<Double> minima(List<Double> line) {

return strategy.algorithm.apply(line);

}

void changeAlgorithm(FindMinima newAlgorithm) {

strategy = newAlgorithm;

}

}

public class StrategyPattern {

public static void main(String[] args) {

MinimaSolver solver =



new MinimaSolver(new LeastSquares());

List<Double> line = Arrays.asList(

1.0, 2.0, 1.0, 2.0, -1.0,

3.0, 4.0, 5.0, 4.0 );

System.out.println(solver.minima(line));

solver.changeAlgorithm(new Bisection());

System.out.println(solver.minima(line));

}

}

/* Output:

[1.1, 2.2]

[5.5, 6.6]

*/

The changeAlgorithm() method in MinimaSolver plugs a

different strategy into the private field strategy, which makes a

call to minima() use a different approach.

We can simplify the solution by incorporating the context into

FindMinima:

// patterns/strategy/StrategyPattern2.java

// {java patterns.strategy.StrategyPattern2}



package patterns.strategy;

import java.util.function.*;

import java.util.*;

// "Context" is now incorporated:

class FindMinima2 {

Function<List<Double>, List<Double>> algorithm;

FindMinima2() { leastSquares(); } // default

// The various strategies:

void leastSquares() {

algorithm = (line) -> Arrays.asList(1.1, 2.2);

}

void perturbation() {

algorithm = (line) -> Arrays.asList(3.3, 4.4);

}

void bisection() {

algorithm = (line) -> Arrays.asList(5.5, 6.6);

}

List<Double> minima(List<Double> line) {

return algorithm.apply(line);

}



}

public class StrategyPattern2 {

public static void main(String[] args) {

FindMinima2 solver = new FindMinima2();

List<Double> line = Arrays.asList(

1.0, 2.0, 1.0, 2.0, -1.0,

3.0, 4.0, 5.0, 4.0 );

System.out.println(solver.minima(line));

solver.bisection();

System.out.println(solver.minima(line));

}

}

/* Output:

[1.1, 2.2]

[5.5, 6.6]

*/

FindMinima2 encapsulates the different algorithms, and now also



includes the “Context” so it controls the algorithm choice in a single

class.

Chain of Responsibility

Chain of Responsibility might be thought of as a dynamic

generalization of recursion using Strategy objects. You make a call,

and each Strategy in a linked sequence tries to satisfy the call. The

process ends when one of the strategies is successful or the chain ends.

In recursion, one method calls itself over and over until a termination

condition is reached; with Chain of Responsibility, a method calls the

same base-class method (with different implementations) which calls

another implementation of the base-class method, etc., until a

termination condition is reached.

Instead of calling a single method to satisfy a request, multiple

methods in the chain have a chance to satisfy the request, so it has the

flavor of an expert system. Since the chain is effectively a linked list, it

can be dynamically created, so you can also think of it as a more

general, dynamically-built switch statement.

In StrategyPattern.java, above, what you probably want is to

automatically find a solution. Chain of Responsibility provides a way to do
this:

// patterns/chain/ChainOfResponsibility.java



// Using the Functional interface

// {java patterns.chain.ChainOfResponsibility}

package patterns.chain;

import java.util.*;

import java.util.function.*;

class Result {

boolean success;

List<Double> line;

Result(List<Double> data) {

success = true;

line = data;

}

Result() {

success = false;

line = Collections.<Double>emptyList();

}

}

class Fail extends Result {}

interface Algorithm {

Result algorithm(List<Double> line);



}

class FindMinima {

public static Result leastSquares(List<Double> line) {

System.out.println("LeastSquares.algorithm");

boolean weSucceed = false;

if(weSucceed) // Actual test/calculation here

return new Result(Arrays.asList(1.1, 2.2));

else // Try the next one in the chain:

return new Fail();

}

public static Result perturbation(List<Double> line) {

System.out.println("Perturbation.algorithm");

boolean weSucceed = false;

if(weSucceed) // Actual test/calculation here

return new Result(Arrays.asList(3.3, 4.4));

else

return new Fail();

}

public static Result bisection(List<Double> line) {

System.out.println("Bisection.algorithm");



boolean weSucceed = true;

if(weSucceed) // Actual test/calculation here

return new Result(Arrays.asList(5.5, 6.6));

else

return new Fail();

}

static List<Function<List<Double>, Result>>

algorithms = Arrays.asList(

FindMinima::leastSquares,

FindMinima::perturbation,

FindMinima::bisection

);

public static Result minima(List<Double> line) {

for(Function<List<Double>, Result> alg :

algorithms) {

Result result = alg.apply(line);

if(result.success)

return result;

}

return new Fail();



}

}

public class ChainOfResponsibility {

public static void main(String[] args) {

FindMinima solver = new FindMinima();

List<Double> line = Arrays.asList(

1.0, 2.0, 1.0, 2.0, -1.0,

3.0, 4.0, 5.0, 4.0);

Result result = solver.minima(line);

if(result.success)

System.out.println(result.line);

else

System.out.println("No algorithm found");

}

}

/* Output:



LeastSquares.algorithm

Perturbation.algorithm

Bisection.algorithm

[5.5, 6.6]

*/

We start by defining the Result class which contains a success

flag so the recipient can tell whether the algorithm succeeded, and

line to carry the actual data. The Fail class provides a meaningful

name when an algorithm fails. Note that returning a Result object is

more appropriate here than throwing an exception upon failure,

because you expect that sometimes you won’t solve it.

Each Algorithm implementation has a different approach for the

algorithm() method. In FindMinima, a List of the algorithms

is created (this is the “chain”), and the minima() method simply

goes through this list searching for one that succeeds.

Changing the

Interface



Sometimes the problem that you’re solving is as simple as “I don’t

have the interface I need.” Two of the patterns in Design Patterns

solve this problem: Adapter takes one type and produces an interface

to some other type. Façade creates an interface to a set of classes,

simply to provide a more comfortable way to deal with a library or

bundle of resources.

Adapter

When you’ve got this, and you need that, Adapter solves the problem.

The only requirement is to produce a that, and there are a number of ways
you can accomplish this adaptation.

// patterns/adapt/Adapter.java

// Variations on the Adapter pattern

// {java patterns.adapt.Adapter}

package patterns.adapt;

class WhatIHave {

public void g() {}

public void h() {}

}

interface WhatIWant {

void f();

}



class ProxyAdapter implements WhatIWant {

WhatIHave whatIHave;

ProxyAdapter(WhatIHave wih) {

whatIHave = wih;

}

@Override

public void f() {

// Implement behavior using

// methods in WhatIHave:

whatIHave.g();

whatIHave.h();

}

}

class WhatIUse {

public void op(WhatIWant wiw) {

wiw.f();

}

}

// Approach 2: build adapter use into op():

class WhatIUse2 extends WhatIUse {



public void op(WhatIHave wih) {

new ProxyAdapter(wih).f();

}

}

// Approach 3: build adapter into WhatIHave:

class WhatIHave2 extends WhatIHave

implements WhatIWant {

@Override

public void f() {

g();

h();

}

}

// Approach 4: use an inner class:

class WhatIHave3 extends WhatIHave {

private class InnerAdapter implements WhatIWant{

@Override

public void f() {

g();

h();



}

}

public WhatIWant whatIWant() {

return new InnerAdapter();

}

}

public class Adapter {

public static void main(String[] args) {

WhatIUse whatIUse = new WhatIUse();

WhatIHave whatIHave = new WhatIHave();

WhatIWant adapt= new ProxyAdapter(whatIHave);

whatIUse.op(adapt);

// Approach 2:

WhatIUse2 whatIUse2 = new WhatIUse2();

whatIUse2.op(whatIHave);

// Approach 3:

WhatIHave2 whatIHave2 = new WhatIHave2();

whatIUse.op(whatIHave2);

// Approach 4:

WhatIHave3 whatIHave3 = new WhatIHave3();



whatIUse.op(whatIHave3.whatIWant());

}

}

I’m taking liberties with the term “proxy” here, because in the Design

Patterns book, they assert that a proxy must have an identical

interface to the object for which it is a surrogate. However, taking the

two words together as “proxy adapter” is perhaps more reasonable.

Façade

Here’s a general principle I apply when casting about trying to mold

requirements into a first-cut object design:

If something is ugly, hide it inside an

object.

This is basically what Façade accomplishes. If you have a rather

confusing collection of classes and interactions that the client

programmer doesn’t really need to see, you can create an interface that

is useful for the client programmer and only presents what’s

necessary.



Façade is often a implemented as singleton abstract factory. You can

easily get this effect by creating a class containing static factory

methods:

// patterns/Facade.java

class A { A(int x) {} }

class B { B(long x) {} }

class C { C(double x) {} }

// Other classes that aren't exposed by the

// facade go here ...

public class Facade {

static A makeA(int x) { return new A(x); }

static B makeB(long x) { return new B(x); }

static C makeC(double x) { return new C(x); }

public static void main(String[] args) {

// The client programmer gets the objects

// by calling the static methods:



A a = Facade.makeA(1);

B b = Facade.makeB(1);

C c = Facade.makeC(1.0);

}

}

The example given in Design Patterns isn’t really a Façade but just a

class that uses the other classes.

Package as a Variation of Façade

To me, the Façade has a rather “procedural” (non-object-oriented) feel

to it: you are just calling some functions to give you objects. And how

different is it, really, from Abstract Factory? The point of Façade is to

hide part of a library of classes (and their interactions) from the client

programmer, to make the interface to that group of classes more

digestible and easier to understand.

However, this is precisely what the packaging features in Java

accomplish: outside of the library, you can only create and use

public classes; all the non-public classes are only accessible

within the package. It’s as if Façade is a built-in feature of Java.

To be fair, Design Patterns is written primarily for a C++ audience.

Although C++ has namespaces to prevent clashes of globals and class



names, this does not provide the class hiding mechanism you get with

non-public classes in Java. The majority of the time I think Java

packages will solve the Façade problem.

Interpreter: Run-Time

Flexibility

If the application user needs greater run-time flexibility, for example

to create scripts describing the desired behavior of the system, you can

use the Interpreter design pattern. Here, you create and embed a

language interpreter into your program.

Developing your own language and building an interpreter for it is a

time-consuming distraction from the process of building your

application. The best solution is to reuse code: that is, to embed an

interpreter that’s already been built and debugged for you. The Python



language can be freely embedded in your for-profit application without

any license agreement, royalties, or Strings of any kind. In addition,

there is a version of Python called Jython which is entirely Java byte

codes, so incorporating it into your application is simple. Python is a

scripting language that is very easy to learn, very logical to read and

write, supports functions and objects, has a large set of available

libraries, and runs on virtually every platform. You can download

Python and learn more about it at www.Python.org.

Callbacks

Callbacks decouple code from behavior. These include Observer, and a

category of callbacks called “multiple dispatching” (not in Design

Patterns), including Visitor from Design Patterns.

Observer

Like the other forms of callback, this contains a hook point where you

can change code. The difference is in the observer’s completely

dynamic nature. It is often used for the specific case of changes based

on other objects’ change of state, but is also the basis of event

management. Observers allow you to decouple the source of the call

from the called code in a completely dynamic way.

The observer pattern solves a fairly common problem: What if a group

http://www.Python.org


of objects must update themselves when some object changes state?

This can be seen in the “model-view” aspect of SmallTalk’s MVC

(model-view-controller), or the almost-equivalent “Document-View

Architecture.” Suppose you have some data (the “document”) and

more than one view, say a plot and a textual view. When you change

the data, the two views must know to update themselves, and that’s

what the observer facilitates. It’s a common enough problem that its

solution is part of the standard java.util library.

There are two types of objects used to implement the observer pattern

in Java. The Observable class keeps track of everybody who wants

to be informed when a change happens, whether the “state” has

changed or not. When someone says “OK, everybody should check and

potentially update themselves,” the Observable class performs this

task by calling the notifyObservers() method for each one on

the list. The notifyObservers() method is part of the base class

Observable.

There are actually two “things that change” in the observer pattern:

the quantity of observing objects and the way an update occurs. That

is, the observer pattern allows you to modify both of these without

affecting the surrounding code.



Observer is an “interface” class that only has one method,

update(). This function is called by the object that’s observed, when

that object decides its time to update all its observers. The arguments

are optional; you can have an update() with no arguments and that

would still fit the observer pattern; however this is more general—it

allows the observed object to pass the object that caused the update

(since an Observer may be registered with more than one observed

object) and any extra information if that’s helpful, rather than forcing

the Observer object to hunt around to see who is updating and to

fetch any other information it needs.

The “observed object” that decides when and how to do the updating is

called the Observable.

Observable has a flag to indicate whether it’s been changed. In a

simpler design, there would be no flag; if something happened,

everyone is notified. The flag allows you to wait, and only notify the

Observers when you decide the time is right. Notice, however, that

the control of the flag’s state is protected, so only an inheritor can



decide what constitutes a change, and not the end user of the resulting

derived Observer class.

Most of the work is done in notifyObservers(). If the changed

flag has not been set, this does nothing. Otherwise, it first clears the

changed flag so repeated calls to notifyObservers() won’t

waste time. This is done before notifying the observers in case the calls

to update() do anything that causes a change back to this

Observable object. Then it moves through the set and calls back

to the update() method of each Observer.

At first it may appear you can use an ordinary Observable object to

manage the updates. But this doesn’t work; to get an effect, you must

inherit from Observable and somewhere in your derived-class code

call setChanged(). This is the method that sets the “changed” flag,

which means when you call notifyObservers(), all observers

will, in fact, get notified. Where you call setChanged() depends on

the logic of your program.

Observing Flowers

Here is an example of the observer pattern:

// patterns/observer/ObservedFlower.java

// Demonstration of "Observer" pattern



// {java patterns.observer.ObservedFlower}

package patterns.observer;

import java.util.*;

class Flower {

private boolean isOpen;

private boolean alreadyOpen;

private boolean alreadyClosed;

Flower() { isOpen = false; }

OpenNotifier opening = new OpenNotifier();

CloseNotifier closing = new CloseNotifier();

public void open() { // Opens its petals

isOpen = true;

opening.notifyObservers();

alreadyClosed = false;

}

public void close() { // Closes its petals

isOpen = false;

closing.notifyObservers();

alreadyOpen = false;

}



class OpenNotifier extends Observable {

@Override

public void notifyObservers() {

if(isOpen && !alreadyOpen) {

setChanged();

super.notifyObservers();

alreadyOpen = true;

}

}

}

class CloseNotifier extends Observable{

@Override

public void notifyObservers() {

if(!isOpen && !alreadyClosed) {

setChanged();

super.notifyObservers();

alreadyClosed = true;

}

}

}



}

class Bee {

private String name;

Bee(String nm) { name = nm; }

// Observe openings:

public Observer openObserver() {

return (ob, a) -> System.out.println(

"Bee " + name + "'s breakfast time!");

}

// Observe closings:

public Observer closeObserver() {

return (ob, a) -> System.out.println(

"Bee " + name + "'s bed time!");

}

}

class Hummingbird {

private String name;

Hummingbird(String nm) { name = nm; }

public Observer openObserver() {

return (ob, a) -> System.out.println(



"Hummingbird " + name +

"'s breakfast time!");

}

public Observer closeObserver() {

return (ob, a) -> System.out.println(

"Hummingbird " + name + "'s bed time!");

}

}

public class ObservedFlower {

public static void main(String[] args) {

Flower f = new Flower();

Bee

ba = new Bee("A"),

bb = new Bee("B");

Hummingbird

ha = new Hummingbird("A"),

hb = new Hummingbird("B");

f.opening.addObserver(ha.openObserver());

f.opening.addObserver(hb.openObserver());

f.opening.addObserver(ba.openObserver());



f.opening.addObserver(bb.openObserver());

f.closing.addObserver(ha.closeObserver());

f.closing.addObserver(hb.closeObserver());

f.closing.addObserver(ba.closeObserver());

f.closing.addObserver(bb.closeObserver());

// Hummingbird B decides to sleep in:

f.opening.deleteObserver(hb.openObserver());

// A change that interests observers:

f.open();

f.open(); // It's already open, no change.

// Bee A doesn't want to go to bed:

f.closing.deleteObserver(ba.closeObserver());

f.close();

f.close(); // It's already closed; no change

f.opening.deleteObservers();

f.open();

f.close();

}

}

/* Output:



Bee B's breakfast time!

Bee A's breakfast time!

Hummingbird B's breakfast time!

Hummingbird A's breakfast time!

Bee B's bed time!

Bee A's bed time!

Hummingbird B's bed time!

Hummingbird A's bed time!

Bee B's bed time!

Bee A's bed time!

Hummingbird B's bed time!

Hummingbird A's bed time!

*/

The events of interest are that a Flower can open or close. Because of

the use of the inner class idiom, both these events can be separately-

observable phenomena. OpenNotifier and CloseNotifier

both inherit Observable, so they have access to setChanged()

and can be handed to anything that needs an Observable. Because

Observable is a class, we don’t have an opportunity to use lambda



expressions.

Observer is a functional interface, so openObserver() and

closeObserver() in Bee and Hummingbird can be defined

using lambdas. Both of those classes may independently observe

Flower openings and closings.

In main(), you see one of the prime benefits of the observer pattern:

the ability to change behavior at runtime by dynamically registering

and un-registering Observers with Observables.

Notice you can create other completely different observing objects; the

only connection the Observers have with Flowers is the

Observer interface.

A Visual Example of

Observers

The following example cheats by using the Swing library to create

graphics, which are not introduced in this book (See Thinking in Java,

4th edition, available at www.OnJava8.com). Boxes are placed in a

grid on the screen and each one is initialized to a random color. In



addition, each box implements the Observer interface and is

registered with an Observable object. When you click on a box, all

other boxes are notified of the change because the Observable

object automatically calls each Observer object’s update()

method. Inside this method, the box checks to see if it’s adjacent to the

one that was clicked, and if so it changes its color to match the clicked

box.

The java.awt.event library has a MouseListener class with

multiple methods, but we are only interested in the

mouseClicked() method. You can’t write a lambda expression if

you just want to implement mouseClicked() because

MouseListener is not a functional interface due to its multiple

methods. Java 8 allows us to simplify our code using the default

keyword to create a helper interface and solve this problem:

// onjava/MouseClick.java

// Helper interface to allow lambda expressions

package onjava;

import java.awt.event.*;

// Default everything except mouseClicked():

public interface MouseClick extends MouseListener {



@Override

default void mouseEntered(MouseEvent e) {}

@Override

default void mouseExited(MouseEvent e) {}

@Override

default void mousePressed(MouseEvent e) {}

@Override

default void mouseReleased(MouseEvent e) {}

}

Now you can successfully cast a lambda expression to a MouseClick

and pass it to addMouseListener().

// patterns/BoxObserver.java

// Demonstration of Observer pattern using

// Java's built-in observer classes

// {ExcludeFromTravisCI}

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import onjava.*;



import onjava.MouseClick;

// You must inherit a new type of Observable:

class BoxObservable extends Observable {

@Override

public void notifyObservers(Object b) {

// Otherwise it won't propagate changes:

setChanged();

super.notifyObservers(b);

}

}

public class BoxObserver extends JFrame {

Observable notifier = new BoxObservable();

public BoxObserver(int grid) {

setTitle("Demonstrates Observer pattern");

Container cp = getContentPane();

cp.setLayout(new GridLayout(grid, grid));

for(int x = 0; x < grid; x++)

for(int y = 0; y < grid; y++)

cp.add(new OCBox(x, y, notifier));

}



public static void main(String[] args) {

new TimedAbort(4);

int grid = 8;

if(args.length > 0)

grid = Integer.parseInt(args[0]);

JFrame f = new BoxObserver(grid);

f.setSize(500, 400);

f.setVisible(true);

f.setDefaultCloseOperation(DISPOSE_ON_CLOSE);

}

}

class OCBox extends JPanel implements Observer {

Observable notifier;

int x, y; // Locations in grid

Color cColor = newColor();

static final Color[] COLORS = {

Color.black, Color.blue, Color.cyan,

Color.darkGray, Color.gray, Color.green,

Color.lightGray, Color.magenta,

Color.orange, Color.pink, Color.red,



Color.white, Color.yellow

};

static Color newColor() {

return COLORS[

(int)(Math.random() * COLORS.length)

];

}

OCBox(int x, int y, Observable notifier) {

this.x = x;

this.y = y;

notifier.addObserver(this);

this.notifier = notifier;

addMouseListener((MouseClick)

e -> notifier.notifyObservers(OCBox.this));

}

@Override

public void paintComponent(Graphics g) {

super.paintComponent(g);

g.setColor(cColor);

Dimension s = getSize();



g.fillRect(0, 0, s.width, s.height);

}

@Override

public void update(Observable o, Object arg) {

OCBox clicked = (OCBox)arg;

if(nextTo(clicked)) {

cColor = clicked.cColor;

repaint();

}

}

private boolean nextTo(OCBox b) {

return Math.abs(x - b.x) <= 1 &&

Math.abs(y - b.y) <= 1;

}

}

Notice how MouseClick enables addMouseListener() to

accept a lambda expression.

When you first look at the online documentation for Observable,

it’s a bit confusing because it appears you can use an ordinary

Observable object to manage the updates. But this doesn’t work.



Try it—inside BoxObserver, create an Observable object instead

of a BoxObservable object and see what happens: nothing. To get

an effect, you must inherit from Observable and somewhere in

your derived-class code call setChanged(). This is the method that

sets the “changed” flag, which means when you call

notifyObservers(), all observers will, in fact, get notified. In the

example above setChanged() is simply called within

notifyObservers(), but you can use any criterion to decide when

to call setChanged().

BoxObserver contains a single Observable object called

notifier, and every time an OCBox object is created, it is tied to

notifier. In OCBox, whenever you click the mouse the

notifyObservers() method is called, passing the clicked object

in as an argument so all the boxes receiving the message (in their

update() method) know who was clicked and can decide whether to

change themselves or not. Using a combination of code in



notifyObservers() and update() you can work out some

fairly complex schemes.

It might appear that the way the observers are notified must be frozen

at compile time in the notifyObservers() method. However, if

you look more closely at the code above you’ll see that the only place in

BoxObserver or OCBox where you’re aware you’re working with a

BoxObservable is at the point of creation of the Observable

object—from then on everything uses the basic Observable

interface. This means you can inherit other Observable classes and

swap them at run-time to change notification behavior.

Multiple Dispatching

Programs can get especially messy when dealing with multiple

interacting types. For example, consider a system that parses and

executes mathematical expressions. You want to say Number +

Number, Number * Number, etc., where Number is the base class

for a family of numerical objects. But when you say a + b, and you

don’t know the exact type of either a or b, so how can you get them to

interact properly?

The answer starts with something you probably don’t think about:

Java performs only single dispatching. That is, if you are performing



an operation on more than one object whose type is unknown, Java

can invoke the dynamic binding mechanism on only one of those

types. This doesn’t solve the problem, so you end up detecting some

types manually and effectively producing your own dynamic binding

behavior.

The solution is called multiple dispatching. Because polymorphism

only occurs via method calls, if you want double dispatching to occur,

there must be two method calls: the first to determine the first

unknown type, and the second to determine the second unknown type.

With multiple dispatching, you must have a polymorphic method call

to determine each of the types.

Generally, you’ll set up a configuration such that a single method call

produces more than one dynamic method call and thus determines

more than one type in the process. The methods in the following

example are called compete() and eval(), and are both members

of the same type. (Here there are only two dispatches, which is called

double dispatching). If you are working with two different interacting

type hierarchies, you’ll need a polymorphic method call in each

hierarchy.

Here’s an example of multiple dispatching:



// patterns/PaperScissorsRock.java

// Demonstration of multiple dispatching

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import onjava.*;

import static onjava.Tuple.*;

enum Outcome { WIN, LOSE, DRAW }

interface Item {

Outcome compete(Item it);

Outcome eval(Paper p);

Outcome eval(Scissors s);

Outcome eval(Rock r);

}

class Paper implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override



public Outcome eval(Paper p) {

return Outcome.DRAW;

}

@Override

public Outcome eval(Scissors s) {

return Outcome.WIN;

}

@Override

public Outcome eval(Rock r) {

return Outcome.LOSE;

}

@Override

public String toString() { return "Paper"; }

}

class Scissors implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override



public Outcome eval(Paper p) {

return Outcome.LOSE;

}

@Override

public Outcome eval(Scissors s) {

return Outcome.DRAW;

}

@Override

public Outcome eval(Rock r) {

return Outcome.WIN;

}

@Override

public String toString() { return "Scissors"; }

}

class Rock implements Item {

@Override

public Outcome compete(Item it) {

return it.eval(this);

}

@Override



public Outcome eval(Paper p) {

return Outcome.WIN;

}

@Override

public Outcome eval(Scissors s) {

return Outcome.LOSE;

}

@Override

public Outcome eval(Rock r) {

return Outcome.DRAW;

}

@Override

public String toString() { return "Rock"; }

}

class ItemFactory {

static List<Supplier<Item>> items =

Arrays.asList(

Scissors::new, Paper::new, Rock::new);

static final int SZ = items.size();

private static SplittableRandom rand =



new SplittableRandom(47);

public static Item newItem() {

return items.get(rand.nextInt(SZ)).get();

}

public static Tuple2<Item,Item> newPair() {

return tuple(newItem(), newItem());

}

}

class Compete {

public static Outcome match(Tuple2<Item,Item> p) {

System.out.print(p.a1 + " -> " + p.a2 + " : ");

return p.a1.compete(p.a2);

}

}

public class PaperScissorsRock {

public static void main(String[] args) {

Stream.generate(ItemFactory::newPair)

.limit(20)

.map(Compete::match)

.forEach(System.out::println);



}

}

/* Output:

Scissors -> Rock : LOSE

Scissors -> Paper : WIN

Rock -> Paper : LOSE

Rock -> Rock : DRAW

Rock -> Paper : LOSE

Paper -> Scissors : LOSE

Rock -> Paper : LOSE

Scissors -> Scissors : DRAW

Scissors -> Rock : LOSE

Scissors -> Paper : WIN

Scissors -> Rock : LOSE

Paper -> Scissors : LOSE

Rock -> Rock : DRAW

Scissors -> Scissors : DRAW

Paper -> Paper : DRAW

Scissors -> Paper : WIN

Scissors -> Rock : LOSE



Scissors -> Paper : WIN

Rock -> Paper : LOSE

Rock -> Scissors : WIN

*/

The Item interface contains the structure of the double dispatch:

compete() performs the first dispatch, and the second dispatch

occurs through the call to eval().

Suppose you have two items, a and b, and you don’t know the type of

either. Here’s what happens as you call a.compete(b): The

compete() method is polymorphic, so through dynamic dispatching

you wake up inside the particular compete() body for the type of a.

If we say a is type Paper, then we wake up in Papers compete(), thus
determining the type of the first unknown object via the first

dispatch. But now compete() turns around and calls eval() on b,

the second unknown type, while passing a as an argument, so the

overloaded version of eval() is called for the type of b—and that’s

the second dispatch. At that point, you’re inside an eval() that



knows the type of both objects.

Visitor, a Type of Multiple

Dispatching

The assumption for Visitor is that you have a primary class hierarchy

that is fixed; perhaps it’s from another vendor and you can’t make

changes to that hierarchy. However, you’d like to add new

polymorphic methods to that hierarchy, which means that normally

you’d have to add something to the base class interface. So the

dilemma is that you must add methods to the base class, but you can’t

touch the base class. How do you get around this?

Visitor (the final pattern in the Design Patterns book) solves this

problem by building on the double dispatching scheme shown in the

last section.

Visitor allows you to extend the interface of the primary type by

creating a separate class hierarchy of type Visitor to virtualize the

operations performed upon the primary type. The objects of the

primary type simply “accept” the visitor, then call the visitor’s

dynamically-bound method.

// patterns/visitor/BeeAndFlowers.java

// Demonstration of "visitor" pattern



// {java patterns.visitor.BeeAndFlowers}

package patterns.visitor;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

interface Visitor {

void visit(Gladiolus g);

void visit(Renuculus r);

void visit(Chrysanthemum c);

}

// The Flower hierarchy cannot be changed:

interface Flower {

void accept(Visitor v);

}

class Gladiolus implements Flower {

@Override

public void accept(Visitor v) { v.visit(this);}

}

class Renuculus implements Flower {

@Override



public void accept(Visitor v) { v.visit(this);}

}

class Chrysanthemum implements Flower {

@Override

public void accept(Visitor v) { v.visit(this);}

}

// Add the ability to produce a String:

class StringVal implements Visitor {

String s;

@Override

public String toString() { return s; }

@Override

public void visit(Gladiolus g) {

s = "Gladiolus";

}

@Override

public void visit(Renuculus r) {

s = "Renuculus";

}

@Override



public void visit(Chrysanthemum c) {

s = "Chrysanthemum";

}

}

// Add the ability to do "Bee" activities:

class Bee implements Visitor {

@Override

public void visit(Gladiolus g) {

System.out.println("Bee and Gladiolus");

}

@Override

public void visit(Renuculus r) {

System.out.println("Bee and Renuculus");

}

@Override

public void visit(Chrysanthemum c) {

System.out.println("Bee and Chrysanthemum");

}

}

class FlowerFactory {



static List<Supplier<Flower>> flowers =

Arrays.asList(Gladiolus::new,

Renuculus::new, Chrysanthemum::new);

static final int SZ = flowers.size();

private static SplittableRandom rand =

new SplittableRandom(47);

public static Flower newFlower() {

return flowers.get(rand.nextInt(SZ)).get();

}

}

public class BeeAndFlowers {

public static void main(String[] args) {

List<Flower> flowers =

Stream.generate(FlowerFactory::newFlower)

.limit(10)

.collect(Collectors.toList());

StringVal sval = new StringVal();

flowers.forEach(f -> {

f.accept(sval);

System.out.println(sval);



});

// Perform "Bee" operation on all Flowers:

Bee bee = new Bee();

flowers.forEach(f -> f.accept(bee));

}

}

/* Output:

Gladiolus

Chrysanthemum

Gladiolus

Renuculus

Chrysanthemum

Renuculus

Chrysanthemum

Chrysanthemum

Chrysanthemum

Renuculus

Bee and Gladiolus

Bee and Chrysanthemum

Bee and Gladiolus



Bee and Renuculus

Bee and Chrysanthemum

Bee and Renuculus

Bee and Chrysanthemum

Bee and Chrysanthemum

Bee and Chrysanthemum

Bee and Renuculus

*/

Note the similarity with the previous example: Flower accepts a

Visitor for the first dispatch, then turns around and calls visit()

(passing itself as an argument, to end up in the overloaded method

according to the Flower type) as the second dispatch.

In main(), it’s almost as if I added a method to produce a Flower



String representation, which is the point of Visitor: adding

methods to a frozen hierarchy.

Pattern Refactoring

The remainder of the chapter will look at the process of solving a

problem by applying design patterns in an evolutionary fashion. That

is, a first cut design is used for the initial solution, then this solution is

examined and various design patterns are applied to the problem

(some of which work, and some of which won’t). The key question in

seeking improved solutions is always “what will change?”

This process is similar to what Martin Fowler talks about in his book

Refactoring: Improving the Design of Existing Code (Addison-

Wesley, 1999), although he tends to talk about pieces of code more

than pattern-level designs. You start with a solution, and when you

discover it doesn’t continue to meet your needs, you fix it. This is a

natural tendency, but in computer programming it’s been extremely

difficult to accomplish with procedural programs, and the acceptance

of the idea that we can refactor code and designs adds to the idea that

object-oriented programming seems to be beneficial.

Simulating a Trash Recycler

This is not a trivial design because it has an added constraint. It’s more



like the messy problems you’re likely to encounter in your work. The

extra constraint is that the trash arrives at the trash recycling plant all mixed
together. The program models the sorting of that trash. In the

initial solution, RTTI ( Run Time Type Identification, described in the

Type Information chapter) is used to take anonymous pieces of trash and
figure out exactly what type they are.

// patterns/recyclea/RecycleA.java

// Recycling with RTTI

// {java patterns.recyclea.RecycleA}

package patterns.recyclea;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

abstract class Trash {

double weight;

Trash(double wt) { weight = wt; }

abstract double value();

// Sums the value of Trash in a bin:

private static double val;

static void sumValue(List<? extends Trash> bin) {

val = 0.0f;



bin.forEach( t -> {

// Polymorphism in action:

val += t.weight * t.value();

System.out.println(

"weight of " +

// Using RTTI to get type

// information about the class:

t.getClass().getSimpleName() +

" = " + t.weight);

});

System.out.println("Total value = " + val);

}

}

class Aluminum extends Trash {

static double val = 1.67f;

Aluminum(double wt) { super(wt); }

@Override

double value() { return val; }

static void value(double newval) {

val = newval;



}

}

class Paper extends Trash {

static double val = 0.10f;

Paper(double wt) { super(wt); }

@Override

double value() { return val; }

static void value(double newval) {

val = newval;

}

}

class Glass extends Trash {

static double val = 0.23f;

Glass(double wt) { super(wt); }

@Override

double value() { return val; }

static void value(double newval) {

val = newval;

}

}



class TrashFactory {

static List<Function<Double, Trash>> ttypes =

Arrays.asList(

Aluminum::new, Paper::new, Glass::new);

static final int SZ = ttypes.size();

private static SplittableRandom rand =

new SplittableRandom(47);

public static Trash newTrash() {

return ttypes

.get(rand.nextInt(SZ))

.apply(rand.nextDouble());

}

}

public class RecycleA {

public static void main(String[] args) {

List<Trash> bin =

Stream.generate(TrashFactory::newTrash)

.limit(25)

.collect(Collectors.toList());

List<Glass> glassBin = new ArrayList<>();



List<Paper> paperBin = new ArrayList<>();

List<Aluminum> alBin = new ArrayList<>();

// Sort the Trash:

bin.forEach( t -> {

// RTTI to discover Trash type:

if(t instanceof Aluminum)

alBin.add((Aluminum)t);

if(t instanceof Paper)

paperBin.add((Paper)t);

if(t instanceof Glass)

glassBin.add((Glass)t);

});

Trash.sumValue(alBin);

Trash.sumValue(paperBin);

Trash.sumValue(glassBin);

Trash.sumValue(bin);

}

}

/* Output: (First and Last 11 Lines)

weight of Aluminum = 0.2893030122276371



weight of Aluminum = 0.1970234961398979

weight of Aluminum = 0.36295525806274787

weight of Aluminum = 0.4825532324565849

weight of Aluminum = 0.8036398273294586

weight of Aluminum = 0.510430896154935

weight of Aluminum = 0.6703377164093444

weight of Aluminum = 0.41477933066243455

weight of Aluminum = 0.3603022312124007

weight of Aluminum = 0.43690089841661006

weight of Aluminum = 0.6708820087907101

...________...________...________...________...

weight of Aluminum = 0.41477933066243455

weight of Aluminum = 0.3603022312124007

weight of Aluminum = 0.43690089841661006

weight of Glass = 0.5999637765664924

weight of Glass = 0.7748836191212746

weight of Paper = 0.5735994548427199

weight of Glass = 0.5362827750851034

weight of Aluminum = 0.6708820087907101

weight of Paper = 0.8370669795210507



weight of Glass = 0.3397919679731668

Total value = 9.90671597531968

*/

This chapter rewrites this particular example a number of times and

by putting each version in its own package the class names will not

clash.

Several ArrayList objects are created to hold Trash references. It

looks silly to upcast the types of Trash into a collection holding base

type references, then turn around and downcast. Why not just put the

trash into the appropriate receptacle in the first place? In this program

it is easy to repair, but sometimes a system’s structure and flexibility

can benefit greatly from downcasting.

The program satisfies the design requirements: it works. This might be

fine as long as it’s a one-shot solution. However, a useful program

tends to evolve over time, so you must ask, “What if the situation

changes?” For example, cardboard is a valuable recyclable commodity,

so how will that be integrated into the system (especially if the



program is large and complicated). Although the TrashFactory

does encapsulate creation, in the rest of the program you see type-

check coding scattered about, and you must go find all that code every

time a new type is added. If you miss one the compiler won’t give you

any help by pointing out an error.

You know you’re misusing RTTI when every type is tested. If you’re

looking for only a subset of types because that subset needs special

treatment, that’s probably fine. But if you’re hunting for every type

inside a switch statement, then you’re probably missing an important

point, and definitely making your code less maintainable. In the next

section we’ll evolve this program through multiple phases to make it

much more flexible. This should prove a valuable example in program

design.

“Make More Objects”

This brings up a general object-oriented design principle I first heard

spoken by Grady Booch: “If the design is too complicated, make more

objects.” This is simultaneously counterintuitive and ludicrously



simple, and yet it’s the most useful guideline I’ve found. (Observe that

“making more objects” is often equivalent to “add another level of

abstraction.”) In general, if you find a place with messy code, consider

what sort of class would clean that up. Often the side effect of cleaning

up the code is a system that has better structure and is more flexible.

The original TrashFactory class is reasonably elegant, but what if the

information required in the derived class requires more or different

arguments? “Creating more objects” solves this problem. The Trash

class gets a new method called factory(). To hide the creational

data, there’s a new class called Info that contains all necessary

information for the factory() method to create the appropriate

Trash object.

An Info object’s only job is to hold information for the factory()

method (it’s a Messenger object). Now, if there’s a situation where

factory() needs more or different information to create a new type

of Trash object, the factory() interface doesn’t need changing.

The Info class can be changed by adding new data and new

constructors, or in the more typical object-oriented fashion of

subclassing.

You can also imagine a more complicated system where factory()



uses an elaborate algorithm. The point is that it’s now hidden away in

one place, and you know to come to this place when you add new

types.

Generalizing the Factory

The design above still requires a central location where all the types of Trash
must be known: inside the factory() method. If new types

are regularly added to the system, the factory() method must be

changed for each new type. When you discover something like this, it

is useful to try to go one step further and move all information about

the type—including its creation—into the class representing that type.

This way, you only need to inherit a single class in order to add a new

type to the system.

To move the information concerning type creation into each specific

type of Trash, we start with an Info object containing all the

information about the type of object to create. With reflection

(introduced in the Type Information chapter) you can call a

constructor if you have a reference to the Class object. We’ll rewrite

the factory() method to use reflection and the data in the Info

object to create new Trash objects. This way, the factory()

method doesn’t need changing when a new type is added to the

system.



We store a list of references to all the Class objects to create. If

creation fails, the factory() method assumes it’s because a

particular Class object isn’t in the list, and it will attempt to load it.

By loading the Classes dynamically like this, the Trash class

doesn’t need to know what types it is working with, so it doesn’t need

any modifications when you add new types. This allows easy reuse

throughout the rest of the chapter.

// patterns/trash/Trash.java

// Base class for Trash recycling examples

package patterns.trash;

import java.util.*;

import java.lang.reflect.*;

public abstract class Trash {

private double weight;

public Trash(double wt) { weight = wt; }

public Trash() {}

public abstract double value();

public double weight() { return weight; }

// Sums the value of Trash in a bin:

static double val;



public static <T extends Trash>

void sumValue(List<? extends T> bin) {

val = 0.0f;

bin.forEach( t -> {

val += t.weight() * t.value();

System.out.println("weight of " +

// RTTI gets type information

// about the class:

t.getClass().getName() +

" = " + t.weight());

});

System.out.println("Total value = " + val);

}

@Override

public String toString() {

// Print correct subclass name:

return getClass().getName() +

" w:" + weight() + " v:" +

String.format("%.2f", value());

}



// Remainder of class supports dynamic creation:

public static class CannotCreateTrashException

extends RuntimeException {

public CannotCreateTrashException(Exception why) {

super(why);

}

}

public static class TrashClassNotFoundException

extends RuntimeException {

public TrashClassNotFoundException(Exception why) {

super(why);

}

}

public static class Info {

public String id;

public double data;

public Info(String name, double data) {

id = name;

this.data = data;

}



}

private static List<Class> trashTypes =

new ArrayList<>();

@SuppressWarnings("unchecked")

public static <T extends Trash> T factory(Info info) {

for(Class trashType : trashTypes) {

// Determine the type and create one:

if(trashType.getName().contains(info.id)) {

try {

// Get the dynamic constructor method

// that takes a double argument:

Constructor ctor =

trashType.getConstructor(double.class);

// Call the constructor to create a

// new object:

return (T)ctor.newInstance(info.data);

} catch(Exception e) {

throw new CannotCreateTrashException(e);

}

}



}

// The necessary Class was not in the list. Try to

// load it, but it must be in your class path!

try {

System.out.println("Loading " + info.id);

trashTypes.add(Class.forName(info.id));

} catch(Exception e) {

throw new TrashClassNotFoundException(e);

}

// Loaded successfully. Recursive call

// should work this time:

return factory(info);

}

}

The basic Trash class and sumValue() remain as before. The rest

of the class supports dynamic creation. You first see two inner classes

(which are made static, so they are inner classes only for code

organization purposes) describing exceptions that can occur.

The trashTypes List holds the Class references. In

Trash.factory(), the String id inside the Info object



contains the type name of the Trash to be created; this String is

compared to the Class names in the list. If there’s a match, then

that’s the object to create. There are many ways to determine what

object to make—this one is used so information read from a file can be

turned into objects.

Once you’ve discovered the kind of Trash to create, the reflection

methods come into play. The getConstructor() method takes an

argument that’s an array of Class references. This array represents

the arguments, in their proper order, for the constructor you want.

This code assumes that every Trash type has a constructor that takes

a double (notice that double.class is distinct from

Double.class). It’s also possible, for a more flexible solution, to

call getConstructors(), which returns an array of the possible

constructors.

What comes back from getConstructor() is a reference to a

Constructor object (part of java.lang.reflect). You call the

constructor dynamically with the method newInstance(), which

takes as a constructor argument info.data.

The process of creating a new object given only a Class reference is

remarkably simple. Reflection also allows you to call methods in this



same dynamic fashion.

The appropriate Class reference might not be in the trashTypes

list. Here, the return in the inner loop is never executed and you’ll

drop out at the end. Here, the program tries to rectify the situation by

loading the Class object dynamically and adding it to the

trashTypes list. If it still can’t be found then something is really

wrong, but if the load is successful then the factory method is called

recursively to try again.

As you’ll see, the beauty of this design is that the code doesn’t change,

regardless of the different situations where it’s used (assuming that all

Trash subclasses contain a constructor that takes a single double

argument).

Notice that the factory() method doesn’t use streams—it turns out

that this piece of code is quite fragile and tricky, and I couldn’t make

streams work here. This could be a Java issue; it’s not clear. Feel free

to try rewriting it and send me the results if you’re successful.

Trash Subclasses

Each new subclass of Trash must contain a constructor that takes a

double argument. That’s all. Java reflection handles everything else.

Here are the different types of Trash, each in their own file but part



of the Trash package (again, to facilitate reuse within the chapter):

// patterns/trash/Aluminum.java

package patterns.trash;

public class Aluminum extends Trash {

private static double val = 1.67f;

public Aluminum(double wt) { super(wt); }

@Override

public double value() { return val; }

public static void value(double newVal) {

val = newVal;

}

}

// patterns/trash/Paper.java

package patterns.trash;

public class Paper extends Trash {

private static double val = 0.10f;

public Paper(double wt) { super(wt); }

@Override

public double value() { return val; }

public static void value(double newVal) {



val = newVal;

}

}

// patterns/trash/Glass.java

package patterns.trash;

public class Glass extends Trash {

private static double val = 0.23f;

public Glass(double wt) { super(wt); }

@Override

public double value() { return val; }

public static void value(double newVal) {

val = newVal;

}

}

And here’s a new type of Trash:

// patterns/trash/Cardboard.java

package patterns.trash;

public class Cardboard extends Trash {

private static double val = 0.23f;

public Cardboard(double wt) { super(wt); }



@Override

public double value() { return val; }

public static void value(double newVal) {

val = newVal;

}

}

Notice there’s nothing special about any of these classes.

Parsing Trash from a File

The information about Trash objects is read from a text file

containing all necessary information about each piece of trash. Each

piece of trash is described by a single line in the form

Trash:weight:

// patterns/trash/Trash.dat

Glass:54

Paper:22

Paper:11

Glass:17

Aluminum:89

Paper:88

Aluminum:76



Cardboard:96

Aluminum:25

Aluminum:34

Glass:11

Glass:68

Glass:43

Aluminum:27

Cardboard:44

Aluminum:18

Paper:91

Glass:63

Glass:50

Glass:80

Aluminum:81

Cardboard:12

Glass:12

Glass:54

Aluminum:36

Aluminum:93

Glass:93



Paper:80

Glass:36

Glass:12

Glass:60

Paper:66

Aluminum:36

Cardboard:22

The Trash parser is placed in a separate file since it will also be

reused throughout this chapter:

// patterns/trash/ParseTrash.java

// Open a file and parse its contents into

// Trash objects, placing each into a List

// {java patterns.trash.ParseTrash}

package patterns.trash;

import java.util.*;

import java.util.stream.*;

import java.io.*;

import java.nio.file.*;

import java.nio.file.Files;

public class ParseTrash {



public static <T extends Trash> void

fillBin(String pckg, Fillable<T> bin) {

try {

Files.lines(Paths.get("trash", "Trash.dat"))

// Remove empty lines and comment lines:

.filter(line -> line.trim().length() != 0)

.filter(line -> !line.startsWith("//"))

.forEach( line -> {

String type = "patterns." + pckg + "." +

line.substring(

0, line.indexOf(':')).trim();

double weight = Double.valueOf(

line.substring(line.indexOf(':') + 1)

.trim());

bin.addTrash(Trash.factory(

new Trash.Info(type, weight)));

});

} catch(IOException |

NumberFormatException |

Trash.TrashClassNotFoundException |



Trash.CannotCreateTrashException e) {

throw new RuntimeException(e);

}

}

// Special case to handle List:

public static <T extends Trash> void

fillBin(String pckg, List<T> bin) {

fillBin(pckg, new FillableList<>(bin));

}

// Basic test:

public static void main(String[] args) {

List<Trash> t = new ArrayList<>();

fillBin("trash", t);

t.forEach(System.out::println);

}

}

/* Output:

Loading patterns.trash.Glass

Loading patterns.trash.Paper

Loading patterns.trash.Aluminum



Loading patterns.trash.Cardboard

patterns.trash.Glass w:54.0 v:0.23

patterns.trash.Paper w:22.0 v:0.10

patterns.trash.Paper w:11.0 v:0.10

patterns.trash.Glass w:17.0 v:0.23

patterns.trash.Aluminum w:89.0 v:1.67

patterns.trash.Paper w:88.0 v:0.10

patterns.trash.Aluminum w:76.0 v:1.67

patterns.trash.Cardboard w:96.0 v:0.23

patterns.trash.Aluminum w:25.0 v:1.67

patterns.trash.Aluminum w:34.0 v:1.67

patterns.trash.Glass w:11.0 v:0.23

patterns.trash.Glass w:68.0 v:0.23

patterns.trash.Glass w:43.0 v:0.23

patterns.trash.Aluminum w:27.0 v:1.67

patterns.trash.Cardboard w:44.0 v:0.23

patterns.trash.Aluminum w:18.0 v:1.67

patterns.trash.Paper w:91.0 v:0.10

patterns.trash.Glass w:63.0 v:0.23

patterns.trash.Glass w:50.0 v:0.23



patterns.trash.Glass w:80.0 v:0.23

patterns.trash.Aluminum w:81.0 v:1.67

patterns.trash.Cardboard w:12.0 v:0.23

patterns.trash.Glass w:12.0 v:0.23

patterns.trash.Glass w:54.0 v:0.23

patterns.trash.Aluminum w:36.0 v:1.67

patterns.trash.Aluminum w:93.0 v:1.67

patterns.trash.Glass w:93.0 v:0.23

patterns.trash.Paper w:80.0 v:0.10

patterns.trash.Glass w:36.0 v:0.23

patterns.trash.Glass w:12.0 v:0.23

patterns.trash.Glass w:60.0 v:0.23

patterns.trash.Paper w:66.0 v:0.10

patterns.trash.Aluminum w:36.0 v:1.67

patterns.trash.Cardboard w:22.0 v:0.23

*/

The file path is read relative to the parent directory (patterns)

because related examples will also be packaged off of that directory.

Trash.dat is turned into a Stream of lines, and filtered for comments and
empty lines. Then the String method indexOf()

produces the index of the :. This is first used with the String



method substring() to extract the name of the trash type, and

next to get the weight that is turned into a double with the static

Double.valueOf() method. The trim() method removes white

space at both ends of a String. The specific package name is



included, with trash prepended, so that Java reflection is able to

locate and load the class file.

In RecycleA.java, an ArrayList was used to hold the Trash

objects. However, other types of collections can be used as well. To

allow this, the first version of fillBin() takes a reference to a

Fillable, which is simply an interface that supports a method

called addTrash():

// patterns/trash/Fillable.java

// Any object that can be filled with Trash

package patterns.trash;

public interface Fillable<T extends Trash> {

void addTrash(T t);

}

Anything that supports this interface can be used with fillBin().

However, List doesn’t implement Fillable, so it won’t work.

Since List is used in most of the examples, it makes sense to add a

second overloaded fillBin() method that takes an

List<Trash> . The List<Trash> can be used as a Fillable

object using an Adapter class:

// patterns/trash/FillableList.java



// Adapter that makes a List Fillable

package patterns.trash;

import java.util.*;

public class FillableList<T extends Trash>

implements Fillable<T> {

private List<T> v;

public FillableList(List<T> vv) {

v = vv;

}

@Override

public void addTrash(T t) { v.add(t); }

}

The only job of this class is to connect Fillables addTrash()

method to Lists add(). With this class in hand, the overloaded

fillBin() method can be used with an List in

ParseTrash.java.

This approach works for any collection class that’s used frequently.

Alternatively, the collection class can provide its own adapter that

implements Fillable. (You’ll see this later, in

DynaTrash.java.)



Recycling with Anonymous Trash Creation

Here’s the revised version of RecycleA.java using the new

technique:

// patterns/recycleb/RecycleB.java

// {java patterns.recycleb.RecycleB}

package patterns.recycleb;

import patterns.trash.*;

import java.util.*;

public class RecycleB {

public static void main(String[] args) {

List<Trash> bin = new ArrayList<>();

// Fill up the Trash bin:

ParseTrash.fillBin("trash", bin);

List<Glass> glassBin = new ArrayList<>();

List<Paper> paperBin = new ArrayList<>();

List<Aluminum> alBin = new ArrayList<>();

// Sort the Trash:

bin.forEach( t -> {

// RTTI to discover Trash type:

if(t instanceof Aluminum)



alBin.add((Aluminum)t);

if(t instanceof Paper)

paperBin.add((Paper)t);

if(t instanceof Glass)

glassBin.add((Glass)t);

});

Trash.sumValue(alBin);

Trash.sumValue(paperBin);

Trash.sumValue(glassBin);

Trash.sumValue(bin);

}

}

/* Output: (First and Last 10 Lines)

Loading patterns.trash.Glass

Loading patterns.trash.Paper

Loading patterns.trash.Aluminum

Loading patterns.trash.Cardboard

weight of patterns.trash.Aluminum = 89.0

weight of patterns.trash.Aluminum = 76.0

weight of patterns.trash.Aluminum = 25.0



weight of patterns.trash.Aluminum = 34.0

weight of patterns.trash.Aluminum = 27.0

weight of patterns.trash.Aluminum = 18.0

...________...________...________...________...

weight of patterns.trash.Aluminum = 93.0

weight of patterns.trash.Glass = 93.0

weight of patterns.trash.Paper = 80.0

weight of patterns.trash.Glass = 36.0

weight of patterns.trash.Glass = 12.0

weight of patterns.trash.Glass = 60.0

weight of patterns.trash.Paper = 66.0

weight of patterns.trash.Aluminum = 36.0

weight of patterns.trash.Cardboard = 22.0

Total value = 1086.0599818825722

*/

The process of parsing Trash.dat is wrapped into the static



method ParseTrash.fillBin(), so now it’s no longer a part of

our design focus. Throughout the rest of the chapter, no matter what

new classes are added, ParseTrash.fillBin() will continue to

work without change, which indicates a good design.

In terms of object creation, this design does indeed severely localize

the changes you must make to add a new type to the system. However,

there’s a significant problem in the use of RTTI that shows up clearly

here. The program seems to run fine, and yet it never detects any

cardboard, even though there is cardboard in the list! This happens

because of the use of RTTI, which looks only for your desired types.

The clue that RTTI is misused here is that every type in the system is

tested, rather than a single type or subset of types. As you will see

later, there are ways to use polymorphism instead when you’re testing

for every type. But if you use RTTI a lot in this fashion, and you add a

new type to your system, you can easily forget to make the necessary

changes in your program and produce a difficult-to-find bug. So it’s

worth trying to eliminate RTTI here, not just for aesthetic reasons—it

produces more maintainable code.

Abstracting Usage

With creation out of the way, it’s time to tackle the remainder of the



design: where the classes are used. Since it’s the act of sorting into bins

that’s particularly ugly and exposed, let’s apply the principle of “Hide

ugliness inside methods or classes.” It looks like this:

The TrashSorter object initialization must now be changed

whenever a new type of Trash is added to the model. You can

imagine that the TrashSorter class might look something like this:

class TrashSorter extends ArrayList<ArrayList<Trash>> {

void sort(Trash t) { /* ... */ }

}

That is, TrashSorter is a List of references to Lists of Trash

references, and with add() you can install another one.

Now, however, sort() becomes a problem. How does the statically-

coded method deal with the fact that a new type was added? To solve

this, the type information must be removed from sort() so all it



must do is call a general-purpose method that takes care of the details

of type. This is another way to describe a dynamically-bound method.

So sort() will simply move through the sequence and call a

dynamically-bound method for each ArrayList. Since the job of

this method is to grab the pieces of trash it is interested in, it’s called

grab(Trash). The structure now looks like:

TrashSorter calls each grab() method and get a different result

depending on what type of Trash the current List is holding. That

is, each List must be aware of the type it holds. The classic approach

to this problem is to create a base Trash bin class and inherit a new

derived class for each different type to hold. Further observation can

produce a better approach.



A basic OOP design principle is:

Use data members for variation in state,

use polymorphism for variation in

behavior.

Your first thought might be that the grab() method certainly

behaves differently for a List that holds Paper than for one that

holds Glass. But what it does is strictly dependent on the type, and

nothing else. This could be interpreted as a different state, and since

Java has a class to represent type (Class), this determines the type of

Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of

your choice. This tells the List what type it is supposed to hold. Then the
grab() method uses Class BinType and RTTI to see if the

Trash object you’ve handed it matches the type it’s supposed to grab.

Here is the whole program. The commented tagged numbers (e.g. //

[1]) mark sections to be described following the code.

// patterns/recyclec/RecycleC.java

// Adding more objects to the recycling problem

// {java patterns.recyclec.RecycleC}

package patterns.recyclec;

import patterns.trash.*;



import java.util.*;

// A List that admits only the right type:

class Tbin<T extends Trash> extends ArrayList<T> {

Class<T> binType;

Tbin(Class<T> type) {

binType = type;

}

@SuppressWarnings("unchecked")

boolean grab(Trash t) {

// Comparing class types:

if(t.getClass().equals(binType)) {

add((T)t); // Downcast to this TBin's type

return true; // Object grabbed

}

return false; // Object not grabbed

}

}

class TbinList<T extends Trash>

extends ArrayList<Tbin<? extends T>> { // [1]

boolean sort(T t) {



for(Tbin<? extends T> ts : this)

if(ts.grab(t))

return true;

return false; // bin not found for t

}

void sortBin(Tbin<T> bin) { // [2]

for(T aBin : bin)

if(!sort(aBin))

System.err.println("Bin not found");

}

}

public class RecycleC {

static Tbin<Trash> bin = new Tbin<>(Trash.class);

public static void main(String[] args) {

// Fill up the Trash bin:

ParseTrash.fillBin("trash", bin);

TbinList<Trash> trashBins = new TbinList<>();

trashBins.add(new Tbin<>(Aluminum.class));

trashBins.add(new Tbin<>(Paper.class));

trashBins.add(new Tbin<>(Glass.class));



// add one line here: [*3*]

trashBins.add(new Tbin<>(Cardboard.class));

trashBins.sortBin(bin); // [4]

trashBins.forEach(Trash::sumValue);

Trash.sumValue(bin);

}

}

/* Output: (First and Last 10 Lines)

Loading patterns.trash.Glass

Loading patterns.trash.Paper

Loading patterns.trash.Aluminum

Loading patterns.trash.Cardboard

weight of patterns.trash.Aluminum = 89.0

weight of patterns.trash.Aluminum = 76.0

weight of patterns.trash.Aluminum = 25.0

weight of patterns.trash.Aluminum = 34.0

weight of patterns.trash.Aluminum = 27.0

weight of patterns.trash.Aluminum = 18.0

...________...________...________...________...

weight of patterns.trash.Aluminum = 93.0



weight of patterns.trash.Glass = 93.0

weight of patterns.trash.Paper = 80.0

weight of patterns.trash.Glass = 36.0

weight of patterns.trash.Glass = 12.0

weight of patterns.trash.Glass = 60.0

weight of patterns.trash.Paper = 66.0

weight of patterns.trash.Aluminum = 36.0

weight of patterns.trash.Cardboard = 22.0

Total value = 1086.0599818825722

*/

[1] TbinList holds a set of Tbin references, so sort() can

iterate through the Tbins when it’s looking for a match for the

Trash object you’ve handed it.

[2] sortBin() allows you to pass an entire Tbin in, and it

moves through the Tbin, picks out each piece of Trash, and

sorts it into the appropriate specific Tbin. Notice the genericity



of this code: it doesn’t change at all if new types are added. If the

bulk of your code doesn’t need changing when a new type is added

(or some other change occurs) then you have an easily-extensible

system.

[3] Notice how easy it is to add a new type. Few lines must be

changed to support the addition. If it’s really important, you can

squeeze out even more by further manipulating the design.

[4] One method call causes the contents of bin to be sorted into

the respective specifically-typed bins.

Multiple Dispatching

The above design is certainly satisfactory. Adding new types to the

system consists of adding or modifying distinct classes without

causing code changes to be propagated throughout the system. In

addition, RTTI is not “misused” as it was in RecycleA.java.

However, it’s possible to go one step further and take a purist

viewpoint about RTTI and say it should be eliminated altogether from

the operation of sorting the trash into bins.



To accomplish this, you must first take the perspective that all type-

dependent activities—such as detecting the type of a piece of trash and

putting it into the appropriate bin—should be controlled through

polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of

elements that were all of a particular type. But whenever you find

yourself picking out particular types, stop and think. The whole idea of

polymorphism (dynamically-bound method calls) is to handle type-

specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java

performs only single dispatching. That is, if you are performing an

operation on more than one object whose type is unknown, Java will

invoke the dynamic binding mechanism on only one of those types.

This doesn’t solve the problem, so you end up detecting some types

manually and effectively producing your own dynamic binding

behavior.

The solution is Multiple Dispatching. We set up a configuration such

that a single method call produces more than one dynamic method call

and thus determines more than one type in the process. To get this

effect, you must work with multiple type hierarchies: one type



hierarchy for each dispatch. The following example works with two

hierarchies: the existing Trash family and a hierarchy of the types of

trash bins that the trash is placed into. This second hierarchy isn’t

always obvious and here it was required to produce multiple

dispatching (here there are only two dispatches, which is Double

Dispatching).

Implementing the Double

Dispatch

In the Trash hierarchy there is a new method called addToBin(),

which takes an argument of an array of TypedBin. It uses this array



to step through and try to add itself to the appropriate bin, and this is

where you’ll see the double dispatch.

The new hierarchy is TypedBin, and it contains its own method

called add() that is also used polymorphically. But here’s an

additional twist: add() is overloaded to take arguments of the

different types of trash. So an essential part of the double dispatching

scheme also involves overloading.

Redesigning the program produces a dilemma: it’s now necessary for

the base class Trash to contain an addToBin() method. One

approach is to copy all the code and change the base class. Another

approach, which you can take when you don’t have control of the

source code, is to put the addToBin() method into an interface,

leave Trash alone, and inherit new specific types of Aluminum,

Paper, Glass, and Cardboard. This is the approach we’ll take.

Most of the classes in this design must be public, so they are placed in their
own files. Here is the interface:

// patterns/doubledispatch/TypedBinMember.java

// An interface for adding the double dispatching

// method to the trash hierarchy without

// modifying the original hierarchy

package patterns.doubledispatch;



import java.util.*;

public interface TypedBinMember {

// The new method:

boolean addToBin(List<TypedBin> bins);

}

In each particular subtype of Aluminum, Paper, Glass, and

Cardboard, the addToBin() method in the interface

TypedBinMember is implemented, but it looks like the code is

exactly the same in each case:

// patterns/doubledispatch/Aluminum.java

// Aluminum for double dispatching

package patterns.doubledispatch;

import patterns.trash.*;

import java.util.*;

public class Aluminum extends patterns.trash.Aluminum

implements TypedBinMember {

public Aluminum(double wt) { super(wt); }

@Override

public boolean addToBin(List<TypedBin> tbins) {

return tbins.stream()



.anyMatch(tb -> tb.add(this));

}

}

// patterns/doubledispatch/Paper.java

// Paper for double dispatching

package patterns.doubledispatch;

import patterns.trash.*;

import java.util.*;

public class Paper extends patterns.trash.Paper

implements TypedBinMember {

public Paper(double wt) { super(wt); }

@Override

public boolean addToBin(List<TypedBin> tbins) {

return tbins.stream()

.anyMatch(tb -> tb.add(this));

}

}

// patterns/doubledispatch/Glass.java

// Glass for double dispatching

package patterns.doubledispatch;



import patterns.trash.*;

import java.util.*;

public class Glass extends patterns.trash.Glass

implements TypedBinMember {

public Glass(double wt) { super(wt); }

@Override

public boolean addToBin(List<TypedBin> tbins) {

return tbins.stream()

.anyMatch(tb -> tb.add(this));

}

}

// patterns/doubledispatch/Cardboard.java

// Cardboard for double dispatching

package patterns.doubledispatch;

import patterns.trash.*;

import java.util.*;

public class Cardboard extends patterns.trash.Cardboard

implements TypedBinMember {

public Cardboard(double wt) { super(wt); }

@Override



public boolean addToBin(List<TypedBin> tbins) {

return tbins.stream()

.anyMatch(tb -> tb.add(this));

}

}

The code in each addToBin() calls add() for each TypedBin

object in the array. But notice the argument: this. The type of this

is different for each subclass of Trash, so the code is different. (With

C++ templates, you can have a single definition of addToBin(), but

because of erasure Java generics don’t help here.) So this is the first

part of the double dispatch, because once you’re inside this method

you know you’re Aluminum, or Paper, etc. During the call to

add(), this information is passed via the type of this. The compiler

resolves the call to the proper overloaded version of add(). But since

tb produces a reference to the base type TypedBin, this call will end

up calling a different method depending on the type of TypedBin

that’s currently selected. That is the second dispatch.

Here’s the base class for TypedBin:

// patterns/doubledispatch/TypedBin.java

// A List that can grab the right type



package patterns.doubledispatch;

import patterns.trash.*;

import java.util.*;

public class TypedBin {

List<Trash> v = new ArrayList<>();

protected boolean addIt(Trash t) {

v.add(t);

return true;

}

public boolean add(Aluminum a) {

return false;

}

public boolean add(Paper a) {

return false;

}

public boolean add(Glass a) {

return false;

}

public boolean add(Cardboard a) {

return false;



}

}

The overloaded add() methods all return false. If the method is

not overloaded in a derived class, it will continue to return false,

and the caller (addToBin(), in this case) will assume that the

current Trash object has not been added successfully to a collection,

and continue searching for the right collection.

In each of the subclasses of TypedBin, only one overloaded method

is overridden, according to the type of bin that’s created. For example,

CardboardBin overrides add(Cardboard). The overridden

method adds the trash object to its collection and returns true, while

all the rest of the add() methods in CardboardBin continue to

return false, as they haven’t been overridden.

Here’s the rest of the program:

// patterns/doubledispatch/DoubleDispatch.java

// Using multiple dispatching to handle more

// than one unknown type during a method call

// {java patterns.doubledispatch.DoubleDispatch}

package patterns.doubledispatch;

import patterns.trash.*;



import java.util.*;

class AluminumBin extends TypedBin {

@Override

public boolean add(Aluminum a) {

return addIt(a);

}

}

class PaperBin extends TypedBin {

@Override

public boolean add(Paper a) {

return addIt(a);

}

}

class GlassBin extends TypedBin {

@Override

public boolean add(Glass a) {

return addIt(a);

}

}

class CardboardBin extends TypedBin {



@Override

public boolean add(Cardboard a) {

return addIt(a);

}

}

class TrashBinSet {

private List<TypedBin> binSet = Arrays.asList(

new AluminumBin(),

new PaperBin(),

new GlassBin(),

new CardboardBin()

);

@SuppressWarnings("unchecked")

public void sortIntoBins(List bin) {

bin.forEach( aBin -> {

TypedBinMember t = (TypedBinMember)aBin;

if(!t.addToBin(binSet))

System.err.println("Couldn't add " + t);

});

}



public List<TypedBin> binSet() { return binSet; }

}

public class DoubleDispatch {

public static void main(String[] args) {

List<Trash> bin = new ArrayList<>();

TrashBinSet bins = new TrashBinSet();

// ParseTrash still works, without changes:

ParseTrash.fillBin("doubledispatch", bin);

// Sort from the master bin into the

// individually-typed bins:

bins.sortIntoBins(bin);

// Perform sumValue for each bin...

bins.binSet()

.forEach(tb -> Trash.sumValue(tb.v));

// ... and for the master bin

Trash.sumValue(bin);

}

}

/* Output: (First and Last 10 Lines)

Loading patterns.doubledispatch.Glass



Loading patterns.doubledispatch.Paper

Loading patterns.doubledispatch.Aluminum

Loading patterns.doubledispatch.Cardboard

weight of patterns.doubledispatch.Aluminum = 89.0

weight of patterns.doubledispatch.Aluminum = 76.0

weight of patterns.doubledispatch.Aluminum = 25.0

weight of patterns.doubledispatch.Aluminum = 34.0

weight of patterns.doubledispatch.Aluminum = 27.0

weight of patterns.doubledispatch.Aluminum = 18.0

...________...________...________...________...

weight of patterns.doubledispatch.Aluminum = 93.0

weight of patterns.doubledispatch.Glass = 93.0

weight of patterns.doubledispatch.Paper = 80.0

weight of patterns.doubledispatch.Glass = 36.0

weight of patterns.doubledispatch.Glass = 12.0

weight of patterns.doubledispatch.Glass = 60.0

weight of patterns.doubledispatch.Paper = 66.0

weight of patterns.doubledispatch.Aluminum = 36.0

weight of patterns.doubledispatch.Cardboard = 22.0

Total value = 1086.0599818825722



*/

TrashBinSet encapsulates all different types of TypedBins, along

with the sortIntoBins() method, which is where all the double

dispatching takes place. Once the structure is set up, sorting into the

various TypedBins is remarkably easy. In addition, the efficiency of

two dynamic method calls is probably better than any other way you

can sort.

Notice the ease of use of this system in main(), as well as the

complete independence of any specific type information within

main(). All other methods that talk only to the Trash base-class

interface are equally invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you

inherit the new type of Trash with its addToBin() method, then

you inherit a new TypedBin, and finally you add a new type into the

aggregate initialization for TrashBinSet.

The Visitor Pattern



Now consider applying a design pattern with an entirely different goal

to the trash-sorting problem.

For this pattern, we are no longer concerned with optimizing the

addition of new types of Trash to the system. Indeed, Visitor makes

adding a new type of Trash more complicated. The assumption is

that you have a primary class hierarchy that is fixed; perhaps it’s from

another vendor and you can’t make changes to that hierarchy.

However, you’d like to add new polymorphic methods to that

hierarchy, which means that normally you’d have to add something to

the base class interface. So the dilemma is that you must add methods

to the base class, but you can’t touch the base class. How do you get

around this?

The Visitor pattern solves this kind of problem, and it builds on the double
dispatching scheme you’ve seen earlier.

Visitor allows you to extend the interface of the primary type by

creating a separate class hierarchy of type Visitor to virtualize the

operations performed upon the primary type. The objects of the

primary type simply “accept” the visitor, then call the visitor’s

dynamically-bound method. It looks like this:



Now, if v is a Visitable reference to an Aluminum object, the



code:

PriceVisitor pv = new PriceVisitor();

v.accept(pv);

causes two polymorphic method calls: the first one to select

Aluminums version of accept(), and the second one within

accept(), when the specific version of visit() is called

dynamically using the base-class Visitor reference v.

This configuration means new functionality can be added to the

system in the form of new subclasses of Visitor. The Trash

hierarchy doesn’t need modification. This is the prime benefit of the

Visitor pattern: you can add new polymorphic functionality to a class

hierarchy without touching that hierarchy (once the accept()

methods are installed). Note that the benefit is helpful here but not

exactly what we started out to accomplish, so at first blush you might

decide this isn’t the desired solution.

But look at one thing we’ve accomplished: the visitor solution avoids

sorting from the master Trash sequence into individual typed

sequences. Thus, you can leave everything in the single master

sequence and simply pass through that sequence using the appropriate

visitor to accomplish the goal. Although this behavior seems to be a



side effect of Visitor, it does give us what we want (avoiding RTTI).

The double dispatching in the Visitor pattern determines both the type

of Trash and the type of Visitor. In the following example, there

are two implementations of Visitor: PriceVisitor to both

determine and sum the price, and WeightVisitor to keep track of

the weights.

You see all of this implemented in the new, improved version of the

recycling program. As with DoubleDispatch.java, the Trash

class is left alone and we create a new interface containing the

accept() method:

// patterns/trashvisitor/Visitable.java

// An interface to add visitor functionality to the

// Trash hierarchy without modifying the base class

package patterns.trashvisitor;

public interface Visitable {

// The new method:

void accept(Visitor v);

}

The subtypes of Aluminum, Paper, Glass, and Cardboard

implement the accept() method:



// patterns/trashvisitor/Aluminum.java

// Aluminum for the visitor pattern

package patterns.trashvisitor;

import patterns.trash.*;

public class Aluminum extends patterns.trash.Aluminum

implements Visitable {

public Aluminum(double wt) { super(wt); }

@Override

public void accept(Visitor v) {

v.visit(this);

}

}

// patterns/trashvisitor/Paper.java

// Paper for the visitor pattern

package patterns.trashvisitor;

import patterns.trash.*;

public class Paper extends patterns.trash.Paper

implements Visitable {

public Paper(double wt) { super(wt); }

@Override



public void accept(Visitor v) {

v.visit(this);

}

}

// patterns/trashvisitor/Glass.java

// Glass for the visitor pattern

package patterns.trashvisitor;

import patterns.trash.*;

public class Glass extends patterns.trash.Glass

implements Visitable {

public Glass(double wt) { super(wt); }

@Override

public void accept(Visitor v) {

v.visit(this);

}

}

// patterns/trashvisitor/Cardboard.java

// Cardboard for the visitor pattern

package patterns.trashvisitor;

import patterns.trash.*;



public class Cardboard extends patterns.trash.Cardboard

implements Visitable {

public Cardboard(double wt) { super(wt); }

@Override

public void accept(Visitor v) {

v.visit(this);

}

}

Since there’s nothing concrete in the Visitor base class, it can be

created as an interface:

// patterns/trashvisitor/Visitor.java

// The base interface for visitors

package patterns.trashvisitor;

public interface Visitor {

void visit(Aluminum a);

void visit(Paper p);

void visit(Glass g);

void visit(Cardboard c);

void total();

}



The rest of the program creates specific Visitor types and sends

them through a single list of Trash objects:

// patterns/trashvisitor/TrashVisitor.java

// {java patterns.trashvisitor.TrashVisitor}

package patterns.trashvisitor;

import patterns.trash.*;

import java.util.*;

// Specific group of algorithms packaged

// in each implementation of Visitor:

class PriceVisitor implements Visitor {

private double alSum; // Aluminum

private double pSum; // Paper

private double gSum; // Glass

private double cSum; // Cardboard

public static void show(String s) {

System.out.println(s);

}

@Override

public void visit(Aluminum al) {

double v = al.weight() * al.value();



show("value of Aluminum= " + v);

alSum += v;

}

@Override

public void visit(Paper p) {

double v = p.weight() * p.value();

show("value of Paper= " + v);

pSum += v;

}

@Override

public void visit(Glass g) {

double v = g.weight() * g.value();

show("value of Glass= " + v);

gSum += v;

}

@Override

public void visit(Cardboard c) {

double v = c.weight() * c.value();

show("value of Cardboard = " + v);

cSum += v;



}

@Override

public void total() {

show(

"Total Aluminum: $" + alSum + "\n" +

"Total Paper: $" + pSum + "\n" +

"Total Glass: $" + gSum + "\n" +

"Total Cardboard: $" + cSum);

}

}

class WeightVisitor implements Visitor {

private double alSum; // Aluminum

private double pSum; // Paper

private double gSum; // Glass

private double cSum; // Cardboard

public static void show(String s) {

System.out.println(s);

}

@Override

public void visit(Aluminum al) {



alSum += al.weight();

show("Aluminum weight = " + al.weight());

}

@Override

public void visit(Paper p) {

pSum += p.weight();

show("Paper weight = " + p.weight());

}

@Override

public void visit(Glass g) {

gSum += g.weight();

show("Glass weight = " + g.weight());

}

@Override

public void visit(Cardboard c) {

cSum += c.weight();

show("Cardboard weight = " + c.weight());

}

@Override

public void total() {



show("Total weight Aluminum:" + alSum);

show("Total weight Paper:" + pSum);

show("Total weight Glass:" + gSum);

show("Total weight Cardboard:" + cSum);

}

}

public class TrashVisitor {

public static void main(String[] args) {

List<Trash> bin = new ArrayList<>();

// ParseTrash still works, without changes:

ParseTrash.fillBin("trashvisitor", bin);

List<Visitor> visitors = Arrays.asList(

new PriceVisitor(), new WeightVisitor());

bin.forEach( t -> {

Visitable v = (Visitable) t;

visitors.forEach(visitor -> v.accept(visitor));

});

visitors.forEach(Visitor::total);

}

}



/* Output: (First and Last 10 Lines)

Loading patterns.trashvisitor.Glass

Loading patterns.trashvisitor.Paper

Loading patterns.trashvisitor.Aluminum

Loading patterns.trashvisitor.Cardboard

value of Glass= 12.420000225305557

Glass weight = 54.0

value of Paper= 2.2000000327825546

Paper weight = 22.0

value of Paper= 1.1000000163912773

Paper weight = 11.0

...________...________...________...________...

value of Cardboard = 5.060000091791153

Cardboard weight = 22.0

Total Aluminum: $860.0499778985977

Total Paper: $35.80000053346157

Total Glass: $150.1900027245283

Total Cardboard: $40.02000072598457

Total weight Aluminum:515.0



Total weight Paper:358.0

Total weight Glass:653.0

Total weight Cardboard:174.0

*/

Note that the shape of main() has changed again. Now there’s only a

single Trash bin. The two Visitor objects are accepted into every

element in the sequence, and they perform their operations. The

visitors keep their own internal data to tally the total weights and

prices.

Finally, there’s no run-time type identification.

One way you can distinguish this solution from the double dispatching

solution described previously is to note that, in the double dispatching

solution, only one of the overloaded methods, add(), was overridden

when each subclass was created, while here each one of the overloaded

visit() methods is overridden in every subclass of Visitor.

More Coupling?

There’s a lot more code here, and there’s definite coupling between the



Trash hierarchy and the Visitor hierarchy. However, there’s also

high cohesion within the respective sets of classes: they each do only

one thing (Trash describes Trash, while Visitor describes actions

performed on Trash), which is an indicator of a good design. Here it

works well only if you’re adding new Visitors, but it gets in the way

when you add new types of Trash.

Low coupling between classes and high cohesion within a class is

definitely an important design goal. Applied mindlessly, though, it can

prevent you from achieving a more elegant design. It seems that some

classes inevitably have a certain intimacy with each other. These often

occur in pairs that could perhaps be called couplets, for example,

collections and iterators. The Trash-Visitor pair above appears to

be another such couplet.

RTTI Considered

Harmful?

Various designs in this chapter attempt to remove RTTI, which might



give you the impression it’s “considered harmful” (the condemnation

used for poor, ill-fated goto, which was thus never put into Java).

This isn’t true; it is the misuse of RTTI that is the problem. The reason

our designs removed RTTI is because the misapplication of that

feature prevented extensibility, while the stated goal was adding a new

type to the system with low impact on surrounding code. Since RTTI is

often misused by having it look for every single type in your system, it

creates non-extensible code: when you add a new type, you have to go

hunting for all the code where RTTI is used, and if you miss any you

won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code. Let’s

revisit the trash recycler once more. This time, a new tool is

introduced, which I call a TypeMap. It contains a Map that holds

Lists, but the interface is simple: you can add() a new object, and

you can get() a List containing all the objects of a particular type.

The keys for the contained Map are the types in the associated List.

The beauty of this design is that the TypeMap dynamically adds a new

pair whenever it encounters a new type, so whenever you add a new

type to the system (even if you add the new type at run-time), it

adapts.



Our example will again build on the structure of the Trash types in

package patterns.trash:

// patterns/dynatrash/DynaTrash.java

// Using a Map of Lists and RTTI to automatically

// sort trash into Lists. This solution, despite

// the use of RTTI, is extensible.

// {java patterns.dynatrash.DynaTrash}

package patterns.dynatrash;

import patterns.trash.*;

import java.util.*;

import java.util.stream.*;

// Generic TypeMap works in any situation:

class TypeMap<T> {

private Map<Class,List<T>> t = new HashMap<>();

public void add(T o) {

Class type = o.getClass();

if(t.containsKey(type))

t.get(type).add(o);

else {

List<T> v = new ArrayList<>();



v.add(o);

t.put(type,v);

}

}

public Stream<List<T>> values() {

return t.values().stream();

}

}

// Adapter class for callbacks

// from ParseTrash.fillBin():

class TypeMapAdapter implements Fillable {

TypeMap<Trash> map;

TypeMapAdapter(TypeMap<Trash> tm) {

map = tm;

}

@Override

public void addTrash(Trash t) { map.add(t); }

}

public class DynaTrash {

@SuppressWarnings("unchecked")



public static void main(String[] args) {

TypeMap<Trash> bin = new TypeMap<>();

ParseTrash.fillBin(

"trash", new TypeMapAdapter(bin));

bin.values().forEach(Trash::sumValue);

}

}

/* Output: (First and Last 10 Lines)

Loading patterns.trash.Glass

Loading patterns.trash.Paper

Loading patterns.trash.Aluminum

Loading patterns.trash.Cardboard

weight of patterns.trash.Paper = 22.0

weight of patterns.trash.Paper = 11.0

weight of patterns.trash.Paper = 88.0

weight of patterns.trash.Paper = 91.0

weight of patterns.trash.Paper = 80.0

weight of patterns.trash.Paper = 66.0

...________...________...________...________...

weight of patterns.trash.Aluminum = 81.0



weight of patterns.trash.Aluminum = 36.0

weight of patterns.trash.Aluminum = 93.0

weight of patterns.trash.Aluminum = 36.0

Total value = 860.0499778985977

weight of patterns.trash.Cardboard = 96.0

weight of patterns.trash.Cardboard = 44.0

weight of patterns.trash.Cardboard = 12.0

weight of patterns.trash.Cardboard = 22.0

Total value = 40.02000072598457

*/

Although powerful, the definition for TypeMap is simple. It contains a

Map, and the add() method does most of the work. When you

add() a new object, the Class object for that object’s type is

extracted. This is used as a key to determine whether a List holding

objects of that type is already present in the HashMap. If so, that

List is extracted and the object is added to the List. If not, the

Class object and a new ArrayList are added as a key-value pair.



Even though this design wasn’t created to handle the sorting,

fillBin() is performing a sort every time it inserts a Trash object

into bin.

Much of class DynaTrash should be familiar from the previous

examples. This time, instead of placing the new Trash objects into a

bin of type List, the bin is of type TypeMap, so when the trash is thrown
into bin it’s immediately sorted by TypeMaps internal

sorting mechanism. Stepping through the TypeMap and operating on

each individual List becomes a simple matter.

Adding a new type to the system won’t affect this code at all, nor the

code in TypeMap. This is certainly the smallest solution to the

problem, and arguably the most elegant as well. It does rely heavily on

RTTI, but notice that each key-value pair in the Map is looking for only

one type. In addition, there’s no way you can “forget” to add the proper

code to this system when you add a new type, since there isn’t any

code you must add.



Summary

Discovering the vector of change is no trivial matter; it’s not something

that an analyst can usually detect before the program sees its initial

design. The necessary insight will probably not appear until later

phases in the project. Sometimes only at the design or implementation

phases do you discover a deeper or more subtle need in your system.

In the case of adding new types (which was the focus of most of the

“recycle” examples) you might realize you need a particular

inheritance hierarchy only when you are in the maintenance phase and

you begin extending the system!

One of the most important things you’ll learn by exploring design

patterns seems to be an about-face from the impression people often

get, that “OOP is all about polymorphism.” This can produce the “two-

year-old with a hammer” syndrome (everything looks like a nail). Put

another way, it’s hard to understand polymorphism, and once you do,

you try to cast all your designs into that one particular mold.

What design patterns say is that OOP isn’t just about polymorphism.

It’s about “separating the things that change from the things that stay

the same.” Polymorphism is an important way to do this, and it turns

out to be helpful if the programming language directly supports



polymorphism (so you don’t have to wire it in yourself, which would

tend to make it prohibitively expensive). But design patterns in

general show other ways to accomplish the basic goal, and once your

eyes open to this you begin to search for more creative designs.

1. But be warned: the examples are in C++. ↩

Appendix: Supplements

There are a number of supplements to

this book, including the items and

services available through the MindView

Web site.



This appendix describes these supplements so you can decide if they

might be helpful to you.

Downloadable

Supplements

The code for this book is freely available for download from

https://github.com/BruceEckel/OnJava8-examples. This includes the Gradle
build files and other support files necessary to do a successful

build and execution of all the examples in the book.

Thinking in C:

Foundations for Java

At www.OnJava8.com, you will find the Thinking in C seminar as a free
download. This presentation, created by Chuck Allison and

developed by MindView LLC, is an eSeminar which gives you an

introduction to the C syntax, operators and functions that Java syntax

is based upon.

Hands-On Java

eSeminar

https://github.com/BruceEckel/Onjava8-examples/
http://www.OnJava8.com


The Hands-On Java eSeminar is based on the 2nd edition of Thinking

in Java. There is an audio lecture and slides corresponding to every

chapter in that book. I created the seminar and I narrate the material

on the eSeminar. The material is in HTML5, so it should run on most

modern browsers. The Hands-On Java eSeminar is for sale at

www.OnJava8.com, where you can find trial demos of the product.

Appendix:

Programming

Guidelines

This appendix contains suggestions to

help guide you in low-level program

design and writing code.

Naturally, these are guidelines and not rules. The idea is to use them

as inspirations and to remember there are occasional situations where

http://www.OnJava8.com


they should be bent or broken.

Design

1. Elegance always pays off. In the short term it might seem like

it takes much longer to come up with a truly graceful solution to a

problem, but when it works the first time and easily adapts to new

situations instead of requiring hours, days, or months of struggle,

you’ll see the rewards (even if no one can measure them). Not

only does it give you a program that’s easier to build and debug,

but it’s also easier to understand and maintain, and that’s where

the financial value lies. This point can take some experience to

understand, because it can appear that you’re not productive

while you’re making a piece of code elegant. Resist the urge to

hurry; it will only slow you down.

2. First make it work, then make it fast. This is true even if you

are certain a piece of code is really important and it is a principal

bottleneck in your system. Don’t do it. Get the system going first

with as simple a design as possible. Then if it isn’t going fast

enough, profile it. You’ll almost always discover that “your”

bottleneck isn’t the problem. Save your time for the really

important stuff.



3. Remember the “divide and conquer” principle. If the

problem you’re looking at is too confusing, imagine the basic

operation of the program, given the existence of a magic “piece”

that handles the hard parts. That “piece” is an object—write the

code that uses the object, then look at the object and encapsulate

its hard parts into other objects, etc.

4. Separate the class creator from the class user ( client

programmer). The class user is the “customer” and doesn’t

need or want to know what’s going on behind the scenes of the

class. The class creator must be the expert in class design and

write the class so it can be used by the most novice programmer

possible, yet still work robustly in the application. Think of the

class as a service provider for other classes. Library use is easy

only if it’s transparent.

5. When you create a class, attempt to make your names so

clear that comments are unnecessary. Your goal should be

to make the client programmer’s interface conceptually simple. To

this end, use method overloading when appropriate to create an

intuitive, easy-to-use interface.

6. Your analysis and design must produce, at minimum,



the classes in your system, their public interfaces, and

their relationships to other classes, especially base

classes. If your design method produces more than that, ask

yourself if all the pieces produced by that method have value over

the lifetime of the program. If they do not, maintaining them will

cost you. Members of development teams tend not to maintain

anything that does not contribute to their productivity; this is a

fact of life that many design methods don’t consider.

7. Automate everything. Write the test code first (before you

write the class), and keep it with the class. Automate the running

of your tests through a build tool—you’ll probably use Gradle, the

defacto standard Java build tool. This way, any changes are

automatically verified by running the test code, and you’ll

immediately discover errors. Because you know you have the

safety net of your test framework, you can be bolder about making

sweeping changes when you discover the need. Remember that

great improvements in languages come from the built-in testing

provided by type checking, exception handling, etc., but those

features take you only so far. You must go the rest of the way to

create a robust system by filling in the tests that verify features



specific to your class or program.

8. Write the test code first (before you write the class) to

verify that your class design is complete. If you can’t write

test code, you don’t know what your class looks like. In addition,

the act of writing the test code often flushes out additional

features or constraints you need in the class—these features or

constraints don’t always appear during analysis and design. Tests

also provide example code showing how your class can be used.

9. All software design problems can be simplified by

introducing an extra level of conceptual indirection. This

fundamental rule of software engineering1 is the basis of

abstraction, the primary feature of object-oriented programming.

In OOP, we could also say this as: “If your code is too

complicated, make more objects.”

10. An indirection should have a meaning (in concert with

guideline 9). This meaning can be something as simple as “putting

commonly used code in a single method.” If you add levels of

indirection (abstraction, encapsulation, etc.) that don’t have

meaning, it can be as bad as not having adequate indirection.

11. Make classes as atomic as possible. Give each class a single,



clear purpose—a cohesive service it provides to other classes. If

your classes or your system design grows too complicated, break

complex classes into simpler ones. The most obvious indicator of

this is sheer size; if a class is big, chances are it’s doing too much

and should be broken up. Clues to suggest redesign of a class are:

A complicated switch statement: consider using

polymorphism.

A large number of methods that cover broadly different types

of operations: consider using several classes.

A large number of member variables that concern broadly

different characteristics: consider using several classes.

Other suggestions are found in Refactoring: Improving the

Design of Existing Code by Martin Fowler (Addison-Wesley

1999).

12. Watch for long argument lists. Method calls then become

difficult to write, read, and maintain. Instead, try to move the

method to a class where it is (more) appropriate, and/or pass

objects in as arguments.

13. Don’t repeat yourself. If a piece of code appears in many

methods in derived classes, put that code into a single method in



the base class and call it from the derived-class methods. Not only

do you save code space, but you enable easy propagation of

changes. Sometimes the discovery of this common code will add

valuable functionality to your interface. A simpler version of this

guideline also occurs without inheritance: If a class has methods

that repeat code, factor that code into a common method and call

it from the other methods.

14. Watch for switch statements or chained if-else clauses.

This can be an indicator of type-check coding, which means you

are choosing what code to execute based on some kind of type

information (the exact type may not be obvious at first). You can

often replace this kind of code with inheritance and

polymorphism; a polymorphic method call will perform the type

checking for you and allow for more reliable and easier

extensibility.

15. From a design standpoint, look for and separate things

that change from things that stay the same. That is, search

for the elements in a system you might want to change without

forcing a redesign, then encapsulate those elements in classes.

16. Don’t extend fundamental functionality by subclassing. If



an interface element is essential to a class it should be in the base

class, not added during derivation. If you’re adding methods

during inheritance, consider rethinking the design.

17. Less is more. Start with a minimal interface to a class, as small

and simple as you need to solve the problem at hand, but don’t try

to anticipate all the ways your class might be used. As the class is

used, you’ll discover how you must expand the interface.

However, once a class is in use, you cannot shrink the interface

without breaking client code. If you must add more methods,

that’s fine; it won’t break code. But even if new methods replace

the functionality of old ones, leave the existing interface alone

(you can combine the functionality in the underlying

implementation if you want). If you must expand the interface of

an existing method by adding more arguments, create an

overloaded method with the new arguments; this way, you won’t

disturb any calls to the existing method.

18. Read your classes aloud to make sure they’re logical.

Refer to the relationship between a base class and derived class as

“is-a” and member objects as “has-a.”

19. When deciding between inheritance and composition,



ask if you must upcast to the base type. If not, prefer

composition (member objects) to inheritance. This can eliminate

the perceived need for multiple base types. If you inherit, users

think they should upcast.

20. Watch for overloading. A method should not conditionally

execute code based on the value of an argument. Here, create two

or more overloaded methods instead.

21. Use exception hierarchies—preferably derived from specific

appropriate classes in the standard Java exception hierarchy. The

person catching the exceptions can then write handlers for the

specific types of exceptions, followed by handlers for the base

type. If you add new derived exceptions, existing client code will

still catch the exception through the base type.

22. Sometimes simple aggregation does the job. A “passenger

comfort system” on an airline consists of disconnected elements:

seat, air conditioning, video, etc., and yet you must create many of

these in a plane. Do you make private members and build a whole

new interface? No—in this case, the components are also part of

the public interface, so create public member objects. Those

objects have their own private implementations, which are still



safe. Be aware that simple aggregation is not a solution to use

often, but it does happen.

23. Consider the perspective of the client programmer and

the person maintaining the code. Design your class to be as

obvious as possible to use. Anticipate the kind of changes to be

made, and design your class so those changes are easy.

24. Watch out for “giant object syndrome.” This is often an

affliction of procedural programmers who are new to OOP and

who end up writing a procedural program and sticking it inside

one or two giant objects. With the exception of application

frameworks, objects represent concepts in your application, not

the application itself.

25. If you must do something ugly, at least localize the

ugliness inside a class.

26. If you must do something nonportable, make an

abstraction for that service and localize it within a class.

This extra level of indirection prevents the nonportability from

being distributed throughout your program. (This idiom is

embodied in the Bridge Pattern, among others).

27. Objects should not simply hold some data. They should



also have well-defined behaviors. (Occasionally, “data transfer

objects” are appropriate, but only when used expressly to package

and transport a group of items when a generalized collection is

inappropriate.)

28. Choose composition first when creating new classes

from existing classes. Only use inheritance if it is required by

your design. If you use inheritance where composition will work,

your designs become needlessly complicated.

29. Use inheritance and method overriding to express

differences in behavior, and fields to express variations

in state. If you find a class using state variables along with

methods switching behavior based on those variables, redesign it

to express the differences in behavior within subclasses and

overridden methods. An extreme anti-example is inheriting

different classes to represent colors instead of using a “color”

field.

30. Watch out for variance. Two semantically different objects

may have identical actions or responsibilities. There is a natural

temptation to try to make one a subclass of the other just to

benefit from inheritance. This is called variance, but there’s no



real justification to force a superclass/subclass relationship where

it doesn’t exist. A better solution is to create a general base class

that produces an interface for both as derived classes. You still

benefit from inheritance and will probably make an important

discovery about the design.

31. Watch out for limitation during inheritance. The clearest designs add
new capabilities to inherited ones. A suspicious

design removes old capabilities during inheritance without adding

new ones. But rules are made to be broken, and if you are working

from an old class library, it may be more efficient to restrict an

existing class in its subclass than it would be to restructure the

hierarchy so your new class fits in where it should, above the old

class.

32. Use design patterns to eliminate “naked functionality.”

That is, if only one object of your class should be created, don’t

bolt ahead to the application and write a comment “Make only

one of these.” Wrap it in a singleton. If you have a lot of messy

code in your main program that creates your objects, look for a

creational pattern like a factory method where you can

encapsulate that creation. Eliminating “naked functionality” will

not only make your code much easier to understand and



maintain, but it will also make it more bulletproof against the

well-intentioned maintainers that come after you.

33. Watch out for “analysis paralysis.” Remember you must

usually move forward in a project before you know everything,

and that often the best and fastest way to learn about some of

your unknown factors is to go to the next step rather than trying

to figure it out in your head. You can’t know the solution until you

have the solution. Java has built-in firewalls; let them work for

you. Your mistakes in a class or set of classes won’t destroy the

integrity of the whole system.

34. When you think you’ve got a good analysis, design, or

implementation, do a walkthrough. Bring someone in from

outside your group—this doesn’t have to be a consultant, but can

be someone from another group within your company. Reviewing

your work with a fresh pair of eyes can reveal problems at a stage

when it’s much easier to fix them, and more than pays for the time

and money “lost” to the walkthrough process.



Implementation

36. Follow coding conventions. There are plenty of different

conventions, for example, Google uses these (the code in this book follows
these conventions as much as I was able). If you doggedly

stick to the coding style you’ve always used for some other

language, you make it harder for your reader. Whatever coding

conventions you decide on, ensure they are consistent throughout

the project. Integrated development environments usually have

reformatters and checkers built in.

37. Whatever coding style you use, it really does make a

difference if your team (and even better, your company)

standardizes on it. This means to the point that everyone

considers it fair game to fix someone else’s coding style if it

doesn’t conform. The value of standardization is it takes less brain

cycles to parse the code, so you can focus more on what the code

means.

https://google.github.io/styleguide/javaguide.html


38. Follow standard capitalization rules. Capitalize the first

letter of class names. The first letter of fields, methods, and

objects (references) should be lowercase. All identifiers should

run their words together, and capitalize the first letter of all

intermediate words. For example:

ThisIsAClassName

thisIsAMethodOrFieldName

Capitalize all the letters (and use underscore word separators) of

static final primitive identifiers that have constant

initializers in their definitions. This indicates they are compile-

time constants.

Packages are a special case—they are all lowercase

letters, even for intermediate words. The domain extension

(com, org, net, edu, etc.) should also be lowercase. (This was

a change between Java 1.1 and Java 2.)

39. Don’t create your own “decorated” private field names.

This is usually seen in the form of prepended underscores and

characters. Hungarian notation is the worst example of this,

where you attach extra characters that indicate data type, use,

location, etc., as if you were writing assembly language and the



compiler provided no extra assistance at all. These notations are

confusing, difficult to read, and unpleasant to enforce and

maintain. Let classes and packages do the name scoping for you.

If you feel you must decorate names to prevent confusion, your

code is probably too confusing anyway and should be simplified.

40. Follow a “canonical form” when creating a class for general-

purpose use. Include definitions for equals(), hashCode(),

toString(), clone() (implement Cloneable, or choose

some other object copying approach, like serialization), and

implement Comparable and Serializable.

41. Use the “get,” “set,” and “is” naming conventions for

methods that read and change private fields. Not only does it

make it easy to use your class, but it’s a standard way to name

these kinds of methods, so it is more easily understood by the

reader.

42. For each class you create, include JUnit tests for that

class (see junit.org, and the example in Validating Your Code).

You don’t need to remove the test code to use the class in a

project, and if you make changes, you can easily rerun the tests.

The test code also becomes an example of how to use your class.



43. Sometimes you need inheritance in order to access

protected members of the base class. This can lead to a

perceived need for multiple base types. If you don’t need to

upcast, first derive a new class to perform the protected access.

Then make that new class a member object inside any class that

uses it, instead of inheriting.

44. Avoid the use of final methods for efficiency purposes.

Use final for this purpose only when profiling shows a method

invocation is the bottleneck.

45. If two classes are associated with each other in some

functional way (such as collections and iterators), try to

make one an inner class of the other. This not only

emphasizes the association between the classes, but it allows class

name reuse within a single package by nesting it within another

class. The Java collections library does this by defining an inner

Iterator class inside each collection class, thereby providing

the collections with a common interface. The other reason to use

an inner class is as part of the private implementation. Here,

the inner class is beneficial for implementation hiding rather than

the class association and prevention of namespace pollution noted



above.

46. Anytime you notice that classes appear to have high

coupling with each other, consider the coding and

maintenance improvements you might get by using

inner classes. The use of inner classes will not uncouple the

classes, but rather make the coupling explicit and more

convenient.

47. Don’t fall prey to premature optimization. This way lies

madness. In particular, don’t worry about writing (or avoiding)

native methods, making some methods final, or tweaking code

to be efficient when you are first constructing the system. Your

primary goal should be to prove the design. Even if the design

requires a certain efficiency, first make it work, then make it fast.

48. Keep scopes as small as possible so the visibility and

lifetime of your objects are as small as possible. This

reduces the chance of using an object in the wrong context and

hiding a difficult-to-find bug. For example, suppose you have a

collection and a piece of code that iterates through it. If you copy

that code to use with a new collection, you may accidentally end

up using the size of the old collection as the upper bound of the



new one. If, however, the old collection is out of scope, the error is

caught at compile time.

49. Use the collections in the standard Java library. Become

proficient with their use and you’ll greatly increase your

productivity. Prefer ArrayList for sequences, HashSet for

sets, HashMap for associative arrays, and LinkedList for

stacks (rather than Stack, although you may create an adapter

to give a stack interface) and queues (which may also warrant an

adapter, as shown in this book). When you use the first three,

upcast to List, Set, and Map, respectively, so you can easily

change to a different implementation if necessary.

50. For a program to be robust, each component must be

robust. Use all the tools provided by Java—access control,

exceptions, type checking, synchronization, and so on—in each

class you create. That way you can safely move to the next level of

abstraction when building your system.

51. Prefer compile-time errors to run-time errors. Try to

handle an error as close to the point of its occurrence as possible.

Catch any exceptions in the nearest handler that has enough

information to deal with them. Do what you can with the



exception at the current level; if that doesn’t solve the problem,

rethrow the exception.

52. Watch for long method definitions. Methods should be brief,

functional units that describe and implement a discrete part of a

class interface. A long and complicated method is difficult and

expensive to maintain, and is probably trying to do too much all

by itself. If you see such a method, it indicates that, at the least, it

should be broken up into multiple methods. It may also suggest

the creation of a new class. Small methods will also foster reuse

within your class. (Sometimes methods must be large, but they

should still do just one thing.)

53. Keep things as “private as possible” . Once you publicize an

aspect of your library (a method, a class, a field), you can never

take it out. If you do, you’ll wreck somebody’s existing code,

forcing them to rewrite and redesign. If you publicize only what

you must, you can change everything else with impunity, and

since designs tend to evolve, this is an important freedom. In this

way, implementation changes have minimal impact on derived

classes. Privacy is especially important when dealing with

multithreading—only private fields can be protected against



un-synchronized use. Classes with package access should still

have private fields, but it usually makes sense to give the

methods of package access rather than making them public.

54. Use comments liberally, and use the Javadoc comment-

documentation syntax to produce your program

documentation. However, the comments should add genuine

meaning to the code; comments that only reiterate what the code

is clearly expressing are annoying. Note that the typical verbose

detail of Java class and method names reduce the need for some

comments.

55. Avoid using “magic numbers” . These are numbers hard-

wired into code. These are a nightmare if you must change them,

since you never know if “100” means “the array size” or

“something else entirely.” Instead, create a constant with a

descriptive name and use the constant identifier throughout your

program. This makes the program easier to understand and much

easier to maintain.

56. When creating constructors, consider exceptions. In the

best case, the constructor won’t do anything that throws an

exception. In the next-best scenario, the class is composed and



inherited from robust classes only, so it needs no cleanup if an

exception is thrown. Otherwise, you must clean up composed

classes inside a finally clause. If a constructor must fail, the

appropriate action is to throw an exception, so the caller doesn’t

continue blindly, thinking that the object was created correctly.

57. Inside constructors, do only what is necessary to set the

object into the proper state. Actively avoid calling other

methods (except for final methods), because those methods

can be overridden by someone else to produce unexpected results

during construction. (See the Housekeeping chapter for details.) Smaller,
simpler constructors are less likely to throw exceptions

or cause problems.

58. If your class requires any cleanup when the client

programmer is finished with the object, place the

cleanup code in a single, well-defined method, with a

name like dispose() that clearly suggests its purpose. In

addition, place a boolean flag in the class to indicate whether

dispose() was called so finalize() can check for “the

termination condition” (see the Housekeeping chapter).

59. The responsibility of finalize() can only be to verify “the

termination condition” of an object for debugging. (See



the Housekeeping chapter.) In special cases, it might be needed to release
memory that would not otherwise be released by the

garbage collector. Since the garbage collector might not get called

for your object, you cannot use finalize() to perform

necessary cleanup. For that you must create your own

dispose() method. In the finalize() method for the class,

check to make sure that the object was cleaned up and throw a

class derived from RuntimeException if it hasn’t, to indicate

a programming error. Before relying on such a scheme, ensure

that finalize() works on your system. (You might need to call

System.gc() to ensure this behavior.)

60. If an object must be cleaned up (other than by garbage

collection) within a particular scope, use the following

idiom: initialize the object and, if successful, immediately enter a

try block with a finally clause that performs the cleanup.

61. When overriding finalize() during inheritance,

remember to call super.finalize(). (This is not necessary if

Object is your immediate superclass.) Call

super.finalize() as the final act of your overridden

finalize() rather than the first, to ensure that base-class

components are still valid if you need them.



62. When creating a fixed-size collection of objects, transfer

them to an array, especially if you’re returning this collection

from a method. This way you get the benefit of the array’s

compile-time type checking, and the recipient of the array might

not need to cast the objects in the array to use them. Note that the

base-class of the collections library, java.util.Collection,

has two toArray() methods to accomplish this.

63. Choose interfaces over abstract classes. If you know something is a base
class, your first choice should be to make it an

interface, and only if you need method definitions or member

variables should you change it to an abstract class. An

interface talks about what the client wants to do, while a class

tends to focus on (or allow) implementation details.

64. To avoid a highly frustrating experience, make sure

there is only one unpackaged class of each name

anywhere in your classpath. Otherwise, the compiler can find

the identically-named other class first, and report error messages

that make no sense. If you suspect you are having a classpath

problem, try looking for .class files with the same names at

each of the starting points in your classpath. Ideally, put all your

classes within packages.



65. Watch for accidental overloading. If you attempt to override

a base-class method and you don’t get the spelling right, you’ll

end up adding a new method rather than overriding an existing

method. However, this is perfectly legal, so you won’t get any

error message from the compiler or run-time system; your code

simply won’t work correctly. Always use the @Override

annotation to prevent this.

66. Watch for premature optimization. First make it work, then

make it fast—but only if you must, and only if you’ve proved there

is a performance bottleneck in a particular section of your code.

Unless you use a profiler to discover a bottleneck, you waste your

time. The hidden extra cost of performance tweaks is that your

code becomes less understandable and maintainable.

67. Remember that code is read much more than it is

written. Clean designs make for easy-to-understand programs,

but comments, detailed explanations, tests, and examples are

invaluable. They help both you and everyone who comes after

you. If nothing else, the frustration of trying to ferret out useful

information from the JDK documentation should convince you.

1. Explained to me by Andrew Koenig. ↩



Appendix: Javadoc

Possibly the biggest problem with documenting code is maintaining

that documentation. If the documentation and the code are separate, it

becomes tedious to change the documentation every time you change

the code. The solution seems simple: Link the code to the

documentation. The easiest way to do this is to put everything in the

same file. To complete the picture, however, you need a special

comment syntax to mark the documentation and a tool to extract

those comments into a useful form. This is what Java has done.

The tool to extract the comments is called Javadoc, and it comes as

part of the JDK installation. It uses some of the technology from the

Java compiler to look for special comment tags. It not only extracts the

information marked by these tags, but it also pulls out the class name

or method name that adjoins the comment. This way you can get away

with the minimal amount of work to generate decent program

documentation.

The output of Javadoc is an HTML file you can view with your Web

browser. With Javadoc, you have a straightforward standard for



creating documentation, so you can expect documentation for all Java

libraries.

In addition, you can write your own Javadoc handlers, called doclets,

to perform special operations on the information processed by

Javadoc (to produce output in a different format, for example).

What follows is only an introduction and overview of the basics of

Javadoc. A thorough description is found in the JDK documentation.

Syntax

All Javadoc directives occur within comments that begin with /**

(but still end with */). There are two primary ways to use Javadoc:

Embed HTML or use “doc tags.” Standalone doc tags are directives

that start with an @ and are placed at the beginning of a comment line.

(A leading *, however, is ignored.) Inline doc tags can appear

anywhere within a Javadoc comment and also start with an @ but are

surrounded by curly braces.

There are three types of comment documentation, which correspond

to the element the comment precedes: class, field, or method. That is,



a class comment appears right before the definition of a class, a field

comment appears right before the definition of a field, and a method

comment appears right before the definition of a method. As a simple

example:

// javadoc/Documentation1.java

/** A class comment */

public class Documentation1 {

/** A field comment */

public int i;

/** A method comment */

public void f() {}

}

Javadoc processes comment documentation only for public and

protected members. Comments for private and package-access

members (see the Implementation Hiding chapter) are ignored by default, and
you’ll see no output. This makes sense, since only

public and protected members are available outside the file,



which is the client programmer’s perspective. You can use the -

private flag to include private members.

To process the preceding code through Javadoc, the command is:

javadoc Documentation1.java

This produces a set of HTML files; if you open index.html in your

browser you’ll see that the result has the same standard format as all

the rest of the Java documentation, so users are comfortable with the

format and can easily navigate your classes.

Embedded HTML

Javadoc passes HTML code untouched to the generated HTML

document. This allows you full use of HTML; however, the primary

motive is to let you format code, such as:

// javadoc/Documentation2.java

/** <pre>

* System.out.println(new Date());

* </pre>

*/

public class Documentation2 {}

You can also use HTML just as you would in any other Web document

to format the regular text in your descriptions:



// javadoc/Documentation3.java

/** You can <em>even</em> insert a list:

* <ol>

* <li> Item one

* <li> Item two

* <li> Item three

* </ol>

*/

public class Documentation3 {}

Note that within the documentation comment, asterisks at the

beginning of a line are thrown away by Javadoc, along with leading

spaces. Javadoc reformats everything so it conforms to the standard

documentation appearance. Don’t use headings such as <h1> or

<hr> as embedded HTML, because Javadoc inserts its own headings

and yours will interfere with them.

All types of comment documentation—class, field, and method—can

support embedded HTML.



Some Example Tags

Here are some of the Javadoc tags available for code documentation.

Before trying to do anything serious using Javadoc, consult the

Javadoc reference in the JDK documentation to learn all the different

ways you can use Javadoc.

@see

This tag refers to documentation in other classes. Javadoc will

generate HTML with the @see tags hyperlinked to the other

documentation. The forms are:

@see classname

@see fully-qualified-classname

@see fully-qualified-classname#method-name

Each adds a hyperlinked “See Also” entry to the generated

documentation. Javadoc does not check the validity of the hyperlinks.

{@link package.class#member label}

Very similar to @see, except it can be used inline and uses label as

the hyperlink text rather than “See Also.”

{@docRoot}

Produces the relative path to the documentation root directory. Useful

for explicit hyperlinking to pages in the documentation tree.



{@inheritDoc}

Inherits the documentation from the nearest base class of this class

into the current doc comment.

@version

This is of the form:

@version version-information

where version-information is any significant information you

see fit to include. When the -version flag is placed on the Javadoc

command line, the version information is called out specially in the

generated HTML documentation.

@author

This is of the form:

@author author-information

where author-information is presumably your name, but can

also include your email address or any other appropriate information.

When the -author flag is placed on the Javadoc command line, the

author information is called out specially in the generated HTML

documentation.

You can use multiple author tags for a list of authors, but they must be

placed consecutively. All author information is lumped together into a



single paragraph in the generated HTML.

@since

This tag indicates the version of this code that began using a particular

feature. It appears, for example, in the HTML Java documentation to

indicate the version of the JDK where a feature first appeared.

@param

This produces documentation for method arguments:

@param parameter-name description

where parameter-name is the identifier in the method parameter

list, and description is text that can continue on subsequent lines.

The description is considered finished when a new documentation tag

is encountered. You can have any number of these, presumably one for

each parameter.

@return

This documents the return value:

@return description

where description gives you the meaning of the return value. It



can continue on subsequent lines.

@throws

A method can produce any number of different types of exceptions, all

of which need descriptions. The form for the exception tag is:

@throws fully-qualified-class-name description

where fully-qualified-class-name gives an unambiguous name of an

exception class, and description (which can continue on subsequent

lines) tells you why this particular type of exception can emerge from

the method call.

@deprecated

This indicates features that are superseded by an improved feature.

The deprecated tag suggests that you no longer use this particular

feature, because sometime in the future it is likely to be removed. A

method marked @deprecated causes the compiler to issue a

warning if it is used. In Java 5, the @deprecated Javadoc tag was

superseded by the @Deprecated annotation (described in the

Annotations chapter).

Documentation Example

Here is objects/HelloDate.java with documentation

comments:



// javadoc/HelloDateDoc.java

import java.util.*;

/** The first On Java 8 example program.

* Displays a String and today's date.

* @author Bruce Eckel

* @author www.MindviewInc.com

* @version 5.0

*/

public class HelloDateDoc {

/** Entry point to class & application.

* @param args array of String arguments

* @throws exceptions No exceptions thrown

*/

public static void main(String[] args) {

System.out.println("Hello, it's: ");

System.out.println(new Date());

}

}

/* Output:

Hello, it's:



Tue May 09 06:07:27 MDT 2017

*/

You can find many examples of Javadoc comment documentation in

the source code for the Java standard libraries.

Appendix: Passing and

Returning Objects

By now you are reasonably comfortable

with the idea that when you’re “passing”

an object, you’re actually passing a

reference.

In many programming languages you can use that language’s “regular”

way to pass objects around, and most of the time everything works

fine. But there usually comes a point at which you must do something

irregular, and suddenly things get a bit more complicated. Java is no

exception, and it’s important you understand exactly what’s happening

as you pass objects and manipulate them. This appendix provides that

insight.

Another way to pose the question of this appendix, if you’re coming



from a programming language so equipped, is “Does Java have

pointers?” Every object identifier in Java (except for primitives) is one

of these pointers, but their use is restricted and guarded not only by

the compiler but by the run-time system. Or to put it another way,

Java has pointers, but no pointer arithmetic. These are what I’ve been

calling “references,” and you can think of them as “safety pointers,”

not unlike the safety scissors of elementary school—they aren’t sharp,

so you cannot hurt yourself without great effort, but they can

sometimes be tedious.

Passing References

When you pass a reference into a method, you’re still pointing to the

same object. A simple experiment demonstrates this:

// references/PassReferences.java

public class PassReferences {

public static void f(PassReferences h) {

System.out.println("h inside f(): " + h);



}

public static void main(String[] args) {

PassReferences p = new PassReferences();

System.out.println("p inside main(): " + p);

f(p);

}

}

/* Output:

p inside main(): PassReferences@15db9742

h inside f(): PassReferences@15db9742

*/

The method toString() is automatically invoked in the print

statements, and PassReferences inherits directly from Object

with no redefinition of toString(). Thus, Objects version of

toString() is used, which prints out the class of the object followed

by the address where that object is located (not the reference, but the

actual object storage).

The output shows that that both p and h refer to the same object. This

is far more efficient than duplicating a new PassReferences object

just so you can send an argument to a method. But it brings up an



important issue.

Aliasing

Aliasing means that more than one reference is tied to the same object,

as in the preceding example. The problem with aliasing occurs when

someone writes to that object. If the owners of the other references

aren’t expecting that object to change, they’ll be surprised. This can be

demonstrated:

// references/Alias1.java

// Aliasing two references to one object

public class Alias1 {

private int i;

public Alias1(int ii) { i = ii; }

public static void main(String[] args) {

Alias1 x = new Alias1(7);

Alias1 y = x; // Assign the reference (1)

System.out.println("x: " + x.i);

System.out.println("y: " + y.i);



System.out.println("Incrementing x");

x.i++; // [2]

System.out.println("x: " + x.i);

System.out.println("y: " + y.i);

}

}

/* Output:

x: 7

y: 7

Incrementing x

x: 8

y: 8

*/

[1] Here, a new Alias1 reference is created, but instead of being

assigned to a fresh object created with new, it’s assigned to an

existing reference. So the contents of reference x, which is the

address of the object x is pointing to, is assigned to y, and thus both x and y
are attached to the same object.

[2] When xs i is incremented, ys i is affected as well, as shown in the output.

The best solution is simply not to do it; don’t consciously alias more

than one reference to an object at the same scope. Your code is then



much easier to understand and debug. However, when you’re passing

a reference in as an argument—which is the way Java is supposed to

work—you automatically alias, because the local reference that’s

created can modify the “outside object” (the object that was created

outside the scope of the method):

// references/Alias2.java

// Method calls implicitly alias their arguments

public class Alias2 {

private int i;

public Alias2(int i) { this.i = i; }

public static void f(Alias2 reference) {

reference.i++;

}

public static void main(String[] args) {

Alias2 x = new Alias2(7);

System.out.println("x: " + x.i);

System.out.println("Calling f(x)");

f(x);

System.out.println("x: " + x.i);

}



}

/* Output:

x: 7

Calling f(x)

x: 8

*/

The method is changing its argument, the outside object. When this

kind of situation arises, you must decide whether it makes sense,

whether the user expects it, and whether it’s going to cause problems.

The answers are usually no, no, and yes, which is why pure functional

languages disallow this behavior.

In general, you call a method to produce a return value and/or change

the state of the object the method is called for. It’s much less common

to call a method to manipulate its arguments; this is one form of

“calling a method for its side effects.” Thus, when you create a method

that modifies its arguments, the user must be clearly instructed and



warned about the use of that method and its potential surprises.

Because of the confusion and pitfalls, it’s much better to avoid

changing the argument.

If you must modify an argument during a method call and you don’t

intend to modify the outside argument, then protect that argument by

making a copy inside your method. That’s the subject of much of this

appendix.

Making Local Copies

All argument passing in Java is performed by passing references. That

is, when you pass “an object,” you’re really passing only a reference to

an object that lives outside the method, so if you perform any

modifications through that reference, you modify the outside object.

In addition:

Aliasing happens automatically during argument passing.

There are no local objects, only local references.

References have scopes, objects do not.

Object lifetime is never an issue in Java.

There is no language support (e.g., “const”) to prevent objects from

being modified and to stop the negative effects of aliasing. You can’t



simply use the final keyword in the argument list; that only

prevents you from rebinding the reference to a different object.

If you’re strictly reading information from an object and not modifying

that object, passing a reference is the most efficient form of argument

passing. This is nice; the default way of doing things is also the most

efficient. However, sometimes it’s necessary to treat the object as if it

were “local” so changes you make affect only a local copy and do not

modify the outside object. Many programming languages support the

ability to automatically make a local copy of the outside object, inside

the method. 1 Java does not, but it allows you to produce this effect.

Pass By Value

This brings up the terminology issue, which always seems good for an

argument. The term is “pass by value,” and the meaning depends on

how you perceive the operation of the program. The concept is that

you get a local copy of whatever you’re passing, but the real question is

how you think about what you’re passing. When it comes to the

meaning of “pass by value,” there are two fairly distinct camps:



1. Java passes everything by value. When you pass primitives into a

method, you get a distinct copy of the primitive. When you pass a

reference into a method, you get a copy of the reference. Ergo,

everything is pass by value. The assumption is that you’re always

thinking (and caring) that references are passed, but it seems like

the Java design has gone a long way toward allowing you to ignore

(most of the time) that you’re working with a reference. That is, it

seems to allow you to think of the reference as “the object,” since

it implicitly dereferences it whenever you make a method call.

2. Java passes primitives by value, but objects are passed by

reference. This is the world view that the reference is an alias for

the object, so you don’t think about passing references, but

instead say “I’m passing the object.” Since you don’t get a local

copy of the object when you pass it into a method, objects are

clearly not passed by value. There appeared to be some support

for this view within Sun, since at one time one of the “reserved but

not implemented” keywords was byvalue (which will never be



implemented).

Having given both camps a good airing, and after saying “It depends

on how you think of a reference,” I attempt to sidestep the issue. In the

end, it isn’t that important—what is important is you understand that

passing a reference allows the caller’s object to be changed

unexpectedly.

Cloning Objects

Before you wade too far into cloning, check out the alternatives at the

end of the summary.

The most likely reason for making a local copy of an object is if you

modify that object but you don’t want to modify the caller’s object.

One approach for making a local copy is to use the clone() method.

clone() is defined as protected in the base class Object. You

must override clone() as public in any derived classes you want

to clone. For example, the standard library class ArrayList

overrides clone(), so we can call clone() for ArrayList:

// references/CloneArrayList.java

// The clone() operation works for only a few

// items in the standard Java library

import java.util.*;



import java.util.stream.*;

class Int {

private int i;

Int(int ii) { i = ii; }

public void increment() { i++; }

@Override

public String toString() {

return Integer.toString(i);

}

}

public class CloneArrayList {

public static void main(String[] args) {

ArrayList<Int> v = IntStream.range(0, 10)

.mapToObj(Int::new)

.collect(Collectors

.toCollection(ArrayList::new));

System.out.println("v: " + v);

@SuppressWarnings("unchecked")

ArrayList<Int> v2 = (ArrayList<Int>)v.clone();

// Increment all v2's elements:



v2.forEach(Int::increment);

// See if it changed v's elements:

System.out.println("v: " + v);

}

}

/* Output:

v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

v: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

*/

The clone() method produces an Object, which must then be

recast to the proper type. This example shows how ArrayLists

clone() method does not automatically try to clone each of the

objects that the ArrayList contains—the old ArrayList and the

cloned ArrayList are aliased to the same objects. This is a shallow

copy, since it’s copying only the “surface” portion of an object. The

actual object consists of this “surface,” plus all the objects that the

references are pointing to, plus all the objects those objects are

pointing to, etc. This is often called the “web of objects.” Making a full

copy of the entire mess is called a deep copy.

You see the effect of the shallow copy in the output, where the actions



performed on v2 affect v. Not clone()ing the objects contained in

the ArrayList is probably a fair assumption, because there’s no

guarantee that those objects are cloneable.2

Adding Cloneability to a Class

Even though clone() is defined in the base-of-all-classes Object,

cloning is not automatically available in every class. This would seem

counterintuitive to the idea that base-class methods are always

available in derived classes. Cloning in Java does indeed go against

this idea; if you want it to exist for a class, you must specifically add

code to make cloning work.

Using a Trick with Protected

To prevent default cloneability in every class you create, the clone()

method is protected in the base class Object. This means it’s not

available by default to the client programmer who is simply using the

class (not subclassing it). It also means you cannot call clone() via a

reference to the base class. It is, in effect, a way to give you, at compile

time, the information that your object is not cloneable—and oddly



enough, most classes in the standard Java library are not cloneable.

Thus, if you say:

Integer x = 1;

x = x.clone();

You get, at compile time, an error message that says clone() is not

accessible (since Integer doesn’t override it and it defaults to the

protected version).

If, however, you’re in a method of a class derived from Object (as all

classes are), then you have permission to call Object.clone()

because it’s protected and you’re an inheritor. The base class

clone() has useful functionality; it performs the actual bitwise

duplication of the derived-class object, thus acting as the common

cloning operation. However, you must then make your clone operation

public for it to be accessible. So, two key issues when you clone are:

Call super.clone()

Make your clone public

You’ll probably override clone() in any further derived classes;

otherwise, your (now public) clone() is used, and that might not

do the right thing (although, since Object.clone() makes a copy

of the actual object, it might). The protected trick works only once:



the first time you inherit from a class that has no cloneability and you

want to make a class that’s cloneable. In any classes inherited from

your class, the clone() method is available since it’s not possible in

Java to reduce the access of a method during derivation. That is, once

a class is cloneable, everything derived from it is cloneable unless you

use provided mechanisms (described later) to “turn off” cloning.

Implementing the Cloneable Interface

There’s one more action to complete the cloneability of an object:

implement the Cloneable interface. This is an empty (tagging)

interface.

There are two reasons for the existence of the Cloneable interface.

First, you might have an upcast reference to a base type and not know

whether it’s possible to clone that object. Here, you can use the

instanceof keyword (described in the Type Information chapter) to find out
whether the reference is connected to an object that can be

cloned:

if(myReference instanceof Cloneable) // ...



The second reason is that mixed into this design for cloneability is the

thought that maybe you don’t want all types of objects to be cloneable.

So Object.clone() verifies that a class implements the

Cloneable interface. If not, it throws a

CloneNotSupportedException exception. So in general, you’re

forced to implement Cloneable as part of support for cloning.

Successful Cloning

Once you understand the details of implementing the clone()

method, you’re able to create classes that can be easily duplicated to

provide a local copy:

// references/LocalCopy.java

// Creating local copies with clone()

class Duplo implements Cloneable {

private int n;

Duplo(int n) { this.n = n; }

@Override

public Duplo clone() { // [1]

try {

return (Duplo)super.clone();

} catch(CloneNotSupportedException e) {



throw new RuntimeException(e);

}

}

public int getValue() { return n; }

public void setValue(int n) { this.n = n; }

public void increment() { n++; }

@Override

public String toString() {

return Integer.toString(n);

}

}

public class LocalCopy {

public static Duplo g(Duplo v) {

// Passing a reference, modifies outside object:

v.increment();

return v;

}

public static Duplo f(Duplo v) {

v = v.clone(); // [2] Local copy

v.increment();



return v;

}

public static void main(String[] args) {

Duplo a = new Duplo(11);

Duplo b = g(a);

// Reference equivalence, not object equivalence:

System.out.println("a == b: " + (a == b) +

"\na = " + a + "\nb = " + b);

Duplo c = new Duplo(47);

Duplo d = f(c);

System.out.println("c == d: " + (c == d) +

"\nc = " + c + "\nd = " + d);

}

}

/* Output:

a == b: true

a = 12

b = 12

c == d: false

c = 47



d = 48

*/

First of all, for clone() to be accessible, you must make it public.

Second, for the initial part of your clone() operation, call the base-

class version of clone(). The clone() that’s called here is the one

that’s predefined inside Object, and you can call it because it’s

protected and thereby accessible in derived classes.

Object.clone() figures out how big the object is, creates enough

memory for a new one, and copies all the bits from the old to the new.

This is called a bitwise copy, and is typically what you’d expect a

clone() method to do. But before Object.clone() performs its

operations, it first checks to see if a class is Cloneable—that is,

whether it implements the Cloneable interface. If it doesn’t,

Object.clone() throws a CloneNotSupportedException

to indicate you can’t clone it. Thus, you’ve got to surround your call to

super.clone() with a try block to catch an exception that should

never happen (because you’ve implemented the Cloneable

interface).

[1] Notice the use of covariant return types here. The base class

Object’s clone() can only return Object, but the derived



class clone() can return a more specific type. Before covariant

return types, you had to cast the return type down to the proper

type, but now it can be validated at compile time.

[2] Here, you see a call to clone() which returns a Duplo,

with no cast required.

In LocalCopy, the methods g() and f() demonstrate the



difference between the two approaches for argument passing. The g()

method shows passing by reference; it modifies the outside object and

returns a reference to that outside object, whereas f() clones the

argument, thereby decoupling it and leaving the original object alone.

It can then proceed to do whatever it wants—even return a reference to

this new object without any ill effects to the original.

In main(), the difference between the effects of the two different

argument-passing approaches is tested. It’s important to notice that

the equivalence tests in Java do not look inside the objects being

compared to see if their values are the same. The == and != operators

are simply comparing the references. If the addresses inside the

references are the same, the references are pointing to the same object

and are therefore “equal.” So what the operators are really testing is

whether the references are aliased to the same object!

The Effect of Object.clone()

What actually happens when Object.clone() is called that makes



it so essential to call super.clone() when you override clone()

in your class? The clone() method in the root class is responsible

for creating the correct amount of storage and making the bitwise copy

of the bits from the original object into the new object’s storage. That

is, it doesn’t just make storage and copy an Object; it actually figures

out the size of the real object (not just the base-class object, but the

derived object) that’s copied, and duplicates that. Since all this is

happening from the code in the clone() method defined in the root

class (that has no idea what’s been inherited), you can guess that the

process involves RTTI to determine the actual object that’s cloned.

This way, the clone() method can create the proper amount of

storage and do the correct bitwise copy for that type.

The first part of the cloning process should usually be a call to

super.clone(). This establishes the groundwork for the cloning

operation by making an exact duplicate. At this point you can perform

other operations necessary to complete the cloning.

To know for sure what those other operations are, you must

understand exactly what Object.clone() buys you. In particular,

does it automatically clone the destination of all the references? We

can test this:



// references/Snake.java

// Tests cloning to see if reference

// destinations are also cloned

public class Snake implements Cloneable {

private Snake next;

private char c;

// Value of i == number of segments

public Snake(int i, char x) {

c = x;

if(--i > 0)

next = new Snake(i, (char)(x + 1));

}

public void increment() {

c++;

if(next != null)

next.increment();

}

@Override

public String toString() {

String s = ":" + c;



if(next != null)

s += next.toString();

return s;

}

@Override

public Snake clone() {

try {

return (Snake)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

Snake s = new Snake(5, 'a');

System.out.println("s = " + s);

Snake s2 = s.clone();

System.out.println("s2 = " + s2);

s.increment();

System.out.println(

"after s.increment, s2 = " + s2);



}

}

/* Output:

s = :a:b:c:d:e

s2 = :a:b:c:d:e

after s.increment, s2 = :a:c:d:e:f

*/

A Snake is made up of a bunch of segments, each of type Snake.

Thus, it’s a singly linked list. The segments are created recursively,

decrementing the first constructor argument for each segment until

zero is reached. To give each segment a unique tag, the second

argument, a char, is incremented for each recursive constructor call.

The increment() method recursively increments each tag to show

the change, and the toString() recursively prints each tag. The

output shows that only the first segment is duplicated by

Object.clone(), therefore it does a shallow copy. If you want the

whole snake duplicated—a deep copy—you must perform the

additional operations inside your overridden clone().

You’ll typically call super.clone() in any class derived from a

cloneable class to make sure that all base-class operations (including



Object.clone()) take place. This is followed by an explicit call to

clone() for every reference in your object; otherwise those

references are aliased to those of the original object. It’s analogous to

the way constructors are called: base-class constructor first, then the

next-derived constructor, and so on, to the most-derived constructor.

The difference is that clone() is not a constructor, so there’s

nothing to make it happen automatically. You must make sure to do it

yourself.

Cloning a Composed Object

There’s a problem you’ll encounter when trying to deep copy a

composed object. You must assume that the clone() method in the

member objects will in turn perform a deep copy on their references,

and so on. This is a commitment. It effectively means that for a deep

copy to work, you must either control all code in all classes, or at least

have enough knowledge about all classes involved in the deep copy to

know they are performing their own deep copy correctly.

Here’s what you must do to accomplish a deep copy when dealing with



a composed object:

// references/DepthReading.java

// Cloning a composed object

package references;

public class DepthReading implements Cloneable {

private double depth;

public DepthReading(double depth) {

this.depth = depth;

}

@Override

public DepthReading clone() {

try {

return (DepthReading)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

}

public double getDepth() { return depth; }

public void setDepth(double depth) {

this.depth = depth;



}

@Override

public String toString() {

return String.valueOf(depth);

}

}

// references/TemperatureReading.java

// Cloning a composed object

package references;

public class TemperatureReading implements Cloneable {

private long time;

private double temperature;

public TemperatureReading(double temperature) {

time = System.currentTimeMillis();

this.temperature = temperature;

}

@Override

public TemperatureReading clone() {

try {

return (TemperatureReading)super.clone();



} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

}

public double getTemperature() {

return temperature;

}

public void setTemperature(double temp) {

this.temperature = temp;

}

@Override

public String toString() {

return String.valueOf(temperature);

}

}

// references/OceanReading.java

// Cloning a composed object

package references;

public class OceanReading implements Cloneable {

private DepthReading depth;



private TemperatureReading temperature;

public

OceanReading(double tdata, double ddata) {

temperature = new TemperatureReading(tdata);

depth = new DepthReading(ddata);

}

@Override

public OceanReading clone() {

OceanReading or = null;

try {

or = (OceanReading)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

// Must clone references:

or.depth = (DepthReading)or.depth.clone();

or.temperature =

(TemperatureReading)or.temperature.clone();

return or;

}



public TemperatureReading getTemperatureReading() {

return temperature;

}

public void

setTemperatureReading(TemperatureReading tr) {

temperature = tr;

}

public DepthReading getDepthReading() {

return depth;

}

public void setDepthReading(DepthReading dr) {

this.depth = dr;

}

@Override

public String toString() {

return "temperature: " + temperature +

", depth: " + depth;

}

}

Now we can test it using JUnit:



// references/tests/DeepCopyTest.java

package references;

import org.junit.jupiter.api.*;

import static org.junit.jupiter.api.Assertions.*;

public class DeepCopyTest {

@Test

public void testClone() {

OceanReading reading =

new OceanReading(33.9, 100.5);

// Now clone it:

OceanReading clone = reading.clone();

TemperatureReading tr =

clone.getTemperatureReading();

tr.setTemperature(tr.getTemperature() + 1);

clone.setTemperatureReading(tr);

DepthReading dr = clone.getDepthReading();

dr.setDepth(dr.getDepth() + 1);

clone.setDepthReading(dr);

assertEquals(reading.toString(),

"temperature: 33.9, depth: 100.5");



assertEquals(clone.toString(),

"temperature: 34.9, depth: 101.5");

}

}

DepthReading and TemperatureReading are similar; they

both contain only primitives. Therefore, the clone() method can be

simple: it calls super.clone() and returns the result. Note that the

clone() code for both classes is identical.

OceanReading is composed of DepthReading and

TemperatureReading objects and so, to produce a deep copy, its

clone() must clone the references inside OceanReading. To

accomplish this, the result of super.clone() must be cast to an

OceanReading object (so you can access the depth and

temperature references).

A Deep Copy with ArrayList

Let’s revisit CloneArrayList.java from earlier in this appendix.

This time the Int2 class is cloneable, so the ArrayList can be deep



copied:

// references/AddingClone.java

// You must go through a few gyrations

// to add cloning to your own class

import java.util.*;

import java.util.stream.*;

class Int2 implements Cloneable {

private int i;

Int2(int ii) { i = ii; }

public void increment() { i++; }

@Override

public String toString() {

return Integer.toString(i);

}

@Override

public Int2 clone() {

try {

return (Int2)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);



}

}

}

// Inheritance doesn't remove cloneability:

class Int3 extends Int2 {

private int j; // Automatically duplicated

Int3(int i) { super(i); }

}

public class AddingClone {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

Int2 x = new Int2(10);

Int2 x2 = x.clone();

x2.increment();

System.out.println(

"x = " + x + ", x2 = " + x2);

// Anything inherited is also cloneable:

Int3 x3 = new Int3(7);

x3 = (Int3)x3.clone();

ArrayList<Int2> v = IntStream.range(0, 10)



.mapToObj(Int2::new)

.collect(Collectors

.toCollection(ArrayList::new));

System.out.println("v: " + v);

ArrayList<Int2> v2 =

(ArrayList<Int2>)v.clone();

// Now clone each element:

IntStream.range(0, v.size())

.forEach(i -> v2.set(i, v.get(i).clone()));

// Increment all v2's elements:

v2.forEach(Int2::increment);

System.out.println("v2: " + v2);

// See if it changed v's elements:

System.out.println("v: " + v);

}

}

/* Output:

x = 10, x2 = 11

v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

v2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

*/

Int3 inherits Int2, and a new primitive member, int j, is added.

You might think you’d need to override clone() again to make sure

j is copied, but that’s not the case. When Int2s clone() is called as Int3s
clone(), it calls Object.clone(), which determines it’s

working with an Int3 and duplicates all the bits in the Int3. As long

as you don’t add references that need cloning, the one call to

Object.clone() performs all necessary duplication regardless of

how far down in the hierarchy clone() is defined.

Here’s what’s necessary to do a deep copy of an ArrayList: After

the ArrayList is cloned, you have to step through and clone each

one of the objects pointed to by the ArrayList. You’d also have to

do something similar to this to do a deep copy of, for example, a

HashMap.

The remainder of the example demonstrates that cloning actually

happened by showing that, once an object is cloned, you can change it,



and the original object is left untouched.

Deep Copy Via Serialization

When you consider Java’s object serialization (introduced in the

Appendix: Object Serialization), you might observe that an object that’s first
serialized and then deserialized is, in effect, cloned.

So why not use serialization to perform deep copying? Here’s an

example that compares the two approaches by timing them:

// references/Compete.java

import java.io.*;

import onjava.Timer;

class Thing1 implements Serializable {}

class Thing2 implements Serializable {

Thing1 t1 = new Thing1();

}

class Thing3 implements Cloneable {

@Override

public Thing3 clone() {

try {

return (Thing3)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);



}

}

}

class Thing4 implements Cloneable {

private Thing3 t3 = new Thing3();

@Override

public Thing4 clone() {

Thing4 t4 = null;

try {

t4 = (Thing4)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

// Clone the field, too:

t4.t3 = t3.clone();

return t4;

}

}

public class Compete {

public static final int SIZE = 100000;



public static void

main(String[] args) throws Exception {

Thing2[] a = new Thing2[SIZE];

for(int i = 0; i < SIZE; i++)

a[i] = new Thing2();

Thing4[] b = new Thing4[SIZE];

for(int i = 0; i < SIZE; i++)

b[i] = new Thing4();

Timer timer = new Timer();

try(

ByteArrayOutputStream buf =

new ByteArrayOutputStream();

ObjectOutputStream oos =

new ObjectOutputStream(buf)

) {

for(Thing2 a1 : a) {

oos.writeObject(a1);

}

// Now get copies:

try(



ObjectInputStream in =

new ObjectInputStream(

new ByteArrayInputStream(

buf.toByteArray()))

) {

Thing2[] c = new Thing2[SIZE];

for(int i = 0; i < SIZE; i++)

c[i] = (Thing2)in.readObject();

}

}

System.out.println(

"Duplication via serialization: " +

timer.duration() + " Milliseconds");

// Now try cloning:

timer = new Timer();

Thing4[] d = new Thing4[SIZE];

for(int i = 0; i < SIZE; i++)



d[i] = b[i].clone();

System.out.println(

"Duplication via cloning: " +

timer.duration() + " Milliseconds");

}

}

/* Output:

Duplication via serialization: 516 Milliseconds

Duplication via cloning: 71 Milliseconds

*/

Thing2 and Thing4 contain member objects so there’s some deep

copying going on. Serializable classes are easy to set up, but

there’s much more work going on to duplicate them. On the other

hand, cloning involves more work to set up the class, but the actual

duplication of objects is relatively simple.

Notice that serialization is at least an order of magnitude slower than

cloning.

Adding Cloneability Further

Down a Hierarchy

If you create a new class, its base class defaults to Object, which defaults to
noncloneability. As long as you don’t explicitly add



cloneability, you won’t get it. But you can add it in at any layer and it

will then be cloneable from that layer downward, like this:

// references/HorrorFlick.java

// Insert Cloneability at any level of inheritance

class Person {}

class Hero extends Person {}

class Scientist extends Person implements Cloneable {

@Override

public Scientist clone() {

try {

return (Scientist)super.clone();

} catch(CloneNotSupportedException e) {

throw new RuntimeException(e);

}

}

}

class MadScientist extends Scientist {}

public class HorrorFlick {

public static void main(String[] args) {

Person p = new Person();



Hero h = new Hero();

Scientist s = new Scientist();

MadScientist m = new MadScientist();

//- p = (Person)p.clone(); // Compile error

//- h = (Hero)h.clone(); // Compile error

s = s.clone();

m = (MadScientist)m.clone();

}

}

Before cloneability was added in the hierarchy, the compiler stopped

you from trying to clone things. When cloneability is added in

Scientist, then Scientist and all its descendants are cloneable.

Notice that Scientist’s clone() returns a Scientist, whereas



cloning MadScientist, which inherits Scientist’s clone()

rather than creating its own specific version, requires a cast.

Why This Strange Design?

If all this seems a strange scheme, that’s because it is. You might

wonder why it worked out this way. What is the meaning behind this

design?

Originally, Java was designed as a language to control hardware boxes,

and definitely not with the Internet in mind. In a general-purpose

language like this, it makes sense for the programmer to clone any

object. Thus, clone() was placed in the root class Object, but it

was a public method so you can always clone any object. This

seemed the most flexible approach, and after all, what could it hurt?

When Java was seen as an Internet programming language, things

changed. Suddenly, there are security issues, and these issues are dealt

with using objects, and you don’t necessarily want anyone to clone

your security objects. So what you’re seeing is many patches applied

on the original simple and straightforward scheme: clone() is now

protected in Object. You must override it and implement

Cloneable and deal with the exceptions.

It’s worth noting you must implement the Cloneable interface only



if you’re going to call Objects clone() method, since that method

checks at run time to make sure that your class implements

Cloneable.

Controlling

Cloneability

You might suggest that, to remove cloneability, the clone() method

should simply be made private, but this won’t work, because you

cannot take a base-class method and make it less accessible in a

derived class. And yet, it’s necessary to control whether an object can

be cloned. There are a number of attitudes you can take for your

classes:

1. Indifference. You don’t do anything about cloning, which means

your class can’t be cloned, but a class that inherits from you can

add cloning if it wants. This works only if the default

Object.clone() will do something reasonable with all the

fields in your class.

2. Support clone(). Implement Cloneable and override

clone(). In the overridden clone(), call super.clone()

and catch all exceptions (so your overridden clone() doesn’t

throw any exceptions).



3. Support cloning conditionally. If your class holds references to

other objects that might or might not be cloneable (a container

class, for example), your clone() can try to clone all objects for

which you have references, and if they throw exceptions, just pass

those exceptions out to the programmer. For example, consider a

special sort of ArrayList that tries to clone all the objects it

holds. When you write such an ArrayList, you don’t know

what sort of objects the client programmer might put into your

ArrayList, so you don’t know whether they can be cloned.

4. Don’t implement Cloneable but override clone() as

protected, producing the correct copying behavior for any

fields. This way, anyone inheriting from this class can override

clone() and call super.clone() to produce the correct

copying behavior. Note that your implementation can and should

invoke super.clone() even though that method expects a

Cloneable object (it will throw an exception otherwise),

because no one will directly invoke it on an object of your type. It

will get invoked only through a derived class, which, if it is to

work successfully, implements Cloneable.

5. Try to prevent cloning by not implementing Cloneable and



overriding clone() to throw an exception. This is successful

only if any class derived from this calls super.clone() in its

redefinition of clone(). Otherwise, a programmer might

circumvent it.

6. Prevent cloning by making your class final. If clone() has

not been overridden by any of your ancestor classes, then it can’t

be. If it has been overridden, then override it again and throw

CloneNotSupportedException. Making the class final

is the only way to guarantee that cloning is prevented. In addition,

when dealing with security objects or other situations where you

control the number of objects created, make all constructors

private and provide one or more special methods for creating

objects. That way, these methods can restrict the number of

objects created and the conditions in which they’re created.

Here’s an example that shows the various ways cloning can be

implemented and then, later in the hierarchy, “turned off”:

// references/CheckCloneable.java

// Check to see if a reference can be cloned

// Can't clone this -- doesn't override clone():

class Ordinary {}



// Overrides clone, doesn't implement Cloneable:

class WrongClone extends Ordinary {

@Override public Object clone()

throws CloneNotSupportedException {

return super.clone(); // Throws exception

}

}

// Does all the right things for cloning:

class IsCloneable extends Ordinary

implements Cloneable {

@Override public Object clone()

throws CloneNotSupportedException {

return super.clone();

}

}

// Turn off cloning by throwing the exception:

class NoMore extends IsCloneable {

@Override public Object clone()

throws CloneNotSupportedException {

throw new CloneNotSupportedException();



}

}

class TryMore extends NoMore {

@Override public Object clone()

throws CloneNotSupportedException {

// Calls NoMore.clone(), throws exception:

return super.clone();

}

}

class BackOn extends NoMore {

private BackOn duplicate(BackOn b) {

// Somehow make a copy of b and return that

// copy. A dummy copy, just to make a point:

return new BackOn();

}

@Override

public Object clone() {

// Doesn't call NoMore.clone():

return duplicate(this);

}



}

// You can't inherit from this, so you can't

// override clone() as you can in BackOn:

final class ReallyNoMore extends NoMore {}

public class CheckCloneable {

public static

Ordinary tryToClone(Ordinary ord) {

String id = ord.getClass().getName();

System.out.println("Attempting " + id);

Ordinary x = null;

if(ord instanceof Cloneable) {

try {

x = (Ordinary)((IsCloneable)ord).clone();

System.out.println("Cloned " + id);

} catch(CloneNotSupportedException e) {

System.out.println(

"Could not clone " + id);

}

} else {

System.out.println("Doesn't implement Cloneable");



}

return x;

}

public static void main(String[] args) {

// Upcasting:

Ordinary[] ord = {

new IsCloneable(),

new WrongClone(),

new NoMore(),

new TryMore(),

new BackOn(),

new ReallyNoMore(),

};

Ordinary x = new Ordinary();

// This won't compile because

// clone() is protected in Object:

//- x = (Ordinary)x.clone();

// Checks first to see if the class

// implements Cloneable:

for(Ordinary ord1 : ord) {



tryToClone(ord1);

}

}

}

/* Output:

Attempting IsCloneable

Cloned IsCloneable

Attempting WrongClone

Doesn't implement Cloneable

Attempting NoMore

Could not clone NoMore

Attempting TryMore

Could not clone TryMore

Attempting BackOn

Cloned BackOn

Attempting ReallyNoMore

Could not clone ReallyNoMore

*/

The first class, Ordinary, represents the kinds of classes we’ve seen

throughout this book: no support for cloning, but as it turns out, no



prevention of cloning either. But if you have a reference to an

Ordinary object that might be upcast from a more derived class, you

can’t tell if it can be cloned or not.

The class WrongClone shows an incorrect way to implement

cloning. It does override Object.clone() and makes that method

public, but it doesn’t implement Cloneable, so when

super.clone() is called (which results in a call to

Object.clone()), CloneNotSupportedException is

thrown, so the cloning doesn’t work.

IsCloneable performs all the right actions for cloning; clone()

is overridden and Cloneable is implemented. However, this

clone() method and several others that follow in this example do

not catch CloneNotSupportedException, but instead pass it

through to the caller, who must then put a try-catch block around it. In

your own clone() methods you typically catch

CloneNotSupportedException inside clone() rather than

passing it through. As you’ll see, in this example it’s more informative

to pass the exceptions through.

Class NoMore attempts to “turn off” cloning in the way that the Java

designers intended: in the derived class clone(), you throw



CloneNotSupportedException. The clone() method in class

TryMore properly calls super.clone(), and this resolves to

NoMore.clone(), which throws an exception and prevents cloning.

But what if the programmer doesn’t follow the “proper” path of calling

super.clone() inside the overridden clone() method? In

BackOn, you see how this can happen. This class uses a separate

method duplicate() to make a copy of the current object and calls

this method inside clone() instead of calling super.clone().

The exception is never thrown and the new class is cloneable. You

can’t rely on throwing an exception to prevent making a cloneable

class. The only sure-fire solution is shown in ReallyNoMore, which

is final and thus cannot be inherited. That means if clone()

throws an exception in the final class, it cannot be modified with

inheritance, and the prevention of cloning is assured. (You cannot

explicitly call Object.clone() from a class that has an arbitrary

level of inheritance; you are limited to calling super.clone(),

which has access to only the direct base class.) Thus, if you make any

objects that involve security issues, make those classes final.

The first method you see in class CheckCloneable is

tryToClone(), which takes any Ordinary object and checks to



see whether it’s cloneable with instanceof. If so, it casts the object

to an IsCloneable, calls clone(), and casts the result back to

Ordinary, catching any exceptions. Notice the use of run-time type

identification (see the Type Information chapter) to display the class name
and show what’s happening.

In main(), different types of Ordinary objects are created and

upcast to Ordinary in the array definition. The subsequent two lines

of code create a plain Ordinary object and try to clone it. However,

this code will not compile because clone() is a protected

method in Object. The remainder of the code steps through the

array and tries to clone each object, reporting the success or failure of

each.

So to summarize, if you want a cloneable class:

1. Implement the Cloneable interface.

2. Override clone().

3. Call super.clone() inside your clone().

4. Capture exceptions inside your clone().



This will produce the most convenient effects.

The Copy Constructor

Cloning can be a complicated process to set up. Is there an alternative?

One (slow) approach is to use serialization, as shown earlier. You can

also make a special constructor whose job it is to duplicate an object.

In C++, this is called the copy constructor. A first attempt seems like it

should work, but it doesn’t:

// references/CopyConstructor.java

// A constructor to copy an object of the same

// type, as an attempt to create a local copy

import java.lang.reflect.*;

class FruitQualities {

private int weight;

private int color;

private int firmness;

private int ripeness;

private int smell;

// etc.

// No-arg constructor:

FruitQualities() {



// Do something meaningful...

}

// Other constructors:

// ...

// Copy constructor:

FruitQualities(FruitQualities f) {

weight = f.weight;

color = f.color;

firmness = f.firmness;

ripeness = f.ripeness;

smell = f.smell;

// etc.

}

}

class Seed {

// Members...

Seed() { /* No-arg constructor */ }

Seed(Seed s) { /* Copy constructor */ }

}

class Fruit {



private FruitQualities fq;

private int seeds;

private Seed[] s;

Fruit(FruitQualities q, int seedCount) {

fq = q;

seeds = seedCount;

s = new Seed[seeds];

for(int i = 0; i < seeds; i++)

s[i] = new Seed();

}

// Other constructors:

// ...

// Copy constructor:

Fruit(Fruit f) {

fq = new FruitQualities(f.fq);

seeds = f.seeds;

s = new Seed[seeds];

// Call all Seed copy-constructors:

for(int i = 0; i < seeds; i++)

s[i] = new Seed(f.s[i]);



// Other copy-construction activities...

}

// This allows derived constructors (or other

// methods) to put in different qualities:

protected void addQualities(FruitQualities q) {

fq = q;

}

protected FruitQualities getQualities() {

return fq;

}

}

class Tomato extends Fruit {

Tomato() {

super(new FruitQualities(), 100);

}

Tomato(Tomato t) { // Copy-constructor

super(t); // Upcast to base copy-constructor

// Other copy-construction activities...

}

}



class ZebraQualities extends FruitQualities {

private int stripedness;

// No-arg constructor:

ZebraQualities() {

super();

// do something meaningful...

}

ZebraQualities(ZebraQualities z) {

super(z);

stripedness = z.stripedness;

}

}

class GreenZebra extends Tomato {

GreenZebra() {

addQualities(new ZebraQualities());

}

GreenZebra(GreenZebra g) {

super(g); // Calls Tomato(Tomato)

// Restore the right qualities:

addQualities(new ZebraQualities());



}

public void evaluate() {

ZebraQualities zq =

(ZebraQualities)getQualities();

// Do something with the qualities

// ...

}

}

public class CopyConstructor {

public static void ripen(Tomato t) {

// Use the "copy constructor":

t = new Tomato(t); // [1]

System.out.println("In ripen, t is a " +

t.getClass().getName());

}

public static void slice(Fruit f) {

f = new Fruit(f); // [2] Hmmm... will this work?

System.out.println("In slice, f is a " +

f.getClass().getName());

}



@SuppressWarnings("unchecked")

public static void ripen2(Tomato t) {

try {

Class c = t.getClass();

// Use the "copy constructor":

Constructor ct =

c.getConstructor(new Class[] { c });

Object obj =

ct.newInstance(new Object[] { t });

System.out.println("In ripen2, t is a " +

obj.getClass().getName());

} catch(NoSuchMethodException |

SecurityException |

InstantiationException |

IllegalAccessException |

IllegalArgumentException |

InvocationTargetException e) {

System.out.println(e);

}

}



@SuppressWarnings("unchecked")

public static void slice2(Fruit f) {

try {

Class c = f.getClass();

Constructor ct =

c.getConstructor(new Class[] { c });

Object obj =

ct.newInstance(new Object[] { f });

System.out.println("In slice2, f is a " +

obj.getClass().getName());

} catch(NoSuchMethodException |

SecurityException |

InstantiationException |

IllegalAccessException |

IllegalArgumentException |

InvocationTargetException e) {

System.out.println(e);

}

}

public static void main(String[] args) {



Tomato tomato = new Tomato();

ripen(tomato); // OK

slice(tomato); // OOPS!

ripen2(tomato); // OK

slice2(tomato); // OK

GreenZebra g = new GreenZebra();

ripen(g); // OOPS!

slice(g); // OOPS!

ripen2(g); // OK

slice2(g); // OK

g.evaluate();

}

}

/* Output:

In ripen, t is a Tomato

In slice, f is a Fruit

java.lang.NoSuchMethodException: Tomato.<init>(Tomato)

java.lang.NoSuchMethodException: Tomato.<init>(Tomato)

In ripen, t is a Tomato

In slice, f is a Fruit



java.lang.NoSuchMethodException:

GreenZebra.<init>(GreenZebra)

java.lang.NoSuchMethodException:

GreenZebra.<init>(GreenZebra)

*/

This seems a bit strange at first. Sure, fruit has qualities, but why not

just put fields representing those qualities directly into the Fruit

class? There are two potential reasons.

1. To easily insert or change the qualities. Note that Fruit has a

protected addQualities() method to allow derived

classes to do this. (You might think the logical thing to do is

include a protected constructor in Fruit that takes a

FruitQualities argument, but constructors don’t inherit, so

it wouldn’t be available in second or greater level classes.) By

making the fruit qualities into a separate class and using

composition, you have greater flexibility, including the ability to

change the qualities midway through the lifetime of a particular

Fruit object.

2. Making FruitQualities a separate object allows you to add

new qualities or to change the behavior via inheritance and



polymorphism. Note that for GreenZebra (which really is a

type of tomato), the constructor calls addQualities() and

passes it a ZebraQualities object, which is derived from

FruitQualities, so it can be attached to the

FruitQualities reference in the base class. When

GreenZebra uses the FruitQualities, it must downcast it

to the correct type (as seen in evaluate()), but it always knows

that type is ZebraQualities.

You’ll also see there’s a Seed class, and that Fruit (which by

definition carries its own seeds) contains an array of Seeds.

Finally, notice that each class has a copy constructor, and that each

copy constructor must take care to call the copy constructors for the

base class and member objects to produce a deep copy. The copy

constructor is tested inside the class CopyConstructor.

[1] ripen() takes a Tomato argument and performs copy-

construction on it to duplicate the object.

[2] slice() takes a more generic Fruit object and also

duplicates it.

These are tested with different kinds of Fruit in main(). The

output shows the problem. After the copy-construction that happens



to the Tomato inside slice(), the result is no longer a Tomato

object, but just a Fruit. It has lost all of its tomato-ness.

Furthermore, when you take a GreenZebra, both ripen() and

slice() turn it into a Tomato and a Fruit, respectively. Thus,

unfortunately, the copy constructor scheme is no good to us in Java

when attempting to make a local copy of an object.

Why Does It Work in C++ and Not Java?

The copy constructor is a fundamental part of C++, since it

automatically makes a local copy of an object. Yet the preceding

example proves it does not work for Java. Why? In Java, everything

that we manipulate is a reference, but in C++, you can have reference-

like entities and you can also pass objects around directly. That’s what

the C++ copy constructor is for: to take an object and pass it in by

value, thus duplicating the object. So it works fine in C++, but keep in

mind this scheme fails in Java, so don’t use it.

Immutable Classes



Although the local copy produced by clone() gives the desired

results in the appropriate cases, it is an example of forcing the

programmer (the author of the method) to be responsible for

preventing the ill effects of aliasing. What if you’re making a library

that’s so general purpose and commonly used you cannot make the

assumption it will always be cloned in the proper places? Or more

likely, how do you allow aliasing for efficiency—to prevent the needless

duplication of objects—without the negative side effects of aliasing?

One solution (used by pure functional programming languages) is to

create immutable objects that belong to read-only classes. You can

define a class such that no methods in the class change the internal

state of the object. In such a class, aliasing has no impact since you can

only read the internal state, so if many pieces of code are reading the

same object, there’s no problem.

As a simple example of immutable objects, Java’s standard library

contains “wrapper” classes for all the primitive types. You might have

already discovered that, to store an int inside a container such as an

ArrayList (which takes only Object references), you must wrap

your int inside the standard library Integer class. Here, the

wrapping occurs automatically, with autoboxing:



// references/ImmutableInteger.java

// The Integer class cannot be changed

import java.util.*;

import java.util.stream.*;

public class ImmutableInteger {

public static void main(String[] args) {

List<Integer> v = IntStream.range(0, 10)

.mapToObj(Integer::new)

.collect(Collectors.toList());

System.out.println(v);

// But how do you change the int

// inside the Integer?

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

*/

The Integer class (as well as all the primitive “wrapper” classes)

implements immutability in a simple fashion: It has no methods that

allow you to change the object.



If you do need an object to hold a primitive type that can be modified,

you must create it yourself. Fortunately, this is trivial:

// references/MutableInteger.java

// A changeable wrapper class

import java.util.*;

import java.util.stream.*;

class IntValue {

private int n;

IntValue(int x) { n = x; }

public int getValue() { return n; }

public void setValue(int n) { this.n = n; }

public void increment() { n++; }

@Override

public String toString() {

return Integer.toString(n);

}

}

public class MutableInteger {

public static void main(String[] args) {

List<IntValue> v = IntStream.range(0, 10)



.mapToObj(IntValue::new)

.collect(Collectors.toList());

System.out.println(v);

v.forEach(IntValue::increment);

System.out.println(v);

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

*/

IntValue can be even simpler if privacy is not an issue:

// references/SimplerMutableInteger.java

// A trivial wrapper class

import java.util.*;

import java.util.stream.*;

class IntValue2 {

public int n;

IntValue2(int n) { this.n = n; }

}



public class SimplerMutableInteger {

public static void main(String[] args) {

List<IntValue2> v = IntStream.range(0, 10)

.mapToObj(IntValue2::new)

.collect(Collectors.toList());

v.forEach(iv2 ->

System.out.print(iv2.n + " "));

System.out.println();

v.forEach(iv2 -> iv2.n += 1);

v.forEach(iv2 ->

System.out.print(iv2.n + " "));

}

}

/* Output:

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

*/



Directly selecting the n member is a bit awkward, however.

Creating Immutable Classes

Here’s one way to create your own immutable class:

// references/Immutable1.java

// Immutable objects are immune to aliasing

public class Immutable1 {

private int data;

public Immutable1(int initVal) {

data = initVal;

}

public int read() { return data; }

public boolean nonzero() { return data != 0; }

public Immutable1 multiply(int multiplier) {

return new Immutable1(data * multiplier);

}

public static void f(Immutable1 i1) {

Immutable1 quad = i1.multiply(4);

System.out.println("i1 = " + i1.read());

System.out.println("quad = " + quad.read());

}



public static void main(String[] args) {

Immutable1 x = new Immutable1(47);

System.out.println("x = " + x.read());

f(x);

System.out.println("x = " + x.read());

}

}

/* Output:

x = 47

i1 = 47

quad = 188

x = 47

*/

All data is private, and you’ll see that none of the public methods

modify that data. Indeed, the method that does appear to modify an

object is multiply(), but this creates a new Immutable1 object

and leaves the original untouched.



The method f() takes an Immutable1 object and performs various

operations on it, and the output of main() demonstrates there is no

change to x. Thus, xs object could be aliased many times without

harm, because the Immutable1 class is designed to guarantee that

objects cannot be changed.

The Drawback to

Immutability

Creating an immutable class seems at first to provide an elegant

solution. However, whenever you do need a modified object of that

new type, you must suffer the overhead of a new object creation, as

well as potentially causing more frequent garbage collections. For

some classes this is not a problem (and functional programming

languages rely on it), but for others (such as the String class) it can

be expensive—but remember always the dictum against premature

optimization. (Note that languages that only provide immutability do

quite well, despite the perceived overhead).

The solution is to create a companion class that can be modified.

Then, when you’re doing many modifications, you can switch to using

the modifiable companion class and switch back to the immutable

class when you’re done.



We can change Immutable1.java to show this:

// references/Immutable2.java

// A companion class to modify immutable objects

class Mutable {

private int data;

Mutable(int initVal) {

data = initVal;

}

public Mutable add(int x) {

data += x;

return this;

}

public Mutable multiply(int x) {

data *= x;

return this;

}

public Immutable2 makeImmutable2() {

return new Immutable2(data);

}

}



public class Immutable2 {

private int data;

public Immutable2(int initVal) {

data = initVal;

}

public int read() { return data; }

public boolean nonzero() {

return data != 0;

}

public Immutable2 add(int x) {

return new Immutable2(data + x);

}

public Immutable2 multiply(int x) {

return new Immutable2(data * x);

}

public Mutable makeMutable() {

return new Mutable(data);

}

public static

Immutable2 modify1(Immutable2 y) {



Immutable2 val = y.add(12);

val = val.multiply(3);

val = val.add(11);

val = val.multiply(2);

return val;

}

// This produces the same result:

public static

Immutable2 modify2(Immutable2 y) {

Mutable m = y.makeMutable();

m.add(12).multiply(3).add(11).multiply(2);

return m.makeImmutable2();

}

public static void main(String[] args) {

Immutable2 i2 = new Immutable2(47);

Immutable2 r1 = modify1(i2);

Immutable2 r2 = modify2(i2);

System.out.println("i2 = " + i2.read());

System.out.println("r1 = " + r1.read());

System.out.println("r2 = " + r2.read());



}

}

/* Output:

i2 = 47

r1 = 376

r2 = 376

*/

Immutable2 contains methods that, as before, preserve the

immutability of the objects by producing new objects whenever a

modification is desired. These are the add() and multiply()

methods. The companion class is called Mutable, and it also has

add() and multiply() methods, but these modify the Mutable

object rather than making a new one. In addition, Mutable has a

method to use its data to produce an Immutable2 object and vice

versa.

The two static methods modify1() and modify2() show two

different approaches to producing the same result. In modify1(),

everything is done within the Immutable2 class and you see that

four new Immutable2 objects are created in the process. (And each



time val is reassigned, the previous object becomes garbage.)

The first action in modify2() is to take the Immutable2 y and

produce a Mutable from it. (This is just like calling clone() as you

saw earlier, but this time a different type of object is created.) Then the

Mutable object is used to perform many change operations without

requiring the creation of many new objects. Finally, it’s turned back

into an Immutable2. Here, two new objects are created (the

Mutable and the result Immutable2) instead of four.

This approach makes sense, then, when:

1. You need immutable objects and

2. You often need to make many modifications or

3. It’s expensive to create new immutable objects.

Immutable Strings

Consider the following code:

// references/Stringer.java

public class Stringer {

public static String upcase(String s) {



return s.toUpperCase();

}

public static void main(String[] args) {

String q = new String("howdy");

System.out.println(q); // howdy

String qq = upcase(q);

System.out.println(qq); // HOWDY

System.out.println(q); // howdy

}

}

/* Output:

howdy

HOWDY

howdy

*/

When q is passed in to upcase() it’s actually a copy of the reference

to q. The object this reference is connected to stays in a single physical

location. The references are copied as they are passed around.

In the definition for upcase(), the reference that’s passed in has the

name s, and it exists for only as long as the body of upcase() is



executed. When upcase() completes, the local reference s vanishes.

upcase() returns the result, which is the original String with all

the characters set to uppercase. Of course, it actually returns a

reference to the result. But the reference is for a new object, and the

original q is left alone. How does this happen?

Implicit Constants

If you say:

String s = "asdf";

String x = Stringer.upcase(s);

do you really want the upcase() method to change the argument?

In general, you don’t, because an argument usually looks to the reader

of the code as a piece of information provided to the method, not

something to be modified. This is an important guarantee, since it

makes code easier to write and understand.

Overloading + and StringBuilder

Objects of the String class are designed to be immutable, using the
companion-class technique shown previously. If you examine the JDK

documentation for the String class (which is summarized a little

later in this appendix), you’ll see that every method in the class that

appears to modify a String really creates and returns a brand new

String object containing the modification. The original String is



left untouched. Thus, there’s no feature in Java like C++’s const to

make the compiler support the immutability of your objects. If you

want it, you have to wire it in yourself, like String does.

Since String objects are immutable, you can alias to a particular

String as many times as you want. Immutability means there’s no

chance one reference will change something that affects other

references. So an immutable object solves the aliasing problem nicely.

It also seems possible to handle all the cases where you need a

modified object by creating a brand new version of the object with the

modifications, as String does. However, for some operations this

isn’t efficient. A case in point is the operator + that is overloaded for

String objects. Overloading means it has extra meaning when used

with a particular class. (The + and += for String are the only

overloaded operators in Java, and Java does not allow the

programmer to overload any others). 3

When used with String objects, the + concatenates Strings

together:

String s = "abc" + foo + "def" + Integer.toString(47);

You can imagine how this might work. The String “abc” could have

a method append() that creates a new String object containing



“abc” concatenated with the contents of foo. The new String object

would then create another new String that added “def,” and so on.

This would certainly work, but it requires the creation of many

String objects just to put together this new String, then you have

a bunch of intermediate String objects that need garbage-collecting.

I suspect that the Java designers tried this approach first (which is a

lesson in software design—you don’t really know anything about a

system until you try it out in code and get something working). I also

suspect they discovered it delivered unacceptable performance.

The solution is a mutable companion class similar to the one shown

previously. For String, this companion class is called

StringBuilder, and the compiler automatically creates a

StringBuilder to evaluate certain expressions, in particular when

the overloaded operators + and += are used with String objects.

Here’s what it looks like:

// references/ImmutableStrings.java

// Demonstrating StringBuilder

public class ImmutableStrings {

public static void main(String[] args) {

String foo = "foo";



String s = "abc" + foo + "def"

+ Integer.toString(47);

System.out.println(s);

// The "equivalent" using StringBuilder:

StringBuilder sb =

new StringBuilder("abc"); // Creates String

sb.append(foo);

sb.append("def"); // Creates String

sb.append(Integer.toString(47));

System.out.println(sb);

}

}

/* Output:

abcfoodef47

abcfoodef47

*/

In the creation of String s, the compiler is doing the rough



equivalent of the subsequent code that uses sb: a StringBuilder

is created, and append() is used to add new characters directly into

the StringBuilder object (rather than making new copies each

time). While this is more efficient, it’s worth noting that each time you

create a quoted character string such as "abc" and "def" , the compiler turns
those into String objects. This can create more

objects than you expect, despite the efficiency afforded through

StringBuilder.

You can find more details of StringBuilder in the Strings chapter.

Strings are Special

If you review the Strings chapter, you’ll see that every String method
carefully returns a new String object when the contents

change. If the contents don’t need changing, the method just returns a

reference to the original String. This saves storage and overhead.

The String class is not just another class in Java. There are many

special cases in String, not the least of which is that it’s a built-in

class and fundamental to Java. Then there’s the fact that a quoted

character string is converted to a String by the compiler and the

special overloaded operators + and +=. In this appendix you’ve seen

the remaining special case: the carefully-built immutability using the

companion StringBuilder and some extra magic in the compiler.



Summary

Because all object identifiers are references in Java, and because every

object is created on the heap and garbage collected only when it is no

longer used, the flavor of object manipulation changes, especially

when passing and returning objects. To initialize some piece of storage

in a method in C or C++, you might request that the user pass the

address of that piece of storage into the method. Otherwise, you have

to worry about who is responsible for destroying that storage. Thus,

the interface and understanding of such methods is more complicated.

But in Java, you don’t worry about responsibility or whether an object

will still exist when it is needed, since that is always taken care of for

you. You create an object when it is needed (and no sooner) and never

worry about mechanics of passing around responsibility for that

object; you simply pass the reference. Sometimes the simplification

this provides is unnoticed. Other times it is staggering.

The downside to all this underlying magic is twofold:



1. You always take the efficiency hit for the extra memory

management (although this is usually a non-issue), and there’s

always a slight amount of uncertainty about the time something

can take to run (since the garbage collector can be forced into

action whenever you get low on memory). For most applications,

the benefits outweigh the drawbacks, and the hotspot

technologies in particular have sped things up to the point where

it’s not much of an issue.

2. Aliasing: Sometimes you end up with two references to the same

object, which is a problem only if both references are assumed to

point to a distinct object. This is where you must pay a little closer

attention and, when necessary, clone() or otherwise duplicate

an object to prevent the other reference from being surprised by

an unexpected change. Alternatively, you can support aliasing for

efficiency by creating immutable objects whose operations can

return a new object of the same type or some different type, but

never change the original object so anyone aliased to that object

sees no change.

Some people say that cloning in Java is a botched design that

shouldn’t be used, so they implement their own version of cloning.



Doug Lea, who was helpful in resolving this issue, suggested this to

me, saying that he simply creates a function called duplicate() for

each class. This way, you never call Object.clone(), eliminating

the need to implement Cloneable and catch the

CloneNotSupportedException. This is certainly a reasonable

approach, and since clone() is supported so rarely within the

standard Java library, it is apparently a safe one as well.

Rather than writing your own clone support, consider either the

Apache Commons Serialization Utility Classes or the deep cloning

library.

1. In C, which generally handles small bits of data, the default is pass

by value. C++ had to follow this form, but with objects, pass by

value isn’t usually the most efficient approach. In addition, coding

classes to support pass by value in C++ is a big headache.↩

2. This is not the dictionary spelling of the word, but it’s what is used

in the Java library, so I’ve used it here, too, in some hopes of

reducing confusion. ↩

3. C++ allows the programmer to overload operators at will. Because

this can often be a complicated process (see Chapter 10 of

Thinking in C++, 2nd edition, Prentice Hall, 2000), the Java

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning


designers deemed it a “bad” feature that shouldn’t be included in

Java. It wasn’t so bad they didn’t end up doing it themselves, and

ironically enough, operator overloading would be much easier to

use in Java than in C++. This can be seen in Python (see

www.Python.org) which has garbage collection and

straightforward operator overloading.↩

Appendix: I/O Streams

Java 7 introduced a simple and clear

approach for reading and writing files and

using directory paths. Most of the time,

the libraries and techniques shown in the

Files chapter are all you need. If,

however, you must deal with specific

needs, lower-level operations or with

legacy code, you must understand the

information in this appendix.

Creating a good input/output (I/O) system is one of the more difficult

tasks for a language designer. This is evidenced by the number of



different approaches. The challenge seems to be in covering all

possibilities. Not only are there different sources and sinks of I/O

(files, the console, network connections, etc.), but you must talk to

them in a wide variety of ways (sequential, random-access, buffered,

binary, character, by lines, by words, etc.).

The Java library designers attacked this problem by creating lots of

classes. In fact, there are so many classes in Java I/O streams it can be

intimidating at first. There was also a significant change in the I/O

library after Java 1.0, when the original byte-oriented library was

supplemented with char-oriented, Unicode-based I/O classes. The

nio classes (for “new I/O,” a name used years after they were

introduced in Java 1.4) were added for improved performance and

functionality; these are covered in the Appendix: New I/O.

As a result, there are a fair number of classes to learn before you

understand enough of Java I/O streams library to use it properly. It’s

also helpful to understand the evolution of the I/O library. The

problem is that, without the historical perspective, you rapidly become

confused with some of the classes and when you should and shouldn’t

use them.

Programming language I/O libraries often use the abstraction of a



stream, which represents any data source or sink as an object capable

of producing or receiving pieces of data.

It’s important to understand there is no

connection between the Java 8 functional-

style Stream classes and I/O Streams. This

is another example where, if the

designers could do it over again, they’d

use different terminology.

An I/O stream hides details of what happens to the data inside the

actual I/O device:

1. Byte Streams are for raw binary data.

2. Character Streams are for character data. These automatically

handle translation to and from the local character set.

3. Buffered Streams improve performance. They optimize input and

output by reducing the number of calls to the native API.

The Java library classes for I/O streams are divided by input and



output, as shown in the class hierarchy in the JDK documentation. In

Java 1.0, the library designers decided that all classes that had

anything to do with input are inherited from InputStream, and all

classes associated with output are inherited from OutputStream.

Everything derived from the InputStream or Reader classes has

basic methods called read() for reading a single byte or an array of

bytes. Likewise, everything derived from OutputStream or

Writer classes has basic methods called write() for writing a

single byte or an array of bytes. However, you won’t generally use

these methods; they exist so other classes can use them—these other

classes provide a more useful interface.

You’ll rarely create your stream object by using a single class, but

instead will layer multiple objects together to provide your desired

functionality (this is the Decorator design pattern). The fact you create

more than one object to produce a single stream is the primary reason

that Java’s I/O library is confusing.

I attempt to provide an overview of the classes here, but assume you

will use the JDK documentation to determine all the details, such as

the exhaustive list of methods for a particular class.

Types of InputStream



InputStream represents classes that produce input from different

sources. These sources can be:

1. An array of bytes.

2. A String object.

3. A file.

4. A “pipe,” which works like a physical pipe: You put things in at

one end and they come out the other.

5. A sequence of other streams, so you can collect them together into

a single stream.

6. Other sources, such as an Internet connection.

Each of these sources has an associated subclass of InputStream.

In addition, the FilterInputStream is also a type of

InputStream, to provide a base class for “decorator” classes that

attach attributes or useful interfaces to input streams. This is

discussed later.

Table I/O-1: Types of InputStream

Constructor

Class

Function

arguments



Allows a buffer in

The buffer from which to

ByteArrayInputStream

memory to act as an

extract the bytes.

InputStream.

A String

Converts a String into

underlying

StringBufferInputStream an InputStream.

implementation actually

uses a

For reading information

A String

FileInputStream

from a file.



the file name, or a

or FileDescriptor

object.

Produces the data that’s

written to the associated

PipedInputStream

PipedOutputStream.

PipedOutputStream

Implements the “piping”

concept.

Converts two or more

Two

objects or an

InputStream objects

SequenceInputStream

Enumeration

into a single

container

InputStream.

InputStream



Abstract class that is an

interface for decorators

that provide useful

FilterInputStream

functionality to the other

See Table I/O-3

InputStream classes.

See Table I/O-3.

Types of OutputStream

This category includes the classes that decide where your output will

go: an array of bytes (but not a String—presumably, you can create one
using the array of bytes), a file, or a “pipe.”

In addition, the FilterOutputStream provides a base class for

“decorator” classes that attach attributes or useful interfaces to output

streams. This is discussed later.

Table I/O-2: Types of OutputStream

Constructor

Class

Function

arguments

Creates a buffer in



memory. All the data

Optional initial size of

ByteArrayOutputStream you send to the stream

the buffer.

is placed in this buffer.

A String

representing the file

For sending

FileOutputStream

name, or a

information to a file.

FileDescriptor

object.

Any information you

write to this

automatically ends up

as input for the

PipedOutputStream

associated

PipedInputStream



PipedInputStream.

Implements the

“piping” concept.

Abstract class that is an

interface for decorators

that provide useful

FilterOutputStream

functionality to the

See Table I/O-4

other OutputStream

classes. See Table I/O-

4.

Adding Attributes and

Useful Interfaces

Decorators were introduced in the Generics chapter. The Java I/O

library requires many different combinations of features, and this is



the justification for using the Decorator design pattern.1 The reason for the
existence of the “filter” classes in the Java I/O library is that the

abstract “filter” class is the base class for all the decorators. A

decorator must have the same interface as the object it decorates, but

the decorator can also extend the interface, which occurs in several of

the “filter” classes.

There is a drawback to the Decorator pattern. Decorators provide

more flexibility when writing a program (since you can easily mix and

match attributes), but they add complexity to your code. The reason

that the Java I/O library is awkward to use is that you must create

many classes—the “core” I/O type plus all the decorators—to get the

single I/O object you want.

The classes that provide the decorator interface to control a particular

InputStream or OutputStream are FilterInputStream

and FilterOutputStream, which don’t have very intuitive names.

FilterInputStream and FilterOutputStream are derived

from the base classes of the I/O library, InputStream and



OutputStream, which is a key requirement of the decorator (so it

provides the common interface to all decorated objects).

Reading from an InputStream

with FilterInputStream

The FilterInputStream classes accomplish two significantly

different things. DataInputStream reads different types of

primitive data as well as String objects. (All the methods start with

“read,” such as readByte(), readFloat(), etc.) This, along with

its companion DataOutputStream, lets you move primitive data

from one place to another via a stream. These “places” are determined

by the classes in Table I/O-1.

The remaining FilterInputStream classes modify the way an

InputStream behaves internally: whether it’s buffered or

unbuffered, whether it keeps track of the lines it’s reading (allowing

you to ask for line numbers or set the line number), and whether you

can push back a single character. The last two classes look a lot like

support for building a compiler (they were probably added to support

the experiment of “building a Java compiler in Java”), so you probably

won’t use them in general programming.

You’ll buffer your input almost every time, regardless of the connected



I/O device, so it would have made more sense for the I/O library to

provide a special case (or simply a method call) for unbuffered input

rather than forcing you to add buffering almost every time.

Table I/O-3. Types of FilterInputStream

Constructor

Class

Function

Arguments

Used in concert with

DataOutputStream, to

DataInputStream

read primitives (int,

InputStream

char, long, etc.) from a

stream in a portable

fashion.

Use this to prevent a

physical read every time

InputStream

BufferedInputStream



you want more data.

with optional

You’re saying, “Use a

buffer size.

buffer.”

Keeps track of line

numbers in the input

LineNumberInputStream stream; you can call

InputStream

getLineNumber() and

setLineNumber(int).

Has a one-byte push-back

PushbackInputStream

buffer to push back the last

InputStream

character read.

Writing to an OutputStream



with FilterOutputStream

The complement to DataInputStream is DataOutputStream,

which formats each of the primitive types and String objects onto a

stream in such a way that any DataInputStream, on any machine,

can read them. All the methods start with “write,” such as

writeByte(), writeFloat(), etc.

The original intent of PrintStream was to print all primitive data

types and String objects in a viewable format. This is different from

DataOutputStream, whose goal is to put data elements on a

stream in a way that DataInputStream can portably reconstruct

them.

The two important methods in PrintStream are print() and

println(), which are overloaded to print all the various types. The

difference between print() and println() is that the latter adds

a newline when it’s done.

PrintStream can be problematic because it traps all

IOExceptions (you must explicitly test the error status with

checkError(), which returns true if an error has occurred). Also,

PrintStream doesn’t internationalize properly. These problems are

solved with PrintWriter, described later.



BufferedOutputStream is a modifier and tells the stream to use

buffering so you don’t get a physical write every time you write to the

stream. You’ll probably always use this when doing output.

Table I/O-4. Types of FilterOutputStream

Constructor

Class

Function

Arguments

Used in concert with

DataInputStream

so you can write

DataOutputStream

primitives (int,

OutputStream

char, long, etc.) to a

stream in a portable

fashion.

For producing

OutputStream

formatted output.



with optional

While

boolean

PrintStream

DataOutputStream indicating that

handles the storage of

the buffer is

data, PrintStream

flushed with every

handles display.

newline.

Use this to prevent a

physical write every

time you send a piece

OutputStream

BufferedOutputStream of data. You’re saying,



with optional

“Use a buffer.” You can

buffer size.

call flush() to flush

the buffer.

Readers & Writers

Java 1.1 made significant modifications to the fundamental I/O stream

library. When you see the Reader and Writer classes, your first

thought (like mine) might be that these were meant to replace the

InputStream and OutputStream classes. But that’s not the case.

Although some aspects of the original streams library are deprecated

(if you use them you receive a warning from the compiler), the

InputStream and OutputStream classes still provide valuable

functionality in the form of byte-oriented I/O, whereas the Reader

and Writer classes provide Unicode-compliant, character-based I/O.

In addition:

1. Java 1.1 added new classes into the InputStream and

OutputStream hierarchy, so it’s obvious those hierarchies

weren’t replaced.

2. There are times when you must use classes from the “byte”



hierarchy in combination with classes in the “character”

hierarchy. To accomplish this, there are “adapter” classes:

InputStreamReader converts an InputStream to a

Reader, and OutputStreamWriter converts an

OutputStream to a Writer.

The most important reason for the Reader and Writer hierarchies

is for internationalization. The old I/O stream hierarchy supports only

8-bit byte streams and doesn’t handle the 16-bit Unicode characters

well. Since Unicode is used for internationalization (and Java’s native

char is 16-bit Unicode), the Reader and Writer hierarchies were

added to support Unicode in all I/O operations. In addition, the new

libraries are designed for faster operations than the old.

Sources and Sinks of Data

Almost all the original Java I/O stream classes have corresponding

Reader and Writer classes to provide native Unicode

manipulation. However, there are some places where the byte-

oriented InputStreams and OutputStreams are the correct



solution; in particular, the java.util.zip libraries are byte-

oriented rather than char-oriented. So the most sensible approach to

take is to try to use the Reader and Writer classes whenever you

can. You’ll discover the problems when you use the byte-oriented

libraries because your code won’t compile.

This table shows the correspondence between the sources and sinks of

information (that is, where the data physically comes from or goes to)

in the two hierarchies.

Sources & sinks: Java

Corresponding

1.0 class

Java 1.1 class

Reader adapter:

InputStream

InputStreamReader

Writer adapter:

OutputStream

OutputStreamWriter

FileInputStream

FileReader



FileOutputStream

FileWriter

StringBufferInputStream StringReader

(deprecated)

(No corresponding class)

StringWriter

ByteArrayInputStream

CharArrayReader

ByteArrayOutputStream

CharArrayWriter

PipedInputStream

PipedReader

PipedOutputStream

PipedWriter

In general, you’ll find that the interfaces for the two different

hierarchies are similar, if not identical.

Modifying Stream Behavior



For InputStreams and OutputStreams, streams were adapted

for particular needs using “decorator” subclasses of

FilterInputStream and FilterOutputStream. The

Reader and Writer class hierarchies continue this idea—but not

exactly.

In the following table, the correspondence is a rougher approximation

than in the previous table. The difference is because of the class

organization; although BufferedOutputStream is a subclass of

FilterOutputStream, BufferedWriter is not a subclass of

FilterWriter (which, even though it is abstract, has no

subclasses and so appears be there as a placeholder or simply so you

don’t wonder where it is). However, the interfaces to the classes are a

close match.

Filters: Java 1.0

Corresponding

class

Java 1.1 class

FilterInputStream

FilterReader

FilterOutputStream



FilterWriter (abstract

class with no subclasses)

BufferedReader

BufferedInputStream

(also has readLine())

BufferedOutputStream

BufferedWriter

Use DataInputStream

(except when you must use

DataInputStream

readLine(), when you

should use a

BufferedReader)

PrintStream

PrintWriter

LineNumberInputStream LineNumberReader

(deprecated)

StreamTokenizer

StreamTokenizer

(Use the constructor that



takes a Reader instead)

PushbackInputStream

PushbackReader

There’s one clear limitation: Whenever you use readLine(), don’t

do it with a DataInputStream (this is met with a deprecation

message at compile time), but instead use a BufferedReader.

Other than this, DataInputStream is still a “preferred” member of

the I/O library.

To make the transition to PrintWriter easier, it has constructors

that take any OutputStream object as well as Writer objects.

PrintWriters formatting interface is virtually the same as

PrintStream.

In Java 5, PrintWriter constructors were added to simplify the



creation of files when writing output, as you shall see shortly.

One PrintWriter constructor also has an option to perform

automatic flushing, which happens after every println() if the

constructor flag is set.

Unchanged Classes

Some classes were left unchanged between Java 1.0 and Java 1.1:

Java 1.0 classes without

corresponding Java 1.1 classes

DataOutputStream

File

RandomAccessFile

SequenceInputStream

DataOutputStream, in particular, is used without change, so for

storing and retrieving data in a transportable format, you use the

InputStream and OutputStream hierarchies.

Off By Itself:

RandomAccessFile

RandomAccessFile is used for files containing records of known

size so you can move from one record to another using seek(), then

read or change the records. The records don’t have to be the same size;



you just determine how big they are and where they are placed in the

file.

At first it’s a little bit hard to believe that RandomAccessFile is not

part of the InputStream or OutputStream hierarchy. However,

it has no association with those hierarchies other than it happens to

implement the DataInput and DataOutput interfaces (which are

also implemented by DataInputStream and

DataOutputStream). It doesn’t even use any of the functionality of

the existing InputStream or OutputStream classes; it’s a

completely separate class, written from scratch, with all of its own

(mostly native) methods. The reason for this might be that

RandomAccessFile has essentially different behavior than the

other I/O types, since you can move forward and backward within a

file. In any event, it stands alone, as a direct descendant of Object.

Essentially, a RandomAccessFile works like a

DataInputStream combined with a DataOutputStream, along

with the methods getFilePointer() to find out where you are in

the file, seek() to move to a new point in the file, and length() to

determine the maximum size of the file. In addition, the constructors

require a second argument (identical to fopen() in C) indicating



whether you are just randomly reading ("r" ) or reading and writing

("rw" ). There’s no support for write-only files, which could suggest

that RandomAccessFile might have worked well if it were

inherited from DataInputStream.

The seeking methods are available only in RandomAccessFile,

which works for files only. BufferedInputStream does allow you

to mark() a position (whose value is held in a single internal

variable) and reset() to that position, but this is limited and not

very useful.

Most, if not all, RandomAccessFile functionality is superseded as

of Java 1.4 with the nio memory-mapped files, described in the

Appendix: New I/O.

Typical Uses of I/O



Streams

Although you can combine the I/O stream classes in many different

ways, you’ll probably just use a few combinations. The following

examples can be used as a basic reference for typical I/O usage. (After

making sure you can’t do what you want using the libraries described

in the Files chapter.)

In these examples, exception handing is simplified by passing

exceptions out to the console, but this is appropriate only in small

examples and utilities. In your code, consider more sophisticated

error-handling approaches.

Buffered Input File

To open a file for character input, you use a FileReader with a

String or a File object as the file name. For speed, you’ll want that

file to be buffered so you give the resulting reference to the constructor

for a BufferedReader. BufferedReader provides lines(),

which produces a Stream<String> :

// iostreams/BufferedInputFile.java



// {VisuallyInspectOutput}

import java.io.*;

import java.util.stream.*;

public class BufferedInputFile {

public static String read(String filename) {

try(BufferedReader in = new BufferedReader(

new FileReader(filename))) {

return in.lines()

.collect(Collectors.joining("\n"));

} catch(IOException e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

System.out.print(

read("BufferedInputFile.java"));

}

}

Collectors.joining() uses a StringBuilder internally to

accumulate its result. The file is automatically closed via the try-with-



resources clause.

Input from Memory

Here, the String result from BufferedInputFile.read() is

used to create a StringReader. Then read() produces each

character which is displayed on the console:

// iostreams/MemoryInput.java

// {VisuallyInspectOutput}

import java.io.*;

public class MemoryInput {

public static void

main(String[] args) throws IOException {

StringReader in = new StringReader(

BufferedInputFile.read("MemoryInput.java"));

int c;

while((c = in.read()) != -1)

System.out.print((char)c);

}



}

read() returns the next character as an int and thus the return

value must be cast to a char to display properly.

Formatted Memory Input

To read “formatted” data, you use a DataInputStream, a byte-

oriented I/O class (rather than char-oriented). Thus you must use all

InputStream classes rather than Reader classes. You can read

anything (such as a file) as bytes using InputStream classes, but

here a String is used:

// iostreams/FormattedMemoryInput.java

// {VisuallyInspectOutput}

import java.io.*;

public class FormattedMemoryInput {

public static void main(String[] args) {

try(

DataInputStream in = new DataInputStream(

new ByteArrayInputStream(

BufferedInputFile.read(

"FormattedMemoryInput.java")

.getBytes()))



) {

while(true)

System.out.write((char)in.readByte());

} catch(EOFException e) {

System.out.println("\nEnd of stream");

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

A ByteArrayInputStream must receive an array of bytes,

produced here with String.getBytes(). The resulting

ByteArrayInputStream is an appropriate InputStream to

hand to DataInputStream.

If you read the characters from a DataInputStream one byte at a

time using readByte(), any byte value is a legitimate result, so the

return value cannot be used to detect the end of input. Instead, use the

available() method to find out how many more characters are

available. This shows how to read a file one byte at a time:

// iostreams/TestEOF.java



// Testing for end of file

// {VisuallyInspectOutput}

import java.io.*;

public class TestEOF {

public static void main(String[] args) {

try(

DataInputStream in = new DataInputStream(

new BufferedInputStream(

new FileInputStream("TestEOF.java")))

) {

while(in.available() != 0)

System.out.write(in.readByte());

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

Note that available() works differently depending on what sort of



medium you’re reading from; it’s literally “the number of bytes that

can be read without blocking.” With a file, this means the whole file,

but with a different kind of stream this might not be true, so use it

thoughtfully.

You can also detect the end of input in cases like these by catching an

exception. However, control flow is considered a misuse of exceptions.

Basic File Output

A FileWriter object writes data to a file. You’ll virtually always

buffer the output by wrapping it in a BufferedWriter (try

removing this wrapping to see the impact on the performance—

buffering tends to dramatically increase performance of I/O

operations). Here, a FileWriter is decorated as a PrintWriter

to provide formatting. The data file created this way is readable as an

ordinary text file:

// iostreams/BasicFileOutput.java

// {VisuallyInspectOutput}

import java.io.*;



public class BasicFileOutput {

static String file = "BasicFileOutput.dat";

public static void main(String[] args) {

try(

BufferedReader in = new BufferedReader(

new StringReader(

BufferedInputFile.read(

"BasicFileOutput.java")));

PrintWriter out = new PrintWriter(

new BufferedWriter(new FileWriter(file)))

) {

in.lines().forEach(out::println);

} catch(IOException e) {

throw new RuntimeException(e);

}

// Show the stored file:

System.out.println(BufferedInputFile.read(file));

}

}

The try-with-resources flushes the buffers and closes the file.



Text File Output Shortcut

Java 5 added a helper constructor to PrintWriter so you don’t

have to decorate by hand every time you create a text file and write to

it. Here’s BasicFileOutput.java rewritten to use this shortcut:

// iostreams/FileOutputShortcut.java



// {VisuallyInspectOutput}

import java.io.*;

public class FileOutputShortcut {

static String file = "FileOutputShortcut.dat";

public static void main(String[] args) {

try(

BufferedReader in = new BufferedReader(

new StringReader(BufferedInputFile.read(

"FileOutputShortcut.java")));

// Here's the shortcut:

PrintWriter out = new PrintWriter(file)

) {

in.lines().forEach(out::println);

} catch(IOException e) {

throw new RuntimeException(e);

}

System.out.println(BufferedInputFile.read(file));

}

}

You still get buffering, you just don’t do it yourself. Unfortunately,



other commonly written tasks were not given shortcuts, so typical I/O

streams still involve a lot of redundant text. The Files chapter shows how this
and other tasks were greatly simplified by taking a different

approach.

Storing and Recovering Data

A PrintWriter formats human-readable data. To output data for

recovery by another stream, you use a DataOutputStream to write

the data and a DataInputStream to recover the data. These

streams can be anything, but the following example uses a file,

buffered for both reading and writing. DataOutputStream and

DataInputStream are byte-oriented and thus require

InputStreams and OutputStreams:

// iostreams/StoringAndRecoveringData.java

import java.io.*;

public class StoringAndRecoveringData {

public static void main(String[] args) {

try(



DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(

new FileOutputStream("Data.txt")))

) {

out.writeDouble(3.14159);

out.writeUTF("That was pi");

out.writeDouble(1.41413);

out.writeUTF("Square root of 2");

} catch(IOException e) {

throw new RuntimeException(e);

}

try(

DataInputStream in = new DataInputStream(

new BufferedInputStream(

new FileInputStream("Data.txt")))

) {

System.out.println(in.readDouble());

// Only readUTF() will recover the

// Java-UTF String properly:

System.out.println(in.readUTF());



System.out.println(in.readDouble());

System.out.println(in.readUTF());

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

/* Output:

3.14159

That was pi

1.41413

Square root of 2

*/

If you use a DataOutputStream to write the data, then Java

guarantees you can accurately recover the data using a

DataInputStream—regardless of what different platforms write

and read the data. This is valuable, as anyone knows who has spent

time worrying about platform-specific data issues. That problem

vanishes if you have Java on both platforms.2

The only reliable way to write a String using a



DataOutputStream so it can be recovered by a

DataInputStream is to use UTF-8 encoding, accomplished in this

example using writeUTF() and readUTF(). UTF-8 is a multi-byte

format, and the length of encoding varies according to the actual

character set in use. If you’re working with ASCII or mostly ASCII

characters (which occupy only seven bits), Unicode wastes space

and/or bandwidth, so UTF-8 encodes ASCII characters in a single

byte, and non-ASCII characters in two or three bytes. In addition, the

length of the string is stored in the first two bytes of the UTF-8 string.

However, writeUTF() and readUTF() use a special variation of

UTF-8 for Java (completely described in the JDK documentation for

those methods), so if you read a string written with writeUTF()

using a non-Java program, you must write special code to read the

string properly.

With writeUTF() and readUTF(), you can intermingle Strings

and other types of data in a DataOutputStream, with the

knowledge that the Strings are properly stored as Unicode and are



easily recoverable with a DataInputStream.

The writeDouble() method stores the double number to the

stream, and the complementary readDouble() method recovers it

(there are similar methods for reading and writing the other types).

But for any of the reading methods to work correctly, you must know

the exact placement of the data item in the stream, since it is equally

possible to read the stored double as a simple sequence of bytes, or

as a char, etc. So you must either use a fixed format for the data in

the file, or include extra information in the file you parse to determine

where the data is located. Note that object serialization or XML (both

described in the Appendix: Object Serialization) can be easier ways to store
and retrieve complex data structures.

Reading and Writing

Random-Access Files

Using a RandomAccessFile is like using a combined

DataInputStream and DataOutputStream (because it

implements the same interfaces: DataInput and DataOutput). In

addition, you can use seek() to move about in the file and change

the values.

With RandomAccessFile, you must know the layout of the file to

manipulate it properly. RandomAccessFile has specific methods



to read and write primitives and UTF-8 strings:

// iostreams/UsingRandomAccessFile.java

import java.io.*;

public class UsingRandomAccessFile {

static String file = "rtest.dat";

public static void display() {

try(

RandomAccessFile rf =

new RandomAccessFile(file, "r")

) {

for(int i = 0; i < 7; i++)

System.out.println(

"Value " + i + ": " + rf.readDouble());

System.out.println(rf.readUTF());

} catch(IOException e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

try(



RandomAccessFile rf =

new RandomAccessFile(file, "rw")

) {

for(int i = 0; i < 7; i++)

rf.writeDouble(i*1.414);

rf.writeUTF("The end of the file");

rf.close();

display();

} catch(IOException e) {

throw new RuntimeException(e);

}

try(

RandomAccessFile rf =

new RandomAccessFile(file, "rw")

) {

rf.seek(5*8);

rf.writeDouble(47.0001);

rf.close();

display();

} catch(IOException e) {



throw new RuntimeException(e);

}

}

}

/* Output:

Value 0: 0.0

Value 1: 1.414

Value 2: 2.828

Value 3: 4.242

Value 4: 5.656

Value 5: 7.069999999999999

Value 6: 8.484

The end of the file

Value 0: 0.0

Value 1: 1.414

Value 2: 2.828

Value 3: 4.242

Value 4: 5.656

Value 5: 47.0001

Value 6: 8.484



The end of the file

*/

The display() method opens a file and displays the elements

within as double values. In main(), the file is created, opened and

modified. Since a double is always eight bytes long, to seek() to

double element 5 you multiply 5*8 to produce the seek value.

As previously noted, RandomAccessFile is effectively separate

from the rest of the I/O hierarchy, save for the fact it implements

DataInput and DataOutput. It doesn’t support decoration, so you

cannot combine it with any of the aspects of the InputStream and

OutputStream subclasses. You must assume that a

RandomAccessFile is properly buffered since you cannot add that.

The one option you have is in the second constructor argument: You

can open a RandomAccessFile to read ("r" ) or read and write

("rw" ).

Consider using nio memory-mapped files instead of



RandomAccessFile. These are described in the Appendix: New

I/O.

Summary

The Java I/O stream library does satisfy basic requirements: You can

read and write with the console, a file, a block of memory, or even

across the Internet. With inheritance, you can create new types of

input and output objects. You can even add simple extensibility to the

kinds of objects a stream will accept by redefining the toString()

method that’s automatically called when you pass an object to a

method that’s expecting a String (Java’s limited “automatic type

conversion”).

There are questions left unanswered by the documentation and design

of the I/O stream library. For example, it would be nice to say you

want an exception thrown if you try to overwrite a file when opening it

for output—some programming systems allow you to open an output

file, but only if it doesn’t already exist. In Java, it appears you are

supposed to use a File object to determine whether a file exists,

because if you open it as a FileOutputStream or FileWriter, it

will always get overwritten.

The I/O stream library brings up mixed feelings; it does much of the



job and it’s portable. But if you don’t already understand the

Decorator design pattern, the design is not intuitive, so there’s extra

overhead in learning and teaching it. It’s also incomplete; for example,

in the past I had to write utilities to read text files with a reasonable

amount of code—fortunately Java 7 nio eliminates the need for such

things.

Once you do understand the Decorator pattern and begin using the library in
situations that require its flexibility, you can begin to benefit

from this design, at which point its cost in extra lines of code might

not bother you as much. Always check, however, to make sure you

can’t instead solve your problem using the libraries and techniques

shown in the Files chapter.

1. It’s not clear that this was a good design decision, especially

compared to the simplicity of I/O libraries in other languages. But

it’s the justification for the decision.↩

2. XML is another way to solve the problem of moving data across

different computing platforms, and does not depend on having

Java on all platforms. XML is introduced in the Appendix: Object

Serialization.↩



Appendix: Standard

I/O

The term standard I/O refers to the Unix concept of a single stream of

information that is used by a program (this idea is reproduced in some

form in most operating systems). All the program’s input can come

from standard input, all of its output can go to standard output, and

all of its error messages can be sent to standard error. The value of

standard I/O is that programs can easily be chained together, and one

program’s standard output can become the standard input for another

program. This is a powerful tool.

Reading from Standard Input

Following the standard I/O model, Java has System.in,

System.out, and System.err. Throughout this book, you’ve seen

how to write to standard output using System.out, which is already

pre-wrapped as a PrintStream object. System.err is likewise a

PrintStream, but System.in is a raw InputStream with no

wrapping. This means that although you can use System.out and



System.err right away, System.in must be wrapped before you

can read from it.

You’ll typically read input a line at a time. To do this, wrap

System.in in a BufferedReader, which requires you to convert

System.in to a Reader using InputStreamReader. Here’s an

example that echoes each line you type in:

// standardio/Echo.java

// How to read from standard input

import java.io.*;

import onjava.TimedAbort;

public class Echo {

public static void main(String[] args) {

TimedAbort abort = new TimedAbort(2);

new BufferedReader(

new InputStreamReader(System.in))

.lines()

.peek(ln -> abort.restart())



.forEach(System.out::println);

// Ctrl-Z or two seconds inactivity

// terminates the program

}

}

BufferedReader has a lines() method that returns a

Stream<String> , and this shows the flexibility of the stream

model: it works just fine with standard input. The peek() method

restarts the TimedAbort to keep the program open as long as there’s

input at least every two seconds.

Changing System.out to a

PrintWriter

System.out is a PrintStream, which is an OutputStream.

PrintWriter has a constructor that takes an OutputStream as

an argument. Thus, if you want, you can convert System.out into a

PrintWriter using that constructor:

// standardio/ChangeSystemOut.java



// Turn System.out into a PrintWriter

import java.io.*;

public class ChangeSystemOut {

public static void main(String[] args) {

PrintWriter out =

new PrintWriter(System.out, true);

out.println("Hello, world");

}

}

/* Output:

Hello, world

*/

It’s important to use the two-argument version of the PrintWriter

constructor and to set the second argument to true to enable

automatic flushing. Otherwise, you might not see the output.

Redirecting Standard I/O

The Java System class can redirect the standard input, output, and

error I/O streams using simple static method calls:

setIn(InputStream)

setOut(PrintStream)



setErr(PrintStream)

Redirecting output is especially useful if you suddenly start creating a

large amount of output on your screen, and it’s scrolling past faster

than you can read it. Redirecting input is valuable for a command-line

program to test a particular user-input sequence repeatedly. Here’s a

simple example that shows these methods:

// standardio/Redirecting.java

// Demonstrates standard I/O redirection

import java.io.*;

public class Redirecting {

public static void main(String[] args) {

PrintStream console = System.out;

try(

BufferedInputStream in = new BufferedInputStream(

new FileInputStream("Redirecting.java"));

PrintStream out = new PrintStream(

new BufferedOutputStream(

new FileOutputStream("Redirecting.txt")))

) {

System.setIn(in);



System.setOut(out);

System.setErr(out);

new BufferedReader(

new InputStreamReader(System.in))

.lines()

.forEach(System.out::println);

} catch(IOException e) {

throw new RuntimeException(e);

} finally {

System.setOut(console);

}

}

}

This program attaches standard input to a file and redirects standard

output and standard error to another file. It stores a reference to the

original System.out object at the beginning of the program, and

restores the system output to that object at the end.

I/O redirection manipulates streams of bytes, not streams of



characters; thus, InputStreams and OutputStreams are used

rather than Readers and Writers.

Process Control

The Java library provides classes to execute operating system

programs from inside Java, and control the input and output from

such programs.

A common task is to run a program and send the resulting output to

the console. This section contains a utility to simplify this task.

Two types of errors can occur with this utility: the normal errors that

result in exceptions—for these we just rethrow a

RuntimeException—and errors from the execution of the process

itself. We report these errors with a separate exception:

// onjava/OSExecuteException.java

package onjava;

public class

OSExecuteException extends RuntimeException {



public OSExecuteException(String why) {

super(why);

}

}

To run a program, you pass OSExecute.command() a String

command, the same command you would type to run the program on

the console. This command is passed to the

java.lang.ProcessBuilder constructor (which requires it as a

sequence of String objects), and the resulting ProcessBuilder

object is started:

// onjava/OSExecute.java

// Run an operating system command

// and send the output to the console

package onjava;

import java.io.*;

public class OSExecute {

public static void command(String command) {

boolean err = false;

try {

Process process = new ProcessBuilder(



command.split(" ")).start();

try(

BufferedReader results = new BufferedReader(

new InputStreamReader(

process.getInputStream()));

BufferedReader errors = new BufferedReader(

new InputStreamReader(

process.getErrorStream()))

) {

results.lines()

.forEach(System.out::println);

err = errors.lines()

.peek(System.err::println)

.count() > 0;

}

} catch(IOException e) {

throw new RuntimeException(e);

}

if(err)

throw new OSExecuteException(



"Errors executing " + command);

}

}

To capture the standard output stream from the program as it

executes, you call getInputStream(). This is because an

InputStream is something we can read from.

Here the lines are only displayed, but you might also capture and

return them from command().

The program’s errors are sent to the standard error stream, and are

captured by calling getErrorStream(). If there are any errors,

they are displayed and an OSExecuteException is thrown so the

calling program will handle the problem.

Here’s an example that shows how to use OSExecute:

// standardio/OSExecuteDemo.java

// Demonstrates standard I/O redirection

// {javap -cp build/classes/main OSExecuteDemo}

import onjava.*;

public class OSExecuteDemo {}

/* Output:

Compiled from "OSExecuteDemo.java"



public class OSExecuteDemo {

public OSExecuteDemo();

}

*/

This uses the javap decompiler (that comes with the JDK) to

decompile the program.

Appendix: New I/O

The Java “new” I/O library, introduced in

Java 1.4 in the java.nio.* packages, has

one goal: speed.

In fact, the “old” I/O packages were reimplemented using nio to take

advantage of this speed increase, so you benefit even if you don’t

explicitly write code with nio. The speed increase occurs both in file

I/O, explored here, and in network I/O, used for example with

Internet programming.

The speed comes from using structures that are closer to the operating

system’s way of performing I/O: channels and buffers. Think of it as a

coal mine; the channel is the mine containing the seam of coal (the



data), and the buffer is the cart you send into the mine. The cart comes

back full of coal, and you get the coal from the cart. That is, you don’t

interact directly with the channel; you interact with the buffer and

send the buffer into the channel. The channel either pulls data from

the buffer, or puts data into the buffer.

This appendix goes into some depth exploring the nio package.

Higher-level libraries like I/O streams use nio, but most of the time

you won’t need to work with I/O at this level. With Java 7 & 8, you

(ideally) not even have to bother with I/O streams except in special

cases. Ideally, everything you’ll regularly use is covered in the Files

chapter. Understanding nio is only necessary when you’re struggling

with performance (when you might need, for example, memory-

mapped files) or creating your own I/O library.

ByteBuffers

The only type of buffer that communicates directly with a channel is a

ByteBuffer—that is, a buffer that holds raw bytes. If you look at the



JDK documentation for java.nio.ByteBuffer, you’ll see it’s

fairly basic: You create one by telling it how much storage to allocate,

and there are methods to put and get data, in either raw byte form or

as primitive data types. But there’s no way to put or get an object, or

even a String. It’s fairly low-level, precisely because this makes a

more efficient mapping with most operating systems.

Three of the classes in the “old” I/O were modified to produce a

FileChannel: FileInputStream, FileOutputStream, and,

for both reading and writing, RandomAccessFile. Notice that

these are the byte manipulation streams, in keeping with the low-level

nature of nio. The Reader and Writer character-mode classes do

not produce channels, but the java.nio.channels.Channels

class has utility methods to produce Readers and Writers from

channels.

Here we exercise all three types of stream to produce channels that are

writeable, read/writeable, and readable:

// newio/GetChannel.java

// Getting channels from streams

import java.nio.*;

import java.nio.channels.*;



import java.io.*;

public class GetChannel {

private static String name = "data.txt";

private static final int BSIZE = 1024;

public static void main(String[] args) {

// Write a file:

try(

FileChannel fc = new FileOutputStream(name)

.getChannel()

) {

fc.write(ByteBuffer

.wrap("Some text ".getBytes()));

} catch(IOException e) {

throw new RuntimeException(e);

}

// Add to the end of the file:

try(

FileChannel fc = new RandomAccessFile(

name, "rw").getChannel()

) {



fc.position(fc.size()); // Move to the end

fc.write(ByteBuffer

.wrap("Some more".getBytes()));

} catch(IOException e) {

throw new RuntimeException(e);

}

// Read the file:

try(

FileChannel fc = new FileInputStream(name)

.getChannel()

) {

ByteBuffer buff = ByteBuffer.allocate(BSIZE);

fc.read(buff);

buff.flip();

while(buff.hasRemaining())

System.out.write(buff.get());

} catch(IOException e) {

throw new RuntimeException(e);

}

System.out.flush();



}

}

/* Output:

Some text Some more

*/

For any of the stream classes shown here, getChannel() will

produce a FileChannel. A channel is fairly basic: Hand it a

ByteBuffer for reading or writing, and lock regions of the file for

exclusive access (this is described later).

One way to put bytes into a ByteBuffer is to stuff them in directly

using one of the “put” methods, to put one or more bytes, or values of

primitive types. However, as seen here, you can also “wrap” an existing

byte array in a ByteBuffer using the wrap() method. When you

do this, the underlying array is not copied, but instead is used as the

storage for the generated ByteBuffer. We say that the

ByteBuffer is “backed by” the array.

The data.txt file is reopened using a RandomAccessFile.

Notice you can move the FileChannel around in the file; here, it is

moved to the end so additional writes are appended.

For read-only access, you must explicitly allocate a ByteBuffer



using the static allocate() method. The goal of nio is to

rapidly move large amounts of data, so the size of the ByteBuffer

should be significant—in fact, the 1K used here is probably quite a bit

smaller than you’d normally use (you’ll have to experiment with your

working application to find the best size).

It’s also possible to go for even more speed by using

allocateDirect() instead of allocate() to produce a “direct”

buffer that can have an even higher coupling with the operating

system. However, the overhead in such an allocation is greater, and

the actual implementation varies from one operating system to

another, so again, you must experiment with your working application

to discover whether direct buffers will buy you any advantage in speed.

Once you call read() to tell the FileChannel to store bytes into

the ByteBuffer, you must call flip() on the buffer to tell it to get

ready to have its bytes extracted (yes, this seems a bit crude, but

remember it’s very low-level and is done for maximum speed). And if

we were to use the buffer for further read() operations, we’d also

call clear() to prepare it for each read(). This simple file-copying

program demonstrates:

// newio/ChannelCopy.java



// Copying a file using channels and buffers

// {java ChannelCopy ChannelCopy.java test.txt}

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class ChannelCopy {

private static final int BSIZE = 1024;

public static void main(String[] args) {

if(args.length != 2) {

System.out.println(

"arguments: sourcefile destfile");

System.exit(1);

}

try(

FileChannel in = new FileInputStream(

args[0]).getChannel();

FileChannel out = new FileOutputStream(

args[1]).getChannel()

) {

ByteBuffer buffer = ByteBuffer.allocate(BSIZE);



while(in.read(buffer) != -1) {

buffer.flip(); // Prepare for writing

out.write(buffer);

buffer.clear(); // Prepare for reading

}

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

One FileChannel is opened for reading, and one for writing. A

ByteBuffer is allocated, and when FileChannel.read()

returns -1 (a holdover, no doubt, from Unix and C), it means you’ve

reached the end of the input. After each read(), which puts data into

the buffer, flip() prepares the buffer so its information can be

extracted by the write(). After the write(), the information is

still in the buffer, and clear() resets all the internal pointers so it’s

ready to accept data during another read().

The preceding program is not the ideal way to handle this kind of

operation, however. Special methods transferTo() and



transferFrom() allow you to connect one channel directly to

another:

// newio/TransferTo.java

// Using transferTo() between channels

// {java TransferTo TransferTo.java TransferTo.txt}

import java.nio.channels.*;

import java.io.*;

public class TransferTo {

public static void main(String[] args) {

if(args.length != 2) {

System.out.println(

"arguments: sourcefile destfile");

System.exit(1);

}

try(

FileChannel in = new FileInputStream(

args[0]).getChannel();

FileChannel out = new FileOutputStream(

args[1]).getChannel()

) {



in.transferTo(0, in.size(), out);

// Or:

// out.transferFrom(in, 0, in.size());

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

You won’t do this very often, but it’s good to know about.

Converting Data

To print the information in the file in GetChannel.java, we pull

the data out one byte at a time and cast each byte to a char. This

seems primitive—if you look at the java.nio.CharBuffer class,

you’ll see it has a toString() method that says, “Returns a

String containing the characters in this buffer.” Since a

ByteBuffer can be viewed as a CharBuffer with the



asCharBuffer() method, why not use that? As you see from the

first line in the output statement below, this doesn’t work out:

// newio/BufferToText.java

// Converting text to and from ByteBuffers

import java.nio.*;

import java.nio.channels.*;

import java.nio.charset.*;

import java.io.*;

public class BufferToText {

private static final int BSIZE = 1024;

public static void main(String[] args) {

try(

FileChannel fc = new FileOutputStream(

"data2.txt").getChannel()

) {

fc.write(ByteBuffer.wrap("Some text".getBytes()));

} catch(IOException e) {

throw new RuntimeException(e);

}

ByteBuffer buff = ByteBuffer.allocate(BSIZE);



try(

FileChannel fc = new FileInputStream(

"data2.txt").getChannel()

) {

fc.read(buff);

} catch(IOException e) {

throw new RuntimeException(e);

}

buff.flip();

// Doesn't work:

System.out.println(buff.asCharBuffer());

// Decode using this system's default Charset:

buff.rewind();

String encoding =

System.getProperty("file.encoding");

System.out.println("Decoded using " +

encoding + ": "

+ Charset.forName(encoding).decode(buff));

// Encode with something that prints:

try(



FileChannel fc = new FileOutputStream(

"data2.txt").getChannel()

) {

fc.write(ByteBuffer.wrap(

"Some text".getBytes("UTF-16BE")));

} catch(IOException e) {

throw new RuntimeException(e);

}

// Now try reading again:

buff.clear();

try(

FileChannel fc = new FileInputStream(

"data2.txt").getChannel()

) {

fc.read(buff);

} catch(IOException e) {

throw new RuntimeException(e);

}

buff.flip();

System.out.println(buff.asCharBuffer());



// Use a CharBuffer to write through:

buff = ByteBuffer.allocate(24);

buff.asCharBuffer().put("Some text");

try(

FileChannel fc = new FileOutputStream(

"data2.txt").getChannel()

) {

fc.write(buff);

} catch(IOException e) {

throw new RuntimeException(e);

}

// Read and display:

buff.clear();

try(

FileChannel fc = new FileInputStream(

"data2.txt").getChannel()

) {

fc.read(buff);

} catch(IOException e) {

throw new RuntimeException(e);



}

buff.flip();

System.out.println(buff.asCharBuffer());

}

}

/* Output:

????

Decoded using windows-1252: Some text

Some text

Some textNULNULNUL

*/

The buffer contains plain bytes, and to turn these into characters, we

must either encode them as we put them in (so they are meaningful

when they come out) or decode them as they come out of the buffer.

This can be accomplished using the

java.nio.charset.Charset class, which provides tools for

encoding into many different types of character sets:

// newio/AvailableCharSets.java

// Displays Charsets and aliases

import java.nio.charset.*;



import java.util.*;

public class AvailableCharSets {

public static void main(String[] args) {

SortedMap<String,Charset> charSets =

Charset.availableCharsets();

for(String csName : charSets.keySet()) {

System.out.print(csName);

Iterator aliases = charSets.get(csName)

.aliases().iterator();

if(aliases.hasNext())

System.out.print(": ");

while(aliases.hasNext()) {

System.out.print(aliases.next());

if(aliases.hasNext())

System.out.print(", ");

}

System.out.println();

}

}

}



/* Output: (First 7 Lines)

Big5: csBig5

Big5-HKSCS: big5-hkscs, big5hk, Big5_HKSCS, big5hkscs

CESU-8: CESU8, csCESU-8

EUC-JP: csEUCPkdFmtjapanese, x-euc-jp, eucjis,

Extended_UNIX_Code_Packed_Format_for_Japanese, euc_jp,

eucjp, x-eucjp

EUC-KR: ksc5601-1987, csEUCKR, ksc5601_1987, ksc5601,

5601,

euc_kr, ksc_5601, ks_c_5601-1987, euckr

GB18030: gb18030-2000

GB2312: gb2312, euc-cn, x-EUC-CN, euccn, EUC_CN,

gb2312-80,

gb2312-1980

...

*/

So, returning to BufferToText.java, if you rewind() the

buffer (to go back to the beginning of the data), then use that



platform’s default character set to decode() the data, the resulting

CharBuffer will display on the console just fine. To discover the

default character set, use

System.getProperty("file.encoding"), which produces

the String that names the character set. Passing this to

Charset.forName() produces the Charset object that decodes

the String.

Another alternative is to encode() using a character set that

produces something printable when the file is read, as you see in the

third part of BufferToText.java. Here, UTF-16BE is used to

write the text into the file, and when it is read, all you must do is

convert it to a CharBuffer, and it produces the expected text.

Finally, you see what happens if you write to the ByteBuffer

through a CharBuffer (you’ll learn more about this later). Note that

24 bytes are allocated for the ByteBuffer. Since each char

requires two bytes, this is enough for 12 chars, but “Some text” only



has 9. The remaining zero bytes still appear in the representation of

the CharBuffer produced by its toString(), as shown in the

output.

Fetching Primitives

Although a ByteBuffer only holds bytes, it contains methods to

produce each different type of primitive value from the bytes it

contains. This example shows the insertion and extraction of various

values using these methods:

// newio/GetData.java

// Getting different representations from a ByteBuffer

import java.nio.*;

public class GetData {

private static final int BSIZE = 1024;

public static void main(String[] args) {

ByteBuffer bb = ByteBuffer.allocate(BSIZE);

// Allocation automatically zeroes the ByteBuffer:

int i = 0;

while(i++ < bb.limit())

if(bb.get() != 0)

System.out.println("nonzero");



System.out.println("i = " + i);

bb.rewind();

// Store and read a char array:

bb.asCharBuffer().put("Howdy!");

char c;

while((c = bb.getChar()) != 0)

System.out.print(c + " ");

System.out.println();

bb.rewind();

// Store and read a short:

bb.asShortBuffer().put((short)471142);

System.out.println(bb.getShort());

bb.rewind();

// Store and read an int:

bb.asIntBuffer().put(99471142);

System.out.println(bb.getInt());

bb.rewind();

// Store and read a long:

bb.asLongBuffer().put(99471142);

System.out.println(bb.getLong());



bb.rewind();

// Store and read a float:

bb.asFloatBuffer().put(99471142);

System.out.println(bb.getFloat());

bb.rewind();

// Store and read a double:

bb.asDoubleBuffer().put(99471142);

System.out.println(bb.getDouble());

bb.rewind();

}

}

/* Output:

i = 1025

H o w d y !

12390

99471142



99471142

9.9471144E7

9.9471142E7

*/

After a ByteBuffer is allocated, its values are checked to see

whether buffer allocation automatically zeroes the contents—and it

does. All 1,024 values are checked (up to the limit() of the buffer),

and all are zero.

The easiest way to insert primitive values into a ByteBuffer is to

get the appropriate “view” on that buffer using asCharBuffer(),

asShortBuffer(), etc., then to use that view’s put() method.

This is performed for each of the primitive data types. The only one of

these that is slightly odd is the put() for the ShortBuffer, which

requires a cast (the cast truncates and changes the resulting value). All

the other view buffers do not require casting in their put() methods.

View Buffers

A “view buffer” looks at an underlying ByteBuffer through the

window of a particular primitive type. The ByteBuffer is still the

actual storage that’s “backing” the view, so any changes you make to

the view are reflected in modifications to the data in the



ByteBuffer. As seen in the previous example, this conveniently

inserts primitive types into a ByteBuffer. A view can also read

primitive values from a ByteBuffer, either one at a time (as

ByteBuffer allows) or in batches (into arrays). Here’s an example

that manipulates ints in a ByteBuffer via an IntBuffer:

// newio/IntBufferDemo.java

// Manipulating ints in a ByteBuffer with an IntBuffer

import java.nio.*;

public class IntBufferDemo {

private static final int BSIZE = 1024;

public static void main(String[] args) {

ByteBuffer bb = ByteBuffer.allocate(BSIZE);

IntBuffer ib = bb.asIntBuffer();

// Store an array of int:

ib.put(new int[]{ 11, 42, 47, 99, 143, 811, 1016 });

// Absolute location read and write:

System.out.println(ib.get(3));

ib.put(3, 1811);

// Setting a new limit before rewinding the buffer.

ib.flip();



while(ib.hasRemaining()) {

int i = ib.get();

System.out.println(i);

}

}

}

/* Output:

99

11

42

47

1811

143

811

1016

*/

The overloaded put() method is first used to store an array of int.

The following get() and put() method calls directly access an int

location in the underlying ByteBuffer. Note that these absolute

location accesses are available for primitive types by talking directly to



a ByteBuffer, as well.

Once the underlying ByteBuffer is filled with ints or some other primitive
type via a view buffer, then that ByteBuffer can be

written directly to a channel. You can just as easily read from a

channel and use a view buffer to convert everything to a particular

type of primitive. Here’s an example that interprets the same sequence

of bytes as short, int, float, long, and double by producing different view
buffers on the same ByteBuffer:

// newio/ViewBuffers.java

import java.nio.*;

public class ViewBuffers {

public static void main(String[] args) {

ByteBuffer bb = ByteBuffer.wrap(

new byte[]{ 0, 0, 0, 0, 0, 0, 0, 'a' });

bb.rewind();

System.out.print("Byte Buffer ");

while(bb.hasRemaining())

System.out.print(

bb.position()+ " -> " + bb.get() + ", ");

System.out.println();

CharBuffer cb =



((ByteBuffer)bb.rewind()).asCharBuffer();

System.out.print("Char Buffer ");

while(cb.hasRemaining())

System.out.print(

cb.position() + " -> " + cb.get() + ", ");

System.out.println();

FloatBuffer fb =

((ByteBuffer)bb.rewind()).asFloatBuffer();

System.out.print("Float Buffer ");

while(fb.hasRemaining())

System.out.print(

fb.position()+ " -> " + fb.get() + ", ");

System.out.println();

IntBuffer ib =

((ByteBuffer)bb.rewind()).asIntBuffer();

System.out.print("Int Buffer ");

while(ib.hasRemaining())

System.out.print(

ib.position()+ " -> " + ib.get() + ", ");

System.out.println();



LongBuffer lb =

((ByteBuffer)bb.rewind()).asLongBuffer();

System.out.print("Long Buffer ");

while(lb.hasRemaining())

System.out.print(

lb.position()+ " -> " + lb.get() + ", ");

System.out.println();

ShortBuffer sb =

((ByteBuffer)bb.rewind()).asShortBuffer();

System.out.print("Short Buffer ");

while(sb.hasRemaining())

System.out.print(

sb.position()+ " -> " + sb.get() + ", ");

System.out.println();

DoubleBuffer db =

((ByteBuffer)bb.rewind()).asDoubleBuffer();

System.out.print("Double Buffer ");

while(db.hasRemaining())

System.out.print(

db.position()+ " -> " + db.get() + ", ");



}

}

/* Output:

Byte Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 0, 4 -> 0, 5

-> 0, 6 -> 0, 7 -> 97,

Char Buffer 0 -> NUL, 1 -> NUL, 2 -> NUL, 3 -> a,

Float Buffer 0 -> 0.0, 1 -> 1.36E-43,

Int Buffer 0 -> 0, 1 -> 97,

Long Buffer 0 -> 97,

Short Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 97,

Double Buffer 0 -> 4.8E-322,

*/

The ByteBuffer is produced by “wrapping” an eight-byte array,

which is then displayed via view buffers of all the different primitive

types. The following diagram shows how the data appears differently

when read from the different types of buffers:



This corresponds to the output from the program.

Endians

Different machines can use different byte-ordering approaches to

store data. “Big endian” places the most significant byte in the lowest

memory address, and “little endian” places the most significant byte in

the highest memory address. When storing a quantity that is greater

than one byte, like int, float, etc., you might need to consider

byte ordering. A ByteBuffer stores data in big endian form, and

data sent over a network always uses big endian order. You can change

the endian-ness of a ByteBuffer using order() with an argument

of ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.



Consider a ByteBuffer containing the following two bytes:

Reading the data as a short (ByteBuffer.asShortBuffer())

produces the number 97 (00000000 01100001). Changing to little

endian produces the number 24832 (01100001 00000000).

This shows byte ordering changing depending on the endian setting:

// newio/Endians.java

// Endian differences and data storage

import java.nio.*;

import java.util.*;

public class Endians {

public static void main(String[] args) {

ByteBuffer bb = ByteBuffer.wrap(new byte[12]);

bb.asCharBuffer().put("abcdef");

System.out.println(Arrays.toString(bb.array()));

bb.rewind();

bb.order(ByteOrder.BIG_ENDIAN);

bb.asCharBuffer().put("abcdef");

System.out.println(Arrays.toString(bb.array()));

bb.rewind();

bb.order(ByteOrder.LITTLE_ENDIAN);



bb.asCharBuffer().put("abcdef");

System.out.println(Arrays.toString(bb.array()));

}

}

/* Output:

[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102]

[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102]

[97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0]

*/

The ByteBuffer allocates space to hold all the bytes in

charArray as an external buffer so the array() method can be

called to display the underlying bytes. The array() method is

“optional,” and you can only call it on a buffer backed by an array,

otherwise you’ll get an UnsupportedOperationException.

charArray is inserted into the ByteBuffer via a CharBuffer

view. When the underlying bytes are displayed, the default ordering is



the same as the subsequent big endian order, whereas the little endian

order swaps the bytes.

Data Manipulation

with Buffers

The following diagram illustrates the relationships between the nio

classes, showing how to move and convert data. For example, to write

a byte array to a file, wrap the byte array using the

ByteBuffer.wrap() method, open a channel on the

FileOutputStream using getChannel(), then write data into

FileChannel from the ByteBuffer.





ByteBuffer is the only way to move data into and out of channels,

and you can only create a standalone primitive-typed buffer, or get one

from a ByteBuffer using an “as” method. That is, you cannot

convert a primitive-typed buffer to a ByteBuffer. However, since

you are able to move primitive data into and out of a ByteBuffer

via a view buffer, this is not really a restriction.

Buffer Details

A Buffer consists of data and four indexes to access and manipulate

this data efficiently: mark, position, limit and capacity. There are methods to
set and reset these indexes and to query their value.

capacity()

Returns the buffer’s capacity.

Clears the buffer, sets the

position to zero, and limit to

clear()

capacity. You call this method to

overwrite an existing buffer.



Sets limit to position and

position to zero. This method is

flip()

used to prepare the buffer for a

read after data has been written

into it.

limit()

Returns the value of limit.

limit(int lim)

Sets the value of limit.

mark()

Sets mark at position.

position()

Returns the value of position.

position(int

Sets the value of position.

pos)

remaining()

Returns limit - position.

Returns true if there are any



hasRemaining()

elements between position and

limit.

Methods that insert and extract data from the buffer update these

indexes to reflect the changes.

This example uses a very simple algorithm (swapping adjacent

characters) to scramble and unscramble characters in a

CharBuffer:

// newio/UsingBuffers.java

import java.nio.*;

public class UsingBuffers {

private static

void symmetricScramble(CharBuffer buffer) {

while(buffer.hasRemaining()) {

buffer.mark();

char c1 = buffer.get();

char c2 = buffer.get();

buffer.reset();

buffer.put(c2).put(c1);

}



}

public static void main(String[] args) {

char[] data = "UsingBuffers".toCharArray();

ByteBuffer bb =

ByteBuffer.allocate(data.length * 2);

CharBuffer cb = bb.asCharBuffer();

cb.put(data);

System.out.println(cb.rewind());

symmetricScramble(cb);

System.out.println(cb.rewind());

symmetricScramble(cb);

System.out.println(cb.rewind());

}

}

/* Output:

UsingBuffers

sUniBgfuefsr



UsingBuffers

*/

Although you can produce a CharBuffer directly by calling

wrap() with a char array, an underlying ByteBuffer is allocated

instead, and a CharBuffer is produced as a view on the

ByteBuffer. This emphasizes that the goal is always to manipulate

a ByteBuffer, since that interacts with a channel.

Here’s what the buffer looks like at the entrance of the

symmetricScramble() method:

The position points to the first element in the buffer, and the capacity

and limit point immediately after the last element.

In symmetricScramble(), the while loop iterates until position

is equivalent to limit. The position of the buffer changes when a

relative get() or put() function is called on it. You can also call

absolute get() and put() methods that include an index argument:



the location where the get() or put() takes place. These methods

do not modify the value of the buffer’s position.

When the control enters the while loop, the value of mark is set

using a mark() call. The state of the buffer is then:

The two relative get() calls save the value of the first two characters

in variables c1 and c2. After these two calls, the buffer looks like this:

To perform the swap, we write c2 at position 0 and c1 at position 1.

We can either use the absolute put method to achieve this, or set the

value of position to mark, which reset() does:

The two put() methods write c2 and then c1:

During the next iteration of the loop, mark is set to the current value

of position:



The process continues until the entire buffer is traversed. At the end of

the while loop, position is at the end of the buffer. If you display the

buffer, only the characters between the position and limit are

displayed. Thus, to show the entire contents of the buffer, you must set

position to the start of the buffer using rewind(). Here is the state of

buffer after the rewind() call (the value of mark becomes

undefined):

When the function symmetricScramble() is called again, the

CharBuffer undergoes the same process and is restored to its

original state.

Memory-Mapped Files

Memory-mapped files allow you to create and modify files that are too

big to bring into memory. With a memory-mapped file, you can



pretend the entire file is in memory and you can access it by treating it

as a very large array. This approach greatly simplifies the code you

write to modify the file:

// newio/LargeMappedFiles.java

// Creating a very large file using mapping

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class LargeMappedFiles {

static int length = 0x8000000; // 128 MB

public static void

main(String[] args) throws Exception {

try(

RandomAccessFile tdat =

new RandomAccessFile("test.dat", "rw")

) {

MappedByteBuffer out = tdat.getChannel().map(

FileChannel.MapMode.READ_WRITE, 0, length);

for(int i = 0; i < length; i++)

out.put((byte)'x');



System.out.println("Finished writing");

for(int i = length/2; i < length/2 + 6; i++)

System.out.print((char)out.get(i));

}

}

}

/* Output:

Finished writing

xxxxxx

*/

To write and read, we start with a RandomAccessFile, get a

channel for that file, then call map() to produce a

MappedByteBuffer, a particular kind of direct buffer. You must

specify the starting point and the length of the region to map in the file

—this means you have the option to map smaller regions of a large file.

MappedByteBuffer inherits ByteBuffer, so it has all of

ByteBuffers methods. Only the simplest uses of put() and



get() are shown here, but you can also use methods like

asCharBuffer(), etc.

The file created with the preceding program is 128 MB long, probably

larger than your OS will allow in memory at one time. The file appears

to be accessible all at once because only portions of it are brought into

memory, and other parts are swapped out. This way a very large file

(up to 2 GB) can easily be modified. Note that the file-mapping

facilities of the underlying operating system are used to maximize

performance.

Performance

Although the performance of “old” stream I/O is improved by

implementing it with nio, mapped file access tends to be dramatically

faster. This program does a simple performance comparison:

// newio/MappedIO.java

import java.util.*;

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class MappedIO {

private static int numOfInts = 4_000_000;



private static int numOfUbuffInts = 100_000;

private abstract static class Tester {

private String name;

Tester(String name) {

this.name = name;

}

public void runTest() {

System.out.print(name + ": ");

long start = System.nanoTime();

test();

double duration = System.nanoTime() - start;

System.out.format("%.3f%n", duration/1.0e9);

}

public abstract void test();

}

private static Tester[] tests = {

new Tester("Stream Write") {

@Override

public void test() {

try(



DataOutputStream dos =

new DataOutputStream(

new BufferedOutputStream(

new FileOutputStream(

new File("temp.tmp"))))

) {

for(int i = 0; i < numOfInts; i++)

dos.writeInt(i);

} catch(IOException e) {

throw new RuntimeException(e);

}

}

},

new Tester("Mapped Write") {

@Override

public void test() {

try(

FileChannel fc =

new RandomAccessFile("temp.tmp", "rw")

.getChannel()



) {

IntBuffer ib =

fc.map(FileChannel.MapMode.READ_WRITE,

0, fc.size()).asIntBuffer();

for(int i = 0; i < numOfInts; i++)

ib.put(i);

} catch(IOException e) {

throw new RuntimeException(e);

}

}

},

new Tester("Stream Read") {

@Override

public void test() {

try(

DataInputStream dis =

new DataInputStream(

new BufferedInputStream(

new FileInputStream("temp.tmp")))

) {



for(int i = 0; i < numOfInts; i++)

dis.readInt();

} catch(IOException e) {

throw new RuntimeException(e);

}

}

},

new Tester("Mapped Read") {

@Override

public void test() {

try(

FileChannel fc = new FileInputStream(

new File("temp.tmp")).getChannel()

) {

IntBuffer ib =

fc.map(FileChannel.MapMode.READ_ONLY,

0, fc.size()).asIntBuffer();

while(ib.hasRemaining())

ib.get();

} catch(IOException e) {



throw new RuntimeException(e);

}

}

},

new Tester("Stream Read/Write") {

@Override

public void test() {

try(

RandomAccessFile raf =

new RandomAccessFile(

new File("temp.tmp"), "rw")

) {

raf.writeInt(1);

for(int i = 0; i < numOfUbuffInts; i++) {

raf.seek(raf.length() - 4);

raf.writeInt(raf.readInt());

}

} catch(IOException e) {

throw new RuntimeException(e);

}



}

},

new Tester("Mapped Read/Write") {

@Override

public void test() {

try(

FileChannel fc = new RandomAccessFile(

new File("temp.tmp"), "rw").getChannel()

) {

IntBuffer ib =

fc.map(FileChannel.MapMode.READ_WRITE,

0, fc.size()).asIntBuffer();

ib.put(0);

for(int i = 1; i < numOfUbuffInts; i++)

ib.put(ib.get(i - 1));

} catch(IOException e) {

throw new RuntimeException(e);

}

}



}

};

public static void main(String[] args) {

Arrays.stream(tests).forEach(Tester::runTest);

}

}

/* Output:

Stream Write: 0.615

Mapped Write: 0.050

Stream Read: 0.577

Mapped Read: 0.015

Stream Read/Write: 4.069

Mapped Read/Write: 0.013

*/

Tester is a Template Method pattern that creates a test framework

for various implementations of test() defined in anonymous inner



subclasses. Each of these subclasses performs one kind of test, so the

test() methods also give you a prototype for performing the various

I/O activities.

Although a mapped write would seem to use a FileOutputStream,

all output in file mapping must use a RandomAccessFile, just as

read/write does in the preceding code.

Note that the test() methods include the time for initialization of

the various I/O objects, so even though the setup for mapped files can

be expensive, the overall gain compared to stream I/O is dramatic.

File Locking

File locking synchronizes access so a file can be a shared resource.

However, two threads that contend for the same file might be in

different JVMs, or one might be a Java thread and the other some

native thread in the operating system. The file locks are visible to other

operating system processes because Java file locking maps directly to

the native operating system locking facility.

This shows basic file locking:

// newio/FileLocking.java

import java.nio.channels.*;

import java.util.concurrent.*;



import java.io.*;

public class FileLocking {

public static void main(String[] args) {

try(

FileOutputStream fos =

new FileOutputStream("file.txt");

FileLock fl = fos.getChannel().tryLock()

) {

if(fl != null) {

System.out.println("Locked File");

TimeUnit.MILLISECONDS.sleep(100);

fl.release();

System.out.println("Released Lock");

}

} catch(IOException | InterruptedException e) {

throw new RuntimeException(e);

}

}

}

/* Output:



Locked File

Released Lock

*/

You get a FileLock on the entire file by calling either tryLock()

or lock() on a FileChannel. (SocketChannel,

DatagramChannel, and ServerSocketChannel do not need

locking since they are inherently single-process entities; you don’t

generally share a network socket between two processes.)

tryLock() is non-blocking. It tries to grab the lock, but if it

cannot (when some other process already holds the same lock and

it is not shared), it simply returns from the method call.

lock() blocks until the lock is acquired, or the thread that

invoked lock() is interrupted, or the channel on which the

lock() method is called is closed. A lock is released using

FileLock.release().

It is also possible to lock a part of the file by using

tryLock(long position, long size, boolean shared)



or

lock(long position, long size, boolean shared)

which locks the region (size-position). The third argument

specifies whether this lock is shared.

Although the zero-argument locking methods adapt to changes in the

size of a file, locks with a fixed size do not change if the file size

changes. If a lock is acquired for a region from position to

position + size and the file increases beyond position +

size, then the section beyond position + size is not locked.

The zero-argument locking methods lock the entire file, even if it

grows.

Support for exclusive or shared locks must be provided by the

underlying operating system. If the operating system does not support

shared locks and a request is made for one, an exclusive lock is used

instead. The type of lock (shared or exclusive) can be queried using

FileLock.isShared().

Locking Portions of a Mapped

File

File mapping is typically used for very large files. You might need to

lock portions of such a file so other processes can modify unlocked



parts. A database, for example, must be available to many users at

once.

Here you see two threads, each of which locks a distinct portion of a

file:

// newio/LockingMappedFiles.java

// Locking portions of a mapped file

import java.nio.*;

import java.nio.channels.*;

import java.io.*;

public class LockingMappedFiles {

static final int LENGTH = 0x8FFFFFF; // 128 MB

static FileChannel fc;

public static void

main(String[] args) throws Exception {

fc = new RandomAccessFile("test.dat", "rw")

.getChannel();

MappedByteBuffer out = fc.map(

FileChannel.MapMode.READ_WRITE, 0, LENGTH);

for(int i = 0; i < LENGTH; i++)

out.put((byte)'x');



new LockAndModify(out, 0, 0 + LENGTH/3);

new LockAndModify(

out, LENGTH/2, LENGTH/2 + LENGTH/4);

}

private static class LockAndModify extends Thread {

private ByteBuffer buff;

private int start, end;

LockAndModify(ByteBuffer mbb, int start, int end) {

this.start = start;

this.end = end;

mbb.limit(end);

mbb.position(start);

buff = mbb.slice();

start();

}

@Override

public void run() {

try {

// Exclusive lock with no overlap:

FileLock fl = fc.lock(start, end, false);



System.out.println(

"Locked: "+ start +" to "+ end);

// Perform modification:

while(buff.position() < buff.limit() - 1)

buff.put((byte)(buff.get() + 1));

fl.release();

System.out.println(

"Released: " + start + " to " + end);

} catch(IOException e) {

throw new RuntimeException(e);

}

}

}

}

/* Output:

Locked: 75497471 to 113246206

Locked: 0 to 50331647

Released: 75497471 to 113246206

Released: 0 to 50331647

*/



The LockAndModify thread class sets up the buffer region and

creates a slice() to be modified, and in run(), the lock is acquired

on the file channel (you can’t acquire a lock on the buffer—only the

channel). The call to lock() is very similar to acquiring a threading

lock on an object—you now have a “critical section” with exclusive

access to that portion of the file. 1

The locks are automatically released when the JVM exits, or the

channel on which it was acquired is closed, but you can also explicitly

call release() on the FileLock object, as shown here.

1. You can find more details about threads in the Appendix: Low-

Level Concurrency.↩

Appendix:

Understanding equals()

and hashCode()



When you create a class for use in any container that utilizes hashing,

you must not only define the hashCode() method (which we shall

explore later in this appendix), but also the equals() method. The

two methods are used together to perform a lookup into a hashed

container.

A Canonical equals()

When you create a new class, it automatically inherits class Object.

If you don’t override equals(), you’ll get Objects equals()

method. By default this compares addresses, so only if you are

comparing the exact same objects will you get true. The default case

is the “most discriminating.”

// equalshashcode/DefaultComparison.java

class DefaultComparison {

private int i, j, k;

DefaultComparison(int i, int j, int k) {

this.i = i;

this.j = j;

this.k = k;

}

public static void main(String[] args) {



DefaultComparison

a = new DefaultComparison(1, 2, 3),

b = new DefaultComparison(1, 2, 3);

System.out.println(a == a);

System.out.println(a == b);

}

}

/* Output:

true

false

*/

Normally you’ll want to relax this restriction. Typically, if two objects

are the same type and have fields with identical values, you’ll consider

those objects equal, but there may also be fields that you don’t want to

include in the equals() comparison. This is part of the class design

process.

A proper equals() must satisfy the following five conditions:

1. Reflexive: For any x, x.equals(x) should return true.

2. Symmetric: For any x and y, x.equals(y) should return true

if and only if y.equals(x) returns true.



3. Transitive: For any x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true, then x.equals(z) should

return true.

4. Consistent: For any x and y, multiple invocations of

x.equals(y) consistently return true or consistently return

false, provided no information used in equals comparisons on

the object is modified.

5. For any non-null x, x.equals(null) should return

false.

Here are the tests that satisfy those conditions and determine whether

the object you’re comparing yourself to (which we’ll call here the rval)

is equal to this object:

1. If the rval is null, it’s not equal.

2. If the rval is this (you’re comparing yourself to yourself), the

two objects are equal.

3. If the rval is not the same class or subclass, the two objects are

not equal.

4. If all the above checks pass, then you must decide which fields in

the rval are important (and consistent), and compare those.

Java 7 introduced the Objects class to help with this process, which

we use to write a better equals().



The following examples compare different versions of the Equality

class. To prevent duplicate code we’ll build the examples using the

Factory Method (see Factories: Encapsulating Object Creation). The
EqualityFactory interface simply provides a make() method to

produce an Equality object, so a different EqualityFactory

can produce a different subtype of Equality:

// equalshashcode/EqualityFactory.java

import java.util.*;

interface EqualityFactory {

Equality make(int i, String s, double d);

}

Now we’ll define Equality containing three fields (all of which we

consider important during comparison) and an equals() method

that fulfills the four checks described above. The constructor displays

its type name to ensure we are performing the tests we think we are:

// equalshashcode/Equality.java

import java.util.*;

public class Equality {

protected int i;

protected String s;

protected double d;



public Equality(int i, String s, double d) {

this.i = i;

this.s = s;

this.d = d;

System.out.println("made 'Equality'");

}

@Override

public boolean equals(Object rval) {

if(rval == null)

return false;

if(rval == this)

return true;

if(!(rval instanceof Equality))

return false;

Equality other = (Equality)rval;

if(!Objects.equals(i, other.i))

return false;

if(!Objects.equals(s, other.s))

return false;

if(!Objects.equals(d, other.d))



return false;

return true;

}

public void

test(String descr, String expected, Object rval) {

System.out.format("-- Testing %s --%n" +

"%s instanceof Equality: %s%n" +

"Expected %s, got %s%n",

descr, descr, rval instanceof Equality,

expected, equals(rval));

}

public static void testAll(EqualityFactory eqf) {

Equality

e = eqf.make(1, "Monty", 3.14),

eq = eqf.make(1, "Monty", 3.14),

neq = eqf.make(99, "Bob", 1.618);

e.test("null", "false", null);

e.test("same object", "true", e);

e.test("different type",

"false", Integer.valueOf(99));



e.test("same values", "true", eq);

e.test("different values", "false", neq);

}

public static void main(String[] args) {

testAll( (i, s, d) -> new Equality(i, s, d));

}

}

/* Output:

made 'Equality'

made 'Equality'

made 'Equality'

-- Testing null --

null instanceof Equality: false

Expected false, got false

-- Testing same object --

same object instanceof Equality: true

Expected true, got true

-- Testing different type --

different type instanceof Equality: false

Expected false, got false



-- Testing same values --

same values instanceof Equality: true

Expected true, got true

-- Testing different values --

different values instanceof Equality: true

Expected false, got false

*/

testAll() performs comparisons with all different types of objects

we ever expect to encounter. It creates Equality objects using the

factory.

In main(), notice the simplicity of the call to testAll(). Because

EqualityFactory has a single method, it can be used with a

lambda expression as the make() method.

The above equals() method is annoyingly verbose, and it turns out

we can simplify it into a canonical form. Observe:

1. The instanceof check eliminates the need to test for null

2. The comparison to this is redundant. A correctly-written

equals() will work properly with self comparison.

Because && is a short-circuiting comparison, it quits and produces

false the first time it encounters a failure. So, by chaining the checks



together with && , we can write equals() much more succinctly:

// equalshashcode/SuccinctEquality.java

import java.util.*;

public class SuccinctEquality extends Equality {

public SuccinctEquality(int i, String s, double d) {

super(i, s, d);

System.out.println("made 'SuccinctEquality'");

}

@Override

public boolean equals(Object rval) {

return rval instanceof SuccinctEquality &&

Objects.equals(i, ((SuccinctEquality)rval).i) &&

Objects.equals(s, ((SuccinctEquality)rval).s) &&

Objects.equals(d, ((SuccinctEquality)rval).d);

}

public static void main(String[] args) {

Equality.testAll( (i, s, d) ->

new SuccinctEquality(i, s, d));

}

}



/* Output:

made 'Equality'

made 'SuccinctEquality'

made 'Equality'

made 'SuccinctEquality'

made 'Equality'

made 'SuccinctEquality'

-- Testing null --

null instanceof Equality: false

Expected false, got false

-- Testing same object --

same object instanceof Equality: true

Expected true, got true

-- Testing different type --

different type instanceof Equality: false

Expected false, got false

-- Testing same values --

same values instanceof Equality: true

Expected true, got true

-- Testing different values --



different values instanceof Equality: true

Expected false, got false

*/

For each SuccinctEquality, the base-class constructor is called

before the derived-class constructor. The output shows that we still get

the correct result. You can tell that short-circuiting happens because

both the null test and the “different type” test would otherwise throw

exceptions during the casts that occur further down the list of

comparisons in equals().

Objects.equals() shines when you compose your new class

using another class:

// equalshashcode/ComposedEquality.java

import java.util.*;

class Part {

String ss;

double dd;

Part(String ss, double dd) {

this.ss = ss;

this.dd = dd;

}



@Override

public boolean equals(Object rval) {

return rval instanceof Part &&

Objects.equals(ss, ((Part)rval).ss) &&

Objects.equals(dd, ((Part)rval).dd);

}

}

public class ComposedEquality extends SuccinctEquality {

Part part;

public ComposedEquality(int i, String s, double d) {

super(i, s, d);

part = new Part(s, d);

System.out.println("made 'ComposedEquality'");

}

@Override

public boolean equals(Object rval) {

return rval instanceof ComposedEquality &&

super.equals(rval) &&

Objects.equals(part,

((ComposedEquality)rval).part);



}

public static void main(String[] args) {

Equality.testAll( (i, s, d) ->

new ComposedEquality(i, s, d));

}

}

/* Output:

made 'Equality'

made 'SuccinctEquality'

made 'ComposedEquality'

made 'Equality'

made 'SuccinctEquality'

made 'ComposedEquality'

made 'Equality'

made 'SuccinctEquality'

made 'ComposedEquality'

-- Testing null --



null instanceof Equality: false

Expected false, got false

-- Testing same object --

same object instanceof Equality: true

Expected true, got true

-- Testing different type --

different type instanceof Equality: false

Expected false, got false

-- Testing same values --

same values instanceof Equality: true

Expected true, got true

-- Testing different values --

different values instanceof Equality: true

Expected false, got false

*/

Notice the call to super.equals()—no need to reinvent it (plus

you don’t always have access to all necessary parts of a base class).

Equality Across Subtypes

Inheritance suggests that objects of two different subtypes can be “the

same” when they are upcast. Suppose you have a collection of Animal



objects. This collection naturally accepts subtypes of Animal—in this

example, Dogs and Pigs. Each Animal has a name and a size, as well as a
unique internal id number.

We define equals() and hashCode() using the canonical form

via the Objects class, but we only define them in the base class

Animal, and we do not include the unique id number in either one.

From the standpoint of equals(), this means we only care if

something is a Animal, not whether it is a specific type of Animal:

// equalshashcode/SubtypeEquality.java

import java.util.*;

enum Size { SMALL, MEDIUM, LARGE }

class Animal {

private static int counter = 0;

private final int id = counter++;

private final String name;

private final Size size;

Animal(String name, Size size) {

this.name = name;

this.size = size;

}

@Override



public boolean equals(Object rval) {

return rval instanceof Animal &&

// Objects.equals(id, ((Animal)rval).id) && // [1]

Objects.equals(name, ((Animal)rval).name) &&

Objects.equals(size, ((Animal)rval).size);

}

@Override

public int hashCode() {

return Objects.hash(name, size);

// return Objects.hash(name, size, id); // [2]

}

@Override

public String toString() {

return String.format("%s[%d]: %s %s %x",

getClass().getSimpleName(), id,

name, size, hashCode());

}

}

class Dog extends Animal {

Dog(String name, Size size) {



super(name, size);

}

}

class Pig extends Animal {

Pig(String name, Size size) {

super(name, size);

}

}

public class SubtypeEquality {

public static void main(String[] args) {

Set<Animal> pets = new HashSet<>();

pets.add(new Dog("Ralph", Size.MEDIUM));

pets.add(new Pig("Ralph", Size.MEDIUM));

pets.forEach(System.out::println);

}

}

/* Output:

Dog[0]: Ralph MEDIUM a752aeee

*/

If we are just thinking about types, it does make sense—sometimes—to



only consider the classes from the standpoint of their base type, which

is the foundation of the Liskov Substitution Principle. This code fits

nicely with that principle because the derived types don’t add any

extra functionality (methods) that isn’t in the base class. The derived

types only differ in behavior, not in interface (which of course is not

the general case).

But when we provide two different object types with identical data and

place them in a HashSet<Animal> , only one of these objects

survives. This emphasizes that equals() is not a perfectly

mathematical concept but (at least partially) a mechanical one.

hashCode() and equals() must be defined hand-in-hand in

order to allow types to work properly in a hashed data structure.

In the example, both the Dog and Pig hash to the same bucket in the

HashSet. At this point, the HashSet falls back to equals() to

differentiate the objects, but equals() also declares the objects to be

the same. The HashSet doesn’t add the Pig because it’s already got an
identical object.

We can still make the example work by forcing uniqueness on

otherwise identical objects. Here, each Animal already has a unique

id so you can either uncomment line [1] in equals() or switch to

line [2] in hashCode(). In the canonical form you would do both, to



involve all “unchanging” fields in both operations (“unchanging” so

that the equals() and hashCode() don’t produce different values

between storing and retrieving in a hashed data structure. I put

“unchanging” in quotes because you must evaluate whether

modification might happen).

Side note: in hashCode(), if you are only working with a single

field, use Objects.hashCode() and if you are using multiple

fields use Objects.hash().

We can also solve the issue by following the standard form and

defining equals() in the subclasses (but still not including the

unique id):

// equalshashcode/SubtypeEquality2.java

import java.util.*;

class Dog2 extends Animal {

Dog2(String name, Size size) {

super(name, size);

}

@Override

public boolean equals(Object rval) {

return rval instanceof Dog2 &&



super.equals(rval);

}

}

class Pig2 extends Animal {

Pig2(String name, Size size) {

super(name, size);

}

@Override

public boolean equals(Object rval) {

return rval instanceof Pig2 &&

super.equals(rval);

}

}

public class SubtypeEquality2 {

public static void main(String[] args) {

Set<Animal> pets = new HashSet<>();

pets.add(new Dog2("Ralph", Size.MEDIUM));

pets.add(new Pig2("Ralph", Size.MEDIUM));

pets.forEach(System.out::println);

}



}

/* Output:

Dog2[0]: Ralph MEDIUM a752aeee

Pig2[1]: Ralph MEDIUM a752aeee

*/

Notice that the hashCode()s are identical, but because the objects

are no longer equals(), both now appear in the HashSet. Also,

super.equals() means we don’t need access to the private

fields in the base class.

One way to look at this is to say that Java separates substitutability

from the definition of equals() and hashCode(). We can still

place Dogs and Pigs into a Set<Animal> regardless of how

equals() and hashCode() are defined, but the objects won’t

behave correctly in hashed data structures unless those methods are

defined with hashed structures in mind. Unfortunately, equals() is

not only used in conjunction with hashCode(). This complicates

things when you try to avoid defining it for specific classes, and it’s

why it’s worth following the canonical form. However, this is further



complicated because there are times when you don’t need to define

either method.

Hashing and Hash

Codes

The examples in the Collections chapter used predefined classes as
HashMap keys. These examples worked because the predefined

classes had all the necessary wiring to make them behave correctly as

keys.

A common pitfall occurs when you create your own classes as keys for

HashMaps, and forget to put in the necessary wiring. For example,

consider a weather predicting system that matches Groundhog

objects to Prediction objects. This seems fairly straightforward:

use Groundhog as the key and Prediction as the value:

// equalshashcode/Groundhog.java

// Looks plausible, but doesn't work as a HashMap key

public class Groundhog {



protected int number;

public Groundhog(int n) { number = n; }

@Override

public String toString() {

return "Groundhog #" + number;

}

}

// equalshashcode/Prediction.java

// Predicting the weather

import java.util.*;

public class Prediction {

private static Random rand = new Random(47);

@Override

public String toString() {

return rand.nextBoolean() ?

"Six more weeks of Winter!" : "Early Spring!";

}

}

// equalshashcode/SpringDetector.java

// What will the weather be?



import java.util.*;

import java.util.stream.*;

import java.util.function.*;

import java.lang.reflect.*;

public class SpringDetector {

public static <T extends Groundhog>

void detectSpring(Class<T> type) {

try {

Constructor<T> ghog =

type.getConstructor(int.class);

Map<Groundhog, Prediction> map =

IntStream.range(0, 10)

.mapToObj(i -> {

try {

return ghog.newInstance(i);

} catch(Exception e) {

throw new RuntimeException(e);

}

})

.collect(Collectors.toMap(



Function.identity(),

gh -> new Prediction()));

map.forEach((k, v) ->

System.out.println(k + ": " + v));

Groundhog gh = ghog.newInstance(3);

System.out.println(

"Looking up prediction for " + gh);

if(map.containsKey(gh))

System.out.println(map.get(gh));

else

System.out.println("Key not found: " + gh);

} catch(NoSuchMethodException |

IllegalAccessException |

InvocationTargetException |

InstantiationException e) {

throw new RuntimeException(e);

}

}

public static void main(String[] args) {

detectSpring(Groundhog.class);



}

}

/* Output:

Groundhog #3: Six more weeks of Winter!

Groundhog #0: Early Spring!

Groundhog #8: Six more weeks of Winter!

Groundhog #6: Early Spring!

Groundhog #4: Early Spring!

Groundhog #2: Six more weeks of Winter!

Groundhog #1: Early Spring!

Groundhog #9: Early Spring!

Groundhog #5: Six more weeks of Winter!

Groundhog #7: Six more weeks of Winter!

Looking up prediction for Groundhog #3

Key not found: Groundhog #3

*/

Each Groundhog is given an identity number, so you can look up a

Prediction in the HashMap by saying, “Give me the

Prediction associated with Groundhog #3.” The Prediction

chooses the weather by generating a random boolean. The



detectSpring() method uses reflection to instantiate and use the

class Groundhog or any class derived from Groundhog. This

comes in handy later, when we inherit a new type of Groundhog to

solve the problem demonstrated here.

A HashMap is filled with Groundhogs and their associated



Predictions. Displaying HashMap shows it was filled. Then a Groundhog
with an identity number of 3 is used as a key to find the

prediction for Groundhog #3 (which therefore must be in the Map).

It seems simple enough, but it doesn’t work—it can’t find the key for

#3. The problem is that Groundhog automatically inherits class

Object, and it is Objects hashCode() method that is used to

generate the hash code for each object. By default this just uses the

address of its object. Thus, the first instance of Groundhog(3) does

not produce a hash code equal to the hash code for the second instance

of Groundhog(3) that we tried to use as a lookup.

We need an appropriate override for hashCode(). But that still

won’t work until you’ve done one more thing: override the equals()

that is also part of Object. equals() is used by the HashMap

when trying to determine if your key is equal to any of the keys in the

table.

Because the default Object.equals() compares object addresses,

one Groundhog(3) is not equal to another Groundhog(3). Thus,

to use your own classes as keys in a HashMap, you must override both

hashCode() and equals(), as shown in the following solution to

the groundhog problem:



// equalshashcode/Groundhog2.java

// A class that's used as a key in a HashMap

// must override hashCode() and equals()

import java.util.*;

public class Groundhog2 extends Groundhog {

public Groundhog2(int n) { super(n); }

@Override

public int hashCode() { return number; }

@Override

public boolean equals(Object o) {

return o instanceof Groundhog2 &&

Objects.equals(

number, ((Groundhog2)o).number);

}

}

// equalshashcode/SpringDetector2.java

// A working key

public class SpringDetector2 {

public static void main(String[] args) {

SpringDetector.detectSpring(Groundhog2.class);



}

}

/* Output:

Groundhog #0: Six more weeks of Winter!

Groundhog #1: Early Spring!

Groundhog #2: Six more weeks of Winter!

Groundhog #3: Early Spring!

Groundhog #4: Early Spring!

Groundhog #5: Six more weeks of Winter!

Groundhog #6: Early Spring!

Groundhog #7: Early Spring!

Groundhog #8: Six more weeks of Winter!

Groundhog #9: Six more weeks of Winter!

Looking up prediction for Groundhog #3

Early Spring!

*/

Groundhog2.hashCode() returns the groundhog number as a

hash value. In this example, the programmer is responsible for

ensuring that no two groundhogs exist with the same ID number. The

hashCode() is not required to return a unique identifier (something



you’ll understand later in this appendix), but the equals() method

must strictly determine whether two objects are equivalent. Here,

equals() is based on the groundhog number, so if two

Groundhog2 objects exist as keys in the HashMap with the same

groundhog number, it will fail.

Defining equals() was covered in A Canonical equals(). The output shows
that the behavior is now correct.

Understanding hashCode()

The preceding example is only a start toward solving the problem

correctly. It shows that if you do not override hashCode() and

equals() for your key, the hashed data structure (for example:

HashSet, HashMap, LinkedHashSet, or LinkedHashMap)

probably won’t deal with your key properly. For a good solution to the

problem, however, you must understand what’s going on inside the

hashed data structure.

First, consider the motivation behind hashing: To look up an object

using another object. But you can also accomplish this with a



TreeMap, or you can even implement your own Map. In contrast to a

hashed implementation, the following example implements a Map

using a pair of ArrayLists. Unlike AssociativeArray.java,

this includes a full implementation of the Map interface, which

accounts for the entrySet() method:

// equalshashcode/SlowMap.java

// A Map implemented with ArrayLists

import java.util.*;

import onjava.*;

public class SlowMap<K, V> extends AbstractMap<K, V> {

private List<K> keys = new ArrayList<>();

private List<V> values = new ArrayList<>();

@Override

public V put(K key, V value) {

V oldValue = get(key); // The old value or null

if(!keys.contains(key)) {

keys.add(key);

values.add(value);

} else

values.set(keys.indexOf(key), value);



return oldValue;

}

@Override

public V get(Object key) { // key: type Object, not K

if(!keys.contains(key))

return null;

return values.get(keys.indexOf(key));

}

@Override

public Set<Map.Entry<K, V>> entrySet() {

Set<Map.Entry<K, V>> set= new HashSet<>();

Iterator<K> ki = keys.iterator();

Iterator<V> vi = values.iterator();

while(ki.hasNext())

set.add(new MapEntry<>(ki.next(), vi.next()));

return set;

}

public static void main(String[] args) {

SlowMap<String,String> m= new SlowMap<>();

m.putAll(Countries.capitals(8));



m.forEach((k, v) ->

System.out.println(k + "=" + v));

System.out.println(m.get("BENIN"));

m.entrySet().forEach(System.out::println);

}

}

/* Output:

CAMEROON=Yaounde

ANGOLA=Luanda

BURKINA FASO=Ouagadougou

BURUNDI=Bujumbura

ALGERIA=Algiers

BENIN=Porto-Novo

CAPE VERDE=Praia

BOTSWANA=Gaberone

Porto-Novo

CAMEROON=Yaounde

ANGOLA=Luanda

BURKINA FASO=Ouagadougou

BURUNDI=Bujumbura



ALGERIA=Algiers

BENIN=Porto-Novo

CAPE VERDE=Praia

BOTSWANA=Gaberone

*/

The put() method places the keys and values in corresponding

ArrayLists. In accordance with the Map interface, it must return

the old key or null if there was no old key.

Following the specifications for Map, get() produces null if the key

is not in the SlowMap. If the key exists, it is used to look up the

numerical index indicating its location in the keys List, and this

number is used as an index to produce the associated value from the

values List. Notice that the type of key is Object in get(),

rather than the parameterized type K as you might expect (and which

was indeed used in AssociativeArray.java). This is a result of

the injection of generics into the Java language at such a late date—if

generics had been an original feature in the language, get() could

have specified the type of its parameter.

The String representation of the contents of SlowMap is

automatically produced by the toString() method defined in



AbstractMap.

In SlowMap.main(), a SlowMap is loaded, then the contents are

displayed. A call to get() shows it works.

Map.entrySet() produces a set of Map.Entry objects. However,

Map.Entry is an interface describing an implementation-dependent

structure, so to make your own type of Map, you must also define an

implementation of Map.Entry:

// equalshashcode/MapEntry.java

// A simple Map.Entry for sample Map implementations

import java.util.*;

public class MapEntry<K, V> implements Map.Entry<K, V> {

private K key;

private V value;

public MapEntry(K key, V value) {

this.key = key;

this.value = value;

}

@Override

public K getKey() { return key; }

@Override



public V getValue() { return value; }

@Override

public V setValue(V v) {

V result = value;

value = v;

return result;

}

@Override

public int hashCode() {

return Objects.hash(key, value);

}

@SuppressWarnings("unchecked")

@Override

public boolean equals(Object rval) {

return rval instanceof MapEntry &&

Objects.equals(key,

((MapEntry<K, V>)rval).getKey()) &&

Objects.equals(value,

((MapEntry<K, V>)rval).getValue());

}



@Override

public String toString() {

return key + "=" + value;

}

}

The equals() method follows A Canonical equals(). There is a similar
method in the Objects class for creating a hashCode():

Objects.hash(). Use this when you are defining a hashCode()

involving more than one field. If you are only using a single field, use

Objects.hashCode() instead.

Although this solution is simple, and appears to work for the trivial

test in SlowMap.main(), it is not a correct implementation because

it makes a copy of the keys and values. A proper implementation of

entrySet() provides a view into the Map, rather than a copy, and

this view allows modification of the original map (which a copy

doesn’t).

Hashing for Speed



SlowMap.java shows it’s not that hard to produce a new type of

Map. But as the name suggests, a SlowMap isn’t very fast, so you

won’t use it if you have an alternative. The problem happens during

lookup: the keys are not kept in any particular order, so a simple linear

search is used. A linear search is the slowest way to find something.

The whole point of hashing is speed, because hashing looks up values

very quickly. Since the bottleneck is in the speed of the key lookup, one

solution is to keep the keys sorted, then use

Collections.binarySearch() to perform the lookup.

Hashing goes further by only storing the key somewhere in a way it

can be found quickly. The fastest structure for storing a group of

elements is an array, so that is used for representing the key

information (note I say “key information,” and not the key itself). But

because an array cannot be resized, we have a problem: We want to

store an indeterminate number of values in the Map, but if the number

of keys is fixed by the array size, how can this be?

The array does not hold the keys. From the key object, a number is

derived to index into the array. This number is the hash code,

produced by the hashCode() method (using a hash function)

defined in Object and presumably overridden by your class.



To solve the problem of the fixed-size array, more than one key can

produce the same index. That is, there can be collisions. Because of

this, it doesn’t matter how big the array is; any key object’s hash code

will land somewhere in that array.

So the process of looking up a value starts by computing the hash code

and using it to index into the array. If you could guarantee there were

no collisions (possible with a fixed number of values), you’d have a

perfect hashing function, but that’s a special case. 1 In all other cases,
collisions are handled with external chaining: The array doesn’t point

directly to a value, but instead to a list of values. These values are

searched in a linear fashion using the equals() method (thus,

equals() is also essential for hashing). This aspect of the search is

much slower, but if the hash function is good, there will only be a few

values in each slot. So instead of searching through the entire list, you

quickly jump to a slot where you only compare a few entries to find the

value. This is much faster, which is why a HashMap is so quick.

Knowing the basics of hashing, you can implement a simple hashed

Map:

// equalshashcode/SimpleHashMap.java

// A demonstration hashed Map

import java.util.*;



import onjava.*;

public

class SimpleHashMap<K, V> extends AbstractMap<K, V> {

// Choose a prime number for the hash table

// size, to achieve a uniform distribution:

static final int SIZE = 997;

// You can't have a physical array of generics,

// but you can upcast to one:

@SuppressWarnings("unchecked")

LinkedList<MapEntry<K, V>>[] buckets =

new LinkedList[SIZE];

@Override

public V put(K key, V value) {

V oldValue = null;

int index = Math.abs(key.hashCode()) % SIZE;

if(buckets[index] == null)

buckets[index] = new LinkedList<>();

LinkedList<MapEntry<K, V>> bucket = buckets[index];

MapEntry<K, V> pair = new MapEntry<>(key, value);

boolean found = false;



ListIterator<MapEntry<K, V>> it =

bucket.listIterator();

while(it.hasNext()) {

MapEntry<K, V> iPair = it.next();

if(iPair.getKey().equals(key)) {

oldValue = iPair.getValue();

it.set(pair); // Replace old with new

found = true;

break;

}

}

if(!found)

buckets[index].add(pair);

return oldValue;

}

@Override

public V get(Object key) {

int index = Math.abs(key.hashCode()) % SIZE;

if(buckets[index] == null) return null;

for(MapEntry<K, V> iPair : buckets[index])



if(iPair.getKey().equals(key))

return iPair.getValue();

return null;

}

@Override

public Set<Map.Entry<K, V>> entrySet() {

Set<Map.Entry<K, V>> set= new HashSet<>();

for(LinkedList<MapEntry<K, V>> bucket : buckets) {

if(bucket == null) continue;

for(MapEntry<K, V> mpair : bucket)

set.add(mpair);

}

return set;

}

public static void main(String[] args) {

SimpleHashMap<String,String> m =

new SimpleHashMap<>();

m.putAll(Countries.capitals(8));

m.forEach((k, v) ->

System.out.println(k + "=" + v));



System.out.println(m.get("BENIN"));

m.entrySet().forEach(System.out::println);

}

}

/* Output:

CAMEROON=Yaounde

ANGOLA=Luanda

BURKINA FASO=Ouagadougou

BURUNDI=Bujumbura

ALGERIA=Algiers

BENIN=Porto-Novo

CAPE VERDE=Praia

BOTSWANA=Gaberone

Porto-Novo

CAMEROON=Yaounde

ANGOLA=Luanda

BURKINA FASO=Ouagadougou

BURUNDI=Bujumbura

ALGERIA=Algiers

BENIN=Porto-Novo



CAPE VERDE=Praia

BOTSWANA=Gaberone

*/

Because the “slots” in a hash table are often called buckets, the array

that represents the actual table is called buckets. To promote even

distribution, the number of buckets is typically a prime number.2

Notice it is an array of LinkedList, which automatically provides

for collisions—each new item is added to the end of the list in a

particular bucket. Even though Java will not let you create an array of

generics, it is possible to make a reference to such an array. Here, it is

convenient to upcast to such an array, to prevent extra casting later in

the code.

For a put(), hashCode() is called for the key and the result is

forced to a positive number. To fit the resulting number into the

buckets array, the modulus operator is used with the size of that

array. If that location is null, it means there are no elements that

hash to that location, so a new LinkedList holds the object that did



just hash to that location. However, the normal process is to look

through the list to see if there are duplicates, and if there are, the old

value is put into oldValue and the new value replaces the old. The

found flag keeps track of whether an old key-value pair was found

and, if not, the new pair is appended to the end of the list.

get() calculates the index into the buckets array in the same

fashion as put() (this is important to guarantee that you end up in

the same spot). If a LinkedList exists, it is searched for a match.

This particular implementation is not meant to be tuned for

performance; it is only intended to show the operations performed by

a hash map. If you look at the source code for

java.util.HashMap, you’ll see a tuned implementation. Also, for

simplicity, SimpleHashMap uses the same approach to

entrySet() as did SlowMap, which is oversimplified and will not

work for a general-purpose Map.

Overriding hashCode()

Now you understand how hashing works, writing a proper

hashCode() method will make more sense.

First of all, you don’t control the creation of the actual value that’s

used to index into the array of buckets. That is dependent on the



capacity of the particular HashMap object, and that capacity changes

depending on how full the collection is, along with the load factor (this

term is described later). Thus, the value produced by your

hashCode() is further processed to create the bucket index (in

SimpleHashMap, the calculation is just a modulo by the size of the

bucket array).

The most important factor in creating a hashCode() is that,

regardless of when hashCode() is called, it produces the same value

for a particular object every time. If you end up with an object that

produces one hashCode() value when it is put() into a HashMap

and another during a get(), you can’t retrieve the objects. So if your

hashCode() depends on mutable data in the object, the user must

be made aware that changing the data produces a different key

because it generates a different hashCode().

In addition, you probably won’t want to generate a hashCode()

based on unique object information—in particular, the value of this

makes a bad hashCode() because then you can’t generate a new key

identical to the one used to put() the original key-value pair. This

was the problem that occurred in SpringDetector.java, because

the default implementation of hashCode() does use the object



address. So use information in the object that identifies the object in a

meaningful way.

One example can be seen in the String class. Strings have the

special characteristic that if a program has several String objects that contain
identical character sequences, those String objects all

map to the same memory. So it makes sense that the hashCode()

produced by two separate instances of the String "hello" should

be identical, as demonstrated here:

// equalshashcode/StringHashCode.java

public class StringHashCode {

public static void main(String[] args) {

String[] hellos = "Hello Hello".split(" ");

System.out.println(hellos[0].hashCode());

System.out.println(hellos[1].hashCode());

}

}

/* Output:

69609650

69609650

*/

The hashCode() for String is clearly based on the contents of the



String.

So, for a hashCode() to be effective, it must be both fast and

meaningful; that is, it must generate a value based on the contents of

the object. Remember this value doesn’t have to be unique—you

should lean toward speed rather than uniqueness—but between

hashCode() and equals(), the identity of the object must be

completely resolved.

Because the hashCode() is further processed before the bucket

index is produced, the range of values is not important; it must only

generate an int.

There’s one other factor: A good hashCode() should result in an

even distribution of values. If the values tend to cluster, then the

HashMap or HashSet is more heavily loaded in some areas and is not as fast
as it can be with an evenly distributed hashing function.

In Effective Java Programming Language Guide (Addison-Wesley,

2001), Joshua Bloch gives a basic recipe for generating a decent

hashCode():

1. Store some constant nonzero value, say 17, in an int variable

called result.

2. For each significant field f in your object (that is, each field taken

into account by the equals() method), calculate an int hash



code c for the field:

Field type

Calculation

boolean

c = (f ? 0 : 1)

byte, char,

c = (int)f

short, or int

long

c = (int)(f ^ (f>>>32))

c =

float

Float.floatToIntBits(f);

long l =

double

Double.doubleToLongBits(f);

c = (int)(l ^ (l >>> 32))

Object, where

equals() calls

c = f.hashCode()



equals() for this

field

Array

Apply above rules to each element

3. Combine the hash code(s) computed above: result = 37 *

result + c;

4. Return result.

5. Look at the resulting hashCode() and make sure that equal

instances have equal hash codes.

Here’s an example that follows these guidelines. Note that you

shouldn’t actually write code like this—instead, use

Objects.hash() for hashing together multiple fields (as in this

case) and Objects.hashCode() for hashing a single field.

// equalshashcode/CountedString.java

// Creating a good hashCode()

import java.util.*;

public class CountedString {

private static List<String> created =

new ArrayList<>();

private String s;



private int id = 0;

public CountedString(String str) {

s = str;

created.add(s);

// id is the total number of instances

// of this String used by CountedString:

for(String s2 : created)

if(s2.equals(s))

id++;

}

@Override

public String toString() {

return "String: " + s + " id: " + id +

" hashCode(): " + hashCode();

}

@Override

public int hashCode() {

// The very simple approach:

// return s.hashCode() * id;

// Using Joshua Bloch's recipe:



int result = 17;

result = 37 * result + s.hashCode();

result = 37 * result + id;

return result;

}

@Override

public boolean equals(Object o) {

return o instanceof CountedString &&

Objects.equals(s, ((CountedString)o).s) &&

Objects.equals(id, ((CountedString)o).id);

}

public static void main(String[] args) {

Map<CountedString,Integer> map = new HashMap<>();

CountedString[] cs = new CountedString[5];

for(int i = 0; i < cs.length; i++) {

cs[i] = new CountedString("hi");

map.put(cs[i], i); // Autobox int to Integer

}

System.out.println(map);

for(CountedString cstring : cs) {



System.out.println("Looking up " + cstring);

System.out.println(map.get(cstring));

}

}

}

/* Output:

{String: hi id: 4 hashCode(): 146450=3, String: hi id:

5 hashCode(): 146451=4, String: hi id: 2 hashCode():

146448=1, String: hi id: 3 hashCode(): 146449=2,

String: hi id: 1 hashCode(): 146447=0}

Looking up String: hi id: 1 hashCode(): 146447

0

Looking up String: hi id: 2 hashCode(): 146448

1

Looking up String: hi id: 3 hashCode(): 146449

2

Looking up String: hi id: 4 hashCode(): 146450

3

Looking up String: hi id: 5 hashCode(): 146451

4



*/

CountedString includes a String and an id that represents the

number of CountedString objects containing an identical

String. The counting is accomplished in the constructor by iterating

through the static ArrayList where all the Strings are

stored.

Both hashCode() and equals() produce results based on both

fields; if they were just based on the String alone or the id alone,

there would be duplicate matches for distinct values.

In main(), several CountedString objects are created using the

same String, to show that the duplicates create unique values

because of the count id. The HashMap is displayed so you see how it

is stored internally (no discernible orders). Each key is looked up

individually to demonstrate that the lookup mechanism is working

properly.

As a second example, consider the Individual class that was used

as the base class for the typeinfo.pet library defined in the Type

Information chapter. The Individual class was used in that

chapter but the definition is delayed until this appendix so you can

properly understand the implementation.



Here, instead of calculating the hashCode() by hand, we’ll use the

proper approach with Objects.hash():

// typeinfo/pets/Individual.java

package typeinfo.pets;

import java.util.*;

public class

Individual implements Comparable<Individual> {

private static long counter = 0;

private final long id = counter++;

private String name;

public Individual(String name) { this.name = name; }

// 'name' is optional:

public Individual() {}

@Override

public String toString() {

return getClass().getSimpleName() +

(name == null ? "" : " " + name);

}

public long id() { return id; }

@Override



public boolean equals(Object o) {

return o instanceof Individual &&

Objects.equals(id, ((Individual)o).id);

}

@Override

public int hashCode() {

return Objects.hash(name, id);

}

@Override

public int compareTo(Individual arg) {

// Compare by class name first:

String first = getClass().getSimpleName();

String argFirst = arg.getClass().getSimpleName();

int firstCompare = first.compareTo(argFirst);

if(firstCompare != 0)

return firstCompare;

if(name != null && arg.name != null) {

int secondCompare = name.compareTo(arg.name);

if(secondCompare != 0)

return secondCompare;



}

return (arg.id < id ? -1 : (arg.id == id ? 0 : 1));

}

}
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{ 0xFF6347, "Tomato" },

{ 0x40E0D0, "Turquoise" },

{ 0xEE82EE, "Violet" },

{ 0xF5DEB3, "Wheat" },

{ 0xFFFFFF, "White" },

{ 0xF5F5F5, "WhiteSmoke" },

{ 0xFFFF00, "Yellow" },

{ 0x9ACD32, "YellowGreen" },

};

public static final Map<Integer,String> MAP =

Arrays.stream(ARRAY)

.collect(Collectors.toMap(

element -> (Integer)element[0],

element -> (String)element[1],

(v1, v2) -> { // Merge function

throw new IllegalStateException();



},

LinkedHashMap::new

));

// Inversion only works if values are unique:

public static <V, K> Map<V, K>

invert(Map<K, V> map) {

return map.entrySet().stream()

.collect(Collectors.toMap(

Map.Entry::getValue,

Map.Entry::getKey,

(v1, v2) -> {

throw new IllegalStateException();

},

LinkedHashMap::new

));

}

public static final Map<String,Integer>

INVMAP = invert(MAP);

// Look up RGB value given a name:

public static Integer rgb(String colorName) {



return INVMAP.get(colorName);

}

public static final List<String> LIST =

Arrays.stream(ARRAY)

.map(item -> (String)item[1])

.collect(Collectors.toList());

public static final List<Integer> RGBLIST =

Arrays.stream(ARRAY)

.map(item -> (Integer)item[0])

.collect(Collectors.toList());

public static

void show(Map.Entry<Integer,String> e) {

System.out.format(

"0x%06X: %s%n", e.getKey(), e.getValue());

}

public static void

show(Map<Integer,String> m, int count) {

m.entrySet().stream()

.limit(count)

.forEach(e -> show(e));



}

public static void show(Map<Integer,String> m) {

show(m, m.size());

}

public static

void show(Collection<String> lst, int count) {

lst.stream()

.limit(count)

.forEach(System.out::println);

}

public static void show(Collection<String> lst) {

show(lst, lst.size());

}

public static

void showrgb(Collection<Integer> lst, int count) {

lst.stream()

.limit(count)

.forEach(n -> System.out.format("0x%06X%n", n));

}

public static void showrgb(Collection<Integer> lst) {



showrgb(lst, lst.size());

}

public static

void showInv(Map<String,Integer> m, int count) {

m.entrySet().stream()

.limit(count)

.forEach(e ->

System.out.format(

"%-20s 0x%06X%n", e.getKey(), e.getValue()));

}

public static void showInv(Map<String,Integer> m) {

showInv(m, m.size());

}

public static void border() {

System.out.println(

"******************************");

}

}

MAP is created using Streams. The two-dimensional ARRAY is streamed
into a Map, but notice we are not just using the simple

version of Collectors.toMap(). That version produces a



HashMap, which scrambles the order of the keys using a hashing

function. In order to preserve the order, we must place the key-value

pairs directly into a TreeMap, which means we use the more complex

version of Collectors.toMap(). This takes two functions that

extract the key and value from each streamed element, just like the

simple Collectors.toMap(). Then it requires a merge function,

which resolves collisions between two values associated with the same

key. Our data is pre-vetted so this should never happen and we throw

an exception if it does. Finally we pass the function that produces an

empty map of our desired type, which is then filled by the stream.

The rgb() method is a convenience function that takes a color name

String and produces its numerical RGB value. To achieve this, we

need an inverted version of COLORS which takes a String key and

looks up an RGB Integer value. This is achieved through the

invert() method, which throws an exception if any of the COLORS

values are not unique.

We also create LIST, containing all the names, and RGBLIST,

containing the RGB values in hex notation.

The first show() method takes a single Map.Entry and displays the

key in hex notation to enable easy double-checking against the original



ARRAY. Each of the methods with names that start with show are

overloaded with one version taking a count argument to indicate

how many elements you want to display, and the second version

displaying all the elements in the sequence.

Here’s a basic test:

// collectiontopics/HTMLColorTest.java

import static onjava.HTMLColors.*;

public class HTMLColorTest {

static final int DISPLAY_SIZE = 20;

public static void main(String[] args) {

show(MAP, DISPLAY_SIZE);

border();

showInv(INVMAP, DISPLAY_SIZE);

border();

show(LIST, DISPLAY_SIZE);

border();

showrgb(RGBLIST, DISPLAY_SIZE);

}

}

/* Output:



0xF0F8FF: AliceBlue

0xFAEBD7: AntiqueWhite

0x7FFFD4: Aquamarine

0xF0FFFF: Azure

0xF5F5DC: Beige

0xFFE4C4: Bisque

0x000000: Black

0xFFEBCD: BlanchedAlmond

0x0000FF: Blue

0x8A2BE2: BlueViolet

0xA52A2A: Brown

0xDEB887: BurlyWood

0x5F9EA0: CadetBlue

0x7FFF00: Chartreuse

0xD2691E: Chocolate

0xFF7F50: Coral

0x6495ED: CornflowerBlue

0xFFF8DC: Cornsilk

0xDC143C: Crimson

0x00FFFF: Cyan



******************************

AliceBlue 0xF0F8FF

AntiqueWhite 0xFAEBD7

Aquamarine 0x7FFFD4

Azure 0xF0FFFF

Beige 0xF5F5DC

Bisque 0xFFE4C4

Black 0x000000

BlanchedAlmond 0xFFEBCD

Blue 0x0000FF

BlueViolet 0x8A2BE2

Brown 0xA52A2A

BurlyWood 0xDEB887

CadetBlue 0x5F9EA0

Chartreuse 0x7FFF00

Chocolate 0xD2691E

Coral 0xFF7F50

CornflowerBlue 0x6495ED

Cornsilk 0xFFF8DC

Crimson 0xDC143C



Cyan 0x00FFFF

******************************

AliceBlue

AntiqueWhite

Aquamarine

Azure

Beige

Bisque

Black

BlanchedAlmond

Blue

BlueViolet

Brown

BurlyWood

CadetBlue

Chartreuse

Chocolate

Coral

CornflowerBlue

Cornsilk



Crimson

Cyan

******************************

0xF0F8FF

0xFAEBD7

0x7FFFD4

0xF0FFFF

0xF5F5DC

0xFFE4C4

0x000000

0xFFEBCD

0x0000FF

0x8A2BE2

0xA52A2A

0xDEB887

0x5F9EA0



0x7FFF00

0xD2691E

0xFF7F50

0x6495ED

0xFFF8DC

0xDC143C

0x00FFFF

*/

Using a LinkedHashMap, we are indeed able to preserve the order

of HTMLColors.ARRAY.

List Behavior

Lists are the most fundamental way to store and retrieve objects

(after arrays). Basic List operations include:

add() to insert elements

get() for random-access selection of elements

iterator() to get an Iterator over the sequence

stream() to produce a Stream of elements

List constructors always preserve the order the elements are added.

The methods in the following example each cover a different group of

activities: things that every List can do (basicTest()), moving



around with an Iterator (iterMotion()) versus changing

things with an Iterator (iterManipulation()), seeing the

effects of List manipulation (testVisual()), and operations

available only to LinkedLists:

// collectiontopics/ListOps.java

// Things you can do with Lists

import java.util.*;

import onjava.HTMLColors;

public class ListOps {

// Create a short list for testing:

static final List<String> LIST =

HTMLColors.LIST.subList(0, 10);

private static boolean b;

private static String s;

private static int i;

private static Iterator<String> it;

private static ListIterator<String> lit;

public static void basicTest(List<String> a) {

a.add(1, "x"); // Add at location 1

a.add("x"); // Add at end



// Add a collection:

a.addAll(LIST);

// Add a collection starting at location 3:

a.addAll(3, LIST);

b = a.contains("1"); // Is it in there?

// Is the entire collection in there?

b = a.containsAll(LIST);

// Lists allow random access, which is cheap

// for ArrayList, expensive for LinkedList:

s = a.get(1); // Get (typed) object at location 1

i = a.indexOf("1"); // Tell index of object

b = a.isEmpty(); // Any elements inside?

it = a.iterator(); // Ordinary Iterator

lit = a.listIterator(); // ListIterator

lit = a.listIterator(3); // Start at location 3

i = a.lastIndexOf("1"); // Last match

a.remove(1); // Remove location 1

a.remove("3"); // Remove this object

a.set(1, "y"); // Set location 1 to "y"

// Keep everything that's in the argument



// (the intersection of the two sets):

a.retainAll(LIST);

// Remove everything that's in the argument:

a.removeAll(LIST);

i = a.size(); // How big is it?

a.clear(); // Remove all elements

}

public static void iterMotion(List<String> a) {

ListIterator<String> it = a.listIterator();

b = it.hasNext();

b = it.hasPrevious();

s = it.next();

i = it.nextIndex();

s = it.previous();

i = it.previousIndex();

}

public static void iterManipulation(List<String> a) {

ListIterator<String> it = a.listIterator();

it.add("47");

// Must move to an element after add():



it.next();

// Remove the element after the new one:

it.remove();

// Must move to an element after remove():

it.next();

// Change the element after the deleted one:

it.set("47");

}

public static void testVisual(List<String> a) {

System.out.println(a);

List<String> b = LIST;

System.out.println("b = " + b);

a.addAll(b);

a.addAll(b);

System.out.println(a);

// Insert, remove, and replace elements

// using a ListIterator:

ListIterator<String> x =

a.listIterator(a.size()/2);

x.add("one");



System.out.println(a);

System.out.println(x.next());

x.remove();

System.out.println(x.next());

x.set("47");

System.out.println(a);

// Traverse the list backwards:

x = a.listIterator(a.size());

while(x.hasPrevious())

System.out.print(x.previous() + " ");

System.out.println();

System.out.println("testVisual finished");

}

// There are some things that only LinkedLists can do:

public static void testLinkedList() {

LinkedList<String> ll = new LinkedList<>();

ll.addAll(LIST);

System.out.println(ll);

// Treat it like a stack, pushing:

ll.addFirst("one");



ll.addFirst("two");

System.out.println(ll);

// Like "peeking" at the top of a stack:

System.out.println(ll.getFirst());

// Like popping a stack:

System.out.println(ll.removeFirst());

System.out.println(ll.removeFirst());

// Treat it like a queue, pulling elements

// off the tail end:

System.out.println(ll.removeLast());

System.out.println(ll);

}

public static void main(String[] args) {

// Make and fill a new list each time:

basicTest(new LinkedList<>(LIST));

basicTest(new ArrayList<>(LIST));

iterMotion(new LinkedList<>(LIST));

iterMotion(new ArrayList<>(LIST));

iterManipulation(new LinkedList<>(LIST));

iterManipulation(new ArrayList<>(LIST));



testVisual(new LinkedList<>(LIST));

testLinkedList();

}

}

/* Output:

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet]

b = [AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet]

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet,

AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet,

AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet]

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet,

AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige, one,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet,

AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,



Bisque, Black, BlanchedAlmond, Blue, BlueViolet]

Bisque

Black

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet,

AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige, one,

47, BlanchedAlmond, Blue, BlueViolet, AliceBlue,

AntiqueWhite, Aquamarine, Azure, Beige, Bisque, Black,

BlanchedAlmond, Blue, BlueViolet]

BlueViolet Blue BlanchedAlmond Black Bisque Beige Azure

Aquamarine AntiqueWhite AliceBlue BlueViolet Blue

BlanchedAlmond 47 one Beige Azure Aquamarine

AntiqueWhite AliceBlue BlueViolet Blue BlanchedAlmond

Black Bisque Beige Azure Aquamarine AntiqueWhite

AliceBlue

testVisual finished

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue, BlueViolet]



[two, one, AliceBlue, AntiqueWhite, Aquamarine, Azure,

Beige, Bisque, Black, BlanchedAlmond, Blue, BlueViolet]

two

two

one

BlueViolet

[AliceBlue, AntiqueWhite, Aquamarine, Azure, Beige,

Bisque, Black, BlanchedAlmond, Blue]

*/

In basicTest() and iterMotion() the calls are made to show

the proper syntax, and although the return value is captured, it is not

used. In some cases, the return value isn’t captured at all. Look up the

full usage of each of these methods in the JDK documentation before

you use them.

Set Behavior

The point of a Set is to test for membership, although you can also



use it as a tool to remove duplicate elements. If you don’t care about

element order or concurrency, HashSet is always your best bet

because it is designed for the fastest possible lookup (using the

hashing function we explored in the Appendix: Understanding

equals() and hashCode()).

Additional Set implementations produce different ordering behavior:

// collectiontopics/SetOrder.java

import java.util.*;

import onjava.HTMLColors;

public class SetOrder {

static String[] sets = {

"java.util.HashSet",

"java.util.TreeSet",

"java.util.concurrent.ConcurrentSkipListSet",

"java.util.LinkedHashSet",

"java.util.concurrent.CopyOnWriteArraySet",

};

static final List<String> RLIST =

new ArrayList<>(HTMLColors.LIST);

static {



Collections.reverse(RLIST);

}

public static void

main(String[] args) throws Exception {

for(String type: sets) {

System.out.format("[-> %s <-]%n",

type.substring(type.lastIndexOf('.') + 1));

@SuppressWarnings("unchecked")

Set<String> set = (Set<String>)

Class.forName(type).newInstance();

set.addAll(RLIST);

set.stream()

.limit(10)

.forEach(System.out::println);

}

}

}

/* Output:

[-> HashSet <-]

MediumOrchid



PaleGoldenRod

Sienna

LightSlateGray

DarkSeaGreen

Black

Gainsboro

Orange

LightCoral

DodgerBlue

[-> TreeSet <-]

AliceBlue

AntiqueWhite

Aquamarine

Azure

Beige

Bisque

Black

BlanchedAlmond

Blue

BlueViolet



[-> ConcurrentSkipListSet <-]

AliceBlue

AntiqueWhite

Aquamarine

Azure

Beige

Bisque

Black

BlanchedAlmond

Blue

BlueViolet

[-> LinkedHashSet <-]

YellowGreen

Yellow

WhiteSmoke

White

Wheat

Violet

Turquoise

Tomato



Thistle

Teal

[-> CopyOnWriteArraySet <-]

YellowGreen

Yellow

WhiteSmoke

White

Wheat

Violet

Turquoise

Tomato

Thistle

Teal

*/

We need @SuppressWarnings("unchecked") here because we

pass a String, which could be anything, to

Class.forName(type).newInstance(). The compiler can’t



guarantee this is a successful operation.

RLIST is a reversed version of HTMLColors.LIST. Because

Collections.reverse() performs the reverse by modifying the

argument (instead of returning a new List containing reversed

elements), that call is performed inside a static clause. RLIST

prevents us from accidentally thinking that a Set sorts its results.

The HashSet output appears to have no discernible order (because

it’s based on the hash function). Both TreeSet and

ConcurrentSkipListSet have sorted their elements, and they

implement the SortedSet interface to indicate this; that interface

also has further operations available because the Set is in sorted

order. LinkedHashSet and CopyOnWriteArraySet preserve

the order of the elements as they are added, although there is no

interface to indicate this.

ConcurrentSkipListSet and CopyOnWriteArraySet are

thread safe.



At the end of the appendix we’ll find out the performance cost of the

additional ordering imposed on non-HashSet implementations,

along with the cost of any other functionality in the different

implementations.

Using Functional

Operations with any

Map

Just as with the Collection interface, forEach() is built into the Map
interface. But what if you want to perform any of the other basic

functional operations: map(), flatMap(), reduce() or

filter()? When you look at the Map interface, there’s no hint of

these.

You connect to these methods through entrySet(), which produces

a Set of Map.Entry objects. This Set, in turn, contains stream()

and parallelStream() methods. The only thing you must

remember is that you’re working with Map.Entry objects:

// collectiontopics/FunctionalMap.java

// Functional operations on a Map

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;



import static onjava.HTMLColors.*;

public class FunctionalMap {

public static void main(String[] args) {

MAP.entrySet().stream()

.map(Map.Entry::getValue)

.filter(v -> v.startsWith("Dark"))

.map(v -> v.replaceFirst("Dark", "Hot"))

.forEach(System.out::println);

}

}

/* Output:

HotBlue

HotCyan

HotGoldenRod

HotGray

HotGreen

HotKhaki

HotMagenta

HotOliveGreen

HotOrange



HotOrchid

HotRed

HotSalmon

HotSeaGreen

HotSlateBlue

HotSlateGray

HotTurquoise

HotViolet

*/

Once you produce a Stream, all the basic functional methods (and

more) become available.

Selecting Parts of a Map

The NavigableMap interface, implemented by TreeMap and

ConcurrentSkipListMap, solves problems that require selecting

portions of a Map. Here’s an example utilizing HTMLColors:

// collectiontopics/NavMap.java



// NavigableMap produces pieces of a Map

import java.util.*;

import java.util.concurrent.*;

import static onjava.HTMLColors.*;

public class NavMap {

public static final

NavigableMap<Integer,String> COLORS =

new ConcurrentSkipListMap<>(MAP);

public static void main(String[] args) {

show(COLORS.firstEntry());

border();

show(COLORS.lastEntry());

border();

NavigableMap<Integer, String> toLime =

COLORS.headMap(rgb("Lime"), true);

show(toLime);

border();

show(COLORS.ceilingEntry(rgb("DeepSkyBlue") - 1));

border();

show(COLORS.floorEntry(rgb("DeepSkyBlue") - 1));



border();

show(toLime.descendingMap());

border();

show(COLORS.tailMap(rgb("MistyRose"), true));

border();

show(COLORS.subMap(

rgb("Orchid"), true,

rgb("DarkSalmon"), false));

}

}

/* Output:

0x000000: Black

******************************

0xFFFFFF: White

******************************

0x000000: Black

0x000080: Navy

0x00008B: DarkBlue

0x0000CD: MediumBlue

0x0000FF: Blue



0x006400: DarkGreen

0x008000: Green

0x008080: Teal

0x008B8B: DarkCyan

0x00BFFF: DeepSkyBlue

0x00CED1: DarkTurquoise

0x00FA9A: MediumSpringGreen

0x00FF00: Lime

******************************

0x00BFFF: DeepSkyBlue

******************************

0x008B8B: DarkCyan

******************************

0x00FF00: Lime

0x00FA9A: MediumSpringGreen

0x00CED1: DarkTurquoise

0x00BFFF: DeepSkyBlue

0x008B8B: DarkCyan

0x008080: Teal

0x008000: Green



0x006400: DarkGreen

0x0000FF: Blue

0x0000CD: MediumBlue

0x00008B: DarkBlue

0x000080: Navy

0x000000: Black

******************************

0xFFE4E1: MistyRose

0xFFEBCD: BlanchedAlmond

0xFFEFD5: PapayaWhip

0xFFF0F5: LavenderBlush

0xFFF5EE: SeaShell

0xFFF8DC: Cornsilk

0xFFFACD: LemonChiffon

0xFFFAF0: FloralWhite

0xFFFAFA: Snow

0xFFFF00: Yellow

0xFFFFE0: LightYellow

0xFFFFF0: Ivory

0xFFFFFF: White



******************************

0xDA70D6: Orchid

0xDAA520: GoldenRod

0xDB7093: PaleVioletRed

0xDC143C: Crimson

0xDCDCDC: Gainsboro

0xDDA0DD: Plum

0xDEB887: BurlyWood

0xE0FFFF: LightCyan

0xE6E6FA: Lavender

*/

In main(), you see various features of a NavigableMap. Because a

NavigableMap has a key order, it enables the concept of a

firstEntry() and lastEntry(). Calling headMap() produces

a NavigableMap containing the elements starting from the

beginning of the Map up to the argument to headMap(), with the

boolean value indicating whether to include the argument. Calling

tailMap() performs a similar operation, but at the end of the Map.



subMap() allows you to produce a section of the Map from the

middle.

ceilingEntry() searches upward from the key value to the next

entry, and floorEntry() searches downward.

descendingMap() reverses the order of the NavigableMap.

If the problem you’re solving is simplified by slicing up a Map,

NavigableMap does the trick. Other collection implementations

have similar features that can also help your problem-solving process.

Filling Collections

Just as with Arrays, there is a companion class called

Collections containing static utility methods, including one

called fill(). fill() just duplicates a single object reference

throughout the collection. In addition, it only works for List objects,

but the resulting list can be passed to a constructor or to an

addAll() method:

// collectiontopics/FillingLists.java



// Collections.fill() & Collections.nCopies()

import java.util.*;

class StringAddress {

private String s;

StringAddress(String s) { this.s = s; }

@Override

public String toString() {

return super.toString() + " " + s;

}

}

public class FillingLists {

public static void main(String[] args) {

List<StringAddress> list = new ArrayList<>(

Collections.nCopies(4,

new StringAddress("Hello")));

System.out.println(list);

Collections.fill(list,



new StringAddress("World!"));

System.out.println(list);

}

}

/* Output:

[StringAddress@15db9742 Hello, StringAddress@15db9742

Hello, StringAddress@15db9742 Hello,

StringAddress@15db9742 Hello]

[StringAddress@6d06d69c World!, StringAddress@6d06d69c

World!, StringAddress@6d06d69c World!,

StringAddress@6d06d69c World!]

*/

This example shows two ways to fill a Collection with references

to a single object. The first, Collections.nCopies(), creates a

List which is passed to the constructor; this fills the ArrayList.

The toString() method in StringAddress calls

Object.toString(), which produces the class name followed by

the unsigned hexadecimal representation of the hash code of the

object (generated by the hashCode() method). The output shows

that all references are set to the same object, and this is also true after



calling the second method, Collections.fill(). The fill()

method is made even less useful by the fact it can only replace

elements already in the List, and will not add new elements.

Using Suppliers to Fill a

Collection

The onjava.Suppliers class introduced in the Generics chapter provides a
universal solution for filling Collections. Here’s an

example that initializes several different types of Collection using

Suppliers:

// collectiontopics/SuppliersCollectionTest.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import onjava.*;

class Government implements Supplier<String> {

static String[] foundation = (

"strange women lying in ponds " +

"distributing swords is no basis " +

"for a system of government").split(" ");

private int index;

@Override



public String get() {

return foundation[index++];

}

}

public class SuppliersCollectionTest {

public static void main(String[] args) {

// Suppliers class from the Generics chapter:

Set<String> set = Suppliers.create(

LinkedHashSet::new, new Government(), 15);

System.out.println(set);

List<String> list = Suppliers.create(

LinkedList::new, new Government(), 15);

System.out.println(list);

list = new ArrayList<>();

Suppliers.fill(list, new Government(), 15);

System.out.println(list);

// Or we can use Streams:

set = Arrays.stream(Government.foundation)

.collect(Collectors.toSet());

System.out.println(set);



list = Arrays.stream(Government.foundation)

.collect(Collectors.toList());

System.out.println(list);

list = Arrays.stream(Government.foundation)

.collect(Collectors

.toCollection(LinkedList::new));

System.out.println(list);

set = Arrays.stream(Government.foundation)

.collect(Collectors

.toCollection(LinkedHashSet::new));

System.out.println(set);

}

}

/* Output:

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]



[ponds, no, a, in, swords, for, is, basis, strange,

system, government, distributing, of, women, lying]

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]

[strange, women, lying, in, ponds, distributing,

swords, is, no, basis, for, a, system, of, government]

*/

The elements of the LinkedHashSet are in insertion order because

it maintains a linked list to hold that order.

Notice, however, the second part of the example: much of the time you

can just use Streams to create and fill a Collection. And here, the

Stream version doesn’t require us to state the number of elements we

want created as the Supplier version does; it just absorbs all the

Stream elements.

The Stream solution is preferred whenever possible.



Map Suppliers

Populating a Map with data using a Supplier requires a Pair class

since a pair of objects (one key and one value) must be produced by

each call to a Suppliers get():

// onjava/Pair.java

package onjava;

public class Pair<K, V> {

public final K key;

public final V value;

public Pair(K k, V v) {

key = k;

value = v;

}

public K key() { return key; }

public V value() { return value; }

public static <K,V> Pair<K, V> make(K k, V v) {

return new Pair<K,V>(k, v);

}

}

Pair is a read-only Data Transfer Object or Messenger. This is



basically the same as Tuple2 from the Generics chapter, but the name is more
appropriate for Map initialization. I’ve also added the

static make() method to provide a simpler shorthand for

creating Pair objects.

Java 8 Streams provide convenient ways to produce filled Maps:

// collectiontopics/StreamFillMaps.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

import onjava.*;

class Letters

implements Supplier<Pair<Integer,String>> {

private int number = 1;

private char letter = 'A';

@Override

public Pair<Integer,String> get() {

return new Pair<>(number++, "" + letter++);

}

}

public class StreamFillMaps {

public static void main(String[] args) {



Map<Integer,String> m =

Stream.generate(new Letters())

.limit(11)

.collect(Collectors

.toMap(Pair::key, Pair::value));

System.out.println(m);

// Two separate Suppliers:

Rand.String rs = new Rand.String(3);

Count.Character cc = new Count.Character();

Map<Character,String> mcs = Stream.generate(

() -> Pair.make(cc.get(), rs.get()))

.limit(8)

.collect(Collectors

.toMap(Pair::key, Pair::value));

System.out.println(mcs);

// A key Supplier and a single value:

Map<Character,String> mcs2 = Stream.generate(

() -> Pair.make(cc.get(), "Val"))

.limit(8)

.collect(Collectors



.toMap(Pair::key, Pair::value));

System.out.println(mcs2);

}

}

/* Output:

{1=A, 2=B, 3=C, 4=D, 5=E, 6=F, 7=G, 8=H, 9=I, 10=J,

11=K}

{b=btp, c=enp, d=ccu, e=xsz, f=gvg, g=mei, h=nne,

i=elo}

{p=Val, q=Val, j=Val, k=Val, l=Val, m=Val, n=Val,

o=Val}

*/

A pattern emerges in the above example, which we can use to create a

tool that automatically creates and fills Maps:

// onjava/FillMap.java

package onjava;

import java.util.*;

import java.util.function.*;

import java.util.stream.*;

public class FillMap {



public static <K, V> Map<K,V>

basic(Supplier<Pair<K,V>> pairGen, int size) {

return Stream.generate(pairGen)

.limit(size)

.collect(Collectors

.toMap(Pair::key, Pair::value));

}

public static <K, V> Map<K,V>

basic(Supplier<K> keyGen,

Supplier<V> valueGen, int size) {

return Stream.generate(

() -> Pair.make(keyGen.get(), valueGen.get()))

.limit(size)

.collect(Collectors

.toMap(Pair::key, Pair::value));

}

public static <K, V, M extends Map<K,V>>

M create(Supplier<K> keyGen,

Supplier<V> valueGen,

Supplier<M> mapSupplier, int size) {



return Stream.generate( () ->

Pair.make(keyGen.get(), valueGen.get()))

.limit(size)

.collect(Collectors

.toMap(Pair::key, Pair::value,

(k, v) -> k, mapSupplier));

}

}

The basic() method produces a default Map, while create()

allows you to specify an exact type of map, and it returns that exact

type.

Here’s a test:

// collectiontopics/FillMapTest.java

import java.util.*;

import java.util.function.*;

import java.util.stream.*;



import onjava.*;

public class FillMapTest {

public static void main(String[] args) {

Map<String,Integer> mcs = FillMap.basic(

new Rand.String(4), new Count.Integer(), 7);

System.out.println(mcs);

HashMap<String,Integer> hashm =

FillMap.create(new Rand.String(4),

new Count.Integer(), HashMap::new, 7);

System.out.println(hashm);

LinkedHashMap<String,Integer> linkm =

FillMap.create(new Rand.String(4),

new Count.Integer(), LinkedHashMap::new, 7);

System.out.println(linkm);

}

}

/* Output:

{npcc=1, ztdv=6, gvgm=3, btpe=0, einn=4, eelo=5,

uxsz=2}

{npcc=1, ztdv=6, gvgm=3, btpe=0, einn=4, eelo=5,



uxsz=2}

{btpe=0, npcc=1, uxsz=2, gvgm=3, einn=4, eelo=5,

ztdv=6}

*/

Custom Collection and

Map using Flyweight

This section shows how to create custom Collection and Map

implementations. Each java.util collection has its own

Abstract class providing a partial implementation of that collection,

so you need only implement the necessary methods to produce the

desired collection. You’ll see how relatively simple it is to create a

custom Map and Collection by inheriting from the

java.util.Abstract classes. For example, to create a read-only

Set, you inherit from AbstractSet and implement iterator()

and size(). The last example is an alternate way to produce test

data. The resulting collection is typically read-only, and the number of

methods you provide is minimized.

This solution also demonstrates the Flyweight design pattern. You use

a flyweight when the ordinary solution requires too many objects, or

when producing normal objects takes up too much space. The



Flyweight pattern externalizes part of the object. Instead of everything

in the object being contained within the object, some or all of the

object is looked up in a more efficient external table (or produced

through some other calculation that saves space).

Here is a List that can be any size, and is (effectively) pre-initialized

with Integer data. To create a read-only List from an

AbstractList, you must implement get() and size():

// onjava/CountingIntegerList.java

// List of any length, containing sample data

// {java onjava.CountingIntegerList}

package onjava;

import java.util.*;

public class CountingIntegerList

extends AbstractList<Integer> {

private int size;

public CountingIntegerList() { size = 0; }

public CountingIntegerList(int size) {

this.size = size < 0 ? 0 : size;

}

@Override



public Integer get(int index) {

return index;

}

@Override

public int size() { return size; }

public static void main(String[] args) {

List<Integer> cil =

new CountingIntegerList(30);

System.out.println(cil);

System.out.println(cil.get(500));

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

500

*/

The value of size is only important if you want to “limit the length”

of the List, as we do in main(). Even in that case, get() will

produce any value.



This class is a clear example of flyweight. get() “calculates” the value

when you ask for it, so there’s no actual underlying List structure

that requires storage and initialization.

The storage saved here would never make a difference in most

programs. However, it allows you to call List.get() using a very

large index without requiring a List populated with all those

values. Also, you can use a very large number of

CountingIntegerLists in your program without worrying about

storage. Indeed, one of the benefits of flyweight is it allows you to use nicer
abstractions without concern for resources.

We can use flyweight to implement other “initialized” custom

collections with a data set of any size. Here is a Map that produces a

unique value for every Integer key:

// onjava/CountMap.java

// Unlimited-length Map containing sample data

// {java onjava.CountMap}

package onjava;

import java.util.*;

import java.util.stream.*;

public class CountMap

extends AbstractMap<Integer,String> {



private int size;

private static char[] chars =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray();

private static String value(int key) {

return

chars[key % chars.length] +

Integer.toString(key / chars.length);

}

public CountMap(int size) {

this.size = size < 0 ? 0 : size;

}

@Override

public String get(Object key) {

return value((Integer)key);

}

private static class Entry

implements Map.Entry<Integer,String> {

int index;

Entry(int index) { this.index = index; }

@Override



public boolean equals(Object o) {

return o instanceof Entry &&

Objects.equals(index, ((Entry)o).index);

}

@Override

public Integer getKey() { return index; }

@Override

public String getValue() {

return value(index);

}

@Override

public String setValue(String value) {

throw new UnsupportedOperationException();

}

@Override

public int hashCode() {

return Objects.hashCode(index);

}

}

@Override



public Set<Map.Entry<Integer,String>> entrySet() {

// LinkedHashSet retains initialization order:

return IntStream.range(0, size)

.mapToObj(Entry::new)

.collect(Collectors

.toCollection(LinkedHashSet::new));

}

public static void main(String[] args) {

final int size = 6;

CountMap cm = new CountMap(60);

System.out.println(cm);

System.out.println(cm.get(500));

cm.values().stream()

.limit(size)

.forEach(System.out::println);

System.out.println();

new Random(47).ints(size, 0, 1000)

.mapToObj(cm::get)

.forEach(System.out::println);

}



}

/* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0,

9=J0, 10=K0, 11=L0, 12=M0, 13=N0, 14=O0, 15=P0, 16=Q0,

17=R0, 18=S0, 19=T0, 20=U0, 21=V0, 22=W0, 23=X0, 24=Y0,

25=Z0, 26=A1, 27=B1, 28=C1, 29=D1, 30=E1, 31=F1, 32=G1,

33=H1, 34=I1, 35=J1, 36=K1, 37=L1, 38=M1, 39=N1, 40=O1,

41=P1, 42=Q1, 43=R1, 44=S1, 45=T1, 46=U1, 47=V1, 48=W1,

49=X1, 50=Y1, 51=Z1, 52=A2, 53=B2, 54=C2, 55=D2, 56=E2,

57=F2, 58=G2, 59=H2}

G19

A0

B0

C0

D0

E0

F0

Y9

J21

R26



D33

Z36

N16

*/

To create a read-only Map, you inherit from AbstractMap and

implement entrySet(). The private value() method

performs the calculation of the value for any key, and is used within

get() and Entry.getValue(). The size of a CountMap is

negligible.

A LinkedHashSet is used instead of creating a custom Set class,

so the flyweight is not fully implemented. This object is only produced

if you call entrySet().

Now we’ll create a more complex flyweight. The data set in this

example is a Map of the countries of the world and their capitals. The

capitals() method produces a Map of countries and capitals. The

names() method produces a List of the country names. Both

methods provide a partial listing when given an int argument

indicating the desired size:

// onjava/Countries.java

// "Flyweight" Maps and Lists of sample data



// {java onjava.Countries}

package onjava;

import java.util.*;

public class Countries {

public static final String[][] DATA = {

// Africa

{"ALGERIA","Algiers"},

{"ANGOLA","Luanda"},

{"BENIN","Porto-Novo"},

{"BOTSWANA","Gaberone"},

{"BURKINA FASO","Ouagadougou"},

{"BURUNDI","Bujumbura"},

{"CAMEROON","Yaounde"},

{"CAPE VERDE","Praia"},

{"CENTRAL AFRICAN REPUBLIC","Bangui"},

{"CHAD","N'djamena"},

{"COMOROS","Moroni"},

{"CONGO","Brazzaville"},

{"DJIBOUTI","Dijibouti"},

{"EGYPT","Cairo"},



{"EQUATORIAL GUINEA","Malabo"},

{"ERITREA","Asmara"},

{"ETHIOPIA","Addis Ababa"},

{"GABON","Libreville"},

{"THE GAMBIA","Banjul"},

{"GHANA","Accra"},

{"GUINEA","Conakry"},

{"BISSAU","Bissau"},

{"COTE D'IVOIR (IVORY COAST)","Yamoussoukro"},

{"KENYA","Nairobi"},

{"LESOTHO","Maseru"},

{"LIBERIA","Monrovia"},

{"LIBYA","Tripoli"},

{"MADAGASCAR","Antananarivo"},

{"MALAWI","Lilongwe"},

{"MALI","Bamako"},

{"MAURITANIA","Nouakchott"},

{"MAURITIUS","Port Louis"},

{"MOROCCO","Rabat"},

{"MOZAMBIQUE","Maputo"},



{"NAMIBIA","Windhoek"},

{"NIGER","Niamey"},

{"NIGERIA","Abuja"},

{"RWANDA","Kigali"},

{"SAO TOME E PRINCIPE","Sao Tome"},

{"SENEGAL","Dakar"},

{"SEYCHELLES","Victoria"},

{"SIERRA LEONE","Freetown"},

{"SOMALIA","Mogadishu"},

{"SOUTH AFRICA","Pretoria/Cape Town"},

{"SUDAN","Khartoum"},

{"SWAZILAND","Mbabane"},

{"TANZANIA","Dodoma"},

{"TOGO","Lome"},

{"TUNISIA","Tunis"},

{"UGANDA","Kampala"},

{"DEMOCRATIC REPUBLIC OF THE CONGO (ZAIRE)",

"Kinshasa"},

{"ZAMBIA","Lusaka"},

{"ZIMBABWE","Harare"},



// Asia

{"AFGHANISTAN","Kabul"},

{"BAHRAIN","Manama"},

{"BANGLADESH","Dhaka"},

{"BHUTAN","Thimphu"},

{"BRUNEI","Bandar Seri Begawan"},

{"CAMBODIA","Phnom Penh"},

{"CHINA","Beijing"},

{"CYPRUS","Nicosia"},

{"INDIA","New Delhi"},

{"INDONESIA","Jakarta"},

{"IRAN","Tehran"},

{"IRAQ","Baghdad"},

{"ISRAEL","Jerusalem"},

{"JAPAN","Tokyo"},

{"JORDAN","Amman"},

{"KUWAIT","Kuwait City"},

{"LAOS","Vientiane"},

{"LEBANON","Beirut"},

{"MALAYSIA","Kuala Lumpur"},



{"THE MALDIVES","Male"},

{"MONGOLIA","Ulan Bator"},

{"MYANMAR (BURMA)","Rangoon"},

{"NEPAL","Katmandu"},

{"NORTH KOREA","P'yongyang"},

{"OMAN","Muscat"},

{"PAKISTAN","Islamabad"},

{"PHILIPPINES","Manila"},

{"QATAR","Doha"},

{"SAUDI ARABIA","Riyadh"},

{"SINGAPORE","Singapore"},

{"SOUTH KOREA","Seoul"},

{"SRI LANKA","Colombo"},

{"SYRIA","Damascus"},

{"TAIWAN (REPUBLIC OF CHINA)","Taipei"},

{"THAILAND","Bangkok"},

{"TURKEY","Ankara"},

{"UNITED ARAB EMIRATES","Abu Dhabi"},

{"VIETNAM","Hanoi"},

{"YEMEN","Sana'a"},



// Australia and Oceania

{"AUSTRALIA","Canberra"},

{"FIJI","Suva"},

{"KIRIBATI","Bairiki"},

{"MARSHALL ISLANDS","Dalap-Uliga-Darrit"},

{"MICRONESIA","Palikir"},

{"NAURU","Yaren"},

{"NEW ZEALAND","Wellington"},

{"PALAU","Koror"},

{"PAPUA NEW GUINEA","Port Moresby"},

{"SOLOMON ISLANDS","Honaira"},

{"TONGA","Nuku'alofa"},

{"TUVALU","Fongafale"},

{"VANUATU","Port Vila"},

{"WESTERN SAMOA","Apia"},

// Eastern Europe and former USSR

{"ARMENIA","Yerevan"},

{"AZERBAIJAN","Baku"},

{"BELARUS (BYELORUSSIA)","Minsk"},

{"BULGARIA","Sofia"},



{"GEORGIA","Tbilisi"},

{"KAZAKSTAN","Almaty"},

{"KYRGYZSTAN","Alma-Ata"},

{"MOLDOVA","Chisinau"},

{"RUSSIA","Moscow"},

{"TAJIKISTAN","Dushanbe"},

{"TURKMENISTAN","Ashkabad"},

{"UKRAINE","Kyiv"},

{"UZBEKISTAN","Tashkent"},

// Europe

{"ALBANIA","Tirana"},

{"ANDORRA","Andorra la Vella"},

{"AUSTRIA","Vienna"},

{"BELGIUM","Brussels"},

{"BOSNIA-HERZEGOVINA","Sarajevo"},

{"CROATIA","Zagreb"},

{"CZECH REPUBLIC","Prague"},

{"DENMARK","Copenhagen"},

{"ESTONIA","Tallinn"},

{"FINLAND","Helsinki"},



{"FRANCE","Paris"},

{"GERMANY","Berlin"},

{"GREECE","Athens"},

{"HUNGARY","Budapest"},

{"ICELAND","Reykjavik"},

{"IRELAND","Dublin"},

{"ITALY","Rome"},

{"LATVIA","Riga"},

{"LIECHTENSTEIN","Vaduz"},

{"LITHUANIA","Vilnius"},

{"LUXEMBOURG","Luxembourg"},

{"MACEDONIA","Skopje"},

{"MALTA","Valletta"},

{"MONACO","Monaco"},

{"MONTENEGRO","Podgorica"},

{"THE NETHERLANDS","Amsterdam"},

{"NORWAY","Oslo"},

{"POLAND","Warsaw"},

{"PORTUGAL","Lisbon"},

{"ROMANIA","Bucharest"},



{"SAN MARINO","San Marino"},

{"SERBIA","Belgrade"},

{"SLOVAKIA","Bratislava"},

{"SLOVENIA","Ljuijana"},

{"SPAIN","Madrid"},

{"SWEDEN","Stockholm"},

{"SWITZERLAND","Berne"},

{"UNITED KINGDOM","London"},

{"VATICAN CITY","Vatican City"},

// North and Central America

{"ANTIGUA AND BARBUDA","Saint John's"},

{"BAHAMAS","Nassau"},

{"BARBADOS","Bridgetown"},

{"BELIZE","Belmopan"},

{"CANADA","Ottawa"},

{"COSTA RICA","San Jose"},

{"CUBA","Havana"},

{"DOMINICA","Roseau"},

{"DOMINICAN REPUBLIC","Santo Domingo"},

{"EL SALVADOR","San Salvador"},



{"GRENADA","Saint George's"},

{"GUATEMALA","Guatemala City"},

{"HAITI","Port-au-Prince"},

{"HONDURAS","Tegucigalpa"},

{"JAMAICA","Kingston"},

{"MEXICO","Mexico City"},

{"NICARAGUA","Managua"},

{"PANAMA","Panama City"},

{"ST. KITTS AND NEVIS","Basseterre"},

{"ST. LUCIA","Castries"},

{"ST. VINCENT AND THE GRENADINES","Kingstown"},

{"UNITED STATES OF AMERICA","Washington, D.C."},

// South America

{"ARGENTINA","Buenos Aires"},

{"BOLIVIA","Sucre (legal)/La Paz(administrative)"},

{"BRAZIL","Brasilia"},

{"CHILE","Santiago"},

{"COLOMBIA","Bogota"},

{"ECUADOR","Quito"},

{"GUYANA","Georgetown"},



{"PARAGUAY","Asuncion"},

{"PERU","Lima"},

{"SURINAME","Paramaribo"},

{"TRINIDAD AND TOBAGO","Port of Spain"},

{"URUGUAY","Montevideo"},

{"VENEZUELA","Caracas"},

};

// Use AbstractMap by implementing entrySet()

private static class FlyweightMap

extends AbstractMap<String,String> {

private static class Entry

implements Map.Entry<String,String> {

int index;

Entry(int index) { this.index = index; }

@Override

public boolean equals(Object o) {

return o instanceof FlyweightMap &&

Objects.equals(DATA[index][0], o);

}

@Override



public int hashCode() {

return Objects.hashCode(DATA[index][0]);

}

@Override

public String getKey() { return DATA[index][0]; }

@Override

public String getValue() {

return DATA[index][1];

}

@Override

public String setValue(String value) {

throw new UnsupportedOperationException();

}

}

// Implement size() & iterator() for AbstractSet:

static class EntrySet

extends AbstractSet<Map.Entry<String,String>> {

private int size;

EntrySet(int size) {

if(size < 0)



this.size = 0;

// Can't be any bigger than the array:

else if(size > DATA.length)

this.size = DATA.length;

else

this.size = size;

}

@Override

public int size() { return size; }

private class Iter

implements Iterator<Map.Entry<String,String>> {

// Only one Entry object per Iterator:

private Entry entry = new Entry(-1);

@Override

public boolean hasNext() {

return entry.index < size - 1;

}

@Override

public Map.Entry<String,String> next() {

entry.index++;



return entry;

}

@Override

public void remove() {

throw new UnsupportedOperationException();

}

}

@Override

public

Iterator<Map.Entry<String,String>> iterator() {

return new Iter();

}

}

private static

Set<Map.Entry<String,String>> entries =

new EntrySet(DATA.length);

@Override

public Set<Map.Entry<String,String>> entrySet() {

return entries;

}



}

// Create a partial map of 'size' countries:

static Map<String,String> select(final int size) {

return new FlyweightMap() {

@Override

public Set<Map.Entry<String,String>> entrySet() {

return new EntrySet(size);



}

};

}

static Map<String,String> map = new FlyweightMap();

public static Map<String,String> capitals() {

return map; // The entire map

}

public static Map<String,String> capitals(int size) {

return select(size); // A partial map

}

static List<String> names =

new ArrayList<>(map.keySet());

// All the names:

public static List<String> names() { return names; }

// A partial list:

public static List<String> names(int size) {

return new ArrayList<>(select(size).keySet());

}

public static void main(String[] args) {

System.out.println(capitals(10));



System.out.println(names(10));

System.out.println(new HashMap<>(capitals(3)));

System.out.println(

new LinkedHashMap<>(capitals(3)));

System.out.println(new TreeMap<>(capitals(3)));

System.out.println(new Hashtable<>(capitals(3)));

System.out.println(new HashSet<>(names(6)));

System.out.println(new LinkedHashSet<>(names(6)));

System.out.println(new TreeSet<>(names(6)));

System.out.println(new ArrayList<>(names(6)));

System.out.println(new LinkedList<>(names(6)));

System.out.println(capitals().get("BRAZIL"));

}

}

/* Output:

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo,

BOTSWANA=Gaberone, BURKINA FASO=Ouagadougou,

BURUNDI=Bujumbura, CAMEROON=Yaounde, CAPE VERDE=Praia,

CENTRAL AFRICAN REPUBLIC=Bangui, CHAD=N'djamena}

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,



BURUNDI, CAMEROON, CAPE VERDE, CENTRAL AFRICAN

REPUBLIC, CHAD]

{BENIN=Porto-Novo, ANGOLA=Luanda, ALGERIA=Algiers}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo}

[BENIN, BOTSWANA, ANGOLA, BURKINA FASO, ALGERIA,

BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]



Brasilia

*/

The String DATA two-dimensional array is public so it can be

used elsewhere. FlyweightMap must implement the entrySet()

method, which requires both a custom Set implementation and a

custom Map.Entry class. Here’s another way to implement a

flyweight: each Map.Entry object stores its index, rather than the

actual key and value. When you call getKey() or getValue(), it

uses the index to return the appropriate DATA element. The

EntrySet ensures its size is no bigger than DATA.

The other part of the flyweight is implemented in

EntrySet.Iterator. Instead of creating a Map.Entry object for

each data pair in DATA, there’s only one Map.Entry object per

iterator. The Entry object is used as a window into the data; it only

contains an index into the static array of Strings. Every time you

call next() for the iterator, the index in the Entry is incremented

so it points to the next element pair, then that Iterators single

Entry object is returned from next(). 1

The select() method produces a FlyweightMap containing an

EntrySet of the desired size, and this is used in the overloaded



capitals() and names() methods you see demonstrated in

main().

Collection Functionality

The following table shows everything you can do with a Collection

(not including the methods that automatically come through with

Object), and thus, everything you can do with a List, Set, Queue

or Deque (These interfaces may also provide also has additional

functionality). Maps are not inherited from Collection and are

treated separately.

Ensures that the collection

holds the argument of generic

boolean add(T)

type T. Returns false if it

doesn’t add the argument.

(This is an “optional” method,

described in the next section.)

boolean

Adds all the elements in the

addAll(Collection<?

argument. Returns true if



any elements were added.

extends T>)

(“Optional.”)

Removes all the elements in

void clear()

the collection. (“Optional.”)

true if the collection holds

boolean contains(T)

the argument of generic type

T.

Boolean

true if the collection holds

containsAll(Collection<? all the elements in the

>)

argument.

boolean isEmpty()

true if the collection has no

elements.

Returns an iterator to move

Iterator<T> iterator()



through the elements in the

Spliterator<T>

collection. Spliterators

spliterator()

are much more complex, and

used for concurrency.

If the argument is in the

collection, one instance of

Boolean remove(Object)

that element is removed.

Returns true if a removal

occurred. (“Optional.”)

Removes all the elements

contained in the argument.

boolean

Returns true if any

removeAll(Collection<?>) removals occurred.

(“Optional.”)

Retains only elements

contained in the argument



Boolean

(an “intersection,” from set

retainAll(Collection<?>) theory). Returns true if any

changes occurred.

(“Optional.”)

boolean

Removes every element in

removeIf(Predicate<?

this collection that satisfies

the given predicate.

super E>)

Stream<E> stream()

Returns a Stream of the

Stream<E>

elements in this

parallelStream()

Collection

Returns the number of

int size()

elements in the collection.



Returns an array containing

Object[] toArray()

all the elements in the

collection.

Returns an array containing

all the elements in the

collection. The runtime type

<T> T[] toArray(T[] a)

of the result is that of the

argument array a rather than

plain Object.

There’s no get() method for random-access element selection

because Collection also includes Set, which maintains its own

internal ordering (and thus makes random-access lookup

meaningless). Thus, to examine the elements of a Collection, you

must use an iterator.

This demonstrates all Collection methods. ArrayList is used as

a “least-common denominator” Collection:

// collectiontopics/CollectionMethods.java

// Things you can do with all Collections



import java.util.*;

import static onjava.HTMLColors.*;

public class CollectionMethods {

public static void main(String[] args) {

Collection<String> c =

new ArrayList<>(LIST.subList(0, 4));

c.add("ten");

c.add("eleven");

show(c);

border();

// Make an array from the List:

Object[] array = c.toArray();

// Make a String array from the List:

String[] str = c.toArray(new String[0]);

// Find max and min elements; this means

// different things depending on the way

// the Comparable interface is implemented:

System.out.println(

"Collections.max(c) = " + Collections.max(c));

System.out.println(



"Collections.min(c) = " + Collections.min(c));

border();

// Add a Collection to another Collection

Collection<String> c2 =

new ArrayList<>(LIST.subList(10, 14));

c.addAll(c2);

show(c);

border();

c.remove(LIST.get(0));

show(c);

border();

// Remove all components that are

// in the argument collection:

c.removeAll(c2);

show(c);

border();

c.addAll(c2);

show(c);

border();

// Is an element in this Collection?



String val = LIST.get(3);

System.out.println(

"c.contains(" + val + ") = " + c.contains(val));

// Is a Collection in this Collection?

System.out.println(

"c.containsAll(c2) = " + c.containsAll(c2));

Collection<String> c3 =

((List<String>)c).subList(3, 5);

// Keep all the elements that are in both

// c2 and c3 (an intersection of sets):

c2.retainAll(c3);

show(c2);

// Throw away all the elements

// in c2 that also appear in c3:

c2.removeAll(c3);

System.out.println(

"c2.isEmpty() = " + c2.isEmpty());

border();

// Functional operation:

c = new ArrayList<>(LIST);



c.removeIf(s -> !s.startsWith("P"));

c.removeIf(s -> s.startsWith("Pale"));

// Stream operation:

c.stream().forEach(System.out::println);

c.clear(); // Remove all elements

System.out.println("after c.clear():" + c);

}

}

/* Output:

AliceBlue

AntiqueWhite

Aquamarine

Azure

ten

eleven

******************************

Collections.max(c) = ten

Collections.min(c) = AliceBlue

******************************

AliceBlue



AntiqueWhite

Aquamarine

Azure

ten

eleven

Brown

BurlyWood

CadetBlue

Chartreuse

******************************

AntiqueWhite

Aquamarine

Azure

ten

eleven

Brown

BurlyWood

CadetBlue

Chartreuse

******************************



AntiqueWhite

Aquamarine

Azure

ten

eleven

******************************

AntiqueWhite

Aquamarine

Azure

ten

eleven

Brown

BurlyWood

CadetBlue

Chartreuse

******************************

c.contains(Azure) = true

c.containsAll(c2) = true

c2.isEmpty() = true

******************************



PapayaWhip

PeachPuff

Peru

Pink

Plum

PowderBlue

Purple

after c.clear():[]

*/

To demonstrate that nothing other than the Collection interface is

used, ArrayLists are created containing different sets of data and

upcast to Collection objects.

Optional Operations

The methods in the Collection interface that perform various

kinds of addition and removal are optional operations. This means the

implementing class is not required to provide functioning definitions



for these methods.

This is a very unusual way to define an interface. As you’ve seen, an

interface is a contract. It says, “No matter how you choose to

implement this interface, I guarantee you can send these messages to

this object” (I use the term “interface” here to describe both the formal

interface keyword and the more general meaning of “the methods

supported by any class or subclass”). But an “optional” operation

violates this very fundamental principle; it says that calling some

methods will not perform meaningful behavior. Instead, they will

throw exceptions! It appears that compile-time type safety is

discarded.

It’s not that bad. If an operation is optional, the compiler still restricts

you to calling only the methods in that interface. It’s not like a

dynamic language, where you can call any method for any object, and

find out at run time whether a particular call will work. 2 In addition, most
methods that take a Collection as an argument only read

from that Collection, and all the “read” methods of Collection

are not optional.

Why would you define methods as “optional?” Doing so prevents an

explosion of interfaces in the design. Other designs for collection

libraries tend to produce a confusing plethora of interfaces to describe



each of the variations on the main theme. It’s not even possible to

capture all special cases in interfaces, because someone can always

invent a new interface. The “unsupported operation” approach

achieves an important goal of the Java collections library: The

collections are simple to learn and use. Unsupported operations are a

special case that can be delayed until necessary. For this approach to

work, however:

1. The UnsupportedOperationException must be a rare

event. That is, for most classes, all operations should work, and

only in special cases should an operation be unsupported. This is

true in the Java collections library, since the classes you’ll use 99

percent of the time—ArrayList, LinkedList, HashSet,

and HashMap, as well as the other concrete implementations—

support all operations. The design does provide a “back door” to

create a new Collection without providing meaningful

definitions for all the methods in the Collection interface,

that still fits into the existing library.

2. When an operation is unsupported, it should be reasonably likely

that an UnsupportedOperationException will appear at

implementation time, rather than after you’ve shipped the



product to the customer. After all, it indicates a programming

error: You’ve used an implementation incorrectly.

It’s worth noting that unsupported operations are only detectable at

run time, and therefore represent dynamic type checking. If you’re

coming from a statically typed language like C++, Java might appear

to be just another statically typed language. Java certainly has static

type checking, but it also has a significant amount of dynamic typing,

so it’s hard to say it’s exactly one type of language or another. Once

you begin to notice this, you’ll start to see other examples of dynamic

type checking in Java.

Unsupported Operations

A common source of unsupported operations are collections backed by

fixed-sized data structures. You get such a collection when you turn an

array into a List with the Arrays.asList() method. You can

also choose to make any collection (including a Map) throw

UnsupportedOperationExceptions by using the

“unmodifiable” methods in the Collections class. This example



shows both cases:

// collectiontopics/Unsupported.java

// Unsupported operations in Java collections

import java.util.*;

public class Unsupported {

static void

check(String description, Runnable tst) {

try {

tst.run();

} catch(Exception e) {

System.out.println(description + "(): " + e);

}

}

static void test(String msg, List<String> list) {

System.out.println("--- " + msg + " ---");

Collection<String> c = list;

Collection<String> subList = list.subList(1,8);

// Copy of the sublist:

Collection<String> c2 = new ArrayList<>(subList);

check("retainAll", () -> c.retainAll(c2));



check("removeAll", () -> c.removeAll(c2));

check("clear", () -> c.clear());

check("add", () -> c.add("X"));

check("addAll", () -> c.addAll(c2));

check("remove", () -> c.remove("C"));

// The List.set() method modifies the value but

// doesn't change the size of the data structure:

check("List.set", () -> list.set(0, "X"));

}

public static void main(String[] args) {

List<String> list = Arrays.asList(

"A B C D E F G H I J K L".split(" "));

test("Modifiable Copy", new ArrayList<>(list));

test("Arrays.asList()", list);

test("unmodifiableList()",

Collections.unmodifiableList(

new ArrayList<>(list)));

}

}

/* Output:



--- Modifiable Copy ---

--- Arrays.asList() ---

retainAll(): java.lang.UnsupportedOperationException

removeAll(): java.lang.UnsupportedOperationException

clear(): java.lang.UnsupportedOperationException

add(): java.lang.UnsupportedOperationException

addAll(): java.lang.UnsupportedOperationException

remove(): java.lang.UnsupportedOperationException

--- unmodifiableList() ---

retainAll(): java.lang.UnsupportedOperationException

removeAll(): java.lang.UnsupportedOperationException

clear(): java.lang.UnsupportedOperationException

add(): java.lang.UnsupportedOperationException

addAll(): java.lang.UnsupportedOperationException

remove(): java.lang.UnsupportedOperationException

List.set(): java.lang.UnsupportedOperationException

*/

Because Arrays.asList() produces a List that is backed by a

fixed-size array, it makes sense that the only supported operations are

the ones that don’t change the size of the array. Any method that



would cause a change to the size of the underlying data structure

produces an UnsupportedOperationException, to indicate a

call to an unsupported method (a programming error).

Note you can always pass the result of Arrays.asList() as a

constructor argument to any Collection (or use the addAll()

method, or the static Collections.addAll() method) to

create a regular collection that allows all the methods—this is shown in

the first call to test() in main(). Such a call produces a new

resizable underlying data structure.

The “unmodifiable” methods in the Collections class wrap the

collection in a proxy that produces an

UnsupportedOperationException if you perform any

operation that modifies the collection in any way. The goal of using

these methods is to produce a “constant” collection object. The full list

of “unmodifiable” Collections methods is described later.

The last check() in test() examines the set() method that’s

part of List. Here, the granularity of the “unsupported operation”

technique comes in handy—the resulting “interface” can vary by one

method between the object returned by Arrays.asList() and

that returned by Collections.unmodifiableList().



Arrays.asList() returns a fixed-sized List, whereas

Collections.unmodifiableList() produces a list that

cannot be changed. As seen in the output, it’s OK to modify the

elements in the List returned by Arrays.asList(), because this

would not violate the “fixed-sized” nature of that List. But clearly,

the result of unmodifiableList() should not be modifiable in

any way. If interfaces were used, this would require two additional

interfaces, one with a working set() method and one without.

Additional interfaces would be required for various unmodifiable

subtypes of Collection.

The documentation for a method that takes a collection as an

argument should specify which of the optional methods must be

implemented.

Sets and Storage Order

The Set examples in the Collections chapter provide a good introduction to
the operations on basic Sets. However, those



examples conveniently use predefined Java types such as Integer

and String, which were designed to be usable inside collections.

When creating your own types, be aware that a Set (and also a Map,

which we’ll look at shortly) needs a way to maintain storage order,

which varies from one implementation of Set to another. Thus,

different Set implementations not only have different behaviors, they

have different requirements for the type of object you can put into a

particular Set:

Each element you add to the Set

must be unique; otherwise, the

Set doesn’t add the duplicate

element. Elements added to a Set

must at least define equals() to

Set (interface)

establish object uniqueness. Set

has exactly the same interface as

Collection. The Set interface

does not guarantee it will maintain

its elements in any particular

order.



For Sets where fast lookup time is

HashSet*

important. Elements must define

hashCode() and equals().

An ordered Set backed by a tree.

This way, you can extract an

TreeSet

ordered sequence from a Set.

Elements must also implement the

Comparable interface.

Has the lookup speed of a

HashSet, but internally

maintains the order you add the

elements (the insertion order)

LinkedHashSet

using a linked list. Thus, when you

iterate through the Set, the

results appear in insertion order.

Elements must define

hashCode() and equals().



The asterisk on HashSet indicates that, in the absence of other

constraints, this should be your default choice because it is optimized

for speed.

Defining hashCode() is described in the Appendix: Understanding

equals() and hashCode(). You must create an equals() for

both hashed and tree storage, but the hashCode() is necessary only

if the class is placed in a HashSet (this is likely, since that should

generally be your first choice as a Set implementation) or

LinkedHashSet. However, for good programming style, always

override hashCode() when you override equals().

This example demonstrates the methods required to successfully use a

type with a particular Set implementation:

// collectiontopics/TypesForSets.java

// Methods necessary to put your own type in a Set

import java.util.*;

import java.util.function.*;

import java.util.Objects;

class SetType {

protected int i;

SetType(int n) { i = n; }



@Override

public boolean equals(Object o) {

return o instanceof SetType &&

Objects.equals(i, ((SetType)o).i);

}

@Override

public String toString() {

return Integer.toString(i);

}

}

class HashType extends SetType {

HashType(int n) { super(n); }

@Override

public int hashCode() {

return Objects.hashCode(i);

}

}

class TreeType extends SetType

implements Comparable<TreeType> {

TreeType(int n) { super(n); }



@Override

public int compareTo(TreeType arg) {

return Integer.compare(arg.i, i);

// Equivalent to:

// return arg.i < i ? -1 : (arg.i == i ? 0 : 1);

}

}

public class TypesForSets {

static <T> void

fill(Set<T> set, Function<Integer, T> type) {

for(int i = 10; i >= 5; i--) // Descending

set.add(type.apply(i));

for(int i = 0; i < 5; i++) // Ascending

set.add(type.apply(i));

}

static <T> void

test(Set<T> set, Function<Integer, T> type) {

fill(set, type);

fill(set, type); // Try to add duplicates

fill(set, type);



System.out.println(set);

}

public static void main(String[] args) {

test(new HashSet<>(), HashType::new);

test(new LinkedHashSet<>(), HashType::new);

test(new TreeSet<>(), TreeType::new);

// Things that don't work:

test(new HashSet<>(), SetType::new);

test(new HashSet<>(), TreeType::new);

test(new LinkedHashSet<>(), SetType::new);

test(new LinkedHashSet<>(), TreeType::new);

try {

test(new TreeSet<>(), SetType::new);

} catch(Exception e) {

System.out.println(e.getMessage());

}

try {

test(new TreeSet<>(), HashType::new);

} catch(Exception e) {

System.out.println(e.getMessage());



}

}

}

/* Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[10, 9, 8, 7, 6, 5, 0, 1, 2, 3, 4]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

[1, 6, 8, 6, 2, 7, 8, 9, 4, 10, 7, 5, 1, 3, 4, 9, 9,

10, 5, 3, 2, 0, 4, 1, 2, 0, 8, 3, 0, 10, 6, 5, 7]

[3, 1, 4, 8, 7, 6, 9, 5, 3, 0, 10, 5, 5, 10, 7, 8, 8,

9, 1, 4, 10, 2, 6, 9, 1, 6, 0, 3, 2, 0, 7, 2, 4]

[10, 9, 8, 7, 6, 5, 0, 1, 2, 3, 4, 10, 9, 8, 7, 6, 5,

0, 1, 2, 3, 4, 10, 9, 8, 7, 6, 5, 0, 1, 2, 3, 4]

[10, 9, 8, 7, 6, 5, 0, 1, 2, 3, 4, 10, 9, 8, 7, 6, 5,

0, 1, 2, 3, 4, 10, 9, 8, 7, 6, 5, 0, 1, 2, 3, 4]

SetType cannot be cast to java.lang.Comparable

HashType cannot be cast to java.lang.Comparable

*/

To prove which methods are necessary for a particular Set and at the

same time to avoid code duplication, three classes are created. The



base class, SetType, stores an int, and produces it via

toString(). Since all classes stored in Sets must have an

equals(), that method is also placed in the base class. Equality is

based on the value of the int i.

HashType inherits from SetType and adds the hashCode()

method necessary for an object to be placed in a hashed

implementation of a Set.

The Comparable interface, implemented by TreeType, is

necessary to use an object in any kind of sorted collection, such as a

SortedSet (of which TreeSet is the only implementation). In

compareTo(), note I did not use the “simple and obvious” form

return i-i2. Although this is a common programming error, it

would only work properly if i and i2 were “unsigned” ints (if Java

had an “unsigned” keyword, which it does not). It breaks for Java’s

signed int, which is not big enough to represent the difference of two

signed ints. If i is a large positive integer and j is a large negative integer, i-j
will overflow and return a negative value, which will not

work.

You’ll usually want the compareTo() method to produce a natural

ordering consistent with the equals() method. If equals()

produces true for a particular comparison, compareTo() should produce a



zero result for that comparison, and if equals() produces

false for a comparison then compareTo() should produce a

nonzero result for that comparison.

In TypesForSets, both fill() and test() are defined using

generics, to prevent code duplication. To verify the behavior of a Set,

test() calls fill() on the test set three times, attempting to

introduce duplicate objects. The fill() method takes a Set of any

type, and a Function object that produces that type. Because all the

objects used in this example have a constructor that takes a single int

argument, you can pass the constructor as this Function and it will

supply the objects to fill the Set.

Note that the fill() method adds its first elements in descending

order, and the last in ascending order, to point out the resulting

storage order. The output shows that the HashSet keeps the

elements in ascending order—however, in the Appendix:

Understanding equals() and hashCode() you’ll see that this is incidental,
because hashing creates its own storage order. Only

because our value is a simple int is it ascending in this case. The

LinkedHashSet keeps the elements in the order they were inserted,

and the TreeSet maintains the elements in sorted order (descending

order in this example, because of the way compareTo() is



implemented).

If we try to use types that don’t properly support the necessary

operations with Sets that require those operations, things go very

wrong. Placing a SetType or TreeType object, which doesn’t

include a redefined hashCode() method, into any hashed

implementations results in duplicate values, so the primary contract of

the Set is violated. This is rather disturbing because there’s not even

a runtime error. However, the default hashCode() is legitimate and

so this is legal behavior, even if it’s incorrect. The only reliable way to

ensure the correctness of such a program is to incorporate unit tests

into your build system.

If you try to use a type that doesn’t implement Comparable in a

TreeSet, you get a more definitive result: An exception is thrown

when the TreeSet attempts to use the object as a Comparable.

SortedSet

The elements in a SortedSet are guaranteed to be in sorted order,

yielding additional functionality from the following methods in the



SortedSet interface:

Comparator comparator(): Produces the Comparator

used for this Set, or null for natural ordering.

Object first(): Produces the lowest element.

Object last(): Produces the highest element.

SortedSet subSet(fromElement, toElement):

Produces a view of this Set with elements from fromElement,

inclusive, to toElement, exclusive.

SortedSet headSet(toElement): Produces a view of this

Set with elements less than toElement.

SortedSet tailSet(fromElement): Produces a view of

this Set with elements greater than or equal to fromElement.

Here’s a simple demonstration:

// collectiontopics/SortedSetDemo.java

import java.util.*;

import static java.util.stream.Collectors.*;

public class SortedSetDemo {

public static void main(String[] args) {

SortedSet<String> sortedSet =

Arrays.stream(



"one two three four five six seven eight"

.split(" "))

.collect(toCollection(TreeSet::new));

System.out.println(sortedSet);

String low = sortedSet.first();

String high = sortedSet.last();

System.out.println(low);

System.out.println(high);

Iterator<String> it = sortedSet.iterator();

for(int i = 0; i <= 6; i++) {

if(i == 3) low = it.next();

if(i == 6) high = it.next();

else it.next();

}

System.out.println(low);

System.out.println(high);

System.out.println(sortedSet.subSet(low, high));

System.out.println(sortedSet.headSet(high));

System.out.println(sortedSet.tailSet(low));

}



}

/* Output:

[eight, five, four, one, seven, six, three, two]

eight

two

one

two

[one, seven, six, three]

[eight, five, four, one, seven, six, three]

[one, seven, six, three, two]

*/

Note that SortedSet means “sorted according to the comparison

function of the object,” not “insertion order.” Insertion order can be

preserved using a LinkedHashSet.

Queues

There are many Queue implementations, most of which are designed



for concurrency applications Many are differentiated by ordering

behavior rather than performance. Here’s a basic example that

involves most of the Queue implementations, including the

concurrency-based Queues. You place elements in one end and

extract them from the other:

// collectiontopics/QueueBehavior.java

// Compares basic behavior

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;

public class QueueBehavior {

static Stream<String> strings() {

return Arrays.stream(

("one two three four five six seven " +

"eight nine ten").split(" "));

}

static void test(int id, Queue<String> queue) {

System.out.print(id + ": ");

strings().map(queue::offer).count();

while(queue.peek() != null)



System.out.print(queue.remove() + " ");

System.out.println();

}

public static void main(String[] args) {

int count = 10;

test(1, new LinkedList<>());

test(2, new PriorityQueue<>());

test(3, new ArrayBlockingQueue<>(count));

test(4, new ConcurrentLinkedQueue<>());

test(5, new LinkedBlockingQueue<>());

test(6, new PriorityBlockingQueue<>());

test(7, new ArrayDeque<>());

test(8, new ConcurrentLinkedDeque<>());

test(9, new LinkedBlockingDeque<>());

test(10, new LinkedTransferQueue<>());

test(11, new SynchronousQueue<>());

}



}

/* Output:

1: one two three four five six seven eight nine ten

2: eight five four nine one seven six ten three two

3: one two three four five six seven eight nine ten

4: one two three four five six seven eight nine ten

5: one two three four five six seven eight nine ten

6: eight five four nine one seven six ten three two

7: one two three four five six seven eight nine ten

8: one two three four five six seven eight nine ten

9: one two three four five six seven eight nine ten

10: one two three four five six seven eight nine ten

11:

*/

The Deque interface also inherits from Queue. With the exception of

the priority queues, a Queue produces elements in the same order as

they are placed in the Queue. In this example, SynchronousQueue

doesn’t produce any results because it is a blocking queue where each

insert operation must wait for a corresponding remove operation by

another thread, and vice versa.



Priority Queues

Consider a to-do list, where each object contains a String and a

primary and secondary priority value. The ordering of this list is

controlled by implementing Comparable:

// collectiontopics/ToDoList.java

// A more complex use of PriorityQueue

import java.util.*;

class ToDoItem implements Comparable<ToDoItem> {

private char primary;

private int secondary;

private String item;

ToDoItem(String td, char pri, int sec) {

primary = pri;

secondary = sec;

item = td;

}

@Override

public int compareTo(ToDoItem arg) {

if(primary > arg.primary)

return +1;



if(primary == arg.primary)

if(secondary > arg.secondary)

return +1;

else if(secondary == arg.secondary)

return 0;

return -1;

}

@Override

public String toString() {

return Character.toString(primary) +

secondary + ": " + item;

}

}

class ToDoList {

public static void main(String[] args) {

PriorityQueue<ToDoItem> toDo =

new PriorityQueue<>();

toDo.add(new ToDoItem("Empty trash", 'C', 4));

toDo.add(new ToDoItem("Feed dog", 'A', 2));

toDo.add(new ToDoItem("Feed bird", 'B', 7));



toDo.add(new ToDoItem("Mow lawn", 'C', 3));

toDo.add(new ToDoItem("Water lawn", 'A', 1));

toDo.add(new ToDoItem("Feed cat", 'B', 1));

while(!toDo.isEmpty())

System.out.println(toDo.remove());

}

}

/* Output:

A1: Water lawn

A2: Feed dog

B1: Feed cat

B7: Feed bird

C3: Mow lawn

C4: Empty trash

*/

This shows the automatic ordering of the items via the priority queue.

Deque



A Deque (double-ended queue) is like a queue, but you can add and

remove elements from either end. Java 6 added an explicit interface

for Deque. Here is a test of the most fundamental Deque methods for

the classes that implement Deque:

// collectiontopics/SimpleDeques.java

// Very basic test of Deques

import java.util.*;

import java.util.concurrent.*;

import java.util.function.*;

class CountString implements Supplier<String> {

private int n = 0;

CountString() {}

CountString(int start) { n = start; }

@Override

public String get() {

return Integer.toString(n++);

}

}

public class SimpleDeques {

static void test(Deque<String> deque) {



CountString s1 = new CountString(),

s2 = new CountString(20);

for(int n = 0; n < 8; n++) {

deque.offerFirst(s1.get());

deque.offerLast(s2.get()); // Same as offer()

}

System.out.println(deque);

String result = "";

while(deque.size() > 0) {

System.out.print(deque.peekFirst() + " ");

result += deque.pollFirst() + " ";

System.out.print(deque.peekLast() + " ");

result += deque.pollLast() + " ";

}

System.out.println("\n" + result);

}

public static void main(String[] args) {

int count = 10;

System.out.println("LinkedList");

test(new LinkedList<>());



System.out.println("ArrayDeque");

test(new ArrayDeque<>());

System.out.println("LinkedBlockingDeque");

test(new LinkedBlockingDeque<>(count));

System.out.println("ConcurrentLinkedDeque");

test(new ConcurrentLinkedDeque<>());

}

}

/* Output:

LinkedList

[7, 6, 5, 4, 3, 2, 1, 0, 20, 21, 22, 23, 24, 25, 26,

27]

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20

ArrayDeque

[7, 6, 5, 4, 3, 2, 1, 0, 20, 21, 22, 23, 24, 25, 26,

27]

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20



LinkedBlockingDeque

[4, 3, 2, 1, 0, 20, 21, 22, 23, 24]

4 24 3 23 2 22 1 21 0 20

4 24 3 23 2 22 1 21 0 20

ConcurrentLinkedDeque

[7, 6, 5, 4, 3, 2, 1, 0, 20, 21, 22, 23, 24, 25, 26,

27]

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20

7 27 6 26 5 25 4 24 3 23 2 22 1 21 0 20

*/

I’ve only used the “offer” and “poll” versions of the Deque methods

because they don’t throw exceptions when the

LinkedBlockingDeque has a limited size. Notice that

LinkedBlockingDeque only fills to its limit, then ignores further

offers.

Understanding Maps



As you learned in the Collections chapter, a Map (also called an associative
array) maintains key-value associations (pairs) so you can

look up a value using a key. The standard Java library contains

different basic implementations of Maps, such as HashMap,

TreeMap, LinkedHashMap, WeakHashMap,

ConcurrentHashMap, and IdentityHashMap. They all have the

same basic Map interface, but they differ in behaviors including

efficiency, the order the pairs are held and presented, how long the

objects are held by the map, how the map works in multithreaded

programs, and how key equality is determined. The number of

implementations of the Map interface should tell you something about

the importance of this tool.

To gain a deeper understanding of Maps, it is helpful to learn how to

construct an associative array. Here is an extremely simple

implementation:

// collectiontopics/AssociativeArray.java

// Associates keys with values

public class AssociativeArray<K, V> {

private Object[][] pairs;

private int index;

public AssociativeArray(int length) {



pairs = new Object[length][2];

}

public void put(K key, V value) {

if(index >= pairs.length)

throw new ArrayIndexOutOfBoundsException();

pairs[index++] = new Object[]{ key, value };

}

@SuppressWarnings("unchecked")

public V get(K key) {

for(int i = 0; i < index; i++)

if(key.equals(pairs[i][0]))

return (V)pairs[i][1];

return null; // Did not find key

}

@Override

public String toString() {

StringBuilder result = new StringBuilder();

for(int i = 0; i < index; i++) {

result.append(pairs[i][0].toString());

result.append(" : ");



result.append(pairs[i][1].toString());

if(i < index - 1)

result.append("\n");

}

return result.toString();

}

public static void main(String[] args) {

AssociativeArray<String,String> map =

new AssociativeArray<>(6);

map.put("sky", "blue");

map.put("grass", "green");

map.put("ocean", "dancing");

map.put("tree", "tall");

map.put("earth", "brown");

map.put("sun", "warm");

try {

map.put("extra", "object"); // Past the end

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Too many objects!");

}



System.out.println(map);

System.out.println(map.get("ocean"));

}

}

/* Output:

Too many objects!

sky : blue

grass : green

ocean : dancing

tree : tall

earth : brown

sun : warm

dancing

*/

The essential methods in an associative array are put() and get(),

but for easy display, toString() is overridden to print the key-

value pairs. To show it works, main() loads an

AssociativeArray with pairs of Strings and prints the

resulting map, followed by a get() of one of the values.

To use the get() method, you pass in the key you want it to look up,



and it produces the associated value as the result or returns null if it

can’t be found. The get() method is using what is possibly the least

efficient approach imaginable to locate the value: starting at the top of

the array and using equals() to compare keys. But the point here is

simplicity, not efficiency.

This version is instructive, but it isn’t very efficient and it has a fixed

size, which is inflexible. Fortunately, the Maps in java.util do not

have these problems.

Performance

Performance is a fundamental issue for maps, and it’s very slow to use

a linear search in get() when hunting for a key. This is where

HashMap speeds things up. Instead of a slow search for the key, it

uses a special value called a hash code. The hash code is a way to take

some information from the object in question and turn it into a

“relatively unique” int for that object. hashCode() is a method in

the root class Object, so all Java objects can produce a hash code. A

HashMap takes the hashCode() of the object and uses it to quickly



hunt for the key. This results in dramatic performance

improvements.3

Here are the basic Map implementations. The asterisk on HashMap

indicates that, in the absence of other constraints, this should be your

default choice because it is optimized for speed. The other

implementations emphasize other characteristics, and are thus not as

fast as HashMap.

Implementation based on a

hash table. (Use this class

instead of Hashtable.)

Provides constant-time

performance for inserting and

HashMap*

locating pairs. Performance

can be adjusted via

constructors that allow you to

set the capacity and load

factor of the hash table.

Like a HashMap, but when you

iterate through, you get the



pairs in insertion order, or in

least-recently-used (LRU)

LinkedHashMap

order. Only slightly slower than

HashMap, except when

iterating, where it is faster due

to the linked list used to

maintain the internal ordering.

Implementation based on a

red-black tree. When you view

the keys or the pairs, they are

in sorted order (determined by

Comparable or

TreeMap

Comparator). The point of a

TreeMap is that you get the

results in sorted order.

TreeMap is the only Map with

the subMap() method, which

returns a portion of the tree.



A Map of weak keys that allow

objects referred to by the map

to be released; designed to

solve certain types of problems.

WeakHashMap

If no references to a particular

key are held outside the map,

that key can be garbage

collected.

A thread-safe Map that does

not use synchronization

ConcurrentHashMap

locking. This is discussed in the

Concurrent Programming

chapter.

A hash map that uses ==

instead of equals() to

IdentityHashMap

compare keys. Only for solving

special types of problems; not



for general use.

Hashing is the most commonly used way to store elements in a map.

The requirements for the keys used in a Map are the same as for the

elements in a Set. You saw these demonstrated in

TypesForSets.java. Any key must have an equals() method.

If the key is used in a hashed Map, it must also have a proper

hashCode(). If the key is used in a TreeMap, it must implement

Comparable.

The following example shows the operations available through the

Map interface, using the previously defined CountMap test data set:

// collectiontopics/MapOps.java

// Things you can do with Maps

import java.util.concurrent.*;

import java.util.*;

import onjava.*;

public class MapOps {

public static

void printKeys(Map<Integer,String> map) {

System.out.print("Size = " + map.size() + ", ");

System.out.print("Keys: ");



// Produce a Set of the keys:

System.out.println(map.keySet());

}

public static

void test(Map<Integer,String> map) {

System.out.println(

map.getClass().getSimpleName());

map.putAll(new CountMap(25));

// Map has 'Set' behavior for keys:

map.putAll(new CountMap(25));

printKeys(map);

// Producing a Collection of the values:

System.out.print("Values: ");

System.out.println(map.values());

System.out.println(map);

System.out.println("map.containsKey(11): " +

map.containsKey(11));

System.out.println(

"map.get(11): " + map.get(11));

System.out.println("map.containsValue(\"F0\"): "



+ map.containsValue("F0"));

Integer key = map.keySet().iterator().next();

System.out.println("First key in map: " + key);

map.remove(key);

printKeys(map);

map.clear();

System.out.println(

"map.isEmpty(): " + map.isEmpty());

map.putAll(new CountMap(25));

// Operations on the Set change the Map:

map.keySet().removeAll(map.keySet());

System.out.println(

"map.isEmpty(): " + map.isEmpty());

}

public static void main(String[] args) {

test(new HashMap<>());

test(new TreeMap<>());

test(new LinkedHashMap<>());

test(new IdentityHashMap<>());

test(new ConcurrentHashMap<>());



test(new WeakHashMap<>());

}

}

/* Output: (First 11 Lines)

HashMap

Size = 25, Keys: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

Values: [A0, B0, C0, D0, E0, F0, G0, H0, I0, J0, K0,

L0, M0, N0, O0, P0, Q0, R0, S0, T0, U0, V0, W0, X0, Y0]

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0,

9=J0, 10=K0, 11=L0, 12=M0, 13=N0, 14=O0, 15=P0, 16=Q0,

17=R0, 18=S0, 19=T0, 20=U0, 21=V0, 22=W0, 23=X0, 24=Y0}

map.containsKey(11): true

map.get(11): L0

map.containsValue("F0"): true

First key in map: 0

Size = 24, Keys: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

map.isEmpty(): true

map.isEmpty(): true



...

*/

The printKeys() method demonstrates how to produce a

Collection view of a Map. The keySet() method produces a

Set backed by the keys in the Map. Printing the result of the

values() method produces a Collection containing all the

values in the Map. (Note that keys must be unique, but values can

contain duplicates.) Since these Collections are backed by the

Map, any changes in a Collection are reflected in the associated

Map.

The rest of the program provides simple examples of each Map

operation and tests each basic type of Map.

SortedMap

With a SortedMap (implemented by TreeMap or

ConcurrentSkipListMap), the keys are guaranteed to be in

sorted order, which allows additional functionality to be provided with

these methods in the SortedMap interface:



Comparator comparator(): Produces the

comparator used for this Map, ornull for natural

ordering.

`T firstKey(): Produces the lowest key.

`T lastKey(): Produces the highest key.

SortedMap subMap(fromKey, toKey): Produces a

view of this Map with keysfrom fromKey, inclusive, to

toKey, exclusive.

SortedMap headMap(toKey): Produces a view of

this Map with keys less thantoKey.

SortedMap tailMap(fromKey): Produces a view of this

Map with keys greater than or equal to fromKey.

Here’s an example that’s similar to SortedSetDemo.java and

shows this additional behavior of TreeMaps:

// collectiontopics/SortedMapDemo.java

// What you can do with a TreeMap

import java.util.*;

import onjava.*;



public class SortedMapDemo {

public static void main(String[] args) {

TreeMap<Integer,String> sortedMap =

new TreeMap<>(new CountMap(10));

System.out.println(sortedMap);

Integer low = sortedMap.firstKey();

Integer high = sortedMap.lastKey();

System.out.println(low);

System.out.println(high);

Iterator<Integer> it =

sortedMap.keySet().iterator();

for(int i = 0; i <= 6; i++) {

if(i == 3) low = it.next();

if(i == 6) high = it.next();

else it.next();

}

System.out.println(low);



System.out.println(high);

System.out.println(sortedMap.subMap(low, high));

System.out.println(sortedMap.headMap(high));

System.out.println(sortedMap.tailMap(low));

}

}

/* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0,

9=J0}

0

9

3

7

{3=D0, 4=E0, 5=F0, 6=G0}

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0}

{3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0}

*/

Here, the pairs are stored by key-sorted order. Because there is a sense

of order in the TreeMap, the concept of “location” makes sense, so

you can have first and last elements and submaps.



LinkedHashMap

The LinkedHashMap hashes everything for speed, but also produces

the pairs in insertion order during a traversal

(System.out.println() iterates through the map, so you see the

results of traversal). In addition, a LinkedHashMap can be

configured in the constructor to use a least-recently-used (LRU)

algorithm based on accesses, so elements that haven’t been accessed

(and thus are candidates for removal) appear at the front of the list.

This allows easy creation of programs that do periodic cleanup to save

space. Here’s a simple example showing both features:

// collectiontopics/LinkedHashMapDemo.java

// What you can do with a LinkedHashMap

import java.util.*;

import onjava.*;

public class LinkedHashMapDemo {

public static void main(String[] args) {

LinkedHashMap<Integer,String> linkedMap =

new LinkedHashMap<>(new CountMap(9));

System.out.println(linkedMap);

// Least-recently-used order:



linkedMap =

new LinkedHashMap<>(16, 0.75f, true);

linkedMap.putAll(new CountMap(9));

System.out.println(linkedMap);

for(int i = 0; i < 6; i++)

linkedMap.get(i);

System.out.println(linkedMap);

linkedMap.get(0);

System.out.println(linkedMap);

}

}

/* Output:

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0}

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0}

{6=G0, 7=H0, 8=I0, 0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0}

{6=G0, 7=H0, 8=I0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 0=A0}

*/

The pairs are indeed traversed in insertion order, even for the LRU



version. However, after the first six items (only) are accessed in the

LRU version, the last three items move to the front of the list. Then,

when “0” is accessed again, it moves to the back of the list.

Utilities

There are a number of standalone utilities for collections, expressed as

static methods in java.util.Collections. You’ve already

seen some of these, such as addAll(), reverseOrder() and

binarySearch(). Here are the others (the synchronized and

unmodifiable utilities are covered in sections that follow). In this

table, generics are used when they are relevant:

checkedCollection(Collection<T>,

Class<T> type)

Produces a

checkedList(List<T>, Class<T>

dynamically type-

type)



safe view of a

Collection, or a

checkedMap(Map<K, V>, Class<K>

specific subtype of

keyType

Collection. Use

, Class<V> valueType)

this when it’s not

possible to use the

checkedSet(Set<T>, Class<T>

statically checked

type)

version.

checkedSortedMap(SortedMap<K,

These were shown

in the Generics

V>, Class<K> keyType, Class<V>

chapter under the

valueType)

heading “Dynamic



type safety.”

checkedSortedSet(SortedSet<T>,

Class<T> type)

Produces the

maximum or

minimum element

max(Collection)

in the argument

using the natural

min(Collection)

comparison method

of the objects in the

Collection.

Produces the

maximum or

max(Collection, Comparator)

minimum element

in the

min(Collection, Comparator)

Collection



using the

Comparator.

Produces starting

index of the first

indexOfSubList(List source, List

place where

target)

target appears

inside source, or

-1 if none occurs.

Produces starting

index of the last

lastIndexOfSubList(List source,

place where

target appears

List target)

inside source, or

-1 if none occurs.

Replaces all

replaceAll(List<T>, T oldVal, T



oldVal with

newVal)

newVal.

Reverses all the

reverse(List)

elements in place.

Returns a

Comparator that

reverses the natural

ordering of a

collection of objects

reverseOrder()

that implement

reverseOrder(Comparator<T>)

Comparable<T> .

The second version

reverses the order of

the supplied

Comparator.

Moves all elements



forward by

rotate(List, int distance)

distance, taking

the ones off the end

and placing them at

the beginning.

Randomly permutes

the specified list.

shuffle(List)

The first form

provides its own

randomization

shuffle(List, Random)

source, or you can

provide your own

with the second

form.

Sorts the List<T>

sort(List<T>)

using its natural



ordering. The

sort(List<T>, Comparator<? super

second form takes a

T> c)

Comparator for

sorting.

copy(List<? super T> dest,

Copies elements

List<? extends T> src)

from src to dest.

Swaps elements at

locations i and j in

swap(List, int i, int j)

the List. Probably

faster than what

you’d write by hand.

Replaces all the

fill(List<? super T>, T x)

elements of the

List with x.



Returns an

immutable

nCopies(int n, T x)

List<T> of size n

whose references all

point to x.

Returns true if the

disjoint(Collection, Collection) two Collections

have no elements in

common.

Returns the number

of elements in the

frequency(Collection, Object x)

Collection

equal to x.

Returns an

immutable empty

emptyList()

List, Map, or Set

These are generic,



emptyMap()

so the resulting

Collection

emptySet()

is

parameterized to

the desired type.

Produces an

immutable

singleton(T x)

Set<T> ,

singletonList(T x)

List<T> , or

Map<K, V>

singletonMap(K key, V value)

containing a single

entry based on the

given argument(s).

Produces an

ArrayList<T>



containing the

elements in the

order in which they

are returned by the

list(Enumeration<T> e)

(old-style)

Enumeration

(predecessor to the

Iterator). For

converting from

legacy code.

Produces an old-

style

enumeration(Collection<T>)

Enumeration<T>

for the argument.

Note that min() and max() work with Collection objects, not

with Lists, so you don’t worry if the Collection should be sorted

or not. (As mentioned earlier, you do sort() a List or an array

before performing a binarySearch().)



Here’s an example showing the basic use of most of the utilities in the

above table:

// collectiontopics/Utilities.java

// Simple demonstrations of the Collections utilities

import java.util.*;

public class Utilities {

static List<String> list = Arrays.asList(

"one Two three Four five six one".split(" "));

public static void main(String[] args) {

System.out.println(list);

System.out.println("'list' disjoint (Four)?: " +

Collections.disjoint(list,

Collections.singletonList("Four")));

System.out.println(

"max: " + Collections.max(list));

System.out.println(

"min: " + Collections.min(list));

System.out.println(

"max w/ comparator: " + Collections.max(list,

String.CASE_INSENSITIVE_ORDER));



System.out.println(

"min w/ comparator: " + Collections.min(list,

String.CASE_INSENSITIVE_ORDER));

List<String> sublist =

Arrays.asList("Four five six".split(" "));

System.out.println("indexOfSubList: " +

Collections.indexOfSubList(list, sublist));

System.out.println("lastIndexOfSubList: " +

Collections.lastIndexOfSubList(list, sublist));

Collections.replaceAll(list, "one", "Yo");

System.out.println("replaceAll: " + list);

Collections.reverse(list);

System.out.println("reverse: " + list);

Collections.rotate(list, 3);

System.out.println("rotate: " + list);

List<String> source =

Arrays.asList("in the matrix".split(" "));

Collections.copy(list, source);

System.out.println("copy: " + list);

Collections.swap(list, 0, list.size() - 1);



System.out.println("swap: " + list);

Collections.shuffle(list, new Random(47));

System.out.println("shuffled: " + list);

Collections.fill(list, "pop");

System.out.println("fill: " + list);

System.out.println("frequency of 'pop': " +

Collections.frequency(list, "pop"));

List<String> dups =

Collections.nCopies(3, "snap");

System.out.println("dups: " + dups);

System.out.println("'list' disjoint 'dups'?: " +

Collections.disjoint(list, dups));

// Getting an old-style Enumeration:

Enumeration<String> e =

Collections.enumeration(dups);

Vector<String> v = new Vector<>();

while(e.hasMoreElements())

v.addElement(e.nextElement());

// Converting an old-style Vector

// to a List via an Enumeration:



ArrayList<String> arrayList =

Collections.list(v.elements());

System.out.println("arrayList: " + arrayList);

}

}

/* Output:

[one, Two, three, Four, five, six, one]

'list' disjoint (Four)?: false

max: three

min: Four

max w/ comparator: Two

min w/ comparator: five

indexOfSubList: 3

lastIndexOfSubList: 3

replaceAll: [Yo, Two, three, Four, five, six, Yo]

reverse: [Yo, six, five, Four, three, Two, Yo]

rotate: [three, Two, Yo, Yo, six, five, Four]

copy: [in, the, matrix, Yo, six, five, Four]

swap: [Four, the, matrix, Yo, six, five, in]

shuffled: [six, matrix, the, Four, Yo, five, in]



fill: [pop, pop, pop, pop, pop, pop, pop]

frequency of 'pop': 7

dups: [snap, snap, snap]

'list' disjoint 'dups'?: true

arrayList: [snap, snap, snap]

*/

The output explains the behavior of each utility method. Note the

difference in min() and max() with the

String.CASE_INSENSITIVE_ORDER Comparator because of

capitalization.

Sorting and Searching Lists

Utilities to perform sorting and searching for Lists have the same

names and signatures as those for sorting arrays of objects, but are

static methods of Collections instead of Arrays. Here’s an

example that uses the list data from Utilities.java:

// collectiontopics/ListSortSearch.java

// Sorting/searching Lists with Collections utilities



import java.util.*;

public class ListSortSearch {

public static void main(String[] args) {

List<String> list =

new ArrayList<>(Utilities.list);

list.addAll(Utilities.list);

System.out.println(list);

Collections.shuffle(list, new Random(47));

System.out.println("Shuffled: " + list);

// Use ListIterator to trim off last elements:

ListIterator<String> it = list.listIterator(10);

while(it.hasNext()) {

it.next();

it.remove();

}

System.out.println("Trimmed: " + list);

Collections.sort(list);

System.out.println("Sorted: " + list);

String key = list.get(7);

int index = Collections.binarySearch(list, key);



System.out.println(

"Location of " + key + " is " + index +

", list.get(" + index + ") = " +

list.get(index));

Collections.sort(list,

String.CASE_INSENSITIVE_ORDER);

System.out.println(

"Case-insensitive sorted: " + list);

key = list.get(7);

index = Collections.binarySearch(list, key,

String.CASE_INSENSITIVE_ORDER);

System.out.println(

"Location of " + key + " is " + index +

", list.get(" + index + ") = " +

list.get(index));

}

}

/* Output:

[one, Two, three, Four, five, six, one, one, Two,

three, Four, five, six, one]



Shuffled: [Four, five, one, one, Two, six, six, three,

three, five, Four, Two, one, one]

Trimmed: [Four, five, one, one, Two, six, six, three,

three, five]

Sorted: [Four, Two, five, five, one, one, six, six,

three, three]

Location of six is 7, list.get(7) = six

Case-insensitive sorted: [five, five, Four, one, one,

six, six, three, three, Two]

Location of three is 7, list.get(7) = three

*/

Just as when searching and sorting with arrays, if you sort using a

Comparator, you must binarySearch() using the same

Comparator.

This program also demonstrates the shuffle() method in

Collections, which randomizes the order of a List. A

ListIterator is created at a particular location in the shuffled list,

and used to remove the elements from that location until the end of

the list.



Making a Collection or Map

Unmodifiable

Often it is convenient to create a read-only version of a Collection

or Map. The Collections class does this by accepting the original

collection into a method that hands back a read-only version. There

are a number of variations on this method, for Collections (if you

can’t treat a Collection as a more specific type), Lists, Sets, and

Maps. This example shows the proper way to build read-only versions

of each:

// collectiontopics/ReadOnly.java

// Using the Collections.unmodifiable methods

import java.util.*;

import onjava.*;

public class ReadOnly {

static Collection<String> data =

new ArrayList<>(Countries.names(6));

public static void main(String[] args) {



Collection<String> c =

Collections.unmodifiableCollection(

new ArrayList<>(data));

System.out.println(c); // Reading is OK

//- c.add("one"); // Can't change it

List<String> a = Collections.unmodifiableList(

new ArrayList<>(data));

ListIterator<String> lit = a.listIterator();

System.out.println(lit.next()); // Reading is OK

//- lit.add("one"); // Can't change it

Set<String> s = Collections.unmodifiableSet(

new HashSet<>(data));

System.out.println(s); // Reading is OK

//- s.add("one"); // Can't change it

// For a SortedSet:

Set<String> ss =

Collections.unmodifiableSortedSet(

new TreeSet<>(data));

Map<String,String> m =

Collections.unmodifiableMap(



new HashMap<>(Countries.capitals(6)));

System.out.println(m); // Reading is OK

//- m.put("Ralph", "Howdy!");

// For a SortedMap:

Map<String,String> sm =

Collections.unmodifiableSortedMap(

new TreeMap<>(Countries.capitals(6)));

}

}

/* Output:

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI]

ALGERIA

[BENIN, BOTSWANA, ANGOLA, BURKINA FASO, ALGERIA,

BURUNDI]

{BENIN=Porto-Novo, BOTSWANA=Gaberone, ANGOLA=Luanda,

BURKINA FASO=Ouagadougou, ALGERIA=Algiers,

BURUNDI=Bujumbura}

*/

Calling the “unmodifiable” method for a particular type does not cause



compile-time checking, but once the transformation has occurred, any

calls to methods that modify the contents of a particular collection will

produce an UnsupportedOperationException.

In each case, you must fill the collection with meaningful data before

you make it read-only. Once it is loaded, the best approach is to

replace the existing reference with the reference that is produced by

the “unmodifiable” call. That way, you don’t run the risk of

accidentally trying to change the contents once you’ve made it

unmodifiable. On the other hand, this tool also lets you keep a

modifiable collection as private within a class and to return a read-

only reference to that collection from a method call. So, you can

change it from within the class, but everyone else can only read it.

Synchronizing a Collection or

Map

The synchronized keyword is an important part of the subject of

multithreading, a more complicated topic introduced in the

Concurrent Programming chapter. Here, I shall note only that the Collections



class contains a way to automatically synchronize an

entire collection. The syntax is similar to the “unmodifiable” methods:

// collectiontopics/Synchronization.java

// Using the Collections.synchronized methods

import java.util.*;

public class Synchronization {

public static void main(String[] args) {

Collection<String> c =

Collections.synchronizedCollection(

new ArrayList<>());

List<String> list = Collections

.synchronizedList(new ArrayList<>());

Set<String> s = Collections

.synchronizedSet(new HashSet<>());

Set<String> ss = Collections

.synchronizedSortedSet(new TreeSet<>());

Map<String,String> m = Collections

.synchronizedMap(new HashMap<>());

Map<String,String> sm = Collections

.synchronizedSortedMap(new TreeMap<>());



}

}

It is best to immediately pass the new collection through the

appropriate “synchronized” method, as shown above. That way, there’s

no chance of accidentally exposing the unsynchronized version.

Fail Fast

The Java collections also have a mechanism to prevent more than one

process from modifying the contents of a collection. The problem

occurs if you’re in the middle of iterating through a collection, then

some other process steps in and inserts, removes, or changes an object

in that collection. Maybe you’ve already passed that element in the

collection, maybe it’s ahead of you, maybe the size of the collection

shrinks after you call size()—there are many scenarios for disaster.

The Java collections library uses a fail-fast mechanism that looks for

any changes to the collection apart from those caused by your process.

If it detects that someone else is modifying the collection, it

immediately produces a ConcurrentModification-

Exception. This is the “fail-fast” aspect—it doesn’t try to detect a

problem later on using a more complex algorithm.

It’s easy to see the fail-fast mechanism in operation by creating an



iterator and adding an element to the collection where the iterator

points, like this:

// collectiontopics/FailFast.java

// Demonstrates the "fail-fast" behavior

import java.util.*;

public class FailFast {

public static void main(String[] args) {

Collection<String> c = new ArrayList<>();

Iterator<String> it = c.iterator();

c.add("An object");

try {

String s = it.next();

} catch(ConcurrentModificationException e) {

System.out.println(e);

}

}

}

/* Output:

java.util.ConcurrentModificationException



*/

The exception comes from attempting to place an element in the

collection after the iterator is acquired from the collection. The

possibility that two parts of the program might modify the same

collection produces an uncertain state, so the exception notifies you to

change your code—in this case, acquire the iterator after you have

added all the elements to the collection.

The ConcurrentHashMap, CopyOnWriteArrayList, and

CopyOnWriteArraySet use techniques that avoid

ConcurrentModificationExceptions.

Holding References

The java.lang.ref library contains a set of classes that allow

greater flexibility in garbage collection. These classes are especially

useful when you have large objects that might cause memory

exhaustion. There are three classes inherited from the abstract class

Reference: SoftReference, WeakReference, and



PhantomReference. Each of these provides a different level of

indirection for the garbage collector if the object in question is only

reachable through one of these Reference objects.

If an object is reachable, it means somewhere in your program the

object can be found. This could mean you have an ordinary reference

on the stack that goes right to the object, but you might also have a

reference to an object that has a reference to the object in question;

there can be many intermediate links. If an object is reachable, the

garbage collector cannot release it because it’s still in use by your

program. If an object isn’t reachable, there’s no way for your program

to use it, so it’s safe to garbage collect that object.

You use Reference objects to continue holding a reference to that

object—to reach that object—but also to allow the garbage collector to

release that object. Thus, you have a way to use the object, but if

memory exhaustion is imminent, you allow that object to be released.

You accomplish this by using a Reference object as an intermediary

(a proxy) between you and the ordinary reference. In addition, there

must be no ordinary references to the object (ones not wrapped inside

Reference objects). If the garbage collector discovers that an object

is reachable through an ordinary reference, it will not release that



object.

In the order of SoftReference, WeakReference, and

PhantomReference, each one is “weaker” than the last and

corresponds to a different level of reachability. Soft references are for

implementing memory-sensitive caches. Weak references are for

implementing “canonicalizing mappings”—where instances of objects

can be simultaneously used in multiple places in a program, to save

storage—that do not prevent their keys (or values) from being

reclaimed. Phantom references are for scheduling pre-mortem

cleanup actions in a more flexible way than is possible with the Java

finalization mechanism.

With SoftReferences and WeakReferences, you have a choice

about whether to place them on a ReferenceQueue (the device

used for pre-mortem cleanup actions), but a PhantomReference

can only be built on a ReferenceQueue. Here’s a simple

demonstration:

// collectiontopics/References.java

// Demonstrates Reference objects

import java.lang.ref.*;

import java.util.*;



class VeryBig {

private static final int SIZE = 10000;

private long[] la = new long[SIZE];

private String ident;

VeryBig(String id) { ident = id; }

@Override

public String toString() { return ident; }

@Override

protected void finalize() {

System.out.println("Finalizing " + ident);

}

}

public class References {

private static ReferenceQueue<VeryBig> rq =

new ReferenceQueue<>();

public static void checkQueue() {

Reference<? extends VeryBig> inq = rq.poll();

if(inq != null)

System.out.println("In queue: " + inq.get());

}



public static void main(String[] args) {

int size = 10;

// Or, choose size via the command line:

if(args.length > 0)

size = Integer.valueOf(args[0]);

LinkedList<SoftReference<VeryBig>> sa =

new LinkedList<>();

for(int i = 0; i < size; i++) {

sa.add(new SoftReference<>(

new VeryBig("Soft " + i), rq));

System.out.println(

"Just created: " + sa.getLast());

checkQueue();

}

LinkedList<WeakReference<VeryBig>> wa =

new LinkedList<>();

for(int i = 0; i < size; i++) {

wa.add(new WeakReference<>(

new VeryBig("Weak " + i), rq));

System.out.println(



"Just created: " + wa.getLast());

checkQueue();

}

SoftReference<VeryBig> s =

new SoftReference<>(new VeryBig("Soft"));

WeakReference<VeryBig> w =

new WeakReference<>(new VeryBig("Weak"));

System.gc();

LinkedList<PhantomReference<VeryBig>> pa =

new LinkedList<>();

for(int i = 0; i < size; i++) {

pa.add(new PhantomReference<>(

new VeryBig("Phantom " + i), rq));

System.out.println(

"Just created: " + pa.getLast());

checkQueue();

}

}

}

/* Output: (First and Last 10 Lines)



Just created: java.lang.ref.SoftReference@15db9742

Just created: java.lang.ref.SoftReference@6d06d69c

Just created: java.lang.ref.SoftReference@7852e922

Just created: java.lang.ref.SoftReference@4e25154f

Just created: java.lang.ref.SoftReference@70dea4e

Just created: java.lang.ref.SoftReference@5c647e05

Just created: java.lang.ref.SoftReference@33909752

Just created: java.lang.ref.SoftReference@55f96302

Just created: java.lang.ref.SoftReference@3d4eac69

Just created: java.lang.ref.SoftReference@42a57993

...________...________...________...________...

Just created: java.lang.ref.PhantomReference@45ee12a7

In queue: null

Just created: java.lang.ref.PhantomReference@330bedb4

In queue: null

Just created: java.lang.ref.PhantomReference@2503dbd3

In queue: null

Just created: java.lang.ref.PhantomReference@4b67cf4d

In queue: null

Just created: java.lang.ref.PhantomReference@7ea987ac



In queue: null

*/

When you run this program (redirect the output into a text file to view

the output in pages), you’ll see that the objects are garbage collected,

even though you can still access them through the Reference object

(to get the actual object reference, use get()). You’ll also see that the

ReferenceQueue always produces a Reference containing a

null object. To use this, inherit from a particular Reference class

and add more useful methods to the new class.

The WeakHashMap

The collections library has a special Map to hold weak references: the

WeakHashMap. This class makes it easier to create canonicalized

mappings. In such a mapping, you save storage by creating only one

instance of a particular value. When the program needs that value, it

looks up the existing object in the mapping and uses that (rather than

creating one from scratch). The mapping can make the values as part

of its initialization, but it’s more likely that the values are made on



demand.

Since this is a storage-saving technique, it’s very convenient that the

WeakHashMap allows the garbage collector to automatically clean up

the keys and values. You don’t do anything special to the keys and

values you place in the WeakHashMap; these are automatically

wrapped in WeakReferences by the map. The trigger to allow

cleanup is that the key is no longer in use, as demonstrated here:

// collectiontopics/CanonicalMapping.java

// Demonstrates WeakHashMap

import java.util.*;

class Element {

private String ident;

Element(String id) { ident = id; }

@Override

public String toString() { return ident; }

@Override

public int hashCode() {

return Objects.hashCode(ident);

}

@Override



public boolean equals(Object r) {

return r instanceof Element &&

Objects.equals(ident, ((Element)r).ident);

}

@Override

protected void finalize() {

System.out.println("Finalizing " +

getClass().getSimpleName() + " " + ident);

}

}

class Key extends Element {

Key(String id) { super(id); }

}

class Value extends Element {

Value(String id) { super(id); }

}

public class CanonicalMapping {

public static void main(String[] args) {

int size = 1000;

// Or, choose size via the command line:



if(args.length > 0)

size = Integer.valueOf(args[0]);

Key[] keys = new Key[size];

WeakHashMap<Key,Value> map =

new WeakHashMap<>();

for(int i = 0; i < size; i++) {

Key k = new Key(Integer.toString(i));

Value v = new Value(Integer.toString(i));

if(i % 3 == 0)

keys[i] = k; // Save as "real" references

map.put(k, v);

}

System.gc();

}

}



The Key class must have a hashCode() and an equals() since it

is used as a key in a hashed data structure. The subject of

hashCode() was described in the Appendix: Understanding

equals() and hashCode().

Run the program and you’ll see the garbage collector skip every third

key. An ordinary reference to that key has also been placed in the

keys array, and thus those objects cannot be garbage collected.

Java 1.0/1.1

Collections

Unfortunately, much code was written using the Java 1.0/1.1

collections, and even new code is sometimes written using these

classes. Never use the old collections when writing new code. The old

collections were limited, so there’s not that much to say about them.

Since they are anachronistic, I try to refrain from overemphasizing

some of their hideous design decisions.

Vector & Enumeration

The only self-expanding sequence in Java 1.0/1.1 was the Vector, so



it saw a lot of use. Its flaws are too numerous to describe here (see the

1st edition of Thinking in Java, available as a free download from

www.OnJava8.com). Basically, you can think of it as an ArrayList with
long, awkward method names. In the revised Java collection

library, Vector was adapted so it could work as a Collection and

a List. This turns out to be a bit perverse, as it can confuse some

people into thinking that Vector has gotten better, when it is actually

included only to support older Java code.

The Java 1.0/1.1 version of the iterator chose to invent a new name,

“enumeration,” instead of using a term that everyone was already

familiar with (“iterator”). The Enumeration interface is smaller

than Iterator, with only two methods, and it uses longer method

names: boolean hasMoreElements() produces true if this

enumeration contains more elements, and Object

nextElement() returns the next element of this enumeration if

there are any more (otherwise it throws an exception).

Enumeration is only an interface, not an implementation, and even

new libraries sometimes still use the old Enumeration, which is

unfortunate but generally harmless. Always use Iterator when you

can in your own code, but be prepared for libraries that hand you an

Enumeration.

http://www.OnJava8.com


In addition, you can produce an Enumeration for any

Collection by using the Collections.enumeration()

method, as seen in this example:

// collectiontopics/Enumerations.java

// Java 1.0/1.1 Vector and Enumeration

import java.util.*;

import onjava.*;

public class Enumerations {

public static void main(String[] args) {

Vector<String> v =

new Vector<>(Countries.names(10));

Enumeration<String> e = v.elements();

while(e.hasMoreElements())

System.out.print(e.nextElement() + ", ");

// Produce an Enumeration from a Collection:

e = Collections.enumeration(new ArrayList<>());

}



}

/* Output:

ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO,

BURUNDI, CAMEROON, CAPE VERDE, CENTRAL AFRICAN

REPUBLIC, CHAD,

*/

To produce an Enumeration, you call elements(), then you can

use it to perform a forward iteration.

The last line creates an ArrayList and uses enumeration() to

adapt an Enumeration from the ArrayList Iterator. Thus, if



you have old code that wants an Enumeration, you can still use the

new collections.

Hashtable

As you’ve seen in the performance comparison in this appendix, the

basic Hashtable is very similar to the HashMap, even down to the

method names. There’s no reason to use Hashtable instead of

HashMap in new code.

Stack

The concept of the stack was introduced earlier, with the

LinkedList. What’s rather odd about the Java 1.0/1.1 Stack is

that instead of using a Vector with composition, Stack is inherited

from Vector. So it has all characteristics and behaviors of a Vector

plus some extra Stack behaviors. It’s difficult to know whether the

designers consciously thought this was a helpful way of doing things,

or whether it was just naïve; in any event it was clearly not reviewed

before it was rushed into distribution, so this bad design is still

hanging around (but don’t use it).

Here’s a simple demonstration of Stack that pushes each String

representation of an enum. It also shows how you can just as easily

use a LinkedList as a stack, or the Stack class created in the



Collections chapter:

// collectiontopics/Stacks.java

// Demonstration of Stack Class

import java.util.*;

enum Month { JANUARY, FEBRUARY, MARCH, APRIL,

MAY, JUNE, JULY, AUGUST, SEPTEMBER,

OCTOBER, NOVEMBER }

public class Stacks {

public static void main(String[] args) {

Stack<String> stack = new Stack<>();

for(Month m : Month.values())

stack.push(m.toString());

System.out.println("stack = " + stack);

// Treating a stack as a Vector:

stack.addElement("The last line");

System.out.println(

"element 5 = " + stack.elementAt(5));

System.out.println("popping elements:");

while(!stack.empty())

System.out.print(stack.pop() + " ");



// Using a LinkedList as a Stack:

LinkedList<String> lstack = new LinkedList<>();

for(Month m : Month.values())

lstack.addFirst(m.toString());

System.out.println("lstack = " + lstack);

while(!lstack.isEmpty())

System.out.print(lstack.removeFirst() + " ");

// Using the Stack class from

// the Collections Chapter:

onjava.Stack<String> stack2 =

new onjava.Stack<>();

for(Month m : Month.values())

stack2.push(m.toString());

System.out.println("stack2 = " + stack2);

while(!stack2.isEmpty())

System.out.print(stack2.pop() + " ");

}

}

/* Output:

stack = [JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE,



JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER]

element 5 = JUNE

popping elements:

The last line NOVEMBER OCTOBER SEPTEMBER AUGUST JULY

JUNE MAY APRIL MARCH FEBRUARY JANUARY lstack =

[NOVEMBER, OCTOBER, SEPTEMBER, AUGUST, JULY, JUNE, MAY,

APRIL, MARCH, FEBRUARY, JANUARY]

NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL

MARCH FEBRUARY JANUARY stack2 = [NOVEMBER, OCTOBER,

SEPTEMBER, AUGUST, JULY, JUNE, MAY, APRIL, MARCH,

FEBRUARY, JANUARY]

NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL

MARCH FEBRUARY JANUARY

*/

A String representation is generated from the Month constants,

inserted into the Stack with push(), and later fetched from the top

of the stack with a pop(). To make a point, Vector operations are

also performed on the Stack object. This is possible because, by

virtue of inheritance, a Stack is a Vector. Thus, all operations that can be
performed on a Vector can also be performed on a Stack,

such as elementAt().



As mentioned earlier, use a LinkedList when you want stack

behavior, or the onjava.Stack class created from the

LinkedList class.

BitSet

A BitSet is used to efficiently store a lot of on-off information. It’s

efficient only from the standpoint of size; if you’re looking for efficient

access, it is slightly slower than using a native array.

In addition, the minimum size of the BitSet is that of a long: 64

bits. This implies that if you’re storing anything smaller, like 8 bits, a

BitSet is wasteful; you’re better off creating your own class, or just

an array, to hold your flags if size is an issue. (This will only be the case

if you’re creating many objects containing lists of on-off information,

and should only be decided based on profiling and other metrics. If

you make this decision because you just think something is too big,

you end up creating needless complexity and wasting a lot of time.)

A normal collection expands as you add more elements, and the

BitSet does this as well. The following example shows how the



BitSet works:

// collectiontopics/Bits.java

// Demonstration of BitSet

import java.util.*;

public class Bits {

public static void printBitSet(BitSet b) {

System.out.println("bits: " + b);

StringBuilder bbits = new StringBuilder();

for(int j = 0; j < b.size() ; j++)

bbits.append(b.get(j) ? "1" : "0");

System.out.println("bit pattern: " + bbits);

}

public static void main(String[] args) {

Random rand = new Random(47);

// Take the LSB of nextInt():

byte bt = (byte)rand.nextInt();

BitSet bb = new BitSet();

for(int i = 7; i >= 0; i--)

if(((1 << i) & bt) != 0)

bb.set(i);



else

bb.clear(i);

System.out.println("byte value: " + bt);

printBitSet(bb);

short st = (short)rand.nextInt();

BitSet bs = new BitSet();

for(int i = 15; i >= 0; i--)

if(((1 << i) & st) != 0)

bs.set(i);

else

bs.clear(i);

System.out.println("short value: " + st);

printBitSet(bs);

int it = rand.nextInt();

BitSet bi = new BitSet();

for(int i = 31; i >= 0; i--)

if(((1 << i) & it) != 0)

bi.set(i);

else

bi.clear(i);



System.out.println("int value: " + it);

printBitSet(bi);

// Test bitsets >= 64 bits:

BitSet b127 = new BitSet();

b127.set(127);

System.out.println("set bit 127: " + b127);

BitSet b255 = new BitSet(65);

b255.set(255);

System.out.println("set bit 255: " + b255);

BitSet b1023 = new BitSet(512);

b1023.set(1023);

b1023.set(1024);

System.out.println("set bit 1023: " + b1023);

}

}

/* Output:

byte value: -107

bits: {0, 2, 4, 7}



bit pattern: 101010010000000000000000000000000000000000

0000000000000000000000

short value: 1302

bits: {1, 2, 4, 8, 10}

bit pattern: 011010001010000000000000000000000000000000

0000000000000000000000

int value: -2014573909

bits: {0, 1, 3, 5, 7, 9, 11, 18, 19, 21, 22, 23, 24,

25, 26, 31}

bit pattern: 110101010101000000110111111000010000000000

0000000000000000000000

set bit 127: {127}

set bit 255: {255}

set bit 1023: {1023, 1024}

*/

The random number generator is used to create a random byte,



short, and int, and each one is transformed into a corresponding

bit pattern in a BitSet. This works fine because a BitSet is 64 bits,

so none of these cause it to increase in size. Then larger BitSets are

created. Notice that the BitSet is expanded as necessary.

An EnumSet (see the Enumerations chapter) is usually a better choice than a
BitSet for a fixed set of flags that you can name,

because the EnumSet lets you manipulate the names rather than

numerical bit locations, and thus reduces errors. EnumSet also

prevents you from accidentally adding new flag locations, which could

cause some serious, difficult-to-find bugs. The only reasons to use

BitSet instead of EnumSet is if you don’t know how many flags you

need until run time, or if it is unreasonable to assign names to the

flags, or you need one of the special operations in BitSet (see the

JDK documentation for BitSet and EnumSet).

Summary

Collections are arguably the most often-used tools in a programming

language. Some languages (Python, for example) even include the

fundamental collection components (lists, maps and sets) as built-ins.

As you saw in the Collections chapter, it’s possible to do a number of very
useful things with collections, without much effort. However, at

some point you’re forced to know more about collections to use them



properly—in particular, you must know enough about hashing

operations to write your own hashCode() method (and you must

know when it is necessary), and you must know enough about various

collection implementations to choose the appropriate one for your

needs. This appendix covered these concepts and discussed additional

useful details about the collection library. You’re now reasonably well

prepared to use the Java collections in your everyday programming

tasks.

The design of a collections library is difficult (this is true of most

library design problems). In C++, the collection classes covered the

bases with many different classes. This was better than what was

available prior to the C++ collection classes (nothing), but it didn’t

translate well into Java. At the other extreme, I’ve seen a collections

library that consists of a single class, “collection,” which acts like both

a linear sequence and an associative array at the same time. The Java

collection library attempts to strike a balance between power and

complexity. The result can seem a bit odd in places. Unlike some of the

decisions made in the early Java libraries, these oddities were not

accidents, but carefully considered decisions based on trade-offs in

complexity.



1. The Maps in java.util perform bulk copies using getKey()

and getValue() for Maps, so this works. If a custom Map were

to simply copy the entire Map.Entry then this approach would

cause a problem.↩

2. Although this sounds odd and possibly useless when I describe it

this way, you’ve seen, especially in the Type Information chapter, that this
kind of dynamic behavior can be very powerful.↩

3. If these speedups still don’t meet your performance needs, you

can further accelerate table lookup by writing your own Map and

customizing it to your particular types to avoid delays due to

casting to and from Objects. To reach even higher levels of

performance, speed enthusiasts can use Donald Knuth’s The Art

of Computer Programming, Volume 3: Sorting and Searching,

Second Edition, to replace overflow bucket lists with arrays that

have two additional benefits: they can be optimized for disk

storage characteristics and they can save most of the time of

creating and garbage collecting individual records.↩

Appendix: Low-Level

Concurrency



Although it is never advisable to write

low-level Java concurrency code yourself,

it is often helpful to understand

something of how it works.

The Concurrent Programming chapter introduced the concepts of
concurrency at a high level, including more recent and safer constructs

(parallel Streams and CompletableFutures) for concurrent Java

programming. This appendix introduces low-level concurrency

concepts in Java, so you have a grasp of such code when you read it.

You will also gain further insight into the general issues of

concurrency.

Low-level concurrency concepts were a big part of concurrent

programming in early versions of Java. We’ll look at the complexity

around those techniques and why you should avoid them. The

Concurrent Programming chapter demonstrates the improved

techniques afforded by more recent versions of Java (especially Java

8) that make concurrency, if not easy, then much easier.



What is a Thread?

Concurrency partitions a program into separate, independently

running tasks. Each task is driven by a thread of execution, which we

typically shorten to just thread. A thread is a single sequential flow of

control within an operating-system process. A process can thus have

multiple concurrently-executing tasks, but you program as if each task

has a processor to itself. The threading model is a programming

convenience to simplify juggling multiple tasks within a single

program. The operating system allocates time from the processor(s)

among all of your threads.

The core mechanism of Java concurrency is the Thread class. In

initial versions of the language, Threads were intended to be created

and managed directly by the programmer. As the language evolved

and people discovered better approaches, intermediate mechanisms—

in particular the Executor—were added to remove the mental

overhead (and mistakes) of managing threads yourself. Eventually,



even better mechanisms than Executor were developed, as shown in

the Concurrent Programming chapter.

A Thread is a software construct that connects a task to a processor.

Although creating and using Threads seems similar to any other

class, under the covers they are very different. When you create a

Thread, the JVM allocates a significant chunk of memory in a special

area reserved just for Threads, to provide everything necessary to

run a task:

A program counter indicating the next JVM bytecode instruction

to execute.

A stack to support the execution of Java code, containing

information about the methods this thread has called to reach the

current point of execution. It also contains all local variables for

each method being executed (including primitives and references

to heap objects). This stack is typically between 64K and 1M per

thread.1

A second stack for native code.



Storage for thread-local variables.

Housekeeping state variables to control the thread.

All code including main() runs inside some thread. Whenever a

method is called, the current program counter is pushed onto that

thread’s stack, then the stack pointer is moved down enough to create

a stack frame with all the storage for that method’s local variables,

arguments, and the return value. All local primitives go directly on the

stack. While any references to objects created in the method (or used

by the method) live in the stack frame, the objects themselves go on

the heap. There’s only one heap, shared between all threads in the

program.

On top of all this, the Thread must be registered with the operating

system (OS), so it can actually be connected to a processor at some

point. This is managed for you as part of the Thread construction

process. Java uses the mechanisms in the underlying OS to manage

the execution of threads.

The Optimal Number of

Threads

If you look at the examples in Concurrent Programming that use
CachedThreadPool, you’ll see that the ExecutorService allocates

a thread for each task we submit. However, the parallel Stream in



CountingStream.java only allocated 8 threads ( worker s 1-7 and a thread
for main(), which it cleverly used for an additional parallel

stream). If you try increasing the upper bound of the range(), you’ll

see no additional threads are created. Why is this?

We can discover the number of processors on the current machine:

// lowlevel/NumberOfProcessors.java

public class NumberOfProcessors {

public static void main(String[] args) {

System.out.println(

Runtime.getRuntime().availableProcessors());

}

}

/* Output:

8

*/

On my machine (using an Intel Core i7), I have four cores, each

presenting two hyperthreads (a hardware trick to produce very rapid

context switching on a single processor, which can in some situations

make it look like two hardware threads). Although this is a common

configuration on “recent” machines (at the time of this writing), you

might see a different result—along with an equivalent number of



default threads in CountingStream.java.

Your operating system might have a way to discover more information

about your processor. For example, on Windows 10, press the “Start”

button, type “Task Manager” and the “Enter” key. Click “More

Details.” Choose the “Performance” tab, and you’ll see all kinds of

information about your hardware, including “Cores” and “Logical

Processors.”

It turns out that the “generic” optimal number of threads is the

number of processors available (this might not be true for specific

problems). This comes from the cost of context switching between

Java threads: storing the current state of the thread being suspended

and retrieving the other thread’s current state to continue execution

from where it entered suspension. For eight processors and eight

(compute-intensive) Java threads, the JVM never has to switch

contexts when running those eight tasks. For fewer tasks than the

number of processors, it doesn’t help to allocate more threads.

Intel hyperthreading, which defines the number of “logical



processors,” does not increase computational capacity—the feature

maintains extra thread contexts at a hardware level, which speeds

context switches, and this helps in the responsiveness of user

interfaces, for example. For compute-intensive tasks, consider

matching the number of threads to the number of physical cores (not

hyperthreads). Although Java considers each hyperthread to be a

processor, this appears to be a mistake influenced by Intel’s over-

marketing of hyperthreads. Despite this, for programming simplicity

I’ll just allow the JVM to decide the default number of threads. You

will want to experiment with your production applications. This

doesn’t mean that matching the number of threads to the number of

processors is appropriate for all problems; on the contrary it’s

primarily used only for compute-intensive solutions.

How Many Threads Can I

Create?

The largest part of a Thread object is the Java stack for executing

methods. Discovering the size of a Thread object varies between

operating systems. This program tests it by creating Thread objects

until the JVM runs out of memory:

// lowlevel/ThreadSize.java



// {ExcludeFromGradle} Takes a long time or hangs

import java.util.concurrent.*;

import onjava.Nap;

public class ThreadSize {

static class Dummy extends Thread {

@Override

public void run() { new Nap(1); }

}

public static void main(String[] args) {

ExecutorService exec =

Executors.newCachedThreadPool();

int count = 0;

try {

while(true) {

exec.execute(new Dummy());

count++;

}

} catch(Error e) {

System.out.println(

e.getClass().getSimpleName() + ": " + count);



System.exit(0);

} finally {

exec.shutdown();

}

}

}

A CachedThreadPool continues creating Threads as long as you keep

passing it tasks. Passing a Dummy object to execute() starts the

task, allocating a new Thread if one isn’t available. The pause()

size must be large enough that tasks don’t start finishing (thus freeing

up existing Threads for new tasks). As long as tasks keep coming in

and not finishing, a CachedThreadPool will eventually run out of

memory.

I wasn’t always able to cause out-of-memory errors on every machine I

tried. On one machine, I see this result:

>java ThreadSize

OutOfMemoryError: 2816

We can reduce each Threads stack size using the -Xss flag. The

minimum stack size allowed is 64k:

>java -Xss64K ThreadSize



OutOfMemoryError: 4952

If we increase the stack size to 2 Megabytes, we can allocate far fewer

threads:

>java -Xss2M ThreadSize

OutOfMemoryError: 722

The default Windows stack size is 320K, which we can verify by noting

it gives us about the same number as when we don’t set the stack size

at all:

>java -Xss320K ThreadSize

OutOfMemoryError: 2816

You can also increase the JVM’s maximum memory allocation using

the -Xmx flag:

>java -Xss64K -Xmx5M ThreadSize

OutOfMemoryError: 5703

Notice that the operating system may also apply limits to the number

of threads allowed.

So the answer to the question “how many threads can I have” is “a few

thousand.” If you find yourself allocating thousands of threads,

however, you might want to rethink your approach; the appropriate

question is “how many threads do I need?”



The WorkStealingPool

This is an ExecutorService that automatically creates a thread

pool using all available processors (as reported by the JVM).

// lowlevel/WorkStealingPool.java

import java.util.stream.*;

import java.util.concurrent.*;

class ShowThread implements Runnable {

@Override

public void run() {

System.out.println(

Thread.currentThread().getName());

}

}

public class WorkStealingPool {

public static void main(String[] args)

throws InterruptedException {

System.out.println(

Runtime.getRuntime().availableProcessors());

ExecutorService exec =

Executors.newWorkStealingPool();



IntStream.range(0, 10)

.mapToObj(n -> new ShowThread())

.forEach(exec::execute);

exec.awaitTermination(1, TimeUnit.SECONDS);

}

}

/* Output:

8

ForkJoinPool-1-worker-2

ForkJoinPool-1-worker-1

ForkJoinPool-1-worker-2

ForkJoinPool-1-worker-3

ForkJoinPool-1-worker-2

ForkJoinPool-1-worker-1

ForkJoinPool-1-worker-3

ForkJoinPool-1-worker-1

ForkJoinPool-1-worker-4

ForkJoinPool-1-worker-2

*/



The Work Stealing algorithm allows threads that have run out of work items
in their input queue to “steal” work items from other queues.

The goal is to distribute work items among processors, thus making

maximal use of all available processors for compute-intensive tasks. It

is also used in Java’s fork/join framework.

Catching Exceptions

This might surprise you:

// lowlevel/SwallowedException.java

import java.util.concurrent.*;

public class SwallowedException {

public static void main(String[] args)

throws InterruptedException {

ExecutorService exec =

Executors.newSingleThreadExecutor();

exec.submit(() -> {

throw new RuntimeException();

https://en.wikipedia.org/wiki/Work_stealing


});

exec.shutdown();

}

}

This program outputs … nothing (if, however, you replace submit()

with execute(), you will see the exception). This points out that

exceptions thrown inside threads are tricky, and require special

attention.

You can’t catch an exception that has escaped from a thread. Once an

exception gets outside of a task’s run() method, it will propagate out

to the console unless you take special steps to capture such errant

exceptions.

Here’s a task that throws an exception which propagates outside of its

run() method, and a main() that shows what happens when you run it:

// lowlevel/ExceptionThread.java

// {ThrowsException}

import java.util.concurrent.*;

public class ExceptionThread implements Runnable {

@Override

public void run() {



throw new RuntimeException();

}

public static void main(String[] args) {

ExecutorService es =

Executors.newCachedThreadPool();

es.execute(new ExceptionThread());

es.shutdown();

}

}

/* Output:

___[ Error Output ]___

Exception in thread "pool-1-thread-1"

java.lang.RuntimeException

at ExceptionThread.run(ExceptionThread.java:8)

at java.util.concurrent.ThreadPoolExecutor.runW

orker(ThreadPoolExecutor.java:1142)

at java.util.concurrent.ThreadPoolExecutor$Work

er.run(ThreadPoolExecutor.java:617)

at java.lang.Thread.run(Thread.java:745)

*/



The output is (after trimming some qualifiers to fit):

Exception in thread "pool-1-thread-1" RuntimeException

at ExceptionThread.run(ExceptionThread.java:9)

at ThreadPoolExecutor.runWorker(...)

at ThreadPoolExecutor$Worker.run(...)

at java.lang.Thread.run(Thread.java:745)

Encompassing the body of main within a try-catch block is

unsuccessful:

// lowlevel/NaiveExceptionHandling.java

// {ThrowsException}

import java.util.concurrent.*;

public class NaiveExceptionHandling {

public static void main(String[] args) {

ExecutorService es =

Executors.newCachedThreadPool();

try {

es.execute(new ExceptionThread());

} catch(RuntimeException ue) {

// This statement will NOT execute!

System.out.println("Exception was handled!");



} finally {

es.shutdown();

}

}

}

/* Output:

___[ Error Output ]___

Exception in thread "pool-1-thread-1"

java.lang.RuntimeException

at ExceptionThread.run(ExceptionThread.java:8)

at java.util.concurrent.ThreadPoolExecutor.runW

orker(ThreadPoolExecutor.java:1142)

at java.util.concurrent.ThreadPoolExecutor$Work

er.run(ThreadPoolExecutor.java:617)

at java.lang.Thread.run(Thread.java:745)

*/

This produces the same result as the previous example: an uncaught

exception.

To solve the problem, change the way the Executor produces

threads. Thread.UncaughtExceptionHandler is an interface



for attaching an exception handler to each Thread object.

Thread.UncaughtExceptionHandler.uncaughtException()

is automatically called when that thread is about to die from an

uncaught exception. To use it, we create a new type of

ThreadFactory which attaches a new

Thread.UncaughtExceptionHandler to each new Thread

object it creates. We pass that factory to the Executors method that

creates a new ExecutorService:

// lowlevel/CaptureUncaughtException.java

import java.util.concurrent.*;

class ExceptionThread2 implements Runnable {

@Override

public void run() {

Thread t = Thread.currentThread();

System.out.println("run() by " + t.getName());

System.out.println(

"eh = " + t.getUncaughtExceptionHandler());

throw new RuntimeException();

}

}



class MyUncaughtExceptionHandler implements

Thread.UncaughtExceptionHandler {

@Override

public void uncaughtException(Thread t, Throwable e) {

System.out.println("caught " + e);

}

}

class HandlerThreadFactory implements ThreadFactory {

@Override

public Thread newThread(Runnable r) {

System.out.println(this + " creating new Thread");

Thread t = new Thread(r);

System.out.println("created " + t);

t.setUncaughtExceptionHandler(

new MyUncaughtExceptionHandler());

System.out.println(

"eh = " + t.getUncaughtExceptionHandler());

return t;

}

}



public class CaptureUncaughtException {

public static void main(String[] args) {

ExecutorService exec =

Executors.newCachedThreadPool(

new HandlerThreadFactory());

exec.execute(new ExceptionThread2());

exec.shutdown();

}

}

/* Output:

HandlerThreadFactory@4e25154f creating new Thread

created Thread[Thread-0,5,main]

eh = MyUncaughtExceptionHandler@70dea4e

run() by Thread-0

eh = MyUncaughtExceptionHandler@70dea4e

caught java.lang.RuntimeException

*/

Additional tracing verifies that the threads created by the factory get

the new UncaughtExceptionHandler. The uncaught exceptions

are now captured by uncaughtException.



The above example sets the handler on a case-by-case basis. If you

know that you’re going to use the same exception handler everywhere,

an even simpler approach is to set the default uncaught exception

handler, which sets a static field inside the Thread class:

// lowlevel/SettingDefaultHandler.java

import java.util.concurrent.*;

public class SettingDefaultHandler {

public static void main(String[] args) {

Thread.setDefaultUncaughtExceptionHandler(

new MyUncaughtExceptionHandler());

ExecutorService es =

Executors.newCachedThreadPool();

es.execute(new ExceptionThread());



es.shutdown();

}

}

/* Output:

caught java.lang.RuntimeException

*/

This handler is only called if there is no per-thread uncaught exception

handler. The system checks for a per-thread version, and if it doesn’t

find one it checks to see if the thread group specializes its

uncaughtException() method; if not, it calls the

defaultUncaughtExceptionHandler.

Compare this with the improved approach seen with

CompletableFutures.

Sharing Resources

You can think of a single-threaded program as one lonely entity

moving around through your problem space and doing one thing at a

time. Because there’s only one entity, you never think about the

problem of two entities trying to use the same resource at the same

time: problems such as two people trying to park in the same space,

walk through a door at the same time, or even talk at the same time.



With concurrency, things aren’t lonely anymore, but now two or more

tasks might interfere with each other. If you don’t prevent such a

collision, you’ll have two tasks trying to access the same bank account

at the same time, print to the same printer, adjust the same valve, and

so on.

Resource Contention

When you start a task to perform some work, the results of that work

can be captured in two different ways: through side effects or via a return
value.

Programmatically, side effects can seem easier: you just use your

results to manipulate something in the environment. For example,

your task might perform some calculation, then directly write its

results into a collection.

The problem with this approach is that the collection is typically a

shared resource. When more than one task is running, any task might

read or write a shared resource at the same time. This reveals the

problem of resource contention, one of the main pitfalls when working

with tasks.

You don’t think about resource contention in a single-threaded system

because you’re never doing more than one thing at a time. When you

have multiple tasks, you must always guard against resource



contention.

One approach to the problem is to use a collection that copes with

resource contention. If more than one task tries to write to such a

collection at the same time, such collections compensate for the

problem. You’ll find a number of classes in the Java concurrency

libraries that attempt to solve resource contention problems; in this

appendix you’ll see a handful of these but the coverage is not

comprehensive.

Consider the following example, where one task generates even

numbers and other tasks consume those numbers. Here, the only job

of the consumer tasks is to check the validity of the even numbers.

We shall define EvenChecker, the consumer task, to make it

reusable in the subsequent examples. To decouple EvenChecker

from our various experimental generators, we’ll first create an abstract

class called IntGenerator, which contains the minimum necessary

methods that EvenChecker must know about: it has a next()

method and it can be canceled.

// lowlevel/IntGenerator.java

import java.util.concurrent.atomic.AtomicBoolean;

public abstract class IntGenerator {



private AtomicBoolean canceled =

new AtomicBoolean();

public abstract int next();

public void cancel() { canceled.set(true); }

public boolean isCanceled() {

return canceled.get();

}

}

cancel() changes the state of the AtomicBoolean canceled

flag and isCanceled() tells whether the flag is set. Because the

canceled flag is AtomicBoolean, it is atomic, which means

simple operations like assignment and value return happen without

the possibility of interruption, so you can’t see the field in an

intermediate state in the midst of those simple operations. You’ll learn

more about atomicity and the Atomic classes later in this appendix.

Any IntGenerator can be tested with the following

EvenChecker class:

// lowlevel/EvenChecker.java

import java.util.*;

import java.util.stream.*;



import java.util.concurrent.*;

import onjava.TimedAbort;

public class EvenChecker implements Runnable {

private IntGenerator generator;

private final int id;

public EvenChecker(IntGenerator generator, int id) {

this.generator = generator;

this.id = id;

}

@Override

public void run() {

while(!generator.isCanceled()) {

int val = generator.next();

if(val % 2 != 0) {

System.out.println(val + " not even!");

generator.cancel(); // Cancels all EvenCheckers

}

}

}

// Test any IntGenerator:



public static void test(IntGenerator gp, int count) {

List<CompletableFuture<Void>> checkers =

IntStream.range(0, count)

.mapToObj(i -> new EvenChecker(gp, i))

.map(CompletableFuture::runAsync)

.collect(Collectors.toList());

checkers.forEach(CompletableFuture::join);

}

// Default value for count:

public static void test(IntGenerator gp) {

new TimedAbort(4, "No odd numbers discovered");

test(gp, 10);

}

}

The test() method starts a number of EvenCheckers that access

the same IntGenerator. EvenChecker tasks constantly read and

test the values from their associated IntGenerator. If the

IntGenerator causes a failure, test() reports it and returns.

All EvenChecker tasks that depend on the IntGenerator object

check it to see whether it’s been canceled. If



generator.isCanceled() is true, run() returns. Any

EvenChecker task can call cancel() on the IntGenerator,

which causes all other EvenCheckers using that IntGenerator

to gracefully shut down.

In this design, tasks sharing a common resource (the

IntGenerator) watch that resource for the signal to terminate.

This eliminates the so-called race condition, where two or more tasks

race to respond to a condition and thus collide or otherwise produce

inconsistent results.

You must carefully think about and protect against all possible ways a

concurrent system can fail. For example, a task cannot depend on

another task, because task shutdown order is not guaranteed. Here, by

making tasks depend on a non-task object, we eliminate the potential

race condition.

Normally, we presume that test() eventually fails because the

EvenChecker tasks are able to access the information in

IntGenerator while it’s in an “incorrect” state. However, it might

not detect the problem until the IntGenerator has completed

many cycles, depending on the particulars of your operating system

and other implementation details. To ensure that this book’s



automated build doesn’t get stuck, we use TimedAbort, defined

here:

// onjava/TimedAbort.java

// Terminate a program after t seconds

package onjava;

import java.util.concurrent.*;

public class TimedAbort {

private volatile boolean restart = true;

public TimedAbort(double t, String msg) {

CompletableFuture.runAsync(() -> {

try {

while(restart) {

restart = false;

TimeUnit.MILLISECONDS

.sleep((int)(1000 * t));

}

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

System.out.println(msg);



System.exit(0);

});

}

public TimedAbort(double t) {

this(t, "TimedAbort " + t);

}

public void restart() { restart = true; }

}

We create a Runnable using a lambda expression, which is executed

using the static runAsync() method of

CompletableFuture. The value of runAsync() is that it returns

immediately. As a result, TimedAbort doesn’t hold any task open

that would otherwise complete, but if it takes too long it will still

terminate that task (TimedAbort is sometimes referred to as a

daemon).

TimedAbort also allows you to restart() it, in order to keep a

program open if there is some kind of useful activity going on.

We can see TimedAbort in action:

// lowlevel/TestAbort.java

import onjava.*;



public class TestAbort {

public static void main(String[] args) {

new TimedAbort(1);

System.out.println("Napping for 4");

new Nap(4);

}

}

/* Output:

Napping for 4

TimedAbort 1.0

*/

If you comment out the Nap line, the program exits immediately,

showing that TimedAbort is not holding the program open.

The first IntGenerator we’ll look at has a next() that produces a

series of even values:

// lowlevel/EvenProducer.java

// When threads collide

// {VisuallyInspectOutput}

public class EvenProducer extends IntGenerator {

private int currentEvenValue = 0;



@Override

public int next() {

++currentEvenValue; // [1]

++currentEvenValue;

return currentEvenValue;

}

public static void main(String[] args) {

EvenChecker.test(new EvenProducer());

}

}

/* Output:

419 not even!

425 not even!

423 not even!

421 not even!

417 not even!

*/

[1] It’s possible for one task to call next() after another task has

performed the first increment of currentEvenValue but not

the second. This puts the value into an “incorrect” state.



To prove this can happen, EvenChecker.test() creates a group

of EvenChecker objects to continually read the output of an

EvenProducer and test to see if each one is even. If not, the error is

reported and the program is shut down.

Part of the problem with multithreaded programs is they can appear

correct even when there’s a bug, if the probability for failure is very

low.

It’s important to note that the increment operation itself requires

multiple steps, and the task can be suspended by the threading

mechanism in the midst of an increment—that is, increment is not an

atomic operation in Java. So even a single increment isn’t safe without

protecting the task.

The program doesn’t always terminate the first time a non-even

number is produced. All the tasks don’t instantly shut down, which is

typical of a concurrent program.

Resolving Resource

Contention



The previous example shows a fundamental problem when you use

threads: You never know when a thread might run. Imagine sitting at a

table with a fork, about to spear the last piece of food on a platter, and

as your fork reaches for it, the food suddenly vanishes … because your

thread was suspended and another diner came in and ate the food.

That’s the problem you’re dealing with when writing concurrent

programs. For concurrency to work, you need some way to prevent

two tasks from accessing the same resource, at least during critical

periods.

Preventing this kind of collision is a matter of putting a lock on a

resource when one task is using it. The first task that accesses a

resource must lock it, then the other tasks cannot access that resource

until it is unlocked, at which time another task locks and uses it, and

so on. If the front seat of the car is the limited resource, the child who

shouts “shotgun!” acquires the lock (for the duration of that trip).

To solve the problem of thread collision, basic concurrency schemes

serialize access to shared resources. This means only one task at a time is
allowed to access the shared resource. This is ordinarily

accomplished by putting a clause around a piece of code that only

allows one task at a time to pass through that piece of code. Because

this clause produces mutual exclusion, a common name for such a



mechanism is mutex.

Consider the bathroom in your house; multiple people (tasks driven by

threads) want exclusive use of the bathroom (the shared resource). To

access the bathroom, a person knocks on the door to see if it’s

available. If so, they enter and lock the door. Any other task that wants

to use the bathroom is “blocked” from using it, so those tasks wait at

the door until the bathroom is available.

The analogy breaks down a bit when the bathroom is released and it

comes time to give access to another task. There isn’t actually a line of

people, and we don’t know for sure who gets the bathroom next,

because the thread scheduler isn’t deterministic. Instead, it’s as if

there is a group of blocked tasks milling about in front of the

bathroom, and when the task that has locked the bathroom unlocks it

and emerges, the thread scheduler decides which task will be the next

to go in.

To prevent collisions over resources, Java has built-in support in the

form of the synchronized keyword. When a task wishes to execute

a piece of code guarded by the synchronized keyword, the Java

compiler generates the code to see if the lock is available. If it is, the

task acquires it, executes the code, and releases it.



The shared resource is typically just a piece of memory in the form of

an object, but it can also be a file, an I/O port, or something like a

printer. To control access to a shared resource, you first put it inside

an object. Then any method that uses the resource can be made

synchronized. If a task is inside a call to one of the

synchronized methods, all other tasks are blocked from entering

any of the synchronized methods of that object until the first task

returns from its call.

You typically make fields private and access those fields only

through methods. You prevent collisions by declaring methods using

the synchronized keyword, like this:

synchronized void f() { /* ... */ }

synchronized void g() { /* ... */ }

All objects automatically contain a single lock (also called a monitor).

When you call any synchronized method, that object is locked and

no other synchronized method of that object can be called until

the first one finishes and releases the lock. If f() is called for an

object by one task, a different task cannot call f() or g() for the

same object until f() is completed and releases the lock. Thus, there

is a single lock shared by all synchronized methods of a particular



object, and this lock can prevent object memory from being written by

more than one task at a time.

It’s especially important to make fields private when working with

concurrency; otherwise the synchronized keyword cannot prevent

another task from accessing a field directly, and thus producing

collisions.

One thread can acquire an object’s lock multiple times. This happens if

one method calls a second method on the same object, which in turn

calls another method on the same object, etc. The JVM keeps track of

the number of times the object is locked. If the object is unlocked, it

has a count of zero. As a thread acquires the lock for the first time, the

count goes to one. Each time the same thread acquires another lock on

the same object, the count is incremented. Naturally, multiple lock

acquisition is only allowed for the thread that acquired the lock in the

first place. Each time the thread leaves a synchronized method,

the count is decremented, until the count goes to zero, releasing the

lock entirely for use by other threads.



There’s also a single lock per class (as part of the Class object for

that class), so synchronized static methods can lock each

other out from simultaneous access of static data on a class-wide

basis.

When should you synchronize? Apply Brian’s Rule of

Synchronization:2

If you are writing a variable that might

next be read by another thread, or

reading a variable that might have last

been written by another thread, you must

use synchronization, and further, both the

reader and the writer must synchronize

using the same monitor lock.

With more than one method in your class dealing with critical data,

you must synchronize all relevant methods. If you synchronize only

one of the methods, then the others are free to ignore the object lock

and can be called with impunity. This is an important point: Every

operation that accesses a critical shared resource must be

synchronized or it won’t work right.

Synchronizing the



EvenProducer

By adding synchronized to EvenProducer.java, we can

prevent the undesirable thread access:

// lowlevel/SynchronizedEvenProducer.java

// Simplifying mutexes with the synchronized keyword

import onjava.Nap;

public class

SynchronizedEvenProducer extends IntGenerator {

private int currentEvenValue = 0;

@Override

public synchronized int next() {

++currentEvenValue;

new Nap(0.01); // Cause failure faster

++currentEvenValue;

return currentEvenValue;

}



public static void main(String[] args) {

EvenChecker.test(new SynchronizedEvenProducer());

}

}

/* Output:

No odd numbers discovered

*/

A Nap() is inserted between the two increments, to raise the

likelihood of a context switch while currentEvenValue is in an

odd state. Because the mutex prevents more than one task at a time in

the critical section, this will not produce a failure. The first task that

enters next() acquires the lock, and any further tasks that try to

acquire the lock are blocked from doing so until the first task releases

the lock. At that point, the scheduling mechanism selects another task

that is waiting on the lock. This way, only one task at a time can pass

through the code that is guarded by the mutex.

The volatile Keyword

volatile is perhaps the most subtle and difficult keyword in Java.

Fortunately, in modern Java you can virtually always avoid using it,



and if you do see it used in code you should be skeptical and

suspicious—there’s a good chance that either the code is old, or

whoever wrote that code doesn’t understand the ramifications of

volatile or concurrency in general (or both).

volatile is used for three reasons.

Word Tearing

Word tearing occurs when your data type is large enough (long and

double in Java, which are both 64 bits) that the process of writing to

a variable happens in two steps. The JVM is allowed to perform reads

and writes of 64-bit quantities as two separate 32-bit operations,3

raising the possibility that a context switch happens in the middle of a

read or write, so other tasks see incorrect results. This is called word

tearing because you might see the value after only part of it changes.



Basically, a task can sometimes read the variable after the first step but

before the second, resulting in a garbage value (This is not a problem

with small variables such as boolean or int; anything except long

or double).

Defining a long or double as volatile—in the absence of any

other protection—prevents word tearing. However, volatile is

superseded if those variables are guarded using synchronized or

one of the java.util.concurrent.atomic classes. Also,

volatile doesn’t affect the fact that an increment isn’t an atomic

operation.

Visibility

The second problem falls under the “everything matters” part of

Maxim 2 of The Four Maxims of Java Concurrency. You must assume that
every task has its own processor, and each processor has its own

local memory cache. This cache allows the processor to run faster

because it won’t always need to fetch data from main memory, which

takes significantly longer than using cached values.

The problem arises because Java tries to be as efficient as possible.

The whole point of the cache is to avoid reading from main memory.

But with concurrency, it sometimes becomes unclear when Java

should refresh values from main memory into the local cache—this



issue is called cache coherence.

Each thread can store local copies of variables in the processor cache.

Defining a field as volatile prevents these compiler optimizations

so that reads and writes go directly to memory, and are not cached. As

soon as a write occurs for that field, all reads across all tasks will see

the change. If a volatile field happens to be held in a local cache, it

is immediately written through to main memory, and any reads of that

field will always occur from main memory.

volatile should be applied to a variable when:

1. That variable is simultaneously accessed by multiple tasks.

2. At least one of those accesses is a write.

3. You are trying to avoid synchronization (in modern Java, you can

avoid synchronization using higher-level tools).

For example, if you use a variable as a flag to stop a task, that variable

must at least be declared volatile (although that doesn’t

necessarily guarantee thread-safety for such a flag). Otherwise, when

one task makes changes to the flag, those changes can be stored in the

local processor cache and not flushed to main memory. When another

task looks at the flag it doesn’t see the changes. (I prefer the

AtomicBoolean approach for flags shown in Concurrent



Programming in the section Terminating Long-Running Tasks).

Any writes that a task makes to its own variables are always visible to

that task, so you don’t need to make a variable volatile if it is only

used within a task.

If a single thread writes to a variable and other threads only read it,

you can get away with making that variable volatile. In general, if

you have multiple threads writing to a variable, volatile won’t

solve your problems, and you must use synchronized instead to

prevent race conditions. There is a special exception to this: It’s

possible to have multiple threads writing to that variable, as long as

they don’t need to read it first and use the value to create the new

value to write into the variable. If those multiple threads use the old

value in the result, you have a race condition because one of the other

threads could modify the variable while your thread is doing its

calculation. Even if you start out doing it right, imagine how easy it is

to forget and introduce a breaking change during code modifications

or maintenance, or for a different programmer who doesn’t

understand the issue (This is especially problematic in Java because

programmers tend to rely heavily on compile-time checking to tell

them if their code is correct).



It’s important to understand that atomicity and volatility are distinct

concepts. An atomic operation on a non-volatile variable has no

guarantees about whether it is flushed to main memory.

Synchronization also causes flushing to main memory, so if a variable

is completely guarded by synchronized methods or blocks (or is

one of the java.util.concurrent.atomic types), it is not

necessary to make it volatile.

Reordering and Happens

Before

Java may optimize performance by reordering instructions, as long as

the result produces no changes in program behavior. This reordering,

however, can affect the way the local processor cache interacts with

main memory, producing subtle program bugs. It wasn’t until Java 5

that this issue was understood and fixed. Now the volatile

keyword prevents problematic reordering of reading and writing

instructions around volatile variables. This reordering rule is

called the happens before guarantee.



Instructions that happen before the read or write of a volatile

variable are guaranteed to happen before that read or write. Similarly,

any instructions that follow a read or write of a volatile variable

are guaranteed to happen after the read or write. For example:

// lowlevel/ReOrdering.java

public class ReOrdering implements Runnable {

int one, two, three, four, five, six;

volatile int volaTile;

@Override

public void run() {

one = 1;

two = 2;

three = 3;

volaTile = 92;

int x = four;

int y = five;

int z = six;

}

}

The assignments of one, two and three may be reordered, as long



as they all happen before the volatile write. Similarly, the x, y and

z statements may be reordered as long as the volatile write

happens before all of them. The volatile operation is often called a

memory barrier. The happens before guarantee ensures that read and

write instructions of volatile variables cannot be reordered across

a memory barrier.

The happens before guarantee has another effect: When a thread

writes to a volatile variable, then all other variables—including

non-volatiles—changed by the thread before writing to the

volatile variable are also flushed to main memory. When a thread

reads a volatile variable it also reads all other variables—including

non-volatiles—that were flushed to main memory together with

the volatile variable. Although this is an important feature that

solves some very devious bugs that appeared in Java before version 5,

you shouldn’t rely on it to “automatically” make surrounding variables

volatile. If you intend for a variable to be volatile, that should

be clear to anyone maintaining your code.



When to use volatile

With earlier versions of Java it wasn’t too hard to write an example

that demonstrated the need for volatile. If you search you can find

such examples, but if you try them with Java 8 they don’t work (none

that I’ve found). I have struggled to write such an example but to no

avail. This might result from improvements in the JVM or the

hardware or both. The effect could be beneficial for existing programs

with storage that ought to be volatile but isn’t; for such programs,

failures will occur far less often—and the problem will be that much

harder to track down.

If you are attempting to use volatile, you’re probably trying to

make a variable thread-safe without incurring the cost of

synchronization. Because volatile is so subtle and tricky to use, I

suggest not using it at all; instead, use one of the

java.util.concurrent.atomic classes, described later in this

appendix. Those give complete thread-safety at a much lower cost than



synchronization.

If you are trying to debug someone else’s concurrency code, first look

for uses of volatile and replace those with Atomic variables.

Unless you know for sure that the programmer has a high level of

understanding of concurrency, it’s likely they are misusing

volatile.

Atomicity

An oft-repeated but incorrect piece of lore in Java threading

discussions is that “Atomic operations do not need synchronization.”

An atomic operation is one that cannot be interrupted by the thread

scheduler; if the operation begins, it runs to completion before the

possibility of a context switch. Relying on innate atomicity (atomicity

that is part of the nature of a particular data type) is tricky and

dangerous—you should only try to use innate atomicity instead of

synchronization or a thread-safe data structure if you are a

concurrency expert, or you have help from such an expert. If you think

you’re smart enough to play with this kind of fire, take this test:

The Goetz Test: If you can write a high-

performance JVM for a modern

microprocessor, then you are qualified to



think about whether you can avoid

synchronizing. 4

It’s useful to know about innate atomicity, and to know that, along with other
advanced techniques, it was used to implement some of the

more clever java.util.concurrent library components. But

strongly resist the urge to rely on it yourself.

Atomicity applies to “simple operations” on primitive types except for

longs and doubles. Reading and writing primitive variables other

than long and double is guaranteed to happen as indivisible

(atomic) operations.

Atomic operations are thus not interruptible by the threading

mechanism. Expert programmers can take advantage of this to write

lock-free code, which does not need synchronization. But even this is

an oversimplification. Sometimes, even when it seems like an atomic

operation should be safe, it might not be. Readers of this book will not

typically pass the aforementioned Goetz Test, and will thus not be

qualified to try to replace synchronization with atomic operations.

Trying to remove synchronization is usually a sign of premature

optimization, and will cause you much trouble, probably without

gaining much, or anything.

On multicore systems, visibility rather than atomicity is much more of



an issue than on single-processor systems. Changes made by one task,

even if they’re atomic in the sense of not being interruptible, might not

be visible to other tasks (the changes might be temporarily stored in a

local processor cache, for example), so different tasks have a different

view of the application’s state. The synchronization mechanism, on the

other hand, forces changes by one task on a multiprocessor system to

be visible across the application. Without synchronization, it’s

indeterminate when changes become visible.

What qualifies as an atomic operation? Assignment and returning the

value in a field might be. In C++ even the following might be atomic:

i++; // Might be atomic in C++

i += 2; // Might be atomic in C++

But in C++, this depends on the compiler and processor. You’re unable

to write cross-platform code in C++ that relies on atomicity, because

C++5 didn’t have a consistent memory model, as Java does.

In Java, the above operations are definitely not atomic, as shown by

the JVM instructions produced from the following methods:

// lowlevel/NotAtomic.java

// {javap -c NotAtomic}

// {VisuallyInspectOutput}



public class NotAtomic {

int i;

void f1() { i++; }

void f2() { i += 3; }

}

/* Output:

Compiled from "NotAtomic.java"

public class NotAtomic {

int i;

public NotAtomic();

Code:

0: aload_0

1: invokespecial #1 // Method

java/lang/Object."<init>":()V

4: return

void f1();

Code:

0: aload_0

1: dup

2: getfield #2 // Field



i:I

5: iconst_1

6: iadd

7: putfield #2 // Field

i:I

10: return

void f2();

Code:

0: aload_0

1: dup

2: getfield #2 // Field

i:I

5: iconst_3

6: iadd

7: putfield #2 // Field

i:I

10: return

}

*/

Each instruction produces a “get” and a “put,” with instructions in



between. So in between getting and putting, another task could modify

the field, and thus the operations are not atomic.

Let’s test this idea of atomicity by defining an abstract class with a

method that increments a integer value by even amounts, and a

run() that constantly calls that method:

// lowlevel/IntTestable.java

import java.util.function.*;

public abstract class

IntTestable implements Runnable, IntSupplier {

abstract void evenIncrement();

@Override

public void run() {

while(true)

evenIncrement();

}

}

IntSupplier is a functional interface with a getAsInt()

method.

Now we can create a test that starts run() as a separate task and then

fetches values to check whether they are even:



// lowlevel/Atomicity.java

import java.util.concurrent.*;

import onjava.TimedAbort;

public class Atomicity {

public static void test(IntTestable it) {

new TimedAbort(4, "No failures found");

CompletableFuture.runAsync(it);

while(true) {

int val = it.getAsInt();

if(val % 2 != 0) {

System.out.println("failed with: " + val);

System.exit(0);

}

}

}

}

It’s easy to blindly apply the idea of atomicity. Here, getAsInt()

appears to be safely atomic:

// lowlevel/UnsafeReturn.java

import java.util.function.*;



import java.util.concurrent.*;

public class UnsafeReturn extends IntTestable {

private int i = 0;

public int getAsInt() { return i; }

public synchronized void evenIncrement() {

i++; i++;

}

public static void main(String[] args) {

Atomicity.test(new UnsafeReturn());

}

}

/* Output:

failed with: 79

*/

However, Atomicity.test() fails with non-even values. Although

return i is indeed an atomic operation, the lack of synchronization

allows the value to be read while the object is in an unstable



intermediate state. On top of this, since i isn’t volatile either,

there are visibility problems. Both getValue() and

evenIncrement() must be synchronized (which also takes

care of i without making it volatile):

// lowlevel/SafeReturn.java

import java.util.function.*;

import java.util.concurrent.*;

public class SafeReturn extends IntTestable {

private int i = 0;

public synchronized int getAsInt() { return i; }

public synchronized void evenIncrement() {

i++; i++;

}

public static void main(String[] args) {

Atomicity.test(new SafeReturn());

}

}

/* Output:

No failures found

*/



Only concurrency experts are qualified to attempt optimizations in

situations like this; again, apply Brian’s Rule of Synchronization.

Josh’s Serial Numbers

As a second example, consider something even simpler: a class

producing serial numbers, inspired by Joshua Bloch’s Effective Java

Programming Language Guide (Addison-Wesley, 2001), p. 190. Each

call to nextSerialNumber() must return a unique value:

// lowlevel/SerialNumbers.java

public class SerialNumbers {

private volatile int serialNumber = 0;

public int nextSerialNumber() {

return serialNumber++; // Not thread-safe

}

}

SerialNumbers is about as simple a class as you can imagine, and

if you’re coming from C++ or some other low-level background, you

might expect the increment to be an atomic operation, because a C++

increment can often be implemented as a single microprocessor

instruction (although not in any consistent, reliable, cross-platform

fashion). As noted before, however, a Java increment is not atomic and



involves both a read and a write, so there’s room for threading

problems even in such a simple operation.

We throw in volatile here just to see if it might help. However, the

real problem is that nextSerialNumber() accesses a shared

mutable value without synchronizing.

To test SerialNumbers, we’ll create a set that doesn’t run out of

memory, in case it takes a long time to detect a problem. The

CircularSet shown here reuses the memory that stores ints,

eventually overwriting old values (duplicates often happen quickly

enough that you could probably use a java.util.Set instead):

// lowlevel/CircularSet.java

// Reuses storage so we don't run out of memory

import java.util.*;

public class CircularSet {

private int[] array;

private int size;

private int index = 0;

public CircularSet(int size) {

this.size = size;

array = new int[size];



// Initialize to a value not produced

// by SerialNumbers:

Arrays.fill(array, -1);

}

public synchronized void add(int i) {

array[index] = i;

// Wrap index and write over old elements:

index = ++index % size;

}

public synchronized boolean contains(int val) {

for(int i = 0; i < size; i++)

if(array[i] == val) return true;

return false;

}

}

The add() and contains() methods are synchronized to

prevent thread collisions.

SerialNumberChecker contains a CircularSet holding the

most recent serial numbers, and a run() that fills the

CircularSet and ensures those serial numbers are unique:



// lowlevel/SerialNumberChecker.java

// Test SerialNumbers implementations for thread-safety

import java.util.concurrent.*;

import onjava.Nap;

public class SerialNumberChecker implements Runnable {

private CircularSet serials = new CircularSet(1000);

private SerialNumbers producer;

public SerialNumberChecker(SerialNumbers producer) {

this.producer = producer;

}

@Override

public void run() {

while(true) {

int serial = producer.nextSerialNumber();

if(serials.contains(serial)) {

System.out.println("Duplicate: " + serial);

System.exit(0);

}

serials.add(serial);

}



}

static void test(SerialNumbers producer) {

for(int i = 0; i < 10; i++)

CompletableFuture.runAsync(

new SerialNumberChecker(producer));

new Nap(4, "No duplicates detected");

}

}

test() creates multiple tasks to contend over a single

SerialNumbers object. The competing SerialNumberChecker

tasks try to produce a duplicate serial number (this happens more

quickly on machines with more cores).

When we test the basic SerialNumbers class, it fails:

// lowlevel/SerialNumberTest.java

public class SerialNumberTest {

public static void main(String[] args) {

SerialNumberChecker.test(new SerialNumbers());

}

}

/* Output:



Duplicate: 148044

*/

volatile is no help here. To solve the problem, add the

synchronized keyword to nextSerialNumber():

// lowlevel/SynchronizedSerialNumbers.java

public class

SynchronizedSerialNumbers extends SerialNumbers {

private int serialNumber = 0;

public synchronized int nextSerialNumber() {

return serialNumber++;

}

public static void main(String[] args) {

SerialNumberChecker.test(

new SynchronizedSerialNumbers());

}

}

/* Output:



No duplicates detected

*/

volatile is no longer necessary, because the synchronized

keyword ensures the behavior of volatile.

Reading and assigning primitives are supposed to be safe atomic

operations. However, as seen in UnsafeReturn.java, it’s still easy

to use an atomic operation that accesses your object while it’s in an

unstable intermediate state. Making assumptions about this issue is

tricky and dangerous. The most sensible thing to do is just to follow

Brian’s Rule of Synchronization (and if you can, don’t share variables

in the first place).

Atomic Classes

Java 5 introduced special atomic variable classes such as

AtomicInteger, AtomicLong, AtomicReference, etc. that

provide atomic updates. These are fast, lock-free operations that take

advantage of machine-level atomicity available on modern processors.

We can rewrite UnsafeReturn.java using AtomicInteger:

// lowlevel/AtomicIntegerTest.java

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;



import java.util.*;

import onjava.*;

public class AtomicIntegerTest extends IntTestable {

private AtomicInteger i = new AtomicInteger(0);

public int getAsInt() { return i.get(); }

public void evenIncrement() { i.addAndGet(2); }

public static void main(String[] args) {

Atomicity.test(new AtomicIntegerTest());

}

}

/* Output:

No failures found

*/

We’ve eliminated the synchronized keyword by using

AtomicInteger.

Here is SynchronizedEvenProducer.java rewritten to use

AtomicInteger:

// lowlevel/AtomicEvenProducer.java

// Atomic classes: occasionally useful in regular code

import java.util.concurrent.atomic.*;



public class AtomicEvenProducer extends IntGenerator {

private AtomicInteger currentEvenValue =

new AtomicInteger(0);

@Override

public int next() {

return currentEvenValue.addAndGet(2);

}

public static void main(String[] args) {

EvenChecker.test(new AtomicEvenProducer());

}

}

/* Output:

No odd numbers discovered

*/

Again, the need for all other forms of synchronization is eliminated

using AtomicInteger.

Here is an implementation of SerialNumbers using



AtomicInteger:

// lowlevel/AtomicSerialNumbers.java

import java.util.concurrent.atomic.*;

public class

AtomicSerialNumbers extends SerialNumbers {

private AtomicInteger serialNumber =

new AtomicInteger();

public synchronized int nextSerialNumber() {

return serialNumber.getAndIncrement();

}

public static void main(String[] args) {

SerialNumberChecker.test(

new AtomicSerialNumbers());

}

}

/* Output:



No duplicates detected

*/

These are simple examples with a single field; when you create more

complex classes you must determine which fields need protection, and

in some cases you might still end up using the synchronized

keyword on methods.

Critical Sections

Sometimes, you only want to prevent multiple thread access to part of

the code inside a method instead of the entire method. The section of

code to isolate is called a critical section and is created with the same

synchronized keyword we use to protect an entire method, but

using a different syntax. Here, synchronized specifies the object

whose lock is used to synchronize the enclosed code:

synchronized(syncObject) {

// This code can be accessed

// by only one task at a time

}

This is also called a synchronized block. Before it can be entered, the

syncObject lock must be acquired. If some other task already has

this lock, then the critical section cannot be entered until the lock is



released. When this happens, the task trying to acquire that lock is

suspended. The scheduler periodically comes back and checks to see if

the lock has been released; if so it wakes up the task.

The primary motivation for using a synchronized block instead of

synchronizing the whole method is performance (and sometimes,

clever algorithms—but be especially wary of cleverness where

concurrency is concerned). The following example demonstrates that

synchronizing a block instead of the whole method can make a method

much more accessible to other tasks. The example counts the number

of successful accesses to method() and launches a number of tasks

that compete to try to call method():

// lowlevel/SynchronizedComparison.java

// Synchronizing blocks instead of entire methods

// speeds up access.

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;

import java.util.concurrent.atomic.*;

import onjava.Nap;

abstract class Guarded {



AtomicLong callCount = new AtomicLong();

public abstract void method();

@Override

public String toString() {

return getClass().getSimpleName() +

": " + callCount.get();

}

}

class SynchronizedMethod extends Guarded {

public synchronized void method() {

new Nap(0.01);

callCount.incrementAndGet();

}

}

class CriticalSection extends Guarded {

public void method() {

new Nap(0.01);

synchronized(this) {

callCount.incrementAndGet();

}



}

}

class Caller implements Runnable {

private Guarded g;

Caller(Guarded g) { this.g = g; }

private AtomicLong successfulCalls =

new AtomicLong();

private AtomicBoolean stop =

new AtomicBoolean(false);

@Override

public void run() {

new Timer().schedule(new TimerTask() {

public void run() { stop.set(true); }

}, 2500);

while(!stop.get()) {

g.method();

successfulCalls.getAndIncrement();

}

System.out.println(

"-> " + successfulCalls.get());



}

}

public class SynchronizedComparison {

static void test(Guarded g) {

List<CompletableFuture<Void>> callers =

Stream.of(

new Caller(g),

new Caller(g),

new Caller(g),

new Caller(g))

.map(CompletableFuture::runAsync)

.collect(Collectors.toList());

callers.forEach(CompletableFuture::join);

System.out.println(g);

}

public static void main(String[] args) {

test(new CriticalSection());

test(new SynchronizedMethod());

}

}



/* Output:

-> 243

-> 243

-> 243

-> 243

CriticalSection: 972

-> 69

-> 61

-> 83

-> 36

SynchronizedMethod: 249

*/

The Guarded class keeps track of the number of successful calls to

method() in callCount. SynchronizedMethod synchronizes

the entire method(), while CriticalSection uses a

synchronized block to only synchronize part of the method. This

way, the time-consuming Nap can be excluded from the

synchronized block. The output shows how much more available

method() is for CriticalSection.

Keep in mind that using a synchronized block has risks: it requires



that you know for certain that the un-synchronized code outside

the block is actually safe.

Caller is a task that tries to call method() as many times as

possible in a given period (and reports this number). To establish that

period, we use java.util.Timer which is a little dated but still

works well. It takes a TimerTask, which is not a functional interface

so we can’t use a lambda and must explicitly create the class (in this

case, using an anonymous inner class). When it times out, it sets the

AtomicBoolean stop flag to true so the loop will quit.

The test() method accepts a Guarded and creates four Caller

tasks, all attached to the same Guarded object, so they compete to

acquire the lock used by method().

You will typically see variation in output from one run to the next. The

results show that that CriticalSection allows much more access

to its method() than SynchronizedMethod. This is typically the

reason to use a synchronized block instead of synchronizing the

whole method: To allow other tasks more access (as long as it is safe to



do so).

Synchronizing on Other

Objects

A synchronized block must synchronize upon an object. The most

sensible object to use is usually just the current object via

synchronized(this), which is the approach taken in

CriticalSection in the previous example. That way, when the

lock is acquired for the synchronized block, other

synchronized methods and critical sections in the same object

cannot be called. Thus, the effect of the critical section when

synchronizing on this is to reduce the scope of synchronization.

Sometimes you must synchronize on another object, but if you do this

you must ensure that all relevant tasks are synchronizing on the same

object. The following example demonstrates that two tasks can enter

an object when the methods in that object synchronize on different

locks:

// lowlevel/SyncOnObject.java

// Synchronizing on another object

import java.util.*;

import java.util.stream.*;



import java.util.concurrent.*;

import onjava.Nap;

class DualSynch {

ConcurrentLinkedQueue<String> trace =

new ConcurrentLinkedQueue<>();

public synchronized void f(boolean nap) {

for(int i = 0; i < 5; i++) {

trace.add(String.format("f() " + i));

if(nap) new Nap(0.01);

}

}

private Object syncObject = new Object();

public void g(boolean nap) {

synchronized(syncObject) {

for(int i = 0; i < 5; i++) {

trace.add(String.format("g() " + i));

if(nap) new Nap(0.01);

}

}

}



}

public class SyncOnObject {

static void test(boolean fNap, boolean gNap) {

DualSynch ds = new DualSynch();

List<CompletableFuture<Void>> cfs =

Arrays.stream(new Runnable[] {

() -> ds.f(fNap), () -> ds.g(gNap) })

.map(CompletableFuture::runAsync)

.collect(Collectors.toList());

cfs.forEach(CompletableFuture::join);

ds.trace.forEach(System.out::println);

}

public static void main(String[] args) {

test(true, false);

System.out.println("****");

test(false, true);

}

}

/* Output:

f() 0



g() 0

g() 1

g() 2

g() 3

g() 4

f() 1

f() 2

f() 3

f() 4

****

f() 0

g() 0

f() 1

f() 2

f() 3

f() 4

g() 1

g() 2

g() 3

g() 4



*/

DualSync.f() synchronizes on this (by synchronizing the entire

method), and g() has a synchronized block that synchronizes on

syncObject. Thus, the two synchronizations are independent. This

is demonstrated in test() by running two independent task that call

f() and g. The fNap and gNap flags indicate whether f() or g(), respectively,
should call Nap() within its for loop. When f() naps,

for example, it continues to hold its lock, but you can see that this

doesn’t prevent g() from being called, and vice-versa.

Using Explicit Lock Objects

The java.util.concurrent library contains an explicit mutex

mechanism defined in java.util.concurrent.locks. The

Lock object must be explicitly created, locked and unlocked, so it

produces less elegant code than the built-in synchronized

keyword. However, it is more flexible for solving certain types of

problems. Here is SynchronizedEvenProducer.java

rewritten to use explicit Locks:



// lowlevel/MutexEvenProducer.java

// Preventing thread collisions with mutexes

import java.util.concurrent.locks.*;

import onjava.Nap;

public class MutexEvenProducer extends IntGenerator {

private int currentEvenValue = 0;

private Lock lock = new ReentrantLock();

@Override

public int next() {

lock.lock();

try {

++currentEvenValue;

new Nap(0.01); // Cause failure faster

++currentEvenValue;

return currentEvenValue;

} finally {

lock.unlock();

}

}

public static void main(String[] args) {



EvenChecker.test(new MutexEvenProducer());

}

}

/*

No odd numbers discovered

*/

MutexEvenProducer adds a mutex called lock and uses the

lock() and unlock() methods to create a critical section within

next(). When you use Lock objects, it is important to use the idiom

shown here: Right after the call to lock(), you must place a try-

finally statement with unlock() in the finally clause—this is

the only way to guarantee that the lock is always released. Note that

the return statement must occur inside the try clause to ensure

that the unlock() doesn’t happen too early and expose the data to a

second task.

Although the try-finally requires more code than using the

synchronized keyword, it also represents one of the advantages of

explicit Lock objects. If something fails using the synchronized

keyword, an exception is thrown, but you don’t get the chance to do

any cleanup to maintain your system in a good state. With explicit



Lock objects, you can maintain proper state in your system using the

finally clause.

In general, when you use synchronized, there is less code to write,

and the opportunity for user error is greatly reduced, so you’ll usually

only use the explicit Lock objects when you’re solving special

problems. For example, with the synchronized keyword, you can’t

try and fail to acquire a lock, or try to acquire a lock for a certain

amount of time, then give up—to do this, you must use the

concurrent library:

// lowlevel/AttemptLocking.java

// Locks in the concurrent library allow you

// to give up on trying to acquire a lock

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

import onjava.Nap;

public class AttemptLocking {

private ReentrantLock lock = new ReentrantLock();

public void untimed() {

boolean captured = lock.tryLock();

try {



System.out.println("tryLock(): " + captured);

} finally {

if(captured)

lock.unlock();

}

}

public void timed() {

boolean captured = false;

try {

captured = lock.tryLock(2, TimeUnit.SECONDS);

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

try {

System.out.println(

"tryLock(2, TimeUnit.SECONDS): " + captured);

} finally {

if(captured)

lock.unlock();

}



}

public static void main(String[] args) {

final AttemptLocking al = new AttemptLocking();

al.untimed(); // True -- lock is available

al.timed(); // True -- lock is available

// Now create a second task to grab the lock:

CompletableFuture.runAsync( () -> {

al.lock.lock();

System.out.println("acquired");

});

new Nap(0.1); // Give the second task a chance

al.untimed(); // False -- lock grabbed by task

al.timed(); // False -- lock grabbed by task

}

}

/* Output:



tryLock(): true

tryLock(2, TimeUnit.SECONDS): true

acquired

tryLock(): false

tryLock(2, TimeUnit.SECONDS): false

*/

A ReentrantLock can try and fail to acquire the lock, so if someone

else already has the lock, you can decide to go off and do something

else rather than waiting until it is free, as in the untimed() method.

In timed(), an attempt is made to acquire the lock which can fail

after 2 seconds (note the TimeUnit class to specify units). In

main(), a separate Thread is created as an anonymous class, and it

acquires the lock so the untimed() and timed() methods have

something to contend with.

The explicit Lock object provides finer-grained control over locking

and unlocking than does the built-in synchronized lock. This is

useful for implementing specialized synchronization structures, such

as hand-over-hand locking (also called lock coupling), used for

traversing the nodes of a linked list—the traversal code must capture

the lock of the next node before it releases the current node’s lock.



Library Components

The java.util.concurrent library provides a significant

number of classes designed to solve concurrency problems, and can

help you produce simpler and more robust concurrent programs.

Note, however, that these tools are lower-level mechanisms than

parallel streams or CompletableFutures.

In this section we’ll look at a couple of examples using different

components, then talk a little about how lock-free library components

work.

DelayQueue

This is an unbounded BlockingQueue of objects that implement

the Delayed interface. An object can only be taken from the queue

when its delay has expired. The queue is sorted so the object at the

head has a delay that has expired for the longest time. If no delay has

expired, then there is no head element and poll() will return null

(because of this, you cannot place null elements in the queue).

Here’s an example where the Delayed objects are themselves tasks,



and the DelayedTaskConsumer takes the most “urgent” task (the

one that expired for the longest time) off the queue and runs it. Note

that DelayQueue is thus a variation of a priority queue.

// lowlevel/DelayQueueDemo.java

import java.util.*;

import java.util.stream.*;

import java.util.concurrent.*;

import static java.util.concurrent.TimeUnit.*;

class DelayedTask implements Runnable, Delayed {

private static int counter = 0;

private final int id = counter++;

private final int delta;

private final long trigger;

protected static List<DelayedTask> sequence =

new ArrayList<>();

DelayedTask(int delayInMilliseconds) {

delta = delayInMilliseconds;

trigger = System.nanoTime() +

NANOSECONDS.convert(delta, MILLISECONDS);

sequence.add(this);



}

@Override

public long getDelay(TimeUnit unit) {

return unit.convert(

trigger - System.nanoTime(), NANOSECONDS);

}

@Override

public int compareTo(Delayed arg) {

DelayedTask that = (DelayedTask)arg;

if(trigger < that.trigger) return -1;

if(trigger > that.trigger) return 1;

return 0;

}

@Override

public void run() {

System.out.print(this + " ");

}

@Override

public String toString() {

return



String.format("[%d] Task %d", delta, id);

}

public String summary() {

return String.format("(%d:%d)", id, delta);

}

public static class EndTask extends DelayedTask {

EndTask(int delay) { super(delay); }

@Override

public void run() {

sequence.forEach(dt ->

System.out.println(dt.summary()));

}

}

}

public class DelayQueueDemo {

public static void

main(String[] args) throws Exception {

DelayQueue<DelayedTask> tasks =

Stream.concat( // Random delays:

new Random(47).ints(20, 0, 4000)



.mapToObj(DelayedTask::new),

// Add the summarizing task:

Stream.of(new DelayedTask.EndTask(4000)))

.collect(Collectors

.toCollection(DelayQueue::new));

while(tasks.size() > 0)

tasks.take().run();

}

}

/* Output:

[128] Task 12 [429] Task 6 [551] Task 13 [555] Task 2

[693] Task 3 [809] Task 15 [961] Task 5 [1258] Task 1

[1258] Task 20 [1520] Task 19 [1861] Task 4 [1998] Task

17 [2200] Task 8 [2207] Task 10 [2288] Task 11 [2522]

Task 9 [2589] Task 14 [2861] Task 18 [2868] Task 7

[3278] Task 16 (0:4000)

(1:1258)

(2:555)

(3:693)

(4:1861)



(5:961)

(6:429)

(7:2868)

(8:2200)

(9:2522)

(10:2207)

(11:2288)

(12:128)

(13:551)

(14:2589)

(15:809)

(16:3278)

(17:1998)

(18:2861)

(19:1520)

(20:1258)

*/

DelayedTask contains a List<DelayedTask> called

sequence that preserves the order of task creation so we can see that

sorting does in fact take place.



The Delayed interface has one method, getDelay(), which says

how long until the delay time expires or how long ago the delay time

has expired. This method forces us to use the TimeUnit class

because that’s the argument type. This turns out to be a convenient

class because you can convert units without doing any calculations.

For example, the value of delta is stored in milliseconds, but

System.nanoTime() produces time in nanoseconds. You can

convert the value of delta by giving the units it is in and the units

you want it to be in, like this:

NANOSECONDS.convert(delta, MILLISECONDS);

In getDelay(), the desired units are passed as the unit argument,

and you use this to convert the time difference from the trigger time

into the units requested by the caller, without even knowing what

those units are (this is a simple example of the Strategy design

pattern, where part of the algorithm is passed in as an argument).

For sorting, the Delayed interface also inherits the Comparable

interface. compareTo() must be implemented so it produces a



reasonable comparison.

The output shows that that task creation order has no effect on

execution order—instead, the tasks are executed in delay order as

expected.

PriorityBlockingQueue

This is basically a priority queue that has blocking retrieval operations.

In the following example, A Prioritized is given a priority

number. Several instances of the Producer task insert

Prioritized objects into the PriorityBlockingQueue, but

with random delays between insertions. The single Consumer task is then
presented with multiple options when it does a take(), and the

PriorityBlockingQueue hands it the Prioritized object

with the highest priority at that moment.

The static counter in Prioritized is an AtomicInteger.

This is necessary because there are multiple Producers running in

parallel; without AtomicInteger you’ll see duplicate id numbers.

This issue was covered in Concurrent Programming in the section

Constructors are not Thread-Safe.

// lowlevel/PriorityBlockingQueueDemo.java

import java.util.*;

import java.util.stream.*;



import java.util.concurrent.*;



import java.util.concurrent.atomic.*;

import onjava.Nap;

class Prioritized implements Comparable<Prioritized> {

private static AtomicInteger counter =

new AtomicInteger();

private final int id = counter.getAndIncrement();

private final int priority;

private static List<Prioritized> sequence =

new CopyOnWriteArrayList<>();

Prioritized(int priority) {

this.priority = priority;

sequence.add(this);

}

@Override

public int compareTo(Prioritized arg) {

return priority < arg.priority ? 1 :

(priority > arg.priority ? -1 : 0);

}

@Override

public String toString() {



return String.format(

"[%d] Prioritized %d", priority, id);

}

public void displaySequence() {

int count = 0;

for(Prioritized pt : sequence) {

System.out.printf("(%d:%d)", pt.id, pt.priority);

if(++count % 5 == 0)

System.out.println();

}

}

public static class EndSentinel extends Prioritized {

EndSentinel() { super(-1); }

}

}

class Producer implements Runnable {

private static AtomicInteger seed =

new AtomicInteger(47);

private SplittableRandom rand =

new SplittableRandom(seed.getAndAdd(10));



private Queue<Prioritized> queue;

Producer(Queue<Prioritized> q) {

queue = q;

}

@Override

public void run() {

rand.ints(10, 0, 20)

.mapToObj(Prioritized::new)

.peek(p -> new Nap(rand.nextDouble() / 10))

.forEach(p -> queue.add(p));

queue.add(new Prioritized.EndSentinel());

}

}

class Consumer implements Runnable {

private PriorityBlockingQueue<Prioritized> q;

private SplittableRandom rand =

new SplittableRandom(47);

Consumer(PriorityBlockingQueue<Prioritized> q) {

this.q = q;

}



@Override

public void run() {

while(true) {

try {

Prioritized pt = q.take();

System.out.println(pt);

if(pt instanceof Prioritized.EndSentinel) {

pt.displaySequence();

break;

}

new Nap(rand.nextDouble() / 10);

} catch(InterruptedException e) {

throw new RuntimeException(e);

}

}

}

}

public class PriorityBlockingQueueDemo {

public static void main(String[] args) {

PriorityBlockingQueue<Prioritized> queue =



new PriorityBlockingQueue<>();

CompletableFuture.runAsync(new Producer(queue));

CompletableFuture.runAsync(new Producer(queue));

CompletableFuture.runAsync(new Producer(queue));

CompletableFuture.runAsync(new Consumer(queue))

.join();

}

}

/* Output:

[15] Prioritized 2

[17] Prioritized 1

[17] Prioritized 5

[16] Prioritized 6

[14] Prioritized 9

[12] Prioritized 0

[11] Prioritized 4

[11] Prioritized 12

[13] Prioritized 13

[12] Prioritized 16

[14] Prioritized 18



[15] Prioritized 23

[18] Prioritized 26

[16] Prioritized 29

[12] Prioritized 17

[11] Prioritized 30

[11] Prioritized 24

[10] Prioritized 15

[10] Prioritized 22

[8] Prioritized 25

[8] Prioritized 11

[8] Prioritized 10

[6] Prioritized 31

[3] Prioritized 7

[2] Prioritized 20

[1] Prioritized 3

[0] Prioritized 19

[0] Prioritized 8

[0] Prioritized 14

[0] Prioritized 21

[-1] Prioritized 28



(0:12)(2:15)(1:17)(3:1)(4:11)

(5:17)(6:16)(7:3)(8:0)(9:14)

(10:8)(11:8)(12:11)(13:13)(14:0)

(15:10)(16:12)(17:12)(18:14)(19:0)

(20:2)(21:0)(22:10)(23:15)(24:11)

(25:8)(26:18)(27:-1)(28:-1)(29:16)

(30:11)(31:6)(32:-1)

*/

As with the previous example, the creation order of the

Prioritized objects is remembered in the List sequence, for

comparison with the actual order of execution. The EndSentinel is

a special type that tells the Consumers to shut down.

Producer uses an AtomicInteger to seed the

SplittableRandom so that different Producers produce

different sequences. This is required because multiple Producers are

created in parallel, and otherwise the construction process would not

be thread-safe.

The Producers and Consumer connect to each other through a

PriorityBlockingQueue. Because the blocking nature of the

queue provides all necessary synchronization, notice that no explicit



synchronization is necessary—you don’t think about whether the

queue has any elements in it when you’re reading from it, because the

queue will block the reader when it is out of elements.

Lock-Free Collections

The Collections chapter emphasized collections as a fundamental
programming tool, and this includes concurrency. For this reason,

early collections like Vector and Hashtable have many methods

using the synchronized mechanism. This caused unacceptable

overhead when those collections were not used in multithreaded

applications. In Java 1.2, the new collections library was

unsynchronized, and the Collections class was given various

static synchronized decoration methods to synchronize the

different types of collections. Although this was an improvement

because it gave you a choice about whether you use synchronization

with your collection, the overhead is still based on synchronized

locking. Java 5 added new collections specifically to increase thread-

safe performance, using clever techniques to eliminate locking.



Lock-free collections have an intriguing feature: Modifications to the

collections can happen at the same time that reads are occurring, as

long as the readers can only see the results of completed

modifications. This is implemented using a number of strategies. To

give you a flavor of how they work, we’ll look at a couple of them.

The Copying Strategy

With the “copying” strategy, a modification is performed on a separate

copy of a portion of the data structure (or sometimes a copy of the

whole thing), and this copy is invisible during the modification

process. Only when the modification is complete is the modified

structure safely swapped with the “main” data structure, and after that

readers will see the modification.

In CopyOnWriteArrayList, a write copies the entire underlying

array. The original array is left in place so reads can safely occur while

the copied array is modified. When the modification is complete, an

atomic operation swaps in the new array so new reads will see the new

information. One of the benefits of CopyOnWriteArrayList is it

does not throw ConcurrentModificationException when

multiple iterators are traversing and modifying the list, so you don’t

write special code to protect against such exceptions, as you’ve had to



do in the past.

CopyOnWriteArraySet uses CopyOnWriteArrayList to

achieve its lock-free behavior.

ConcurrentHashMap and ConcurrentLinkedQueue use

similar techniques to allow concurrent reads and writes, but only

portions of the collection are copied and modified rather than the

entire collection. However, readers will still not see any incomplete

modifications. ConcurrentHashMap doesn’t throw

ConcurrentModificationExceptions.

Compare-And-Swap (CAS)

In Compare-And-Swap (CAS), you take a value from memory and

hold on to the original value while calculating a new one. Then you use

the CAS instruction which compares the original value with the one

currently in memory, and if the two values are equal swaps in the

result of your calculation for the old value, all in a single atomic

operation. If the original-value comparison fails, the swap does not

take place because it means another thread has modified the memory

in the meantime. In that case, your code must try again, taking a new

original value and repeating the operation.

If the memory is only lightly contended, the CAS operation almost



always goes through with no repeated attempts, so it is very fast. In

contrast, a synchronized operation requires the cost of acquiring

and releasing the lock every single time, which is much more

expensive with no additional benefit. As contention over the memory

increases, the operation using CAS slows down because it must repeat

itself more often, but this is a dynamic response to more contention. It

really is an elegant approach.

The best part is that many modern processors have a CAS instruction

in their assembly language, and this is used by the CAS operations in

the JVM (such as those in the Atomic classes). The CAS instruction is

atomic in the hardware and as fast as you could hope for such an

operation.

Summary

This appendix was included primarily so you have some

understanding of low-level concurrency code when you encounter it,

although it is far from a comprehensive treatment of the subject. For



that, you’ll need to start with Java Concurrency in Practice, by Brian

Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,

and Doug Lea (Addison-Wesley, 2006). Ideally, that book will

completely scare you away from attempting low-level concurrency in

Java. If it doesn’t, you’re almost certainly suffering from the Dunning-

Kruger Effect, a cognitive bias whereby “the less you know, the more

confident you are in your abilities.” Keep in mind that the current

language designers are still cleaning up the messes made from the

overconfidence of the early language designers (for example, look at

how many of the methods in the Thread class are deprecated,

and that volatile wasn’t working correctly until Java 5).

Here are the steps to follow for concurrent programming:

1. Don’t do it. Figure out some other way to make your program

faster.

2. If you must do it, use the modern, high-level tools shown in

Concurrent Programming—parallel Streams and

CompletableFutures.

3. Don’t share variables between tasks. Any information that must

pass between tasks should use concurrent data structures from

the java.util.concurrent library.



4. If you must share variables between tasks, either use one of the

java.util.concurrent.atomic types, or apply

synchronized to any method that can either directly or

indirectly access those variables. It’s very easy to get fooled into

thinking you’ve got everything covered when you don’t. Seriously,

try to use step #3 instead.

5. If step #4 produces results that are somehow too slow, you can try

to tune things using volatile or some other technique but if

you are reading this book and think you are ready to try those

approaches, you’re out of your depth. Return to step #1.

It’s usually possible to write concurrent programs using only

java.util.concurrent library components, completely

avoiding the challenges of applying volatile and synchronized.

Note that I was able to do this with the examples in Concurrent

Programming.

1. On some platforms, notably Windows, the default value can be

remarkably hard to discover. You can adjust the stack size with

the -Xss flag. ↩

2. From Brian Goetz, author of Java Concurrency in Practice, by

Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David



Holmes, and Doug Lea (Addison-Wesley, 2006). ↩

3. Note that on a 64 bit processor this might not happen, eliminating

the issue.↩

4. A corollary to this test is, “If someone implies that threading is

straightforward, make sure that person is not making important

decisions about your project. If that person already is, then you’ve

got trouble.” ↩

5. The version I worked on; this might have been fixed in later

standards↩

Appendix: Data

Compression

The Java I/O library contains classes that read and write streams in a

compressed format. You wrap these around other I/O classes to

provide compression functionality.

These classes are not derived from the Reader and Writer classes,

but instead are part of the InputStream and OutputStream

hierarchies. This is because the compression library works with bytes,

not characters. However, you might sometimes be forced to mix the



two types of streams. (Remember you can use

InputStreamReader and OutputStreamWriter to provide

easy conversion between one type and another.)

Compression class

Function

getCheckSum() produces

checksum for any

CheckedInputStream

InputStream (not just

decompression).

getCheckSum() produces

CheckedOutputStream

checksum for any

OutputStream (not just

compression).

Base class for compression

DeflaterOutputStream classes.

A

ZipOutputStream

DeflaterOutputStream



that compresses data into the

Zip file format.

A

GZIPOutputStream

DeflaterOutputStream

that compresses data into the

GZIP file format.

Base class for decompression

InflaterInputStream

classes.

An

InflaterInputStream

ZipInputStream

that decompresses data that

was stored in the Zip file

format.

An

InflaterInputStream

GZIPInputStream

that decompresses data that



was stored in the GZIP file

format.

Although there are many compression algorithms, Zip and GZIP are

probably the most common. You can easily manipulate your

compressed data with the many tools available for reading and writing

these formats.

Simple Compression

with GZIP

The GZIP interface is simple and thus is probably more appropriate

when you have a single stream of data to compress (rather than a

container of dissimilar pieces of data). This example compresses a

single file:

// compression/GZIPcompress.java

// {java GZIPcompress GZIPcompress.java}

// {VisuallyInspectOutput}

import java.util.zip.*;



import java.io.*;

public class GZIPcompress {

public static void main(String[] args) {

if(args.length == 0) {

System.out.println(

"Usage: \nGZIPcompress file\n" +

"\tUses GZIP compression to compress " +

"the file to test.gz");

System.exit(1);

}

try(

InputStream in = new BufferedInputStream(

new FileInputStream(args[0]));

BufferedOutputStream out =

new BufferedOutputStream(

new GZIPOutputStream(



new FileOutputStream("test.gz")))

) {

System.out.println("Writing file");

int c;

while((c = in.read()) != -1)

out.write(c);

} catch(IOException e) {

throw new RuntimeException(e);

}

System.out.println("Reading file");

try(

BufferedReader in2 = new BufferedReader(

new InputStreamReader(new GZIPInputStream(

new FileInputStream("test.gz"))))

) {

in2.lines().forEach(System.out::println);

} catch(IOException e) {

throw new RuntimeException(e);

}

}



}

Using the compression classes is straightforward; you wrap your

output stream in a GZIPOutputStream or ZipOutputStream,

and your input stream in a GZIPInputStream or

ZipInputStream. All else is ordinary I/O reading and writing. This

is an example of mixing the char-oriented streams with the byte-

oriented streams; in uses the Reader classes, whereas

GZIPOutputStreams constructor can accept only an

OutputStream object, not a Writer object. When the file is

opened, the GZIPInputStream is converted to a Reader.

Multifile Storage with

Zip

The library that supports the Zip format is more extensive than the

GZIP library. With it you can easily store multiple files, and there’s

even a separate class to make the process of reading a Zip file easy.

The library uses the standard Zip format so it works seamlessly with

all the Zip tools currently downloadable on the Internet. The following

example has the same form as the previous example, but it handles as

many command-line arguments as you want. In addition, it shows the

Checksum classes calculating and verifying the checksum for the file.



There are two Checksum types: Adler32 (which is faster) and

CRC32 (slower but slightly more accurate).

// compression/ZipCompress.java

// Uses Zip compression to compress any

// number of files given on the command line

// {java ZipCompress ZipCompress.java}

// {VisuallyInspectOutput}

import java.util.zip.*;

import java.io.*;

import java.util.*;

public class ZipCompress {

public static void main(String[] args) {

try(

FileOutputStream f =

new FileOutputStream("test.zip");

CheckedOutputStream csum =

new CheckedOutputStream(f, new Adler32());

ZipOutputStream zos = new ZipOutputStream(csum);

BufferedOutputStream out =

new BufferedOutputStream(zos)



) {

zos.setComment("A test of Java Zipping");

// No corresponding getComment(), though.

for(String arg : args) {

System.out.println("Writing file " + arg);

try(

InputStream in = new BufferedInputStream(

new FileInputStream(arg))

) {

zos.putNextEntry(new ZipEntry(arg));

int c;

while((c = in.read()) != -1)

out.write(c);

}

out.flush();

}

// Checksum valid only after the file is closed!

System.out.println(

"Checksum: " + csum.getChecksum().getValue());

} catch(IOException e) {



throw new RuntimeException(e);

}

// Now extract the files:

System.out.println("Reading file");

try(

FileInputStream fi =

new FileInputStream("test.zip");

CheckedInputStream csumi =

new CheckedInputStream(fi, new Adler32());

ZipInputStream in2 = new ZipInputStream(csumi);

BufferedInputStream bis =

new BufferedInputStream(in2)

) {

ZipEntry ze;

while((ze = in2.getNextEntry()) != null) {

System.out.println("Reading file " + ze);

int x;

while((x = bis.read()) != -1)

System.out.write(x);

}



if(args.length == 1)

System.out.println(

"Checksum: "+csumi.getChecksum().getValue());

} catch(IOException e) {

throw new RuntimeException(e);

}

// Alternative way to open and read Zip files:

try(

ZipFile zf = new ZipFile("test.zip")

) {

Enumeration e = zf.entries();

while(e.hasMoreElements()) {

ZipEntry ze2 = (ZipEntry)e.nextElement();

System.out.println("File: " + ze2);

// ... and extract the data as before

}

} catch(IOException e) {

throw new RuntimeException(e);

}

}



}

For each file to add to the archive, you must call putNextEntry()

and pass it a ZipEntry object. The ZipEntry object contains an

extensive interface that gets and sets all the data available on that

particular entry in your Zip file: name, compressed and uncompressed

sizes, date, CRC checksum, extra field data, comment, compression

method, and whether it’s a directory entry. However, even though the

Zip format has a way to set a password, this is not supported in Java’s

Zip library. And although CheckedInputStream and

CheckedOutputStream support both Adler32 and CRC32

checksums, the ZipEntry class supports only an interface for CRC.

This is a restriction of the underlying Zip format, but it might limit you

from using the faster Adler32.

To extract files, ZipInputStream has a getNextEntry()

method that returns the next ZipEntry if there is one. As a more

succinct alternative, you can read the file using a ZipFile object,

which has a method entries() to return an Enumeration to the

ZipEntries.

To read the checksum, you must somehow have access to the

associated Checksum object. Here, a reference to the



CheckedOutputStream and CheckedInputStream objects is

retained, but you can also just hold on to a reference to the

Checksum object.

A baffling method in Zip streams is setComment(). As shown in

ZipCompress.java, you can set a comment when you’re writing a

file, but there’s no way to recover the comment in the

ZipInputStream. Comments appear to be supported fully on an

entry-by-entry basis only via ZipEntry.

You are not limited to files when using the GZIP or Zip libraries—you

can compress anything, including data sent through a network

connection.

Java Archives (Jars)

The Zip format is also used in the JAR (Java ARchive) file format, a

way to collect a group of files into a single compressed file, just like

Zip. However, like everything else in Java, JAR files are cross-

platform, so you don’t worry about platform issues. You can also



include audio and image files as well as class files.

A JAR file consists of a single file containing a collection of zipped files

along with a “manifest” that describes them. (You can create your own

manifest file; otherwise, the jar program will do it for you.) You can

find out more about JAR manifests in the JDK documentation.

The jar utility that comes with the JDK automatically compresses the

files of your choice. You invoke it on the command line:

jar [options] destination [manifest] inputfile(s)

The options are a collection of letters (no hyphen or any other

indicator is necessary). Unix/Linux users will note the similarity to

tar options. These are:

c

Creates a new or empty archive.

t

Lists the table of contents.

x

Extracts all files.

x file

Extracts the named file.

Says, “I’m going to give you the



name of the file.” If you don’t use

f

this, jar assumes its input will

come from standard input, or, if it

is creating a file, its output will go

to standard output.

Says that the first argument is the

m

name of the user-created manifest

file.

Generates verbose output

v

describing what jar is doing.

Only stores the files; doesn’t

0

compress the files (use to create a

JAR file you put in your classpath).

Doesn’t automatically create a

M

manifest file.



If a subdirectory is included in the files put into the JAR file, that

subdirectory is automatically added, including all of its subdirectories,

etc. Path information is also preserved.

Here are some typical ways to invoke jar. The following command

creates a JAR file called myJarFile.jar that contains all class files

in the current directory, along with an automatically generated

manifest file:

jar cf myJarFile.jar *.class

The next command is like the previous example, but it adds a user-

created manifest file called myManifestFile.mf:

jar cmf myJarFile.jar myManifestFile.mf *.class

This produces a table of contents of the files in myJarFile.jar:

jar tf myJarFile.jar

This adds the “verbose” flag to give more detailed information about

files in myJarFile.jar:

jar tvf myJarFile.jar

Assuming audio, classes, and image are subdirectories, this

combines all subdirectories into the file myApp.jar. The “verbose”

flag is also included to give extra feedback while the jar program is

working:



jar cvf myApp.jar audio classes image

If you create a JAR file using the 0 (zero) option, that file can be

placed in your CLASSPATH:

CLASSPATH="lib1.jar;lib2.jar;"

Then Java can search lib1.jar and lib2.jar for class files.

The jar tool isn’t as general-purpose as a Zip utility. For example,

you can’t add or update files to an existing JAR file; you can create

JAR files only from scratch. Also, you can’t move files into a JAR file,

erasing them as they are moved. However, a JAR file created on one

platform is transparently readable by the jar tool on any other

platform (a problem that sometimes plagues Zip utilities).

Appendix: Object

Serialization

When you create an object, it exists for as long as you need it, but

under no circumstances does it exist when the program terminates.

While this makes sense at first, there are situations where it would be

quite useful if an object existed and held its information even while the

program wasn’t running. Then, the next time you started the program,



the object would be there with the same information it had the

previous time the program was running. You can achieve this effect by

writing the information to a file or to a database, but in the spirit of

making everything an object, it would be convenient to declare an

object as “persistent,” and have all the details taken care of for you.

Java’s object serialization takes any object that implements the

Serializable interface and turns it into a sequence of bytes that

can later regenerate the original object. This is even true across a

network, which means that the serialization mechanism automatically

compensates for differences in operating systems. That is, you can

create an object on a Windows machine, serialize it, and send it across

the network to a Unix machine, where it is correctly reconstructed.

You don’t worry about data representations on the different machines,

the byte ordering, or any other details.

Object serialization can implement lightweight persistence.

Persistence means that an object’s lifetime is not determined by

whether a program is executing; the object lives in between

invocations of the program. By taking a serializable object and writing

it to disk, then restoring that object when the program is reinvoked,

you’re able to produce the effect of persistence. The reason it’s called



“lightweight” is that you can’t define an object using some kind of

“persistent” keyword and let the system take care of the details.

Instead, you must explicitly serialize and deserialize the objects in

your program. If you need a more serious persistence mechanism,

consider a tool like Hibernate.

Object serialization was added to the language to support two major

features. Java’s Remote Method Invocation (RMI) allows objects that

live on other machines to behave as if they live on your machine.

When messages are sent to remote objects, object serialization is

necessary to transport the arguments and return values.

Object serialization was also necessary for JavaBeans (considered a

failed technology at this writing). When a Bean is used, its state

information is generally configured at design time. This state

information must be stored and later recovered when the program is

started; object serialization performs this task.

Serializing an object is simple as long as the object implements the

Serializable interface, which is a tagging interface and has no

methods. When serialization was added to the language, many

standard library classes were changed to make them serializable,

including all wrappers for the primitive types, all container classes,

http://hibernate.org/


and many others. Even Class objects can be serialized.

To serialize an object, you create some sort of OutputStream object,

then wrap it inside an ObjectOutputStream object. Now you

need only call writeObject() and your object is serialized and

sent to the OutputStream (object serialization is byte-oriented, and

thus uses the InputStream and OutputStream hierarchies). To

reverse the process, you wrap an InputStream inside an

ObjectInputStream and call readObject(). What comes back

is, as usual, a reference to an upcast Object, so you must downcast

to set things straight.

A particularly clever aspect of object serialization is that it not only

saves an image of your object, but it also follows all the references

contained in your object and saves those objects, and follows all the

references in each of those objects, etc. This is sometimes called the

“web of objects” that a single object can be connected to, and it

includes arrays of references to objects as well as member objects. If

you had to maintain your own object serialization scheme,

maintaining the code to follow all these links could be mind-boggling.

However, Java object serialization seems to pull it off flawlessly, no

doubt using an optimized algorithm that traverses the web of objects.



The following example tests the serialization mechanism by making a

“worm” of linked objects, each of which has a link to the next segment

in the worm as well as an array of references to objects of a different

class, Data:

// serialization/Worm.java

// Demonstrates object serialization

import java.io.*;

import java.util.*;

class Data implements Serializable {

private int n;

Data(int n) { this.n = n; }

@Override

public String toString() {

return Integer.toString(n);

}

}

public class Worm implements Serializable {

private static Random rand = new Random(47);

private Data[] d = {

new Data(rand.nextInt(10)),



new Data(rand.nextInt(10)),

new Data(rand.nextInt(10))

};

private Worm next;

private char c;

// Value of i == number of segments

public Worm(int i, char x) {

System.out.println("Worm constructor: " + i);

c = x;

if(--i > 0)

next = new Worm(i, (char)(x + 1));

}

public Worm() {

System.out.println("No-arg constructor");

}

@Override

public String toString() {

StringBuilder result = new StringBuilder(":");

result.append(c);

result.append("(");



for(Data dat : d)

result.append(dat);

result.append(")");

if(next != null)

result.append(next);

return result.toString();

}

public static void

main(String[] args) throws ClassNotFoundException,

IOException {

Worm w = new Worm(6, 'a');

System.out.println("w = " + w);

try(

ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream("worm.dat"))

) {

out.writeObject("Worm storage\n");

out.writeObject(w);

}

try(



ObjectInputStream in = new ObjectInputStream(

new FileInputStream("worm.dat"))

) {

String s = (String)in.readObject();

Worm w2 = (Worm)in.readObject();

System.out.println(s + "w2 = " + w2);

}

try(

ByteArrayOutputStream bout =

new ByteArrayOutputStream();

ObjectOutputStream out2 =

new ObjectOutputStream(bout)

) {

out2.writeObject("Worm storage\n");

out2.writeObject(w);

out2.flush();

try(

ObjectInputStream in2 = new ObjectInputStream(

new ByteArrayInputStream(

bout.toByteArray()))



) {

String s = (String)in2.readObject();

Worm w3 = (Worm)in2.readObject();

System.out.println(s + "w3 = " + w3);

}

}

}

}

/* Output:

Worm constructor: 6

Worm constructor: 5

Worm constructor: 4

Worm constructor: 3

Worm constructor: 2

Worm constructor: 1

w = :a(853):b(119):c(802):d(788):e(199):f(881)

Worm storage

w2 = :a(853):b(119):c(802):d(788):e(199):f(881)

Worm storage

w3 = :a(853):b(119):c(802):d(788):e(199):f(881)



*/

Each Data object in the array inside Worm is initialized with a

random number. (This way, you don’t suspect the compiler of keeping

some kind of meta-information.) Each Worm segment is labeled with a

char that’s automatically generated in the process of recursively

generating the linked list of Worms. When you create a Worm, you tell

the constructor how long you want it to be. To make the next

reference, it calls the Worm constructor with a length of one less, etc.

The final next reference is left as null, indicating the end of the

Worm.

The point of all this was to make something reasonably complex that

couldn’t easily be serialized. The act of serializing, however, is simple.

Once the ObjectOutputStream is created from some other

stream, writeObject() serializes the object. Notice the call to

writeObject() for a String, as well. You can also write all the

primitive data types using the same methods as



DataOutputStream (they share the same interface).

There are two separate code sections that look similar. The first writes

and reads a file, and the second, for variety, writes and reads a

ByteArray. You can read and write an object using serialization to

any DataInputStream or DataOutputStream, including a

network.

The output shows that the deserialized object really does contain all

links in the original object.

Note that no constructor, not even the no-arg constructor, is called in

the process of deserializing a Serializable object. The entire

object is restored by recovering data from the InputStream.

Finding the Class

You might wonder what’s necessary to recover an object from its

serialized state. For example, suppose you serialize an object and send

it as a file or through a network to another machine. Could a program

on the other machine reconstruct the object using only the contents of

the file?

The best way to answer this question is (as usual) to perform an

experiment. The following file goes in the subdirectory for this

chapter:



// serialization/Alien.java

// A serializable class

import java.io.*;

public class Alien implements Serializable {}

The file that creates and serializes an Alien object goes in the same

directory:

// serialization/FreezeAlien.java

// Create a serialized output file

import java.io.*;

public class FreezeAlien {

public static void

main(String[] args) throws Exception {

try(

ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream("X.file"));

) {

Alien quellek = new Alien();

out.writeObject(quellek);

}

}



}

Once the program is compiled and run, it produces a file called

X.file in the serialization directory. The following code is in

a subdirectory called xfiles:

// serialization/xfiles/ThawAlien.java

// Recover a serialized file

// {java serialization.xfiles.ThawAlien}

// {RunFirst: FreezeAlien}

package serialization.xfiles;

import java.io.*;

public class ThawAlien {

public static void

main(String[] args) throws Exception {

ObjectInputStream in = new ObjectInputStream(

new FileInputStream(new File("X.file")));

Object mystery = in.readObject();



System.out.println(mystery.getClass());

}

}

/* Output:

class Alien

*/

To work, the JVM must be able find the associated .class file.

Controlling

Serialization

The default serialization mechanism is trivial to use. But what about

special needs? Perhaps you have special security issues and you don’t

want to serialize portions of your object, or perhaps it just doesn’t

make sense for one subobject to be serialized if that part needs

creating anew when the object is recovered.

You can control the process of serialization by implementing the

Externalizable interface instead of the Serializable

interface. The Externalizable interface extends the

Serializable interface and adds two methods,

writeExternal() and readExternal(). These are

automatically called for your object during serialization and



deserialization so you can perform your special operations.

The following example shows simple implementations of the

Externalizable interface methods. Note that Blip1 and Blip2

are nearly identical except for a subtle difference (see if you can

discover it by looking at the code):

// serialization/Blips.java

// Simple use of Externalizable & a pitfall

import java.io.*;

class Blip1 implements Externalizable {

public Blip1() {

System.out.println("Blip1 Constructor");

}

@Override

public void writeExternal(ObjectOutput out)

throws IOException {

System.out.println("Blip1.writeExternal");

}

@Override

public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {



System.out.println("Blip1.readExternal");

}

}

class Blip2 implements Externalizable {

Blip2() {

System.out.println("Blip2 Constructor");

}

@Override

public void writeExternal(ObjectOutput out)

throws IOException {

System.out.println("Blip2.writeExternal");

}

@Override

public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {

System.out.println("Blip2.readExternal");

}

}

public class Blips {

public static void main(String[] args) {



System.out.println("Constructing objects:");

Blip1 b1 = new Blip1();

Blip2 b2 = new Blip2();

try(

ObjectOutputStream o = new ObjectOutputStream(

new FileOutputStream("Blips.serialized"))

) {

System.out.println("Saving objects:");

o.writeObject(b1);

o.writeObject(b2);

} catch(IOException e) {

throw new RuntimeException(e);

}

// Now get them back:

System.out.println("Recovering b1:");

try(

ObjectInputStream in = new ObjectInputStream(

new FileInputStream("Blips.serialized"))

) {

b1 = (Blip1)in.readObject();



} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

// OOPS! Throws an exception:

//- System.out.println("Recovering b2:");

//- b2 = (Blip2)in.readObject();

}

}

/* Output:

Constructing objects:

Blip1 Constructor

Blip2 Constructor

Saving objects:

Blip1.writeExternal

Blip2.writeExternal

Recovering b1:

Blip1 Constructor

Blip1.readExternal

*/

The reason that the Blip2 object is not recovered is that trying to do



so causes an exception. Can you see the difference between Blip1

and Blip2? The constructor for Blip1 is public, while the

constructor for Blip2 is not, and that causes the exception upon

recovery. Try making Blip2s constructor public and removing the

//- comments to see the correct results.

When b1 is recovered, the Blip1 no-arg constructor is called. This is

different from recovering a Serializable object, where the object

is constructed entirely from its stored bits, with no constructor calls.

With an Externalizable object, all the normal default

construction behavior occurs (including the initializations at the point

of field definition), and then readExternal() is called. Be aware of

this—in particular, the fact that all the default construction always

takes place—to produce the correct behavior in your

Externalizable objects.

Here’s an example that shows what you must do to fully store and

retrieve an Externalizable object:

// serialization/Blip3.java

// Reconstructing an externalizable object

import java.io.*;

public class Blip3 implements Externalizable {



private int i;

private String s; // No initialization

public Blip3() {

System.out.println("Blip3 Constructor");

// s, i not initialized

}

public Blip3(String x, int a) {

System.out.println("Blip3(String x, int a)");

s = x;

i = a;

// s & i initialized only in non-no-arg constructor.

}

@Override

public String toString() { return s + i; }

@Override

public void writeExternal(ObjectOutput out)

throws IOException {

System.out.println("Blip3.writeExternal");

// You must do this:

out.writeObject(s);



out.writeInt(i);

}

@Override

public void readExternal(ObjectInput in)

throws IOException, ClassNotFoundException {

System.out.println("Blip3.readExternal");

// You must do this:

s = (String)in.readObject();

i = in.readInt();

}

public static void main(String[] args) {

System.out.println("Constructing objects:");

Blip3 b3 = new Blip3("A String ", 47);

System.out.println(b3);

try(

ObjectOutputStream o = new ObjectOutputStream(

new FileOutputStream("Blip3.serialized"))

) {

System.out.println("Saving object:");

o.writeObject(b3);



} catch(IOException e) {

throw new RuntimeException(e);

}

// Now get it back:

System.out.println("Recovering b3:");

try(

ObjectInputStream in = new ObjectInputStream(

new FileInputStream("Blip3.serialized"))

) {

b3 = (Blip3)in.readObject();

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

System.out.println(b3);

}

}

/* Output:

Constructing objects:

Blip3(String x, int a)

A String 47



Saving object:

Blip3.writeExternal

Recovering b3:

Blip3 Constructor

Blip3.readExternal

A String 47

*/

The fields s and i are initialized only in the second constructor, but

not in the no-arg constructor. This means if you don’t initialize s and

i in readExternal(), s is null and i is zero (since the storage for the object
gets wiped to zero in the first step of object creation). If

you comment out the two lines of code following the phrases “You

must do this:” and run the program, you’ll see that when the object is

recovered, s is null and i is zero.

If you inherit an Externalizable object, you’ll typically call the

base-class versions of writeExternal() and readExternal()

to provide proper storage and retrieval of the base-class components.

So to make things work correctly, you must not only write the

important data from the object during the writeExternal()

method (there is no default behavior that writes any of the member

objects for an Externalizable object), but you must also recover



that data in the readExternal() method. This can be a bit

confusing at first because the default construction behavior for an

Externalizable object can make it seem like some kind of storage

and retrieval takes place automatically. It does not.

The transient Keyword

When you’re controlling serialization, there might be a particular

subobject you don’t want Java’s serialization mechanism to

automatically save and restore. This is commonly the case if that

subobject represents sensitive information you don’t want to serialize,

such as a password. Even if that information is private in the

object, once it is serialized, it’s possible for someone to access it by

reading a file or intercepting a network transmission.

One way to prevent sensitive parts of your object from being serialized

is to implement your class as Externalizable, as shown

previously. Then nothing is automatically serialized, and you can

explicitly serialize only the necessary parts inside

writeExternal().



If you’re working with a Serializable object, however, all

serialization happens automatically. To control this, you can turn off

serialization on a field-by-field basis using the transient keyword,

which says, “Don’t bother saving or restoring this—I’ll take care of it.”

For example, consider a Logon object that keeps information about a

particular login session. Suppose that, once you verify the login, you

want to store the data, but without the password. The easiest way to do

this is by implementing Serializable and marking the

password field as transient. Here’s what it looks like:

// serialization/Logon.java

// Demonstrates the "transient" keyword

import java.util.concurrent.*;

import java.io.*;

import java.util.*;

import onjava.Nap;

public class Logon implements Serializable {

private Date date = new Date();

private String username;

private transient String password;

public Logon(String name, String pwd) {



username = name;

password = pwd;

}

@Override

public String toString() {

return "logon info: \n username: " +

username + "\n date: " + date +

"\n password: " + password;

}

public static void main(String[] args) {

Logon a = new Logon("Hulk", "myLittlePony");

System.out.println("logon a = " + a);

try(

ObjectOutputStream o =

new ObjectOutputStream(

new FileOutputStream("Logon.dat"))

) {

o.writeObject(a);

} catch(IOException e) {

throw new RuntimeException(e);



}

new Nap(1);

// Now get them back:

try(

ObjectInputStream in = new ObjectInputStream(

new FileInputStream("Logon.dat"))

) {

System.out.println(

"Recovering object at " + new Date());

a = (Logon)in.readObject();

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

System.out.println("logon a = " + a);

}

}

/* Output:



logon a = logon info:

username: Hulk

date: Tue May 09 06:07:47 MDT 2017

password: myLittlePony

Recovering object at Tue May 09 06:07:49 MDT 2017

logon a = logon info:

username: Hulk

date: Tue May 09 06:07:47 MDT 2017

password: null

*/

The date and username fields are ordinary (not transient), and

thus are automatically serialized. However, the password is

transient, so it is not stored to disk; also, the serialization

mechanism makes no attempt to recover it. When the object is

recovered, the password field is null. Note that while

toString() assembles a String object using the overloaded +

operator, a null reference is automatically converted to the String

“null.”

You can also see that the date field is stored to and recovered from

disk and not generated anew.



Since Externalizable objects do not store any of their fields by

default, the transient keyword is for use with Serializable

objects only.

An Alternative to

Externalizable

If you’re not keen on implementing the Externalizable interface,

there’s another approach. You can implement the Serializable

interface and add (notice I say “add” and not “override” or

“implement”) methods called writeObject() and

readObject() that are automatically called when the object is

serialized and deserialized, respectively. That is, if you provide these

two methods, they are used instead of the default serialization.

The methods must have these exact signatures:

private void writeObject(ObjectOutputStream stream)

throws IOException;

private void readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException

From a design standpoint, things get really weird here. First of all, you

might think that, because these methods are not part of a base class or

the Serializable interface, they ought to be defined in their own



interface(s). But notice they are defined as private, which means

they are called only by other members of this class. However, you

don’t actually call them from other members of this class, but instead

the writeObject() and readObject() methods of the

ObjectOutputStream and ObjectInputStream objects call

your object’s writeObject() and readObject() methods.

(Notice my tremendous restraint in not launching into a long diatribe

on using the same method names here. In a word: confusing.) You

might wonder how the ObjectOutputStream and

ObjectInputStream objects have access to private methods of

your class. We can only assume this is part of the serialization magic. 1

Anything defined in an interface is automatically public, so if

writeObject() and readObject() must be private, then

they can’t be part of an interface. Since you must follow the signatures

exactly, the effect is the same as if you’re implementing an interface.

It would appear that when you call

ObjectOutputStream.writeObject(), the Serializable

object you pass it to is interrogated (using reflection, no doubt) to see

if it implements its own writeObject(). If so, the normal

serialization process is skipped and the custom writeObject() is



called. The same situation exists for readObject().

There’s one other twist. Inside your writeObject(), you can

choose to perform the default writeObject() action by calling

defaultWriteObject(). Likewise, inside readObject() you

can call defaultReadObject(). Here is a simple example that

demonstrates how you can control the storage and retrieval of a

Serializable object:

// serialization/SerialCtl.java

// Controlling serialization by adding your own

// writeObject() and readObject() methods

import java.io.*;

public class SerialCtl implements Serializable {

private String a;

private transient String b;

public SerialCtl(String aa, String bb) {

a = "Not Transient: " + aa;

b = "Transient: " + bb;

}

@Override

public String toString() { return a + "\n" + b; }



private void writeObject(ObjectOutputStream stream)

throws IOException {

stream.defaultWriteObject();

stream.writeObject(b);

}

private void readObject(ObjectInputStream stream)

throws IOException, ClassNotFoundException {

stream.defaultReadObject();

b = (String)stream.readObject();

}

public static void main(String[] args) {

SerialCtl sc = new SerialCtl("Test1", "Test2");

System.out.println("Before:\n" + sc);

try (

ByteArrayOutputStream buf =

new ByteArrayOutputStream();

ObjectOutputStream o =

new ObjectOutputStream(buf);

) {

o.writeObject(sc);



// Now get it back:

try (

ObjectInputStream in =

new ObjectInputStream(

new ByteArrayInputStream(

buf.toByteArray()));

) {

SerialCtl sc2 = (SerialCtl)in.readObject();

System.out.println("After:\n" + sc2);

}

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

}

}

/* Output:

Before:

Not Transient: Test1

Transient: Test2

After:



Not Transient: Test1

Transient: Test2

*/

In this example, one String field is ordinary and the other is

transient, to prove that the non-transient field is saved by the

defaultWriteObject() method and the transient field is

saved and restored explicitly. The fields are initialized inside the

constructor rather than at the point of definition to prove they are not

initialized by some automatic mechanism during deserialization.

If you use the default mechanism to write the non-transient parts

of your object, you must call defaultWriteObject() as the first

operation in writeObject(), and defaultReadObject() as

the first operation in readObject(). These are strange method

calls. It would appear, for example, that you are calling

defaultWriteObject() for an ObjectOutputStream and

passing it no arguments, and yet it somehow turns around and knows

the reference to your object and how to write all the non-transient



parts. Spooky.

The storage and retrieval of the transient objects uses more

familiar code. And yet, think about what happens here. In main(), a

SerialCtl object is created and serialized to an

ObjectOutputStream. (Notice here that a buffer is used instead of

a file—it’s all the same to the ObjectOutputStream.) The

serialization occurs in the line:

o.writeObject(sc);

The writeObject() method must be examining sc to see if it has

its own writeObject() method. (Not by checking the interface—

there isn’t one—or the class type, but by actually hunting for the

method using reflection.) If it does, it uses that. A similar approach

holds true for readObject(). Perhaps this was the only practical

way they could solve the problem, but it’s certainly strange.

Versioning

You might change the version of a serializable class (objects of the

original class might be stored in a database, for example). This is

supported, but you’ll probably do it only in special cases, and it



requires an extra depth of understanding that we will not attempt to

achieve here. The JDK documents downloadable from

http://java.oracle.com cover this topic thoroughly.

Using Persistence

It’s appealing to use serialization technology to store some of the state

of your program to easily restore the program to the current state

later. But before you can do this, some questions must be answered.

What happens if you serialize two objects that both have a reference to

a third object? When you restore those two objects from their

serialized state, do you get only one occurrence of the third object?

What if you serialize your two objects to separate files and deserialize

them in different parts of your code?

Here’s an example that shows the problem:

// serialization/MyWorld.java

import java.io.*;

import java.util.*;



class House implements Serializable {}

class Animal implements Serializable {

private String name;

private House preferredHouse;

Animal(String nm, House h) {

name = nm;

preferredHouse = h;

}

@Override

public String toString() {

return name + "[" + super.toString() +

"], " + preferredHouse + "\n";

}

}

public class MyWorld {

public static void main(String[] args) {

House house = new House();

List<Animal> animals = new ArrayList<>();

animals.add(

new Animal("Bosco the dog", house));



animals.add(

new Animal("Ralph the hamster", house));

animals.add(

new Animal("Molly the cat", house));

System.out.println("animals: " + animals);

try(

ByteArrayOutputStream buf1 =

new ByteArrayOutputStream();

ObjectOutputStream o1 =

new ObjectOutputStream(buf1)

) {

o1.writeObject(animals);

o1.writeObject(animals); // Write a 2nd set

// Write to a different stream:

try(

ByteArrayOutputStream buf2 =

new ByteArrayOutputStream();

ObjectOutputStream o2 =

new ObjectOutputStream(buf2)

) {



o2.writeObject(animals);

// Now get them back:

try(

ObjectInputStream in1 =

new ObjectInputStream(

new ByteArrayInputStream(

buf1.toByteArray()));

ObjectInputStream in2 =

new ObjectInputStream(

new ByteArrayInputStream(

buf2.toByteArray()))

) {

List

animals1 = (List)in1.readObject(),

animals2 = (List)in1.readObject(),

animals3 = (List)in2.readObject();

System.out.println(

"animals1: " + animals1);

System.out.println(

"animals2: " + animals2);



System.out.println(

"animals3: " + animals3);

}

}

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

}

}

/* Output:

animals: [Bosco the dog[Animal@15db9742],

House@6d06d69c

, Ralph the hamster[Animal@7852e922], House@6d06d69c

, Molly the cat[Animal@4e25154f], House@6d06d69c

]

animals1: [Bosco the dog[Animal@7ba4f24f],

House@3b9a45b3

, Ralph the hamster[Animal@7699a589], House@3b9a45b3

, Molly the cat[Animal@58372a00], House@3b9a45b3

]



animals2: [Bosco the dog[Animal@7ba4f24f],

House@3b9a45b3

, Ralph the hamster[Animal@7699a589], House@3b9a45b3

, Molly the cat[Animal@58372a00], House@3b9a45b3

]

animals3: [Bosco the dog[Animal@4dd8dc3],

House@6d03e736

, Ralph the hamster[Animal@568db2f2], House@6d03e736

, Molly the cat[Animal@378bf509], House@6d03e736

]

*/

It’s possible to use object serialization to and from a byte array as a

way of doing a deep copy of any object that’s Serializable. (A

deep copy means you’re duplicating the entire web of objects, rather

than just the basic object and its references.) Object copying is covered

in depth in the Appendix: Passing and Returning Objects.

Animal objects contain fields of type House. In main(), a List of

these Animals is created and serialized, twice to one stream, then again to a
separate stream. When these are deserialized and printed,

you see the output shown for one run (the objects are in different

memory locations for each run).



You might expect that the deserialized objects have different addresses

from their originals. But notice that in animals1 and animals2,

the same addresses appear, including the references to the House

object that both share. On the other hand, when animals3 is

recovered, the system has no way of knowing that the objects in this

other stream are aliases of the objects in the first stream, so it makes a

completely different web of objects.

As long as you’re serializing everything to a single stream, you’ll

recover the same web of objects you wrote, with no accidental

duplication of objects. You can change the state of your objects in

between the time you write the first and the last, but that’s your

responsibility; the objects are written in their current state (and with

whatever connections they have to other objects) at the time you

serialize them.

The safest way to save the state of a system is to “atomically” serialize

that state. If you serialize some things, do some other work, and

serialize some more, etc., then you will not store the system safely.

Instead, put all the objects that comprise the state of your system in a

single container and write that container out in one operation. Then

you can restore it with a single method call.



The following example is an imaginary computer-aided design (CAD)

system that demonstrates the approach. In addition, it throws in the

issue of static fields; if you look at the JDK documentation, you’ll

see that Class is Serializable, so it should be easy to store the

static fields by serializing the Class object. That seems like a

sensible approach, anyway.

// serialization/AStoreCADState.java

// Saving the state of a fictitious CAD system

import java.io.*;

import java.util.*;

import java.util.stream.*;

enum Color { RED, BLUE, GREEN }

abstract class Shape implements Serializable {

private int xPos, yPos, dimension;

private static Random rand = new Random(47);

private static int counter = 0;

public abstract void setColor(Color newColor);

public abstract Color getColor();

Shape(int xVal, int yVal, int dim) {

xPos = xVal;



yPos = yVal;

dimension = dim;

}

public String toString() {

return getClass() + "color[" + getColor() +

"] xPos[" + xPos + "] yPos[" + yPos +

"] dim[" + dimension + "]\n";

}

public static Shape randomFactory() {

int xVal = rand.nextInt(100);

int yVal = rand.nextInt(100);

int dim = rand.nextInt(100);

switch(counter++ % 3) {

default:

case 0: return new Circle(xVal, yVal, dim);

case 1: return new Square(xVal, yVal, dim);

case 2: return new Line(xVal, yVal, dim);

}

}

}



class Circle extends Shape {

private static Color color = Color.RED;

Circle(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);

}

public void setColor(Color newColor) {

color = newColor;

}

public Color getColor() { return color; }

}

class Square extends Shape {

private static Color color = Color.RED;

Square(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);

}

public void setColor(Color newColor) {

color = newColor;

}

public Color getColor() { return color; }

}



class Line extends Shape {

private static Color color = Color.RED;

public static void

serializeStaticState(ObjectOutputStream os)

throws IOException { os.writeObject(color); }

public static void

deserializeStaticState(ObjectInputStream os)

throws IOException, ClassNotFoundException {

color = (Color)os.readObject();

}

Line(int xVal, int yVal, int dim) {

super(xVal, yVal, dim);

}

public void setColor(Color newColor) {

color = newColor;

}

public Color getColor() { return color; }

}

public class AStoreCADState {

public static void main(String[] args) {



List<Class<? extends Shape>> shapeTypes =

Arrays.asList(

Circle.class, Square.class, Line.class);

List<Shape> shapes = IntStream.range(0, 10)

.mapToObj(i -> Shape.randomFactory())

.collect(Collectors.toList());

// Set all the static colors to GREEN:

shapes.forEach(s -> s.setColor(Color.GREEN));

// Save the state vector:

try(

ObjectOutputStream out =

new ObjectOutputStream(

new FileOutputStream("CADState.dat"))

) {

out.writeObject(shapeTypes);

Line.serializeStaticState(out);

out.writeObject(shapes);

} catch(IOException e) {

throw new RuntimeException(e);

}



// Display the shapes:

System.out.println(shapes);

}

}

/* Output:

[class Circlecolor[GREEN] xPos[58] yPos[55] dim[93]

, class Squarecolor[GREEN] xPos[61] yPos[61] dim[29]

, class Linecolor[GREEN] xPos[68] yPos[0] dim[22]

, class Circlecolor[GREEN] xPos[7] yPos[88] dim[28]

, class Squarecolor[GREEN] xPos[51] yPos[89] dim[9]

, class Linecolor[GREEN] xPos[78] yPos[98] dim[61]

, class Circlecolor[GREEN] xPos[20] yPos[58] dim[16]

, class Squarecolor[GREEN] xPos[40] yPos[11] dim[22]

, class Linecolor[GREEN] xPos[4] yPos[83] dim[6]

, class Circlecolor[GREEN] xPos[75] yPos[10] dim[42]

]

*/

The Shape class implements Serializable, so anything that

inherits Shape is automatically Serializable as well. Each

Shape contains data, and each derived Shape class contains a



static field that holds the color of all of those types of Shapes.

(Placing a static field in the base class would result in only one

field, since static fields are not duplicated in derived classes.)

Methods in the base class can be overridden to set the color for the

various types (static methods are not dynamically bound, so these

are normal methods). The randomFactory() method creates a

different Shape each time you call it, using random values for the

Shape data.

Circle and Square are straightforward extensions of Shape; the

only difference is that Circle initializes color at the point of

definition and Square initializes it in the constructor. We’ll leave the

discussion of Line for later.

In main(), one ArrayList is used to hold the Class objects and

the other to hold the shapes.

Recovering the objects is fairly straightforward:

// serialization/RecoverCADState.java

// Restoring the state of the fictitious CAD system

// {RunFirst: AStoreCADState}

import java.io.*;

import java.util.*;



public class RecoverCADState {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

try(

ObjectInputStream in =

new ObjectInputStream(

new FileInputStream("CADState.dat"))

) {

// Read in the same order they were written:

List<Class<? extends Shape>> shapeTypes =

(List<Class<? extends Shape>>)in.readObject();

Line.deserializeStaticState(in);

List<Shape> shapes =

(List<Shape>)in.readObject();

System.out.println(shapes);

} catch(IOException | ClassNotFoundException e) {

throw new RuntimeException(e);

}

}

}



/* Output:

[class Circlecolor[RED] xPos[58] yPos[55] dim[93]

, class Squarecolor[RED] xPos[61] yPos[61] dim[29]

, class Linecolor[GREEN] xPos[68] yPos[0] dim[22]

, class Circlecolor[RED] xPos[7] yPos[88] dim[28]

, class Squarecolor[RED] xPos[51] yPos[89] dim[9]

, class Linecolor[GREEN] xPos[78] yPos[98] dim[61]

, class Circlecolor[RED] xPos[20] yPos[58] dim[16]

, class Squarecolor[RED] xPos[40] yPos[11] dim[22]

, class Linecolor[GREEN] xPos[4] yPos[83] dim[6]

, class Circlecolor[RED] xPos[75] yPos[10] dim[42]

]

*/

The values of xPos, yPos, and dim were all stored and recovered

successfully, but there’s something wrong with the retrieval of the

static information. It’s all “3” going in, but it doesn’t come out that

way. Circles have a value of 1 (RED, which is the definition), and

Squares have a value of 0 (remember, they are initialized in the

constructor). It’s as if the statics didn’t get serialized at all! That’s

right—even though class Class is Serializable, it doesn’t do



what you expect. So to serialize statics, you must do it yourself.

This is the purpose of the serializeStaticState() and

deserializeStaticState() static methods in Line. They

are explicitly called as part of the storage and retrieval process. (Note

that the order of writing to the serialize file and reading back from it

must be maintained.) Thus to make these programs run correctly, you

must:

1. Add a serializeStaticState() and

deserializeStaticState() to the shapes.

2. Remove the ArrayList shapeTypes and all code related to

it.

3. Add calls to the new serialize and deserialize static methods in the

shapes.

Another issue you might think about is security, since serialization

also saves private data. For security, those fields should be marked

as transient. But then you must design a secure way to store that

information so when you do a restore, you can reset those private

variables.

XML—

An important limitation of object serialization is it is a Java-only



solution: Only Java programs can deserialize such objects. A more

interoperable solution is to convert data to XML format, which allows

it to be consumed by a large variety of platforms and languages.

Because of its popularity, there are a confusing number of options for

programming with XML, including the javax.xml.* libraries

distributed with the JDK. I’ve chosen to use Elliotte Rusty Harold’s

open-source XOM library (downloads and documentation at

www.xom.nu) because it seems the simplest and most straightforward way to
produce and modify XML using Java. In addition, XOM

emphasizes XML correctness.

As an example, suppose you have APerson objects containing first

and last names that you’d like to serialize into XML. The following

APerson class has a getXML() method that uses XOM to produce

the APerson data converted to an XML Element object, and a

constructor that takes an Element and extracts the appropriate

APerson data (notice that the XML examples are in their own

subdirectory):

// serialization/APerson.java

// Use the XOM library to write and read XML

// nu.xom.Node comes from http://www.xom.nu

import nu.xom.*;

http://www.xom.nu/


import java.io.*;

import java.util.*;

public class APerson {

private String first, last;

public APerson(String first, String last) {

this.first = first;

this.last = last;

}

// Produce an XML Element from this APerson object:

public Element getXML() {

Element person = new Element("person");

Element firstName = new Element("first");

firstName.appendChild(first);

Element lastName = new Element("last");

lastName.appendChild(last);

person.appendChild(firstName);

person.appendChild(lastName);

return person;

}

// Constructor restores a APerson from XML:



public APerson(Element person) {

first = person

.getFirstChildElement("first").getValue();

last = person

.getFirstChildElement("last").getValue();

}

@Override

public String toString() {

return first + " " + last;

}

// Make it human-readable:

public static void

format(OutputStream os, Document doc)

throws Exception {

Serializer serializer =

new Serializer(os,"ISO-8859-1");

serializer.setIndent(4);

serializer.setMaxLength(60);

serializer.write(doc);

serializer.flush();



}

public static void

main(String[] args) throws Exception {

List<APerson> people = Arrays.asList(

new APerson("Dr. Bunsen", "Honeydew"),

new APerson("Gonzo", "The Great"),

new APerson("Phillip J.", "Fry"));

System.out.println(people);

Element root = new Element("people");

for(APerson p : people)

root.appendChild(p.getXML());

Document doc = new Document(root);

format(System.out, doc);

format(new BufferedOutputStream(

new FileOutputStream("People.xml")), doc);

}

}

/* Output:

[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry]

<?xml version="1.0" encoding="ISO-8859-1"?>



<people>

<person>

<first>Dr. Bunsen</first>

<last>Honeydew</last>

</person>

<person>

<first>Gonzo</first>

<last>The Great</last>

</person>

<person>

<first>Phillip J.</first>

<last>Fry</last>

</person>

</people>

*/

The XOM methods are fairly self-explanatory and are found in the

XOM documentation.

XOM also contains a Serializer class you see used in the

format() method to turn the XML into a more readable form. If you

just call toXML() you’ll get everything run together, so the



Serializer is a convenient tool.

Deserializing APerson objects from an XML file is also simple:

// serialization/People.java

// nu.xom.Node comes from http://www.xom.nu

// {RunFirst: APerson}

import nu.xom.*;

import java.io.File;

import java.util.*;

public class People extends ArrayList<APerson> {

public People(String fileName) throws Exception {

Document doc =

new Builder().build(new File(fileName));

Elements elements =

doc.getRootElement().getChildElements();

for(int i = 0; i < elements.size(); i++)

add(new APerson(elements.get(i)));

}

public static void

main(String[] args) throws Exception {

People p = new People("People.xml");



System.out.println(p);

}

}

/* Output:

[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry]

*/

The People constructor opens and reads a file using XOM’s

Builder.build() method, and the getChildElements()

method produces an Elements list (not a standard Java List, but

an object that only has a size() and get() method—Harold did

not want to force people to use a particular version of Java, but still

wanted a type-safe container). Each Element in this list represents a

APerson object, so it is handed to the second APerson constructor.

Note this requires you know ahead of time the exact structure of your

XML file, but this is often true with these kinds of problems. If the

structure doesn’t match what you expect, XOM will throw an

exception. It’s also possible for you to write more complex code to

explore the XML document, rather than making assumptions about it,

for cases when you have less concrete information about incoming

XML structure.



To get these examples to compile, put the JAR files from the XOM

distribution into your classpath.

This has only been a brief introduction to XML programming with

Java and the XOM library; for more information see www.xom.nu.

1. The section “Interfaces and type information” at the end of the

Type Information chapter shows how it’s possible to access

private methods from outside of the class.↩

Appendix: Benefits and

Costs of Static Type

Checking

This is an edited collection of essays I’ve

written over the years that tries to put

the debate between statically-checked

and dynamic languages into perspective,

http://www.xom.nu/


and a foreword describing my recent

insights on the topic.

Foreword

My primary interest in software development has always been

programmer productivity. Programmer cycles are expensive, CPU

cycles are cheap, and I believe we should not pay for the latter with the

former.

My initial experiences with static type checking were first with

assembly language (no type checking at all), followed by pre-ANSI C,

which allowed many problems to slip through. Then C++ appeared

and checked the type of function arguments and return values, and

thus found many errors (and influenced ANSI C to adopt this

approach). This error discovery made me a big fan. Time passed, and

we were burdened with more and more coding overhead to support

more type checking. In the meantime, I began experimenting with

dynamic languages, and eventually discovered Python and its

marvelous productivity. This made me start to wonder if we weren’t

missing something in our pursuit of static perfection. (I have also

ventured into the extremes of static type checking while writing

Atomic Scala.

http://www.AtomicScala.com


I tended to hear things like “more static checking is always better” and

“you can only solve simple problems with dynamic languages; they

aren’t suited to real-world applications.”

My goal in writing these essays was to explain the benefits of dynamic

languages and to question the idea that static type checking was “free,”

that there are no costs associated with all those features. And that

sometimes those costs hold us back.

My assumption throughout was always that people simply didn’t

understand, and that if I just explained harder, they would eventually

get it.

Then something interesting happened. Time passed, and people

created more and more large, real-world applications using languages

like Python and Ruby. Dynamic languages like Groovy and Clojure

appeared for the JVM, and folks began writing impressive programs

with these.

After seeing what these languages could do, there were no remaining

legitimate arguments to justify the idea that certain things can only be

accomplished with static languages. At that point, some people started

saying they just “preferred static type checking.”

Only recently did it hit me:



This is a cultural issue, an issue of belief.

That’s why all my explanations kept failing. A group of people had

gotten comfortable with a set of beliefs, and I was challenging those

and making them uncomfortable. So they fought back, and dug in

harder.

Programming languages create cultural

communities.

With this new perspective, which seems obvious in hindsight, the

issues and choices now look quite different to me. Some issues can be

argued with reason and experimentation. But other issues are part of

the core belief system of a community, and if you join, you sign up for

those and go where they take you.

Static Type Checking

vs. Testing

How can we get maximal leverage on the problems we try to solve?

Whenever a new tool (especially a programming language) appears,



that tool provides some kind of abstraction that may or may not hide

needless detail from the programmer. I have come, however, to always

be on watch for a Faustian bargain, especially one that tries to

convince me to ignore all the hoops I must jump through to achieve

this abstraction. Perl is an excellent example of this—the immediacy of

the language hides the meaningless details of writing a program, but

the unreadable syntax (based, I know, on backward-compatibility with

Unix tools like awk, sed and grep) is a significant price to pay.

Over the years, I’ve slowly come to understand the relationship of

more traditional programming languages and their orientation

towards static type checking. This began, long ago, with a two-month

love affair with Perl, which gave me productivity through rapid

turnaround (The affair was terminated because of Perl’s reprehensible

treatment of references and classes; only later did I see the real

problems with the syntax). Issues of static-vs-dynamic type checking

were not visible with Perl, since you can’t build projects large enough

to see these issues, and the syntax obscures everything in smaller

programs.

After I worked with Python—a language which can build large,

complex systems—I noticed that, despite an apparent carelessness



about type checking, Python programs seemed to work quite well

without much effort, and without the kinds of problems expected from

a language that doesn’t have the static type checking we’ve all come to

“know” is the only correct way of solving the programming problem.

This became a puzzle to me: if static type checking is so important,

why are people able to build big, complex Python programs (in much

shorter time and with much less effort than the static counterparts)

without the disaster I was so sure would ensue?

This shook my unquestioning acceptance of static type checking

(acquired when moving from C to C++, where the improvement was

dramatic) enough that the next time I examined the issue of checked

exceptions in Java, I asked “why”? which produced a big discussion

wherein I was told that if I kept advocating unchecked exceptions,

cities would fall and civilization as we know it would cease to exist. In

Thinking in Java, 3rd edition, I advocated the use of

RuntimeException as a wrapper class to “turn off” checked

exceptions. Every time I do it now, it seems right (I note that Martin

Fowler came up with the same idea at roughly the same time), but I

still get the occasional email that warns me I am violating all that is

right and true, civilizations will fall, etc.



But deciding that checked exceptions seem like more trouble than

they’re worth1 did not answer the question “why does Python work so well,
when conventional wisdom says it should produce massive

failures?” Python and similar dynamically-typed languages are lazy

about type checking. Instead of putting the strongest possible

constraints upon the type of objects, as early as possible (as C++ and

Java do), languages like Ruby, SmallTalk and Python put the loosest

possible constraints on types, and evaluate types only if they have to.

That is, you can send any message to any object, and the language only

cares that the object can accept the message—it doesn’t require that

the object be a particular type, as Java and C++ do. For example, for

speaking pets in Java, the code looks like this:

// staticchecking/petspeak/PetSpeak.java

// Speaking pets in Java

// {java staticchecking.petspeak.PetSpeak}

package staticchecking.petspeak;

interface Pet {

void speak();

}

class Cat implements Pet {

public void speak() {



System.out.println("meow!");

}

}

class Dog implements Pet {

public void speak() {

System.out.println("woof!");

}

}

public class PetSpeak {

static void command(Pet p) { p.speak(); }

public static void main(String[] args) {

Pet[] pets = { new Cat(), new Dog() };

for(Pet pet : pets)

command(pet);

}

}

/* Output:

meow!

woof!

*/



Note that command() must know exactly the type of argument it’s

going to accept—a Pet—and it will accept nothing else. Thus, I must

create a hierarchy of Pet, and inherit Dog and Cat so I can upcast

them to the generic command() method.

For the longest time, I assumed that upcasting was an inherent part of

object-oriented programming, and found the questions about

upcasting from SmallTalkers and the like to be annoying. But when I

started working with Python I found the following curiosity. The above

code can be translated directly into Python:

# staticchecking/PetSpeak.py

# Speaking pets in Python

class Pet:

def speak(self): pass

class Cat(Pet):

def speak(self):

print("meow!")

class Dog(Pet):

def speak(self):

print("woof!")

def command(pet):



pet.speak()

pets = [ Cat(), Dog() ] # (1)

for pet in pets: # (2)

command(pet)

output = """

meow!

woof!

"""

If you’ve never seen Python before, you’ll notice it redefines the

meaning of a terse language, but in a very good way. You think C/C++

is terse? Let’s throw away those curly braces. Indentation already has

meaning to the human mind, so we’ll use that instead to indicate

scope. Argument types and return types? Let the language sort it out.

During class creation, base classes are indicated in parentheses. def

means we are creating a function or method definition. On the other

hand, Python is explicit about the this argument (called self by

convention) for method definitions.

Comments start with a # and continue to the end of the line.

The definition for the Pet class uses the pass keyword, which is

similar to saying abstract in Java. It just means there’s no



definition here.

Note that command(pet) just says it takes some object called pet,

but it doesn’t give any information about what the type of that object

must be. That’s because it doesn’t care, as long as you can call

speak(), or whatever else your function or method wants to do.

We’ll look at this more closely in a minute.

Also, command(pet) is just an ordinary function, which is OK in

Python. That is, Python doesn’t insist you make everything an object,

since sometimes a function is what you want.

[1] In Python, lists and maps/dictionaries/associative arrays are

both so important they are built into the core of the language, so I

don’t need to import any special library to use them. Here, a list is

created containing two new objects, of type Cat and Dog. The

constructors are called, but no new is necessary (and now you’ll

go back to Java and realize that no new is necessary there, either.

It’s just a redundancy inherited from C++).

[2] Iterating through a sequence is also important enough that

it’s a native operation in Python. The for selects each item from

the list pets into the variable pet.

The output is the same as the Java version, and is captured in the



definition of the output variable. Triple quoting creates a multiline

string.

Python makes an excellent pseudo-coding language, with the

wonderful attribute that it can actually be executed. This means you

can quickly try out ideas in Python, and when you get one that works,

you can rewrite it in Java, C++ or your language of choice. Or maybe

you realize the problem is already solved in Python, so why bother

rewriting it? (That’s usually as far as I get). I’ve taken to giving exercise

hints in Python during seminars, because then I’m not giving away the

whole picture, but people can see the form I’m looking for in a solution

so they can move ahead. And I’m able to verify that the form is correct.

This is why Python is often called “executable pseudocode.”

For this discussion, the interesting part is this: because the

command(pet) method doesn’t care about the type it’s getting, I

don’t have to upcast. So I can rewrite the Python program without

using base classes:

# staticchecking/NoBasePetSpeak.py

# Speaking pets without base classes

class Cat:

def speak(self):



print("meow!")

class Dog:

def speak(self):

print("woof!")

class Bob:

def bow(self):

print("thank you, thank you!")

def speak(self):

print("Welcome to the neighborhood!")

def drive(self):

print("beep, beep!")

def command(pet):

pet.speak()

pets = [ Cat(), Dog(), Bob() ]

for pet in pets:

command(pet)

output = """

meow!

woof!

Welcome to the neighborhood!



"""

Since command(pet) only cares whether it can send the speak()

message to its argument, I’ve removed the base class Pet, and even

added a totally non-pet class called Bob which happens to have a

speak() method, so it also works in the command(pet) function.

At this point, a statically-typed language sputters with rage, insisting

this kind of sloppiness will cause disaster and mayhem. Clearly, at

some point the “wrong” type will be used with command() or will

otherwise slip through the system. The benefit of simpler, clearer

expression of concepts is simply not worth the danger. Even if that

benefit is a productivity increase of 5 to 10 times over that of Java or

C++.

What happens when such a problem occurs in a Python program—an

object somehow gets where it shouldn’t be? Python reports all errors

as exceptions. So you do find out there’s a problem, but it’s virtually

always at run time. “Aha!” you say, “There’s your problem: you can’t

guarantee the correctness of your program because you don’t have the

necessary compile-time type checking.”

This program can even be rewritten in the Go language, like this:

// staticchecking/petspeak.go



package main

import "fmt"

type Cat struct {}

func (this Cat) speak() { fmt.Printf("meow!\n")}

type Dog struct {}

func (this Dog) speak() { fmt.Printf("woof!\n")}

type Bob struct {}

func (this Bob) bow() {

fmt.Printf("thank you, thank you!\n")

}

func (this Bob) speak() {

fmt.Printf("Welcome to the neighborhood!\n")

}

func (this Bob) drive() {

fmt.Printf("beep, beep!\n")

}

type Speaker interface {

speak()

}

func command(s Speaker) { s.speak() }



// If "Speaker" is never used

// anywhere else, it can be anonymous:

func command2(s interface { speak() }) { s.speak() }

func main() {

command(Cat{})

command(Dog{})

command(Bob{})

command2(Cat{})

command2(Dog{})

command2(Bob{})



}

/* Output:

meow!

woof!

Welcome to the neighborhood!

meow!

woof!

Welcome to the neighborhood!

*/

Go has no class keyword, but you can create the equivalent of basic

classes using the above form: what you would ordinarily define as a

class, you instead define as a struct, within which dwell your data

fields (there are none here). For each method, you start with the func

keyword, then—in order to attach the method to your class—you put

parentheses containing the object reference, which can be any

identifier but I use this here to remind you that it’s like the this in

C++ or Java. Then you define the rest of the function as you do for any

other function in Go. (Note there’s also no inheritance in Go, so this

form of “object-orientedness” is relatively primitive, and probably the

main thing that keeps me from spending more time with the language.



Composition, however, is straightforward).

The command() and command2() functions both use

structural/duck typing: the exact type of the argument is unimportant

as long as it contains a speak() method. I show two approaches

here: command() uses an externally-defined Speaker interface, but

if that interface is never used anywhere else, you can define it

anonymously, inline, as seen in command2().

main() demonstrates that command() and command2() are

indeed indifferent to the exact type of their arguments, as long as

there’s a speak(). However, just like C++ template functions, the

types are checked at compile time. (The syntax Cat{} creates an

anonymous Cat struct).

Type Checking is Just One

Kind of Testing

When I wrote Thinking in C++, 1st edition, I incorporated a very crude

form of testing: I wrote a program that would automatically extract all

the code from the book (using comment markers placed in the code to



find the beginning and ending of each listing). It then built makefiles

that would compile all the code. This way I could guarantee that all the

code in my books compiled and so, I reasoned, I could say “if it’s in the

book, it’s correct.” I ignored the nagging voice that said “compiling

doesn’t mean it executes properly,” because it was a big step to

automate the code verification in the first place (as anyone who looks

at programming books knows, many authors still don’t put much

effort into verifying code correctness). But naturally, some of the

examples didn’t run right, and when enough of these were reported

over the years I began to realize I could no longer ignore the issue of

testing. I came to believe:

If it’s not tested, it’s broken.

If a program compiles in a statically typed language, it just means it

has passed some tests, which means the syntax is guaranteed to be

correct (Python checks some syntax at compile time, as well. It just

doesn’t have as many syntax constraints). But there’s no guarantee of

correctness just because the compiler passes your code. If your code

seems to run, that’s also no guarantee of correctness.

The only guarantee of correctness, regardless of whether your

language is strongly or “flexibly” typed, is whether it passes all the



tests that define the correctness of your program. And you have to

write some of those tests yourself. These, of course, are unit tests.

Once you become “test infected,” you don’t go back.

It’s very much like going from old C to C++. Suddenly, the compiler

performs many more tests for you. You can work faster. But those

syntax tests only go so far. The compiler cannot know how you expect

the program to behave, so you must “extend” the compiler by adding

unit tests (regardless of the language you’re using). If you do this, you

can make sweeping changes (refactoring code or modifying design) in

a rapid manner because you know that your suite of tests will back you

up, and immediately fail if there’s a problem—just like a compilation

fails when there’s a syntax problem.

But without a full set of unit tests (at the very least), you can’t

guarantee the correctness of a program. To claim that the static type

checking constraints in C++ or Java will prevent you from writing

broken programs is clearly an illusion (you know this from personal

experience). In fact, what we need is

Strong testing, not strong typing.

So this, I assert, is an aspect of why Python works. C++ tests happen at

compile time (with a few minor special cases). Some Java tests happen



at compile time (syntax checking), and some happen at run time

(array-bounds checking, for example). Most Python tests happen at

runtime rather than at compile time, but they do happen, and that’s

the important thing (not when). And because I can get a Python

program up and running in far less time than it takes you to write the

equivalent C++ or Java program, I can start running the real tests

sooner: unit tests, tests of my hypothesis, tests of alternate

approaches, etc. And if a Python program has adequate unit tests, it

can be as robust as C++ or Java programs which also have adequate

unit tests (although the tests in Python are faster to write).

Robert Martin is a long-time inhabitant of the C++ community. He’s

written books and articles, consulted, taught, etc. A pretty hard-core,

strong-static type checking guy. Or so I would have thought, until I

read this weblog entry. Robert came to more or less the same conclusion I
have, but he did so by becoming “test infected” first, then

realizing that the compiler was just one (incomplete) form of testing,

then understanding that a dynamically-typed language could be much

more productive but create programs just as robust as those written in

http://www.artima.com/weblogs/viewpost.jsp?thread=4639


statically-typed languages, by providing adequate testing.

Of course, Martin also received the usual “how can you possibly think

this?” comments. Which is the very question that led me to begin

struggling with the static/dynamic typing concepts in the first place.

And certainly both of us began as static type checking advocates.

Sometimes it takes an earth-shaking experience—like becoming test-

infected or learning a different kind of language—to cause a re-

evaluation of beliefs.

How to Argue about

Typing

Many people observe that type checking is a religious discussion best

avoided. I often agree, having started more than my share of fires in

this area. However, there are a few issues surrounding types and type

checking that capture the essential distinctions between programming

languages. This understanding makes the pitfalls worth the risk, so in

this section–from which I drew the closing keynote address at the



2004 Python Conference (PyCon)—I will look at various issues and

arguments surrounding the concept of type, and in particular examine

the phenomenon of “structural typing” a.k.a. “latent typing” (also

unfortunately sometimes called “weak typing”), why the concept is

powerful, and how it is expressed in different languages.

Background: When I was in junior high school in Southern California,

they tried to teach me Spanish by showing us films about “E Man” (a

dog, I think), and albondigas (meatballs). That’s about all I remember,

because I reacted strongly when the teacher would speak Spanish to

us, then expect us to reply with something meaningful. I was not

conscious enough to see the motivation for learning this, and the effort

seemed painful. The same was true for playing the guitar (it makes

your fingers hurt) and any number of other potential abilities that

never manifested.

So I sympathize with those who resist learning more than one

language. I’ll probably only ever know a few phrases of non-English

languages, and it is only through experience I’ve discovered the

incredible value of learning more than one programming language.

The biggest payoff is this: I can now think about things in Java or C++

I was unable to conceive of before I learned Python. And from what



I’ve read and the code I’ve seen, very few single-language users are

able to conceive of these things, either. Your language really does

constrain your thoughts.

A number of years ago, I began noticing that a number of

programming language features revolve around particular

philosophies of type checking. These philosophies had as their

foundation the idea that a particular way of doing things will always

yield better results. In addition, the meanings of various terms tend to

be given in the context of the language that one knows and likes best.

I stepped into the middle of this when I began using the term “weak

typing” (which I have since observed is quite different from “weakly

typed”). At the time, the term seemed to come from an authoritative

source, but now I’m unable to track it down and discover its genesis.

In Java, I also produced a hailstorm of protest when I asserted (in

Thinking in Java, 3rd edition) that checked exceptions—where the

compiler forces you to write code to handle the exceptions from

particular calls, rather than allowing you to decide whether or not to

handle the exception at that time—are an experiment in that language

that largely cause more trouble than it is worth (not to say they aren’t

useful sometimes, but they get in the way more than they help). Both



of these discussions seem to touch deep nerves in fundamental belief

systems.

The value of what I originally called “weak typing,” but which is more

predominantly called “structural” or “latent” typing is fascinating,

whatever we choose to call it. Basically, it’s how you say “I don’t care

what this type is” in certain programming constructs (“…but I still care

that the type behaves correctly…”). In C++, this construct is the

template. Java uses the term “generic” which implies the same thing,

but in practice it can only be as generic as the root class Object. But in
Python (and SmallTalk), it’s just the way you define any function, as

speak() is defined here:

# staticchecking/DogsAndRobots.py

def speak(anything):

anything.talk()

class Dog:

def talk(self): print("Arf!")

def reproduce(self): pass

class Robot:

def talk(self): print("Click!")

def oilChange(self): pass

a = Dog()



b = Robot()

speak(a)

speak(b)

output = """

Arf!

Click!

"""

speak() doesn’t care about the type of its argument. I can pass any

object that supports the talk() method.

This example easily translates to C++2:

// staticchecking/DogsAndRobots.cpp

#include <iostream>

using namespace std;

class Dog {

public:

void talk() { cout << "Arf!" << endl; }

void reproduce() {}

};

class Robot {

public:



void talk() { cout << "Click!" << endl; }

void oilChange() {}

};

template< class T> void speak(T speaker) {

speaker.talk();

}

int main() {

Dog d;

Robot r;

speak(d);

speak(r);

}

/* Output:

Arf!

Click!

*/

Here’s the same program written in Go:

// staticchecking/dogsandrobots.go

package main

import "fmt"



type Dog struct {}

func (this Dog) talk() { fmt.Printf("woof!\n")}

func (this Dog) reproduce() {}

type Robot struct {}

func (this Robot) talk() { fmt.Printf("Click!\n") }

func (this Robot) oilChange() {}

func speak(speaker interface { talk() }) {

speaker.talk();

}

func main() {

speak(Dog{})

speak(Robot{})

}

/* Output:

woof!

Click!

*/



It’s almost as if you’re inventing a new type: “the type acceptable to

speak(),” because it certainly doesn’t refer to any other type that

exists in the system. You might also argue that speak() defines two

basic categories of types: those acceptable to speak() and everything

else. Neither of these definitions work for me. It appears there is either

no type specified for x, or that the type constraints on x are weakened

to allow many different types.

After dealing with terminology, this section looks at the way

structural/latent typing is achieved in Python and C++, and what

generics look like in Java (which doesn’t support structural types).

Weakly Typed vs. Weak

Typing

C++-Proxy

“C++ has strong, static type checking.”

Wonk

“C/C++ is weakly typed because it has casts and unions.”

Proxy

“That’s a bit extreme, isn’t it? How about if we say that C++ is

strongly, statically typed with a hole in the type system: casts (and

who really uses unions, anyway?).”



Wonk

“Nope. If a language allows an object to accept any incorrect

message, it’s weakly typed. Java also allows casts, but it checks

them, both at compile time to see if the cast is feasible, and at run

time to ensure it is correct. So Java is strongly typed, C++ is

weakly typed.”

Proxy

“So you’re saying that if the language is strong everywhere but it

has a single trap door, you’re going to call the whole thing weak?”

Wonk

“Totally weak, dude.”

Clearly, one of the issues revolves around definitions and how closely

you stick to them. So first we have to decide “what is a type?” Here are

two different ways to define type. An object can be:

1. Syntactically compatible: The object provides all the expected

operations (type names, function signatures, interfaces).

Or:

2. Semantically compatible: The object’s operations all behave in the

expected way (state semantics, logical axioms, proofs).

The first approach is often considered type (it provides a particular



interface) and the second is usually called class (describes

implementation constraints). I think this fits closely with the issue at

hand: we are predominantly concerned with the operations that can be

performed upon objects, and the only semantics of interest are

whether those operations are safe and if the language system

consistently reports unsafe operations (e.g. C++ allows old-style

unchecked casts and doesn’t report anything if you use them).

Does the language apply the type constraints to the symbols, or to

the objects?

You apply the type constraints to the symbols especially if you have

limited run-time support (C++). It’s also possible to do both, as with

Java, which constrains the types and usage of all symbols at compile

time, but also has enough runtime support to perform limited dynamic

checks. If it can’t check something statically (array bounds or null

pointers, for example), it checks them dynamically.

Are the constraints applied before the program runs(static type

checking) or while the program is running (dynamic type

checking)?

Again, Java does some of both. But dynamically-checked languages

seem to have both more flexibility and at the same time better ability



to make sure an object is properly treated. They can afford to treat the

symbols casually because the objects guard themselves against

improper use at runtime, rather than relying on the compiler to guard

them.

Does the language “guess” the type based on usage (type

inference), or does it know via a declaration somewhere (manifest

typing)?

Type inference is sometimes confused with dynamic typing, because

the symbols can appear to have no type (or no fixed type). Scala is a

good example of a type-inference language, and it is much nicer to use

when defining types.

If a language is statically typed, does it ever relax the type

constraints a bit to allow more flexible programming? (This is

sometimes called gradual typing).

This is my key area of interest in this section. Note that in the dog-

robot example above, many people reach the conclusion that because

the anything in the speak() argument list is not constrained,

there is no type safety. However, strong type safety is maintained—you

still cannot send an improper message to an object.

Lexicon



Static typing: Types are checked at compile time.

Dynamic typing: Types are checked at run time.

Strong typing: You can’t successfully apply an improper

operation (send a bad message) to an object.

“Weakly typed” : You can successfully perform an improper

operation on an object. There may or may not be common

confusion with the following term, but people use it anyway.

Latent typing/Structural typing: Type constraints are relaxed

in a few specific cases to make programming more flexible and

powerful.

Type inference: You don’t have to say what the types are, the

language system figures out types based on how they are used

(Scala does this).

Manifest typing: You must specify the types when you create

them.

Duck Typing: A term apparently adopted by Ruby, to describe

structural/latent typing. “If it walks like a duck and talks like a

duck, it’s a duck.” The value of duck typing seems to be the ability

to create an adapted object without creating a new adapter class

(see Adapter in the Patterns chapter).



The phrase “Implicit typing” would seem to neatly describe what I’m

talking about here: an implied type is created when you define a

function, template, or generic. Unfortunately, Fortran has already co-

opted this term, with its “first letter of the identifier implies Real or

Integer” scheme. I’m tempted to vary it slightly to “implied typing”

since it is so close to the mark, but I’m sure we’d end up with the same

issue as “weakly” vs. “weak.” (I’ve notice a number of people using the

term “implicitly typed” on the web).

la·tent

1. Present or potential but not evident or active. In existence but not

manifest. Latent talent.

2. Psychology. Present and accessible in the unconscious mind but

not consciously expressed.

A fingerprint that is not apparent to the eye but can be made

sufficiently visible, as by dusting or fuming, for use in identification.

It’s there, but not explicit. That’s a pretty good word after all. Or:

If you only need something that quacks,



don’t worry about checking that it’s also a

duck.—Andrew Dalke

Of course with latent typing we are not even interested in naming it a

duck in the first place. I believe that the duck is there even if I see only

scant evidence for its existence.

Templates & Latent Typing

vs. Java Generics

Before templates were introduced to C++, you created generic

containers using macros. For the library designer this was painful, for

the client programmer somewhat less so. When templates were

introduced, I explained that if C++ had a singly-rooted hierarchy

(everything ultimately inherits from Object), these would not be as

necessary since the containers could be written to hold Object, and

therefore automatically hold everything. This is the way SmallTalk had

done it and that seemed pretty successful.

Of course SmallTalk used latent typing, and so did not require the

casts. When Java followed this prescription, it had static typing and so

you had the benefit of containers built with a singly-rooted hierarchy.

But with Java you had to cast everything up and down all the time.

The solution introduced in Java 5 is the so-called generic, which



implies “anything” but which is actually constrained. This solution

makes collections more civilized:

// staticchecking/drc/DogAndRobotCollections.java

// {java staticchecking.drc.DogAndRobotCollections}

package staticchecking.drc;

import java.util.*;

class Dog {

public void talk() {

System.out.println("Woof!");

}

public void reproduce() { }

}

class Robot {

public void talk() {

System.out.println("Click!");

}

public void oilChange() { }

}

public class DogAndRobotCollections {

public static void main(String[] args) {



List<Dog> dogList = new ArrayList<>();

List<Robot> robotList = new ArrayList<>();

for(int i = 0; i < 10; i++)

dogList.add(new Dog());

//- dogList.add(new Robot()); // Compile-time error

for(int i = 0; i < 10; i++)

robotList.add(new Robot());

//- robotList.add(new Dog()); // Compile-time error

dogList.forEach(Dog::talk);

robotList.forEach(Robot::talk);

}

}

/* Output:

Woof!

Woof!

Woof!

Woof!

Woof!

Woof!

Woof!



Woof!

Woof!

Woof!

Click!

Click!

Click!

Click!

Click!

Click!

Click!

Click!

Click!

Click!

*/

This is definitely an improvement for collections and a few other

things. However, you cannot say “I don’t care what type this is” for an

argument, like you can in C++. So you cannot say in Java:

class Communicate {

public static <T> void speak(T speaker) {

speaker.talk();



}

}

You can only say, “This thing can be no more specific than Object.”

So this compiles, because I call an Object method for it:

public class NothingButObject {

public <T> String f(T anyObject) {

return anyObject.toString();

}

}

This turns out to work just fine when you’re dealing with Java

collections, which are already constrained to hold nothing more

specific than Object (so they hold any type).

But to say something more general than that, to write true “generic

code,” you cannot (Java 8, however, allows “Assisted Latent Typing,”

described at the end of the Generics chapter). To apply the

communicate() function to dogs and robots, you must do this:

// staticchecking/dr/DogsAndRobots.java

// {java staticchecking.dr.DogsAndRobots}

package staticchecking.dr;

interface Speaks { void talk(); }



class Dog implements Speaks {

public void talk() {

System.out.println("Woof!");

}

public void reproduce() { }

}

class Robot implements Speaks {

public void talk() {

System.out.println("Click!");

}

public void oilChange() { }

}

class Communicate {

public static <T extends Speaks>

void speak(T speaker) {

speaker.talk();

}

}

public class DogsAndRobots {

public static void main(String[] args) {



Dog d = new Dog();

Robot r = new Robot();

Communicate.speak(d);

Communicate.speak(r);

}

}

/* Output:

Woof!

Click!

*/

You must constrain the generic type accepted by the function to

conform to a class or interface which contains the operations you are

calling inside that function.

But of course this is no better, and actually more confusing, than

simply using the interface alone as the argument:

class Communicate {

public static void speak(Speaks speaker) {

speaker.talk();

}

}



What I was really hoping for in Java generics was true latent typing:

<T> void f(T objectOfAnyType) {

objectOfAnyType.anyOperation();

}

What I got was cleanup of templates and a few other features, but

none of the power of true generic (latent) types (until, as mentioned

earlier, Java 8). The primary argument against latent types in Java is

that “it isn’t type safe,” which I hope to show is incorrect later in this

appendix.

C++ templates always allowed true generic code. Their downfall was

that early compilers produced terrible error messages for template

code (they’ve gotten better since), but many people came to the

conclusion that templates were therefore bad.

Another argument against C++ templates is that they cause code bloat

because a copy of the template is laid down each time you instantiate it

for a new type. However, code bloat of this kind generally results from

a misunderstanding of the feature; in particular, putting all your code



inside the template instead of inheriting or using composition. The

base class or member objects hold the code that doesn’t need to be

templatized (or reproduced).

It’s very powerful to say “it doesn’t matter what type this object is, as

long as I can perform these operations on it.” This is the foundation,

for example, of the C++ Standard Template Library (STL) algorithms.

The algorithms work on containers, which themselves are designed to

be as unconstraining as possible so they can hold any kind of object.

It’s as if there’s an “implied singly-rooted hierarchy” in C++ (with a

very simple root class).

Flexibility vs. (Perceived)

Safety

Java Wonk

Static type checking is necessary for safety.

Me

But Java does some checking at run-time. That’s why you need

ClassCastException.

Wonk

OK, I’ll say this, then: For safety, as much static type checking as

possible is always desirable.



Me

Isn’t it possible to occlude the meaning of the code if you have too

much type-checking ceremony around it? And we still haven’t

made a dent in the “20 working lines of code per day per

programmer” statistic.

Wonk

You’re just complaining about finger typing. I have tools like

Eclipse that do a lot of typing for me, so I get the best of both

worlds: reduced finger typing and greater type checking.

Me

Yes, but code is read much more than it is written. By making the

reader do more work you’re slowing down the development

process.

Wonk

On the contrary, this makes the code more explicit and thus easier

to understand.

Me

I find Python code much faster to read precisely because it’s

shorter and more straightforward, and thus it seems much easier

to understand than when I’m constantly interrupted by all the



ceremony of Java.

Wonk

I don’t know Python so I don’t believe you. And I’m positive I

want the guaranteed safety provided by Java’s static type

checking.

Me

What do you mean, “guaranteed?” With the failure rate of

software development projects at least 50%, and possibly as high

as 80%?

Wonk

That’s not verifiable. And Java has improved the success rate over

C++. It’s sure made my life easier.

Me

True, few are willing to admit their failures so we can’t get an

exact number except to say it’s very high, and very expensive.

How can you argue this is a sure thing when the failure rates

continue to be so high? It does seem that Java improves the

success of projects over C++, but how can you say that anything is

working when everything is mostly failing?

Wonk



But you want to reduce the amount of type checking. That makes

it worse.

Me

No, the amount of type checking is at least the same. It’s just

when it happens that changes.

Wonk

If you make it happen at run-time instead of at compile time,

things can slip through the cracks.

Me

Let’s look at an example where run-time checking happens in

Java. Pre-Java 5 collections allow you to put any object in, then

you must cast it back to the desired type when you pull it out. The

correctness of the cast is checked at runtime.

Wonk

Yes, very bad. You can put the wrong type into a collection. I could

put a Dog into a collection of Cat. Hey, I think that’s an example

in your book.

Me

Yes, that would be a problem, but you’d get a runtime exception

when it happened, so you’d find out about it.



Wonk

But with static typing like we get with Java generics it won’t

happen at all. That’s a big worry solved.

Me

This happens to you a lot?

Wonk

Well … no. Actually, I don’t remember the last time it happened.

But I’m sure the problem is just lurking, waiting to crash an

important program.

Me

As long as you find out when it happens, you still find out. And

you can do that through unit testing.

Wonk

Static checking is better than unit testing, since I don’t have to

write the tests.

Me

You eventually have to write some tests. There’s always a line



where it goes beyond language syntax and becomes the semantics

of your particular program. Without your own tests you cannot

have a verifiably correct program.

Wonk

Unit tests are good, yes.

Me

So what I’m suggesting is that by acknowledging that you have to

write your own tests anyway—and thus perform dynamic checking

of your application—you can consider moving the line and making

things a bit more dynamic. I think the benefit you get in easier-to-

write, easier-to-read code will far outweigh the loss of a bit of the

static type checking. Keep as much of it as possible, but move a

little bit into the runtime arena.

Wonk

Static type checking is too important. It’s what Java is about.

More static type checking is always better.

Is Latent/Structural Typing

Necessary?

In the end we have to ask whether Latent/Structural typing is an

essential feature. What does it really do?



It allows you to cut across class hierarchies, calling methods that are

not part of a common interface.

Classes only share the methods in their common base class. C++ has

no ultimate Object base class, so the need for latent typing is more

immediately obvious. Java has a singly-rooted hierarchy and

className can only call Object methods in T. They are “generic,”

as long as you don’t step out of the bounds of what’s already generic

(Object). This works fine for collections and any other code which

only needs the fundamental operations of Object.

However, it’s still possible to have disjoint hierarchies in Java, with

common methods but no common interfaces. The original authors of

two separate class hierarchies cannot be expected to predict every

commonality that might occur, nor to anticipate you might write a

single piece of code that is applied to both of them.

This is more likely to happen in existing hierarchies, ones that are

handed to you. To perform common operations across multiple

disjoint hierarchies, you are forced to write duplicate code. Thinking

this is OK is effectively saying “it’s OK to duplicate code,” although it

may seem like it’s just a little bit and not very often.

But what if this is another feature you haven’t been using because you



didn’t know about it? Like objects for a procedural programmer, for

example. Or aspects, which can greatly simplified some architectures.

C++ programmers benefit by using templates for more than just

container classes (although template metaprogramming seems beyond

what most people do).

Even if you do argue that all classes can be shoehorned into a

hierarchy to achieve a common interface, there is also the argument of

the maintenance overhead that results from the extra code. As Java

programmers we’ve been like frogs in saucepans (a myth—apparently

they do jump out when the water gets too hot), adjusting to more and

more code to do basic things. Over time, Java added syntax to reduce

some of that code, and this is an admirable development. It still

requires more finger-typing than may be necessary. The counter-

argument is that we have tools like Eclipse to do the typing for us, but

the overhead of reading and maintaining the code—which is where

most of the money ends up going—still increases.

Consider the opposite view. At the Software Development Conference



2004, James Hobart pointed out the distinction between “probability”

and “possibility.” Here, it is arguably more probable that C++ will have

disjoint class hierarchies than will Java. Java generics seem to work

adequately for collections. It’s possible you might encounter disjoint

class hierarchies that you’d like a single piece of code to cut across. But

perhaps the probability is not that high it will happen very often in

practice. This Hobart called “going down the happy path.” In Java, we

have no choice but to take this path, but in other languages we may see

through experience what is lost by doing so.

We’re Really Talking about

Testing

In the end, these are all just different kinds of tests. We can consider

them on a spectrum:

Testing by the compiler (static type checking)

Testing by the run-time system (dynamic type checking + more)

Unit testing of your classes

Conformance testing of your program

The compiler and run-time system can only know so much. There can

only be a certain set of tests general enough they can be applied to

every program. At some point you must begin writing your own tests



to test the semantics of your particular program, to ensure its

correctness.

What we are talking about, then, is not whether tests are critical (they

are), but when and how these tests take place. More importantly,

about balancing the expressiveness and clarity of a language with the

place in the spectrum where these tests occur. My opinion: programs

are prose, and must be readable. Static checking is good if it doesn’t

impact the clarity, expressiveness, and productivity of the language. If

those are impacted, the checking should be moved to reduce that

impact.

This opinion is based on my belief and experience that you cannot rely

on static checking to verify program correctness, and therefore it is

unreasonable to obscure the meaning of your program with high-

ceremony syntax under the illusion it is somehow safer. For full safety,

you’ll always need run-time tests. Given this, to me it makes no sense

to make your life harder by obscuring the code because of this illusion.

Determinism



Albert Einstein was very disturbed by the Heisenberg uncertainty

principle (you can’t know both position and momentum of small

particles). He believed that “God does not play dice with the universe”

and postulated a “hidden variable” theory that, when discovered,

would allow us to completely determine everything.

Bell’s theorem showed there is no hidden variable theory.

Steven Hawking describes how you can have higher determinism

nearer to an event (in space-time) than further away. The effect of the

uncertainty principle is cumulative in space-time.

The Greeks believed there was fate and free will together, which people

have always found confusing, since we demand one or the other

exclusively. Perhaps Hawking’s approach explains the dichotomy.

It may be possible to create programs that are provably correct, but my

guess is that these programs will fill only a small fraction of the

general solution space.

Static type checking is only one kind of testing, and very limited in its

effect—as you move out in space time from the point of compilation,

the “software uncertainty principle” adds more and more noise to the

results. Only by testing throughout will you get a program that is as



correct as you are able to describe it.

The Cost of

Productivity

Some very interesting analyses have come out of my discussions of

latent typing, especially those by an anonymous blogger named

“Pixel.” Although there are places where Pixel misunderstood what I

was saying (or more likely I didn’t say it clearly enough), in general he

or she states the “Java case” reasonably well.

That case includes the regular argument that people are just as

productive in Java as they could be in Python, an argument which is

almost universally made in the abstract, without any direct experience

in both languages. I have regular experience in both languages, and

the result is always: To get a lot done, use Python. The testing doesn’t

come, as Pixel argues, with special hand-testing, but by using the

actual data that you’re trying to manipulate. You just get there faster,

and start finding the real problems, using real data, faster. I have this



experience over and over.

And the kinds of problems I solve are only theoretically solvable using

Java. It would take at least 5-10 times longer to do it, and that assumes

you wouldn’t give up or get lost first. For example, you can translate

something from Python, but it’s much easier with the Python design as

a roadmap, and the resulting code would still be much bigger, messier,

and (a big point of argument, since people regularly claim that the

more verbose Java is easier to maintain because it’s so much more

explicit) harder to maintain.

In the follow up, Pixel ends by asking “How much value do you put on

checking as much as possible at compile time?” This oversimplifies the

issue. If the type checking came at no cost, the answer is as easy and

obvious as Pixel implies with this question. I’ve generally found that

most folks who argue that static type checking must be preserved and

increased at all costs have no experience of a down side. And if you

don’t see any down side, you think arguing against it is obviously

crazy.

I know because I began firmly in the static type checking camp, having

seen the benefits of moving from pre-ANSI C to C++. C++ static type

checking found lots of errors that (especially pre-ANSI) C didn’t, so it



was a clear win. And the extension of this philosophy to Java was thus

obvious. But that was my sole dimension of experience for many years.

It was only when I began using a more dynamic, more succinct

language (Python) that I got a new dimension.

The experience most people have goes something like this: they have

had enough exposure to Python (or substitute your dynamic language

of choice) to keep it in the back of their mind. A problem arises that

might require a one shot solution. Knowing how much effort Java is,

they think this is a good place to try Python, since it might save some

effort. Then they have the watershed experience of solving the problem

in far less time than it would take in Java. The next time a similar

problem arises, they reach for Python more quickly, until they start

using Python as a preferred tool, only using Java when there’s no other

choice.

During this process, the experience of being dramatically more

productive in Python repeats itself over and over. It’s not a

philosophical argument (because the answer is “obviously” that the

statically typed language is better), it’s direct experience. The

correctness and quality of the resulting programs is consistently very

high.



Then you reach the intellectual vs. experiential crisis: you “know” that

Java is “better,” but your experience is that Python is “better.” How

can this be, when all the arguments you “know” to be true clearly show

that a static typing language must be “better.” At that point you start

trying to resolve this crisis by seriously questioning your

preconceptions. But the only arguments you hear back are the ones

you yourself (I myself) previously “knew” were true, and have been

shown from experience to be uncertain.

In my experience there’s a balance between the value of static typing

and the resulting impact it makes on your productivity. The argument

that “static is obviously better” is generally made by folks who haven’t

had the experience of more productivity in an alternative language.

When you have this experience, you see that the overhead of static

typing isn’t always beneficial, because sometimes it slows you down

enough it ends up having a big impact on productivity.

I can’t quantify this. I haven’t been able to come up with a from-first-

principles mathematical proof, probably because it depends on human

factors, like how much time it takes to remember how to open a file

and put the try block in the right places and remember how to read

lines, then remember what you were really trying to accomplish by



reading that file (although this experience is greatly improved in Java

8). In Python, I can process each line in a file by saying:

for line in open("FileName.txt"):

# Process line

(Python 3 adds a context manager to automatically close the file, not

shown here). I didn’t have to look that up, or to even think about it,

because it’s so natural. I always had to look up how to open files and

read lines in Java. I You can argue that Java wasn’t intended to do text

processing and I’d agree with you, but unfortunately it seems like Java

is mostly used on servers where a very common task is to process text.

There are studies about how much time it takes to recover from

interruptions, but I can’t make any direct connection other than to say

it seems to me this must have a big influence, both when writing the

code (yes, I know that much of it is automated with Eclipse and similar

editors) and reading the code.

Java is what it is. Demonstrating that Java generics don’t support

latent typing was primarily meant to get people to show me how Java

generics really do support latent typing in the event I had

misunderstood something. They didn’t, and I didn’t, so that’s the case.

In the end, I’ve realized that the requirement that you must use



interfaces everywhere really isn’t that big of a deal. In Python, which is

a succinct language, it would really stick out, but Java is unashamedly

verbose, and many people seem to like the verbosity and feel it is a

benefit. Requiring a few extra interfaces here and there is not much of

an impact on the resulting Java code, and is indeed in keeping with the

Java language philosophy (it would probably surprise people if latent

typing did have direct support in the language).

So I understand that Java generics are really just autocasting for nicer

use of containers, and that’s good and useful but you can only take

Java generics so far.

It is possible to do latent typing in Java, but you must really want to do

it because it requires more effort. Let’s revisit the dogs and robots

program one more time, this time using reflection to produce a

method that implements latent typing:

// staticchecking/latent/Latent.java

// {java staticchecking.latent.Latent}

package staticchecking.latent;

import java.lang.reflect.*;

class Dog {

public void talk() {



System.out.println("Woof!");

}

public void reproduce() {}

}

class Robot {

public void talk() {

System.out.println("Click!");

}

public void oilChange() {}

}

class Mime {

public void walkAgainstTheWind() {}

public String toString() { return "Mime"; }

}

class Communicate {

public static void speak(Object speaker) {



try {

Class<? extends Object> spkr =

speaker.getClass();

Method talk =

spkr.getMethod("talk", (Class[])null);

talk.invoke(speaker, new Object[]{});

} catch(NoSuchMethodException e) {

System.out.println(

speaker + " cannot talk");

} catch(IllegalAccessException e) {

System.out.println(

speaker + " IllegalAccessException");

} catch(InvocationTargetException e) {

System.out.println(

speaker + " InvocationTargetException");

}

}

}

public class Latent {

public static void main(String[] args) {



Communicate.speak(new Dog());

Communicate.speak(new Robot());

Communicate.speak(new Mime());

}

}

/* Output:

Woof!

Click!

Mime cannot talk

*/

I can thus call speak() on anything, and it will only invoke talk()

on objects that actually have a talk() method.

Static vs. Dynamic

I received this letter from a reader. I have edited it a bit and also

“corrected” the terminology, as described after the letter.

I’m a professor at Trinity University teaching a course in

programming languages. Static typing is something that we have

talked about a fair bit and one of my students came across your web

page which we used quite nicely to fuel a discussion in one class.

Personally I lean toward static typing and I was wondering if you



can comment on two things for me.

The first point is my general reason for liking static typing. Basically,

static typing provides a proof that some aspect of the program

works. Granted, the type system doesn’t prove everything is OK and

testing is still needed, but at least some aspect is proven correct. Why

this seems to matter to me is that complete testing requires the

number of tests grow at least exponentially with code size. Anything

less will leave many paths through the code untested. No matter how

productive one can be in a certain language, writing an exponential

number of test cases will overwhelm that. Given this, isn’t it worth the

reliability to have some aspects proven correct by the compiler?

The more interesting question I have is what you think about ML and

its derivatives in regard to the strong testing vs. static typing

argument. These languages have the advantage of dynamically-

typed languages in that they rarely require the user to specify types,

however, they infer the types for all expressions and are statically

typed. In this regard, their typing system is far safer than a language

where dynamic checks are required (Java) or where users can coerce

the type system into errors (C/C++).

The comparison of ML to Scheme came immediately to my mind



when I read your article on strong testing vs. strong typing because

Scheme does all of its type checking dynamically and gives the user

complete flexibility when writing code. However, in my experience, it

is very hard to write large programs in and the fact that Scheme

accepts a chunk of code doesn’t mean it is anywhere close to being

correct. ML is the opposite in that is does static type checking on

everything even without the user specifying the type of anything.

When I get my ML code to compile, it works the majority of the time

and one or two simple tests will uncover any bugs that remain.

With Microsoft releasing F# into the .NET framework, it is likely that

many more programmers will be exposed to the ML style of coding. I

just have to wonder if you would feel that having strong static typing

without the coder specifying the types leads to the best of both

worlds.

First, I’m at least partially responsible for the mix-up in terminology

that has propagated around this, and I have not had the time nor

inclination to go back into previous articles and fix this up. It also

seems that things are not as clearly defined in the computer world

around these terms. So to try to help rectify the situation:

Weak typing: Allows incorrect messages to be sent to objects. C



and C++ allow you to successfully cast to the wrong type, and are thus

viewed as having weak typing (although Stroustrup once said that

“C++ was strongly typed with a couple of holes in the type

mechanism”). I have argued in the past that “weakly typed” (a term I

originally used to mean “latent typing”) was distinct from “weak

typing,” but I think the terminology differences are far too subtle and

not worth arguing over. In addition, the idea of latent typing confuses

the issue; C++ (static typing, arguably weak typing in isolated spots),

Python and Ruby (dynamically typed) all support structural/latent

typing (Ruby calls it “duck typing”).

Dynamic typing: Type checking still happens, and it can be strong

typing, but it happens at runtime rather than at compile-time. A

strongly-typed dynamic language still only allows you to send valid

messages to objects.

To clarify an important point: I’m not against static type checking. The

problems as I see them are that:

1. There is an illusion that static type checking can solve all of your

problems, followed by the conclusion that more static type

checking is always better.

2. Additional forms of static type checking are often added to a



language without regard to the actual cost. In extreme cases you

spend all your time arguing with the compiler.

In general, my attitude is that static typing is desirable as long as it

doesn’t cost you too much. As you point out, type inference as found in

ML and Scala gives you static type checking without requiring that you

give extra information that the compiler can figure out itself.

I do seek the “best of all worlds,” as you suggest. The question is

whether a particular implementation of static type checking is helping

more than it is impeding. I am often accused of just complaining about

“finger typing,” but what I observe is much more than just the extra

carpal assaults (much of which, it has been pointed out, can be

automatically generated by tools such as Eclipse and IntelliJ).

The real issue is the limits of the human mind to manage complexity.

The hard boundary is the famous number “seven plus or minus two,”

the number of things that we can hold in our mind at any one moment.

I assert that all progress in computer programming comes by

improving the mental model to make it simpler for us to manipulate

the essential concepts. The reason I find Python so fascinating is it

seems to regularly grasp and incorporate new perspectives on

“simpler” and “essential concepts.” Much of my fascination is in how



this seems to happen, and I currently have little or no sense of the

secret behind it. The language design seems to incorporate the

psychology of computer programming.

Despite this, I’ve had some leanings back in the direction of static type

checking. As you point out, the goal is to create solid components—the

question is how to accomplish that? In a dynamic language you have

the flexibility to do rapid experimentation which is highly productive,

but to ensure that your code is airtight you must be both proficient and

diligent at unit testing. In a language that leans towards static type

checking, the compiler will ensure that certain things will not slip

through the cracks, and this is helpful, although the resulting language

will typically make you work harder for a desired result, and the reader

must also work harder to understand what you’ve done. I think the

impact of this is much greater than we imagine.

In addition, I think statically typed languages only give the illusion of

program correctness. In fact, they can only go so far in determining

the correctness of a program, by checking the syntax. But I think such

languages encourage people to think everything is OK, when in fact the

requirement for developer testing is just as important. I also suspect

that the extra effort required to run the gauntlet of the compiler saps



some of the energy required for developer testing. And you bring up an

interesting question in suggesting that a dynamically-typed language

may require more unit testing than a statically typed language. Of this

I am not convinced; I suspect the amount may be roughly the same

and if I am correct it implies that the extra effort required to jump

through the static type-checking hoops may be less fruitful than we

might believe.

What is the best of both worlds? In my own experience, it’s very

helpful to create models in a dynamic language, because there is a very

low barrier to redesigning as you learn. You’re able to quickly try out

your ideas to see how they work with actual data, to get some real

feedback about the veracity of the model, and change the model

rapidly to conform to your new understanding.

I think this approach has great benefits over simply modeling with

UML. Those produce a model that is a fantasy and only after some

complex transformations do you have something that expresses and

tests your ideas. My experience with complex transformations of this

kind is that they weigh you down and discourage you from

experimenting and making changes. With a dynamic language, on the

other hand, the model becomes the code and vice-versa, and so you’re



able to experiment without inertia. I think this lightness is very

important, because it is far closer to the way our brains work.

Once you’ve worked out and tested a model using a dynamic language,

is it then worth transforming it into a statically-typed language? My

experience with Python has not compelled me to do this for two

reasons:

1. Once I get something working in Python, it seems to work pretty

well. The benefits of transforming the model into a statically-

typed language at that point are few. Others’ experience with

significant Python programs seems to support this—large Python

programs seem surprisingly bug-free.

2. I usually find that any program that is used regularly will be

changed. It is much easier to change the program in Python than

it is in a statically typed language, so I have further incentive to

leave it in Python.

I certainly don’t mean to imply it never makes sense to transform a

debugged Python model into Java, just that I haven’t been compelled

to. I could easily see many business situations where:

1. You begin by “sketching out” a preliminary model, using “UML

lite” and/or CRC cards.



2. You implement this model in Python or Ruby, whichever language

the developers are comfortable with. At this point you leave the

paper model behind, and the code becomes your model. Python is

often described as “executable pseudocode” and this becomes very

helpful during modeling and experimentation.

3. You experiment and evolve this “live” model until it seems like

you’ve worked out the kinks and it will do the trick.

4. You then translate into Java or C++ or some other language that

the project constraints dictate.

By developing the model in a language that encourages change, my

experience is that you end up with a better model, and this produces a

distinct benefit when that model is translated to your implementation

language.

In the end, my primary interest is in productivity and scalability.

Visual Basic is a very productive language for small projects (and there

are lots of those, so it solves lots of problems) but it doesn’t scale well.

Perl also falls into this category, although its apparent successor,

Ruby, seems to implement the object paradigm reasonably well and

seems to scale to larger projects. Python has been used on a number of

significantly large projects and despite its lack of static type checking,



the results appear to have very low bug counts.

This last point is a major puzzle—we believe that static type checking

prevents bugs, and yet a dynamically-typed language produces very

good results anyway. As I have tried to delve more deeply into this

mystery, many of my preconceptions—the major one being that static

type checking is essential—have been challenged. An initial response

to this is often to simply deny it’s the case, but once you begin denying

evidence your theories rapidly become nothing more than fantasies. In

my own experience it can be very hard to put my finger on exactly why

Python works so well. However, in trying to do so I have discovered

many things and gained greater understanding about other languages.

My guess is that Python allows me to think more clearly about

concepts of the problem I’m trying to solve. It is less distracting

because it doesn’t force me to think so much about rules imposed by

the language—rules that are basically arbitrary when I’m trying to

produce an effective model of my problem space. By getting out of the

way, Python and similar dynamic languages allow me to spend more of

my brain’s “seven plus or minus two” items on the problem itself, and

less on the details of the language implementation. I have had this

experience more than once, for example when going from C++ to Java



where I no longer had to worry about operator= and the copy-

constructor. Having Java take care of more things for you definitely

seems to improve programmer productivity, and I’ve had the same

experience with Python.

In the end, I can still see value in taking a model that was evolved

using Python or Ruby and reimplementing it in Java. Much of this

value is in fitting into an existing Java development environment, but

it also seems likely you might discover some bugs because of static

type checking. It would be interesting to hear experiences and bug

counts from people who have done this experiment.

You asked a question about whether type inference a la ML might give

us the best of both worlds. I like type inference because it reduces the

overhead on the programmer, but it is also a static typing mechanism

(it doesn’t work unless there’s enough context to infer the static type).

Also, it only touches on the different benefits offered by a dynamic

language.

We need help to create accurate programs, and it’s pretty hard to

argue against static typing. The type system is the water where our

object-oriented fish swim, and allowing holes and back doors seems to

say “these things are true about a type, but you can only rely on it if



people know what they are doing and are behaving well,” which is not

very reassuring. Static typing actually helps us think about our object

models by ensuring their proper behavior.

The question is not whether type checking is a good thing. I’d say it

unequivocally is. The question is, when does the type checking occur,

and how much does static checking cost vs. dynamic checking. In C++,

effectively all the type checking is static. In Java, it is both static and

dynamic (I think any language that tries to achieve thorough type

checking will require some dynamic type checking), and in Python and

other dynamic languages it is predominantly dynamic. As you note, in

most dynamic languages not all execution paths are tested by the

compiler, and this can be somewhat of a problem, but how bad is it? I

suspect that if we applied the same unit tests to both a Java program

and its equivalent Python version we would exercise all the execution

paths. I think that the unit tests are at a high enough level in both

cases that you end up with the same number. Put another way, I don’t

think you need extra unit tests to produce syntax checking, but that

the syntax checking will fall out naturally when the unit tests exercise

the class interfaces. I don’t have direct evidence for this other than not

having to do this extra work myself.



One of the things that Java generics accomplishes is the static type

checking of collection classes. This prevents

ClassCastExceptions at runtime, which is somewhat useful, but

if that were the only reason for Java generics it wouldn’t be worth the

complexity of the syntax (fortunately, with some effort they can create

generic code, as I showed earlier). The resulting

ClassCastExceptions don’t happen that often, and are not

difficult to find when they do. This is a case where dynamic type

checking is adequate.

I have also pointed out that checked exceptions do not scale well, and

easily get in the way even for small programs. The fact that no

language designed since Java has duplicated this experiment makes, I

think, a strong argument against it. However, I have found that the

Java 1.4 RuntimeException(Throwable cause) constructor

eliminates most of the complaints I have about checked exceptions—if

they get in the way, I can turn them off with only a minor amount of

coding. Thus, I can choose to leave them on or turn them off.

These are a couple of examples where too much static type checking,

no matter how well-intentioned, gets in the way of both the creation

and the examination of code. Despite that, I actually like static type



checking, appropriately used. Python 3 even adds an optional type

annotation mechanism, enforced by external static checking tools. But

I resist any implications that “all static checking is good, so more is

always better.” If you think about this you can easily imagine it taken

to extremes, and in a number of cases Java has done exactly that,

without doing a cost-benefit analysis of the results. It is the illusion

that there is no cost to static type checking which I argue against.

1. The checking, not the exception. I believe that a single, consistent

error reporting mechanism is essential, although in the end error

reporting might not actually be conflated with exceptions—see the

Go language, for example.↩

2. You can try it out without the pain of installing a C++ compiler

here↩

Appendix: The Positive

Legacy of C++ and

Java

In various discussions there are

assertions that C++ was a poorly-

https://golang.org/
http://cpp.sh/


designed language. I think it’s helpful to

understand both C++ and Java language

choices to see the bigger perspective.

That said, I hardly use C++ anymore. When I do, it’s either examining

legacy code, or to write performance-critical sections, typically as

small as possible to be called from other programs written in other

languages.

Because I was on the C++ Standards Committee for its first 8 years, I

saw these decisions being made. They were all extremely carefully

considered, far more so than many of the decisions made in Java.

However, as people have rightly pointed out, the resulting language

was complicated and painful to use and full of weird rules I forget as

soon as I’m away from it for a little while—and I figured out those

rules from first principles while I wrote books, not just by memorizing

them.

To understand how the language can be both unpleasant and

complicated, and well designed at the same time, you must keep in

mind the primary design decision upon which everything in C++

hung: compatibility with C. Bjarne Stroustrup (the language’s original

creator) decided—and correctly so, it would appear—that the way to



get the masses of C programmers to move to objects was to make the

move transparent: to allow them to compile their C code unchanged

under C++. This was a huge constraint, and has always been C++’s

greatest strength … and its bane. It’s what made C++ as successful as it

was, and as complex as it is.

It also fooled the Java designers who didn’t understand C++ well

enough. For example, they thought operator overloading was too hard

for programmers to use properly. Which is basically true in C++,

because C++ has both stack allocation and heap allocation and you

must overload your operators to handle all situations and not cause

memory leaks. Difficult indeed. Java, however, has a single storage

allocation mechanism and a garbage collector, which makes operator

overloading trivial—as was shown in C# (but had already been shown

in Python, which predated Java). But for many years, the party line

from the Java team was “Operator overloading is too complicated.”

This and many other decisions where someone clearly didn’t do their

homework is why I have a reputation for disdaining many of the

choices made by Gosling and the Java team. (Java 7 and 8 have

included far better decisions, for some reason. But the backwards-

compatibility constraint will always prevent the really great



improvements. The language can never be what it might have been.)

There are plenty of other examples. Primitives “had to be included for

efficiency.” The right answer is to stay true to “everything is an object”

and provide a trap door to do lower-level activities when efficiency was

required (this would also have allowed for the hotspot technologies to

transparently make things more efficient, as they eventually did). Oh,

and the fact you can’t use the floating point processor directly to

calculate transcendental functions (it’s done in software instead). I’ve

written about issues like this as much as I can stand, and the answer I

hear has always been some tautological reply to the effect that “this is

the Java way.”

When I wrote about how badly generics were designed, I got the same

response, along with “we must be backward compatible with previous

decisions made in Java” (Even though they were bad decisions). Lately

more and more people have gained enough experience with generics to

see they really are very hard to use—indeed, C++ templates are much

more powerful and consistent (and much easier to use now that

compiler error messages are tolerable). People have even been taking

reification seriously—something that would be helpful but won’t put

that much of a dent in a design that is crippled by rigid constraints.



The list goes on to the point where it’s just tedious. Does this mean

Java was a failure? Absolutely not. Java brought the mainstream of

programmers into the world of garbage collection, virtual machines

and a consistent error handling model. With all its flaws, it moved us

up a level, to the point where we are now ready for higher-level

languages.

At one point, C++ was the leading language and people thought it

would always be so. Many think the same about Java, but Java has

made it even easier to replace itself, because of the JVM. It’s now

possible for someone to create a new language and have it run as

efficiently as Java in short order. Previously, getting a correct and

efficient compiler took most of the development time for a new

language.

And we are seeing this happen—both with higher-level static

languages like Scala, and with dynamic languages, both new and ports,

like Groovy, Clojure, JRuby and Jython. This is the future, and the

transition is much smoother because you can easily use these new

languages in conjunction with existing Java code, and you can rewrite

bottlenecks in Java if necessary.

At this writing Java is the number one programming language in the



world. However, Java will eventually diminish, just as C++ did,

relegated to special cases (or perhaps just to support legacy code, since

it doesn’t have the same connection to hardware as C++ does). But the

unintentional benefit, the true accidental brilliance of Java is that it

has created a very smooth path for its own replacements, even if Java

itself has reached the point where it can no longer evolve. All future

languages should learn from this: either create a culture where you can

be refactored (as Python and Ruby have done) or allow competitive

species to thrive.

Appendix: Becoming a

Programmer

A mashup of blog posts I wrote in 2003,

2006, 2007 and 2009.

How I Got Started in



Programming

This was a rather long and circuitous path. In freshman algebra in

high school (1971), the extraordinarily weird teacher had a thing for

computers and managed to get an ASR-33 teletype with a 300-baud

acoustic phone coupler (which I learned to whistle at and get a

response) along with accounts on the HP-1000 computer that the high

school district used. We were able to create and run BASIC programs

and save them on punch tape. I was fascinated and went home to write

programs in the evenings that I would bring back and key in whenever

I could. I invented HOSRAC.BAS which was a horse-racing simulation,

using asterisks to represent the horses as they moved (this was on

paper printout, so it took a little imagination).

My friend Daniel (the same one who designs my book covers now) had

a brother who was making money for a time by providing pinball

machines to bars and restaurants. He had a slot machine where I got

all of that out of my system, can’t stand the things now, and also one of

the very first Pong games (and I now almost never play computer

games. Perhaps I’m a humorless sort, but it seems like programming is

far more intriguing and challenging than playing a computer game).

I got involved in photography and journalism later in high school, and



majored in journalism during my first year of college. I decided I had

learned enough about that from school, and changed to physics.

Several colleges later I completed a physics degree at UC Irvine and

added enough engineering classes to make it a double major if I had

chosen a particular field of engineering, but I was trying to be broad,

so my undergraduate degree is in “applied physics.” As an

undergraduate I took a smattering of computer programming classes

here and there, enough for entertainment but nothing that provided

any depth. I think those classes helped add to my foundation by

regularly trickling in little bits of information, but I had none of the

depth or perspective necessary to really understand anything. I didn’t

make any distinction between the computer and the compiler or

interpreter (and only had a vague sense of compiler vs. interpreter); it

was all the infallible computer to me and the idea that a bug could

exist in the language or operating system was so purely theoretical I

never considered the possibility.

I went to Cal Poly San Luis Obispo for graduate school because (A) I

really liked the area (B) they accepted me and even gave me a teaching

job and a fellowship, but most important (C) I couldn’t imagine

working at a job longer than one summer. I was definitely not ready to



join the working world.

As a physics student I studied solar power systems, which were big at

the time (California gave a tax credit if you put a solar system on your

house or business, and many business sprang up because of that), and

Cal Poly seemed to promise these things in their engineering

department. However, to get a degree in Solar Engineering would have

taken many years because the necessary classes were not offered often

enough. As a result, I took whatever graduate engineering classes were

offered, and got a broad education (as was my wont) including

mechanical, solar, electrical and electronic engineering. The class I

taught was an introduction to electrical engineering for non-Electrical

Engineering majors. The graduate engineering classes that were

offered most often were in computer engineering, so I ended up with a

degree in that. I was also taking art courses, a couple of dance classes,

and a few computer science courses (Pascal and data structures), but

in computer engineering I finally struggled through the steps of how a

processor worked, and I carried that with me ever since. That was

really the foundation of my knowledge of computers.

When I did start working, it was as a computer engineer, with a fair

amount of hardware and relatively simple and low-level programming.



I began to teach myself C because it seemed the ideal embedded

systems language, and slowly started to understand more about

programming languages. At one company we actually built our

compiler from sources, which was a bit of an eye-opener for me (A

compiler is just another piece of software! Imagine that).

When I went to work at the University of Washington School of

Oceanography (for Tom Keffer, who later founded Rogue Wave), we

decided to use C++. I had only one book to learn from (Stroustrup’s;

not a beginner text) and ended up having to struggle through and

understand language features by examining the intermediate C code

that was generated by the C++ preprocessor. Painful, but intensely

educational. I have used that experience ever since, because it gave me

the ability to dissect a language and see it for what it is. I suppose that

is also where I began to learn critical thinking.

So the concepts didn’t come all at once. Instead they trickled in over

time, and everything I know has taken time to assimilate. If I seem to

get a new concept easily now, it’s only because it’s a variation on the

accumulation of concepts I already know. In the Cal Poly computer

science graduate program (which would take students who had non-

CSci undergrad degrees), the students used to say that it took a year of



being confused about computers before anything at all started to make

sense (and they were in an immersion program). People often have

unrealistic expectations of themselves when they try to learn about

computers—usually they want a high-paying job within a few weeks,

and they’ve heard that computer programming pays the big bucks. But

the best learning process starts with someone being interested in

computers, and learning more and more as time passes, and generally

teaching themselves. That’s primarily what I have done; even though I

had a strong foundation via computer engineering, I didn’t have many

programming courses, but instead am self-taught. And I’m constantly

learning new things. In this business, learning new things is a large

part of the profession.

A Career in Computing

I regularly receive requests for career advice, and I’ve tried to capture

the answers here.

The question that people ask is usually the wrong one: “should I learn



C++ or Java?” In this essay, I shall try to lay out my view of the true

issues involved in choosing a career in computing.

Note I am not talking here to the people who already know it is their

calling. You’re going to do it regardless of what anyone says, because

it’s in your blood and you can’t get away from it. You know the answer

already: C++ AND Java AND shell scripting AND Python AND a host

of other languages and technologies that you’ll learn as a matter of

course. You already know several of these languages, even if you’re

only 14.

The person who asks me this question may be coming from another

career. Or perhaps they are coming from a field like web development

and they’ve figured out that HTML is only kind of like programming,

and they’d like to try building something more substantial. But I

especially hope that, if you are asking this question, you’ve realized

that to be successful in computing, you must teach yourself how to

learn, and never stop learning.

The more I do this, the more it seems to me that software is more akin

to writing than anything else. And we haven’t figured out what makes

a good writer, we only know when we like what someone writes. This

is not some kind of engineering where all we have to do is put

http://www.artima.com/weblogs/viewpost.jsp?thread=255898
http://www.artima.com/weblogs/viewpost.jsp?thread=255898


something in one end and turn the crank. It is tempting to think of

software as deterministic—that’s what we want it to be, and that’s the

reason we keep coming up with tools to help us produce the behavior

we desire. But my experience keeps indicating the opposite, that it is

more about people than processes, and the fact it runs on a

deterministic machine becomes less and less of an influence, just like

the Heisenberg principle doesn’t affect things on a human scale.

My father built custom homes, and in my youth I would occasionally

work for him, mostly doing grunt labor and sometimes hanging sheet

rock. He and his lead carpenter would tell me they gave me these jobs

for my own good—so I wouldn’t go into the business. It worked.

So I can also use the analogy that building software is like building a

house. We don’t refer to everyone who works on a house as if they

were exactly the same. There are concrete masons, roofers, plumbers,

electricians, sheet rockers, plasterers, tile setters, laborers, rough

carpenters, finish carpenters, and of course, general contractors. Each

of these requires a different set of skills, which requires a different

amount of time and effort to acquire. House-building is also subject to

boom and bust cycles, like programming. To get in quick, you might

take a job as a laborer or a sheet rocker, where you can start getting



paid without much of a learning curve. As long as demand is strong,

you have steady work, and your pay might even go up if there aren’t

enough people to do the work. But as soon as there’s a downturn,

carpenters and even the general contractor can hang the sheet rock

themselves.

When the Internet was first booming, all you had to do was spend

some time learning HTML and you could get a job and earn some

pretty good money. When things turn down, however, it rapidly

becomes clear there is a hierarchy of desirable skills, and the HTML

programmers (like the laborers and sheet rockers) go first, while the

highly-skilled code smiths and carpenters are retained.

What I’m trying to say here is: Don’t go into this business unless you

are ready to commit to lifelong learning. Sometimes it seems like

programming is a well-paying, reliable job—but the only way you can

make sure of this is if you are always making yourself more valuable.

Of course you can find exceptions. There are always those people who

learn one language and are just competent enough and perhaps savvy

enough to stay employed without doing much to expand their abilities.

But they are surviving by luck, and they are ultimately vulnerable. To

make yourself less vulnerable, you must continuously improve your



abilities, by reading, going to user groups, conferences, and seminars.

The more depth you have in this field, the more valuable you will be,

which means you have more stable job prospects and can command

higher salaries.

Another approach is to look at the field in general, and find a place

where you already have talents. For example, my brother is interested

in software, and dabbles with it, but his business is in installing

computers, fixing them and upgrading them. He’s always been

meticulous, so when he installs or fixes your computer you know it is

in excellent shape when he’s done; not just the software, but all the

way down to the cables, which are bundled neat and out of the way.

He’s always had more work than he could do, and he never noticed the

dot-com bust. And needless to say, his work cannot be offshored.

I stayed in college a long time, and managed to get by in various ways.

I even began a Ph.D. program at UCLA, which was mercifully cut short

—I say mercifully because I no longer loved being in college, and the

reason I stayed in college for so long was because I enjoyed it so much.

But what I enjoyed was typically the off-track stuff. Art and dance

classes, working on the college newspaper, and the handful of

computer programming classes I took (which were off-track because I



was a physics undergrad and a computer engineering graduate

student). Although I was far from exceptional academically (a

delightful irony is that many colleges that would not have accepted me

as a student now use my books in their courses), I really enjoyed the

life of the college student, and had I finished a Ph.D. I probably would

have taken the easy path and ended up a professor.

But as it turns out, some of the greatest value I got from college was

from those same off-track courses, the ones that expanded my mind

beyond “stuff we already know.” I think this is especially true in

computing because you are always programming to support some

other goal, and the more you know about that goal the better you’ll

perform (I’ve encountered some European graduate programs that

require the study of computing in combination with some other

specialty, and you build your thesis by solving a domain-specific

problem in that other specialty).

I also think knowing more than just programming vastly improves

your problem-solving skills (just as knowing more than one

programming language vastly improves your programming skills). On

multiple occasions I have encountered people, trained only in

computer science, who seem more limited in their thinking than those



from some other background, like math or physics, which requires

more rigorous thinking and is less prone to “it works for me” solutions.

In one session at a conference I organized, one of the topics was to

come up with a list of features for the ideal job candidate:

Learning as a lifestyle. For example, learn more than one

language; nothing opens your eyes more to the strengths and

limitations of a language than learning another one.

Know where and how to get new knowledge.

Study prior art.

We are tool users.

Learn to do the simplest thing.

Understand the business (Read magazines. Start with Fast

Company, which has very short and interesting articles. Then

you’ll know whether to read others)

You are personally responsible for errors. “It works for me” is not

an acceptable strategy. Find your own bugs.

Become a leader: someone who communicates and inspires.



Who are you serving?

There is no right answer … and always a better way. Show and

discuss your code, without emotional attachment. You are not

your code.

It’s an asymptotic journey towards perfection.

Take whatever risks you can—the best risks are the scary ones, but in

trying you will feel more alive than you can imagine. It’s best if you

don’t plan for a particular outcome, because you often miss the true

possibilities if you’re too attached to a result. My best adventures are

ones that start with “lets do a little experiment and see where it takes

us.”

Some people are disappointed by this answer, and reply “yes, that’s all

very interesting and useful. But really, what should I learn? C++ or

Java?” I’ll fend these off by repeating here: I know it seems like all the

ones and zeroes should make everything deterministic, so such

questions should have a simple answer, but they don’t. It’s not about

making one choice and being done with it. It’s about continuous

learning and sometimes, bold choices. Trust me, your life will be more

exciting this way.

Further Reading



I found all these to be stimulating takes on the subject:

Teach Yourself Programming In Ten Years, by Peter Norvig.

How To Be A Programmer, by Robert Read.

A speech by Steve Jobs to inspire a group of graduating college students.

Kathy Sierra: Does College Matter?

Paul Graham on College.

Joel Spolsky: Advice for Computer Science College Students.

James Shore: Five Design Skills Every Programmer Should Have.

Steve Yegge: The Truth About Interviewing.

The Mythical 5%

A commencement address I gave for

Neumont University, a school in Salt Lake

City dedicated to teaching computer

programming.

So here you are, about to be unleashed upon the world. This is a lot

like taking someone and teaching them all the parts of English speech,

http://norvig.com/21-days.html
http://samizdat.mines.edu/howto/HowToBeAProgrammer.html
http://news.stanford.edu/news/2005/june15/jobs-061505.html
http://headrush.typepad.com/creating_passionate_users/2005/07/does_college_ma.html
http://www.paulgraham.com/college.html
http://www.joelonsoftware.com/articles/CollegeAdvice.html
http://www.jamesshore.com/Blog/Five-Design-Skills.html
http://steve-yegge.blogspot.com/2006/03/truth-about-interviewing.html


then saying “go out and write stories,” but it’s probably all any school

can do. And a more theoretical background wouldn’t help; this is not

to say theory is bad, because you’ll need some eventually. But there’s a

recent movement that preaches “practice before theory” and I,

apparently like Neumont, find that knowing how to do something is

very helpful when trying to understand the theory behind it—for me,

the theory takes a lot longer to grasp and it’s very useful to be

functional while my brain is catching up.

There’s only so much you can learn in school, and it’s only tenuously

connected with what you end up doing in your work. So I’m going to

try to soften the blow a little, and arm you with a few insights to help

when you crash into the actual world of software development.

You’ve come from very structured learning. We even call it a science. It

promises there is the same kind of structure and activities in the

world. More importantly, you’ve come to expect a certain high level of

success, similar to what you’ve experienced with your projects and

assignments. But the world does not behave.

The statistics are sobering: 50-80% of programming projects fail.

These numbers are so broad because people don’t brag about their

failures, so we have to guess. In any event, this makes the world sound



pretty unreliable. Engineering gets better results, mostly because it

must. Bad software usually just annoys people but bad engineering can

kill.

An even more fascinating metric is this: 5% of programmers are 20x

more productive than the other 95%. If this were a science, like it

claims, we could figure out how to get everyone to the same level.

Let’s say this follows the 80-20 rule. Roughly 80% of programmers

don’t read books, don’t go to conferences, don’t continue learning,

don’t do anything but what they covered in college. Maybe they’ve

gotten a job in a big company where they can do the same thing over

and over. The other 20% struggle with their profession: they read, try

to learn things, listen to podcasts, go to user group meetings and

sometimes a conference. 80% of this 20% are not very successful yet;

they’re still beginning, still trying. The other 20% of this 20%—that’s

about 5% of the whole who are 20x more productive.

So how do you become one of these mythical 5%?

These people are not those who can remember all the moves and have

fingers that fly over the keyboard erupting system commands. In my

experience those in the 5% must struggle to get there, and struggle to

stay there, and it’s the process of continuous learning that makes the



difference.

Because of what I do, I’ve met more than my share of these people.

They read a lot, and are always ready to tackle a new concept if it looks

worthwhile. I think if they do go to conferences they’re very selective

about it. Most of their time is spent being productive, figuring things

out.

The big issue is knowing that you’re going after that 20x productivity

increase. Which means getting leverage on everything you do. Never

just “bashing something out,” but using the best tools, techniques, and

ideas at your disposal. Always doing your best.

And deeper than that, understanding that the leverage point doesn’t

always come from the obvious thing, or from what we’ve been told, or

the commonly-held belief about what works. Being able to analyze and

understand a situation and discover the hinge points of a problem is

essential; this takes a clear mind and detached perspective. For

example, sometimes the choice of programming language makes a

huge difference, but often, it’s relatively unimportant. Regardless,

people will still spend all their time on one decision while something

else might actually have a far greater influence. Architectural

decisions, for example.



So you must learn continuously and teach yourself new technologies,

but it’s not that simple. It’s definitely good to learn more about

programming, but you can’t just learn more about programming. For

example here are two of the biggest pain points:

1. Code is read much more than it is written. If people can’t read

your story, they can’t improve it or fix it. Unreadable code has a

real cost, and we call it “technical debt.”

2. Code reviews are the most effective ways to find software defects,

and yet we usually “don’t have time for them.”

Coming from the world of ones and zeroes we’d like to believe that

things are deterministic, that we can provide a set of inputs and get the

same outputs every time. I know because I believed this for a long

time, and it took some hard knocks when I was a physics

undergraduate to begin—only to begin—to wake me up. Many years

later I was in a workshop and one of the other attendees told me what

I had been learning all those years; she said:

“All models are wrong. Some are useful.”

We are in a young business. Primitive, really—we don’t know much

about what works, and we keep thinking we’ve found the silver bullet

that solves all problems. As a result, we go through these multi-year



boom and bust cycles as new ideas come in, take off, exceed their

grasp, then run out of steam. But some ideas seem to have staying

power. For example, many of the ideas in agile methodologies seem to

be making some real impacts in productivity and quality. This is

because they focus more on the issues of people working together and

less on technologies.

A man I’ve learned much from, Gerald Weinberg, wrote his first

couple of books on the technology of programming. Then he switched,

and wrote or coauthored 50 more on the process of programming, and

he is most famous for saying “no matter what they tell you, it’s always

a people problem.”

Usually the things that make or break a project are process and people

issues. The way you work on a day-to-day basis. Who your architects

are, who your managers are, and who you are working with on the

programming team. How you communicate, and most importantly

how you solve process and people problems when they come up. The

fastest way to get stuck is to think it’s all about technology and to

believe you can ram your way through the other things. Those other

things are the most likely ones to stop you cold.

In my first jobs, I saw lots of managers making stupid decisions, and



so, logically, I came to the conclusion that managers and management

was stupid. It’s a commonly held belief in our profession: if you’re not

smart enough to deal with the technology, you go into management.

Over time I very slowly learned that the task of management wasn’t

stupid, it’s just very, very hard. That’s why all those stupid decisions

are still made; management is much harder than technology because it

involves virtually no deterministic factors. It’s all guesswork, so if you

don’t have good intuition you’ll probably make stupid decisions.

Napoleon wanted lucky generals rather than smart ones.

Here’s an example: some companies have adopted a policy where, at

the end of a predetermined period, each team gets evaluated and the

bottom 10% or 20% are fired. In response to this policy, a smart

manager who has a good team hires extra people who can be thrown

overboard without damaging the team. It’s not a good policy; in fact

it’s abusive and eats away at company morale from within. It’s one of

the things you probably didn’t learn here, and yet the kind of thing you

must know, even if it seems to have nothing directly to do with

programming.

Here’s another example: People will ask you the shortest possible time

it will take to finish a particular task. You’ll do your best to guess what



that is, and they’ll assume you can actually do it. What you must tell

them for an estimate like this, and for all your estimates, is there’s a

0% probability you actually get it done in that period of time, that such

a guess is only the beginning of the probability curve. Each guess must

be accompanied by such a probability curve, so all the probabilities

combined produce a real curve indicating when the project might

likely be done. You can learn more about this by reading a small book

called Waltzing with Bears.

You must pay attention to economics and business, both of which are

far-from-exact sciences. Listen to books and lectures on tape while you

commute. Understanding the underlying business issues may allow

you to detect the fortunes of the company you’re working for and take

action early. When I first started working I looked askance at people

who paid attention to business issues—that was suit stuff, not real

technology. But those people were the smart ones.

A great source of information is podcasts. Anyone can produce these

so many of them are bad, but there are some real gems out there,

podcasts that specifically cover topics in our profession. I learn a lot

from these, and they help me stay current.

Here’s another thing you probably didn’t learn here. Both the world of

http://www.systemsguild.com/waltzing.htm


business and the world of programming is legendary for flailing about

with fads that promise to get things done better. The easy fads are

patently ridiculous, or become so in short order. The harder ones to

spot contain some reason or truth that prevents you from quickly

dismissing them. Sometimes you must pick out the good stuff and

throw the rest away, and to do this you must exercise critical thinking.

I saw a grocery bag that said “studies show children and teens who eat

dinner with their families at least 5 times a week are 50% less likely to

use alcohol.” The bag’s implied conclusion was that eating dinner

together prevents alcoholism. Is eating dinner together the dominant

factor? Or is there something else that causes both eating dinner

together and reduced alcoholism?

Here are some more things which many people have seriously

believed:

Companies don’t have to make a profit anymore. It’s the new

economy.

Real estate always goes up, even if salaries don’t.

A university must be a traditional campus and not an office

building.

It’s even harder when you come from the world of ones and zeros



where we really, really want to believe that everything can be

deterministic. It’s harder than that when you understand that adding

people into the mix and scaling up a system changes the dominant

factors, while everyone around you still believes it should all be

deterministic.

There’s a book that uses studies to debunk beliefs about managing

people and projects; it happens to be software-based but the thinking

could be applied almost everywhere. This book is called Peopleware; it’s
small and fun to read and I recommend it to almost everyone. Alas,

it really isn’t a book of answers, it just firmly destroys many closely-

held ideas about how people work in business situations that involve

programming. The best thing is it reminds you how easy it is to take a

wrong idea and build a bad world around it. It helps you ask questions.

So when you go into your new job with your head filled with technical

knowledge from the last couple of years, and you add what I’ve told

you today, you may be tempted to assume that everyone at the

https://en.wikipedia.org/wiki/Peopleware:_Productive_Projects_and_Teams


company has foolishly gotten themselves trapped with bad ideas. But

there’s one more very important maxim from Gerald Weinberg which

doesn’t really answer anything as much as it gives you a way to

understand what happens. He says: “Things are the way they are

because they got that way … one logical step at a time.” It’s the

legendary frog in the saucepan (Another myth; They actually jump

out). So from your fresh new perspective things might look ridiculous,

but remember that each decision on the way was made by someone

weighing the issues and making what seemed like the best choice at

the time. This viewpoint doesn’t solve the problem but it can make you

more compassionate about people who are stuck there.

You’ll need to make many mistakes to figure things out. So be humble,

and keep asking questions.

Writing Software Is

Like … Writing

I finally figured out the right analogy for software development. Alas,

the target audience for this analogy won’t be happy with it.

Why do we need an analogy? We know what we do. We program

computers, with all that entails. And we know what that means,

because we do it.



But to the stakeholders—managers, CEOs, customers, shareholders,

etc.—software development is a mystery. They don’t want to know

everything about it, but they want to know enough to predict the

behavior of software development, at least approximately.

So stakeholders need an abstraction. An analogy. But for the analogy

to be useful, it must hide the things that aren’t important, and show

the things that are. We’ve been flailing about with this problem for a

long time, but we’ve always been putting it in our terms, and it all

makes sense to us, so we can’t differentiate between a useful analogy

and one that is less than helpful.

Mathematicians and engineers were the original programmers, so

naturally we tried making it a science, then engineering. Mostly we

discovered that no matter how much we want software to be like

mathematical proofs or bridge-building, it isn’t.

The stakeholders, trying to follow our analogies, asked questions that

were important to them. “If programming is like math, why are

programs always broken? Math is right or wrong, software is just

broken.” And later, after we gave up on the science analogy, “If

programmers are like engineers, I can replace one engineer with

another and get similar results, right?”



This latter has been a huge source of consternation among

stakeholders. By and large, engineers have similar productivity levels.

And the results produced are verifiable. There’s a lot of consistency in

engineering, and if we call it “software engineering,” then there should

be similar consistency in software.

The two typical approaches to this problem have been either big denial

(“ignore the differences and pretend all software development is the

same”) or little denial (“The differences are accidental. We can force

consistency”).

Big denial just doesn’t work. But little denial has produced repeated

attempts at “standardization of software engineers,” the most notable

of which is certification. If only we had a certification process, the

argument goes, software engineers would be like real engineers, and

they’d all be consistent.

Fortunately certification has never gotten very far, because

programmers could never be bothered to take such a thing seriously,

and employers want to hire the best programmers without regard to

whether they have any particular degrees or credentials. And the

certification programs that do exist are always done for money, and

that seems to inevitably flatten the curve. I don’t know anyone, for



example, that takes the basic Sun Java Certification seriously. The

more advanced Java certifications seem interesting, but they also

appear much more like workshops and less like tests to me.

At one point I ridiculed this attempt to make all programmers

identical cogs in a machine by reducing our activity to its simplest

behavior in Programming as Typing (the following section in this

appendix).

So we’re not scientists, and we’re not engineers. How do we describe

what we do to non-programmers in a way that makes sense to them?

In particular, in a way that explains why there’s such a big difference

in programmers, in programming projects, and in the success and

failure of projects?

Here’s my proposal. I think it explains everything. It is very

unsatisfying to stakeholders that want completely predictable

behavior, and who want to replace one programmer with another and

get identical results. (That’s still not going to happen. The only

compensation for the unpredictability is approaches like the Agile

methods, which increases the bandwidth of communication with the

stakeholders).

We’re writers.



Most people can put words together into sentences. They can

communicate adequately without being great writers. Most

programmers can write some kind of program. It might not be very

good, but most companies don’t really need it to be very good. Most

companies only need basic programming skills. A college degree in

computer “science” from anywhere is good enough, and the job is just

a job. It doesn’t require much in the way of continuing education,

conferences, workshops, or someone who is so interested in the craft

of programming they are always trying to learn more.

Such people can write, but it’s just basic writing. They are not essayists

or novelists—and keep in mind there are lots of published articles and

novels that are not particularly well-written or worth reading.

Obviously such things seem to sell well enough to make the effort and

risk worthwhile all around.

But someone who dedicates themselves to writing, who goes through

the struggle of figuring it out and discovering their own place in the

world—this is a very different kind of writer (of prose or programs)

than the average. This person can produce more functionality faster,

and the results are clearer and deeper than ordinary code.

Writing a novel is a very impressive feat. Doing something that might



be worth publishing—that’s an even greater feat. But the vast majority

of published novels aren’t worth reading. Only a small fraction of

writers create something really worthwhile, and no one, really, knows

how they do it. Each good novelist comes to their art in their own way.

And what about nonfiction? Every year there are about 5000 novels

published, and about 50,000 nonfiction books. Most of those

nonfiction books are merely functional, not great reading. But they

contain useful information and enough people buy them to make it all

worthwhile (to the publisher, at least).

This answers one of the biggest questions—why you can’t replace a

programmer with just any other programmer and get similar results.

It also suggests re-evaluating the kind of project you’re creating when

you decide who your team should be, and how it will run. The creation

of mysteries and young adult fiction and so-called “bodice rippers” and

the vast sea of nonfiction books all have their own particular structure

and constraints (you’d be surprised at how rigid and controlling

publishers are about these things, as if they are manufacturing some

kind of basic commodity—“the murder must happen in the first ten



pages,” etc.). None of these are the mass-market bestsellers (“killer

apps”) that are sold because of the author’s voice and style. The mass-

market bestsellers usually don’t coincide with great writers, since most

people don’t have the patience to read these meta-craftsmen, just as

most programmers don’t read the source code for compilers.

Although stakeholders won’t necessarily understand the intricate

details of the writing and publishing process, they typically understand

there are different types of writing, and that the craft of writing is a

weird, unfathomable and artistic process which can’t guarantee

results. So even though “software is writing” is not necessarily going to

increase the predictability of what we do, it may at least help non-

programmers to understand its unpredictability.

Programming as

Typing

How can we see, through new eyes, the

problems we face when building



software?

(This started as a reply to John Camara, then took on a life of its own.)

I believe by now it is safe to assume that

the majority of software developers and

managers of software projects have come

to accept the importance of testing so I

feel it’s unnecessary to comment on

testing.

I’ve learned not to trust lots of noise about something. It usually

doesn’t correlate to reality. A friend works for a company that’s just

now learning about unit testing, and apparently testing in general. I’ve

consulted with companies where testing is still a new thing. My guess

is that the majority of software developers have not yet accepted the

importance of testing, and it’s only the noisemakers on the leading

edge who are learning and talking about it, and thus giving the

impression it’s now well accepted.

Another example of noise vs. reality: people are always saying there

are still more COBOL and FORTRAN programmers out there than any

other kind. But when was the last time you saw one, much less talked

to one? By that metric, they don’t exist. But apparently there are lots of



them.

Now as important as it may be to have a

second pair of eyes on a problem I feel

it’s not the most important benefit of

code reviews. I feel that code reviews

provide a means of mentoring each other.

Yes, it’s one thing to show examples and talk about how you would, in

theory, use a particular language feature properly. But when someone

actually has a vested interest in a piece of code, that code becomes real

and important. (I create toy examples in books out of necessity only).

I think the more abstract the concept, the more important it is to work

with a project that people are actually trying to build, to take it out of

the realm of ideas. For example, when teaching OO design (which is

more abstract than programming), I encourage people to bring their

own designs, so we can work on them together. This makes better use

of the training or consulting time, because people can actually gain

forward motion on their projects and so have more of a vested interest

in the seminar.

This form of mentoring is likely to be the

only form of mentoring that the majority



of developers experience these days.

After all, mentoring has lost most, if not

all, priority in these sad times of ever

decreasing costs at all costs. We have

simply forgotten how important it is to

pass collective experiences from

generation to generation.

This may come from (perceived) efficiency considerations. Mentoring

on a regular basis may appear to be just a cost for a project—

interference with getting things done. Whereas carving out a week for

training between projects is a discrete chunk of time, you do it and

you’re done, then people can get back to slinging code as fast as they

can. Or any number of other scenarios.

I think the problem is that while many programmers understand that

programming happens in the mind, and the code itself is just an

artifact of the process, outside the field, the code looks like it’s what

you’re doing. (An understandable perception, since the code is the core

deliverable). So if it’s about the code and not the mental process

behind the code, it makes sense you would do whatever you can to

produce the code as fast and as cheaply as possible, and to discard



anything that appears to hinder the creation of code. From this follows

the logical thought that coding is typing. If this is true, you want to see

people typing all the time. Also, 10 people can type faster than one

person so if you can hire ten offshore programmers cheaper than one

US programmer, you’re going to get a lot more typing done, so you’ll

get big economic leverage.

In reality, study after study indicates that success comes from who you

hire. This suggests that programming is not a mass-production activity

where programmers are replaceable components.

I think a good analogy is writing a novel. Suppose you want to create a

Stephen King novel (I’m not much of a fan, but this is exactly the kind

of book that publishers stay up nights trying to figure out how to mass

produce). You can say, “A book is made up of words, and words are

created by typing, so to create a book we must get a bunch of people

typing. The more people we can get typing, the faster we’ll create a

book. And the cheaper the typist, the cheaper it is to create books.”

It’s hard to argue with that logic. After all, a book is made up of words.

And words are created by typing, etc. But anyone who reads novels

knows there must be a fundamental flaw in the logic, because there are

authors whom you like and others whom you can’t stand. The choice



of words and the structure of the book makes the difference, and that

is based on the person writing the book. We know you can’t replace

one author with 10 lesser writers and get anything like what the author

could produce, or anything you’d want to read.

Another example is a house. Like software, it’s comprised of

subsystems that fit together. Like software, you have a bunch of people

working on it, and it’s even true that some of those people are

replaceable. It doesn’t much matter who is nailing up the wallboard.

But you really notice the design of the house, and you notice how well

it was put together, and those things are determined by the architect

and the builder.

I’ve been struggling with this general problem for a long time. That is,

the “logical” arguments that are very hard to refute, like “software is

created by typing.” True on the surface, but not really the essence of

the issue. But if you keep the argument on those terms, you can’t really

get anywhere, because the logic is irrefutable. Even if that logic

completely misses the real issue.

This is probably why I keep fighting with the static-dynamic language

debate, because it has the same feel to me. You can come up with all

kinds of reasons that static checking is a good thing, until you have an



experience programming in a dynamic language where you are vastly

more productive than with a static language. But that experience

defies the logic used to back up the reasoning behind static languages

( I believe now it is predominantly cultural rather than

logical/rational).

Here’s another one. I think “details matter,” and that environmental

noise really does wear you down (studies show that noise makes you

tired). What I’m talking about here is visual and complexity noise. So I

was disappointed when, for example, Ruby turned out to have begin

and end statements, and it uses new to create objects. These are all

noise artifacts from previous languages, required to support their

compilers. If your language creates all objects on the heap, you don’t

need to say new to distinguish between heap and stack objects (like

you do in C++, which was mindlessly mimicked by Java). And

everyone always indents their code, so you can use indentation to

establish scope. Besides the fact that I’m justifying the design

minimalism of Python here, when I put these ideas out I will probably

get many perfectly reasonable rationalizations about why this is the

best way of doing things. And without questioning the fundamental

principles upon which those arguments are founded, those arguments



are pretty airtight, even if they really come down to “I’m used to that

and I don’t want to think differently about it.”

Java has always required a lot of extra typing. But the fact that Eclipse,

NetBeans, IntelliJ Idea, and other IDEs generate code for you seems to

justify enormous amounts of visual noise, and for those in the midst of

it, that’s OK, and even desirable. “It’s clearer because it’s more

explicit” (Python even has a maxim: “Explicit is better than implicit”).

This is even taken to extremes with the idea, supported by a surprising

number of folks, that every class should have an associated interface,

which to my mind makes the code far more complicated and

confusing. Which costs money, because everyone who works with that

code must wade through all those extra layers of complication.

All of this detail is expensive, even with a tool that generates a lot of

code for you. But if you’re in the middle of it, it’s all you see and it

makes sense because it seems to work. And of course, if you compare

one Java project to another, you aren’t questioning the cost of using

the language.

In contrast, when I teach OO design, my favorite approach is to (A)

work on a project that the client is actually working on and (B) move

quickly through the design process and model the result in a dynamic



language (I know Python best). In most cases, the client doesn’t know

Python, but that doesn’t matter. We still very quickly get a model of

the system up and running, and in the process we discover problems

that our initial design pass didn’t see. So because of the speed and

agility of a dynamic language, design issues appear early and quickly

and we can refine the design before recasting it in a heavyweight

language.

And I would argue that if the initial code is done in the heavyweight

language instead, then (A) There is resistance to putting the design

into code because it is much more work intensive; it isn’t a lightweight

activity, and (B) There is resistance to making changes to the design

for the same reason.

And yet, I will probably get any number of perfectly reasonable

arguments to the effect that this approach doesn’t make sense. I

usually find that these arguments are not based on experience, but on

logic that follows from fundamental assumptions about the world of

programming.

It may not even be possible to prove things logically when it comes to

programming. So many of the conclusions that we draw this way

appear wrong. This is what I like about the book Peopleware, and also



Software Conflict 2.0. These books point out places where we operate

based on what seems perfectly logical, and yet is wrong (one of my

favorite studies in Peopleware shows that, of all forms of estimation,

the most productive approach is when no estimate at all is made).

The story I heard about Greek natural philosophers (what we call

physicists today) is that they were more interested in the arguments

about how something worked than they were about how that thing

actually worked. So they didn’t drop small and large stones to find out

if one fell faster than they other, they argued based on their

assumptions.

It seems to me that we’re in the same situation when we try to argue

about programming. A large part of the Enlightenment came from the

move to the scientific method, which seems like a small, simple step

but turned out to be very big, with very big impact. To wit, you can

argue about how you think something will happen, but then you must

go out and actually do the experiment. If the experiment disagrees



with your argument, you must change your argument and try another

experiment.

The key is in doing the experiment, and in paying attention to the

results, rather than starting with belief and trying to wrestle the world

into line with that belief. Even after some 500 years, human society is

still trying to come to terms with the age of reason.

I think the essence of what the agilists are doing is a perfect analogy to

the discovery of the scientific method. Instead of making stuff up—and

if you look back at all the “solutions” we’ve invented to solve software

complexity problems, that’s primarily what they are—you do an

experiment and see what happens. And if the experiment denies the

arguments you’ve used in the past, you can’t discard the results of the

experiment. You have to change something about your argument.

Of course, you aren’t forced to change your argument. But even if it

doesn’t happen overnight, those that look at the experiments and

realize that something is different than the way they thought it was,

those people will move past you and forge into new territory. Territory

that your company cannot enter if they refuse to change their ideas.

Do What You Love

*“In 1960, a researcher interviewed 1500 business-school students and



classified them in two categories: those who were in it for the money—

1245 of them—and those who were going to use the degree to do

something they cared deeply about—the other 255 people. Twenty

years later, the researcher checked on the graduates and found that

101 of them were millionaires—and all but one of those millionaires

came from the 255 people who had pursued what they loved to do!*

“Now, you may think that your passion for Icelandic poetry of the

baroque period, or butterfly collecting, or golf—or social justice—

might consign you to a permanent separation between what you love

and what you do for a living, but it isn’t necessarily so. Vladimir

Nabokov, one of the greatest novelists of this century, was far more

passionate about butterfly collecting than writing. His first college

teaching job, in fact, was in lepidoptery. Research on more than

400,000 Americans over the past 40 years indicates that pursuing

your passions—even in small doses, here and there each day—helps

you make the most of your current capabilities and encourages you

to develop new ones.” —From The Other 90% by Robert K. Cooper,

Three Rivers Press 2001.

Also, see Po Bronson’s book What Should I Do With My Life? for more

exploration of these ideas.
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