Skip to content
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Files

Permalink
Failed to load latest commit information.

This set of C++ (https://en.wikipedia.org/wiki/C%2B%2B) programs must be run with GMP (https://en.wikipedia.org/wiki/GNU_Multiple_Precision_Arithmetic_Library, https://gmplib.org/)

This set of programs uses many number theoretic (https://en.wikipedia.org/wiki/Number_theory, https://www.rieselprime.de/ziki/Number_theory, https://mathworld.wolfram.com/NumberTheory.html) functions in GMP library (see https://gmplib.org/manual/Number-Theoretic-Functions.html), and we use the GMP function mpz_probab_prime_p to test the probable primality of the numbers, this function is combination of the Baillie-PSW probable primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html), the Miller-Rabin probable primality test (https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://primes.utm.edu/glossary/xpage/MillersTest.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html) of first 26 prime bases (see https://oeis.org/A014233) (we use reps = 50, thus the first 50−24 = 26 prime bases), and trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html) to about 109, thus all numbers in the data are Baillie-PSW probable primes (i.e. both strong probable primes to base 2 (see https://oeis.org/A001262) and strong Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A (see https://oeis.org/A217255)), i.e. either primes or Baillie-PSW pseudoprimes, and no known composites which pass the Baillie–PSW probable prime test, and no composites < 264 pass the Baillie–PSW probable prime test (see http://ntheory.org/pseudoprimes.html and https://archive.vn/IuzWs), thus if a number in the data is in fact composite, it will be a pseudoprime to the Baillie–PSW probable prime test, which currently no single example is known!

The program "searchLLR.cc" is a sieving (https://www.rieselprime.de/ziki/Sieving, https://mathworld.wolfram.com/Sieve.html) program like SRSIEVE (https://www.bc-team.org/app.php/dlext/?cat=3, https://mersenneforum.org/attachment.php?attachmentid=16377&d=1499103807, https://archive.vn/XrJkw, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve) but only sieved to the prime 130337 (while SRSIEVE usually sieve to 109 or more) and not remove the numbers with algebraic factors (see https://mersenneforum.org/showpost.php?p=452132&postcount=66), and the program "searchLLR.cc" prints the LLR (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64) input file and thus the LLR program must be used after the program "searchLLR.cc".