Real-world effectiveness of early molnupiravir or nirmatrelvir–ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: a retrospective cohort study
The Lancet Infectious Diseases 22 (12), 1681-1693, 2022
Donovan-Banfield, I., Penrice-Randal, R., Goldswain, H. et al. Characterisation of SARS-CoV-2 genomic variation in response to molnupiravir treatment in the AGILE Phase IIa clinical trial. Nat Commun 13, 7284 (2022). https://doi.org/10.1038/s41467-022-34839-9
これを調べるために、AGILE Candidate Specific Trial(CST)-2(臨床試験番号NCT04746183)の試料を使用した。AGILE CST-2の主要成果は、ヒトにおけるmolnupiravirの薬物安全性と抗ウイルス効果を測定することであった(180人の参加者がプラセボと1対1でランダム化された)。
2. Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. N Engl J Med 2022;386:35-46.
4. Abu-Raddad LJ, Chemaitelly H, Ayoub HH, et al. Introduction and expansion of the SARS-CoV-2 B.1.1.7 variant and reinfections in Qatar: a nationally representative cohort study. PLoS Med 2021;18(12):e1003879-e1003879.
5. Chemaitelly H, Bertollini R, Abu-Raddad LJ. Efficacy of natural immunity against SARS-CoV-2 reinfection with the beta variant. N Engl J Med 2021;385:2585-2586.
6. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Effects of previous infection and vaccination on symptomatic omicron infections. N Engl J Med 2022;387:21-34.
7. Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protective effect of previous SARS-CoV-2 infection against omicron BA.4 and BA.5 subvariants. N Engl J Med 2022;387:1620-1622.
8. Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 delta variant in Qatar. Nat Med 2021;27:2136-2143.
9. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N Engl J Med 2021;385(24):e83-e83.
10. Abu-Raddad LJ, Chemaitelly H, Ayoub HH, et al. Effect of mRNA vaccine boosters against SARS-CoV-2 omicron infection in Qatar. N Engl J Med 2022;386:1804-1816.
14. Ayoub HH, Chemaitelly H, Seedat S, et al. Mathematical modeling of the SARS-CoV-2 epidemic in Qatar and its impact on the national response to COVID-19. J Glob Health 2021;11:05005-05005.
15. Coyle PV, Chemaitelly H, Ben Hadj Kacem MA, et al. SARS-CoV-2 seroprevalence in the urban population of Qatar: an analysis of antibody testing on a sample of 112,941 individuals. iScience 2021;24(6):102646-102646.
16. Al-Thani MH, Farag E, Bertollini R, et al. SARS-CoV-2 infection is at herd immunity in the majority segment of the population of Qatar. Open Forum Infect Dis 2021;8(8):ofab221-ofab221.
18. Abu-Raddad LJ, Chemaitelly H, Yassine HM, et al. Pfizer–BioNTech mRNA BNT162b2 Covid-19 vaccine protection against variants of concern after one versus two doses. J Travel Med 2021;28(7):taab083-taab083.
19. Chemaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med 2021;27:1614-1621.
20. Abu-Raddad LJ, Chemaitelly H, Bertollini R. Waning mRNA-1273 vaccine effectiveness against SARS-CoV-2 infection in Qatar. N Engl J Med 2022;386:1091-1093.
22. Barda N, Dagan N, Cohen C, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet 2021;398:2093-2100.
23. Gessner BD, Feikin DR. Vaccine preventable disease incidence as a complement to vaccine efficacy for setting vaccine policy. Vaccine 2014;32:3133-3138.
24. Hasan MR, Kalikiri MKR, Mirza F, et al. Real-time SARS-CoV-2 genotyping by high-throughput multiplex PCR reveals the epidemiology of the variants of concern in Qatar. Int J Infect Dis 2021;112:52-54.
26. Fowlkes AL, Yoon SK, Lutrick K, et al. Effectiveness of 2-dose BNT162b2 (Pfizer BioNTech) mRNA vaccine in preventing SARS-CoV-2 infection among children aged 5–11 years and adolescents aged 12–15 years — PROTECT cohort, July 2021–February 2022. MMWR Morb Mortal Wkly Rep 2022;71:422-428.
27. Cohen-Stavi CJ, Magen O, Barda N, et al. BNT162b2 vaccine effectiveness against omicron in children 5 to 11 years of age. N Engl J Med 2022;387:227-236.
28. Veneti L, Berild JD, Watle SV, et al. Vaccine effectiveness with BNT162b2 (Comirnaty, Pfizer–BioNTech) vaccine against reported SARS-CoV-2 delta and omicron infection among adolescents, Norway, August 2021 to January 2022. March 25, 2022(https://www.medrxiv.org/content/10.1101/2022.03.24.22272854v1. opens in new tab). preprint.
29. Kildegaard H, Lund LC, Højlund M, Stensballe LG, Pottegård A. Risk of adverse events after covid-19 in Danish children and adolescents and effectiveness of BNT162b2 in adolescents: cohort study. BMJ 2022;377:e068898-e068898.
30. Sacco C, Del Manso M, Mateo-Urdiales A, et al. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection and severe COVID-19 in children aged 5–11 years in Italy: a retrospective analysis of January–April, 2022. Lancet 2022;400:97-103.
32. Butt AA, Dargham SR, Loka S, et al. Coronavirus disease 2019 disease severity in children infected with the omicron variant. Clin Infect Dis 2022;75(1):e361-e367.
33. Butt AA, Dargham SR, Tang P, et al. COVID-19 disease severity in persons infected with the omicron variant compared with the delta variant in Qatar. J Glob Health 2022;12:05032-05032.
34. Klein NP, Stockwell MS, Demarco M, et al. Effectiveness of COVID-19 Pfizer–BioNTech BNT162b2 mRNA vaccination in preventing COVID-19-associated emergency department and urgent care encounters and hospitalizations among nonimmunocompromised children and adolescents aged 5–17 years — VISION Network, 10 states, April 2021–January 2022. MMWR Morb Mortal Wkly Rep 2022;71:352-358.
36. Price AM, Olson SM, Newhams MM, et al. BNT162b2 protection against the omicron variant in children and adolescents. N Engl J Med 2022;386:1899-1909.
Figure 1. The distribution of sampling date for positive specimen in the outbreak of severe acute respiratory syndrome coronavirus 2 Omicron subvariant BA.2.76 in an outdoor park in Chongqing Municipality, China, August 2022. Note: Two cases developed symptoms earlier than the positive specimen date, their onset dates were used in the epi curve.
1] Bulfone TC, Malekinejad M, Rutherford GW, Razani N. Outdoor transmission of SARS-CoV-2 and other respiratory viruses: a systematic review. J Infect Dis 2021;223(4):550 − 61. CrossRef [2] Szablewski CM, Chang KT, Brown MM, Chu VT, Yousaf AR, Anyalechi N, et al. SARS-CoV-2 transmission and infection among attendees of an overnight camp – Georgia, June 2020. MMWR Morb Mortal Wkly Rep 2020;69(31):1023 − 5. CrossRef [3] Leclerc QJ, Fuller NM, Knight LE, CMMID COVID-19 Working Group, Funk S, Knight GM. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res 2020;5:83. http://dx.doi.org/10.12688/wellcomeopenres.15889.2.http://dx.doi.org/10.12688/wellcomeopenres.15889.2 [4] Qian H, Miao T, Liu L, Zheng XH, Luo DT, Li YG. Indoor transmission of SARS-CoV-2. Indoor Air 2021;31(3):639 − 45. CrossRef [5] Sky News. Coronavirus: champions League match a ‘biological bomb’ that infected Bergamo, experts say. 2020. https://news.sky.com/story/coronavirus-champions-league-match-a-biological-bomb-that-infected-bergamo-experts-say-11963905.%5B2022-10-2%5D.https://news.sky.com/story/coronavirus-champions-league-match-a-biological-bomb-that-infected-bergamo-experts-say-11963905.%5B2022-10-2%5D [6] Ran X, Hazhir R Marichi G, Catherine Di, Navid G, Heresh A et al. Weather, air pollution, and SARS-CoV-2 transmission: a global analysis. Lancet Planet Health 2021;5(10):e671 − e680. CrossRef [7] Skanata A, Spagnolo F, Metz M, Smyth DS, Dennehy JJ. Humidity reduces rapid and distant airborne dispersal of viable viral particles in classroom settings. Environ Sci Technol Lett 2022;9(7):632 − 7. CrossRef [8] Cao YL, Song WL, Wang L, Liu P, Yue C, Jian FC, et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA. 2.75. Cell Host Microbe 2022;30(11):1527 − 39.e5. CrossRef [9] Arias FJ. Are runners more prone to become infected with COVID-19? An approach from the raindrop collisional model. J Sci Sport Exerc 2021;3(2):167 − 70. CrossRef [10] Klompas M, Milton DK, Rhee C, Baker MA, Leekha S. Current insights into respiratory virus transmission and potential implications for infection control programs: a narrative review. Ann Intern Med 2021;174(12):1710 − 8. CrossRef [11] Atrubin D, Wiese M, Bohinc B. An outbreak of COVID-19 associated with a recreational hockey game – Florida, June 2020. MMWR Morb Mortal Wkly Rep 2020;69(41):1492 − 3. CrossRef [12] Majra D, Benson J, Pitts J, Stebbing J. SARS-CoV-2 (COVID-19) superspreader events. J Infect 2021;82(1):36 − 40. CrossRef [13] Poon ETC, Zheng C, Wong SHS. Effect of wearing surgical face masks during exercise: does intensity matter? Front Physiol 2021;12:775750.
この前向き横断研究に、ALSおよびALS-variantの患者97名を登録した。PMRは標準化された手順で検査され、神経認知プロファイルはEdinburgh Cognitive and Behavioral ALS Screen(ECAS)を用いて評価された。疾患の重症度と運動機能は、ALS Functional Rating Scale revised(ALSFRS-R)および標準化された臨床評価により記録された。
Palmomental reflexは母指球を擦過することにより同側の頤筋及び口輪筋が收縮する反射であるが,場合によつては両側の筋の收縮も見られ,又時には眼輪筋の收縮をも伴うことがあると言われている。これは1920年にMarinescoとRadoviciにより筋萎縮性側索硬化症の患者で観察され,始めて記載されたものとされている。本反射は最初は顔面神経のlowe motor neuron fibersの障碍度を観察する手段として用いられていた様であるが,次第に多くの研究者により系統的研究がなされ,その反射発現についての機講とか,発現頻度,発現疾患等について種々検討が加えられ,その臨床的意義が明かにされつつあるのである。吾吾も本反射の発現状況について検討する機会を得たので茲にその大要を述べるものである。
how to test palmomental reflex (PMR) – YouTube →親指で母指球を擦過する
Associations of neuralgic amyotrophy with COVID-19 vaccination: Disproportionality analysis using the World Health Organization pharmacovigilance database
Cite this article as: Amjad M, Hamid Z, Patel Y, et al. (May 30, 2022) COVID-19 Vaccine-Induced Parsonage-Turner Syndrome: A Case Report and Literature Review. Cureus 14(5): e25493. doi:10.7759/cureus.25493