
ON THE MINIMUM COMPUTATION TIME

OF FUNCTIONS

BY

STEPHEN A. COOK AND STÂL O. AANDERAAO)

I. Machines with a Bounded Number of Active Elements

1. Introduction. An underlying goal of the research reported here is to develop

a theory showing that the process of multiplying decimal integers is intrinsically

more difficult than the process of adding them (2). In part I of this paper we present

a precise conjecture which is a possible formulation of this proposition. The

formulation is not completely satisfactory, but it certainly bears on the problem

and raises interesting mathematical questions. Part II contains a proof of a weak-

ened form of the conjecture.

There are several different ways in which multiplication seems to be more difficult

than addition, and each could lead to a different formulation of the problem. For

example, experience of computer designers indicates that it takes more circuitry to

compute the fixed-point product of two «-digit integers than to find the sum.

Again, even with the increased circuitry, the time required to carry out the multi-

plication exceeds that for addition. But still a third way in which the difficulties

seem to differ is suggested not by computers, but by our centuries old experience

with longhand multiplication. If a man is equipped only with paper and pencil,

in general it will take him longer to multiply two numbers than to add them. It

is this experience with longhand multiplication which motivates the present

theory.

Thus a rough attempt to formalize our belief is embodied in the following

statement: Given any algorithm for multiplying arbitrary decimal integers, and an

algorithm for adding them, the number of steps required, on the average, to apply

the first algorithm to a given pair of integers should substantially exceed the number

of steps required by the second. Since the ordinary addition algorithm requires a

number of steps proportional to the number of digits in the addends, the statement

can be rephrased as follows:

1.1. No matter what algorithm is used, the number of steps, on the average,

Received by the editors July 24, 1968.

O Most of the results in this paper are taken from Chapters I and II of the doctoral thesis

[4] of the first author. The second author contributed some central ideas to the main result

(Theorem 10.1) of part II. The first author was supported in part while writing the present paper

by Office of Naval Research Contract Nonr 3656 (23).

(2) See Cobham [2] for an interesting discussion of the problems in developing such a

theory.

291

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

292 S. A. COOK AND S. O. AANDERAA [August

required to multiply two decimal integers is more than proportional to the number

of digits in the factors.

The conjecture 1.1 leads naturally to a second question ; namely, just how fast

must the number of steps grow as a function of the number of digits in the factors,

assuming the algorithm is as efficient as possible ? A little thought shows that the

ordinary method of multiplying requires a number of steps proportional to the

product of the numbers of digits in the two factors. Thus, if the two factors have

a common number « of digits, the number of steps is proportional to «2. But it

turns out that the ordinary method is far from the best possible one. In fact A. L.

Toom [13] and A. Schönhage [11] have each devised a different algorithm for

reducing the number of steps from «2 to n1 + *, for arbitrary small e > 0. Schönhage

showed that his method can be realized by a multi-tape Turing machine to multiply

in time proportional to n1+(-/2+e)Klog2n)112, and Cook [4] proved the same result for

Toom's method, except the time estimate was not as sharp. Just how much further

the bound can be reduced remains as an open question, although the results in part

II touch on the problem.

In order to make the conjecture 1.1 precise, it is necessary to give a clear de-

scription of (i) the circumstances under which the algorithm is to be carried out,

and (ii) just what constitutes a "step" during the execution of the algorithm. In

other words, we must provide a mathematical model of the computer (man or

machine) which is to execute the algorithm, and the model should include the

notion of step. The computer should be a general purpose one, in the sense that it

should be capable of executing any algorithm upon being presented with the proper

program (i.e. description of the algorithm). Thus the storage (or memory) of the

machine must be potentially infinite.

The class of ordinary single-tape Turing machines satisfies the above con-

ditions, provided we take the program of a particular machine to be the specifica-

tion of the tape symbols and the state transition function. So also does the class of

multi-tape Turing machines, the class of iterative arrays of finite state machines

[5], and the class of Shepherdson-Sturgis machines [12]; and there is no reason

to believe that any two classes lead to equivalent definitions of step. The problem,

then, is to decide what is the right class of machines.

Atrubin [1] has shown that there is a one-dimensional iterative array of finite

state machines (cf. 5.2) which multiplies in "real time". That is, when the digits of

two integers are presented to the machine at the extreme left end of the array a

pair at a time, the same machine indicates the product digits at the rate of one per

cycle. Thus 1.1 fails if we allow iterative arrays as executors of the algorithms. A

little thought suggests a reason why. It is that the number of finite state machines

in the array which are taking an active part in the computation grows without

bound as a function of time. Our feeling that the number of steps per product digit

should constantly increase with time depends on an assumption that the executor

of the algorithm be able to change the "instantaneous description" of the com-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 293

putation by only a bounded amount during any one step. The iterative array can

multiply in real time because it can recruit a constantly growing army of personnel

to do the necessary computation(3).

2. Bounded-activity machines. The key to making the conjecture 1.1 precise,

then, is to capture the notion of a machine whose number of active elements is

bounded in time. Or, equivalently, one which is capable of changing its instan-

taneous description by at most a bounded amount during any one step in the

computation. In the latter formulation, we must also impose the restriction that

the changes depend on a bounded (but possibly variable) part of the configuration.

For example, a Turing machine with a finite number of read-write heads and tapes

fulfills both conditions. Here, the active elements are the heads, and the tapes are

just passive storage. The conditions are satisfied just as well if the "tapes" are

planar arrays of squares instead of linear arrays; and, for that matter, if they are

higher-dimensional arrays. In fact, the general machine we have in mind consists

of a storage structure (such as a set of tapes) together with a finite set of "heads,"

capable of reading and altering information stored in the structure. The behavior

of the heads for a given step of the computation depends only on the symbols

stored in the cells currently occupied by the heads (and on which pairs of heads

currently coincide in position).

This leads to the following series of definitions, in which a notion of computation

with a bounded number of active elements is introduced formally. The notion

introduced is unfortunately much too general, but it does provide a framework

around which to center discussion concerning the nature of the "proper model",

which might involve suitable restrictions on the general model. For example, one

possible restriction, discussed in the next section, is sufficient to prevent the machine

from multiplying in real time.

2.1. Definition. A storage structure A = <A, </>x,..., <ppy of rank p consists of

a countable set A (the locations or cells of A) together with the maps </>x,..., </>p

of A into A, called shift transformations.

Thus, a multi-tape Turing machine has a storage structure of rank 2 ; and the

two shift transformations <j>x, <j>2 are the left shift and the right shift. (We regard

the tape as fixed and let the heads move.)

A bounded-activity machine, defined formally in 2.2, consists of a storage

structure together with a "program", which specifies (i) the number of read-write

(3) On the other hand, the interesting results of Winograd [14] concerning multiplication

time do not fit into the framework of the present discussion at all. Winograd is interested in the

minimum possible delay time through a logic net that is designed to multiply. The net is given

access to, and processes, all the digits of the factors simultaneously, and as a result the multi-

plication time for two «-digit numbers grows considerably slower than n. The time function

we are interested in turns out to be more related to the number of components in the net than

the delay time through the net. Winograd does not consider how the number of components

of the net grows with the number of digits.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

294 S. A. COOK AND S. O. AANDERAA [August

heads, (ii) a finite set 2 of tape symbols capable of being written (or stored) in the

storage cells, and (iii) a transition function which specifies the symbols to be

written by the heads and the proper shift transformations to be applied, for each

possible combination of symbols currently being scanned by the heads. The

machine might also include a finite set of internal states, like those of a Turing

machine. However, these can always be dispensed with by adding another read-

write head, which never moves, but is capable of reading and writing as many

symbols as there were states in the original machine. Thus we shall not include the

internal states in Definition 2.2.

When two or more heads scan the same cell, provision must be made so that

conflicting write orders are not given. Also, in "programming" the machine, it is

convenient to have information available as to which of the heads are scanning

the same square. This is the function of the partition F in the definition below.

Finally, the input to the machine consists of an arbitrary string of symbols (from

a finite alphabet F), which are made available to the machine on a read-only input

tape. The input and output arrangements are discussed further in §4.

Here, now, is the formal definition.

2.2. Definition. A bounded-activity machine, or BAM, is a quintuple <A, F, 2,

77, 0>, where A = <F, </>x,..., <ppy is a storage structure, F is a finite set of input

symbols, S is a finite set of tape symbols, 77 is a positive integer (specifying the

number of heads of the machine), and <P is the transition function. The domain of

i> is the set of all (77+2)-tuples </, sx,..., sH, F>, where / e F, st e 2, and F is a

partition (i.e. an equivalence relation) on {1, 2,..., 77}. The range of O is a subset

of the set of all (2/7+l)-tuples </»,..., tH, \px,..., ipH, s}, where i(eS, fae

{<Pu <f>2, ■ ■ ■, 'Pp, h}, and s e {0, 1}. Here IL is the identity map on L. (s specifies

whether or not the input tape is to be advanced.)

Thus, suppose the heads numbers 1, 2,..., H are scanning symbols sx,...,sH

respectively, and the input head is currently reading the symbol /, and the coincid-

ence of heads is specified by the partition F (i.e. head i and heady are scanning the

same square if and only if i =j (mod F)). Suppose -J»«/, sx,..., sH,P}) = (tx,..., tH,

<px,..., ipH, s'y. Then head i will print the symbol /¡ and move to the cell specified

by ipi, z'= 1, 2,..., H. The input tape is advanced or not according as s is 1 or 0.

In order to avoid conflicting write commands, we shall require of 0 that if

i=j (mod P), then f(=ry.

2.3. Definitions. Let M=<A, F, 2, H, <!>> be a BAM with storage structure

A=<F, <pu..., <ppy. A storage assignment on M is a map a : L -»• 2. An instantaneous

description of M is an (77+3)-tuple <a, xx, x2,..., xH, A, èy, where a is a storage

assignment, xx>..., xH are members of F (specifying the current locations of the

heads), A is a finite string on F (the input string), and e is a positive integer (specify-

ing which entry of A is currently being scanned). The display of an instantaneous

description <a, xx,..'., xH, A, èy is the (//+2)-tuple </, *lf..., sH, F>, where / is

the symbol in position e of the string A (the display is not defined if e exceeds the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 295

length of A), j¡ = a(Xj), i=l,..., H, and A is the partition on I,..., H defined by

i=j (mod A) if and only if xi=xi. Suppose 71 = <a, xx,..., xH, A, e> and 72

= <)S, yx,..., yH, A,/> are two instantaneous descriptions. Let <7, sx,..., sH, A> be

the display of Ix (if it exists), and suppose 4>«f, sx,..., sH, A» = <>i,..., s'H,

^1, • • -, 0H, í>. Then 72 is the successor of Ix provided

(i) ß(x)—s'i if x=Xj, ß(x) = a(x) if je e A but x ${xx,..., xH},

(ii) ji=<M*i)> i=l,...,H,
(iii) A = ̂ 4, and

(i\) f=e + s.

2.4. Definitions. A computation of a machine M is a finite or infinite sequence

70, Ii,... of instantaneous descriptions such that 7j+1 is the successor of 7¡, /=0, 1,

..., and either the sequence is infinite or it is finite and the last instantaneous

description has no successor (i.e. the input head has run off the input tape). The

step number of It relative to the computation 70, Ix,... is the index t. The display

sequence of the computation is the sequence of displays of the successive instan-

taneous descriptions of the computation.

Our description of machine computations will be informal. We shall refer to

the computation at time t, and mean the instantaneous description It. For example,

the cell scanned by head /at time t of a computation is x¡, if 7¡ = <a, Xi,.. .,xH, A, ey.

3. Uniform machines. Our main result in part II, that under certain restrictions

no BAM can multiply in real time, does not hold for an arbitrary BAM because it

is possible in effect to build a multiplication table into the storage structure. One

way to exclude this possibility is to require the storage structure to be "uniform."

That is, every location should behave the same with respect to the shift trans-

formations as every other.

3.1. Definitions. Let A = <A, <f>x,..., <f>p} be a storage structure. An automorph-

ism (or translation) of A is a permutation <fi of A such that </ic4í = c6¡</i, /= 1, 2,..., p.

The structure A is uniform if for every pair of locations x, y e L there is an auto-

morphism tf> of A such that <p(x)=y. We shall refer to a BAM with a uniform

storage structure as a uniform BAM.

It is interesting to note that while the shift transformations of a uniform storage

structure always map onto the location set, they need not be one-one. As an

example, let A be the set of pairs </,/2'>, where / and y are any integers such that

;S0. Let c4: A^A be defined by cÄ«/,y2i» = </+l, [y/2]2i + 1>, where [x] is the

greatest integer not exceeding x. Then c4 is not one-one, but it can be verified that

<A, c4> is uniform.

Uniformity is a sufficient condition on a storage structure to enable the arguments

in part II to go through. Thus, for example, although an iterative array can multiply

in real time, no BAM with a uniform storage structure can, provided its storage

is initially "blank". Nevertheless, we need more of a restriction than uniformity

before we have a suitable model of a computer, as the following result shows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

296 S. A. COOK AND S. O. AANDERAA [August

3.2. Theorem. There is a uniform BAM which computes a nonrecursive function

in real time.

Proof. For a precise description of the input-output arrangement and definition

of real time, see §4.

Suppose G is a group with generators, ax,- ■ -,an. Let F={ax,.. .,an, or1,- • *>an *}>

A = {0, 1}, and let/: r* ->- A (F* is the set of finite strings on F) be defined by

f(A) = 1 if and only if the string A represents the identity element for the group G.

We shall construct a machine which computes/in real time, and hence solves the

word problem for G. In particular, if G has an unsolvable word problem, the

machine will compute a nonrecursive function.

The machine M=<A, F, 2, //, <T>> is defined as follows. A = <F, <px,..., <f>n, «¿f1,

..., (pñ1}, where F is the set of elements of G, <£j(x) = ívx, and <p~1(x)=at~1-x,

where • is the group operation of G, and xeF. Further, 2 = {s0}, 77=2, and

<D(/, sQ, s0, F) = <í0, s0, (pi, h, iyift = <pi, and <¿«/, s0, s0, F» = <í0, s0, </>r\ h, 1> if

t = a,~1. We assume initially both heads scan the same cell x0. Thus head 2 remains

at cell x0 throughout the computation, while at a time / head 1 is in location x • x0,

where x is the element of G specified by the first / input symbols. In particular, the

heads coincide if and only if the input string to date represents the identity of G.

Hence the output of the machine is a simple function of the partition F on {1, 2}.

Finally, the storage structure A is uniform, for given x,yeL the map </> defined

by ip(z) = z-x~1-y sends x into y, and, as is readily verified, >p is an automorphism

of A (but, of course, not a group automorphism).

Thus uniformity is not a sufficient condition to guarantee that the machine

computes only recursive functions. Of course this guarantee could be established

by simply requiring the shift transformation <px,..., <j>p to be recursive, but such

a requirement would represent a very small step toward finding the "right"

computer model.

A simple condition on the shift transformations that forces the resulting machine

to be well behaved is discussed in §6.

4. Input and output arrangements.

4.1. Notation. Let F and A be finite alphabets. Then F* is the set of finite

strings (excluding the empty string) on F, and Fn is the set of all strings on F of

length n. If A e F*, then \A\ denotes the length of A. We are interested in having

machines compute functions /: F* -> A, and for this we need the notion of an

output of a BAM. Let M be a BAM, let I be an instantaneous description of M,

and let </, sx,..., sH, F> be the display of /. Then the restricted display of / is the

(H+ l)-tuple (s,,..., sH, Py. An output of M is a map A from the set of all possible

restricted displays of M to the set A' = A u {0}, where 0 is an extra dead symbol not

occurring in A. The members of A are called output symbols, but 0 is not. If Dx, D2,

... is the sequence of restricted displays of a computation, then the output sequence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 297

of the computation is obtained from X(DX), X(D2),... by deleting the dead

symbols.

The function computed by a machine M depends on the output function A and

on the initial position of each head of M. We shall henceforth assume these param-

eters have been specified when referring to the output of a machine. We shall

further assume that the tape alphabet S has a distinguished symbol s0 called the

blank.

4.2. Definitions. Let M=<A, T, S, 77, 5>> be a BAM with output A and initial

cells xx,..., xH. Given A e Y*, we define the computation of M with input A to be

the computation of M whose initial instantaneous description is <«, xlt..., xH,A, 1>,

where a(x) = ,y0 for all cells x (i.e. the storage is initially blank). Now suppose

/: r* —>- A, where A is the set of output symbols of A. We say M computes f provided

first A(A) = 0, where A is the restricted display of the initial instantaneous

description, and second, for all AeY* there is a number r such that for all A e Fr

the output sequence dx, d2,... of the computation of M with input AB has length

at least /= \A\, and d¡=f(A). In this case, let TB(A) be the step number (cf. 2.4) of

the instantaneous description which specified dt for the computation with input

AB. The computation time of M at the input A is maX|B| = r TB(A). This time

is independent of r, provided r satisfies the property above for which it was

introduced.

Suppose A(«) is a nondecreasing function from positive integers to positive

integers. Then M computes f within time T(n) provided M computes/, and for each

«, the computation time for no string in IT"1 exceeds A(«). We say M computes /

in real time provided M computes/within time A(«), where T(n) = n. Thus, in this

case, M must furnish an output symbol during every step of the computation except

the initial step 70, and we may as well also assume that the input tape is advanced

during every step of the computation.

The no'tion of "on line" computations for Turing machines is standard in the

literature (see, for example, Hennie [7]). In the present context we have the

following definition.

4.3. A BAM M computes on line provided that for all «, and all input strings of

length at least « + 1, the input head scans the (« + l)th input symbol for the first

time in the same step it produces the «th output symbol.

Equivalently, M computes on line provided that for each input string A and

each pair It, It+ x of consecutive steps in the computation with input A, M advances

the input tape between It and 7f+1 iff M produces an output symbol (not the dead

symbol) at 7t+1. Note that in particular, if M computes a function/in real time,

then M computes/on line.

We now introduce the particular functions considered in part II.

4.4. Notation. If T={0, 1,..., b-l}, and cxc2 ■ ■ ■ cn e F*, then \\cxc2 ■ ■ ■ cn\\b

denotes the number cx + c2b+ ■ ■ ■ +cnbn~1, whose base b expansion is cncn_x ■ ■ ■ cx.

In each of the following examples, the function/takes T* into A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

298 S. A. COOK AND S. O. AANDERAA [August

4.5. Example (Squaring). r = A = {0,1,..., ¿>-l}. f(cxc2...cn) is the «th

digit in the base b expansion of the number (\\cxc2 • • • cn||b)2. For instance, if b = 10,

then (since (25)2 = 625), /(5) = 5, /(52) = 2, /(520) = 6, /(5200) = tí, etc.

4.6. Example (Multiplication).

r = < ordered pairs | c, de {0, 1,..., b — 1} >•

A = {0, l,...,b-l}.

is the «th digit in the base b expansion of \\cxc2 ■ ■ ■ cn\\b- \\dxd2 ■ • ■ dn\\„.

4.7. Example (Polynomial multiplication over Zb). (Zb is the ring of integers

modulo b.)

F = < ordered pairs | c, d e {0, I,.. .,b—l}>-

A = {0,l,...,b-l}.

where addition and multiplication are taken modulo b. Thus if P(X) = cx + c2X+

-hcnA,n_1 and Q(X) = dx + d2X-\-+dnXn'x then a machine computing /

with input

Ö-GJ0-0
will put out successively the coefficients in the product P(X)Q(X).

Polynomial multiplication over Zb can also be viewed as base b multiplication

in which the carries are ignored.

5. Turing machines and iterative arrays. The point of part II is to prove that

there are certain operations, such as multiplication, that an iterative array of finite

state machines can perform faster than any uniform BAM. In this section we con-

sider the converse question: what can BAM's do faster than iterative arrays. Some

uniform BAM's can certainly compute functions faster, since according to 3.2

they can compute a nonrecursive function in real time; something no iterative

array can do at any speed. Hence we shall restrict our attention to those BAM's

that closely resemble Turing machines. The results are that, while every multi-tape

Turing machine (with linear tapes) can be simulated in real time by a one-dimen-

sional iterative array, there are Turing machines with planar tapes which cannot

be so simulated.

First we shall define the two kinds of machines involved—multi-tape Turing

machines, in order to emphasize that they are a special case of uniform BAM ; and

iterative arrays, in order to make clear which of the definitions in the literature

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 299

we are using. Our definition is equivalent to that of Atrubin [1] (who constructed

an array which multiplies in real time), Cole [3], and Fischer [5].

5.1. Definition. A multi-tape Turing machine (with m work tapes and an input

tape) is a BAM whose storage structure A = <A, <f>x, c62> is as follows: A is the set

of all pairs of integers (i,j) such that 1 ̂ j^m; <px((.i,j}) = (.i—l,j} (left shift);

and ci2«/,7» = </+1,/> (right shift).

Thus j is the tape number, and / indicates the position on the tape. Normally

we assume there is exactly one head per tape, in which case the initial position of

head j is <0,y>, 7=1, 2,..., m. However, occasionally (as in Theorem 5.3) we

allow more than one head per tape, in which case the initial position of each extra

head coincides with that of one of the first m heads. The storage structure is uniform

since, given a pair x, y e A, we can define an automorphism <p of A by interchanging

the tape containing x with the tape containing y and then sliding one tape left and

one tape right the appropriate number of squares. That is, if x=(jx,jxy and y=

<Í2,72>, then </-«/,;'» = </,;> if j+jx,j2, 4>«iJi» = <i-h + h,J2>; and <A«/,;2»

= (i—i2 + ix,jx)>. Then ¡/< obviously commutes with the two shift transformations.

Note that a set of internal states is not necessary, as explained before Definition

2.2.

Turing machines with «-dimensional tapes can be defined similarly to 5.1, by

letting A be the set of (« + 1)-tuples (ix,..., /„,/> of integers such that 1 újúm.

The shift transformations <px,..., <f>2n are defined by (j>k((.ix,..., /n,7» = <ii> ■ • -,

4+1,..., /„,/> and <t>n+k((ix,. ..,inJ» = <h, ■ ■ -, 4-1, • • -, W>» 1 âk^n.

Our discussion of iterative arrays will be informal.

5.2. Definition. A one-dimension iterative array consists of an infinite sequence

Mx, M2,..., of identical finite state machines together with an initial finite state

machine M0. The state transition functions are such that

(i) the state of Mt, />0, at time r+1 depends exactly on the states of M¡-x,

Mi, and Mi+X at time t,

(ii) the state of M0 at time t +1 depends exactly on the states of M0 and Mx

and the input to M0 at time t, and

(iii) the machines Mx, M2,... are in a quiescent state q0 at time r = 0, and the

transitions are such that A/f will remain in state q0 at time t+l if Mt-X, Mu and

M(+1 are in state q0 at time t, (i>0).

The output of the array at time t is a function only of the state of M0 at time /,

and is defined similarly to the output of a BAM (cf. 4.1). The input to the array

and the computation time of the array are defined as in the case of BAM's.

5.3. Theorem. Suppose f: F* —>■ A is computable in time T(n) by a multi-tape

Turing machine; possibly with several heads per tape (but with linear tapes). Thenfi

is computable in time T(n) by a one-dimensional iterative array.

We shall omit the proof. Cole [3, pp. 5-30 to 5-33] proved a very similar result,

and an outline of the proof appears in [4, p. 20].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

300 S. A. COOK AND S. O. AANDERAA [August

By adapting results of Hennie [7], we can show the previous theorem fails when

the "tapes" of the Turing machine are allowed to be two dimensional. Hennie

defines a function/: F* -> A, where T = {0, 1, 2} and A = {0, 1} [7, p. 36] for which

he shows that any multi-tape Turing machine which computes / on line (cf. 4.3)

must have computation time at least F(«) = C«2/(log «)2. He then states that there

is a two-dimensional Turing machine which computes /in time only Cn312. Thus

the two-dimensional Turing machine computes / faster than can any one-dimen-

sional iterative array, subject to the on-line restriction. However, it is possible to

modify the function/by including a dummy symbol d in its domain alphabet F,

and by making/^) = 0 unless A includes appropriately long strings of i/'s between

every pair of symbols from {0, 1, 2}. Just enough d's should be included so that the

two-dimensional Turing machine has enough time to compute/at the 0-1-2 part

of a string before the next symbol from {0, 1, 2} comes along. In this way we can

find a two-dimensional Turing machine which computes/*, the modified version

of/ in real time. On the other hand, no one-dimensional array can compute/*

in real time, for otherwise a modified version of the array (which would artificially

insert the missing d's) could compute/in time Cn312, which we know is impossible.

Therefore, we have

5.4. Theorem. Theorem 5.3 fails when the Turing machine is allowed to have two-

dimensional tapes.

6. Abelian machines.

6.1. Definition. A storage structure A is abelian iff each shift transformation

is a permutation and any two shift transformations commute. A BAM is abelian

iff its storage structure is abelian.

Suppose A = <F, <px,..., </»p> is an abelian storage structure. Then {<f>x, ...,</>„}

generates an abelian group G of permutations on L. (Each member of G is an

automorphism of A.) We say A is connected iff the set L is an orbit under G;

that is, iff for each pair x, y e L there is <f> e G so <f>(x)=y. Note that in this case y

is not necessarily accessible from x by applying a finite sequence of shift transfor-

mations, but rather by applying a finite sequence of shift transformations and

inverses of shift transformations. Obviously connected abelian storage structures

are uniform.

6.2. Lemma. Let A = <1, <f>x,..., <f>py be a connected abelian storage structure,

and let G be the permutation group generated by {<f>x,..., <j>p}. Then for each pair

x,yeL there is exactly one <j>eG such that <j>(x) =y.

Proof. Suppose <px(x) = <p2(x)=y, where <j>x, <f>2 e G. Let z be any element of L,

and lettpeG be such that tp(x)=z. Then <px(z) = <px^(x) = ip<px(x) = ip(p2(x) = (p2tp(x)

= <f>2(z). Since z is arbitrary, <z>i = </)2.

We wish to show that abelian BAM's are similar to Turing machines with

multi-dimensional tapes (cf. after 5.1) in the sense that the two kinds of machines

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 301

compute functions at about the same rate. In particular, it will follow that only

recursive functions are computable by abelian BAM's. This is true even though

the shift transformation of such machines need not be recursive.

It is apparent that a Turing machine with several «-dimensional tapes is already

an abelian BAM, so our task is to prove the following theorem.

6.3. Theorem. Suppose f: F* -> A, and suppose Mx is an abelian BAM which

computes f within time T(n). Then there is a Turing machine M2 with multidimensional

tapes such that M2 computes f within time KT(n)for some integer K

Proof. Suppose M1 = <A1, F, 2,, H, i»»), where A1 = <F1, <f>x,.. .,<ppy is abelian.

Let G be the permutation group generated by {<j>x,..., <¡>p}. Although Lx may have

infinitely many orbits under G, initially the finite set of heads can scan locations in

only finitely many orbits, and a given head must remain in the same orbit through-

out any computation. Hence we may as well assume Lx has only finitely many

orbits under G. The Turing machine M2 to be constructed will have one multi-

dimensional tape for each orbit. We will carry out the construction for the case of

one orbit only, since the general case requires more complicated notation but no

new ideas. Thus we shall assume Ax is connected.

By the structure theorem for finitely generated abelian groups, G is the direct

sum of subgroups G, and GF, where G, is a finitely generated free abelian group

and GF is finite. Thus there are homomorphisms tt¡:G^-Gj and ttf:G-+Gf

such that for each <f> e G, <p = 7r¡(<p)TrF(^). Fix an element x0 eLx. Then there is a

natural one-one correspondence y of G onto F. defined by y((j>) = <j>(x0). The map

y is one-one by 6.2. Let n'j, tt'f: Lx -^>Lx be defined by ir't—ynff-1 and M>=y»>y-1.

The storage structure for M2 is given by A2 = <F2, fa..., »/>„, fa1,. ■ -, fa 1>>

where L2 = tt'¡(Lx) and {ipx,..., ¡/»„} is a set of free generators for G,. The structure

A2 is isomorphic to the «-dimensional tape described after 5.1 (since we have only

one tape, the parameter j may be deleted). The isomorphism sends the «-tuple

<z1;..., iB> of integers to fa fa ■ ■ ■ fa(x0).
We will assume for convenience that the machine M2 to be constructed is

equipped with a finite state control like that in a conventional Turing machine.

As explained before, this device can be eliminated by adding an extra head which

always scans the same location and records the current state there.

We let M2 = <A2, F, 22, H, 02, g>, where F and H are the same as for Mx and

A2 is as defined above. The symbol set 22 = 2f *■ ; the set of maps p: GF —>- 2!. The

finite set Q of internal states is given by Q = G" x S", where S is the set of strings

of length K-1 or less on the alphabet {fa..., fa, fa1,..., fa1}. The integer K
will be specified later.

Before describing <I>2 formally, we shall first describe the computations of M2

in terms of the computations of Mx. To each instantaneous description /=

<o£, xx,..., xH, A, <?> of Mx we associate the instantaneous description 8(7)

= <a', TT¡(xx),..., tt'i(xh), A, e, <7> of M2, where the storage assignment a : L2 ->■ 22

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

302 S. A. COOK AND S. O. AANDERAA [August

is given by a'(x)(4>) = a(<f>(x)), xeL2,<f> e GF, and the state q e Q is «7i>y " 1(xi),...,

irFy~1(xH)y, <e,..., e», where e is the empty string. Notice that 7 can be uniquely

recovered from 8(7) (i.e. S is one-one). If Ix, I2,... are the successive instantaneous

descriptions of a computation of Mx, then the corresponding computation of A72

will consist of 8(IX), S(72),... occurring successively, but with each pair separated

by up to K— 1 intermediate steps. In general, M2 cannot go from S(7¡) to S(7i+1)

in a single step because each shift transformation fa of Mx must be represented

by a string of more than one shift transformation ifi, of M2. The purpose of the

second component SH of Q is to keep track of the remaining shifts ^ necessary

to achieve the current shift fa of Mx.

To describe <E>2 formally, let us associate with each shift transformation <¿¡ a

string a(fa)=r¡xr¡2 • • ■ 17. e S of elements of {>/jx, ..., <fin, far1,..., i/)'1} whose com-

position is rr¡(fa). The number K is one plus the length of the longest <j(4>í). Now

suppose D = <r, plt..., pH,P,q} is a display of M2, and supposea = «fi»..., £H>,

<Aj,..., BHyy. Let us write the string Bi = rilCt, where rjt is the first member of Bt

if A(+ e, and r¡, = e if B¡ = e. If not all ^ are empty, we define ®2(D) = (px,..., pH, r¡'x,

..., r¡'H, 0,q"), where r¡'{ is r¡¡ if ra^e and %=7¿2 (the identity transformation) if

r)i = e, and a'=«fi,..., £„>, <CX,..., CH».

Now suppose Bi = e, /=1, 2,..., 77. Then the above display D for M2 comes

from an instantaneous description 7 such that the corresponding instantaneous

description 8"^7) of Mi has the associated display Dx = (t, px(£x),..., ph(Íh), A>-

Suppose í>i(A) = <fi, ...,tH,e1,...,8H,sy. Then <D2(A) = (P'x,..., P'H, 7i2,...,

IL2,s,q}, where />,'(»#=M«W if 0^fi and pi(6)=r„ andff=«^r17ri.(ö1),...,^jríMX

<a(í,),..., «<*«)»■

This completes our description of M2 except for the output function A2, which

is constructed from the output function Xx of Mx in the obvious manner.

II. A Negative Result

7. Discussion. Now, with the apparatus of BAM's, the conjecture 1.1 can be

made precise in several possible ways. Perhaps the simplest formulation would

state that if/is the base b multiplication function defined in 4.6, ¿»^2, and c is

a positive constant, then no BAM computes/within time T(n) = cn. However, this

proposition is false, as the following theorem shows.

7.1. Theorem. Let F and A be finite alphabets, and suppose f: F* -^ A. Then

there is some BAM which computes f in real time.

Proof. We shall assume, for the sake of readability, that A={1,2}. Suppose

r={a1;..., ak). Let T'={ai,..., a'k) be a disjoint copy of F and let «: F* u {e}

-> F'* u {e} be the semigroup isomorphism defined by h(a^ = a[, i=l, 2,..., k,

where e is the empty string. Let A = <A, <¡>x,..., <f>2k) be the storage structure in

which A=T* u F'* u {e}, and for i=l,2,..., k and for all A e F* u {e},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 303

MA) = fah(A)) = Aai,

<Pk+i(A) = <f>k+MA)) = Aat if/04) = 1,

= h(A)a'i if f(A) = 2.

Let M= < A, T, 2, H, 0> be the BAM in which A and F are as above, 2 = {s0}, 77= 2

and the transition function A is given by

A(j0, s0, F) = 1 if F indicates both heads coincide,

= 2 otherwise.

Initially both heads are assumed to be scanning the location e. It is easy to see that

M computes /in real time.

Thus, in particular, some BAM can multiply decimal integers in real time.

Examination of the construction shows that this machine has the multiplication

tables, in effect, built into its storage structure. Hence, in order to formulate a

reasonable negative proposition concerning multiplication it is necessary to place

some regularity condition on the storage structure. Uniformity (cf. 3.1) is one

natural condition. A second condition is the following.

7.2. Definition. A storage structure A = (L,<px,...,<p„y has polynomial-

limited accessibility provided there are constants K and « such that the number of

locations accessible in / steps from any given location does not exceed Ktn. Here

a location y is accessible from a location x in / steps provided there is a sequence

ti, fa • ■ ■, "Ai of shift transformations such that y=<pxip2 ■ ■ ■ fax).

Note that the storage structures of multi-tape Turing machines have polynomial-

limited accessibility, even if the tapes are multi-dimensional. In fact, the storage

structure of any BAM whose shift transformations commute has this property.

There are, however, storage structures which are uniform but do not have poly-

nomial-limited accessibility. An example is the structure obtained from a finitely

generated free group with two or more generators. (Here the location set F is the

set of elements of the group, and a shift transformation is right multiplication by

one of the generators.)

Thus a reasonable formulation of the conjecture 1.1 might be made in terms of

BAM's whose storage structures are uniform and/or have polynomial-limited

accessibility. Unfortunately we have not been able to prove any such proposition

without adding the further restriction that the machine computes on line. Our

main theorem, 10.1, does apply to BAM's which are either uniform or have poly-

nomial-limited accessibility, and which compute on line.

8. Other work. Theorem 10.1 may be far from the best possible negative result

for multiplication, but it does provide a basis for distinguishing the computing

power of multitape Turing machines and one-dimensional iterative arrays. (Com-

pare our 10.3 and Atrubin's result in [1], where he shows that a one-dimensional

iterative array can multiply in real time.) This answers a question posed, for

example, by McNaughton [9, p. 404].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

304 S. A. COOK AND S. O. AANDERAA [August

Other negative results in the literature concerning time-limited Turing machine

computations either apply equally well to iterative arrays, or apply only to Turing

machines with one tape. For example, Hartmanis and Steams [6] exhibit a context-

free language and give a simple proof that no multi-tape Turing machine can

recognize it in real time. The same proof also applies to iterative arrays. Hennie

[7] exploits this method of proof to find a language which requires at least time

«2/(log n)2 for recognition by a Turing machine operating on line. Again, his

techniques yield a similar result for iterative arrays. The relevant results in Hennie

[8] and Rabin [10] apply only to Turing machines with a single tape.

9. Complex functions. The three functions squaring, multiplication, and poly-

nomial multiplication (cf. 4.5-4.7) share a certain type of complexity which is

exploited in the proof that they cannot be computed in real time. We shall now

isolate this property, and call functions which possess it "complex."

Suppose/: F* ->- A, where F and A are finite alphabets with at least two symbols

each. The relevant property can be described roughly by saying that for any

machine that computes / in real time, the outputs during any time interval 72

depend heavily on the inputs during the previous time interval Ix. Now let C and

X be strings with a common length / on F, let A be a string of arbitrary length on

T, and suppose C= cxc2 • ■ ■ c, ; c¡ e F. If we think of C as the input to the machine

during 72, X the input during 71; and A the input previous to Ix, the above state-

ment can be rephrased to say that the sequence of \alues f(EXcx), f(EXcxc2),...,

f(EXcxc2 ■ ■ ■ c¡) depends heavily on X. To make this precise, we must define an

equivalence relation = BiC on the values of X; namely if Xx,X2e Fl, then Xx=E¡c X2

if and only if f(EXxcx ■ • • c<) =f(EX2cx ■ ■ ■ ct), /= 1,2,...,/. The equivalence

classes must be small in order for/to be complex. Actually, this need only be true

for certain A; and in the following precise definition such A will be written as the

concatenation of two strings A and A.

9.1. Definition. The function/is complex, provided there are numbers l0, 0,

0< 6< 1, such that for all sufficiently large integers N there is a string A on F of

length N such that for all B,CeF* with l0 ̂ | C | ^ Nß, no equivalence class under

=ab,c has more than bm members, where b is the number of elements in F, and

l=\C\.

9.2. Lemma. Squaring, multiplication, and polynomial multiplication are complex

functions.

Proof. We shall prove this for multiplication. The argument for squaring is

very similar, and the argument for polynomial multiplication is almost the same,

except there is no worry about carries.

Let/be the multiplication function defined in 4.6. Given N and / with 2l^N,

we wish to consider strings ABXC on the alphabet of pairs of digits from {0, 1,...,

ô-l}, where \A\=N, and |Z| = |C|=/, and |A| is arbitrary. Let M=\B\. The

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 305

string ABXC encodes two integers in base b notation. Let these integers be Px

and F2. Then

F, = Ai + bNBi + bN+MXi + bN+M + lCi, i = 1, 2,

where Ax and A2 are the two integers encoded by A, Bx and B2 are the two integers

encoded by B, and similarly for Xt and C¡. Now choose A so

A1 = b + ba + bi+---+b*' = 2 b2' (n = [logN]), A2 = 0.
i = 0

Then

(9.3) PXP2 = bN+MAxX2 + A1(bNB2 + bN+M + ,C2) + 2BxB2b2N + bN+M+2lD,

for some integer F (recall N^2l).

Our strategy is to show that given the integers Bx, B2 and C2 and digit numbers

N+M+l+l through N+M+21 (where digit "number one" is the lowest order

digit) of PXP2, we can recover, with slight uncertainty, about a quarter of the

digits of X2. Hence we have narrowed the possibilities for X, which is the same as

limiting the size of the equivalence class of Zunder =ABtC-

Given the / product digits mentioned in the preceding paragraph, as well as

B2 and C2, it is evident from (9.3) that we can determine digit numbers N+ M+1+1

through N+M+21 of bN + MAxX2, and hence digit numbers /+1 through 2/ of the

product AXX2. Call these latter digits dl+x, dl+2,..., d2l.

Now let l=2k + m, where 0g«ig2fc, and suppose the digits of X2 (from low

order to high order) are xx, x2,..., x,. We claim that if

r = ||*m + 2*m + 3 •"• *2m||& and S = ||«i + 2fc+2 • • • M' + 2'c + m||&

(cf. 4.4 for notation) then either r=s or r+l =s(*). To see this, write

AXX2 = X2(b+b2 + bi+---+b2n)

= rb2k + 1 + N + i+{b2k + 1\\xxx2- ■ ■ xm+1\\b + X2(b + b2+ ■ ■ ■ +b2")} + tb2k + 1 + 2m,

for some integer /. The last term contributes nothing to s, and, letting B abbreviate

the expression between the braces, we have

B < b2k+1+m+1 -{- b2*+l + 1

(note that 2k+1+m = 2k + l), so B contributes only a carry of 0 or 1 to s. This

establishes the claim.

Thus we are able to narrow down the possible values of the (m — l)-tuple

<xm+2,..., x2m> to two. A similar argument enables us to narrow the possible

values of the (2k '1 - m - l)-tuple <x2*-i+m+2 ■ • • x2*> to two, provided m < 2k ~1 - 1.

Hence, in any case, we can narrow to four the possible values of a string of 2k~1 — 2

digits. Since X encodes a total of 2/digits (the base b notation for both Xx and X2),

C) Except if r=bm~1 — 1, then possibly s = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

306 S. A. COOK AND S. O. AANDERAA [August

this leaves undetermined a total of at most Ab21 ~{2k l ~ 2) members of the equivalence

class of X under =AB,C. Since l<2k + 1 we have 2/-2k-1 + 4<(9/10)(2/), provided

/^64, and therefore the equivalence class has at most (b2)091 members for />64.

Thus we can take /0 = 64 and 0=0.9, and Definition 9.1 will be satisfied for the

case of multiplication (recall F has b2 elements for multiplication).

10. The main theorem.

10.1. Theorem. Suppose f: F* ->- A is a complex Junction, and suppose M is a

bounded-activity machine which computes fon line within time T(n). Then, provided

the storage structure of M is either uniform 3.1 or has polynomial-limited accessi-

bility 7.2,

(10.2) A(n) > 8« log «/(log log «)2 (5)

for some 8>0 and arbitrarily large values of n.

10.3. Corollary. No multi-tape Turing machine can multiply in real time. The

same holds even if the machine has multi-dimensional tapes and several read-write,

heads per tape.

The corollary follows from the theorem by Lemma 9.2 and the fact that these

generalized Turing machines have uniform storage structures.

Proof of 10.1. Assume the theorem is false. Then there is a complex function

/: T* ->• A and a bounded activity machine A/=<A, F, S, 77, 0> with a storage

structure A which is either uniform or has polynomial-limited accessibility which

computes/on line within time A(«), where A(«) violates the inequality (10.2) for

all 8>0 and all «> A=A(8). In particular, setting 8 = 1, we have

(10.4) T(ri) ^ « log «/(log log n)2, n > A(l).

Given a large positive integer r, let N=rr and let A be the string on F of length N

with the properties guaranteed by the definition of complex (cf. 9.1). In §§11-14

we shall show the existence of a string D of length N such that

(10.5) T(AD) > 8 2N log (2N)l(log log (2A0)2,

provided r is sufficiently large, where the positive number S depends only on the

machine M, and where T(AD) is the time the machine M takes to process the

string AD (i.e. the number of steps M takes to give all 2N outputs associated with

AD). This contradiction will establish the theorem. (The inequality (10.5) is proved

as (14.4), where 8 = S2/4.)

It remains to construct the string D. In the remainder of the paper the function

/and machine M are as above. We assume A and D are strings of length N on the

input alphabet F. We think of A and A^ as being fixed, and will talk as if the

parameters of the computation depend only on D.

(5) All logarithms in part II are natural logarithms.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 307

11. The notion of overlap. It will be useful to number the entries of D from 1

to N and consider them to be divided into input intervals of various lengths. Thus

an input interval is a sequence of consecutive integers chosen from the set

{1, 2,..., N}. If 7 is the input interval {k +1,..., k+1}, then for each choice of the

string D, there is a string assigned to the interval 7; namely the substring of D

consisting of symbols in position k+l,..., k + l. Also associated with the input

interval 7 and the string D is the time interval P, which refers to the sequence of

steps the machine M undergoes with input A D while scanning the input interval

7. Precisely, P is the subsequence of the computation of M with input AD consisting

of those instantaneous descriptions <<x, xx,..., xH, AD, e> for which e is in 7.

Since M computes on line, all output symbols except the last one corresponding

to the input 7 are designated during 7*.

We are now in a position to define overlap.

11.1. Definition. Suppose 7 and J are adjacent (in the obvious sense) input

intervals, and suppose the machine M is given the input AD. Let S be the set of

locations which are scanned by some head during the time interval P, and let T

be the set scanned by some head during J1. Then the overlap caused by the input

D during input intervals 7 and /, denoted <dd(I, J), is the number of locations in

S n T. The set S n T will be denoted by DP(I, J).

Now choose positive integers r and m, and suppose N=rm. For each /, /= 1, 2,

..., m, we divide the entries of D into rm~' successive intervals IiX, It2,..., Iirm — i

of length r1 each. Thus

in = ft/- îy+i, a-1> f+2,..., (j- iv+ñ.
Let

(11-2) ßfy = "D(7u-i,U]>l,

and

(11-3) "S = "D(7u_i,U j>l.

11.4. Lemma. Let T(AD) be the total time taken to process the input AD, and let

H be the number of heads of the machine. Then

T(AD)^±jl 2 «SV
■" Wl(modr) /

where the sum is taken over all pairs i,j with 1 Si^m, 1 újúrm~l, andj not of the

form 1 + rk.

Proof. First note that cu$ is the number of elements in Í2¡J, and QjJ is the set of

locations which are scanned during both the adjacent time intervals 7('i_1 and 7y.

The idea is to count the steps in the computation by associating with every location

in O-i) a different step. The association is such that even the same location x will

be assigned different steps if x appears in different overlap sets Í2g (provided

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

308 S. A. COOK AND S. O. AANDERAA [August

j^ 1 (mod r)). Actually, the association is not quite one-one, since a total of 77

distinct locations may be scanned in any one step. This accounts for the factor

1/77 in the above inequality.

To make the argument precise, let n be the set of pairs (A, /), where A is an

integer, l^A^/7, and / is a step in the second "half" of the computation the

machine undergoes with input AD; that is a step while the machine is processing

the string D. For each pair i,j with l^i^m, 1 ̂ j^rm~l, and7= 1 (mod r), define

the function /, : Q$ -*■ v as follows : For each x £ Q$, let / be the first step of the

interval /¿ such that some head scans x, let A be the smallest-numbered head which

scans x at time /, and defineff¡(x) = (A, /). Thus, although the square x is scanned

several times during the pair of adjacent intervals corresponding to the overlap

set, we count only the first time of the second interval.

Since a given head scans only one square at a given time, each of the functions

fu is one-one. Further, if (i,j)^(k, I), then the ranges of the two functions/? and

fki are disjoint. This is so because either (i) the time intervals Çf ancj Ik¡ do not over-

lap at all, or (ii) say 7y is a subinterval of Ik¡ (but not the first subinterval, since.

j^ 1 (mod r)), in which case a given head cannot scan a location x at a time /

which is the first-scanned time in both Ifr and Ikl and still satisfy the condition that

x is in the overlap set Q£ of the smaller interval.

Since each of the functions is one-one, and their ranges are pairwise disjoint, we

can conclude \n\ a^^Kmodn <*»(? (where \tt\ is the number of elements in -n), from

which the lemma follows immediately.

12. Consequences of the restrictions on A. We now wish to construct a string

D such that for many values of i,j, the overlap co$ will be large, and hence, accord-

ing to 11.4, the computation time T(AD) will be large. This is done roughly as

follows. Let / and 7 be two adjacent input intervals of length /, and suppose the

input string is fixed except during the interval /, when it is a variable X. The first

step is to assume that X is restricted to some subset Sa of F' such that the overlap

ojd(I, J) does not exceed the value a>. The restriction on the overlap puts an upper

bound on the number of behaviors (i.e. display sequences) possible during J\

and hence on the number of possible output strings during 7\ This upper bound is

stated as the inequality (12.3) of Lemma 12.1. (Condition (ii) of the lemma embodies

the restriction on the overlap, while condition (iii) states a necessary restriction

on the processing time to ensure the upper bound holds.) On the other hand, since

/is a complex function, the output during Jz depends heavily on X, and hence the

set Sm must be small for small values of a>. In other words, for most values of X,

(o is large. This statement is made precise in Lemma 13.1.

12.1. Lemma. Suppose 2N>B(l), so that (10.4) holds with n=2N. Suppose w

and Tare integers, O^w^T, B and C are strings on F whose combined length does

not exceed N— \ C \ (we shall call such a pair (B, C) an admissible pair), and suppose

C=cxc2 ■ ■ ■ ch c¡e F. Let I, J be the input intervals corresponding to X and C in the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 309

input string D = BXCF for any strings X, F on F such that \X\=l and \D\=N. Let

S(w, T, B, C) be the set of output strings (for fixed A, variable X)

(12.2) f(ABXcx)f(ABXcxc2) ■ ■ fi(ABXC)

such that

(i) XeF\

(ii) a>D(I,J)£a>fior D = BXCF, and

(iii) the length of neither of the time intervals V, Jx exceeds T.

Then

(12.3) M(w, T, B, C) í KX(NT)K*

where M(co, T, B, C) is the number of elements in S(w, T, B, C), and Kx, K2, K3

are constants depending only on the machine (recall N= \A\ = \D\).

Proof. The proof is divided into two cases; one for each of the alternative

conditions on the storage structure A.

Case I. Assume A has polynomial-limited accessibility. Suppose at most Ktn

cells are accessible from any one cell within t steps, and suppose the strings A

and C are given.

The output string (12.2) is designated by the machine during J\ except the last

symbol f(ABXC) is not designated until immediately after /*. Now we claim that

the display sequence during Jx (and hence all entries of (12.2) except possibly the

last) is completely determined (independent of X, given A, B, C and the machine M)

from the following information :

(i) The position of each of the heads at the first step of A and

(ii) for each x e ÜD(7, J) the triple (sx, tx, hx}, where sx is the tape symbol

stored at x at the first step of J%, tx is the number of the first step of/1 in which x

is scanned, and hx is one of the heads (say the one with the smallest number)

scanning x at step number tx. (The location x itself need not be specified.)

In fact, not only the display sequence is determined, but also the location of

each head at each step of J1 is determined. This assertion follows by a straightfor-

ward induction, using the facts that the instantaneous description just before 7* is

known, and the inputs during A are known to constitute C

Now, assuming the length of V does not exceed A, the position of a given head

at the beginning of/1 must be one of at most KTn cells. Hence, part (i) of the above

information is determined by specifying one of at most (KTn)H possibilities.

Also, assuming wD(I, J)^oj and the length of/1 does not exceed T, the informa-

tion in part (ii) can be specified by selecting a subset of cu elements from the set of

triples {<5, t, «> | s e S, 1 ̂ t ̂ A, 1 ̂ « ̂ H}. (If wD(I, J) < m, extra harmless triples

<i, t, «> can be added so that the subset always has exactly co elements.) Hence

there are at most

n

T)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

310 S. A. COOK AND S. O. AANDERAA [August

possibilities for part (ii), where a is the number of elements of 2. Therefore, the

maximum number of output strings (12.2) for fixed B, C, is

(fft(ct™)¿,

where dis the number of symbols in A (i.e. the number of possibilities forf(ABXC)).

The inequality (12.3) follows.

Case II. Assume now that A is uniform. First we need a lemma.

12.4. Lemma (for uniform case). If\px andip2 are two translations of a uniform

storage structure A = (L,<px,...,<ppy, and i>x(x) = tp2(x) for some xeL, then

0iOO= "/^(.v) for each y accessible from x. (Cf. 7.2 for a definition of accessible.)

Since the identity map is always a translation, it follows that if ipx(x) = x, then

'p2(y)=y for all y accessible from x.

Proof. Suppose ipx(x) = ip2(x), and y = <f>(x), where <j> is a shift transformation.

Then $x(y) = $x4>(x)=4>$x(x) = fa2(x) = 'l>2<f>(x) = <p2(y). The lemma now follows

by induction on the number of shifts required to obtain y from x.

To handle Case II, assume again that F and C are given, but X is variable. This

time we cannot supply the information in (i) of the previous case, because the lack

of a polynomial bound on the accessibility leads to too many possible head

positions. However, it is possible to construct the display sequence during J% even

without knowing the head positions at the beginning of F, provided the following

information is available :

(i) For each head A, the step number of Jx and location x of L (if such exist) at

which A first scans a cell that has been scanned previously to P (i.e. during the

time of the input string AB),

(ii) same as (ii) for Case I, and

(iii) for each pair of heads hx, h2, the step numbers tx(hx, h2) and t2(hx, A2),

which are defined as follows. Let S(hx, h2) be the set of locations scanned by A»

during 71 and then by A2 at the same or a later time of/1, and let x(hx, h2) be the

member of S(hx, h2) first scanned by A» (if S(hx, h2) is nonempty). Then /¡(Aj, A2)

is the number of the earliest step of 71 at which A¡ scans x(A1; A2), i= 1, 2.

Although the display sequence during F is determined by (i)-(iii), the locations

of the heads are not necessarily determined. However, suppose Ca and C„ are two

computations with the same parameters (i)-(iii), and suppose for Ca the heads

1,..., H scan cells xlt,..., xm at step number /, while for Cb the heads scan cells

yu, ■ ■ -, y m at step number /. Let tfn be a translation of A such that <Mxifo)=jiio,

i= 1,..., H, where /0 is the number of the first step in Jz. Then, for each step

number / of a step of J\

Ü2 . (1) faxit) = v«, i = l,...,H, and

(2) the displays of Ca and Cb are the same at step number /.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 311

The statements of (12.5) are proved jointly by induction on t. Lemma 12.4 and

the specification (iii) are applied to show fax(x) = fa2(x) for each x e S(hx, h2).

It remains to count the possible specifications (i)-(iii). According to (10.4), the

total computation time of the input string AD does not exceed 2Nlog(2N), so

the total number of locations scanned during the computation cannot exceed

H-2Nlog (2N). By 12.1, (iii), the number of steps in A does not exceed T. Hence

the number of possibilities for (i) is bounded by (2NTH log (2N))H. Simple argu-

ments show that the numbers of possibilities for (ii) and (iii) are bounded re-

spectively by

(*™) and (T2)"*.

Thus, the maximum possible number of output strings (12.2) for fixed A, C is

(2NTHlog (2N))H(aTH\(T2)»2d,

where, as in Case I, dis the number of symbols of A. The inequality (12.3) follows.

13. Consequences of the complexity of/. Since/is complex, there are numbers

l0 and 6 satisfying 9.1. Let r, m be positive integers such that r>l0 and N=rm is

sufficiently large within the meaning of 9.1. Let the string A be as in 9.1, and for

/=1, 2,..., m let li = ri.

13.1. Lemma. Let wx, <a2,.. .,wm andTx, T2,...,Tm be nonnegative integers, and

let b be the number of elements in F. Then there is a string D in FN such that for each

interval 7y,y> 1 (cf. §11 for notation) if we write D = BXCF, with X and C the strings

associated with 7j>/_1 and Ifj, respectively, and C=cxc2- ■ ■ cu, then the string

f(ABXcx)f(ABcxc2) ■ ■ -f(ABXC) is not a member ofS(w{, A(, A, C), provided

(13.2) M(a>i, Th B, C) ^ be'ißmN,

where e= 1 - 0. Here S(io, T, B, C) and M(ai, T, B, C) are as in Lemma 12.1.

Proof. Let us count the strings D in FN which do not satisfy the conditions of the

lemma. If D is such, then there is some /, some pair of strings A, C with \C\ =lt,

and some pair X, A such that D=BXCF, and the output sequence associated with

C is in A(coj, Tu B, C), and (13.2) holds. There are m choices for /, and, for each /,

no more than NbN~'t choices for the triple B, C, A. Further, given A, C, and a

member Y of S(c<j(, A¡, A, C) there are, according to Definition 9.1, at most ¿V".

choices for X which give rise to Y as the output associated with C. Finally, there

are at most bsl<ßmN members of S(a¡t, Tt, B, C). Therefore, there are at most

y NbN-w> P^-r = ~
¡ti 2mN 2

strings D on FN which do not satisfy the lemma. But there are bN members of FN,

and hence at least one (and in fact half) satisfy the conditions of the lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

312 S. A. COOK AND S. O. AANDERAA [August

14. Calculation of the overlap. As in earlier sections, we assume N=rm, the

numbers 6, l0, N and the string A all satisfy Definition 9.1 for the function / and

k=r\ i=l, 2,..., m. We further assume r=«z^3. The constants Bx, B2, B3, 8X,

82, and S3 introduced here depend only on the numbers 6 and l0, the constants

Kx, K2, and K3 of (12.3), the constant F(l) of (10.4), and the number b of elements

of T. We assume K3 is an integer.

Now let

(14.1) Tf = [%log(2N)], z = 2,3,...,r,

where [x] is the greatest integer not exceeding x. Let w{ be the least positive integer

such that

(14.2) Kx(NT()x*(^ £ %L, i = 2,3,...,r,

where Kx, K2, K3 are as in (12.3), and e = 1 — 0. To ensure that w{ exists, note that

Lemma 12.1 remains true if the values of Kx, K2, and K3 are increased. Hence we

may assume Kx, K2 ̂ 1 and K3 ̂ 2b. Then, setting cu = blt and noting Tt > /¡, we have

Thus cu¡ exists, and a»; < F3Fj. (We shall use the last fact in Lemma 14.5.)

Now we claim there is a constant Bx ̂ 2 such that

(14.3) KANTd"'^**1) <^j> i = 2,3,...,r,

for all r > Bx, where o»f=wt— 1. If cu(̂ 2, the inequality follows from our definition

of tOj. If €u,= l, we argue as follows. Note that the variables N, F¡, and /¡ are all

functions of r. If we set wf = 0 and multiply both sides of (14.3) by 2rN, then the

right-hand side is bounded below by b"2, and the left-hand side is bounded above

by rar for some constant a. Choose Bx^2 so ra,<b"2 for all r>Bx. Then (14.3)

holds for r > Bx when co(= 1.

Now let F2 = max (Bx, logF(l)) where F(l) is as in (10.4). Assume r>B2, so

2N>B(l) (cf. Lemma 12.1) and (14.3) holds. Now by Lemma 12.1, for each z,

2^ i^r, and each admissible pair (B, C) of strings with |C|=/,, we have

M(œf, Ti, B, C) ú Kx(NTiY*^y

It follows by (14.3) that the inequality (13.2) holds with <Hi replaced by wf,

i=2, 3,..., r. Thus by Lemma 13.1 there is a string D in FN such that for every

pair of adjacent intervals /¡,;_i, Itj (i,j^2), the output string (12.2) is not in

S(a>*, F, B, C). Hence, by definition of S, one of the conditions (ii), (iii) of Lemma

12.1 must fail for 7=7, }^it 7=7j;-, a> = co*, and T=T¡.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1969] MINIMUM COMPUTATION TIME OF FUNCTIONS 313

Now by (10.4) we have

T(AD) ^ (2Nlog(2N))l(loglog(2N))2,

and by (14.1) we have T^Slt log (2N), i=2, 3,...,r. Therefore, we can conclude

that for each /, at least one-fourth of the pairs (7iJ_1, Iif), l<j^N/lh satisfy

condition (iii) and hence violate condition (ii). Thus, the set y¡ of all indices j

such that ojf¡>w* contains at least one-fourth the possible values of/ We have

co$£ï cüj* +1 = cu,, j e y¡, and \y{\ ̂ \rm~\ where |y¡| is the number of elements in y(.

These two inequalities, together with 11.4, yield

By Lemma 14.5 below, we have for r > max (A2, A3)

' = H\4 r/^logr" log r '

where S2 is a positive constant. But N—rr, so

(14.4) TjAD) Z y*°Sl > ±. *"*^(log log N)2' 4 (loglog(2A0)2

for arbitrarily large values of TV, which establishes (10.5) with S = S2/4.

It remains to prove

14.5. Lemma. For each integer r^3 let N=rr, and for i=2, 3,..., r let U = rx,

let Tt be given by (14.1), and let to, = u>i(r) be a positive integer satisfying (14.2), where

Kx, K2, K3, b, and e are positive constants. Assume cu, < K3 A,, and that K3 is an integer.

Then there are positive constants 8X and B3 such that oji>8xri¡log r,i=2,..., r,for

allr>B3.

Proof. By one form of Stirling's approximation, m ! > (m/e)m for all positive m,

so the binomial coefficient satisfies

/«\ < /_T IneY

\mj = ml \m)

for positive integers m, n, with n > m. Applying this to (14.2) and taking logarithms,

we obtain

log Kx + K2 log (NTi) + «,(log (eK3Ti) - log a>() ̂ 4 log b - log (2rN).

Substituting 9/j log (2A^) for A4 by (14.1), r' for /¡, rr for N, and solving for cu¡ we

obtain

(14 6) > 83r'-Cxr log r

*"' C2logr4-/logr-logco(

for r^2 and some positive constants 8a, Cx, and C2. By assumption, w,èl, so

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

314 S. A. COOK AND S. O. AANDERAA

logí-jj^O. Hence (14.6) remains valid with the term log a>¡ deleted. Taking

logarithms of the modified (14.6) we obtain

(14.7) logtut > log (V* - Cíí-log r)-log (C2 log r+flog r).

In general, log(x+j/)álogx+log.y for x, v^2, and if x>2v^4, then x—y>x¡y,

so log (x—j)>log x—log j. Thus (14.7) yields

(14.8) log cü¡ > i log r-C3 log r,

for some constant C3 > 0, 2 < z'< r, and sufficiently large r. If we substitute the right

side of (14.8) for log <u¡ in (14.6), we obtain

y-fir log r = r* / fi>gr\
Wi (C2 + C3) log r (C2 + C3)logr\°a r'-1/'

and the lemma follows.

References
1. A. J. Atrubin, A one-dimensional real-time iterative multiplier, IEEE Trans. Electronic

Computers EC-14, No. 3 (1965), 39+399.

2. A. Cobham, The intrinsic computational difficulty of functions, Proceedings of the 1964

International Congress for Logic, Methodology, and Philosophy of Science, North-Holland,

Amsterdam, 1965, pp. 24-30.

3. S. N. Cole, Real-time computation by iterative arrays of finite-state machines, Doctoral

Thesis, and Report BL-36, Computation Laboratory, Harvard Univ., Cambridge, Mass., 1964.

4. S. A. Cook, On the minimum computation time of functions, Doctoral Thesis, Harvard

Univ., Cambridge, Mass., 1966.

5. P. C. Fischer, Generation of primes by a one-dimensional real-time iterative array, J. Assoc.

Comput. Mach. 12 (1965), 388-394.

6. J. Hartmanis and R. E. Steams, On the computational complexity of algorithms, Trans.

Amer. Math. Soc. 117 (1965), 285-306.

7. F. C. Hennie, On-line Turing machine computations, IEEE Trans. Electronic Computers

EC-15, No. 1 (1966), 35-44.-

8. -, One-tape, off-line Turing machine computations, Information and Control 8

(1965), 553-578.
9. R. McNaughton, "The theory of automata, a survey" in Advances in computers, Vol. 2,

F. L. Alt, editor, Academic Press, New York, 1961, pp. 379-421.

10. M. O. Rabin, Real-time computation, Israel J. Math. 1 (1963), 203-211.

11. A. Schönhage, Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 1

(1966), 182-196.
12. J. C. Shepherdson, and H. H. Sturgis, Computability of recursive functions, J. Assoc.

Comput. Mach. 10 (1963), 217-255.

13. A. L. Toom, 77ie complexity of a scheme of functional elements realizing the multiplication

of integers, Dokl. Akad. Nauk SSSR 150 (1963), 496-498 = Soviet Math. Dokl. 4 (1963),

71+716.

14. S. Winograd, On the time required to perform multiplication, J. Assoc. Comput. Mach.

14 (1967), 793-802.

Computer Center, University of California,

Berkeley, California

University of Oslo,

Oslo, Norway

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

