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We present a new method for accelerating matrix multiplication asymptotically. This 
work builds on recent ideas of  Volker Strassen, by using a basic trilinear form which 
is not a matrix product. We make novel use of thc Salem-Spencer Theorem, which 
gives a fairly dense set of integers with no three-term arithmetic progression. Our 
resulting matrix exponent is 2.376. 

1. Introduction. 

A matrix multiplication algorithm is usually built as follows. First an algorithm for a small matrix 

problem is developed. Then a tensor product construction produces from it an algorithm for 

multiplying large matrices. Several times over the last two decades, the ground rules for con- 

strutting the basic algorithm have been relaxed, and with more care in the tensor product con- 

struction, it has been shown how to use these more lenient basic constructions to still give efficient 

algorithms for multiplying large matrices. 

Recently Strassen (1986) found a new relaxation of  the ground rules. I Its basic tri/inear algo- 

rithm computes a trilinear form which is not a matrix product at all. In this trilinear form, the 

variables are collected into blocks. The block structure (the arrangement of the blocks) is that 

of  a matrix product, and the fine structure (the arrangement of variables within individual blocks) 

is also that of a matrix product, but the overall structure is not, because the fine structures of 

different blocks are incompatible. After taking a tensor power of this trilinear form, Strassen op- 

erates on the block structure (that of a large malrix product) to reduce it to several block scalar 

multiplications. Each block scalar multiplication is itself a matrix product (the fine struclure), so 

that he has several disjoint matrix products (sharing no variables). I le can then apply Schrnhage's 

-theorem to obtain an estimate of the matrix exponent o~: 
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< 2.479. 

Here we follow Strassen's lead. We use a basic trilinear algorithm closely related to Strassen's. 

The block structure o f  our trilinear form is not a matrix product, although the free structure still 

is. We use a combinatorial theorem of Salem and Spencer (1942), which gives a fairly dense set 

of  integers containing no three-term arithmetic progression. We hash the indices of the blocks 

of  variables to integers, and set to zero any block of variables not mapping to the Salem-Spencer 

set. We do this in such a way that if the product X IF] Y[JJZ [K-J is contained in our trilinear form, 

then the hash values bx(/), bF(J), bz(/0 form an arithmetic progression. So for any product of  

nonzero blocks X [/3 }'[J-JZ [/r in our trilinear form, we will get bx(/) = b~J)  = bz(K ). We choose 

parameters so lhat on  average each nonzero block of variables is contained in at most one nonzero 

block product X [/3 Y[J'Jz/'/r and set to zero some blocks of  variables to ensure that this condi- 

tion holds absolutely, not just on average. Then, as Strassen, we have several disjoint matrix 

products, and can apply SehiJnhage's z-theorem to obtain our exponent 

oJ < 2.376. 

The  rest of  the paper is organized as follows. In Section 2 we review Schrrdaage's 

T-theorem. In Section 3 we present Strassen's construction. Section 4 contains the results of the 

Salem-Spencer theorem. Section 5 presents an outline of the present construction. In Section 6 

we present an example of our construction, which gives an exponent of  2.404, The version pre- 

sented in Section 7 uses exactly the same ideas, hut is complicated by more terms and more in- 

dices; ihis gives an improvement to of  2.388. Section 8 introduces yet more complicated 

techniques which achieve a slightly better eslimate ot" 2.376. Section 9 contains some related ideas 

that were not  as effective in reducing the exponent. We make miscellaneous remarks in Section 

10. 

Finally, Section 11 shows how the existence of a certain combinatorial construction would 

yield co = 2, We cannot tell whether this construction can be realized. 

Earlier versions of  this paper appeared as Coppersmith and Winograd (1986) and (1987). 

Readers unfamiliar with previous work in matrix multiplication are referred to the excellent 

survey by Victor Pan (1984). 
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We are grateful to James Shearer for the reference to Behrend's construction, which was the 

last constituent we needed for the present work. Victor Pan referred us to Salem and Spencer. 

Arnold Sehrnhage gave a more symmetric presentation of  our starting algorithm in Section 6. 

James Davenport offered helpful comments on an early draft of the paper. 

2. Schrnhage's Theorem 

The basic results from "classical" matrix multiplication can be summarized by SehSnhage's 

T-theorem: 

Theorem (Schrnhage): Assume given a field F, coefficients aij, h ' ~o, fljok,h, ~, Yk,i,h, T in F(2) 

(the f ieM o f  rational functions h~ a single indeterminate ).), and polynornials fg over .F, such that 

t" k,i ; 
~= 1 kij,h / \j,k,h / \k,i,h 

mh nh Ph 
x(h),,(h)z(h) ~ V ~.g.. rx(h) (11) .(h)~ 

g>O 

N x N square matrices in O(N 3~+r') operations, where -r satL~es 

L = Z(mhnhPh) ~. (1) 
h 

We will also write the error term as O(2), so that the hypothesis becomes 

Y=l \ i j ,  h / \j,k,h / kk,i,h h \id,k / 

Less formally, the hypothesis is a trilinear algorithm, using L bilinear multipfications to (ap- 

proximately) compute simultaneously several independent matrix products, of dimension 

m h • n h times n h x ph (written < mh, nh,Ph > ). The superscript (h) indicates which matrix the 

variable belongs to. 

In such a situation, we define the matrix exponent oblained from the construction as or - 3T. 

Note: Here we have presented Schrnhage's Theorem in its trilinear form, which will make 

our construction easier to describe. The bifinear version assumes L rank-1 bilinear forms 
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Me=-~ Z.a id,h,e" id l~ Z-aeJ ,k,h,eyLk] g =  1,2 ... . .  k 
x4j,h / V,k,h / 

eormccted by  identities 

nh L 

V(i~ ) -~ ~.a~'~x(h)'iJ Xj,k(h) = ~ ?k,i,h, ewe + 
j : !  ~'=1 

i<_m h, k<_p h. 

That  is, one forms L bilinear products, each of which is a linear combination of x-variables times 

a linear combination of y-variables, and expresses the answers v~ h) as linear combinations of  these 

products, up  to terms of order 2. The an~vers v(ihk ) are viewed as duals to the variables Zk(h~ in the 

trilinear presentation, and in fact the bilinear presentation is obtained from the trilinear one by 

identifying coefficients of z(h ) in both sides of the equation. 

3. Strassen's construction 

Strassen has found a new relaxation of  the ground rules for the construction of the basic algo- 

rithm, that is, he has relaxed the hypotheses of  the theorem. A key element in his construction 

is the observation that, using the ability to multiply a pair of N x N matrices, one can 

"approximately" (in the 2 sense) multiply (3/4)N 2 pairs of independent scalars, that is, compute 

(314)N 2 

Z xy~z~ + O(,l) (2) 
i---1 

where all the xi, Yi, zi are independcnt. Namely, setting 

g = [(312)(N + 1)], 

and multiplying each variable in 

N N N  

i = l j = l k = l  

by an appropriate power of  2, one obtains 

N N  N i2 

ZE E 
i= l j=  1 k----- 1 

~ ,  xijj,kzk, i + 0(2), 
i+j+k=g 
I <ij,k<N 
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since the exponent of 2, 

i 2 + 2/j + j 2  + 2j(k -- g) + (k - g)2 +2(k - g)i = (i + j  + k - g)2, 

is zero when i + j  + k --- g and is positive otherwise. Since any two indices i j  uniquely determine 

the third k = g -  i - j ,  each variable xid is involved in at most one product. There are about 

[(3/4)N 2] triples ( i j ,k) ,  1 <_ ij ,  k < N, i + j  + k --g.  Call this the matrlx-to-scalar construction. 

Strassen uses the following basic trilinear identity, related to Victor Pan's "trilinear 

aggregation" (1978): 

i=l i=I / 
q 

i=I 

(3) 

This gives a basic algoritlam, using q + 1 multiplications to compute a block inner product: 

q 

y.  t'J t'Jz.x0%?,,) ~xl YO i -- + 
i=1 

The superscripts denote indiees in the block inner product, and are uniquely determined by the 

subscript indices. We can label x i and x 0 with different superscripts because they are different 

variables; similarly Yi and Y0" But the z-variables are involved in bolh blocks. They are shared. 

This is the new complication in the basic algorithm. This algorithm does not in itself represent 

a matrix product. 

(If we tried to represent this algorithm as a matrix product, we would fred that since all the 

variables z i are associated with the same y-variable y(~l] they must all have the same k-index. 

But since they are all associated with the same x-variable xl~ 2], they must all have the same i-in- 

dex.) 

The first block, zx f l ]y[OI]z  i , - - -  represents a matrix product of size < q, 1, 1> .  A q • 1 matrix 
i 

(column vector) x is multiplied by a 1 • I matrix (scalar)y 0 to yield a q • I matrix (column vector) 

v, which is dual to the vector z. In tile second block, ~x[o2]yi[2]zi represents a matrix product of 

size < 1, 1, q > .  A 1 x 1 matrix (scalar) x 0 is multiplie~d by a 1 x q matrix (row vector) y to yield 
l 

a 1 • q matrix (row vector) v, which is again dual to the vector z. The difficulty comes when we 

try to add the two blocks. The indices i of v are "schizophrenic": they don't know whether to 
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behave as row indices or  as column indices. Strassen's construction gives a way out of  this diffi- 

culty, 

Take Construction (3) and the two constructions gotten by cyclic permutations of  the vari- 

ables x~v,z, and tensor them together, to get an algorithm requiring (q + 1) 3 multiplications to 

compute 

q 
E r [1,13. [1,1]_[1,1] . [2,1]. [1,1].[1,23 . [1,1] [1,2]_[2,1] . [2,13.[1,2]_[2,2] , 

~xij,O -vOd,k zi,O,k + xi4,k YOd,k ki,O,O + xi4,O YO,O,k "~ij,k + XQ, k .vO, O,k ~id,O r 
iti ,k = l 

~[1,2]. [2,1]z[1,1 ] _ [2,2]. [2,1]_[1,2]_ [1,2] [2 ,2]_[2,1]_ o[2,2]. [2,2] 1"2,2]'~ 
+ at24,0 Yi,i,k i,O,k t" xOj,k .Yid,k zi,O,O + xo,i,O Yi,O,k Lij,k -r a.Oj, k .vi,O, k zij,O } + 0 ( 2 )  

This is a block 2 • 2 matrix product (indicated by the superscripts). Within each block is a smaller 
q . [1,1]. [1,2]z[2,1] , matrix product; for example the third block is the matrix product 2, (xij,O xO,O,k ij,k ), 

which can be interpreted as a matrix product of  size < q2  1, q > : ij,k=l 

q 

E x(ij),OYO,kZk,(ij), 
i j ,k= 1 

with (it/') acting as the/ - index (shared by x and z and taking on q2 values), 0 acting as the J-index, 

and k acting as the K-index. 

Taking the N th tensor power of this algorithm, one gets an algorithm, requiring (q + I) 3N 

multiplications, and producing a block 2 N x 2 N matrix product, each block of which is a matrix 
3N 

product of  some s~e < m,n,p > where mnp = q Applying the matrix-to-scalar construction 

to the block structure, one then obtains (334)(2N) 2 independent matrix products, each of some size 
3N 

< m,n,p> where mnp = q . Applying the ~-lhccrem, one gets 

a~ < 3~ N, (q + ])3N = (3/4)22N(q3N)~N. 

Taking N th roots and letting N grow, the (3/4) becomes insignificant, and we have 

to < 3x, (q + 1) 3 --- 22q 3x. 

Letting q - 5, Strassen obtains 

co _< !og(63/22)/log 5 = log554-~2.4785. 



Matrix Multiplication via Arithmetic Progressions 257 

4. The Salem-Spencer Theorem 

We will use the following theorem of Salem and Spencer (1942); see also Behrend (1946). 

Theorem (Salem and Spencer): Given ~ > O, there exists ME"2 c1~2 such that for  all M > ME, 

there is a set B of M'  > M l-~ distinct integers 

0 <  b I < b 2 < - - . <  b M , < M / 2  

with no three terms in an arithmetic progression." 

for bi, bj, bk ~ B, bi + bj = 2b k iff bi= bj = b k. 

We will be considering the ring 77 M of integers modulo M, where M is odd. Because the ele- 

ments of the Salem-Spencer set satisfy 0 < b i < M/2, no three can form an arithmetic progression 

rood M: 

for b~, r bk ~ a, b,. + b j -  2bk rood M irr bi = r = bk. (4) 

5. New Construction: Outline 

Previous authors in this field have exhibited their algorithms directly, but we will have to rely on 

hashing and counting arguments to show the existence of a suitable algorithm. We start with a 

modification of Strassen's starting algorithm, producing 3 (instead of  2) block products. We take 

the 3N th tensor power, yielding 33N = 27 N block products. We will show that we can choose 

about  (27/4) N out of  these 27 N products, which are independent in the sense that a given block 

of  variables X [/'j, Y[J], or Z [K] will occur in at most one of our chosen products, and strongly 

independent "m the sense that for any block product X[1]Y[ fJz  [K] in the original tensor power 

which is not in our chosen set, at least one of its blocks of variables (X [/], Y[~ or Z I/q) will be 

absent from our chosen block products. Thus, by setting to zero any variables not in our chosen 

block products, we will set to zero all other products in the original tensor power. Once we have 

done that, we will use Sch6nhage's x-theorem to provide an estimate of  co. 

By indirect arguments we will show the existence of the strongly independent set o f  block 

products. We will start with a hash function from the set of  block indices to the set of integers 

rood M (27M), in such a way that if X [/] Y[ fJz  [I(] appears in the tensor power, the hashed indices 

bx(/), by(./), b2{K ) form a three-term arithmetic progression. We will use the Salem-Spencer 

theorem to control the existence of such arithmetic progressions. Finally, among the large class 
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of hash functions available, a counting argument will show that at least one of them has the de- 

sired performance. 

6. New Construction: Easy Case 

Start with a modification of Strassen's basic algorithm (3); see also Pan (1978). We use q + 2 

multiplications: 

q 

i=I 

+ 19- 
q 

i=1 

(s) 

We have brought the factors 2 -3, -(2 -3  - q)-2)- outside in order to reflect the symmelry. 

Note. This is equivalent to the bilinear algorithm 

v i i i =  Xo[O]y~l] + x/[l ]yo[O] ~ &--l)~4i__ ,~--I Mq+l + 0(2), 
q q 

i=t i--I 

i =  1,2 ..... q 

where vj .[~ is the dual to the variable z} J], and the equivalence is gotten by identifying coefficients 

of zj .[J] in both sides of (5). 

The x-variables break into two blocks: X [0] = {x0 [0]} and X [I] = {Xl [11, ... , x~[l]}. Similarly 

the y-variables break into blocks }.[0] and y[l] ,  and the z-variables into blocks Z [0] and Z [I ]. 

When we zero a block X [/] (resp. yl'd], Z[K]), we will set to zero all x - (resp. y., z-) variables 

with the given index pattern. 

Fix , > 0. Select N large enough so that the M defined below will exceed Mr from the 

Salem-Spencer Theorem. 
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Take the 3N th tensor power of Construction (5). Each variable xi [/-j in the tensor power will 

be the tensor product of 3N variables --x) Jj, one from each of 3N copies of the original algorithm. 

Its subscript i will be a vector of length 3N with entries in {0, 1 ..... q}, made up of the 3N sub- 

scripts j. Its superscript [/]  will be a vector of length 3N with entries in {0, 1}, made up of the 

3N superscripts [J-J. As before, [/'J is uniquely determined by i. 

Set to zero all variables x~/'j ~)~.ee~ those for which I has exactly N indices of 0 and exactly 

. . . .  ,r 2N 
2N mdlces of 1; similarly y-andz-val~Ia~les. Set M = 2(  N ) + 1. Construct a Salem-Spencer set 

B. Select random integers 0 < wj< M, j  = 0,1 ..... 3N. For each superscript I ~ {0, 1} 3N, compute 

a hash as follows. For each of the 3N index positions j, let lj denote the jth element of  I (either 

0 or 1). Define 

3N 
rood 

./=I 
3N 

by(J) = w 0 + ~aJj.wj( rood M) 
]=I ('" ) 

bz(K ) -- w 0 + Z ( 2  - Kj.)~) ]2 ( rood ,t4"). 
]=1 

Since M is odd, division by 2 is well dcfincd. 

Notice that for any blocks X Ill, Y[J'J,z [K] whose product X[I]Y[JJz [K] appears in the 

computed tfilinear form, we have 

bx(/) + bi,(J) - 2bz(K ) = 0 rood 3,t. (6) 

This follows by considering the contribution of each wj, noticing that in the basic construction 

Set to zero all blocks X [FJ for which bx(/) is not in B. Similarly set to zero all blocks y[32 for 

which bF(J ) is not in B, and blocks Z [RJ for which bz(K ) is not in B. Then for any nonzero term 

X [l'J Y[JJz [R'J remaining in our construction, we have 

bx(/) + b~J)  -= 2bz(K) mod M, bx(/), by{./), bz(K ) e B, 

so that 
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bX~O = by(S) = bz(h3, 

by the properties of B. 

For each element b e B in the Salem-Spencer set, make a list of triples (X [/'J, y[.rj, Z[/Q) of 

compatible nonzero blocks, with bx(/) = by(J) = bz(K ) = b. (A block X [I] is the set of q2N var- 

iables x/I,/j with nonzero indices in 2N specified places, that is, sharing a common superscript 1. 

A nonzero block is one which has not yet been set to zero. Blocks X [/'j, Y[J], Z [K] are com- 

patible if the locations of their zero indices are pairwise disjoint.) For each triple 

(X [/'j, Y[J ] ,z  [K]) on the list, if it shares a block (say Z [K]) with another triple 

(X [I'], Y[J'], Z [K]) occurring earlier in the list, we set to zero one of the other blocks (say 

Y[J]), and thus eliminate this triple. (If each of X [/], Y[J], Z [K] is shared with previous triples, 

we will end up eliminating at least two triples by zeroing one block of variables.) 

For a fixed element b G B, the expected number of triples in the list, before pruning, is 

3N ' ~ . - 2  
N,N,Nj  M �9 

(3N) 
Here N,N,N represents the number of compatible triples (X [/-j, Y[J], Z [K]) and the M - 2  re- 

presents the probability of the (independent) events bx(/) -- b and by(./) = b. (If both hold, then 

bZ(K ) = b follows.) That is, for fixed blocks X [/], Y[J-J, and fixed integer b rood M, if we ran- 

domize the values Wo, Wl, ..., W3N , then 

Probfbx(/) = bF(J ) = b) = Orob{bx(/') = b)Prob{bv(J) = b} -- M - 1 M  -1 -- M -2,  

since the sums bx(/) and by(./) involve different random variables. The expected number of 

compatible triples (X [/], Y[J-J, Z [K]) with bx(/) = by(./) = bz(K ) = b is the sum of these probe- 

3N ) possible triples. We do not need independence triples, bilities (M -2) over the N,N,N 
X 

among 
/ 

since the expected value of a sum of random variables is the sum of their expected values, re- 

gardless of independence. 

The expected number of unordered pairs (X [/], y[J],  Z[K'J), (X [I'], y[l'], z[K])  sharing a 

Z-block is 
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(3N) 
Again N,N,N counts the compatible triples (X [/], Y[J'J, z[K]). The binomial coefficient 

N,N -1  counts the blocks Y[J'] compatible with Z [K] (other than Y[J] itself). The factor 

1/2 eliminates duplicate entries ((X [/], g[J], Z[~), (X [1'], g[J'], Z[/(J)) and 

((X [I'], g[J'], Z[K]), (X [/'], Y[J'J, Z[K])). The factor M -3 is the probability of the independent 

events bZ(K ) = b, bldJ) = b, bt,(J') -- b. They are independent even if indices are equal (J' --/), 

because of the presence of the random variable w 0. 

The expected number of pairs of triples sharing Y[J], or sharing X [/], is the same. 

Suppose we eliminate a block (Y[J']) because of a pair of triples 

((X [/'j, y[J'J, z[K]), (X [I'], Y[J'], z[K])) sharing a Z-block. If L triples (not yet eliminated) 

share this Y-block, then setting Y[J] to zero eliminates these L triples, while eliminating at least 

(L2)+I  pairs, namely all those sharing Y[J], and at least the pair sharing Z [K]. Since 

+ 1 > L, we eliminate at least as many pairs as triples. Thus: 

Lemma. The expected number of triples remaining on each list, after pruning, is at least 

3N \ -2 3N 2N 

(7) 
/' 3N \ -2 

>(I]4)~N,N,N)M " 

The expected number of triples remaining on all lists, after pruning, is at least 

H----(I/4,M'(N3NN,N)M -2. (8) 

This expectation H is an average over the choices of ~).. There is a choice of ~). which achieves 

at least H; fix such a choice. 

Our algoriflun computes at least 1t block scalar products X [/] Y[J]Z [K'j. The free structure 

of each block scalar product is in fact a matrix product of size 

N N N < q  ,q ,q > ,  

and all the variables are disjoint (by the Salem-Spencer property). From the x-theorem we obtain 

, (  3N ) - 2 3 N ' r  N ~~ (q+2)3N>(I/4)M N,N,N M q �9 

Use Stirling's approximation to obtain 
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(q + 2) 3N > cN-112+c33N2-2N(1 +0q3NTN, 

where c is a constant. Le t t ing ,  go to zero and N to infinity, and taking N th roots, we obtain 

(q + 2) 3 > (33/22)q 3r 

2) 3 
to < 3-r < logq( 

4(q 
27 ) '  

+ 

\ 

Setting q = 8 we obtain 

co _< log8(4000127 ) < 2.40364. (93 

7. N e w  Construction: Complicated Version. 

In this section and the sequel, we will improve the exponent to 2,388 and then 2.376, by using the 

same ideas as in the previous section, on more complicated starting algorithms. 

Begin with the basic algorithm: 

q 
Z - (xotOJ + + +  zt,J) 
i :1  

+ :2xFl )(,o O  + + 
.3 [2]~/ [0] .3 [2]~/ [0] .3 [2] + [ ~ . - - 3 - - q 2 - - 2 ] ( x [ O ] + A  Xq+l)~, 0 + Z Yq+l:~ZO +Jr Z~+I) 

q 
= E (x[Olyi[l ]Z: l l + Xp ]yo[Olz~ ll + x~l]y:ll~ 0]) 4- 

i=I 
x[O] s x[O]. [22_[o] x[2], [oL[o] 

0 YO Zq+l + 0 Yq+lZO + q+lYO ~-0 +0(~.). 

(lO) 

The subscripts now form three classes: {0}, {q+ I}, and {1, 2, ..., q), which will again be denoted 

L Again the subscripts uniquely determine the superscripts (block indices). 

Take the 3N th power of this construction. Set L = [fiN] (greatest integer), where fl will be 

determined later. Set to zero all blocks of variables except those whose superscripts contain ex- 

actly N + L indices of  0, 2N - 2L indices of 1, and L indices of 2. 

Set 

( N + L  "~{ 2N-2L ) 
M= 2  L , L , N - L ] ~ N - L , N - L  +1" 
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Le t / j  pick out the jth index of I as before. Define bx(/), by(J), bz(K ) as before, and set to zero 

any block of variables with bx(f ) (resp. by(J), bz(K) ) not in the Salem-Spencer set. For each b 

in the Salem-Spencer set, make a list of triples (X [/], Y[J] ,Z  [K]) of blocks, with 

bx(/) = by(J) = bz(K) -- b, and eliminate entries with duplicated blocks. 

For a given block Z [Kj, the number of pairs of blocks (X [/], Y[J]) compatible with Z [K] is 

)r 
\ N - L , N - L ) '  

since the N + L indices of  0 in K correspond to L instances of (0 in I, 2 in d), L instances of 

(2 in 1, 0 in J), and N - L instances of (I in I, 1 in J); the 2N - 2L indices of I in K correspond 

to N - L instances of (1 in I, 0 in ./) and N - L instances of (0 in I, I in J); and the L instances 

of 2 in K all have (0 in 1, 0 in J). Since M is twice this size, the elimination of  duplicates proceeds 

as before and leaves a constant fraction of the triples intact. 

We have M' lists, each with (on average) at least 

(I]4) (L,L,L,N- L,N3N _ L,N - L)  M-2 

entries, all having independent variables. (The multinomial coefficient indicates that there are L 

instances of (2,0,0) as (x - ,  y - ,  z -  )indices, L of (0,2,0), L of (0,0,2), N - L  of (1,1,0), etc.). 

Each entry corresponds to a matrix product of size 

< qN-L N-L N-L ,q ,q >. 

Thus our equation is 

(q + 2)3N~ (I/4)M, ( 3N )M-2q3(N-L)'rN 
L,L,L,N - L,N - L,N - L 

~-cN ( -  1 +3t12)~ 27 ] Nq 3N(I -#)XNc,t N. 
L ##(l + #)1 +#(2-  2/~) 2-2~ A 

Letting r tend to zero and N to infinity, and taking N th roots, we get 

(q + 2)3 > _ 27 q3(l-/~)x. 

#a(1 + #)I+P(2 - 2#) 2-2t~ 

For q = 6, ~ -_ 0.048, we fred 

co _< 3T < 2.38719. 
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8. Coupling the Weights 

So far we have assumed that the weights ~ are independent random variables. In this section 

we will make them dependent: essentially w2j_ 1 = w2y. One consequence is that the randomness 

arguments need to be redone. The advantage is that we are able to gain higher estimates of the 

"value" of various pieces. 

It will be convenient to have a notion of the "value" of a trillnear form (or trilinear algorithm). 

We define the "value" V x of a trilinear form A in terms of the matrix products it can simulate. 

Suppose the matrix exponent is ~o = 3x. Suppose that a tensor power of A can be reduced (by 

substitution of variables) to the approximate computation of several matrix products: 

A | 2-, @ <mh, nh,Ph>. 
h 

Then we say 

V.r(A) >-- (Z(mhnluoh)r I'N 
\ h  / 

We also symmetrize: ff n is the cyclic permutation of the variables x#,z  in a tfilinear form A, then 

we define 

v.(A) = ( V~(A | .el | 3, 

It is immediate that "value" is super-multiplicative: 

V~(,4 | > V,(A) x V,(B), 

where "A| indicates the tensor product. "Value" is also super-additive." 

V~(A~B) ~ V~(el) + V,(B), 

where "A~BB" indicates that A and B share no variables. If el reduces to B then 

V~(A) > I~(B). 

For those familiar with Strassen's paper (1986), this notion of value V, is intermediate between 

Strassen's Q and his R. 

We will use this notion to analyze a more complicated version of our present construction, 

which will yield the exponent of 2.376. 
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We start with the tensor square of Construction (10), but we relabel the superscripts (regroup 

variables): 

q 

(~ + ~:-" Z (~,~,%t~I + ~13~.%~J + ~?~,!~::o,~ + xtll:l142 + ~t~A?4~ ~ 
i,k=l 

x[2]. [1]z[I] , l"1]. [2 ] . [11 .x [23 .  [U.[1]  . [21. [23_[ol 
4- i,k YO,k i,O -t- xi, 0 Yi,k e-O,k -r- i,k Yi,O zO,k "1- xi, k Yi,k z'O,O ) 

q 

+ E(~o% :~o'~ 3 + xot~,%zt~ ~+ :o~ + 
i=I 

x[33 . [O]z[1 ] . [1]. [23 _[13 , x [ l ] .  [o'lz[3] 
-t- i,q+lYO,O t,O + Xi,o u -r" i,O YO,O i,q+l q -  

_[33 . [13_[Ol . [13. [33 .[o1 , x[I].  [13_[2] 
4- "~i,q+lYi,O zO,O ~ xi,o Yi,q+l~O,O -1- i,O Yi,O zO,q+l ) 

q (11) 

+ E (T+~I : o t 1 ~  + ~+~,,~oE"o~1~ + ~,~,,vot1~,~ ~ + 
k=1 

x[0] , [3]  _[1], x[1]. [2] _[1] xE1]y[3] _[0] 
4- 0,0Yq+l,kZO,k -1- O,kYq+l,0~.O,k + O,k q+l,k~,0 + 

i x [ 4 ]  . [o1_[o3, x[2] ,[2] _[o3 , x[23 . [0]_[2] 
+ k q+l,q+lYO,O~O,O "1- q+l,0YO,q+le-O,O -i- q+l,OYO,OZO,q+l 4- 

x[2] . [03z[23 + x[0_], [2] zC2] + x[O]. [03z[4] 
4- O,q+lYO,O q+l,0 0,OY0,q+l q+l,0 0,0Y0,0 q+l,q+l ) 

We have divided the (q + 2) 2 x-variables into five blocks: 

X[0] . C0]~ 
= ix0 ,0  3 

X[ 1] . [13 xoE:k ]) 
= (xi, 0 , 

X [2] ,x [2] x[23 x[23 
=' t  q+l,0, i,k , 0,q+l. t 

X[3] . [33 x[33 
= [Xq+l,k, i,q+ll 

X[43 = (Xq[4]l ,q+l }' 

Here i,k denote indices that range from 1 to q. In the original tensor square, the superscripts would 

have been 2-vectors: x [1'03, We have added the two elements to forrn a single superscript: x~g ]. 

Notice that if X [/] Y [ J ] z  [K] appears in lhe trilinear form, then 

I + J + K = 4 ,  

The trilinear form can be written in block form as" 
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E X [lJ Y[J'Jz [K]. 
I+ J+ K=4 

There are four types of terms in this trilinear form. 

X[O] y[Olz[4] _[ol. [O]z[4] 
= -'~-0,0 Y0,0 q+l,q+1" 

This is a matrix product of size < 1,1,1 > ,  whose "value" is 1, 
X[ O] y[O] Z [43, X[  O] y[41Z[O] ' X[ 4] y[~176 

(a) 

There are three such terms; 

q q 
X[O]y[1]Z [3] = X-~u[o]. [U.[33 V ~ [03, [ l ] . [ s ]  

Z~-'o,os'i,o ~i,q+ l + .,' ,x6,oyO,k ~q+ l,k" 
i=1 k=l 

(b) 

Eli . [11>). Its This is a matrix product of size < l,l,2q > (i.e. a scalar x [0] times the vector < Yi,o, YO,k 

"value" is (2q) ~. There are six such terms: X[0] y[l  ]Z[31 ' X[0] y[3] Z [1 ], 

X[I]y[O]Z[3], X[1]y[3]Z[03, X[3]y[O]z[I], X[3]y[l]z[O] 

q 
x[O] y[2]ZI-21 x[o], [21 .[21 [01. [21 [2] 0,0Yi,k i,k �9 ~- 0'0~Vq+i,0e0,q +1 + xO,OYO,q+l% +1,0 + E x[0]" [2]z[2] 

i,k = 1 
(c) 

This is another matrix product, of s~e < 1,1, q2 +2 > ,  with "value" (q2 +2)~. There are three 

such terms: X [0] Y[2]Z[2], X [21Y[0]Z[2], X [2] y[Z]z[0] ' 

q q 
X[1]y[I]z[2] X -~ [1] [1]_[2] _ ~'~x[l].,[1]z[2 ] 

=/_axi,D Yi,o z-0,q+l + /-.a O,k'tO, k q+1,0 + 
i=l k=l 

q q 
+ E x'[l]" [11z[2] ~ _[I]. [11_[21 

t,O YO,k i,k + d_a "*O,k Yi,D ":i,k ' 
iOk--1 i,k~! 

(e) 

There are three such terms: 3( [11 y[ I ]z [2]  ' X[I]y[2]Z[1] ' 

end of this section, we Will find that, if q >  3, the 
22/3 q-r(q 3. + 2) 113 

XL2Jy~ijzOj.rl r l  r l  In the lemma at the 

"value" of this term is at least 
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Take the N"" tensor power of Construction (I1), where N is 

ar 0 < e ~ 4, be positive real numbers (determined below) such that 

4 4 
2 ~ r  1, Z~ecLr 
r ,F=O 

divisible by 3. Let 

Let Ar be integer approximations to a :N such that 

4 4 

~"~Ar ZgA:=4N/3. 
:=0 :=0 

Retain only those blocks of variables (X [l"j, Y[J], Z [K]) such that 

#UII~j~N, 6.=e)  = Ae, 

setting the others to zero, where as before lj picks out the jth index position. 

Let M" be the number of nonzero triples (X [/], Y[J], Z [K]) containing a given block X [/]. 

We have 

I-[ A:~ 
M" = ~ 0<r 

I-I {he,re,n} rl t , m  , n [ 
:+m+n=4 

(12) 

where {~Cm,n} range over partitions of N such thai 

~ tlr = A~ 
mJ'l 

l:,m,n ~ Am 
r  

lr = An 
r 

and the only nonzero values of rl?,m,n occur with l' +m + n ~ 4, 0 < g,m,n < 4. The summand 

in (12) is maximized at 
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l"le,m,n ----- 7~ ,m,n  
^ 

70,0,4 ---- 70,4,0 = 74,0,0 = a 
^ 

)'0,1,3 ----- 70,3,1 = 71,0,3 ~ )'1,3,0 --  73,0,1 ----" 73,1,0 ~ b 
A 

)'0,2,2 ~ 72,0,2 "~" )'2,2,0 = c 
^ 

) ' I , I ,2  ---- )'1,2,1 -----)'2,1,1 = d 

A A 
A 1 ---" 2b + 2 d  

A2 = 2t  + 
^ 

A 3 = 2b 
^ 

A4=a. 

(13) 

In la ter  calculat ions we will approx imate  M "  by its largest term, t imes a po lynomia l  N p in N. 

Set M = 2M" + 1. Cons t ruc t  the Salem-Spencer  set. Choose  r andom weights wj, 0 <j < N. 

C o m p u t e  t he  hash as before, wi th  a minor  change (4 replacing 2) in the definit ion on  the z-indices: 

N 

 tj imod M 
j=l 

N 
br(.D --  wo + E . ~ v ~ '  mod  M 

j = l  

bz(K)  - w 0 + ( 4  - K])wj 12 r l 3 o d  M. 

]=1 

Reta in  on ly  those variables mapp ing  into B, setting others to zero. As before, a nonzero  triple 

X[I'JY[J]Z jIG remain ing  in the  trilinear form will have bx(/)  = by(./) = bz(h ' )  e B. 

After  the  usual pruning,  we have approximate ly  

N 
(Ao, AI,A2, A3,A4) 

t r iples o f  b locks  (X  [/3, Y[J], Z IK]) remaining.  For  a good por t ion  of these triples (at least a 

f ract ion N -p of the  total)  the  N indices j =  1,2 . . . . .  N will contain about  Yd,m,n instances of  

X[~y[m'Iz[n]. So the value o f  each triple of  blocks is about  
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^ A A A 

[1]3a [(2q't)]6b [(q2 + 2)'r]3c [2213q'r(q3T + 2)11313d 

A A A 

= (2q)6~b(q 2 +2) 3"to [4q3"t(q3~ + 2)] d. 

Thus our auxiliary equation is 

N 6~b 2 
(q + 2) 2N > N -p  AO ' A1 ' A2 ' A3 ' A4 (2q) (q +2) 3~e [4q3~(q 3~ + 2)] d. 

^ d to maximize the fight-hand side,.subject to We want to choose ~, /~, c, 

A 

3~ + 6/~ + 3~ + 3t  = N, 

and with ,4c0 defined by (13). 

In fact, letting ~ -- ~N, /~ = bN, ~" = ~N, t~ =dN,  letting N grow and taking N th roots, 

we get 

(q 4- 2) 2 = 
(2q)6"tb(q 2 +2)3~?[4q3*(q 3x + 2 ) j  

(2~ + 2g + c-3 2~ +2g + ~(2g + 2Y) 2b +zd(2~. + ~)2~ + ,/(2b-)2b-(a_)a" 

We wish to minimize z with respect to ~, b, 5, d, q, subject 1o 

3 ~ +  6b+3~ '+  3 d =  1 
~, 5, ~,,7> o 
q ~ 3 ,  q~2~. 

We f'md that 

= 0.000233 
b=0.012506 

-- 0.102546 
d = 0.205542 
q = 6  

gives an exponent of 

~ 3z < 2.375477. 
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DISCUSSION 

Here we essentially set w2j_l -- 22j, when we grouped together into one block the variables 
�9 ..[! ] _[13 -'i,u , -~0,k, and similar groupings for the other blocks. Other linear dependences among the 

remain to be investigated, including: 

wsj-2 -- wsj-1 = waj 

O1" 

w2j_ t = -  2w2j. 

PROOF OF THE LEMMA 

I.emma. Assume q > 3. The "value" V. r o f  the trilinear form 

q q 
E [1,0]. [1,03~[0,2]. X -a [0,13. [0,13_[2,0 ] 

Xi,O Yi,O ~O,q+l d- L.axO,k YO,k ~q+l,O q- 
i=1 k-I  

q q 
~-~ u[l,0] .[O,U_[1,J ] X -~ ~[o,13. [1,0].[1,1] + �9 xi,O YO,k Zi,k + /'~ -~O,k Yi,O Li,k 

i,k=l i,k=l 

is at leasl 2213qX(q 3"r + 2) 1/3. 

Note: The superscripts are different from those in the application of this lemma, but they are 

still uniquely determined by the subscripts. 

Proof. Take the 2N th tensor power. Retain only those X-blocks with exactly N indices of 

[1,0] and N of [0,1]. Retain only those Y-blocks with exactly N indices of [1,0] and N of [0,1]. 

Retain those Z-blocks with exactly L indices of [2,0], exactly L of [0,2], and 2G -- 2 N -  2L of 

[ 1, I], where 

[ 2 N I  and G = N - L .  
L -- qS~ + 2 

The number of X-blocks is (2NN). The number of nonzero triples (x[l"Jy[J'Jz[K]) eontaJning 

a given X-block is 
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The same numbers hold for Y-blocks, but not Z-blocks; see below. 

Set 

M---4(L;G)2 + 1. 

Construct a Salem-Spencer set B, define a hash as before, and set to zero blocks not hashing into 

B. Eliminate instances where an X-block or a Y-block is shared among two or more nonzero tri- 

ples. 

There are L,L,2G Z-blocks, and to each there are initially Iriples (X[1]Y[J]z[K]). 
Counting only those with bx(/) = by(J) = bz(K) we have about 

1 ( ~ ) M - I _ ~  ~ ( ~ ) ( L  ~ G ) - 2 _  H 

A calculation shows that It > > 1 if GIL > 3.41. 

This is, in Strassen's terminology, a C-tensor over < 1,It,1 > ,  where C is the class of  tensors 

consisting of matrix products < m,n,p > with mnp = (q2)2G(q)2L = q4G+2L 
:2L + 

In short, we have \ L,L,2G fl disjoint objects, each of which is a C-tensor over < 1,H,I > .  

The auxiliary equation is: 

V.r2N,..,(L,2LNG) I (~)1213(q4G+2L)x 
4 ( N )  2 

,.~ (2/V) 2N I(2G)2GGGLLGGLLI213q(4G+2L)'r 
- LLLL(2G)2G GGG G 4NNN N 

3N 
v~ ~_ 

(2N) 3N 

LL(2G)GN 2N 
3N.r 3G'r (6G+3L)x 22N+LN N q q 

q "." LLG-------.-~-- ' 

,.,,22Nq3N't ( N)2L (q3"r) G. 

Selecting 

L 2 
L+G q 3 ~ + 2  

3"1- 
G q 

' L+G ='q3~ + 2 

maximizes this estimate at 
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22Nq3N~(q 3"r + 2) N 

and, taking 3N th roots with N large, 

V~ ~ 2213qX(qa'r + 2) 1/3. 

Finally, the estimate 

G q . . . . . .  > 3.41 
L 2 

is ensured if q > 3, since 3T > 2. 

9. Related schemes 

We developed a few other techniques on the way to the present paper. While these did not lead 

to a lower matrix exponent, they may be of interest when applied some other starting algorithm. 

ASYMMETRIC VERSION 

The first technique we present is an asymmetric version of  the technique presented in the 

previous two sections. We s~art with an asymmetric basic algorithm, with a block structure and 

a fine structure. After a suitable tensor power, instead of  pulling out several block scalar products 

(whose fine structure is that of  matrix products), we will instead pull out several block vector 

products. In Strassen's terminology, we will be developing several C-tensors over < 1,H, 1 > for 

some large value of  H. This is made possible by the Salem-Spencer Theorem, as before. We then 

use Strassen's machinery to estimate the value of  these C-tensors over < I,H, 1 > .  

We illustrate with a basic algorithm closely related to Strassen's. It uses q + 1 multiplications. 

q 
�9 c 0 1 , , . t 0 1 . .  

i : 1  
q (14) 

= y. xt%to1=pJ + + + 

i=I 

Later we will determine real numbers a, fl > 0 with 2a + fl ~ I. Choose ~ small and N "large 

enough". Set 
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L--- [otNJ, G = N - 2L, M = 2 ( L  +L G) + 1. 

Construct a Salem-Spencer set B using this value of M. 

Take the N th tensor power of  Construction (10). Set to zero all blocks except: X-  or Y-blocks 

having exactly G + L indices of 0 and L indices of 1, and Z-blocks having exactly G indices of  2 

and 2L indices of  1. Select random integers w 0, w 1 .. . . .  w N rood M, compute the hash as before, 

and set to zero any variable not hashing to an dement of B. Then any nonzero triple of blocks 

(X [/], Y[J'J, Z [K]) whose product appears in the construction has, as before, 

bx(O = by(-,') = bz(X)  ~ ~.  

A n y X - b l o c k X l i s c o m p a t i b l e w i t h e x a c t l y ( L t G )  z - b l o c k s Z K : t h e L i n d i c e s o f l i r l ,  all 

correspond to indices of 1 in K, while of the G + L indices of  0 in I, exactly G correspond to in- 

dices of 2 in K, and L to indices of  1. Thus the expected number of  Z-blocks such that 

bZ(K ) = bx(/) is about 1]2. If there are more than two such Z-blocks, zero a corresponding 

Y-block. Similarly, if a Y-block is involved in at least two triples 

(,i(['/], yrJ],  z[IO),(x[l ']  y[J], z[K' ] ) ,  we zero one of the X-blocks. Thus each X- or Y-block 

is involved in at most one triple (X [/], Y[J'J, Z [K]) after this pruning. 

We do not make such a requirement on the Z-blocks; we allow each Z-block to be involved 

in a large number of triples: 

(x[lh], y[Jh], z[K]),  1 < h < It, 

For a given Z-block, the expected number of such triples (before pruning) is 

As before, given two blocks X [/], X [1'] compatible with a given block Z K, the events that 

bx(l ) = bz(K ) and bx(l' ) = bz(K) are (painvise) independent, so that we can estimate the variance 

in the number of triples (before pruning) as 

Then Chebyshev's inequality can be applied to say that 

1 
Prob(#bloeks < ta - 30) _< - ] f f .  
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For a given block Z [K] with bZ(1Q~B, the probability of  at least ~ - 3 r  triples 

(X [/t~], Y[J^], Z [K]) before pruning (i.e. bx(lh) = by(Jh) = b.z(K)) is at least 9/10. Pruning elim- 

inates only a constant fraction of the triples. Together with the observation that r < < #, we 

obtain: 

Lemma: There are constants c 1, c 2 such that, averaging over the choice of w], the expected 

number of blocks Z[K]withat l eas t c l (L )M- I  associatedtriples(X [lh], Y[Jh],z[K])remaining 
a , -1 2L+G ~erpruning, isatleastc2MM ( G ). 

.,, - I [2L + G) 
That  is, we will have at least c2M M ~, G independent objects, each of which is a 

C-tensor o v e r < l ,  C l ( ~ ) M - I  1 > ,  , where C is the class of matrix multiplication problems 

2L < m, n;p > with mr~ = q 

Applying Strassen's formula, we get 

o~<_3"r N, (q+ I ,N>c2M'M-I (2L:  G)IcI(2~)M-II213q(2L'rN). 

Letting ~ shrink and N grow, and taking N th roots, 

c~ < 3"r' (q + 1) >- (2~)-2~/~-/~I22~ (~ +~/~fl),,+[3 ?2/3q2~'r. 

(As a consistency check, note that the limiting case, a = 0.5, fl = 0, recovers Strassen's formula 

q + 1 = 2213q ~, by disallowing terms containing Zq+ 1.) Selecting q = 4 and a = 0.485, we optimize 

co at 2.4602. Tkis exponent is not as good as that obtained in the previous section, but the 

techniques exposed here may be more widely applicable. 

"STRASSEN SQUARED" 

Another  possibility is to iterate Strassen's construction. Where Strassen develops a C-tensor 

over < l,k,1 > ,  where C is a class of matrix products < m,n,p > for a fixed value of mnp, we in- 

stead develop a D-tensor over < l,t ,k > ,  where D is a class of C-tensors over < 1, k',l > ,  with 

C again a class of matrix products. 

To  illustrate, start with Construction (5) from Section 5, using q + 2 multiplications to obtain 

q 

E (xoYizi + XiyoZ i + x~ViZo) + 0(2). 
t=l 
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Replace 2 by 22 throughout. Take the tensor product of this construction with itself; (q + 2) 2 

multiplications yield 

q q 

t=lj=l 

-b xi~YOjzi, 0 a t- xf,OYit]y_O~] .-1- xi~Yi,f}y-(}j q- xi~YijZO,O) .+ 0(22). 

Set Xo, 0 to 0. Multiply xij  by 2, and multiply YO,O and Zo, 0 by ,t -1  . This kills three terms: 

xo ,oYqzq ,  xi$vo~iZi,o, xi iYi ,oZoj  �9 

We are left with 

q q 

~ [(x 0 j i ,  Ozij + XZ,OM 0 jztj + xijYo,oZij ) + (xO~ijzt, o + xi,oYijzoj + xi~ejzo,o)] + 0(2). 
i=lj=l  

The  first parenthesized expression has the form of a C-tensor over < 1,3,1 >, where C is the class 

o f  matrix products < m,n,p > with rnnp = q2., the second is a C-tensor over < 3,1,I > .  Let D 

denote the class of C-tensors over < m ' ,  n ' ,p '> with m'n'p '= 3. The two parenthesized ex- 

pressions share x-variables, and they fit together as a D-tensor over < 1,1,2>. By Strassen's 

machinery, we can write: 

~o < 3z, (q + 2) 2 = 22133213q 2"r 

Setting q = 9, we get m ~ log9(113/6) < 2.459. Again, this is not as profitable as the development 

in Section 6, where the corresponding equation was 

o~ < logq( ( q +  2)3 ) 
- 6.75 ' 

10. Remarks 

We are applying the ~-theorem in a special case, namely when all the matrix products are of  lhe 

same shape. Examining the proof of  the x-theorem, one finds that this eliminates some of  the 

sources of  inefficiency for matrices of  moderate size. Also, by altering the construction slightly, 

we can eliminate the use of 2, another contributor to the inefficiency inherent in the "r-theorem. 
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Nonetheless, the large values of  M dictated by the Salem-Spencer theorem still make the present 

algorithm wildly impractical for any conceivable applications. 

A remarkable feature of  the present approach is that we can use basic constructions in which 

the number  of  x-variables is equal to the number of  multiplications, as is the number  of  y- or  

z-variables. (In Section 7, this number  is q + 2.) Before Strassen's 1986 paper, this was not pos- 

sible. Coppersmith and Winograd (1982) had shown that for any basic algorithm (approximately) 

comput ing (several) matrix products, the number of  multiplications had to strictly exceed the 

number  of  x -variables (or else y- or z-variables), except in trivial cases. This had led to the ac- 

celeration techniques of Coppersmith and Winograd (1982), but had also implied that one could 

never achieve co -- 2 by starting with a fixed, finite-size basic algorithm. But now Strassen's 

techniques have removed the necessity of starting with a matrix product, and, coupled with the 

techniques of  the present paper, allow the hope of someday achieving ~o = 2. (See the following 

section.) 

An open question is a possible analogue of the Salem-Spencer theorem in characteristic two: 

For  arbitrary ~ > 0 and large enough N, do there exist subsets A, B, C of (7/2) N of size 

141 = IBI --- ICI -- (2/7) 1-~, such that each element a e 4,  b e B, or c e Cis  involved in exactly one 

relation of  the form 

a+b+c--O? 

That  is, 

Va~A 3!b~B, c~C: 
VbeB  3!aeA, e~C: 
V c e C  3!aeA, b~B: 

a + b + c = O  
a + b + c = O  
a + b + c = O  

With such a construction, the present techniques would become applicable to a wider class of  

starting algorithms. For example, our first algorithm involved three block products, 

x[O]y[1]Z [1], X[I]y[O]z[I], X [ I ] y [ 1 ] Z  [0], so that if X[I]Y[J-Jz [K] appeared we knew 

I + J +  K = 2. If in addition the block product X [0] Y[0]Z[0] appeared, our condition on the 

indices would become I + J + K = 0 ~ 77 2. A characteristic-two version of  the Salem-Spencer 

theorem would become useful in that situation. 
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11. Can W e  Achieve ~ = 2? 

In closing, we sketch the relation between a hypothetical combinatorial construction and the 

elusive 

? 
to~2, 

Definition. An  Abetian group G (with at least two elements) and a subset S of G satisfy the 

no three disjoint equivoluminous subsets property if: whenever TI, T2, T 3 are three disjoint subsets 

of S, not all empty, they cannot all have the same sum in G: 

s e T  1 se T 2 s e T  2 se T] 

Assume for now that we can find a sequence of pairs G,S with the no three disjoint 

equivoluminous subsets property, such that ( log21G[)/IS 1 approaches 0. 

If the tfilinear form 

xOYlZ 2 + xoY2z I + xlYOZ 2 + x2YOZl + xlY2~ + x2Y17- 0 

had border rank 3, then by the techniques of  Chapter 6 (easy case) with q = 2, we could prove 

to = 2. Unfortunately, this form has border rank 4. But if the n th tensor power of  this form had 

border rartk 3 n+~ the same techniques would still yield <o = 2. This is our goal. 

We will use a Fourier transform to get a related form to have rank 3. This related form has 

extra terms, which we must cancel somehow. We will multiply variables by roots  of unity, take 

a large tensor power, and take a Fourier transform again, and use the no three disjoint 

equivoluminous subsets property to arrange the cancellation of the unwanted terms. This will 

show that the n th tensor power has rank 3 n+~ Then we will apply the teehrdques from this 

paper to derive to = 2, given the existence of (G,S) with ( logalal)/ISI approaching 0. 

Let S = {s I , s 2 ..... sn} and G satisfy the no three disjoint equivoluminous subsets property,  

with ~ = ( log2tGI)/IS I. 

Let X and ~b be two independent characters on G. Select i from {1,2 ..... n). Evaluate the 

characters X(si), • (st), which are complex numbers of magnitude 1. Select r = r(x, tk, si) to satisfy 
3 

r = x ( s i ) /~ ( s i ) .  

Evaluate the following sum, where toi ranges over the three complex cube roots  of 1: 
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1 -lto2x2 ) U i ~  ~ ,  -~ (x 0 + ~C(si)-lrwixl + r 
co l 

x + + x 

• (rzo + + to'z,) 

We see that this has trilinear rank at most 3. By multiplying by powers of toi and summing over 

~o i, we are taking a three-point Fourier transform, and the terms which survive in the product are 

those for which the exponent of  toi is divisible by 3: 

U i = (Xoyl z 2 + xoy2z I + xlYOZ 2 + x2Y0Z 1 + xlY27. 0 + X2YlZ 0) + 

+ (X(si)xoYoZo) + (Z(si) -1  ~b(si)-lxlYl Zl) + (d/(si)x2Y2Z2). 

We may think of this as 

U i --- (Good/) + X(si)Badl i + ~((si) -1  ~b(si)-lBad2i + ~b(si)Bad3 i, 

where Good / i s  the sum ot the first six terms (which we want), and Bad#i are the unwanted terms. 

Now take the tensor product of the various Ui: 

| U i = @ ( (Good/ )  + X(si)Badl i + X(si) - I  $(si) -1Bad2i  + ~(si)Bad3 i ) .  
1 <_i~n 

This is the sum of 4 n terms, each a tensor product of tdlinear forms of  the sort Good /o r  Bad~'i. 

The first term, 

G O O D  = @Good/ 
i 

is the one we want. For  each of  the other 4 n - 1  terms, for ~' = 1, 2, 3, let T? be the set o f s  i cor- 

responding to those indices t for which Bad#/is included in the product. The coefficient of this 

term is 

Since the T4 are disjoint and not all empty, the no three disjoint equivoluminous subsets property 

implies that either the argument of X or the argument of  CJ is not the identity element of G. 
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Now sum over the various choices of X and r The "GOOD" term will accumulate (and get 

multiplied by ]GI 2, which we can deal with), while all the other terms will vanish, because we are 

summing over all characters X (or if) at an element of G other than the identity. 

This shows that the trilinear rank of 

| Good/ l<i<=| (xOylz2 + xoY2zl + xlYOZ2 + ac2Y0Zl + xlY2ZO + x2YI~) 
I <i<_n 

is no more than IGI23 n. 

Note here that, if necessary, we can replace G by a Cartesian product of G with itself N times, 

and replace S by N copies of S, one in each copy of G. A typical element of the large S will be 

(0,...,0, si, 0,...,0). Then ~=(log21GI)/ISI remains unchanged, and the no three disjoint 

equivolurninous subsets properly is inherited. 

Following the arguments from Chapter 6, we would then obtain, by analogy to Equation (9), 

26r33 > (27/4)23~ (15) 
<, ,~6r 

o = 3z _ Iog2(z X 4) = 2 + 6~. 

With the assumption that ~ = ( Iog21GD/]S I approaches 0, this would yield ~o -- 2. 

We have not been able to determine whether there exist such pairs (G,S) with ( log21GI)/ISI 

approaching 0. 
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