
J. Symbolic Computation (1990) 9, 251-280

Matrix Multiplication via Arithmetic Progressions

DON COI 'PERSMITt t and SIIMUEI, WINOGRAD

Department of Mathematical Sciences
IBM Research D~'ision

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, New York 10598, U.S.A.

(Received 17 May 1987)

We present a new method for accelerating matrix multiplication asymptotically. This
work builds on recent ideas of Volker Strassen, by using a basic trilinear form which
is not a matrix product. We make novel use of thc Salem-Spencer Theorem, which
gives a fairly dense set of integers with no three-term arithmetic progression. Our
resulting matrix exponent is 2.376.

1. Introduction.

A matrix multiplication algorithm is usually built as follows. First an algorithm for a small matrix

problem is developed. Then a tensor product construction produces from it an algorithm for

multiplying large matrices. Several times over the last two decades, the ground rules for con-

strutting the basic algorithm have been relaxed, and with more care in the tensor product con-

struction, it has been shown how to use these more lenient basic constructions to still give efficient

algorithms for multiplying large matrices.

Recently Strassen (1986) found a new relaxation of the ground rules. I Its basic tri/inear algo-

rithm computes a trilinear form which is not a matrix product at all. In this trilinear form, the

variables are collected into blocks. The block structure (the arrangement of the blocks) is that

of a matrix product, and the fine structure (the arrangement of variables within individual blocks)

is also that of a matrix product, but the overall structure is not, because the fine structures of

different blocks are incompatible. After taking a tensor power of this trilinear form, Strassen op-

erates on the block structure (that of a large malrix product) to reduce it to several block scalar

multiplications. Each block scalar multiplication is itself a matrix product (the fine struclure), so

that he has several disjoint matrix products (sharing no variables). I le can then apply Schrnhage's

-theorem to obtain an estimate of the matrix exponent o~:

0747-7171/90/030251 +30 $03.00/0 �9 1990 Academic Press Limited

252 D. Coppersmith and S. Winograd

< 2.479.

Here we follow Strassen's lead. We use a basic trilinear algorithm closely related to Strassen's.

The block structure o f our trilinear form is not a matrix product, although the free structure still

is. We use a combinatorial theorem of Salem and Spencer (1942), which gives a fairly dense set

of integers containing no three-term arithmetic progression. We hash the indices of the blocks

of variables to integers, and set to zero any block of variables not mapping to the Salem-Spencer

set. We do this in such a way that if the product X IF] Y[JJZ [K-J is contained in our trilinear form,

then the hash values bx(/), bF(J), bz(/0 form an arithmetic progression. So for any product of

nonzero blocks X [/3 }'[J-JZ [/r in our trilinear form, we will get bx(/) = b~J) = bz(K). We choose

parameters so lhat on average each nonzero block of variables is contained in at most one nonzero

block product X [/3 Y[J'Jz/'/r and set to zero some blocks of variables to ensure that this condi-

tion holds absolutely, not just on average. Then, as Strassen, we have several disjoint matrix

products, and can apply SehiJnhage's z-theorem to obtain our exponent

oJ < 2.376.

The rest of the paper is organized as follows. In Section 2 we review Schrrdaage's

T-theorem. In Section 3 we present Strassen's construction. Section 4 contains the results of the

Salem-Spencer theorem. Section 5 presents an outline of the present construction. In Section 6

we present an example of our construction, which gives an exponent of 2.404, The version pre-

sented in Section 7 uses exactly the same ideas, hut is complicated by more terms and more in-

dices; ihis gives an improvement to of 2.388. Section 8 introduces yet more complicated

techniques which achieve a slightly better eslimate ot" 2.376. Section 9 contains some related ideas

that were not as effective in reducing the exponent. We make miscellaneous remarks in Section

10.

Finally, Section 11 shows how the existence of a certain combinatorial construction would

yield co = 2, We cannot tell whether this construction can be realized.

Earlier versions of this paper appeared as Coppersmith and Winograd (1986) and (1987).

Readers unfamiliar with previous work in matrix multiplication are referred to the excellent

survey by Victor Pan (1984).

Matrix Multiplication via Arithmetic Progressions 253

A C K N O W L E D G M E N T S

We are grateful to James Shearer for the reference to Behrend's construction, which was the

last constituent we needed for the present work. Victor Pan referred us to Salem and Spencer.

Arnold Sehrnhage gave a more symmetric presentation of our starting algorithm in Section 6.

James Davenport offered helpful comments on an early draft of the paper.

2. Schrnhage's Theorem

The basic results from "classical" matrix multiplication can be summarized by SehSnhage's

T-theorem:

Theorem (Schrnhage): Assume given a field F, coefficients aij, h ' ~o, fljok,h, ~, Yk,i,h, T in F(2)

(the f ieM o f rational functions h~ a single indeterminate).), and polynornials fg over .F, such that

t" k,i ;
~= 1 kij,h / \j,k,h / \k,i,h

mh nh Ph
x(h),,(h)z(h) ~ V ~.g.. rx(h) (11) .(h)~

g>O

N x N square matrices in O(N 3~+r') operations, where -r satL~es

L = Z(mhnhPh) ~. (1)
h

We will also write the error term as O(2), so that the hypothesis becomes

Y=l \ i j , h / \j,k,h / kk,i,h h \id,k /

Less formally, the hypothesis is a trilinear algorithm, using L bilinear multipfications to (ap-

proximately) compute simultaneously several independent matrix products, of dimension

m h • n h times n h x ph (written < mh, nh,Ph >). The superscript (h) indicates which matrix the

variable belongs to.

In such a situation, we define the matrix exponent oblained from the construction as or - 3T.

Note: Here we have presented Schrnhage's Theorem in its trilinear form, which will make

our construction easier to describe. The bifinear version assumes L rank-1 bilinear forms

254 D. Coppersmith and S. Winograd

Me=-~ Z.a id,h,e" id l~ Z-aeJ ,k,h,eyLk] g = 1,2 k
x4j,h / V,k,h /

eormccted by identities

nh L

V(i~) -~ ~.a~'~x(h)'iJ Xj,k(h) = ~ ?k,i,h, ewe +
j : ! ~'=1

i<_m h, k<_p h.

That is, one forms L bilinear products, each of which is a linear combination of x-variables times

a linear combination of y-variables, and expresses the answers v~ h) as linear combinations of these

products, up to terms of order 2. The an~vers v(ihk) are viewed as duals to the variables Zk(h~ in the

trilinear presentation, and in fact the bilinear presentation is obtained from the trilinear one by

identifying coefficients of z(h) in both sides of the equation.

3. Strassen's construction

Strassen has found a new relaxation of the ground rules for the construction of the basic algo-

rithm, that is, he has relaxed the hypotheses of the theorem. A key element in his construction

is the observation that, using the ability to multiply a pair of N x N matrices, one can

"approximately" (in the 2 sense) multiply (3/4)N 2 pairs of independent scalars, that is, compute

(314)N 2

Z xy~z~ + O(,l) (2)
i---1

where all the xi, Yi, zi are independcnt. Namely, setting

g = [(312)(N + 1)],

and multiplying each variable in

N N N

i = l j = l k = l

by an appropriate power of 2, one obtains

N N N i2

ZE E
i= l j= 1 k----- 1

~ , xijj,kzk, i + 0(2),
i+j+k=g
I <ij,k<N

Matrix Multiplication via Arithmetic Progressions 255

since the exponent of 2,

i 2 + 2/j + j 2 + 2j(k -- g) + (k - g)2 +2(k - g)i = (i + j + k - g)2,

is zero when i + j + k --- g and is positive otherwise. Since any two indices i j uniquely determine

the third k = g - i - j , each variable xid is involved in at most one product. There are about

[(3/4)N 2] triples (i j ,k) , 1 <_ ij , k < N, i + j + k --g. Call this the matrlx-to-scalar construction.

Strassen uses the following basic trilinear identity, related to Victor Pan's "trilinear

aggregation" (1978):

i=l i=I /
q

i=I

(3)

This gives a basic algoritlam, using q + 1 multiplications to compute a block inner product:

q

y. t'J t'Jz.x0%?,,) ~xl YO i -- +
i=1

The superscripts denote indiees in the block inner product, and are uniquely determined by the

subscript indices. We can label x i and x 0 with different superscripts because they are different

variables; similarly Yi and Y0" But the z-variables are involved in bolh blocks. They are shared.

This is the new complication in the basic algorithm. This algorithm does not in itself represent

a matrix product.

(If we tried to represent this algorithm as a matrix product, we would fred that since all the

variables z i are associated with the same y-variable y(~l] they must all have the same k-index.

But since they are all associated with the same x-variable xl~ 2], they must all have the same i-in-

dex.)

The first block, zx f l]y[OI]z i , - - - represents a matrix product of size < q, 1, 1> . A q • 1 matrix
i

(column vector) x is multiplied by a 1 • I matrix (scalar)y 0 to yield a q • I matrix (column vector)

v, which is dual to the vector z. In tile second block, ~x[o2]yi[2]zi represents a matrix product of

size < 1, 1, q > . A 1 x 1 matrix (scalar) x 0 is multiplie~d by a 1 x q matrix (row vector) y to yield
l

a 1 • q matrix (row vector) v, which is again dual to the vector z. The difficulty comes when we

try to add the two blocks. The indices i of v are "schizophrenic": they don't know whether to

256 D. Coppersmith and S. Winograd

behave as row indices or as column indices. Strassen's construction gives a way out of this diffi-

culty,

Take Construction (3) and the two constructions gotten by cyclic permutations of the vari-

ables x~v,z, and tensor them together, to get an algorithm requiring (q + 1) 3 multiplications to

compute

q
E r [1,13. [1,1]_[1,1] . [2,1]. [1,1].[1,23 . [1,1] [1,2]_[2,1] . [2,13.[1,2]_[2,2] ,

~xij,O -vOd,k zi,O,k + xi4,k YOd,k ki,O,O + xi4,O YO,O,k "~ij,k + XQ, k .vO, O,k ~id,O r
iti ,k = l

~[1,2]. [2,1]z[1,1] _ [2,2]. [2,1]_[1,2]_ [1,2] [2 ,2]_[2,1]_ o[2,2]. [2,2] 1"2,2]'~
+ at24,0 Yi,i,k i,O,k t" xOj,k .Yid,k zi,O,O + xo,i,O Yi,O,k Lij,k -r a.Oj, k .vi,O, k zij,O } + 0 (2)

This is a block 2 • 2 matrix product (indicated by the superscripts). Within each block is a smaller
q . [1,1]. [1,2]z[2,1] , matrix product; for example the third block is the matrix product 2, (xij,O xO,O,k ij,k),

which can be interpreted as a matrix product of size < q2 1, q > : ij,k=l

q

E x(ij),OYO,kZk,(ij),
i j ,k= 1

with (it/') acting as the/ - index (shared by x and z and taking on q2 values), 0 acting as the J-index,

and k acting as the K-index.

Taking the N th tensor power of this algorithm, one gets an algorithm, requiring (q + I) 3N

multiplications, and producing a block 2 N x 2 N matrix product, each block of which is a matrix
3N

product of some s~e < m,n,p > where mnp = q Applying the matrix-to-scalar construction

to the block structure, one then obtains (334)(2N) 2 independent matrix products, each of some size
3N

< m,n,p> where mnp = q . Applying the ~-lhccrem, one gets

a~ < 3~ N, (q +])3N = (3/4)22N(q3N)~N.

Taking N th roots and letting N grow, the (3/4) becomes insignificant, and we have

to < 3x, (q + 1) 3 --- 22q 3x.

Letting q - 5, Strassen obtains

co _< !og(63/22)/log 5 = log554-~2.4785.

Matrix Multiplication via Arithmetic Progressions 257

4. The Salem-Spencer Theorem

We will use the following theorem of Salem and Spencer (1942); see also Behrend (1946).

Theorem (Salem and Spencer): Given ~ > O, there exists ME"2 c1~2 such that for all M > ME,

there is a set B of M' > M l-~ distinct integers

0 < b I < b 2 < - - . < b M , < M / 2

with no three terms in an arithmetic progression."

for bi, bj, bk ~ B, bi + bj = 2b k iff bi= bj = b k.

We will be considering the ring 77 M of integers modulo M, where M is odd. Because the ele-

ments of the Salem-Spencer set satisfy 0 < b i < M/2, no three can form an arithmetic progression

rood M:

for b~, r bk ~ a, b,. + b j - 2bk rood M irr bi = r = bk. (4)

5. New Construction: Outline

Previous authors in this field have exhibited their algorithms directly, but we will have to rely on

hashing and counting arguments to show the existence of a suitable algorithm. We start with a

modification of Strassen's starting algorithm, producing 3 (instead of 2) block products. We take

the 3N th tensor power, yielding 33N = 27 N block products. We will show that we can choose

about (27/4) N out of these 27 N products, which are independent in the sense that a given block

of variables X [/'j, Y[J], or Z [K] will occur in at most one of our chosen products, and strongly

independent "m the sense that for any block product X[1]Y[fJz [K] in the original tensor power

which is not in our chosen set, at least one of its blocks of variables (X [/], Y[~ or Z I/q) will be

absent from our chosen block products. Thus, by setting to zero any variables not in our chosen

block products, we will set to zero all other products in the original tensor power. Once we have

done that, we will use Sch6nhage's x-theorem to provide an estimate of co.

By indirect arguments we will show the existence of the strongly independent set o f block

products. We will start with a hash function from the set of block indices to the set of integers

rood M (27M), in such a way that if X [/] Y[fJz [I(] appears in the tensor power, the hashed indices

bx(/), by(./), b2{K) form a three-term arithmetic progression. We will use the Salem-Spencer

theorem to control the existence of such arithmetic progressions. Finally, among the large class

258 D, Coppersmith and S. Winograd

of hash functions available, a counting argument will show that at least one of them has the de-

sired performance.

6. New Construction: Easy Case

Start with a modification of Strassen's basic algorithm (3); see also Pan (1978). We use q + 2

multiplications:

q

i=I

+ 19-
q

i=1

(s)

We have brought the factors 2 -3, -(2 -3 - q)-2)- outside in order to reflect the symmelry.

Note. This is equivalent to the bilinear algorithm

v i i i = Xo[O]y~l] + x/[l]yo[O] ~ &--l)~4i__ ,~--I Mq+l + 0(2),
q q

i=t i--I

i = 1,2 q

where vj .[~ is the dual to the variable z} J], and the equivalence is gotten by identifying coefficients

of zj .[J] in both sides of (5).

The x-variables break into two blocks: X [0] = {x0 [0]} and X [I] = {Xl [11, ... , x~[l]}. Similarly

the y-variables break into blocks }.[0] and y[l] , and the z-variables into blocks Z [0] and Z [I].

When we zero a block X [/] (resp. yl'd], Z[K]), we will set to zero all x - (resp. y., z-) variables

with the given index pattern.

Fix , > 0. Select N large enough so that the M defined below will exceed Mr from the

Salem-Spencer Theorem.

Matrix Multiplication via Arithmetic Progressions 259

Take the 3N th tensor power of Construction (5). Each variable xi [/-j in the tensor power will

be the tensor product of 3N variables --x) Jj, one from each of 3N copies of the original algorithm.

Its subscript i will be a vector of length 3N with entries in {0, 1 q}, made up of the 3N sub-

scripts j. Its superscript [/] will be a vector of length 3N with entries in {0, 1}, made up of the

3N superscripts [J-J. As before, [/'J is uniquely determined by i.

Set to zero all variables x~/'j ~)~.ee~ those for which I has exactly N indices of 0 and exactly

. . . . ,r 2N
2N mdlces of 1; similarly y-andz-val~Ia~les. Set M = 2(N) + 1. Construct a Salem-Spencer set

B. Select random integers 0 < wj< M, j = 0,1 3N. For each superscript I ~ {0, 1} 3N, compute

a hash as follows. For each of the 3N index positions j, let lj denote the jth element of I (either

0 or 1). Define

3N
rood

./=I
3N

by(J) = w 0 + ~aJj.wj(rood M)
]=I ('")

bz(K) -- w 0 + Z (2 - Kj.)~)]2 (rood ,t4").
]=1

Since M is odd, division by 2 is well dcfincd.

Notice that for any blocks X Ill, Y[J'J,z [K] whose product X[I]Y[JJz [K] appears in the

computed tfilinear form, we have

bx(/) + bi,(J) - 2bz(K) = 0 rood 3,t. (6)

This follows by considering the contribution of each wj, noticing that in the basic construction

Set to zero all blocks X [FJ for which bx(/) is not in B. Similarly set to zero all blocks y[32 for

which bF(J) is not in B, and blocks Z [RJ for which bz(K) is not in B. Then for any nonzero term

X [l'J Y[JJz [R'J remaining in our construction, we have

bx(/) + b~J) -= 2bz(K) mod M, bx(/), by{./), bz(K) e B,

so that

260 D. Coppersmith and S. Winograd

bX~O = by(S) = bz(h3,

by the properties of B.

For each element b e B in the Salem-Spencer set, make a list of triples (X [/'J, y[.rj, Z[/Q) of

compatible nonzero blocks, with bx(/) = by(J) = bz(K) = b. (A block X [I] is the set of q2N var-

iables x/I,/j with nonzero indices in 2N specified places, that is, sharing a common superscript 1.

A nonzero block is one which has not yet been set to zero. Blocks X [/'j, Y[J], Z [K] are com-

patible if the locations of their zero indices are pairwise disjoint.) For each triple

(X [/'j, Y[J] ,z [K]) on the list, if it shares a block (say Z [K]) with another triple

(X [I'], Y[J'], Z [K]) occurring earlier in the list, we set to zero one of the other blocks (say

Y[J]), and thus eliminate this triple. (If each of X [/], Y[J], Z [K] is shared with previous triples,

we will end up eliminating at least two triples by zeroing one block of variables.)

For a fixed element b G B, the expected number of triples in the list, before pruning, is

3N ' ~ . - 2
N,N,Nj M �9

(3N)
Here N,N,N represents the number of compatible triples (X [/-j, Y[J], Z [K]) and the M - 2 re-

presents the probability of the (independent) events bx(/) -- b and by(./) = b. (If both hold, then

bZ(K) = b follows.) That is, for fixed blocks X [/], Y[J-J, and fixed integer b rood M, if we ran-

domize the values Wo, Wl, ..., W3N , then

Probfbx(/) = bF(J) = b) = Orob{bx(/') = b)Prob{bv(J) = b} -- M - 1 M -1 -- M -2,

since the sums bx(/) and by(./) involve different random variables. The expected number of

compatible triples (X [/], Y[J-J, Z [K]) with bx(/) = by(./) = bz(K) = b is the sum of these probe-

3N) possible triples. We do not need independence triples, bilities (M -2) over the N,N,N
X

among
/

since the expected value of a sum of random variables is the sum of their expected values, re-

gardless of independence.

The expected number of unordered pairs (X [/], y[J], Z[K'J), (X [I'], y[l'], z[K]) sharing a

Z-block is

Matrix Multiplication via Arithmetic Progressions 261

(3N)
Again N,N,N counts the compatible triples (X [/], Y[J'J, z[K]). The binomial coefficient

N,N -1 counts the blocks Y[J'] compatible with Z [K] (other than Y[J] itself). The factor

1/2 eliminates duplicate entries ((X [/], g[J], Z[~), (X [1'], g[J'], Z[/(J)) and

((X [I'], g[J'], Z[K]), (X [/'], Y[J'J, Z[K])). The factor M -3 is the probability of the independent

events bZ(K) = b, bldJ) = b, bt,(J') -- b. They are independent even if indices are equal (J' --/),

because of the presence of the random variable w 0.

The expected number of pairs of triples sharing Y[J], or sharing X [/], is the same.

Suppose we eliminate a block (Y[J']) because of a pair of triples

((X [/'j, y[J'J, z[K]), (X [I'], Y[J'], z[K])) sharing a Z-block. If L triples (not yet eliminated)

share this Y-block, then setting Y[J] to zero eliminates these L triples, while eliminating at least

(L2)+I pairs, namely all those sharing Y[J], and at least the pair sharing Z [K]. Since

+ 1 > L, we eliminate at least as many pairs as triples. Thus:

Lemma. The expected number of triples remaining on each list, after pruning, is at least

3N \ -2 3N 2N

(7)
/' 3N \ -2

>(I]4)~N,N,N)M "

The expected number of triples remaining on all lists, after pruning, is at least

H----(I/4,M'(N3NN,N)M -2. (8)

This expectation H is an average over the choices of ~).. There is a choice of ~). which achieves

at least H; fix such a choice.

Our algoriflun computes at least 1t block scalar products X [/] Y[J]Z [K'j. The free structure

of each block scalar product is in fact a matrix product of size

N N N < q ,q ,q > ,

and all the variables are disjoint (by the Salem-Spencer property). From the x-theorem we obtain

, (3N) - 2 3 N ' r N ~~ (q+2)3N>(I/4)M N,N,N M q �9

Use Stirling's approximation to obtain

262 D. Coppersmith and S. Winograd

(q + 2) 3N > cN-112+c33N2-2N(1 +0q3NTN,

where c is a constant. Le t t ing , go to zero and N to infinity, and taking N th roots, we obtain

(q + 2) 3 > (33/22)q 3r

2) 3
to < 3-r < logq(

4(q
27) '

+

\

Setting q = 8 we obtain

co _< log8(4000127) < 2.40364. (93

7. N e w Construction: Complicated Version.

In this section and the sequel, we will improve the exponent to 2,388 and then 2.376, by using the

same ideas as in the previous section, on more complicated starting algorithms.

Begin with the basic algorithm:

q
Z - (xotOJ + + + zt,J)
i :1

+ :2xFl)(,o O + +
.3 [2]~/ [0] .3 [2]~/ [0] .3 [2] + [~ . - - 3 - - q 2 - - 2] (x [O] + A Xq+l)~, 0 + Z Yq+l:~ZO +Jr Z~+I)

q
= E (x[Olyi[l]Z: l l + Xp]yo[Olz~ ll + x~l]y:ll~ 0]) 4-

i=I
x[O] s x[O]. [22_[o] x[2], [oL[o]

0 YO Zq+l + 0 Yq+lZO + q+lYO ~-0 +0(~.).

(lO)

The subscripts now form three classes: {0}, {q+ I}, and {1, 2, ..., q), which will again be denoted

L Again the subscripts uniquely determine the superscripts (block indices).

Take the 3N th power of this construction. Set L = [fiN] (greatest integer), where fl will be

determined later. Set to zero all blocks of variables except those whose superscripts contain ex-

actly N + L indices of 0, 2N - 2L indices of 1, and L indices of 2.

Set

(N + L "~{ 2N-2L)
M= 2 L , L , N - L] ~ N - L , N - L +1"

Matrix Multiplication via Arithmetic Progressions 263

Le t / j pick out the jth index of I as before. Define bx(/), by(J), bz(K) as before, and set to zero

any block of variables with bx(f) (resp. by(J), bz(K)) not in the Salem-Spencer set. For each b

in the Salem-Spencer set, make a list of triples (X [/], Y[J] ,Z [K]) of blocks, with

bx(/) = by(J) = bz(K) -- b, and eliminate entries with duplicated blocks.

For a given block Z [Kj, the number of pairs of blocks (X [/], Y[J]) compatible with Z [K] is

)r
\ N - L , N - L) '

since the N + L indices of 0 in K correspond to L instances of (0 in I, 2 in d), L instances of

(2 in 1, 0 in J), and N - L instances of (I in I, 1 in J); the 2N - 2L indices of I in K correspond

to N - L instances of (1 in I, 0 in ./) and N - L instances of (0 in I, I in J); and the L instances

of 2 in K all have (0 in 1, 0 in J). Since M is twice this size, the elimination of duplicates proceeds

as before and leaves a constant fraction of the triples intact.

We have M' lists, each with (on average) at least

(I]4) (L,L,L,N- L,N3N _ L,N - L) M-2

entries, all having independent variables. (The multinomial coefficient indicates that there are L

instances of (2,0,0) as (x - , y - , z -)indices, L of (0,2,0), L of (0,0,2), N - L of (1,1,0), etc.).

Each entry corresponds to a matrix product of size

< qN-L N-L N-L ,q ,q >.

Thus our equation is

(q + 2)3N~ (I/4)M, (3N)M-2q3(N-L)'rN
L,L,L,N - L,N - L,N - L

~-cN (- 1 +3t12)~ 27] Nq 3N(I -#)XNc,t N.
L ##(l + #)1 +#(2- 2/~) 2-2~ A

Letting r tend to zero and N to infinity, and taking N th roots, we get

(q + 2)3 > _ 27 q3(l-/~)x.

#a(1 + #)I+P(2 - 2#) 2-2t~

For q = 6, ~ -_ 0.048, we fred

co _< 3T < 2.38719.

264 D. Coppersmith and S. Winograd

8. Coupling the Weights

So far we have assumed that the weights ~ are independent random variables. In this section

we will make them dependent: essentially w2j_ 1 = w2y. One consequence is that the randomness

arguments need to be redone. The advantage is that we are able to gain higher estimates of the

"value" of various pieces.

It will be convenient to have a notion of the "value" of a trillnear form (or trilinear algorithm).

We define the "value" V x of a trilinear form A in terms of the matrix products it can simulate.

Suppose the matrix exponent is ~o = 3x. Suppose that a tensor power of A can be reduced (by

substitution of variables) to the approximate computation of several matrix products:

A | 2-, @ <mh, nh,Ph>.
h

Then we say

V.r(A) >-- (Z(mhnluoh)r I'N
\ h /

We also symmetrize: ff n is the cyclic permutation of the variables x#,z in a tfilinear form A, then

we define

v.(A) = (V~(A | .el | 3,

It is immediate that "value" is super-multiplicative:

V~(,4 | > V,(A) x V,(B),

where "A| indicates the tensor product. "Value" is also super-additive."

V~(A~B) ~ V~(el) + V,(B),

where "A~BB" indicates that A and B share no variables. If el reduces to B then

V~(A) > I~(B).

For those familiar with Strassen's paper (1986), this notion of value V, is intermediate between

Strassen's Q and his R.

We will use this notion to analyze a more complicated version of our present construction,

which will yield the exponent of 2.376.

Matrix Multiplication via Arithmetic Progressions 265

We start with the tensor square of Construction (10), but we relabel the superscripts (regroup

variables):

q

(~ + ~:-" Z (~,~,%t~I + ~13~.%~J + ~?~,!~::o,~ + xtll:l142 + ~t~A?4~ ~
i,k=l

x[2]. [1]z[I] , l"1]. [2] . [11 .x [23 . [U.[1] . [21. [23_[ol
4- i,k YO,k i,O -t- xi, 0 Yi,k e-O,k -r- i,k Yi,O zO,k "1- xi, k Yi,k z'O,O)

q

+ E(~o% :~o'~ 3 + xot~,%zt~ ~+ :o~ +
i=I

x[33 . [O]z[1] . [1]. [23 _[13 , x [l] . [o'lz[3]
-t- i,q+lYO,O t,O + Xi,o u -r" i,O YO,O i,q+l q -

[33 . [13[Ol . [13. [33 .[o1 , x[I]. [13_[2]
4- "~i,q+lYi,O zO,O ~ xi,o Yi,q+l~O,O -1- i,O Yi,O zO,q+l)

q (11)

+ E (T+~I : o t 1 ~ + ~+~,,~oE"o~1~ + ~,~,,vot1~,~ ~ +
k=1

x[0] , [3] _[1], x[1]. [2] _[1] xE1]y[3] _[0]
4- 0,0Yq+l,kZO,k -1- O,kYq+l,0~.O,k + O,k q+l,k~,0 +

i x [4] . [o1_[o3, x[2] ,[2] _[o3 , x[23 . [0]_[2]
+ k q+l,q+lYO,O~O,O "1- q+l,0YO,q+le-O,O -i- q+l,OYO,OZO,q+l 4-

x[2] . [03z[23 + x[0_], [2] zC2] + x[O]. [03z[4]
4- O,q+lYO,O q+l,0 0,OY0,q+l q+l,0 0,0Y0,0 q+l,q+l)

We have divided the (q + 2) 2 x-variables into five blocks:

X[0] . C0]~
= ix0 ,0 3

X[1] . [13 xoE:k])
= (xi, 0 ,

X [2] ,x [2] x[23 x[23
=' t q+l,0, i,k , 0,q+l. t

X[3] . [33 x[33
= [Xq+l,k, i,q+ll

X[43 = (Xq[4]l ,q+l }'

Here i,k denote indices that range from 1 to q. In the original tensor square, the superscripts would

have been 2-vectors: x [1'03, We have added the two elements to forrn a single superscript: x~g].

Notice that if X [/] Y [J] z [K] appears in lhe trilinear form, then

I + J + K = 4 ,

The trilinear form can be written in block form as"

266 D. Coppersmith and S. Winograd

E X [lJ Y[J'Jz [K].
I+ J+ K=4

There are four types of terms in this trilinear form.

X[O] y[Olz[4] _[ol. [O]z[4]
= -'~-0,0 Y0,0 q+l,q+1"

This is a matrix product of size < 1,1,1 > , whose "value" is 1,
X[O] y[O] Z [43, X[O] y[41Z[O] ' X[4] y[~176

(a)

There are three such terms;

q q
X[O]y[1]Z [3] = X-~u[o]. [U.[33 V ~ [03, [l] . [s]

Z~-'o,os'i,o ~i,q+ l + .,' ,x6,oyO,k ~q+ l,k"
i=1 k=l

(b)

Eli . [11>). Its This is a matrix product of size < l,l,2q > (i.e. a scalar x [0] times the vector < Yi,o, YO,k

"value" is (2q) ~. There are six such terms: X[0] y[l]Z[31 ' X[0] y[3] Z [1],

X[I]y[O]Z[3], X[1]y[3]Z[03, X[3]y[O]z[I], X[3]y[l]z[O]

q
x[O] y[2]ZI-21 x[o], [21 .[21 [01. [21 [2] 0,0Yi,k i,k �9 ~- 0'0~Vq+i,0e0,q +1 + xO,OYO,q+l% +1,0 + E x[0]" [2]z[2]

i,k = 1
(c)

This is another matrix product, of s~e < 1,1, q2 +2 > , with "value" (q2 +2)~. There are three

such terms: X [0] Y[2]Z[2], X [21Y[0]Z[2], X [2] y[Z]z[0] '

q q
X[1]y[I]z[2] X -~ [1] [1]_[2] _ ~'~x[l].,[1]z[2]

=/_axi,D Yi,o z-0,q+l + /-.a O,k'tO, k q+1,0 +
i=l k=l

q q
+ E x'[l]" [11z[2] ~ _[I]. [11_[21

t,O YO,k i,k + d_a "*O,k Yi,D ":i,k '
iOk--1 i,k~!

(e)

There are three such terms: 3([11 y[I]z [2] ' X[I]y[2]Z[1] '

end of this section, we Will find that, if q > 3, the
22/3 q-r(q 3. + 2) 113

XL2Jy~ijzOj.rl r l r l In the lemma at the

"value" of this term is at least

Matrix Multiplication via Arithmetic Progressions 267

Take the N"" tensor power of Construction (I1), where N is

ar 0 < e ~ 4, be positive real numbers (determined below) such that

4 4
2 ~ r 1, Z~ecLr
r ,F=O

divisible by 3. Let

Let Ar be integer approximations to a :N such that

4 4

~"~Ar ZgA:=4N/3.
:=0 :=0

Retain only those blocks of variables (X [l"j, Y[J], Z [K]) such that

#UII~j~N, 6.=e) = Ae,

setting the others to zero, where as before lj picks out the jth index position.

Let M" be the number of nonzero triples (X [/], Y[J], Z [K]) containing a given block X [/].

We have

I-[A:~
M" = ~ 0<r

I-I {he,re,n} rl t , m , n [
:+m+n=4

(12)

where {~Cm,n} range over partitions of N such thai

~ tlr = A~
mJ'l

l:,m,n ~ Am
r

lr = An
r

and the only nonzero values of rl?,m,n occur with l' +m + n ~ 4, 0 < g,m,n < 4. The summand

in (12) is maximized at

268 D. Coppersmith and S. Winograd

l"le,m,n ----- 7~ ,m,n
^

70,0,4 ---- 70,4,0 = 74,0,0 = a
^

)'0,1,3 ----- 70,3,1 = 71,0,3 ~)'1,3,0 -- 73,0,1 ----" 73,1,0 ~ b
A

)'0,2,2 ~ 72,0,2 "~")'2,2,0 = c
^

) ' I , I ,2 ----)'1,2,1 -----)'2,1,1 = d

A A
A 1 ---" 2b + 2 d

A2 = 2t +
^

A 3 = 2b
^

A4=a.

(13)

In la ter calculat ions we will approx imate M " by its largest term, t imes a po lynomia l N p in N.

Set M = 2M" + 1. Cons t ruc t the Salem-Spencer set. Choose r andom weights wj, 0 <j < N.

C o m p u t e t he hash as before, wi th a minor change (4 replacing 2) in the definit ion on the z-indices:

N

 tj imod M
j=l

N
br(.D -- wo + E . ~ v ~ ' mod M

j = l

bz(K) - w 0 + (4 - K])wj 12 r l 3 o d M.

]=1

Reta in on ly those variables mapp ing into B, setting others to zero. As before, a nonzero triple

X[I'JY[J]Z jIG remain ing in the trilinear form will have bx(/) = by(./) = bz(h ') e B.

After the usual pruning, we have approximate ly

N
(Ao, AI,A2, A3,A4)

t r iples o f b locks (X [/3, Y[J], Z IK]) remaining. For a good por t ion of these triples (at least a

f ract ion N -p of the total) the N indices j = 1,2 N will contain about Yd,m,n instances of

X[~y[m'Iz[n]. So the value o f each triple of blocks is about

Matrix Multiplication via Arithmetic Progressions 269

^ A A A

[1]3a [(2q't)]6b [(q2 + 2)'r]3c [2213q'r(q3T + 2)11313d

A A A

= (2q)6~b(q 2 +2) 3"to [4q3"t(q3~ + 2)] d.

Thus our auxiliary equation is

N 6~b 2
(q + 2) 2N > N -p AO ' A1 ' A2 ' A3 ' A4 (2q) (q +2) 3~e [4q3~(q 3~ + 2)] d.

^ d to maximize the fight-hand side,.subject to We want to choose ~, /~, c,

A

3~ + 6/~ + 3~ + 3t = N,

and with ,4c0 defined by (13).

In fact, letting ~ -- ~N, /~ = bN, ~" = ~N, t~ =dN, letting N grow and taking N th roots,

we get

(q 4- 2) 2 =
(2q)6"tb(q 2 +2)3~?[4q3*(q 3x + 2) j

(2~ + 2g + c-3 2~ +2g + ~(2g + 2Y) 2b +zd(2~. + ~)2~ + ,/(2b-)2b-(a_)a"

We wish to minimize z with respect to ~, b, 5, d, q, subject 1o

3 ~ + 6b+3~ '+ 3 d = 1
~, 5, ~,,7> o
q ~ 3 , q~2~.

We f'md that

= 0.000233
b=0.012506

-- 0.102546
d = 0.205542
q = 6

gives an exponent of

~ 3z < 2.375477.

270 D. Coppersmith and S. Winograd

DISCUSSION

Here we essentially set w2j_l -- 22j, when we grouped together into one block the variables
�9 ..[!] _[13 -'i,u , -~0,k, and similar groupings for the other blocks. Other linear dependences among the

remain to be investigated, including:

wsj-2 -- wsj-1 = waj

O1"

w2j_ t = - 2w2j.

PROOF OF THE LEMMA

I.emma. Assume q > 3. The "value" V. r o f the trilinear form

q q
E [1,0]. [1,03~[0,2]. X -a [0,13. [0,13_[2,0]

Xi,O Yi,O ~O,q+l d- L.axO,k YO,k ~q+l,O q-
i=1 k-I

q q
~-~ u[l,0] .[O,U_[1,J] X -~ ~[o,13. [1,0].[1,1] + �9 xi,O YO,k Zi,k + /'~ -~O,k Yi,O Li,k

i,k=l i,k=l

is at leasl 2213qX(q 3"r + 2) 1/3.

Note: The superscripts are different from those in the application of this lemma, but they are

still uniquely determined by the subscripts.

Proof. Take the 2N th tensor power. Retain only those X-blocks with exactly N indices of

[1,0] and N of [0,1]. Retain only those Y-blocks with exactly N indices of [1,0] and N of [0,1].

Retain those Z-blocks with exactly L indices of [2,0], exactly L of [0,2], and 2G -- 2 N - 2L of

[1, I], where

[2 N I and G = N - L .
L -- qS~ + 2

The number of X-blocks is (2NN). The number of nonzero triples (x[l"Jy[J'Jz[K]) eontaJning

a given X-block is

Matrix Multiplication via Arithmetic Progressions 271

The same numbers hold for Y-blocks, but not Z-blocks; see below.

Set

M---4(L;G)2 + 1.

Construct a Salem-Spencer set B, define a hash as before, and set to zero blocks not hashing into

B. Eliminate instances where an X-block or a Y-block is shared among two or more nonzero tri-

ples.

There are L,L,2G Z-blocks, and to each there are initially Iriples (X[1]Y[J]z[K]).
Counting only those with bx(/) = by(J) = bz(K) we have about

1 (~) M - I _ ~ ~ (~) (L ~ G) - 2 _ H

A calculation shows that It > > 1 if GIL > 3.41.

This is, in Strassen's terminology, a C-tensor over < 1,It,1 > , where C is the class of tensors

consisting of matrix products < m,n,p > with mnp = (q2)2G(q)2L = q4G+2L
:2L +

In short, we have \ L,L,2G fl disjoint objects, each of which is a C-tensor over < 1,H,I > .

The auxiliary equation is:

V.r2N,..,(L,2LNG) I (~)1213(q4G+2L)x
4 (N) 2

,.~ (2/V) 2N I(2G)2GGGLLGGLLI213q(4G+2L)'r
- LLLL(2G)2G GGG G 4NNN N

3N
v~ ~_

(2N) 3N

LL(2G)GN 2N
3N.r 3G'r (6G+3L)x 22N+LN N q q

q "." LLG-------.-~-- '

,.,,22Nq3N't (N)2L (q3"r) G.

Selecting

L 2
L+G q 3 ~ + 2

3"1-
G q

' L+G ='q3~ + 2

maximizes this estimate at

272 D. Coppersmith and S. Winograd

22Nq3N~(q 3"r + 2) N

and, taking 3N th roots with N large,

V~ ~ 2213qX(qa'r + 2) 1/3.

Finally, the estimate

G q > 3.41
L 2

is ensured if q > 3, since 3T > 2.

9. Related schemes

We developed a few other techniques on the way to the present paper. While these did not lead

to a lower matrix exponent, they may be of interest when applied some other starting algorithm.

ASYMMETRIC VERSION

The first technique we present is an asymmetric version of the technique presented in the

previous two sections. We s~art with an asymmetric basic algorithm, with a block structure and

a fine structure. After a suitable tensor power, instead of pulling out several block scalar products

(whose fine structure is that of matrix products), we will instead pull out several block vector

products. In Strassen's terminology, we will be developing several C-tensors over < 1,H, 1 > for

some large value of H. This is made possible by the Salem-Spencer Theorem, as before. We then

use Strassen's machinery to estimate the value of these C-tensors over < I,H, 1 > .

We illustrate with a basic algorithm closely related to Strassen's. It uses q + 1 multiplications.

q
�9 c 0 1 , , . t 0 1 . .

i : 1
q (14)

= y. xt%to1=pJ + + +

i=I

Later we will determine real numbers a, fl > 0 with 2a + fl ~ I. Choose ~ small and N "large

enough". Set

Matrix Multiplication via Arithmetic Progressions 273

L--- [otNJ, G = N - 2L, M = 2 (L +L G) + 1.

Construct a Salem-Spencer set B using this value of M.

Take the N th tensor power of Construction (10). Set to zero all blocks except: X- or Y-blocks

having exactly G + L indices of 0 and L indices of 1, and Z-blocks having exactly G indices of 2

and 2L indices of 1. Select random integers w 0, w 1 w N rood M, compute the hash as before,

and set to zero any variable not hashing to an dement of B. Then any nonzero triple of blocks

(X [/], Y[J'J, Z [K]) whose product appears in the construction has, as before,

bx(O = by(-,') = bz(X) ~ ~.

A n y X - b l o c k X l i s c o m p a t i b l e w i t h e x a c t l y (L t G) z - b l o c k s Z K : t h e L i n d i c e s o f l i r l , all

correspond to indices of 1 in K, while of the G + L indices of 0 in I, exactly G correspond to in-

dices of 2 in K, and L to indices of 1. Thus the expected number of Z-blocks such that

bZ(K) = bx(/) is about 1]2. If there are more than two such Z-blocks, zero a corresponding

Y-block. Similarly, if a Y-block is involved in at least two triples

(,i(['/], yrJ], z[IO),(x[l '] y[J], z[K']) , we zero one of the X-blocks. Thus each X- or Y-block

is involved in at most one triple (X [/], Y[J'J, Z [K]) after this pruning.

We do not make such a requirement on the Z-blocks; we allow each Z-block to be involved

in a large number of triples:

(x[lh], y[Jh], z[K]), 1 < h < It,

For a given Z-block, the expected number of such triples (before pruning) is

As before, given two blocks X [/], X [1'] compatible with a given block Z K, the events that

bx(l) = bz(K) and bx(l') = bz(K) are (painvise) independent, so that we can estimate the variance

in the number of triples (before pruning) as

Then Chebyshev's inequality can be applied to say that

1
Prob(#bloeks < ta - 30) _< -] f f .

274 D. Coppersmith and S. Winograd

For a given block Z [K] with bZ(1Q~B, the probability of at least ~ - 3 r triples

(X [/t~], Y[J^], Z [K]) before pruning (i.e. bx(lh) = by(Jh) = b.z(K)) is at least 9/10. Pruning elim-

inates only a constant fraction of the triples. Together with the observation that r < < #, we

obtain:

Lemma: There are constants c 1, c 2 such that, averaging over the choice of w], the expected

number of blocks Z[K]withat l eas t c l (L)M- I associatedtriples(X [lh], Y[Jh],z[K])remaining
a , -1 2L+G ~erpruning, isatleastc2MM (G).

.,, - I [2L + G)
That is, we will have at least c2M M ~, G independent objects, each of which is a

C-tensor o v e r < l , C l (~) M - I 1 > , , where C is the class of matrix multiplication problems

2L < m, n;p > with mr~ = q

Applying Strassen's formula, we get

o~<_3"r N, (q+ I ,N>c2M'M-I (2L: G)IcI(2~)M-II213q(2L'rN).

Letting ~ shrink and N grow, and taking N th roots,

c~ < 3"r' (q + 1) >- (2~)-2~/~-/~I22~ (~ +~/~fl),,+[3 ?2/3q2~'r.

(As a consistency check, note that the limiting case, a = 0.5, fl = 0, recovers Strassen's formula

q + 1 = 2213q ~, by disallowing terms containing Zq+ 1.) Selecting q = 4 and a = 0.485, we optimize

co at 2.4602. Tkis exponent is not as good as that obtained in the previous section, but the

techniques exposed here may be more widely applicable.

"STRASSEN SQUARED"

Another possibility is to iterate Strassen's construction. Where Strassen develops a C-tensor

over < l,k,1 > , where C is a class of matrix products < m,n,p > for a fixed value of mnp, we in-

stead develop a D-tensor over < l,t ,k > , where D is a class of C-tensors over < 1, k',l > , with

C again a class of matrix products.

To illustrate, start with Construction (5) from Section 5, using q + 2 multiplications to obtain

q

E (xoYizi + XiyoZ i + x~ViZo) + 0(2).
t=l

Matrix Multiplication via Arithmetic Progressions 275

Replace 2 by 22 throughout. Take the tensor product of this construction with itself; (q + 2) 2

multiplications yield

q q

t=lj=l

-b xi~YOjzi, 0 a t- xf,OYit]y_O~] .-1- xi~Yi,f}y-(}j q- xi~YijZO,O) .+ 0(22).

Set Xo, 0 to 0. Multiply xij by 2, and multiply YO,O and Zo, 0 by ,t -1 . This kills three terms:

xo ,oYqzq , xi$vo~iZi,o, xi iYi ,oZoj �9

We are left with

q q

~ [(x 0 j i , Ozij + XZ,OM 0 jztj + xijYo,oZij) + (xO~ijzt, o + xi,oYijzoj + xi~ejzo,o)] + 0(2).
i=lj=l

The first parenthesized expression has the form of a C-tensor over < 1,3,1 >, where C is the class

o f matrix products < m,n,p > with rnnp = q2., the second is a C-tensor over < 3,1,I > . Let D

denote the class of C-tensors over < m ' , n ' ,p '> with m'n'p '= 3. The two parenthesized ex-

pressions share x-variables, and they fit together as a D-tensor over < 1,1,2>. By Strassen's

machinery, we can write:

~o < 3z, (q + 2) 2 = 22133213q 2"r

Setting q = 9, we get m ~ log9(113/6) < 2.459. Again, this is not as profitable as the development

in Section 6, where the corresponding equation was

o~ < logq((q + 2)3)
- 6.75 '

10. Remarks

We are applying the ~-theorem in a special case, namely when all the matrix products are of lhe

same shape. Examining the proof of the x-theorem, one finds that this eliminates some of the

sources of inefficiency for matrices of moderate size. Also, by altering the construction slightly,

we can eliminate the use of 2, another contributor to the inefficiency inherent in the "r-theorem.

276 D. Coppersmith and S. Winograd

Nonetheless, the large values of M dictated by the Salem-Spencer theorem still make the present

algorithm wildly impractical for any conceivable applications.

A remarkable feature of the present approach is that we can use basic constructions in which

the number of x-variables is equal to the number of multiplications, as is the number of y- or

z-variables. (In Section 7, this number is q + 2.) Before Strassen's 1986 paper, this was not pos-

sible. Coppersmith and Winograd (1982) had shown that for any basic algorithm (approximately)

comput ing (several) matrix products, the number of multiplications had to strictly exceed the

number of x -variables (or else y- or z-variables), except in trivial cases. This had led to the ac-

celeration techniques of Coppersmith and Winograd (1982), but had also implied that one could

never achieve co -- 2 by starting with a fixed, finite-size basic algorithm. But now Strassen's

techniques have removed the necessity of starting with a matrix product, and, coupled with the

techniques of the present paper, allow the hope of someday achieving ~o = 2. (See the following

section.)

An open question is a possible analogue of the Salem-Spencer theorem in characteristic two:

For arbitrary ~ > 0 and large enough N, do there exist subsets A, B, C of (7/2) N of size

141 = IBI --- ICI -- (2/7) 1-~, such that each element a e 4, b e B, or c e Cis involved in exactly one

relation of the form

a+b+c--O?

That is,

Va~A 3!b~B, c~C:
VbeB 3!aeA, e~C:
V c e C 3!aeA, b~B:

a + b + c = O
a + b + c = O
a + b + c = O

With such a construction, the present techniques would become applicable to a wider class of

starting algorithms. For example, our first algorithm involved three block products,

x[O]y[1]Z [1], X[I]y[O]z[I], X [I] y [1] Z [0], so that if X[I]Y[J-Jz [K] appeared we knew

I + J + K = 2. If in addition the block product X [0] Y[0]Z[0] appeared, our condition on the

indices would become I + J + K = 0 ~ 77 2. A characteristic-two version of the Salem-Spencer

theorem would become useful in that situation.

Matrix Multiplication via Arlthmetie Progressions 277

11. Can W e Achieve ~ = 2?

In closing, we sketch the relation between a hypothetical combinatorial construction and the

elusive

?
to~2,

Definition. An Abetian group G (with at least two elements) and a subset S of G satisfy the

no three disjoint equivoluminous subsets property if: whenever TI, T2, T 3 are three disjoint subsets

of S, not all empty, they cannot all have the same sum in G:

s e T 1 se T 2 s e T 2 se T]

Assume for now that we can find a sequence of pairs G,S with the no three disjoint

equivoluminous subsets property, such that (log21G[)/IS 1 approaches 0.

If the tfilinear form

xOYlZ 2 + xoY2z I + xlYOZ 2 + x2YOZl + xlY2~ + x2Y17- 0

had border rank 3, then by the techniques of Chapter 6 (easy case) with q = 2, we could prove

to = 2. Unfortunately, this form has border rank 4. But if the n th tensor power of this form had

border rartk 3 n+~ the same techniques would still yield <o = 2. This is our goal.

We will use a Fourier transform to get a related form to have rank 3. This related form has

extra terms, which we must cancel somehow. We will multiply variables by roots of unity, take

a large tensor power, and take a Fourier transform again, and use the no three disjoint

equivoluminous subsets property to arrange the cancellation of the unwanted terms. This will

show that the n th tensor power has rank 3 n+~ Then we will apply the teehrdques from this

paper to derive to = 2, given the existence of (G,S) with (logalal)/ISI approaching 0.

Let S = {s I , s 2 sn} and G satisfy the no three disjoint equivoluminous subsets property,

with ~ = (log2tGI)/IS I.

Let X and ~b be two independent characters on G. Select i from {1,2 n). Evaluate the

characters X(si), • (st), which are complex numbers of magnitude 1. Select r = r(x, tk, si) to satisfy
3

r = x (s i) /~ (s i) .

Evaluate the following sum, where toi ranges over the three complex cube roots of 1:

278 D. Coppersmith and S. Winograd

1 -lto2x2) U i ~ ~ , -~ (x 0 + ~C(si)-lrwixl + r
co l

x + + x

• (rzo + + to'z,)

We see that this has trilinear rank at most 3. By multiplying by powers of toi and summing over

~o i, we are taking a three-point Fourier transform, and the terms which survive in the product are

those for which the exponent of toi is divisible by 3:

U i = (Xoyl z 2 + xoy2z I + xlYOZ 2 + x2Y0Z 1 + xlY27. 0 + X2YlZ 0) +

+ (X(si)xoYoZo) + (Z(si) -1 ~b(si)-lxlYl Zl) + (d/(si)x2Y2Z2).

We may think of this as

U i --- (Good/) + X(si)Badl i + ~((si) -1 ~b(si)-lBad2i + ~b(si)Bad3 i,

where Good / i s the sum ot the first six terms (which we want), and Bad#i are the unwanted terms.

Now take the tensor product of the various Ui:

| U i = @ ((Good/) + X(si)Badl i + X(si) - I $(si) -1Bad2i + ~(si)Bad3 i) .
1 <_i~n

This is the sum of 4 n terms, each a tensor product of tdlinear forms of the sort Good /o r Bad~'i.

The first term,

G O O D = @Good/
i

is the one we want. For each of the other 4 n - 1 terms, for ~' = 1, 2, 3, let T? be the set o f s i cor-

responding to those indices t for which Bad#/is included in the product. The coefficient of this

term is

Since the T4 are disjoint and not all empty, the no three disjoint equivoluminous subsets property

implies that either the argument of X or the argument of CJ is not the identity element of G.

Matrix Multiplication via Arithmetic Progressions 279

Now sum over the various choices of X and r The "GOOD" term will accumulate (and get

multiplied by]GI 2, which we can deal with), while all the other terms will vanish, because we are

summing over all characters X (or if) at an element of G other than the identity.

This shows that the trilinear rank of

| Good/ l<i<=| (xOylz2 + xoY2zl + xlYOZ2 + ac2Y0Zl + xlY2ZO + x2YI~)
I <i<_n

is no more than IGI23 n.

Note here that, if necessary, we can replace G by a Cartesian product of G with itself N times,

and replace S by N copies of S, one in each copy of G. A typical element of the large S will be

(0,...,0, si, 0,...,0). Then ~=(log21GI)/ISI remains unchanged, and the no three disjoint

equivolurninous subsets properly is inherited.

Following the arguments from Chapter 6, we would then obtain, by analogy to Equation (9),

26r33 > (27/4)23~ (15)
<, ,~6r

o = 3z _ Iog2(z X 4) = 2 + 6~.

With the assumption that ~ = (Iog21GD/]S I approaches 0, this would yield ~o -- 2.

We have not been able to determine whether there exist such pairs (G,S) with (log21GI)/ISI

approaching 0.

References.

Behrend, F.A. (1946). On sets of integers which contain no three terms in arithmetical
progression. Proc. Nat. Acad. Sci. USA 32, 331-332.

Coppersmith, D., Winograd, S. (1982). On the Asymptotic Complexity of Matrix Multiplication.
S l A M Journal on Computing, Vol. 11, No. 3, 472-492.

Coppersmith, D., Winograd, S. (1986). Matrix Multiplication via Behrend's Theorem. Research

Report RC 12104, IBM T.J. Watson Research Center, Yorktown Ileights, N.Y., 10598, August

29, 1986.

Coppersmith, D., Winograd, S. (1987). Matrix Multiplication via Arithmetic Progressions. Proc.

19th Ann. ACM Symp. on Theory of Computing, 1-6.

Pan, V.Ya. (1978). Strassen Algorithm Is Not Optimal. Trilinear Technique of Aggregating,
Uniting and Canceling for Constructing Fast Algorithms for Matrix Multiplication. Proc. 19th

Ann. IEEE Syrup. on Foundations of Computer Science, 166-176.

280 D. Coppersmith and S. Winograd

Pan, V.Ya. (1984). How to Multiply Matrices Faster. Springer Lecture Notes in Computer Sci-

ence, vol. 179.

SchSnhage, A. (1981). Partial and Total Matrix Multiplication. SIAM J. on Computing, I0, 3,
434-456.

Salem, R., Spencer, D.C. (1942). On sets of integers which contain no three terms in arithmetical
progression. Proc. Nat. Acad. Sci. USA 28, 561-563.

Strassen, V. (1986). The Asymptotic Spectrum of Tensors and the Exponent of Matrix Multi-
plieation. Proc. 27th Ann. 1EEE Syrup. on Foundations of Computer Science, 49-54.

