Matrix Multiplication via Arithinetic Progressions

Don Coppersmith and Shmuel Winograd
Department of Mathematical Sciences
IBM Thomas ] Watson Research Center
P O Box 218
Yorktown Heights, New York 10598

Abstract.

We present a new method for accelerating matrix multiplication
asymptotically. This work builds on recent ideas of Volker Strassen,
by using a basic trilinear form which is not a matrix product. We
make novel use of the Salem-Spencer Theorem, which gives a fairly
dense set of integers with no three-term arithmetic progression. Our
resulting matrix exponent is 2.376.

1. Introduction.

A matrix multiplication algorithm is usvally built as follows. First
an algorithm for a small matrix problem is developed. Then a tensor
product construction produces from it an algorithm for multiplying
large matrices. Several times over the last seventeen years, the ground
rules for constructing the basic algorithm have been relaxed, and with
morc care in the tensor product construction, it has been shown how
to usc these more lenient basic constructions to still give efficient al-
gorithms for multiplying large matrices.

Recently Strassen [Str] found a new relaxation of the ground
rules. His basic trilinear algorithm computes a trilinear form which is
not a matrix product at all. In this trilinear form, the variables arc
collected into blocks. The block structure (the arrangement of the
blocks) is that of a matrix product, and the fine structure (the ar-
rangement of variables within individual blocks) is also that of a ma-
trix product, but the overall structure is not, because the fine structures
of different blocks are incompatible. After taking a tensor power of
this trilinear form, Strassen operates on the block structure (that of a
large matrix product) to reduce it to several block scalar multipli-
cations. Each block scalar multiplication is itself a matrix product (the
fine structure), so that he has several disjoint matrix products (sharing
no variables). He can then apply Schdnhage’s z-theorem Lo obtain
an estimate of the matrix exponent w:

w< 2479.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 ACM 0-89791-221-7/87/0006-0001 75¢

Here we follow Strassen’s lead. We use a basic trilinear algorithm
closely related to Strassen’s. The block structure of our trilincar form
is not a matrix product, although the fine structure still is. We usc a
combinatonial theorem of Salem and Spencer [SS], which gives a
fairly dense set of integers containing no three-term arithmetic
progression. We hash the indices of the blocks of variables to integers,
and set to zero any block of variables whose indices do not map into
the Salem-Spencer set. We do this in such a way that if the product
XgyjzK is contained in our trifinear form, then the hash valucs
b (D), by(J), b,(K) form an arithmetic progression. So for any prod-
uct of nonzero variables x{yjzg in our tiilincar form, we will get
b, ()= by(J)= b,(K). We choose paramcters so that on average cach
nonzero block of variables X is contained in at most one nonzero
block product XY)Zg, and sct to zero some blocks of variables to
ensure that this condition holds absolutely, not just on average. Then,
as Strassen, we have several disjoint matrix products, and can apply
Schénhage’s 1-theorem to obtain our exponent

w < 2.376.

The rest of the paper is organized as follows. In Section 2 we re-
view Schénhage’s 7-theorem. In Section 3 we present Strassen’s con-
struction.  Section 4 contains the results of the Salcm-Spencer
theorem. In Section 5 we present an easy version of our construction,
which gives an exponent of 2.404. The version presented in Scction
6 uses exactly the same ideas, but is complicated by more terms and
more indices; this gives an intermediate exponent of 2.388. The full
paper contains the general theory, and a far more complicated starting
case, yielding 2.376. We make concluding remarks in Section 7.

Readers unfamiliar with previous work in matrix multiplication arc
referred to Victor Pan’s excellent survey [Pan].

Acknowledgments.

We are grateful to James Shearer for the reference to Behrend’s
construction, and to Victor Pan for that of Salem and Spencer.
Amold Schénhage gave a more symmetric presentation of our starting
algorithm in section 5. James Davenport offered helpful comments
on an early draft of the paper.



2. Schonhage’s Theorem

The basic results from “classical” matrix multiplication can be
summarized by Schénhage’s 7-thcorem:

Theorem (Schinhage):  Assume given a field T, and cocfficients

%ihes Biknes Ykine it F(A) (the field of rational functions in a single
indeterminate 1), such that

L
Z (Zauh{xu )(Z’Blkhf’yl )< Yi. 1h{’7k| )
¢=1 \ijh jkh kih

mp Ny
-2 SO S ) T A
i=lj=lk=1 g>(]

is an identity in xsh) yft) 7&’}), A, where £, are arbitrary trilinear jorms.

Then given £ > 0, one gan. construct an algorithm to multiply Nx N
square matrices in Of Nt ) operations, where 1t satisfies

L= Z(mhnhph)t. (1)
h

We will also write the error term as O(4), so that the hypothesis

becomes
L
; (Zauh{’xu >(Zﬂjkhfyjk )(Zyklhﬂkl >
=1

ijh jkh kih

- Z(Zé"’y,i’z&']’) +0()

h \ijk

Less formally, the hypothesis is a trilinear algorithm, using L.
bilinear multiplications to (approximately) compute simultaneously
several independent matrix products, of dimension my, x n), times
gy X Py (Written <my, g, p;>).

Each of the L bilinear multiplications is a linear combination of x
variables, times a linear combination of y variables:

et gt

ijh jkh

Linear combinations of these products My are identically equal (up to
errors of order A) to the desired elements w of the answer matrix:

h) def h
wh < Z e = ZYkithHO(“
& e

Multiplying both sides by 7&,), which we view as a dual to wfk), and

summing, we obtain the single trilinear identity, which contains all the
information of the sevcral bilinear identities. “The trilinear version is
more useful in the present situation in that it reflects the underlying
symmetries.

In such a situation, we definc the matrix exponent obtained from
the construction as w = 31.

3. Strassen’s construction

Strassen has found a new relazation of the ground rules for the
construction of the basic algorithm, that is, he has relaxed the hy-
potheses of the theorem. A key element in his construction is the
observation that, using the ability to multiply a pair of N x szatriccs,
one can “approximately” (in the A sense) multiply (3/4)N” pairs of
independent scalars, that is, compute

(34N

Y, Xevere + O) @)
=1

where all the x4, ¥z, 7, are independent. Namcly, setting

=300

one obtains
2 2 2 .
i+ 2 i* +2j(k— k—g) +2(k=
z (Xiy{l lj)(yjk/{l i g))(zki,{( By +% g)l)
I<ijk<N
= Z Xijyika‘l + 0(1),
i+j+k=g
1<ijk<N

since the exponent of 1,
2 Lo a2 . 2 . PR 2
U+ 2+ + 2k~ g)+(k—g) +Ak—gli=(+j+k-g),

is zero when i+ j+ k=g and is positive otherwisc. Since any two in-
dices i,j uniquely determine the third k=g-i-j, each variable x;; is in-

volved in at most one product. There are about [(3/4)N ] triples
1,3k, 1<ijksN, i+j+k=g. Call this construction (*).

Strassen uses the following basic trilinear algorithm, which uscs
q + 1 multiplications:

q
X (50 Ax)(vo + Ai)(zil4) + ("OXYU)( - ZZ;I/‘.)

4
=l (3)

= E(Xamzi + xg¥;7;) + O(2).
i=1

This is a viewed as a block inner product:

i)

11, 22
(Xi Yo% + XY¥i Zi) + O(4).
=1

The superscripts denote indices in the block inner product:
xy'z 4 xvz,

or, dually,

w=x'v'+ x%¥?
One sees the block structure of an inner product, or matrix product
of size <1,2,1>, where the 1x 2 block matrix (row vector) X is
multiplied by a 2 x 1 block matrix {column vector) Y to yield a 1 x 1
block matrix (block scalar) W. We can label x; and xg with different
superscripts (put them into different blocks) because they are different
variables; similarly y; and y. But the z-variables are involved in both
blocks. They are shared. This is the new complication in the basic

algorithm. This algorithm does not in itself represent a matrix prod-
uct.



We examine now the fine structure. The first block, inl y(l)zi, re-
presents a matrix product of size < g, 1, 1 > . A 9 x | matrix (column
vector) x is multiplied by a 1 x 1 matrix (scalar) yg to yicld a g x |
matzriﬁ (column vector) w, which is dual to z. In the sccond block,
3 XgY; 7; represents a matrix product of size < 1,1,q>. A I x | ma-
trix (scalar) x; is multiplied by a 1 x q matrix (row vector) y to yield
a 1 x q matrix (row vector) w. The difficulty comes when we try to
add the two blocks. The indices i of w (or z) are “schizophrenic’: they
don’t know whether to bechave as row indices or as column indices.
Strassen’s construction gives a way out of this difficulty.

Take the construction (3) and the two constructions gotten by cy-
clic permutations of the variables_x,y,z, and tensor them together, to
get an algorithm requiring (q + 1)” multiplications to compute

q
1 1011, 21 11 12, 112 21, 21 12 22
Z (%ijoYojkZiok + XjkYojkZioo T XijoYookZijk + XijkYookZijo +
ijk=1
12 20 10, 22 2112 | 12.22 21 22 22 22
+ %0j0Yijk?iok T X0jkYijkZi0o + Xgjo¥iok%ijk + X0jkYiok%jo) + O(4).

This is a block 2x 2 matrix product (indicatcd by the superscripts),
Within cach block is a smaller matrix product; for example the block
1=1,J=1, K =2 is the matrix product

q

11 12 21
Z (x;0¥00kZijk)
ijk=1

which can be interpreted as a matrix product of size < q2, L,g>:

q
1 12 21
Xij,0Y00 k7 ij-
ik=1

Taking the Nlh tensor gower of this construction, one gets a con-
struction, requinng (q + 1) N multiplications, and producing a block
2N % 2 matrix product, each block of which is a matrix product of
some size <m,n,p> where mnp = qBN. Applying construction (*)
to the block structure, one then obtains (3/4)2 )" independent matrix
products, cach of some sizc <mmn,p> where mnp=q~ . Applying

the 1 —theorem, one gets

NNy,

wsdy, @+ ) =32

Taking N roots and letting N grow, the (3/4) becomes insignificant,
and we have

w<d, (gq+ l)3 = 22q31.
Letting q = 5, Strassen obtains

o < log(6°2%)/ log 5 = logs54 < 2.479.

4. The Salem-Spencer Theorem

We will use the following theorem of Salem and Spencer [SS]; sec
also [Beh].

Theorem (Salem and Spencer): Given ¢ > O,IIhere exists M, such
that for any M > M, there is a set B of M’ > M * distinct integers

0<b,<b2<---<bM,<.“21

with no three terms in an arithmeltic progression:

forbi,bj,bkEB, bi+ b,= 2bk iff bl=b]=bk

We will be considering the ring Zyy of integers modulo M, where
M is odd. Because the numbers in the Salem-Spcncer sct satisfy
0 < b; < M/2, no three can form an arithmetic progression mod M:

forb, bj, b eB,  bi+b=2bmodM iff b=b=b (4)

ir Vjr

5. New Construction: Easy Case

Start with a modification of the basic algorithm (3). We use q+ 2
multiplications:

q
Zfl_’z(xo + 4%)(vo + Av;)(7o + Az;)

51_3("0 + "zzxi)(y() + AZZYi)(Zo + 12274)

(5)
+ (,1'3 - ql_z)(xoxygxzo)
q
= Z(Xoyili + X¥g2 + xyizg) + O(4).
i=1

-3

We have brought the factors ,1_3, (l - q,l_z) outside in order to

reflect the symmetry.

The x-variables break into two blocks: {xg} and {x|, .. 1Xgq}). The
latter will be called x;. Similarly the y- and z- variables break into
blocks. We will refer to a block of x-variables as X or X;, (similarly
Y and Z), and when we zero a block X (resp. Y, Z) we will set to zcro
all x- (resp. y-, z-) variables with the given index pattern.

Fix £ > 0. Select N large enough so that the M defined below will
exceed M.

Take the SNm tensor power of the construction (5). Set to zero
all variables except those with exactly N indices of 0 and exactly 2N
indices in {1, 2,...,q}.

Set M= 2F(2N 4+ 1. Select random integers 0< wi< M,
§=0,1,..,3N. For éach variable (x, y or z) or block (X, Y or 7)
compute a hash as follows. For each of the 3N index positions j, de-
fine

8,1 =0 if " position of I'is 0
5(D=1if {* position of lisie {1,2,...,q}.
Define
3N
b= ) 5w mod M)
j=1

3N
by())= wo + Z«sju)wi( mod M)
j=1

3N
b(K)= (wo + ) (2 — &(K)Wwp)/2 (mod M).
j=1



Since M is odd, division by 2 is well defined. Since b,(I) depends only
on the block indices of x, we may define by, by, bz in the obvious
way.

Notice that for any variables x|, y;, zg whose product x;yjzi ap-
pears in the computed trilinear form, we have

by(D) + by(J)— 2b,{(K)=0 mod M. (6)

This follows by considering the contribution of each Wi naticing that
in the basic construction

3D+ 8N+ §i(K)=2
for each of the three terms xgy;7;, xy07%: XYiZo-.

Set to zero all variables x| for which b,(I}) is not in B; similarly y)
and zg. Then for any nonzero term xyyjzg remaining in our con-
struction, we have

by(I) + by(J) = 2b,(K)ymod M, by(), by(J), b,(K)€ B,

so that
b(I)= by(.l)= b,(K).

For each element beB in the Salem-Spencer set, make a list of
triples (X, Yy, Zg) of compatible nonzero g cks, with
by(I)=by(J)= bz(K)=b. (A block X; is the set of @~ variables x
with nonzero indices in 2N specified places. A nonzero block is one
which has not yet been set to zero. Blocks Xy, Yy, Zk are compatible
if the locations of their zero indices are pairwise disjoint.) For each
triple (X, Yy, Zg) on the list, if it shares a block (say Zg) with an-
other triple (Xy-, Yy, Z) occurring earlier in the list, we set to zero
one of the other blocks (say Y)), and thus eliminate this triple. (if
each of Xy, Yy, Zk is shared with previous triples, we will end up
eliminating at least two triples by zeroing one block of variables.)

For a fixed element be B, the cxpected number of triples in the list,

before pruning, is
3N -2
(N,N,N)M :

Here (ng N) represents the number of compatible triples
(x',YJ,Z;() ,and the M2 represents the probability of the (inde-
pendent) events by(I)=b and by(J)=b. (If both hold, then
bz(K) = b follows.) That is, for fixed blocks Xy, Yy, and fixed integer

b mod M, if we randomize the values wg, w|, ..., w3y, then

Prob{byx(I) = by(J)= b}
= Prob{byx(I) = b} Prob{by{J) = b}

=M M =M

since the sums by(I) and by(J) involve different random variables.
The expected number of compatible triples (X, Yj, Zgk) with
by(I) = by(J) = bz(K)=1b is the sum of these probabilities (M_z)
over the N,JI\]?I N possible triples. We do not need independence
among triples, since the expected valuc of a sum of random variables

is the sum of their expected values, regardless of independence.

The expected number of unordered pairs

(X, Y3, Zg), (Xy, Yy, Zg) sharing a Z-block is

%(NJSN)((!%NN) - ‘) M

Again (N?g: N) counts the compatible triples (X, Yy, Zg). The
binomial coefficient N, N) —1 counts the blocks Y compatible with
Zk (other than Y itself). The factor 1/2 eliminates duplicate entries
(X1, Y5, 2g) Xy, Yy, Zg)) and (Xp, Yy, Zg), (X1, Yy, Zg)). The
factor M3 is the probability of the independent events b,(K)=b,
by()')=b, by(li="b. They are independent cven if the indices
¥ and I are equal, because of the presence of the random variable
wg-

The expected number of pairs of triples sharing Y}, or sharing Xj,
1s the same.

Suppose we eliminate a block (Yj) because of a pair of triples
(X1, Yy, Zg), (Xy, Yy, Zg)) sharing a Z-block. If L triples (not yet
eliminated) share this Y-block, then setting Y to zero eliminates these

L
2

sharing Y}, and at least the pair sharing Zy. Since ([2‘) + 121, we
eliminate at least as many pairs as triplcs. Thus:

L triples, while eliminating at least ( )+ 1 pairs, namely all those

Lemma. The expected number of triples remaining on each list,
after pruning, is at least

3N -2 _3( 3N 2N -3
(Nl M ‘?(N.N,N)[(N,N “]M
1 3N -2
2 L (M

The expected number of triples remaining on all lists, after pruning,
is at least

(N

def 1,.f 3N \\—2
HE S (N’N’N)M . (8)

This expectation H is an average over the choices of w;. There is a

choice of w; which achieves at least H; fix such a choice.

Qur algorithm computes at least H block scalar multiplications
X1Y;Zg. The fine structure of each block scalar multiplication is in
fact a matrix product of size

N N N
<q ,q .,q >,
and all the variables are disjoint (by the Salem-Spencer property).

From the 1-theorem we obtain

o<y, (Q+ 2)3N 2 —‘%M'(N%\'N)M_zq:w’”.

Use Stirling’s approximation to obtain

(q+ 27N 2 cNT 12Ny 2N(I +e) 3Nen

where ¢ is a constant. Letting ¢ go to zero and N to infinity, and
taking N~ roots, we obtain



2
4

3
w<3r g lo%(ﬁ—;]—z—)——).

@+2’ 22"

Setting q = 8 we obtain

W< Iogg( 42(;0

) < 2.40364. (9)

6. New Construction: Complicated Version.
In fact we can do better.

The following construction is somewhat more cumbersome be-
cause of the extra terms involved, but it uses exactly the same ideas to
yield an exponent of 2.388.

Begin with the basic algorithm:

q
3 A (xg + Ax)(yo + Avi)(zg + A;)

i=1

~ }.‘3<x0 + ).Zin)(yU + A2Zy;)(zo + Azzzi)

=3 ~2 3 3 3
+[n. - gqd ](XU+A xq+1)(y0+ A yq+l)(zo+/l Zq+1
9
= Z(x()yizi + %Y0% + X¥iZo) + XoYoZq+1 + X0Yg+120 + Xq+1Y0%0

i=1

) (10

+ O(4).

The indices now form three classes: {0}, {q+ 1}, and {1,2,..,q},
which will again be denoted i.

Take the 3Nth power of this construction. Set L.=[N] where f§
will be determined later. Set to zero all variables unless they have ex-
actly I, indices of g+ I, N + L indices of 0, and 2N-2L other indices.

Set

[ N+L IN-2L
M= 2(L,L.N— L)(N LN~ L) +1

Define

5(1)=0if " position of Iis 0

6j(l)= 1 ifj‘h position of Tisie {1,2,..,q}

6j(l)= 2 ifjlh position of lis q+ 1.
As before, define b,(I), by(.l), b,(K), and set to zero any variable with
b, (1) (resp. by'(J). b,(K)} not in the Salem-Spencer set. For cach b in
the Salem-Spencer set, make a list of triples (X;, Yj, Zg) of blocks,

with by(I) = by(J) = byz(K) = b, and eliminate entries with duplicated
blocks.

For a given block Zg, the number of pairs of blocks (X, Yj)
compatible with Z is

N+L 2N-2L
LLN-L/AN-LN-L/)

since the N+ L indices of 0 in K correspond to L instances of (0 in I,
q+1in J), L instances of (q+ 1 in I, 0 in J), and N-L instances of (i
in I, i in J), while the 2N-2L indices of i in K correspond to N-L in-
stances of (i in 1, 0 in J) and N-L instances of (0 in I, i in J). Since
M is twice this size, the elimination of duplicates proceeds as before
and leaves a constant fraction of the triples intact.

We have M’ lists, each with

1 3N M—2
F\LLLN-LN-LN-L

entries, all having independent variables. (The multinomial coefficient
indicates that there are L instances of (q+ 1,0,0) as x- y- z-indices, L,
of (0,q+ 1,0), L of (0,0,g+ 1), N-L of (i,i,0), etc.). Each cntry corre-
sponds to a matrix product of size

N-L N-L N-L
,q ,q >,

<q
Thus our equation is
SN 1ap 3N -2 3(N-L)y
@+27 = M (L,L.L,N ~LN-LN- L)M a
ch(—l+3£/2)|: ; 1+’237 - ]Nq3N(l-ﬁ)YNC,EN.
Br(1+B) T(2—-2B)

Letting ¢ tend to zero and N to infinity, and taking NLh roots, we get
27 e
P+ p) P 2p=%
For g=6, = 0.048, we find
w £ 3t < 2.38719.

(@+2’z

A somewhat more complicated construction yields w <2.376.
Details will be in the full paper.

7. Remarks

The most exciting aspect of Strassen’s new approach is that it
eliminates a major barrier to proving w=2. Namely, if one uscs a
fixed, finite basic algorithm in the hypothesis of Schonhage's
7-theorem, then L, the number of multiplications, must strictly excced
either #x, the number of x-variables, or #y or #z [CW, because the
basic algorithm is a matrix multiplication algorithm. In this case, the
estimate of w obtained must be strictly larger than 2. But with
Strassen’s approach, the basic algorithm is not a matrix multiplication
algorithm and does not suffer from this restriction; in fact, the algo-
rithm used to obtain w < 2.388 has #x=#y=#z=L. By the time one
gets to the t-theorem, having taken the tensor power and applied the
Salem-Spencer trick, one is not dealing with a fixed algorithm (and
fixed values of L and #x) but with a family of algofithms (and a sc-
quence of values L and #x), and the restriction #x <L is unimportant,
since the ratio (log #x)/( log L) can approach 1. Thus we can scarch
for more starting algorithins of the Strassen variety, with
#x=#y=#z=L, with the hope that one of them might yicld the eh-
sive w = 2.



An open problem is to find a characteristic two analogue of the
Salem-Spencer theorem: subsets A, B, C of the vector space (Z/2)n
such that each ae A (resp. be B,ce C) is contained in exactly onc
triple

(ac A,beB,ce(C), a+b+c=0,

and with (A} > (2")'~*. This would allow the extension of the present
techniques to a larger class of basic algorithms.

References.

[Beh]F. A. Behrend, “On sets of integers which contain no three
terms in arithmetical progression,” Proc. Nat. Acad. Sci. USA
32 (1946) 331-332; MR 8, 317. '

[CW]D. Coppersmith and S. Winograd, “On the Asymptotic Com-
plexity of Matrix Multiplication,” SIAM Journal on Comput-
ing, Vol. 11, No. 3, August 1982, pp. 472-492.

[Pan]V. Pan, “How to Multiply Matrices Faster,” Springer Lzcture
Notes in Computer Science, vol 179,

[Sch]A. Schonhage, “Partial and Total Matrix Multiplication,”
SIAM J. on Computing, 10, 3, 434-456.

[SS] R. Salem and D. C. Spencer, “On sets of integers which con-
tain no three terms in arithmetical progression,” Proc. Nat.
Acad. Sci. US4 28 (1942) 561-563.

[Str] V. Strassen, “The Asymptotic Spectrum of Tensors and the
Exponent of Matrix Multiplication,” 1986 FOCS, pp. 49-54;
also “Relative bilinear complexity and matrix multiplication,”
preprint.



