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Abstract. 

We present a new method for accelerating matrix multiplication 
asymptotically. This work builds on recent ideas of Volker Strassen, 
by using a basic trilinear form which is not a matrix product. We 
make novel use of the Salem-Spencer Theorem, which gives a fairly 
dense set of integers with no three-term arithmetic progression. Our 
resulting matrix exponent is 2.376. 

I. Intduction. 

A matrix multiplication algorithm is usually built as follows. First 
an algorithm for a small matrix problem is developed. Then a tensor 
product construction produces from it an algorithm for multiplying 
large matrices. Several times over the last seventeen years, the ground 
rules for constructing the basic algorithm have been relaxed, and with 
mom care in the tensor product construction, it has been shown how 
to use these more lenient basic constructions to still give efftcient al- 
gorithms for multiplying large matrices. 

Recently Strassen [Str] found a new relaxation of the ground 
rules. His basic trilinear algorithm computes a triliiear form which is 
not a matrix product at all. In this trilinear form, the variables arc 
collected into blocks. The block structure (the arrangcmcnt of the 
blocks) is that of a matrix product, and the fine structure (the ar- 
rangement of variables within individual blocks) is also that of a ma- 
trix product, but the overall structure is not, because the fine structures 
of different blocks arc incompatible. After taking a tensor power of 
this t&near form, Strassen operates on the block structure (that of a 
large matrix product) to reduce it to several block scalar multipli- 
cations. Each block scalar multiplication is itself a matrix product (the 
line structure), so that he has several disjoint matrix products (sharing 
no variables). He can then apply SchBnhagc’s r-theorem to obtain 
an estimate of the matrix exponent o: 

w < 2.479. 
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Here we follow Strassen’s lead. We use a basic trilinear algorithm 
closely related to Strassen’s. The block structure of our trilincar form 
is not a matrix product, although the line structure still is. We USC a 
combiiatorial theorem of Salem and Spencer [SS]. which gives a 
fairly dense set of integers containing no three-term arithmetic 
progression. We hash the indices of the blocks of vsriablcs to integers, 
and set to xero any block of variables whose indices do not map into 
the Salem-Spencer set. We do this in such a way that if the product 
X~JZK is contained in our trilinear form, then the hash values 
b,(I), by(J), b,(K) form an arithmetic progression. So for any prod- 
uct of nonzero variables x[yJzK in our trilincar form, we will get 
b,.(l) = by(J) = b,(K). We choose parameters so that on average cnch 
nonzero block of variables Xl is contained in at most one nonzero 
block product X~YJZK, and set to zero some blocks of vnriablcs IO 
ensure that this condition holds absolutely, not just on average. Then, 
as Strassen, we have several disjoint matrix products, and can apply 
Schonhage’s t-theorem to obtain our exponent 

UJ < 2.376. 

The rest of the paper is organized as follows. In Section 2 we rc- 
view Schonhage’s t-theorem. In Section 3 we present Strasscn’s con- 
struction. Section 4 contains the results of the Salem-Spencer 
theorem. In Section 5 we present an easy version of our construction, 
which gives an exponent of 2.404. The version presented in Section 
6 uses exactly the same ideas, but is complicated by more terms and 
more indices; this gives an intermediate exponent of 2.388. The full 
paper contains the general theory, and a far more complicated starting 
case, yielding 2.376. We make concluding remarks in Section 7. 

Readers unfamiliar with previous work in matrix multiplication arc 
referred to Victor Pan’s excellent survey [Pan]. 

Acknowledgments. 

We are grateful to James Shearer for the rcfcrencc to I3chrcncl’s 
construction, and to Victor Pan for that of Salem atid Spcnccr. 
Arnold Schonhage gave a more symmetric presentation of our starting 
algorithm in section 5. James Davenport offered helpful comments 
on an early dralt of the paper. 



2. SchGnhage’s Theorem 

The basic results from “classical” matrix multiplication can bc 
summarized by Schiinhage’s z-thcorcm: 

3. Strasscn’s mnstrulction 

Thearem (SchBnhagc): A.c.rume given a /ield F, and coeficien~s 
aijh~, Pjkhe, Yk,i,/ in r:(n) (the field o/ ruliona! filncrions in a sin& 
indeterminate A). such (haf 

is an idenliry in 4”’ (h) (h) , , yjk , “ki , A, where fg are arbitrary triiiJ?ear jbrms. 
Then given E > 0, one gfEconWxcl on algorithm lo mulGp/y N x N 
square mutrices in o( N ) operalions, where t sasi.$es 

We will also write the error term as O(A), so that the hypothesis 
becomes 

Less formally, the hypothesis is a trilinear algorithm, using I. 
bilinear multiplications to (approximately) compute simultaneously 
several independent matrix products, of dimension mh x 111, times 
nh x pi, (written < mh, nt,, pi > ). 

Each of the L bilinear multiplications is a linear combination of x 
variables, times a linear combiiaGon of y variables: 

Linear combinations of these products M, are idenl:ically equal (up to 
errors of order A) to the desired elements w of the answer matrix: 

nh L 
(4 4.$ 

Wik c 
(h) (h) 

xij Yjk = c YkihfM{ + O(l). 

j=l <=I 

Multiplying both sides by 7(b) , which we view as a. dual to ~$1, and 
summing, we obtain the sin’gie trilinear identity, which contains all the 
information of the several bilinear identities. The trilinear version is 
more useful in the present situation in that it reflects the underlying 
symmetries. 

In such a situation, we define the matrix exponent obtained from 
the construction as w = Bt. 

Strassen has found a new relaxation of the ground rules for the 
construction of the basic algorithm, that is, hc has rclaxcd the hy- 
potheses of the theorem. A key element in his construction is the 
observation that, using the ability to multiply a pair (of N x N*matriccs, 
one can “approximately” (in the A sense) multipty (3/4)N pairs of 
independent scalars, that is, compute 

where all the v, yp, 9 arc independent. Namely, setting 

8= [+W+ l)], 

one obtains 

,5;BN(i(ijiiz +2ii)( yjkl? +2i(~-al)(,ki.JL-.d +W2W) 
,, = c XijYjk”ki + O(n), 

i+jtk=g 
I~i,j,kjN 

(2) 

since the exponent of L, 

i2 + 2ij + j* + 2j(k - g) + (k - g)2 +2(k - g)i = (i + j + k - g)*, 

is zero when i + j + k = g and is positive otherwise. Since any two in- 
dices i,j uniquely determine the thiid k=g-i-j, each variable xij is in- 

volved in at most one product. There are about [(3/4)N2] triples 
(i,j,k), l<i,j,k< N, ii-j + k= g. Call this construction (*). 

Strassen uses the following basic trilinear algorithm, which uses 
q + 1 multiplications: 

iC% + h)(Yo + kYi)(4n) + (JQXYo)( - Cq/j.) 
i=l 

0 (3) = c x (xgo”i + x(Jyiq)+ O(A). 
i=l 

This is a viewed as a block inner product: 

9 
C(x& + ~y~zi) f O(L). 
i:=l 

The superscripts denote indices in the block inner product: 

X’Y5S X2Y2Z, 

or, dually, 

One sees the block structure of an inner product, or matrix product 

of size < 1,2,1>, where the 1 x 2 block matrix (row vector) X is 
multiplied by a 2 x 1 block matrix (column vector) Y to yield a 1 x I 
block matrix (block scalar) W. We can label 3 and ~0 with diffcrcnt 
superscripts (put them into different blocks) because they are different 
variables; similarly yi and yo. But the z-variables are involved in both 
blocks. They are shared. This is the new complication in the basic 
algorithm. This algorithm does not in itself represent a matrix prod- 
Wt. 



We examine now the fine structure. The frst block, C?‘y;+ rc- 
presents a matrix product of size -C q, I, I > . A q x 1 matrix (column 
vector) x is multiplied by a 1 x I matrix (scalar) yu to yield a q x 1 
mapI (column vector) w, which is dual to z. In the second block, 
Cqy, “i represents a matrix product of size < I, I, q > A I x I ma- 
trix (scalar) ~0 is multiplied by a 1 x q matrix (row vector) y to yield 
a I x q matrix (row vector) w. The difficulty comes when we try to 
add the two blocks. The indices i of w (or z) are “schizophrenic”: they 
don’t know whether to behave as row indices or as column indicts. 
Strassen’s construction gives a way out of this dificulty. 

Take the construction (3) and the two constructions gotten by cy- 
clic permutations of the variables x,y,z, and tensor them together, to 
get an algorithm requiring (q + l)3 multiplications to compute 

i,j,k=l 

This is a block 2 x 2 matrix product (indicated by the superscripts). 
Within each block is a smaller matrix product; for example the block 
I = 1, J = I, K = 2 is the matrix product 

which can be interpreted as a matrix product of size < qz ,l,q>: 

11 12 21 
xij.OYOO.k”k.ij~ 

i&k= I 

Taking the Nlh tensor 
PN 

ower of this construction, one gets a con- 

struction, requiring (q + I) multiplications, and producing a block 

2N y. 2N matrix product, each block of which is a matrix product of 

some size < m,n,p > where rnnp = q 
3N 

. Applying construction (*) 

to the block structure, one then obtains (3/4X2N)2 independent matrix 

products, each of some size < m,n,p > where mnp = q 
3N 

Applying 

the r -thcorcm, one gets 

(I) 5 %N, (q+ l$N=+22N(q3N)% 

Taking NLh roots and letting N grow, the (3/4) becomes insignificant, 
and we have 

w.37, (q+ 1q=22q3r. 

Letting q = 5, Strassen obtains 

w < l0R(6~/2~)/ log 5 = log554 < 2.479. 

4. The Salem-Spencer Theorem 

We will use the following thcorcm of Salem and Spencer [SS]; see 
also [Bch]. 

Theorem (Salem and Spencer): Given E > O,,l_hEere exisls M, such 
l/tar for any M > M,, there is a set B oJM’ > M dislinct integers 

with no three terns in an arilhmelic progression: 

for bi, bj, b, E B, bi+bj=2bk iff bi=bj=bk. 

We will be considering the ring ZM of integers modulo M, where 
M is odd. Because the numbers in the Salem-Spencer set satisfy 
0 < bi < M/2, no three can form an arithmetic progression mod M: 

forbi,bj,hEB, bi + bj E 2bk mod M iff bi = bj = bk. (4) 

5. New Construction: Easy Case 

Start with a modification of the basic algorithm (3). We use q + 2 
multiplications: 

ird2(Q + h)(YCl + AYi)(74) + Azi) 
i=I 

9 

= c (%Yizi + %Y(& + %YizO) + o(A). 

i=l 

We have brought the factors ,Im3, (A-3 - qr2) outside in order to 
reflect the symmetry. 

The x-variables break into two blocks: (9) and {xl, , xq). The 
latter will be called xi. Similarly the y- and z- variables break into 
blocks. We will refer to a block of x-variables as X0 or Xi, (similarly 
Y and Z), and when we zero a block X (resp. Y, Z) we will set lo zero 
all x- (resp. y-, z-) variables with the given index pattern. 

Fix E > 0. Select N large enough so that the M defined below will 
exceed Ms. 

Take the 3N* tensor power of the construction (5). Set to zero 
all variables except those with exactly N indices of 0 and exactly 2E 
indices in (1,2, , q). 

+ I. Select random integers 0 I wj < hl, 
variable (x, y or z) or block (X Y or Z) 

compute a hasA as follows. For each of the 3N index posiiions j, de- 
fme 

aj(I) = 0 if fh position of 1 is 0 

aj(I)= I if jti position of I is i E {I, 2, . , q). 

Define 

b,(l) Z ?6j(‘,wi( mod M) 

j=l 
3N 

by(J) I wo + xJj(J)“i( mod Ml 
j=l 

3N 

b,(K) E (~0 + C(2 - aj(K)Bil/2 ( mod M). 

j=l 

M Ocb,<b2<...<bMvl’<- 
2 
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Since M is odd, division by 2 is well defmed. Sinoe bx( I) depends only 
on the block indices of x, we may defie bX, by, bZ in the obvious 
way. 

Notice that for any variables XI, ye, ZK whose product XIYJ’ZK ap 
pears in the computed trilinear form, we have 

b,(I) + by(J) - 2bzfK) = 0 mod M. (6) 

This follows by considering the contribution of each w,, noticing that 
in the basic construction 

Sj(l)+ al(J)+ 61(K)= 2 

for each of the three terms xoyi7~, %yozt, %yira> 

Set to zero all variables x1 for which b,(I) is not in B; similarly yJ 

and ZK. Then for any nonzero term X~JZK renlaining in our con- 
struction, we have 

b,(I) f by(J) E 2b,(K) mod M, b,(I), $CJX b,W)E n, 

so that 

b,(l)= by(J)= b,(K). 

For each element boR in the Salem-Spencer set, make a list of 
triples (Xt. YJ, ZK) of compatible nonzcro b cks, with 
bX(I) = by(J)= bZ(K)= b. (A block X1 is the set of q 

47 variables x 
with nonzero indices in 2N specifted places. A nonzero block is one 
which has not yet been set to zero. Blocks XI, YJ, ZK are conlpatible 
if the locations of their zero indices are painvise disjoint.) For each 
triple (XI, YJ, ZK) on the list, if it shares a block (say ZK) with an- 
other triple (Xt,, YJ,, ZK) occurring earlier in the list, we set ‘to zero 
one of the other blocks (say YJ), and thus eliminate this triple. (If 
each of XI, YJ, ZK is shared with previous triples, we will lend up 
eliminating at least two triples by zeroing one block of variables.) 

For a fixed element bcB, the expected number of triples in the list, 
before pruning, is 

-2 

Iiere 3N 
( > N,N,N 

represents the number of compatible triples 

(XI, YJ, ZK) and the MV2 represents the probability of the (inde- 

pendent) events bX(l)= b and by(J)= b. (If both hold, then 

b=(K) = b follows.) That is, for lined blocks Xi, ‘1’1, and fixed integer 

b mod M, if we randomize the values wn, wt , . . . , w3~, then 

Prob(bX(I) = by(J) = b) 
= Prob{bX(i)= b)Prob(bY(J)= lb) 

= M-‘M-’ = ,,4-2, 

since the sums bX(1) and bY(J) involve different random variables. 

The expected number of compatible triples (XI, YJ, 7-K) with 

bX(I)= bY(J) = bZ(K)= b is the sum of these probabilities ( Mm2) 

possible triples. We do not need independence 

the expected value of a sum of random variables 

is the sum of their expected values, regardless of indepcndencc 

The expected number of unordered pairs 

(XI, YJ, ZK), (Xl,,, YJ*, ZK) sharing a Z*block is 

counts the compatible triples (XI,YJ,ZK). The 

- 1 counts the blocks YJ, compatible with 

The factor l/2 eliminates duplicate entries 

((xl, YJ, z,), (XI,, YJ*, z,)) and ((x,*, YJ’, z,), (xl, YJ, z,)). ‘f-he 

factor Mm3 is the probability of the independent events bZ(K)= b, 

by(J’)= b, bX(l)= b. They are independent even if the indices 

J’ and I are equal, because of the presence of the random variable 

wo. 

The expected number of pairs of triples sharing Y J, or sharing X t, 
is the same. 

Suppose we eliminate a block (YJ) because of a pair of triples 
((XI, YJ, ZK), (XI,, YJ~, ZK)) sharing a Z-block. If L triples (not yet 
eliminated) share this Y-block, then setting Y, to zero eliminates these 

L triples, while eliminating at least 4 + 1 pairs, namely all those 0 
sharing YJ, and at least the pair sharing i!K. Since L 

eliminate at least as many pairs as triples. Thus: 
0 

2 + 1 z L, we 

Lemma. The expected number of triples remaining on each li.rt, 
afler pruning, is at Ieast 

(N:i&)“-2-+(N::N)[(fi;)- ‘l”-’ t7) 

The expected number of triples remaining on all lists, after pruning, 
is at least 

This expectation H is an average over the choices of wj. There is a 
choice of wi which achieves at least H; fix such a choice. 

Our algorithm computes at least H block scalar multiplications 
X~YJZK. The fine structure of each block scalar multiplication is in 
fact a matrix product of size 

N N N 
<q *q *q ‘3 

and all the variables are disjoint (by the Salem-Spencer property). 
From the r-theorem we obtain 

Use Stirling’s approximation to obtain 

(q + 2)3N ~ cN-1/2+s33N2-2N(1+E)q3NrN, 

where c is a constant. Letting E go to zero and N to infinity, and 
taking N* roots, we obtain 

4 



(q + 2Q r -+l37 

4(q+2) w13rs1ogq 27 
( > 

Setting q = 8 we obtain 

6. New Construction: Complicated Version. 

In fact we can do better. 

The following construction is somewhat more cumbersome bc- 
cause of the extra terms involved, but it uses exactly the same ideas to 
yield an exponent of 2.388. 

Begin with the basic algorithm: 

fA-2hl + h)(Yo + AYi)(ZO + kq) 
i=l 

q 
=C(xOYi"i+ %YO"i+ xiYi"O)+ xOYO"q+l+ ~Yq+lzO+ Xq+lY070 

i=l 
+ O(A). 

The indices now form three classes: (0}, {q + I}, and {I, 2, . . , q), 
which will again be denoted i. 

Take the 3N* power of this construction. Set L= [PN] where p 
will be determined later. Set to mro all variables unless they have ex- 
actly L indices of q + I, N + L indices of 0, and 2N-2L other indices. 

Set 

Define 

hi(I) = 0 if jth position of I is 0 

6j(I) = I if j* position of I is i E (I, 2, , q) 

hi(l)= 2 if j* position of 1 is q+ I. 

As before, define b,(I), by(J), b,(K), and set to zero any variable with 
b,(l) (resp. b;(J), b,(K)) not in the Salem-Spencer set. For each b in 
the Salem-Spencer set, make a list of triples (Xl, Y,. Z,) of blocks, 
with b,x(I) = by(J) = bz(K) = b, and eliminate entries with duplicated 
blocks. 

For a given block ZK, the number of pairs of blocks (Xl, YJ) 
compatible with ZK is 

since the N + I, indices of 0 in K correspond to L instances of (0 in I, 
q+ 1 in J), L instances of (q+ I in I, 0 in J), and N-L instances of (i 
in I, i in J), while the 2N-2L indices of i in K correspond to N-L in- 
stances of (i in I, 0 in J) and N-L instances of (0 in I, i in J). Since 
M is twice this size, the elimination of duplicates proceeds as before 
and leaves a constant fraction of the triples intact. 

We have M’ lists, each with 

$ 
3N 

L,L,L,N - L,N - L,N - L > M 
-2 

entries, all having independent variables. (The multinomial cocflicicnt 
indicates that there are L instances of (q + l,O,O) as x- y- z-indices, L 
of (O,q+ l,O), L of (O.O,q+ I), N-L of (i,i,O), etc.). Each entry corre- 
sponds to a matrix product of size 

< qN-L, qN-L, qN-IA > 

Thus our equation is 

,&1+342) - 1 Nq3W-PbNcr~N 
Letting E tend to zero and N to infinity, and taking NLh roots, we get 

(q+ $2 27 3(1-l% 

pq 1 + p)‘++2 - 2pf-2p 

For q = 6, p = 0.048, we find 

w I 3r < 2.38719. 

A somewhat more complicated construction yields w < 2.376. 
Details will be in the full paper. 

7. Remarks 

The most exciting aspect of Strassen’s new approach is that it 
eliminates a major barrier to proving w =2. Namely, if one uses a 
fuced, jinire basic algorithm in the hypothesis of Schijnhage’s 
t-theorem, then L, the number of multiplications, must strictly exceed 
either #x, the number of x-variables, or #y or #z [CW], because the 
basic algorithm is a matrix multiplication algorithm. In this case, the 
estimate of w obtained must bc strictly larger than 2. nut with 
Strassen’s approach, the basic algorithm is not a matrix multiplication 
algorithm and does not suffer from this restriction; in fact, the algo- 
rithm used to obtain o < 2.388 has #x = #y = #z = L. By the time one 
gets to the r-theorem, having taken the tensor power and applied the 
Salem-Spencer trick, one is not dealing with a fixed algorithm (and 
fixed values of L and #x) but with a family of algorithms (and a sc- 
quence of values L and #x), and the restriction #x < L is unimportant, 
since the ratio ( log #xl/( log L) can approach I. Thus we can search 
for more starting algorithms of the Strassen variety, with 
#x= #y = #z= L, with the hope that one of them might yield the elu- 
sive w = 2. 
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An open problem is to find a characteristic two analogue of the 
Salem-Spencer theorem: subsets A, B, C of the vector space 1(Z/2j” 
such that each a E A (resp. b E B, c E C) is contained in exactly one 
triple 

(aaA,bEB,caC), a+b+c=O, 

and with IAl > (2”)‘-“. Thi s would allow the extension of the present 
techniques to a larger class of basic algorithms. 
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