mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2022-11-02, 17:05   #1
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

32·401 Posts
Default Sum of the reciprocals of numbers in a set

The sequence of the generalized pentagonal numbers (https://oeis.org/A001318) is very useful, they are the exponents of (1-x)*(1-x^2)*(1-x^3)*(1-x^4)*..., and they can be used to calculate:

Partitions numbers (https://oeis.org/A000041): P(n) = P(n-1) + P(n-2) - P(n-5) - P(n-7) + P(n-12) + P(n-15) - P(n-22) - P(n-26) + ...

(P(n) = 0 for all n < 0)

Sigma function (https://oeis.org/A000203): S(n) = S(n-1) + S(n-2) - S(n-5) - S(n-7) + S(n-12) + S(n-15) - S(n-22) - S(n-26) + ...

The only difference is when the last term is S(0), then replace it by n

The question is: For positive integer n, let sequence A_n be the sequence n*(generalized pentagonal numbers)+1, i.e. n+1, 2*n+1, 5*n+1, 7*n+1, 12*n+1, 15*n+1, 22*n+1, 26*n+1, ..., find the sum of the reciprocals of all numbers in sequence A_n

Another question: For which positive integer n the sequence A_n contains prime numbers?

Last fiddled with by sweety439 on 2022-11-03 at 13:26
sweety439 is online now   Reply With Quote
Old 2022-11-03, 13:40   #2
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

32×401 Posts
Default

It appears that A_n contains infinitely many primes for all positive integers n except 24, 25, 27, 32, 49

generalized pentagonal numbers = 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, ...

generalized pentagonal numbers * 24 + 1 = 1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, ... = squares of the numbers coprime to 6

generalized pentagonal numbers * 25 + 1 = 1, 26, 51, 126, 176, 301, 376, 551, 651, 876, 1001, 1276, 1426, 1751, 1926, 2301, 2501, 2926, 3151, 3626, 3876, 4401, 4676, 5251, 5551, 6176, 6501, 7176, 7526, 8251, 8626, 9401, 9801, 10626, 11051, 11926, 12376, 13301, 13776, 14751, ... = subsequence of generalized pentagonal numbers

generalized pentagonal numbers * 27 + 1 = 1, 28, 55, 136, 190, 325, 406, 595, 703, 946, 1081, 1378, 1540, 1891, 2080, 2485, 2701, 3160, 3403, 3916, 4186, 4753, 5050, 5671, 5995, 6670, 7021, 7750, 8128, 8911, 9316, 10153, 10585, 11476, 11935, 12880, 13366, 14365, 14878, 15931, ... = subsequence of triangular numbers

generalized pentagonal numbers * 32 + 1 = 1, 33, 65, 161, 225, 385, 481, 705, 833, 1121, 1281, 1633, 1825, 2241, 2465, 2945, 3201, 3745, 4033, 4641, 4961, 5633, 5985, 6721, 7105, 7905, 8321, 9185, 9633, 10561, 11041, 12033, 12545, 13601, 14145, 15265, 15841, 17025, 17633, 18881, ... = subsequence of generalized octagonal numbers

generalized pentagonal numbers * 49 + 1 = 1, 50, 99, 246, 344, 589, 736, 1079, 1275, 1716, 1961, 2500, 2794, 3431, 3774, 4509, 4901, 5734, 6175, 7106, 7596, 8625, 9164, 10291, 10879, 12104, 12741, 14064, 14750, 16171, 16906, 18425, 19209, 20826, 21659, 23374, 24256, 26069, 27000, 28911, ... = subsequence of A144065 (A144065 is the union of A095794 and A115067)
Attached Files
File Type: txt Prime Juno Numbers.txt (373.0 KB, 4 views)
sweety439 is online now   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
Sophie Germain Primes, Mersenne numbers and Wagstaff numbers Connection JCoveiro Number Theory Discussion Group 2 2022-02-08 14:43
Sum of the reciprocals of all Mersenne prime exponents Dobri Miscellaneous Math 45 2021-08-24 07:44
Numbers sum of two cubes and product of two numbers of the form 6^j+7^k enzocreti enzocreti 2 2020-02-16 03:24
Sum of reciprocals of prime k-tuplets mart_r Math 10 2009-04-05 07:29

All times are UTC. The time now is 13:54.


Thu Nov 3 13:54:51 UTC 2022 up 77 days, 11:23, 0 users, load averages: 0.64, 0.85, 0.90

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔