
Page 1

TM
®

The NT Insider
The only publication dedicated entirely to Windows® system software development

A publication by OSR Open Systems Resources, Inc. Not endorsed by or associated with Microsoft Corporation.

May—June 2011 Digital Edition Volume 18 Issue 2

The Basics About
WDF Queues
A fter having the opportunity to teach

our course Writing WDF Drivers

for Windows several zillion times now,

we've learned quite a few things. One of

the most important things we‟ve

learned is that the WDFQUEUE is one

of the most underappreciated of the

Framework objects. This is unfortunate,

because WDF Queues are one of the

most interesting and powerful objects

that you‟ll use in your WDF driver.

Plus, the WDF Queue is an object type

that just about every WDF driver uses.

It therefore seems reasonable that you

should know a bit about these most

excellent WDF Queue Objects.

Not Your Ordinary Queue
When we explain WDF Queues in our

classes, the first problem that arises is

that most devs have a pre-conceived

notion of the meaning of the word

"queue". When they hear this term, they

immediately think of linked lists. If

they're WDM driver writers, they think

o f L I S T _ E N T R Y . W h i l e

WDFQUEUEs can be used similarly to

standard linked lists if you want, they

are in fact much more special than those

ordinary linked lists. In fact, WDF

Queues are the primary mechanism that

WDF drivers use to sort, manage, and

control the delivery of Requests for

processing.

Queues are of primary importance to

WDF Drivers because they provide the

most common method for delivering I/O

requests from the Framework to the

driver. As the Framework receives I/O

requests from the Windows I/O

Manager, it will insert the WDF Request

object that represents that request on one

of the driver‟s Incoming Request

Queues. How those Requests are

ultimately delivered to the driver

depends on the Queues Dispatch Type.

Queue Dispatch Types
When you configure and subsequently

create a WDF Queue, you specify the

Queue‟s Dispatch Type. Dispatch Type

controls how many Requests from the
(Continued on page 16)

Win8: The
Speculation
Continues

T here‟s plenty of fodder in the

press on Windows 8 these days,

and whether or not you believe or

even follow any of it, it‟s clear that

many are in a tizzy over the next

major OS release from Microsoft.

If I may summarize: you can call it

Windows 8 now (so speaketh

Sinofsky), it‟ll support ARM chips (at

some point), we expect a beta (how

public, we‟ll see), and there will be

much hoopla around all this at the

freshly announced “Build\Windows”

conference scheduled for 13-16

September in Anaheim, CA.

As of this issue going to publication

(notice we didn‟t say, “going to

print”), we have no idea what the

BUILD conference will entail. Thus,

it remains to be seen how much hard-

core technical content will make it

into the conference agenda, especially

what fraction of it may be relevant to

the Windows driver developer

community.

On the other hand, the availability of

a beta of Win8 could make things

interesting.

As you might expect, we‟ll be

tracking all this here at OSR, and

keeping you updated!

2011 Fall Seminar Schedule

Writing WDM Drivers 25-29 July, Boston/Waltham, MA
Developing File Systems 19-22 September, Vancouver, BC

Windows Internals for Forensic Analysts 26-29 September, Columbia, MD
Writing WDF Drivers 3-7 October, Seattle, WA

Windows Internals & SW Drivers 17-21 October, Boston/Waltham, MA
Kernel Debugging & Crash Analysis 14-18 November, Columbia, MD

For more formation, visit www.osr.com/seminars.

http://www.osr.com/seminars
http://www.osr.com/wdm.html
http://www.osr.com/fsd.html
http://www.osr.com/forensics.html
http://www.osr.com/wdf.html
http://www.osr.com/swdrivers.html
http://www.osr.com/debug.html
http://www.osr.com/seminars

Page 2

The NT Insider™

Published by
 OSR Open Systems Resources, Inc.
 105 Route 101A, Suite 19
 Amherst, New Hampshire USA 03031
 (v) +1.603.595.6500 (f) +1.603.595.6503

 http://www.osr.com

Consulting Partners
 W. Anthony Mason
 Peter G. Viscarola
Executive Editor
 Daniel D. Root
Contributing Editors
 Mark J. Cariddi
 Scott J. Noone
 OSR Associate Staff
Consultant At Large
 Hector J. Rodriguez
Send Stuff To Us:
 email: NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2011. All rights reserved.

No part of this work may be reproduced or used in any

form or by any means without the written permission of

OSR Open Systems Resources, Inc. (OSR).

We welcome both comments and unsolicited manuscripts

from our readers. We reserve the right to edit anything

submitted, and publish it at our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are the

property of their respective owners. “OSR”, “The NT

Insider”, “OSR Online” and the OSR corporate logo are

trademarks or registered trademarks of OSR Open Systems

Resources, Inc.

We really try very hard to be sure that the information we

publish in The NT Insider is accurate. Sometimes we may

screw up. We‟ll appreciate it if you call this to our

attention, if you do it gently.

OSR expressly disclaims any warranty for the material

presented herein. This material is presented “as is” without

warranty of any kind, either expressed or implied,

including, without limitation, the implied warranties of

merchantability or fitness for a particular purpose. The

entire risk arising from the use of this material remains with

you. OSR‟s entire liability and your exclusive remedy shall

not exceed the price paid for this material. In no event shall

OSR or its suppliers be liable for any damages whatsoever.

It is the official policy of OSR Open Systems Resources,

Inc. to safeguard and protect as its own, the confidential

and proprietary information of its clients, partners, and

others. OSR will not knowingly divulge trade secret or

proprietary information of any party without prior written

permission. All information contained in The NT Insider

has been learned or deduced from public sources...often

using a lot of sweat and sometimes even a good deal of

ingenuity.

OSR is fortunate to have customer and partner relations that

include many of the world‟s leading high-tech organiza-

tions. As a result, OSR may have a material connection

with organizations whose products or services are dis-

cussed, reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way endorsed by

Microsoft Corporation. And we like it that way, thank you

very much.

Inside This Issue:

The Basics About WDF Queues 1

WDK Community Bug Bash - Prize Winners Announced! 3

Peter Pontificates: Of Clients, Clean Rooms and Copyrights 4

Being Resourceful! — Creating a Proper Version Information Resource 6

Win7 Crash Redux 8

One Book, Four Reviews: Windows 7 Device Driver (Reviews 1 & 2) 10

One Book, Four Reviews: Windows 7 Device Driver (Reviews 3 & 4) 11

Analyst’s Perspective: 10 WinDBG Commands You Might Not Know (But
Should)

26

OSR Seminar Schedule 32

OSR USB FX2 Learning Kit

Don’t forget, the popular OSR USB FX2 Learning Kit is available in the Store
at www.osronline.com.

The board design is based on the well-known Cypress Semiconductor USB FX2
chipset and is ideal for learning how to write Windows device drivers in general
(and USB specifically of course!). Even better, grab the sample WDF driver for
this board, available in the Windows Driver Kit (WDK).

The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was
forwarded to you), you can subscribe at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm.

http://www.osronline.com
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 3

A nother successful “Bug Bash” is behind us, and we‟d like

to take another opportunity to thank all those that took the

time to participate, and announce the winners here in The NT

Insider.

First prize winners for the WDK Community Bug Bash were

Girish Aithal Basrur and Wei Qing Hao, who each scored

the HP netbook, Vistual Studio Ultimate with MSDN

subscription, and free attendance at one of OSR‟s Kernel

Debugging & Crash Analysis seminars.

WDK Community Bug Bash
Prize Winners Announced!

Second prize winners were Dejan Maksimovic, Ramon

Royo, and Rod Widdowson, who didn‟t do to bad for

themselves, winning the iPod Touch, a copy of Windows 7

Ultimate, and an OSR Prize Pack each.

And finally, we had so many excellent entries, we decided to

offer two Honorable Mention prizes, which included a copy of

Windows 7 Ultimate and choice of choice of hardware from

the OSR Online store. These went to Pradeep

Bisht and Moso Lee.

The Bug Bash couldn‟t be possible without the bug

contributors from the Windows driver community, but we‟ve

got other important folks to thank as well.

Sponsor ITT Defense & Information Solutions worked with us

to organize and carry out the Bug Bash, and their support was

key to kicking off the contest. In addition, the cooperation and

assistance received from Microsoft both in supporting the

contest and in carrying out the back end integration for bug

submissions help make everything go smoothly.

BUILD is the event that shows you how to take advantage of the future of

Windows. Get insight on creating touch-centric user experiences, fast, fluid,

and dynamic applications that leverage the power and flexibility of the core of

Windows, used by more than a billion people around the world. See how web

-connected and web-powered apps built using HTML5 and JavaScript have

full access to the power of the PC.

Explore how the full power of hardware-accelerated Internet Explorer 10

transforms your experiences with the web. BUILD is the first place to dive

deep into the future of Windows.

Learn more and register now: http://go.microsoft.com/?linkid=9775865

Use what you know. Do what you've always imagined.

http://www.osronline.com/page.cfm?name=bugbash
http://go.microsoft.com/?linkid=9775865
http://go.microsoft.com/?linkid=9775865

Page 4

Having this code, and being able to reuse it, is terrific for

everyone involved. It‟s good for you, because you don‟t have

to start from scratch and write yet another clever incarnation

of an EvtDriverDeviceAdd routine (or whatever). Thus you

are saved from being consigned to the pit of hopeless tedium,

coding and debugging stuff that you‟ve written before and

understand well enough that you probably won‟t pay enough

attention to writing it the Nth time. It‟s also good for the

people who are paying you to develop the driver, because they

get code that‟s already been written, debugged, and probably

even field-proven, and they get it much more quickly than

they would otherwise. It‟s a classic win-win, don‟t you think?

Well, that‟s what I think. Unfortunately, this probably runs

afoul of the idea that you can transfer “copyright, plus all

right, title and interest” in the code you‟re delivering to

whoever‟s paying you for it. If you started with a sample from

the Windows Driver Kit (WDK) and either modified the

sample or cut and pasted parts of the sample into the new

driver you‟re developing, you do not own that code. At best,

you‟ve created a derivative work. See the WDK samples?

They all have a copyright at the top of each module that looks

something like the following:

Copyright (c) 1995-1999 Microsoft Corporation. All
rights reserved.

That copyright means that Microsoft owns the code, and is

providing you with some specific rights to use it. What are

those rights? You need to read the license to know. But you

sure as hell don‟t own the code. And you can‟t validly give to

others what you don‟t yourself own. Thus, there‟s no way

that you can write a driver using this code and provide

“copyright, plus all right, title and interest” in the code to

whomever pays you to write the driver. And, by the way, it

doesn‟t matter whether you‟re working as a consultant or as

an employee. If you‟re an employee, check both your
(Continued on page 5)

Peter Pontificates:
Of Clients, Clean Rooms and Copyrights
I t would be a significant understatement to say that I hate the

whole topic of intellectual property (IP) law as it‟s applied

to software. Yet, a week barely goes by where I don‟t have to

negotiate something about IP with a client. That‟s part of the

“fun” of being a consultant, I guess.

The topic that bothers me most in negotiations with clients is

that of driver code ownership. When somebody hires us to

write some code, they typically want to own what we‟ve

written for them. At first blush, this might seem reasonable –

they‟re paying, they should own it, right? But when you

actually stop to think, specifically, about how we write drivers

for Windows, ownership is probably both impractical and

undesirable. Let me explain.

Unless you‟re just starting out, almost anyone who develops

Windows drivers brings a lot of specialized skill and expertise

to the task. You‟ve “been there before.” You know what

potholes are in the road to completion of a working driver, and

you know how to avoid many of those potholes before falling

into them. Despite this fact, writing drivers for Windows (or,

any operating system, really) largely follows a formula. There

are a set of pre-defined entry points. You do a set of common,

well-understood, things in these entry points. You do these

things in ways that are well defined and agreed. Or, at least, if

you‟re doing a good job that‟s what you do.

It stands to reason, therefore, that after you‟ve written your

first five or ten drivers you‟ve already written much of the

code that will form the infrastructure of any future driver

you‟ll have to write. And even if you haven‟t written a dozen

drivers on your own yet, there are tons of Microsoft-supplied

samples that provide you the basics on which you will build.

And if you‟ve written zillions of drivers over a period of

almost 20 years like we have here at OSR, you have a lot –

and I do mean a ton – of code that does all sorts of cool driver

-related things.

Design & Code Reviews

Have a great product design, but looking for extra security to validate internal operations before bringing it to
your board of directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your client base.

A small investment in time and money in either service can “save face” in front of those who will be contributing
to your bottom line. OSR has worked with both startups and multi-national behemoths. Consider what a team of
internals, device driver and file system experts can do for you. Contact OSR Sales — sales@osr.com.

http://www.osr.com/code_review.html
mailto:sales@osr.com

Page 5

employment agreement and your company‟s policies. Your

employer might have a clause that says that you will provide

unencumbered rights to the work you produce unless you tell

them otherwise.

By the way, deleting the copyright and replacing it with your

own doesn‟t change the situation, either, except that deleting

the existing copyright hides what is now your theft. And,

before you laugh… let me assure you this happens all the

time. It is not the least bit uncommon for us, here at OSR, to

be given a driver to work on that has only the copyright of the

company that engaged us at the top – but the code was clearly

lifted directly from one of the samples we hand out in one of

our classes. Or, the driver is nearly identical to a sample in

the WDK.

Assuming you‟ve taken a pre-existing sample, and added

some new and original stuff and thus made your new driver

substantially different from the sample, you‟ve created what‟s

known as a “derivative work.” And you own the new,

original, parts that you‟ve added. To signify this ownership,

you can add your copyright to any existing copyrights on the

work. Congratulations. Go ahead… add that copyright.

But here, once again, things can get tricky in the driver world.

Let‟s say you‟re working on a driver for a USB device. You

start with the KMDF USB FX2 sample in the WDK. But your

device implements some unique vendor commands to do

clever, device-specific, things. So, you make a few changes to

the code – you know, you change the parameters to the

WDF_USB_CONTROL_SETUP_PACKET_INIT_VENDOR

call. You change the completion routine to do some

additional stuff. Whatever. But, you‟ve change the code,

right? So, you can own, at the very least, those changes you

made?

Well, I‟m told it depends. Does changing the values plugged-

into a macro make the code original and substantially

different?

Or, perhaps you‟re working on a filter driver where you

forward a request and get it back in your completion routine.

Are you really going to code the way you set up your send

options from scratch? You‟re not going to look for, and

maybe cut and paste, an example of calling WdfRequestSend?

I mean, how many ways can you even call WdfRequestSend

to make it “original”? And you‟ve never written that code

you‟re using in the completion routine before?

Here at OSR, if I‟m writing code for a driver, I‟m probably

going to start with one of the drivers we‟ve already written.

And as I change that original driver, I‟m going to be looking

at, and liberally cutting and pasting from, many of the other

drivers we‟ve written over the years.

(Continued from page 4)

The point is that, save proprietary APIs and the rare invention,

most drivers – and particularly most device and filter drivers –

have little truly new and original content. There are only so

many ways to write “status = IoCallDriver(DeviceObject,

Irp);” or “WdfRequestCompleteWithInformation(Request,

STATUS_SUCCESS, 0);” or many of the other statements

that form the vast majority of the driver code that we all write.

And much of the delta between the original driver with which

we start and the driver code that we deliver might very well

have originated from some other project. Again, here at OSR

if I need a hash table to look some stuff up based on a string

key, I‟m going to head right to the depot to see if I can find

someplace else where we‟ve already written a string hash

table implementation.

To repeat what I said at the outset of this pontification, this is

all good – very good, in fact – for everyone involved. This is

true as long as nobody decides they need to own the code

that‟s being produced. Who actually owns the code really

shouldn‟t matter. What matters is the license granted to the

code by the actual owners.

The license that you get to the code, whether it‟s code from

the WDK or code we at OSR write for a client, dictates how

that code can be used. As long as the license allows the user

to do with the code what they want (create derivative works,

redistribute, sub-license, or whatever) for the length of time

they need, ownership shouldn‟t be an issue.

So, if I‟m writing some driver code based on an OSR driver I

wrote a few years back, and I grab some hash table code from

another project, and then cut and paste and modify some code

for my DpcForIsr, as long as I‟m in a position to be able to

grant the rights required to use that code, all should be well.

Ownership is not necessary. Rights are necessary.

So, I‟m asking the driver world to face-up to the issues of

code ownership and licensing. Please, think a little about

these issues the next time you‟re coding-up a driver for your

corporate masters. If you‟re using code you got from taking a

seminar, or from the WDK, or from (heaven forbid!) Code

Project, don‟t just blithely cut, pastes, and delete the

copyright. And don‟t guarantee that you can transfer

ownership of code that you never owned in the first place.

And if you‟re a manager responsible for getting driver code

written for your company, I respectfully ask you please:

Don‟t insist on owning the code that‟s produced. Rather,

steadfastly ensure that you get the rights you need licensed to

you. In addition, if you have a set of proprietary APIs, be sure

you own those APIs. If you‟re licensing the rights to an

invention that‟ll be used in the code, understand that you still

own the invention. Don‟t put your driver developers or third

party partners in the position of having to determine if

changing the fields in a hash table package qualifies as

making that use substantially different. And, most of all: treat

as highly suspicious any guarantees you receive that you‟ll

(Continued on page 31)

Peter Pontificates...

Page 6

the .RC extension) that is compiled along with the other files

that are part of the executable. In the case of a WDK project,

the RC file would be declared as an element in the

SOURCES= line of a project‟s sources file.

For readers unfamiliar with an RC file, it is a resource-

definition script file (in text format) that describes the

resources used by your executable object. For applications,

these objects can be cursors, icons, bitmaps, dialog boxes,

fonts, version-information, strings, or user-definable objects.

For drivers, only the version-information is typically specified

in the RC file.

For the purposes of defining a VI resource for a driver, the

definitions needed to compile the RC file can be satisfied by

including winver.h. The RC file is compiled with the

resource compiler, which generates a compiled resource (.res)

file that the linker links into your driver‟s executable image.

Figure 2 (page 7) is a typical example of an OSR created RC

file that defines a VERSIONINFO resource.

As you can see from Figure 2 the VI resource contains a

number of elements that describe the executable with which it

is associated. Let us discuss the VERSIONINFO resource in

the next section.

One thing that should be mentioned here: This RC file in

Figure 2 that OSR typically uses does not follow the typical

format from the examples that you find in a WDK. That‟s

because the OSR resource file is “fully specified” – it‟s not

built using a set of Microsoft-supplied macros. Contrast the

OSR file in Figure 2 with the typical RC file from the WDK

shown in Figure 3 (page 7).

Notice that the OSR created RC does not include “ntverp.h”

or “common.ver”. Why? We don‟t include these files

because they contain Microsoft-specific defaults that will be

used if you fail to properly set all the fields in your driver‟s VI

resource. These defaults are appropriate for Microsoft

developers, but probably not the best choice for others. Driver

writers who use a WDK RC file as a template for their RC file

are the ones who typically end up with a VI resource that

contains things like the default Microsoft copyright because

they forgot to specify a copyright of their own.

Now we‟re not saying that using the WDK-provided method

is bad. All we are trying doing is warning you of the

consequences of using that method. Namely, if you‟re not

careful when you use the WDK-provided method, your RC

file you may end up with information in your VI resource that

you did not intend to be there.

(Continued on page 7)

O ne of our biggest pet peeves is finding a driver installed

on a system, written by a 3rd party that either doesn‟t have

a Version-Information resource in the image at all, or has one

that is blatantly incorrect. The most common Version-

Information resource error that we see is a 3rd party containing

a Microsoft copyright string (!) as a result of not overriding

the default values supplied in the WDK.

This article will discuss what a Version-Information is and

how to create one for your driver.

What is a Version-Information Resource
A Version-Information (VI) resource is a type of Resource

Compiler (RC) object that provides information about the

executable image that contains it. The information within the

VI resource typically includes the executable image‟s version

number, intended operating system, and original filename.

This information is viewed in Windows Explorer as shown in

Figure 1, and also may be retrieved programmatically using

the Windows Version Information functions.

The VI resource of an executable is defined by a

VERSIONINFO block contained within an RC file (a file with

Being Resourceful!
Creating a Proper Version Information Resource

Figure 1—Version Resource as Viewed from Explorer

Page 7

Being Resourceful...
// Include the necessary resources
//
#include <winver.h>
#include <ntdef.h>

#ifdef RC_INVOKED

//
// Set up debug information
//
#if DBG
#define VER_DBG VS_FF_DEBUG
#else
#define VER_DBG 0
#endif

// ------- version info ---

VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,0,0,0
PRODUCTVERSION 1,0,0,0
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
FILEFLAGS VER_DBG
FILEOS VOS_NT
FILETYPE VFT_DRV
FILESUBTYPE VFT2_DRV_SYSTEM
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "Comments", "OSR Driver"
 VALUE "CompanyName", "OSR Open Systems Resources, Inc."
 VALUE "FileDescription", "OSR Driver"
 VALUE "FileVersion", "V1.0.0.0"
 VALUE "InternalName", "A OSR Written Driver"
 VALUE "LegalCopyright", "(C)2011 OSR Open Systems Resources, Inc."
 VALUE "OriginalFilename", "OSRDRV.sys"
 VALUE "ProductName", "OSR Driver"
 VALUE "ProductVersion", "V1.0.0.0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x0409,1200
 END
END
#endif Figure 2—An Example of a Simple Resource File

#include <windows.h>
#include <ntverp.h>

#define VER_FILETYPE VFT_DRV
#define VER_FILESUBTYPE VFT2_DRV_SYSTEM
#define VER_FILEDESCRIPTION_STR "WDM Driver for Intel 8255x Ethernet Adapters"
#define VER_INTERNALNAME_STR "PCIDRV.sys"
#define VER_ORIGINALFILENAME_STR "PCIDRV.sys"

#define VER_FILEVERSION 1,00,00,0000
#define VER_FILEVERSION_STR "1.00.00.0000"

#undef VER_PRODUCTVERSION
#define VER_PRODUCTVERSION VER_FILEVERSION

#undef VER_PRODUCTVERSION_STR
#define VER_PRODUCTVERSION_STR VER_FILEVERSION_STR

#define VER_LEGALCOPYRIGHT_STR "Copyright (C) 2003 Microsoft Corporation"
#ifdef VER_COMPANYNAME_STR

#undef VER_COMPANYNAME_STR
#define VER_COMPANYNAME_STR "Microsoft Corporation"
#endif

#undef VER_PRODUCTNAME_STR
#define VER_PRODUCTNAME_STR "Microsoft Sample Driver for PCI Device"

#include "common.ver"

PciDrvWMI MOFDATA pcidrv.bmf Figure 3—WDK Sample RC File

(Continued on page 21)

(Continued from page 6)

Page 8

stackwalker uses (it also works for Itanium, if you should

be debugging that, but not x86). It should _always_ give

you correct nonvolatile registers if you start from the

context obtained by .cxr, .thread, or .exptr.

This was useful information in general, and hopefully will

help our readers further hone their debugging skills into the

future.

Code flow analysis
This reader had some valid observations here:

The first constructive point is that if your debugging takes

you into the game of back-tracing, you need to study

whole functions. This means unassembling not just at

addresses before the faulting instruction, nor after, but at

all places that fragments of the function have got

scattered by optimisation. Basically, you need to raise

your debugging to the foothills of reverse engineering.

The reverse engineer will see that the faulting instruction,

"mov rax,qword ptr [rsi+20h]" at ...F141 is picked up for

TreeUnlinkMulti by inlining TreeUnlinkMultiDoWalk,

which in turn inlines TreeLookup, which in turn inlines

TreeFindNodeOrParent. The loop that the analyst has

missed is actually from the start of this last subroutine.

The code's overall intention is to walk a given tree,

remove the nodes that match a given pair of keys, and

return these nodes as a list (linked through the RightChild

members only).

The reality is that with x64 it is proving to be far more often

the case that we need to back track through the code flow in

order to find local variables and reconstruct the stack. When

doing a thorough analysis, it is indeed important to look at the

entire function (the uf function is good for this) but this is a

bit more time-consuming (and certainly more daunting to

those just approaching kernel debugging).

But these are valid points.

So with this said, let‟s go back and revisit our analysis (see

Figure 1).
(Continued on page 9)

I n the last issue of The NT Insider we published a write-up

describing analysis of a crash dump in filter manager. A

couple of readers commented about the analysis and had some

solid points that needed to be considered.

This also underscores an important aspect of analysis, namely

that it can be helpful to obtain a second opinion on one‟s

analysis, precisely because it is easy to miss some important

point that aids in the analysis.

Now on to the specific issues raised by the readers:

The value of the RSI register is in fact not null

(0000009d00000000)

There is a backwards jump in the instruction stream

that impacts on the code flow analysis

There is some useful information related to

determining the type of trap frame that in turn tells us

more about which registers are valid.

x64 Trap Frame Observations
On the x64 platform, a kernel trap frame does not capture all

register state:

For a processor exception or trap, the OS only captures

the volatile registers (RAX, RCX, RDX, R8-R11 and

XMM0-XMM5) and the RBP register.

For a system call entry, the OS only captures RBP, RSI

and RDI. No other registers are preserved.

By using the ExceptionActive field, we can determine which

type of trap frame this is (a 0 or 1 value indicates this is an

exception or trap and the volatile registers plus RBP are

stored).

Further, the reader observed:

You can very often get reliable nonvolatile registers on x64

from ".frame /r (frame number)". There is also the newly-

documented (but long-present) ".frame /c (frame number)"

command that sets your effective context to the values

obtained from .frame /r. This works using the unwind

metadata generated by the x64 compiler that the debugger

Win7 Crash Redux

Figure 1— Context Record

2: kd> .cxr fffff88005f45960
rax=fffffaf7072f96b0 rbx=0000000000000000 rcx=fffffa8008e13318
rdx=fffffa8007e5b550 rsi=0000009d00000000 rdi=0000000000000000
rip=fffff8800106f141 rsp=fffff88005f46330 rbp=fffffa8008e13318
 r8=ffffffffffffffff r9=ffffffffffffffff r10=fffffffffffffe4a
r11=0000000000000001 r12=fffffa8007e5b550 r13=fffffa8007e34684
r14=0000000000004000 r15=0000000000000000
iopl=0 nv up ei pl nz na po nc
cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00010206
fltmgr!TreeUnlinkMulti+0x51:
fffff880`0106f141 488b4620 mov rax,qword ptr [rsi+20h] ds:002b:0000009d`00000020=????????????????

Page 9

This decodes the address, finds the relevant page table entries

and decodes each of them. From this, we can tell there is

nothing within this 512GB memory region (since each PXE

entry corresponds to a 512GB region of the address space).

Thus, while not the null pointer indicated previously, this is

still an invalid address – within a large, undefined region of

the address space.

As you so choose, you can look at the first function from the

stack in its entirety as provided at http://www.osronline.com/

article.cfm?id=584.

(Continued on page 25)

And of course the registers are valid here (they are all

captured in the context record,) as our reader noted.

This gives us the stack shown in Figure 2.

Then let‟s look at the invalid address (Figure 3).

(Continued from page 8)

Win7 Crash Redux...

2: kd> kv

 *** Stack trace for last set context - .thread/.cxr resets it

Child-SP RetAddr : Args to
Child : Call Site

fffff880`05f46330 fffff880`0106c460 : fffffa80`07a96920 fffffa80`07e5b550 fffffa80`07a96920
00000000`00000000 : fltmgr!TreeUnlinkMulti+0x51

fffff880`05f46380 fffff880`0106cbe9 : fffff880`05f48000 00000000`00000002 00000000`00000000
00000000`00000000 : fltmgr!FltpPerformPreCallbacks+0x730

fffff880`05f46480 fffff880`0106b6c7 : fffffa80`08b93c10 fffffa80`07ca8de0 fffffa80`07b402c0
00000000`00000000 : fltmgr!FltpPassThrough+0x2d9

fffff880`05f46500 fffff800`02da278e : fffffa80`07e5b550 fffffa80`07dfa8e0 fffffa80`07e5b550
fffffa80`07ca8de0 : fltmgr!FltpDispatch+0xb7

fffff880`05f46560 fffff800`02a918b4 : fffffa80`07e34010 fffff800`02d8f260 fffffa80`06d17c90
00000000`ff060001 : nt!IopDeleteFile+0x11e

fffff880`05f465f0 fffff800`02d900e6 : fffff800`02d8f260 00000000`00000000 fffff880`05f469e0
fffffa80`08b93c10 : nt!ObfDereferenceObject+0xd4

fffff880`05f46650 fffff800`02d85e84 : fffffa80`07c3fcd0 00000000`00000000 fffffa80`07a17b10
fffffa80`0a31e701 : nt!IopParseDevice+0xe86

fffff880`05f467e0 fffff800`02d8ae4d : fffffa80`07a17b10 fffff880`05f46940 0067006e`00000040
fffffa80`06d17c90 : nt!ObpLookupObjectName+0x585

fffff880`05f468e0 fffff800`02d1ee3c : fffffa80`08cf07e0 00000000`00000007 fffffa80`00001f01
00001f80`00f40200 : nt!ObOpenObjectByName+0x1cd

fffff880`05f46990 fffff800`02a8b993 : fffffa80`0a31e7e0 00000000`00000000 fffffa80`0a31e7e0
00000000`7ef95000 : nt!NtQueryFullAttributesFile+0x14f

fffff880`05f46c20 00000000`77320eba : 00000000`00000000 00000000`00000000 00000000`00000000
00000000`00000000 : nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @ fffff880`05f46c20)

00000000`0121e778 00000000`00000000 : 00000000`00000000 00000000`00000000 00000000`00000000
00000000`00000000 : 0x77320eba

2: kd> !pte 0000009d00000000

 VA 0000009d00000000

PXE at FFFFF6FB7DBED008 PPE at FFFFF6FB7DA013A0 PDE at FFFFF6FB40274000 PTE at FFFFF6804E800000

contains 0000000000000000

not valid

Figure 2— And, the Resulting Stack

Figure 3— Reviewing the Invalid Address

http://www.osronline.com/article.cfm?id=584
http://www.osronline.com/article.cfm?id=584

Page 10

As our first book review in some time, we though it appropriate to bring in a couple of vocal and

recognized names in the Windows driver development community to help us out. We‟re pretty sure that

the following reviews will raise awareness of this particular book, and provide you insight so that you can

determine if it is deserving of a place on your shelf.

chapter of the introduction covers standard object oriented

programming which, while nice, has little applicability to the

rest of the book. The second chapter is an extremely poor

overview of Windows driver concepts. What is missing from

the introductory section is an overview of WDF concepts.

This is obvious later in the book. The author duplicates

explanations of these concepts in both the UMDF and KMDF

section. Neither explanation is complete so at times you need

to read both to get what the author is saying.

Once you get into the UMDF and KMDF sections, things do

not improve. The author repeats diagrams and text multiple

times, including cases where the same text is repeated on two

consecutive pages. If this were a large book this might be

excusable, but with only 86 pages dedicated to UMDF and

192 pages to KMDF every page should count.

When the author is giving useful information, it corresponds

directly with the WDK documentation or various Microsoft

papers on WDF. The examples in the book are all WDK

(Continued on page 13)

One Book, Four Reviews
Windows 7 Device Driver, by Ronald D. Reeves

By Don Burn

The preface of the Windows 7 Device

Driver book states, “This book

provides the technical guidance and

understanding needed to write device

drivers…”. Unfortunately it fails in

this goal. The preface is also notable in

that it acknowledges no technical

reviewers, which as you read the book

becomes obvious from its many flaws.

The book is split into three sections: an introductory section, a

section on UMDF, and a section on KMDF. The introductory

section clearly shows the failings of this book. The first

By Scott Noone

W hen I first heard of an upcoming

book published by Addison-

Wesley on writing Windows drivers I

was intrigued. Students are always

asking me for book recommendations

and, quite frankly, there just aren‟t

that many books out there to be

recommended. This new book might

be the salvation that those students

were looking for and might provide people the information

they need to get up and running with the Windows Driver

Foundation.

Then, unfortunately, I received my copy of the 350 page book.

I can honestly say I‟m not quite sure who this book is

targeting or the process that was used to create it, but I will

definitely not ever be recommending this to anyone.

Editing, Anyone?
I generally try not to harsh on people too bad for typos,

inconsistencies, and obvious grammar problems. I mean, we

all make mistakes, right? However, to review this book and

not mention the many, many editing issues would be criminal.

Heck, I‟m pretty sure that Dan could do a better job editing,

and that‟s saying a lot.

In order to see an example of what I mean, you need look no

further than the preface of the book. This book alleges to teach

the reader about WDF, however the author can‟t even decide

what WDF stands for. First we‟re told:

(Continued on page 14)

Review #1:
“Save Your Money”

Review #2:
“Full of Inaccuracies”

Page 11

By Martin O’Brien

I f you‟re looking for a terrible

summary of a random collection of

WHDC whitepapers, thoughtfully and

extensively annotated with a whole

bunch of errors courtesy of the author,

with no complete examples, or original

examples, and really nothing specific at

all on any subject, written by someone

with a PhD who knows nothing about

Windows driver development, then this is the (wholly

unedited) book for you.

To be fair, other than that, I have to say that I really did enjoy

the play.

You know, with a book this crappy, it‟s very tempting to just

skim. I mean, really, what are you going to miss? I ask you

this, fair reader.

Alas, I did read the whole thing. And now I‟m angry.

There are three things that strike me most about this book,

other than its crappiness. The first is that is essentially a

rehash of existing material. The second is its almost complete

lack of detail. The third is that its rehash nature

notwithstanding, it is full of errors of all types.

The degree to which this book is a rehash of WHDC papers is

striking. Seriously, were it not for the fact that Penny Orwick

writes good stuff, I would think that she was getting

kickbacks. The most obvious source of information, however,

is the WDK toaster sample, which is what the author terms the

Featured Toaster driver. The book is mostly about said

Featured Toaster driver, but the question of which version of

the WDK Dr. Ron used is a good one. The title of the book is

of course, Windows 7 Device Driver, but the good doctor

clearly did not use the Win 7 WDK. In some places, he refers

to the earlier of the Vista RTM WDK‟s (6000), but there, as in

most places, there are so many errors and contradictory pieces

of information, it‟s hard to say really (Page 190).

 Launch the Windows 7 Checked Build Environment

console window. It opens in the c:\WinDDK\6000 folder.

Well, no, Ron, it does not, because there is no „Windows 7

Checked Build Environment‟ console window in the Vista

WDK, oddly enough. Damn Softies.

To my way of thinking, there‟s so many errors of this type –

referencing existing material and still managing to introduce

errors – that there‟s really not much point in detailing them,

not to mention that it wouldn‟t be possible to do this in the

space provided. They are everywhere. Seriously, just open to

pretty much any old page and start reading.

For the same reasons, I think it somewhat a fool‟s errand to

break down how the author handles the finer points of driver

development, not to mention what he doesn‟t attempt to do so.

What I do think is a laudable goal for a book like this is to

take a bite out of the fairly terrible learning curve of getting a

driver built, installed and running under a KD session.

Admittedly, the last of those is not by a long shot an easy one

to document, but the first ones are certainly all addressable.

To that end, the good doctor actually had a pretty good

approach using the Featured Toaster driver (of course). That

is, use an existing driver that everyone has access to as a

starting point and detail the finer points of the development

process from there. Had he followed through on this, I think

that would have been great. To date, to the best of my

knowledge, there really isn‟t any document out there that

collects all the bits and pieces you need to know to get up and

running quickly. That would be well worth $50, I think.

(Continued on page 12)

By Peter Viscarola

D on, Martin, and SNoone had to

read all of this book to review it

properly. Because I knew they were

reading it, and would write thorough,

intelligent, complete, reviews, I

stopped reading and started skimming

about mid-way through the first

chapter. I did this because I knew my opinion wouldn‟t

change. This book sucks. It‟s useless. The hideously bad

editing and the obvious lack of practical insight into the topic

offend me as professional driver developer and author. How

any publisher could let this piece of shit out the door is

beyond my understanding. So, I guess that means I didn‟t like

it, and I recommend you don‟t buy the book. Have a nice day.

Peter Viscarola is a Consulting Partner with OSR.

Review #3:
“Based on Existing Docs”

Review #4:
“Have a Nice Day”

Page 12

The opposite side of this coin, however, is that if you‟re going

to blatantly reproduce existing material, you need to (a) do so

correctly and (b) provide said bits and pieces that tie it all

together.

This is where the breakdown occurs.

Using another build example (Pages 187 - 188), although he

mentions „makefile.inc‟ many times, and provides a

SOURCES file that uses it, he never explains how it really

gets used. Further both his description and the SOURCES

files have errors. For example, he describes

„NTTARGETFILES‟ as being used to „specify additional

targets and dependencies not covered by makefile.def.‟ This

is incorrect, of course – it causes the inclusion of

„makefile.inc.‟ – and makefile.def has exactly nothing to do

with it. If you want to go that route, you‟d need to say

„makefile.new,‟ (makefile.def defines no targets, dependencies

or much of anything else) but that too isn‟t really relevant.

What would be relevant is describing how it works, which he

fails to do. He also has included both NTTARGETFILES

and NTTARGETFILE0 in his SOURCES, though has

misspelled the latter as „NTTARGETDILE0,‟ and he used

„KMDF_VERSION‟ instead of „KMDF_VERSION_

MAJOR,‟ with the former having been marked as deprecated

for a few WDK‟s.

Just to state the obvious, all he had to do was look at the

existing SOURCES file in the Toaster sample.

The lamest example of conspicuous reproduction of existing

material, by far, is his reproduction of the BUILD command

line options. He lists five of them – including „?‟ – and

provides no explanation for what they do, other than his

mangled version of what typing „build /?‟ produces (page

186).

The thing that I find most disappointing about the author‟s

treatment of this topic is that as any regular on ntdev/ntfsd/

windbg (nttalk, not so much, probably) knows, both BUILD

and WINDBG are filled with „subtleties‟ that collectively

provide a veritable kaleidoscope of low hanging fruit for a

treatment such as this, and were they provided, they would be

of legitimate benefit to the beginner.

Another area which would be a good candidate for an

introductory book, in my opinion, is background theory/

architecture of Windows. Here too, the results aren‟t good,

though I‟ll give the author credit for originality. It‟s not every

book on Windows drivers that starts off with a discussion on

the „Nature of an Object‟ (page 7), let alone one that

references Kant, among others, and his indirect contributions

(Continued from page 11)

to Object Oriented Programming due to his involvement in

„explaining the meaning of existence in general.‟

In addition to it being, say, wholly irrelevant, Ron, buddy,

you‟re like five time zones behind your own ass – describing

everything under the sun and the Windows kernel in particular

as „object oriented‟ was in fashion maybe five years ago, at

best, and probably more like ten. Or at least pretending to

think it important was.

As far as the accuracy of the introductory material goes, it‟s

more of the same.

There are several confusing/incorrect diagrams. The most

bewildering to me, at least, is Table 2.1 WDF Device Support

for Windows 7 (Page 16). It has four columns that not many

would normally group together, in my opinion – „KMDF,

„UMDF,‟ „SDV‟ and „PREfast.‟ Using this table, you can

determine, for example, that neither KMDF nor UMDF nor

SDV support „Video Capture Devices,‟ but PREfast in fact

DOES. Well, I guess I‟ll just write my driver using the

PREfast model then.

Finally, while I suppose that this might be seen by some as a

strange point to focus on, I think that one of the most

admirable qualities in a book is a good index. This is darn

rare these days, with everything being auto generated. Call

me a geek, but I find a good index to be ones of life‟s true

pleasures. This book‟s index is not good, but that‟s mostly

because there‟s no material to reference.

What is positively shameless is the Driver Information Web

Sites appendix (page 323). Ever find yourself looking for,

say, 142 permutations of go.microsoft.com? Well, here you

go! In a nutshell, the author – literally – provides links (ever

so helpful in hardcopy) to various pages in the WDK and calls

each a „web site.‟ Whether the links even work due to the

MSFT link permutator, who knows. There‟s also almost no

third party „web sites‟ referenced, though he does manage to

get two OSR references in there. Unfortunately, they happen

to be for the same page (numbers 1 & 137, something to do

with WinUSB).

I guess my summary would be that this book was written by

someone who would appear to know nothing about

developing (let alone testing) Windows drivers, and instead

based his entire book on an academic reading of existing

documents without trying any of it.

Martin O’Brien is a research scientist/business developer at
a company that is owned by another company that might not
care for the saltiness he expressed in this review. They’re
really quite narrow. He can be reached at:
martin.matthew.obrien@gmail.com

Book Reviews (O’Brien)...

Page 13

example code. There is not a single line of code by the

author. In fact, in reading the book you wonder if the author

has ever written a Windows device driver; in many places he

puts emphasis on items not required to write a driver, then

skims over important concepts. You also have to wonder if

the author has ever attended a conference such as DDC and

WinHEC, or for that matter actively monitored the various

online discussion groups covering Windows driver writing;

because as you read the book, various approaches that have

appeared in the conferences or discussion groups are never

mentioned.

The book has way too many flaws to mention all of them, but

a few lowlights that struck me include:

The book is based on the Vista WDK; things like

KMDF_VERSION are still specified when they have

been replaced and in the Windows 7 WDK produce a

warning

The author at one point references IRQL, but never

explains what it is, and rarely refers to it again for the rest

of the book. In fact, he waits until forty pages before the

end of the book to mention that you should not execute

code that can cause a page fault at DISPATCH_LEVEL.

The book gives no examples of how to access hardware.

Instead, in a review of the PCIDRV driver he shows the

calls to the wrapper routines the driver uses, but nothing

about required macros and functions like

READ_PORT_XXX, READ_REGISTER_XXX,

WRITE_PORT_XXX, etc.

The text has a short description of reading from the registry,

but no explanation of what the registry is, Further, it only

shows an example of reading the device parameters under the

(Continued from page 10)

hardware key and nothing about reading parameters under the

services key for the whole driver.

The book‟s cover claims, “The First Authoritative Guide to

Writing Robust, High-Performance Windows 7 Device

Drivers”. The book is far from authoritative, does not

provide the information to allow creation of a robust driver,

presents no information on performance, and does not use the

Windows 7 WDK, so it cannot claim to specialize in

Windows 7 drivers.

New developers could use a good introductory book on WDF

to get them going. This book is not it. For experienced

developers, this book is a total waste of time, since it covers

things at a very high level with no new information. Get the

Microsoft WDF book if you do not have it, but save your

money and don‟t waste your time and dollars on this book.

Don Burn is a consultant with 40 years of system software
development experience. Don has architected multiple
system software products, including operating systems,
tools, and compilers. For the last 17 years, he has been
developing Windows device drivers and file systems.

As a consultant, Don has developed system software for a
number of clients, and has been engaged for architecture
definition, assistance in hiring a development team, and
review of development processes. Don can be reached at
http://www.windrvr.com

Book Reviews (Burn)...

Kernel Debugging & Crash Analysis

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs to determine root
cause. Want to learn the tools and techniques yourself? Consider attendance at OSR’s Kernel Debugging &
Crash Analysis seminar.

The next offering of this seminar is to be held in:

Columbia, MD
14-18 November 2011

For more information, visit www.osr.com/debug.html

http://www.windrvr.com
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html

Page 14

Much of the previous grunt work, thank goodness, is now

being handled by the latest device development framework

Windows Driver Foundation (WDF).

While I do have other problems with that sentence, I‟m going

to ignore those and instead focus on the correct definition of

WDF as, Windows Driver Foundation. Unfortunately, three

paragraphs later the initials are redefined to be something else:

This section also covers…which are part of the Windows

Driver Framework (WDF).

While this may seem like a minor nit, it is demonstrative of

two things that become very clear when reading this book:

There‟s a general lack of attention to detail. For

example, page 19 calls the WDFDMAENABLER

object a, “WDFDMANENABLE” object and page 189

has the SOURCES file INCLUDE directive listed as,

“INNLUDES”. Note that these are not isolated

instances, but examples found while flipping through

the book as I write this review.

Before becoming the Windows Driver Foundation,

WDF was initially introduced to the community as the

Windows Driver Framework. I suspect that the author‟s

confusion comes from ancient WinHEC slides and

other material that introduced it as such. This might be

considered an honest mistake. However, there are other

cases where the author has used old white paper and

WinHEC material that do not represent the current state

of the framework. For example, the block diagram

shown on page 25 is an exact copy of a block diagram

from a whitepaper published in 2006 using antiquated,

“package” terminology for portions of the framework.

Instances like this give the book a, “cobbled together”

feeling that is never good from a technical work.

With all of that said, we can begin looking at the content of

the book as a whole.

Where to begin?
The book starts off with what can best be described as a

bizarre commentary on the “nature” of objects. I find that this

section is best summed up by the following sentence from the

second paragraph:

Ancient philosophers, such as Plato and Aristotle, as well

as modern philosophers like Immanuel Kant have been

involved in explaining the meaning of existence in general

and determining the essential characteristics of concepts

and objects (Rand 1990).

Huh? I‟m not sure what, if anything, this has to do with

(Continued from page 10)

Book Reviews (Noone)... writing drivers. While this might be an interesting mental

exercise for a college text on OO programming, this is

supposed to be a practical book about writing drivers for

Windows. You would think that the author would have taken

this time to even briefly explain concepts such as IRQL,

execution context, driver objects, device objects, etc. Instead,

we‟re left with twelve pages discussing UML and .NET.

Who is the Target Audience?
As I made my way through this book, I began wondering who

exactly the target audience would be. While the second

chapter, WDF Object Model, starts off fairly benign with a

high level overview of why we need a replacement for WDM,

the author then immediately starts using very specific WDM

details that would totally confuse anyone that didn‟t have

prior driver writing experience. For example, in section 2.5.1

the author states:

KMDF objects are unique to the framework. They are not

managed by the Windows object manager and therefore

cannot be manipulated by using the system’s ObXxx

functions.

Thus, there is an assumption that the reader has an

understanding of the Object Manager in Windows and the

available Object Manager APIs. As another example, Section

2.7.2 assumes that the reader is familiar with the I/O Manager

and IRP processing:

In Windows, the I/O request packet (IRP) does more than just

present traditional I/O requests (read, write, create, and so

forth) to drivers.

Note the lack of context for these terms; they seem to come

out of nowhere. Also, what good does this information

provide the reader? While initially learning the framework it

can often be a disadvantage to try to think of the framework in

terms of the underlying WDM objects. This can cause the

student to lose focus on the framework itself and instead start

worrying about the implementation of the framework.

Unless we are to expect newbie driver writers to identify and

ignore WDM references that they don‟t understand, I can‟t

recommend this book to an inexperienced driver writer. It

lacks the fundamentals necessary to give a solid understanding

on the O/S environment and will mostly just serve to confuse

with its mixing of terms.

What about the Experienced Driver Writer?
So, if it‟s not for newbies, is this book for those experienced

WDM driver devs out there looking to quickly come up to

speed on WDF for their next project? Unfortunately, no, this

book isn‟t for the experienced driver dev either. As I

mentioned previously, this book is mostly a collection of the

various whitepapers currently available and thus does not

provide much content that you haven‟t seen before. Did I also

mention that this book is brief? For example, the author

(Continued on page 15)

Page 15

spends a whopping 31 pages describing the KMDF object and

I/O model.

In addition, the KMDF sections do a poor job of highlighting

the typically troublesome concepts of synchronization scopes,

queue dispatching, execution level constraints, and the

implications that these can have when combined. For

example, while explaining WdfExecutionLevelDispatch the

author states:

This setting does not force all callbacks to occur at

DISPATCH_LEVEL. However, if a callback requires

synchronization, KMDF uses a spin lock, which raises

IRQL to DISPATCH_LEVEL.

Clearly the author is trying to make some kind of point here

about the impact of synchronization scope and execution level

constraints, though the point is poorly formed and does little

to clear up any confusion the reader might have.

The back of the book alleges that this book has a section on

how to write secure kernel code, which I thought would be an

excellent addition to any driver writing book and was excited

to read about as an experience dev. Unfortunately, the security

section is all of one page and has useless information such as:

7.5.3 Counted UNICODE Strings

To help prevent string handling errors, KMDF DDIs use

only counted PUNICCODE_STRING (sic) values. To aid

drivers in using and formatting UNICODE_STRING

values, the safe string routines in ntstrsafe.h have been

updated to take PUNICODE_STRING parameters.

(Continued from page 14)

Book Reviews (Noone)...

That‟s the entire section on safe string handling. Seriously.

Downhill from Here…
The rest of the book consists of dramatic readings of several

of the KMDF samples from the Vista RTM WDK. I‟m not

sure what value is being added here, especially with sentences

such as (page 230):

The variable fdoData, of type PFDO_DATA, is defined to

hold a pointer to the context area.

The End (Finally)
The book ends as strangely as it began, with an appendix that

contains a list of 142, “driver information web sites.” In

reality, it‟s mostly an eclectic collection of random MSDN

pages. Things such as ACCESS_MASK and

SECURITY_IMPERSONATE_LEVEL (sic) are listed here,

which don‟t really appear to match up with anything in the

book. Though we do have the same article from The NT

Insider listed twice in the appendix, so that must make it extra

important.

In case it hasn‟t been clear from this review, do not buy this

book. There just isn‟t anything here that you haven‟t seen

before and what is here is full of inaccuracies.

Scott Noone is a Consulting Associate with OSR.

Custom Software Development—Experience, Expertise
...and a Guarantee

In times like these, you can’t afford to hire a fly-by-night Windows driver developer. The money you think you’ll
save in hiring inexpensive help by-the-hour, will disappear once you realize this trial and error method of
development has turned your time and materials project into a lengthy “mopping up” exercise...long after your
contract programmer is gone.

Consider the advantages of working with OSR. If we can be of value-add to your project, we’ll tell you. If we
can’t, we’ll tell you that too. You deserve (and should demand) definitive expertise. You shouldn't pay for
inexperienced devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

mailto:sales@osr.com

Page 16

Queue can be in progress in your driver at a time, and how

those Requests are presented. The possible Queue Dispatch

Types are:

Sequential Dispatch Type

In Sequential Dispatching, only one Request from the

Queue may be in-progress in your driver at one time.

A new Request is not presented to your driver until

your driver:

Completes the current Request (regardless of the

completion status)

Forwards the current Request to another Queue

Sends the current Request to an I/O Target,

using the Send and Forget option.

Parallel Dispatch Type

When you specify Parallel Dispatching for a Queue,

multiple Requests can be in progress in your driver

from that Queue simultaneously. Instead of waiting

for one Request to finish before presenting your driver

with another Request, as in Sequential Dispatching, in

Parallel Dispatching the Framework will continue to

present your driver with Requests from the Queue

until some maximum number of Requests are in

progress from that Queue. You specify the maximum

number of Requests that can be in progress at one time

when you configure the Queue. By default, the

maximum number of Requests is "unlimited."

If you‟re clever, you‟ll note that using Parallel

Dispatching and setting the maximum number of in-

progress Requests to one gets you exactly the same

behavior as what you get from Sequential Dispatching.

Good catch!

(Continued from page 1)

WDF Queues...

Manual Dispatch Type

Manual Dispatching is very different from other Queue

Dispatch Types. When you specify Manual

Dispatching, Requests are explicitly retrieved from the

Queue by your driver; the framework never calls your

driver to present Requests from the Queue.

Because the Manual Dispatch Type requires a driver to

actively “pull” Requests from the Queue, Queues with

this Dispatch Type are almost never used for delivering

Requests from the Framework to a driver. Consider

why this is the case: If you use a Queue with the

Manual Dispatch Type to receive Requests from the

Framework, your driver would have to poll the Queue –

periodically attempting to remove entries – in order to

get work. When compared to the other Dispatch Types,

which present Requests to your driver when

appropriate, this isn‟t a very appealing alternative.

Queues with the Manual Dispatch Type are almost

always used to hold Requests that have been previously

presented to a driver via another Queue. Thus, Queues

with the Manual Dispatch Type are most like ordinary

queues or linked lists. They‟re used to hold items that

originated elsewhere until needed.

So, a Queue‟s Dispatch Type controls both how Requests are

delivered to your driver (by presenting Requests to your

driver, or by your driver manually calling a function to

remove a Request from the Queue) and how many Requests

may be in progress in your driver at a time (for Sequential

Dispatching one Request can be in progress at a time, for

Parallel Dispatching multiple requests – up to a limit defined

by your driver – can be in progress at a time). Queues with

Sequential Dispatching or Parallel Dispatching are most often

used to control the flow of Requests from the Framework to a

driver. Manual Dispatching are typically used to temporarily

hold Requests that a driver has received via another method.
(Continued on page 17)

NEW SEMINAR—Windows Internals for Forensic Analysts

26-29 September, Columbia, MD

Based on feedback from students and managers, OSR is in the process of organizing a new seminar covering
topics of interest to those in the field of forensic analysis for information security and cyber warfare. This new
Windows internals presentation includes hands-on lab time where attendees can “get their hands dirty”
implementing solutions that explore functionality and solicit data from a Windows system.

For a look at the outline, pricing and registration information, visit www.osr.com/forensics.html.

http://www.osr.com/forensics.html
http://www.osr.com/forensics.html

Page 17

Queue States
Another way in which WDF Queues differ from ordinary

linked lists is that WDF Queues are actively controlled by the

Framework. Each WDF Queue may be in one of several

different states:

Started: If a Queue is in the Started state, when a

Request arrives the Queue will immediately consider it

for presentation to the driver according to the rules for

its Dispatch Type. For example, if a new Request

arrives at an empty Queue in Started state, and that

Queue uses the Sequential Dispatch Type, the Request

will be presented to the driver if there are currently no

other Requests active in the driver from that Queue.

Stopped: When a Queue is in the Stopped state, newly

arriving Requests will be inserted on the Queue and

held on the Queue indefinitely. If the Queue‟s state

changes to Started, Requests pending on the Queue will

be evaluated for presentation according to the rules for

the Queue‟s Dispatch Type.

Therefore, if the previously described empty Sequential

Queue is in the Stopped state when a Request arrives,

that Request will be placed on the Queue. Later, if the

Queue‟s state changes to Started the first Request that

arrived to the Queue will be presented to the driver.

Because the Queue in this example uses the Sequential

Dispatch type, additional Requests will not be presented

until the previously presented Request is completed or

forwarded as previously described.

Purged: When a Queue is in the Purged state any

Requests that are on the Queue or that arrive for that

Queue are immediately completed by the Framework

with an error status. Therefore, if a Queue that was in

the Stopped state is changed (by command from either

the driver or the Framework) to the Purged state, any

Requests that happened to be waiting on the Queue are

completed by the Framework with an error status. Any

new Requests that arrive for this Queue are also

completed by the Framework with an error status; they

are not inserted onto the Queue.

Power Managed
An extremely handy feature of WDF Queues is that they are

"power managed" by default. This meaning that the

Framework will automatically change the Queue‟s state

according to the D-State of the device with which the Queue

is associated.

When a device is in the fully powered, working (D0), state the

Framework sets that device‟s Queues to the Started state.

(Continued from page 16)

WDF Queues... This results in arriving Requests being presented to the driver

according to the rules for the Queue‟s Dispatch Type, as

previously described. When the device transitions to a non-

working power state (that is, any device power state other than

D0), the Framework will automatically put the Queue into the

Stopped state, resulting in Requests arriving at the Queue

being held. In addition, if a Request arrives at a power

managed Queue while the device is idling in a low power state

(any state other than D0, as a result of the device putting itself

to sleep to save power) the Framework will automatically

initiate the process to return the device to the working (D0)

power state so it can resume processing Requests.

This is a terrific feature, because it frees drivers from having

to be concerned about what power state the device is in when

Requests arrive. You certainly don‟t want read or write

requests to be presented to your driver before your driver has

had the chance to power-up your device to handle them, right?

Right! And, with power managed Queues, the Framework

keeps that from happening.

Of course, you can override the Framework‟s default behavior

by setting the Queue to be non-power managed. In this case,

the state of the Queue isn't changed automatically based on the

associated device's D-state.

Automatic Cancellation
A final feature of WDF Queues that makes WDF driver

development convenient is that Queues handle cancellation of

pending Requests automatically. This means that if a Request

is cancelled when it is pending on a Queue the Framework

will automatically remove that Request from the Queue and
(Continued on page 18)

Windows Internals & Software
Driver Development

Attention security researchers, government
contractors and engineers involved in security and
threat analysis modeling! The next offering of our
Windows Internals & Software Drivers seminar has
been scheduled.

17-21 October, Waltham, MA

For a look at the outline, pricing and registration
information, visit www.osr.com/swdrivers.html.

http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html

Page 18

WDF Queues...

complete it with a cancelled status. A driver can choose to be

informed about the cancellation by specifying an appropriate

Event Processing Callback (discussed later). Reasons that a

Request might be cancelled when it‟s on a Queue include the

thread that initiated the Request exiting, or the issuing thread

calling CancelIo or the issuing process calling CancelIoEx.

Queue Events and Event Processing Callbacks
So how exactly are Requests presented to your driver? It‟s

simple: Like all WDF Objects, Queues are capable of raising

a given set of events. A driver may choose to handle a subset

of these events by providing appropriate Event Processing

Callbacks.

The most important Queue-based Event Processing Callbacks

available to your driver are the I/O Event Processing

Callbacks. These callbacks are invoked by the Framework to

present Requests from a Queue to your driver. On each of

these callbacks, the Framework passes your driver a handle to

the Queue from which the Request originated, and a handle to

the Request itself. Other parameters vary, depending on the

specific callback.

Note that I/O Event Processing Callbacks are only used for

Queues that have been configured with the Sequential or

Parallel Dispatch Type. Queues that are configured with the

Manual Dispatch Type do not raise I/O events, and thus I/O

Event Processing Callbacks are not allowed for these Queues.

In fact, the Framework returns an error if you try to specify an

I/O Event Processing Callback for a Queue with the Manual

Dispatch Type.

The I/O Event Processing Callbacks that your driver can

handle are:

EvtIoRead: This callback is invoked by the

Framework when it has a read Request to be presented

to the driver from the Queue.

EvtIoWrite: This callback is invoked by the

Framework when it has a write Request to be

presented to the driver from the Queue.

EvtIoDeviceControl: This callback is invoked by the

Framework when it has a Device I/O Control (IOCTL)

Request to be presented to the driver from the Queue.

EvtIoInternalDeviceControl: This callback is

invoked by the Framework when it has an Internal

Device Control Request to be presented to the driver

from the Queue.

(Continued from page 17)

EvtIoDefault: This callback is invoked by the

Framework when it has a Request to be presented to

the driver from the Queue, and one of the more

specific I/O Event Processing Callbacks has not been

specified by the driver.

If you think about it a bit, I expect you‟ll understand how the

above I/O Event Processing Callbacks are used. Consider, for

example, a driver that has a single Queue using Parallel

Dispatching for which EvtIoRead, EvtIoWrite and

EvtIoDefault Event Processing Callbacks have been supplied.

If a read operation is sent to the device, the Framework will

present that Request to the driver by calling the EvtIoRead

Event Processing callback. Likewise, if a write operation is

sent to the device, the Framework will present that Request by

calling the driver‟s EvtIoWrite Event Processing Callback.

However, if a Device Control Request arrives at the Queue,

the Framework will present that Request via the driver‟s

EvtIoDefault Event Processing Callback, because the driver

did not configure the EvtIoDeviceControl Event Processing

Callback to handle this specific type of Request.

There are also Event Processing Callbacks that allow your

driver to be informed when a Queue transitions into and out of

the Stopped state. These callbacks are only needed in rare

cases, and are thus much less frequently used than the I/O

Event Processing Callbacks.

Before leaving our discussion of Event Processing Callbacks,

we should note one more type of Event Processing Callback

that your driver can specify: That‟s the Event Processing

Callback for Request cancellation. If a Request is currently on

a Queue and is aborted (either as a result of the user

attempting to cancel it or the thread that issued it attempting to

exit) , the Framework wil l call a driver‟s

EvtIoCanceledOnQueue Event Processing Callback. Note that

this callback is only invoked when a Request is canceled

while on a Queue (or immediately before being queued), thus

it's not likely to provide much value in the case of a parallel

Queue.

Incoming Request Queues
A driver is free to create as many Queues as it likes. However,

at least one of these Queues will need to be an Incoming

Request Queue. An Incoming Request Queue is a Queue

through which the Framework presents Requests to the driver.

The most common way for a driver to specify an Incoming

Request Queue is by marking a Queue it creates as the Default

Queue for a device. A driver can create exactly one default

Queue for a given device. In addition (or, in fact, even in

place of) a default Queue, a driver may choose to create one or

more additional non-default Queues and indicate to the

Framework that these Queues are Incoming Request Queues

for specific Request types. A driver does this by configuring

Request dispatching, indicating the Queue and the particular

request type (such as read, write, or device control) that will

be routed to the Queue from the Framework.
(Continued on page 19)

Page 19

WDF Queues...

Most WDF drivers utilize a single, default, Incoming Request

Queue for receiving Requests from the Framework.

However, the ability to use multiple WDF Queues to sort and

organize Requests is one of the best features of WDF Queues!

Using Multiple Queues
It might not be immediately apparent why using multiple

WDF Queues can be handy. Let‟s look at a few examples to

illustrate some common uses for this feature.

As an example, let‟s consider a driver for a simple device that

processes read and write operations, and that also has a set of

IOCTL control codes that can be used to enable, disable, and

get statistics for the device. Maybe the device is a simple

point-to-point communications link. The exact function of the

device doesn‟t matter. What does matter is that it supports the

previously specified three types of I/O requests.

Like most devices, our example device can only handle read

and write operations when the device is fully powered on (in

D0). This won‟t present any problems for us because WDF

Queues are, by default, power managed. That means that if

we use a power managed Queue to handle incoming read and

write operations, those Requests will only be presented to the

driver when the device is in its fully powered state.

However, note the IOCTLs that that driver must support.

These control codes, to enable and disable the device and to

gather statistics from the device, can be handled by the driver

without regard to the device‟s power state. If we configure

our driver to send all arriving I/O requests to a single Queue

that is Power Managed, the IOCTLs won‟t be delivered when

the device is in a lower power state. And, if we choose to

have all I/O requests delivered to a single queue that is not

(Continued from page 18)

Power Managed, the Framework will deliver us read and write

requests to the driver when the device is in low power state

and they can‟t be handled!

What do we do? Well, to support this device, a WDF driver

can choose to configure two Incoming Request Queues: One

default Power Managed Queue that handles the read and write

requests, and another Queue that is not power managed, that

that driver configures to handle only Device Control requests.

In this way, read and write operations are handled by the

Framework according to the power management state of the

device, and IOCTLs are delivered to the driver without regard

to the device‟s power state. Problem Solved!

How about another example: Did you ever have to write a

driver for a device that can handle one read plus one write

simultaneously, but not two reads or two writes? This is a

pretty common requirement, and if you‟ve been writing

drivers for a while you‟ve probably encountered a device like

this. This requirement is easily handled by configuring two

Incoming Request Queues, each with the Sequential

Dispatching Type. You configure one Queue to handle

incoming read requests, and the other to handle incoming

write requests.

Extending that last example a bit further, maybe you want to

modify this driver to support device control operations.

Adding this support is simple! Just configure another

Incoming Request Queue and tell the Framework to route any

received device control Requests to that Queue. Note that

when you configure that Queue, you can easily choose

whether the queue is Power Managed, and you can also

choose how many device control Requests your driver will

have in progress at a time by specifying the Dispatch Type.

And you can do this easily, without disturbing the conditions

under which your driver already handles read and write

operations.

(Continued on page 20)

OSR’s Corporate, On-site Training
Save Money, Travel Hassles, Gain Customized Expert Instruction

We can:
Prepare and present a one-off, private, on-site seminar for your team to address a specific
area of deficiency or to prepare them for an upcoming project.
Design and deliver a series of offerings with a roadmap catered to a new group of recent hires
or within an existing group.
Work with your internal training organization/HR department to offer monthly or quarterly
seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an OSR seminar
consultant at +1.603.595.6500 or by email at seminars@osr.com.

http://www.osr.com/seminar_private.html
mailto:seminars@osr.com

Page 20

WDF Queues...

How About Those Manual Queues
So far, we‟ve primarily focused on Queues that use the

Sequential and Parallel Dispatch Types. How do Queues with

the Manual Dispatch Type fit in?

As mentioned previously, you're allowed to create as many

Queues as you want, and not all of them need be Incoming

Requests Queues. You might, for example, create a Queue

with the Manual Dispatch Type that your driver uses to hold

Requests that are waiting for some event to occur. In this case,

your driver would forward Requests presented through one of

your Incoming Request Queues to your manual Queue.

Drivers often need the ability to "park" Requests within the

driver to be completed only when some asynchronous event

occurs. For example, in the OSR USB FX2 device there is a

switch pack that generates an interrupt with the state of the

switches when they are toggled. Instead of having the

application poll the driver to determine if something has

changed, it would be nice to let the application send

asynchronous IOCTLs that get completed when the switch

pack changes.

This is a perfect fit for a manual Queue. Requests to read the

switch pack arrive at one of the FX2 driver‟s Incoming

Request Queues and are then promptly forwarded to a manual

Queue. When the device interrupts, the driver simply drains

its manual Queue and completes each of the Requests it

retrieves from that Queue with the state of the switch pack.

Clean and simple, with the added benefit of cancellation of the

Requests being completely handled for you!

(Continued from page 19)

Queue Gotchas
Of course, there are going to be some gotchas that you might

run into sooner or later. In order to give your later the benefit

of our sooner, here are some things to note when writing your

driver:

If a Request is presented to your driver from a

Sequential Queue and you forward that Request to a

secondary Queue, another request may be presented to

your driver from the Queue. Thus, if your device only

supports one I/O Request at a time, parking the in

progress Request on a manual Queue is not an option.

Don't use the dispatch type as a cheap means of

serialization. While it might at first seem tempting to

set your Incoming Request Queues to sequential and

never worry about locking, that's not really the spirit of

the sequential Queue. Sequential Queues should only be

used when your device can only support one operation

at a time, WDF's Synchronization Scope (not covered

in this article) should be used in all other cases.

You cannot complete Requests while they are on a

Queue.

Queue Power!
So, that‟s a brief introduction to WDF Queues. We hope you

agree that WDF Queues are one of the most powerful,

interesting, and useful features of WDF.

Learn to Write KMDF Drivers
Why wouldn’t you? If you’ve got a new device you need to support on Windows, you should be considering the
advantages of writing a KMDF driver.

Hands on experience with labs that utilize OSR’s USB FX2 device makes learning easy—and you get to walk away
with the hardware!

Please join us at our very popular Writing WDF Drivers for Windows seminar. NEXT OFFERING:

3-7 October, Seattle, WA

Contact an OSR seminar coordinator at seminars@osr.com.

http://www.osr.com/wdf.html
mailto:seminars@osr.com

Page 21

OSR: Just Ask

Ask us to cogently explain the Windows I/O Manager
to a couple dozen Windows developers of varied
background and experience. Ask us how to address
latency issues in a given design of a driver. Ask us to
look at a post-mortem system crash, determine its
root cause, and suggest a fix. Ask us to design and
implement a solution that plays well with Windows,
even if it has no business being a Windows solution in
the first place.

Ask us to perform any of the above activities for your
company, and you will be pleased with the definitive
answer or result we provide.

So, the only question WE have is, “How can we help
you?” Contact: sales@osr.com

Being Resourceful...

VS_FF_DEBUG | VS_FF_PRERELEASE”):

VS_FF_DEBUG – the image contains

debugging information or is compiled with

debugging features enabled.

VS_FF_PATCHED – This image has been

patched and is not identical to the original

image containing the same FILEVERSION

number.

VS_FF_PRERELEASE – This image is a

development version of the image and is not a

released product

VS_FF_PRIVATEBUILD – This image was

not built using the standard release

procedures. If this flag is set the

StringFileInfo block must contain a

PrivateBuild string.

VS_FF_SPECIALBUILD – This image was

built using the standard release procedures

but varies from the original image with the

same FILEVERSION number. If this flag

is set the StringFileInfo block must contain a

SpecialBuild string.

VS_FF_FILEFLAGSMASK – this flag is a

combination of all preceding values.

FILEOS fileos – This statement is used to define the

operating system that this image is valid for. This field

is a 32-bit integer that is made up of two 16-bit fields.

The high 16 bits indicate the OS that the image is valid

for, while the low 16-bits indicates‟ the windowing

system. Most driver writers only care about Windows

(Continued on page 22)

So, given that, let‟s talk about what is in a VERSIONINFO

resource.

VI resource
The VI resource that we mention above is defined in the RC

file using the VERSIONINFO statement. The VI resource

itself can be defined using one of two following formats:

versionID VERSIONINFO fixed-info { block-statements …}

Or,

versionID VERSIONINFO
fixed-info
BEGIN
block-statement
….
END

Let‟s describe the fields used in each of these formats.

versionID
This field is the version resource identifier and must be 1. As

an alternative to specifying 1 in this field, devs often specify

VS_VERSION_INFO. The value for VS_VERSION_INFO

is defined in the include file “verrsrc.h”, but is referenced in

the include file “winver.h” (typically referenced in an RC

file).

fixed-info
The fixed-info section of a VI resource contains version

information such as the file version and intended operating

system. It is composed of the following statements:

FILEVERSION version – This statement defines the

binary version number of the executable. It is made

up of two 32-bit integers which are broken up into four

16-bit fields. Given a the statement “FILEVERSION

2,5,6,7” this would produce the integers 0x00020005

and 0x00060007 or the 4 16-bit fields of 0x0002,

0x0005, 0x0006, 0x0007 respectively.

PRODUCTVERSION version- This statement

defines the binary version number of a product

associated with the executable. Its format follows the

same format as defined in the FILEVERSION

statement. One thing that devs often find confusing is

that this version number does not need to match the

version number in the DriverVer field of the driver‟s

INF file. In fact, in most cases, these two values are

unrelated. Crazy, I know… but that‟s the way it is.

FILEFLAGSMASK fileflagsmask – This statement is

used to give some information about the state of the

executable image associated with this VI. The state of

the image is defined by OR‟ing together one or more

of the following flags (example: “FILEFLAGS

(Continued from page 7)

mailto:sales@osr.com

Page 22

Being Resourceful...

NT, so the only value that makes sense is (If you care to

know what the other values are check out “verrsrc.h”):

VOS_NT – This value indicates that this image

was designed for 32-bit windows. The reader

should note that there is no value for 64-bit

windows, setting VOS_NT will suffice

FILETYPE filetype –This statement is used to define

the type image this VI resource describes. This field

can contain one of a number of values, but as stated

above we are driver writers and only care about drivers.

Thus for us, the only value that make sense is:

VFT_DRV – This value indicates that the

image contains a device driver. The

FILESUBTYPE value described below

contains a more specific description of the

contained driver.

FILESUBTYPE filesubtype –This statement is used to

further refine the driver image that was indicated in the

FILETYPE state. It can have one of the following

values:

VFT2_UNKNOWN – this value indicates the

driver type is unknown

VFT2_DRV_COMM – image contains a

communications driver

VFT2_DRV_PRINTER – image contains a

printer driver

VFT2_DRV_KEYBOARD – image contains a

keyboard driver

VFT2_DRV_LANGUAGE – image contains a

language driver

VFT2_DRV_DISPLAY – image contains a

display driver

VFT2_DRV_MOUSE – image contains a

mouse driver

VFT2_DRV_NETWORK – image contains a

network driver

VFT2_DRV_SYSTEM – image contains a

system driver

VFT2_DRV_INSTALLABLE – image contains

an installable driver

VFT2_DRV_SOUND – image contains a sound

driver

VFT2_DRV_VERSIONED_PRINTER – image

contains a versioned printer driver

The reader should note that any field listed above that is not

specified in your RC file, will default to 0. In addition, if you

(Continued from page 21)

reexamine Figure 1 you will notice that none of the

information from the fixed-info section is visible via Explorer.

You should keep in mind that the information contained in the

VI is really only there for informational purposes, the real

information about the image is contained within the Portable

Executable header (PE Header) of the image itself.

block-statement
The “block-statement” section defines one or more version-

information blocks. The version-information blocks can

contain multiple StringFileInfo blocks and accompanying

VarFileInfo blocks as defined below.

VarFileInfo Block

VarFileInfo defines a Variable File information block. This

block describes the language and character set used to encode

the strings contained within the associated StringFileInfo

block discussed in the next section. The VarFileInfo block is

defined as follows:

BLOCK “VarFileInfo” {VALUE “Translation”, langID,
charsetID ….}

Where:

langId – This field contains a language code in

hexadecimal format. All the possible values for this

field are contained within the documentation, but an

example would be a value like “0x0409” which

indicates a language of U.S English.

charsetID - This field contains a character set code in

hexadecimal format. All the possible values for this

field are contained within the documentation, but an

example would be a value like “1200” which

indicates a character set of Unicode.

With this “Translation” statement you can specify multiple

langId and charsetID pairs which will show the user that that

are multiple translations for the VI in the image. So as an

example let‟s assume that in our RC file we wanted to have a

StringFileInfo information block in U.S. English using the

Unicode character set. Our VarFileInfo block would be

defined as in Figure 4 below:

BLOCK "VarFileInfo"
BEGIN
VALUE "Translation", 0x409, 1200
END
END

Figure 4—VarFileInfo for U.S. English with Unicode

So now that we‟ve indicated the language and character set to

be used for our information, we need to create a

StringFileInfo block in U.S. English using Unicode with the

appropriate information. Let us see how it is done in the next

section.

(Continued on page 23)

Page 23

Being Resourceful...

StringFileInfo Block

StringFileInfo defines an information block that contains a

number of string-name parameters that describe the contained

image in human-readable format. This block describes the

language and character set used to encode the strings

contained within the block. The StringFileInfo block is

defined as follows:

BLOCK “StringFileInfo” {BLOCK “lang-charset” {VALUE
“string-name”, “value” …}}

Where:

lang-charset – this field contains a language and

character-set pair. All the possible values for this field

are contained within the documentation, but an example

would be a string value like “040904B0” which indicates

a language of U.S English (0409) and a character set of

Unicode (04B0).

string-name –this field contains one or more predefined

names that describe the image in human readable format

(in the language and character set defined by the lang-

charset statement). The predefined names are:

Comments – a optional comment string

CompanyName – a required string indicating the

company that created this image

FileDescription – a required string that contains a

string describing the image

FileVersion – a required string that contains the

version number of the file in human-readable

format, for example “V1.0.3.2” or “A1.0.0.0

RC2”

InternalName – a required string that contains the

name of the image, for example “osrdrv.sys”

LegalCopyright – an optional string that contains

the copyright notices that apply to this image. If

used, this should contain all copyright notices,

legal symbols, copyright dates, and other

information that apply.

LegalTrademarks – an optional string that

contains all trademarks and registered trademarks

that apply to the image. If used, this should

contain all notices, legal symbols, trademark

numbers, and other information that apply,

OriginalFileName – a required string that contains

the original name of the file. This allows an

application to determine whether the image has

been renamed by the user.

PrivateBuild – this string should only be present if

the user specified VS_FF_PRIVATEBUILD in

(Continued from page 22)

the FILEFLAGMASK defined in the fixed-info

section. It should describe something about the

private build.

ProductName – This is a required string that

describes the name of the product which this

image is associated with.

ProductVersion – This is a required string that

contains the version number of the product which

this image is associated with. For example,

“OSRUSB Learning Kit V2.0.1.0”

SpecialBuild – this string should only be present

if the user specified VS_FF_SPECIALBUILD in

the FILEFLAGMASK defined in the fixed-info

section. It should describe something about the

special build.

It is worth noting that you can add your own string-name

fields to this block. Unfortunately you will not be able to see

them via Explorer. To see them you would have to write a

program that uses the Win32 Version Information functions to

retrieve them. In addition if you don‟t specify a pre-defined

name, its information will not be shown via Explorer.

So those are the fields that are contained within a

StringFileInfo block. Now, as we showed in Figure 4 we

defined a VarFileInfo block that indicated that our

StringFileInfo block is in U.S. English using the Unicode

character set. Therefore we have to have a StringFileInfo

block with a lang-charset that corresponds to what we

specified in the VarFileInfo block. Since we put 0x409

(U.S. English) and 1200 (Unicode) then the setting for our

lang-charset in our StringFileInfo block will be “040904b0”,

where 0409 corresponds to our specified language and 04b0

corresponds to our specified character set (1200 == 0x04b0).

Simple! Figure 5 below shows the StringFileInfo block for

U.S English in Unicode.

BEGIN
BLOCK "StringFileInfo"
BEGIN
BLOCK "040904b0"
BEGIN
VALUE "Comments", "OSR Driver"
VALUE "CompanyName", "OSR Open Systems
Resources, Inc."

VALUE "FileDescription", "OSR Driver"
VALUE "FileVersion", “V1.0.0.0”
VALUE "InternalName", "A OSR Written Driver"
VALUE "LegalCopyright", "2011 OSR Open Systems
Resources, Inc."

VALUE "OriginalFilename", "OSRDRV.sys"
VALUE "ProductName", "OSR Driver"
VALUE "ProductVersion", “V1.0.0.0”
END
END

Figure 5—StringFileInfo for U.S. English in Unicode

So as you can see, the VERSIONINFO block can be used to

thoroughly describe the image that is embedded in and this

allows the user and the developer to quickly identify the

software installed on the users‟ machine.

(Continued on page 24)

Page 24

Being Resourceful...

Note: RC files and VERSIONINFO resources can be

internationalized. All you need to do is create additional

VERSIONINFO resources in your RC file in the languages

you require.

Now that we‟ve discussed what fields are in a

VERSIONINFO resource, let‟s talk about creating one for

our image.

Creating your own VI Resource
As mentioned earlier, an RC file is just a text script file.

While it can be created with a resource editor, for example

within Visual Studio, it can just as well be created by hand

using your favorite text editor. Instead of starting from

scratch and writing your RC file from scratch, the easiest

thing to do is find an existing RC file with the required

information and replace the fields that are important to your

driver. We would suggest you copy the information shown

in Figure 2 into your WDK project‟s RC file and edit it

appropriately.

Now when we say edit it appropriately, what we mean is that

you modify the fields listed in Figure 6 with settings that are

appropriate for your image (you should note that if you want

your Version Information to be visible in multiple languages

you are going to be required to have a StringFileInfo/

VarFileInfo section for each supported language).

Once you have completed that you need to add the name of

the “.RC” file that you created to your sources file. So in an

example “Sources” file, for OSR‟s “nothing” driver shown in

Figure 7, you can see how we added “nothingver.rc” to the

“SOURCES” line.

(Continued from page 23)

MAJORCOMP=ntos
MINORCOMP=osr

TARGETNAME=nothing
TARGETPATH=obj
TARGETTYPE=DRIVER

INCLUDES=$(DDK_INC_PATH)\inc;..\inc

SOURCES=nothing.c nothingver.rc

Figure 7—Sample Sources File with .RC File

When we use the WDK “build” utility to compile our nothing

driver, it will see the “nothingver.rc” file on the “SOURCES”

line in our “SOURCES” file and automatically compile it and

link it to the “nothing.sys” file that it builds.

After you have successfully built the driver, make sure that

you use Explorer to examine the information that you

specified to ensure that all the information you want the user

to see is there. In addition you want to make sure that there is

no information present that you did not intend to be there.

Remember that sometimes (depending on how the VI got

created) Microsoft supplied information can sneak in, so you

have to make sure that you‟re supplying all the correct fields.

Summary
With the information contained within this article you can

now create and add a comprehensive RC file to your driver

without the risk of getting unexpected values in the various

fields. This information will allow your users and support

people to immediately know what version of your product and

image is being run. Now that is being resourceful!

FILEVERSION

PRODUCTVERSION

FILEFLAGSMASK

FILETYPE

FILESUBTYPE

CompanyName

FileDescription

InternalName

LegalCopyRight

LegalTradeMarks

OriginalFileName

ProductName

ProductVersion

Figure 6—Modify These Fields as Appropriate

Windows Internals & Software
Driver Development

Attention security researchers, government
contractors and engineers involved in security and
threat analysis modeling! The next offering of our
Windows Internals & Software Drivers seminar has
been scheduled.

17-21 October, Waltham, MA

For a look at the outline, pricing and registration
information, visit www.osr.com/swdrivers.html.

http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html

Page 25

Thus, at this point we‟re pretty much at a similar conclusion

of the analysis: we have a data corruption; it doesn‟t seem

likely the corruption occurred here but it is clear there is a

data corruption.

As noted previously, we‟ve seen similar data corruption – on a

different computer system, but on Windows 7 x64. In the first

dump, we observed what appears to be a single bit error in

memory. By itself it led us to suspect the machine. Seeing

this on a different computer in similar circumstances makes us

suspect there is some source of data corruption in the code.

While a race condition is a potential data corruption source,

it‟s not the only possibility.

Data corruption issues are often the most difficult to track

down. Frequently the source of the corruption shows up from

a pattern that materializes after reviewing a number of crash

dumps, not a single crash dump. While we still do not know

the actual issue here, we‟ll be on the look-out for it in the

future and invite our readers to share their own observations if

they see it as well.

Win7 Crash Redux...

The current block starts at:

fltmgr!TreeUnlinkMulti+0x4e:
fffff880`0106f13e 488bdf mov rbx,rdi

The mistake in the earlier analysis was to miss the jump

backwards several instructions afterwards:

fffff880`0106f158 ebe7 jmp fltmgr!
TreeUnlinkMulti+0x51 (fffff880`0106f141)

Thus, we really do have a small block of code under analysis,

as shown in Figure 4 below.

The reader that pointed out the loop here also pointed out the

intent of this code fragment:

The code's overall intention is to walk a given tree,

remove the nodes that match a given pair of keys, and

return these nodes as a list (linked through the

RightChild members only).

The analyst has identified the given tree and has in

Figure 7 dumped for us the root node, as the TreeLink

member of a _NAME_CACHE_NODE. See there that

the LeftChild member is corrupt but not with the value

of RSI at the time of the fault. Execution will have

worked some distance into the RightChild subtree until

reaching a node that has the faulting RSI as either its

LeftChild or RightChild member. Most plausibly, this

tree was already corrupt when TreeUnlinkMulti was

entered. A race condition, whether inside

TreeUnlinkMulti or out, is just one of many ways that

links in a tree might get corrupted.

(Continued from page 9)

fltmgr!TreeUnlinkMulti+0x4e:
fffff880`0106f13e 488bdf mov rbx,rdi

fltmgr!TreeUnlinkMulti+0x51:
fffff880`0106f141 488b4620 mov rax,qword ptr [rsi+20h]
fffff880`0106f145 483bd0 cmp rdx,rax
fffff880`0106f148 741b je fltmgr!TreeUnlinkMulti+0x75 (fffff880`0106f165)

fltmgr!TreeUnlinkMulti+0x5a:
fffff880`0106f14a 483bd0 cmp rdx,rax
fffff880`0106f14d 720b jb fltmgr!TreeUnlinkMulti+0x6a (fffff880`0106f15a)

fltmgr!TreeUnlinkMulti+0x5f:
fffff880`0106f14f 488b7610 mov rsi,qword ptr [rsi+10h]
fffff880`0106f153 4885f6 test rsi,rsi
fffff880`0106f156 74ce je fltmgr!TreeUnlinkMulti+0x36 (fffff880`0106f126)

fltmgr!TreeUnlinkMulti+0x68:
fffff880`0106f158 ebe7 jmp fltmgr!TreeUnlinkMulti+0x51 (fffff880`0106f141)

Figure 4

Page 26

!sysinfo
Do you have a customer that can repeatedly reproduce a

problem but you just can‟t reproduce it with the exact same

procedure? Maybe you‟re not using a fast enough processor or

the right BIOS version, but in any event, how can you tell

what system configuration the customer is using from just a

dump file? Enter !sysinfo, a command that can tell you just

about anything you‟d want to know about your system using

information cached on the target. For example, let‟s see what

kind of processor is in this system (See Figure 2, page 27).

There‟s more here as well if you go exploring the

documentation for the command. For example, you can even

query information about which RAM slots are populated using

the smbios switch (e.g. !sysinfo smbios –memory).

Suspected Race Condition Commands
Race conditions are the worst. They‟re difficult to track,

difficult to reproduce, and when you get a crash it may be too

late. The race has already happened and when the system

crashes you‟re dealing with the secondary failure, so there‟s

nothing that can be done, right? Wrong! WinDBG has a

couple of commands that can make you feel like you‟ve won

the lottery and pinpoint the racing thread with ease.

!running
If you‟re lucky, the thread that is racing with your crashing

thread is still running on another processor. This is where !

running comes in, which will show you information about

each thread that is currently running on a processor in the

system. Whenever I run this command I like to specify the –ti

switch, to include thread stacks in the output as well as idle

threads:

1: kd> !running -ti

..
 0 f7857120
85ed2da8

ChildEBP RetAddr
ba9be270 804f961f nt!KeBugCheckEx+0x19
ba9be62c 805310dd nt!KiDispatchException+0x307
ba9be694 8053108e nt!CommonDispatchException+0x4d
ba9be6a4 f6cd768d nt!Kei386EoiHelper+0x18e
ba9be6b4 f6c0675a ks!
KsReleaseIrpOnCancelableQueue+0x5b
ba9be758 f6c15264 portcls!
CIrpStream::ReleaseUnmappingIrp+0xd0
ba9be780 f6c21760 portcls!UpdateActivePinCount+0xb
f6cd7553 10c2c95e portcls!
CPortPinWavePci::DistributeDeviceState+0x4d

 1 f7867120 86fb5b30

(Continued on page 27)

C an you count the number of WinDBG commands you

know on one hand? Been meaning to learn some

commands other than !analyze –v but been too busy to crack

the docs open? Well then, this article is for you! I‟m going to

break down ten WinDBG commands that I couldn‟t live

without.

System Information Commands
Sometimes as part of your analysis, you‟d like a bit more

detailed information about the target system that generated the

crash dump. The commands in this section are going to let you

find out critical details about your system that just might be

the clues you need to perform your analysis.

!vm
Don‟t be fooled by the name, the !vm command gives you a

great quick view into the virtual and physical memory usage

on a system. When I run !vm I like to use a flags value of

0x21, which will omit some process specific memory usage

information and add in some extra info about the kernel

address space on platforms that support it (See Figure 1).

NOTE: The !vm output currently has a bug where the non-

paged pool usage will always be listed as zero. The actual non

-paged pool usage is listed as, “NonPagedPoolNx Usage” in

the output.

Note here that we see the amount of physical memory in the

system as well as how much memory is currently free. We

then get to note the current usage of the system PTEs as well

as the pools. If we suspect some sort of resource exhaustion

going on in the system, we can use this command to quickly

pinpoint which resource is being consumed.

Analyst’s Perspective
10 WinDBG Commands You Might Not Know
(But Should)

kd> !vm 0x21

*** Virtual Memory Usage ***
 Physical Memory: 261886 (1047544 Kb)
 Page File: \??\C:\pagefile.sys
 Current: 1572864 Kb Free Space: 1571132 Kb
 Minimum: 1572864 Kb Maximum: 3145728 Kb
 Available Pages: 211575 (846300 Kb)
...
 Free System PTEs: 231247 (924988 Kb)
...
 NonPagedPool Usage: 0 (0 Kb)
 NonPagedPoolNx Usage: 2969 (11876 Kb)
 NonPagedPool Max: 52691 (210764 Kb)
...
 PagedPool Usage: 4904 (19616 Kb)
 PagedPool Maximum: 51200 (204800 Kb)
…

Figure 1

Page 27

Memory Analysis
Have an address and want to know what it is? Is it a pool

allocation? Is it paged out? Here are a couple of commands

that will get you the information that you need.

!pool
!pool is a standard command for any toolbox, so I suspect that

most of you know it and love it already. However, for those

that might not be aware, !pool will take an arbitrary virtual

address and let you know if it is a pool allocation or not. If it

is indeed a pool allocation, you‟ll be told some details about

it, such as whether it‟s allocated or freed, the length of the

allocation, the tag, etc. When I use !pool, I like to specify a

flags value of 2 to suppress information about other

allocations surrounding the address (See Figure 4).

Before moving on, I‟d like to note something in the output

here that often confuses people. The previous size value

mentioned here is not the, “previous size of this allocation.”

Instead, what it is telling you is the size of the allocation

preceding this entry in the pool page. This is used as part of a

consistency check by the Memory Manager to validate that
(Continued on page 28)

ChildEBP RetAddr
f7a1eba0 f6c0d445 portcls!
CIrpStream::GetMapping+0x17
f7a1ebc8 f6c31ce1 portcls!
CPortPinWavePci::GetMapping+0x2a
…

!ready
If the thread isn‟t actively running, you might think that you

would have to go the long way and try finding a racing thread

with !process 0 7. However, WinDBG also provides us a way

to look at threads that are ready to run, with the !ready

command. Maybe the current thread pre-empted another

thread and that‟s the reason for the race, in which case the

other thread will be in the ready state. Whenever using !

ready, I like to use the 0xF flags value so that I can see the

call stacks of the threads, though I won‟t do that here just to

keep the output short (see Figure 3).

(Continued from page 26)

Analyst’s Perspective...

kd> !sysinfo cpuinfo
[CPU Information]
~MHz = REG_DWORD 1779
Component Information = REG_BINARY 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
Configuration Data = REG_FULL_RESOURCE_DESCRIPTOR ff,ff,ff,ff,ff,ff,ff,ff,0,0,0,0,0,0,0,0
Identifier = REG_SZ x86 Family 15 Model 1 Stepping 2
ProcessorNameString = REG_SZ Intel(R) Pentium(R) 4 CPU 1.80GHz
Update Signature = REG_BINARY 0,0,0,0,2d,0,0,0
Update Status = REG_DWORD 0
VendorIdentifier = REG_SZ GenuineIntel
MSR8B = REG_QWORD 2d00000000
CPUID1 = REG_BINARY 12,f,0,0,8,8,1,0,0,0,0,0,ff,fb,eb,3f

How about the BIOS version and other platform info?

kd> !sysinfo machineid
Machine ID Information [From Smbios 2.3, DMIVersion 35, Size=2982]
BiosVendor = Dell Computer Corporation
BiosVersion = A05
BiosReleaseDate = 10/05/2001
SystemManufacturer = Dell Computer Corporation
SystemProductName = OptiPlex GX400
BaseBoardManufacturer = Dell Computer Corporation
BaseBoardProduct = OptiPlex GX400
BaseBoardVersion =

Figure 2

kd> !ready
Processor 0: Ready Threads at priority 8
 THREAD 8543cd48 Cid 0004.0b58 Teb: 00000000 Win32Thread: 00000000 READY
Processor 0: Ready Threads at priority 1
 THREAD 85367020 Cid 0004.0008 Teb: 00000000 Win32Thread: 00000000 READY

Figure 3

kd> !pool 8539da40 2
Pool page 8539da40 region is Nonpaged pool
*8539da40 size: 8 previous size: 148 (Free) Io
 Pooltag Io : general IO allocations, Binary : nt!io

Figure 4

Page 28

!verifier 0x100 Address – This command dumps the

IRP log, which logs each call to IoAllocateIrp,

IoCancelIrp, and IoCompleteRequest made by your

driver.

!verifier 0x200 – This command dumps the critical

region log, which logs each call to

KeEnterCriticalRegion and KeLeaveCriticalRegion

made by your driver.

!htrace and !obtrace
Handle leaks and object reference leaks can be very tricky to

track down, especially when working with a large code base.

Luckily, the O/S has built in facilities for logging handle and

reference count activities. All you need to do is enable them

and be aware of the commands available for extracting the

logs, which in this case are !htrace and !obtrace.

Handle tracing needs to be enabled on a per-process basis,

which can be done by using Application Verifier. As driver

writers, however, we‟re typically only interested in kernel

handles. By implementation, kernel handles are actually just

handles from the handle table of the System process. And, as

luck would have it, if you enable Driver Verifier handle

tracing is automatically turned on for the System process.

Thus, as long as Driver Verifier is enabled on the target you

can dump the handle tracing log for all kernel handles with !

htrace 0 PEPROCESS:

1: kd> !htrace 0 85e0a170
Process 0x847c6530
ObjectTable 0x85c01aa8

Handle 0x281C - CLOSE
Thread ID = 0x00000ab4, Process ID = 0x00000408

0x82a63f72: nt!ObpCloseHandle+0x7F
0x82a98bf0: nt!ObCloseHandle+0x40
0x828cef7b: nt!ExpWorkerFactoryCreateThread+0xFC
0x828bf02e: nt!NtSetInformationWorkerFactory+0x56D
...

Handle 0x281C - OPEN
Thread ID = 0x00000ab4, Process ID = 0x00000408

0x82a97fde: nt!ObOpenObjectByPointerWithTag+0xC1
0x82a98043: nt!ObOpenObjectByPointer+0x24
0x82a9cdf0: nt!PspCreateObjectHandle+0x2E
0x82a742ff: nt!PspInsertThread+0x685
0x82a9392e: nt!PspCreateThread+0x244

Object reference tracing, on the other hand, needs to be

enabled on a system wide basis with GFlags. Due to the

volume of tracing generated, when you enable tracing you

must specify the pool tag of the object you want to trace (e.g.

„File‟) and you can also limit the tracing to only apply to a

single process‟ objects. Once you have enabled tracing via

GFlags, you can view the trace for a given object with !

obtrace (shown in Figure 5, page 29).

(Continued on page 29)

the page of memory has not been corrupted by buffer overruns

or underruns.

!pte
Sometimes you‟d like to view the virtual memory structures

for a given virtual address, such as the PDE and PTE. In that

case, you can use the !pte command, which will provide

decoded information about a virtual address. Here‟s some

example output for a valid virtual address:

kd> !pte 9371a000
 VA 9371a000
PDE at C0300934 PTE at C024DC68
contains 9B441863 contains 8B660121
pfn 9b441 ---DA--KWEV pfn 8b660 -G--A--KREV

We can also see what happens if we specify a virtual address

that isn‟t valid to the hardware, such as one with its backing

page currently in transition:

kd> !pte 93726000
 VA 93726000
PDE at C0300934 PTE at C024DC98
contains 9B441863 contains 8B5A0860
pfn 9b441 ---DA--KWEV not valid
 Transition: 8b5a0
 Protect: 3 - ExecuteRead

Now we have some further details as to why the address is

invalid, which may be invaluable to our investigation.

Viewing O/S Trace Information
The O/S has some built in trace facilities that you can turn on

to collect data that might be useful during analysis.

Unfortunately these facilities need to be turned on before the

problem happens, but knowing that this information is

available can be useful in some situations.

!verifier
We‟re all using Driver Verifier, right? Well, what you might

not realize is that starting in Windows Vista Verifier has been

enhanced to keep a log of interesting events that happen in

your driver. Assuming that you‟ve enabled Driver Verifier on

your driver, you can now extract valuable information with

the following !verifier commands:

!verifier 0x80 Address – This command dumps the

allocate and free log, which logs each pool allocate

and free made by your driver. Included in the output is

the call stack of the operation, which can be invaluable

when you‟re trying to track down use after free or

double free bugs. Optionally, the command takes an

address value that will limit the output to only include

allocation ranges including that address.

(Continued from page 27)

Analyst’s Perspective...

Page 29

Plug and Play and Power Issues
Nothing is more annoying than when the system hangs during

a plug and play or power operation. Luckily, the debugger

provides a quick way to identify the threads participating in

the operation so that you can get right to resolving the issue.

!pnptriage
!pnptriage is a nifty command that combines the output of

several PnP related debugging commands. It will identify any

of your devnodes with problems as well as dump out any PnP

worker threads that are currently executing, which will give

you the ability to quickly identify the threads in the system

that might be of interest to you:

0: kd> !pnptriage

…

**
Dumping devnodes with problems...
**

(Continued from page 28)

What OSR Students Say

"I learned so much more in the week spent here than trying to learn on my own these past 4 years. I only
wish I took the class back then. OSR continues to provide the best training experience we developers could
wish for."

Dumping IopRootDeviceNode (= 0x86c05c08)
DevNode 0x8a131e78 for PDO 0x8a1af6a8
 InstancePath is "USB\VID_0403&PID_6001
\7&2363c875&0&1"
 State = DeviceNodeInitialized (0x302)
 Previous State = DeviceNodeUninitialized (0x301)
 Problem = CM_PROB_FAILED_INSTALL
...
**
Dumping currently active PnP thread (if any)...
**

Dumping device action thread...

THREAD 847f8798 Cid 0004.0044 Teb: 00000000
Win32Thread: 00000000 WAIT: (Executive) KernelMode
Non-Alertable
 8712b944 NotificationEvent
...
nt!KiSwapContext+0x26
nt!KiSwapThread+0x266
nt!KiCommitThreadWait+0x1df
nt!KeWaitForSingleObject+0x393
nothing!NothingAddDevice+0xa9
nt!PpvUtilCallAddDevice+0x45
nt!PnpCallAddDevice+0xb9
nt!PipCallDriverAddDevice+0x565
nt!PipProcessDevNodeTree+0x15d
nt!PiRestartDevice+0x8a
nt!PnpDeviceActionWorker+0x1fb
nt!ExpWorkerThread+0x10d
nt!PspSystemThreadStartup+0x9e
nt!KiThreadStartup+0x19

(Continued on page 30)

Analyst’s Perspective...

0: kd> !obtrace 9f6aca50
Object: 9f6aca50
 Image: notepad.exe
Sequence (+/-) Tag Stack
-------- ----- ---- ---
 f3 +1 Dflt nt!ObCreateObject+1c4
 nt!IopAllocRealFileObject+50
 nt!IopParseDevice+ac4
 nt!ObpLookupObjectName+4fa
 nt!ObOpenObjectByName+159
 nt!IopCreateFile+673
 nt!NtOpenFile+2a
 nt!KiFastCallEntry+12a

 f4 +1 Dflt nt!ObfReferenceObjectWithTag+27
 nt!ObfReferenceObject+12
 nt!IopParseDevice+1395
 nt!ObpLookupObjectName+4fa
 nt!ObOpenObjectByName+159
 nt!IopCreateFile+673
 nt!NtOpenFile+2a
 nt!KiFastCallEntry+12a

 f5 -1 Dflt nt!ObfDereferenceObjectWithTag+22
 nt!NtOpenFile+2a
 nt!KiFastCallEntry+12a

-------- ----- ---
References: 2, Dereferences 1

Tag: Dflt References: 2 Dereferences: 1 Over reference by: 1

Figure 5

http://www.osr.com/seminar_testimonials.html

Page 30

Subscribe to The NT Insider Digital Edition

If you are new to The NT Insider (as in, the link to this
issue was forwarded to you), you can subscribe at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Did I Miss Any?
Got your own favorite command that wasn‟t represented here?

Send me an email at ap@osr.com and let me know!

Analyst’s Perspective is a column by OSR Consulting
Associate, Scott Noone. When he’s not root-causing
complex kernel issues, he’s leading the development and
instruction of OSR’s Kernel Debugging seminar. Comments
or suggestions for this or future Analyst’s Perspective
columns can be addressed to ap@osr.com.

!poaction
!poaction is the essential command for debugging any of your

power related issues. Most importantly, !poaction will show

any outstanding query or set power operations and the driver

to which they were sent, which can be used to quickly identify

which devices are preventing the power operations from

occurring. Great for getting insight into what‟s going on when

the system will mysteriously refuse to enter or resume from a

lower power state:

1: kd> !poaction
PopAction: 8296ea60
 State..........: 3 - Set System State
 Updates........: 0
 Action.........: Sleep
 Lightest State.: Hibernate
 Flags..........: 80000004 OverrideApps|Critical
 Irp minor......: SetPower
 System State...: Hibernate
 Hiber Context..: 89dd5978

Allocated power irps (PopIrpList - 82978480)
 IRP: 8e1d8f00 (set/D0,), PDO: 89c0a248, CURRENT:
89fde028
 IRP: 9d722e48 (set/D0,), PDO: 89c08818, CURRENT:
89f92620
 IRP: 9fe7ee70 (set/D0,), PDO: 89c08940, CURRENT:
89f917a0
...

(Continued from page 29)

Analyst’s Perspective...

OSR’s DMK: “File and Folder”
Encryption for Windows

Several commercially shipping products are a
testament to the success of OSR’s most recent
development toolkit, the Data Modification Kit.

With the hassle of developing transparent file
encryption solutions for Windows on the rise, why not
work with a codebase and an industry-recognized
company to implement your encryption or other data-
modifying file system solution?

Visit www.osr.com/dmk.html, and/or contact OSR:

Phone: +1 603.595.6500 Email: sales@osr.com

Kernel Debugging & Crash Analysis

You’ve seen our articles where we delve into analyses
of various crash dumps or system hangs to determine
root cause. Want to learn the tools and techniques
yourself? Consider attendance at OSR’s Kernel
Debugging & Crash Analysis seminar.

The next offering of this seminar is to be held in:

Columbia, MD
14-18 November 2011

For more information, visit www.osr.com/debug.html

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:ap@osr.com
http://www.osr.com/dmk.html
http://www.osr.com/dmk.html
mailto:sales@osr.com
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html

Page 31

own all the driver code that is produced. Almost nobody

writes driver code in a clean room, starting with an empty

buffer in the editor.

It is a sad commentary on the state of our society that we feel

the need to attach the following to this article:

IMPORANT NOTE: Neither OSR, The NT Insider, nor Peter

provide any legal advice. Do not rely on the contents of this

publication, and certainly do not rely on the contents of this

column, for definitive legal information or advice regarding

any topic, particularly involving intellectual property law.

Your mileage may vary. Professional drivers on a closed

course. Do not attempt. No purchase necessary, void where

prohibited. Silica Gel – Desiccant – Do Not Eat. Caution:

contents may be hot. Offer not good after curfew in sectors R

or N.

(Continued from page 5)

Peter Pontificates is a regular opinion column by OSR
Consulting Partner, Peter Viscarola. Peter doesn’t care if
you agree or disagree, but you do have the opportunity to
see your comments or a rebuttal in a future issue. Send
your own comments, rants, or distortions of fact to:
PeterPont@osr.com.

Peter Pontificates...

Training

OSR training services consist of public and private
seminars on a variety of topics including Windows
internals, driver development, file system
development and debugging. Public seminar
presentations are scheduled and presented in a
variety of locations around the world, and
customized, private presentations are delivered to
corporate clients based on demand.

Toolkits

OSR software development toolkits provide
solutions that package stable, time-testing
technology, with support from an engineering staff
that has helped dozens of customers deliver
successful solutions to market.

Custom Development

At OSR, we're experts in Windows system
software: Windows device drivers, Windows file
systems, and most things related to Windows
internals. It’s all we do. As a result, most OSR
solutions can be proposed on a firm, fixed-price
basis. Clients will know the cost of a project phase
and deliverable dates before they have to make a
commitment.

Consulting

In consultative engagements, OSR works with
clients to determine needs and provide options to
proceed with OSR, or suggest alternative
solutions external to OSR. “Consulting" assistance
from OSR can be had in many forms, but no
matter how it is acquired, you can be assured that
we'll be bringing our definitive expertise, industry
experience, and solid reputation to bear on our
engagement with you.

More information on OSR products and services can be found at the www.osr.com.

Windows File System Development
Whether developing file systems, file system mini-
filters OSR’s Developing File Systems for Windows
seminar has proved year after year to be the most
effective way to get up to speed.

NEXT OFFERING:

19-22 September, Vancouver, BC

For more information, visit www.osr.com/fsd.html

http://www.osr.com/seminars
http://www.osr.com/toolkits.html
http://www.osr.com/consulting.html
http://www.osr.com/consulting.html
http://www.osr.com
http://www.osr.com/fsd.html
http://www.osr.com/fsd.html

Page 32

OSR OPEN SYSTEMS RESOURCES, INC.

105 State Route 101A, Suite 19

Amherst, New Hampshire 03031 USA

(603)595-6500 ♦ Fax (603)595-6503

The NT Insider™ is a subscription-based publication

New OSR Seminar Schedule!

Course outlines, pricing, and how to register, visit the www.osr.com/seminars!

Seminar Dates Location

Writing WDM Drivers (Lab) 25-29 July Boston/Waltham, MA

Developing File Systems for Windows 19-22 September Vancouver, BC Canada

Windows Internals for Forensic Analysts 26-29 September Columbia, MD

Writing WDF Drivers (Lab) 3-7October Seattle, WA

Internals and Software Drivers (Lab) 17-21 October Boston/Waltham, MA

Kernel Debugging & Crash Analysis 14-18 November Columbia, MD

Subscribe to The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was forwarded to you), you can subscribe at:
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

http://www.osr.com/seminars
http://www.osr.com/wdm.html
http://www.osr.com/fsd.html
http://www.osr.com/forensics.html
http://www.osr.com/wdf.html
http://www.osr.com/swdrivers.html
http://www.osr.com/debug.html
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

