
®

// In this issue of The NT Insider...
//
switch(IoControlCode) {

 case IOCTL_TNTI_MSB101: {

 // Understanding MSBuild project files isn't magic. At least,
 // not after we explain them to you.
 //
 __analysis_assume(NTDDI_VERSION >= NTDDI_WIN8)
 MSBUILD 101 (Page 4)
 break;
 }

 case IOCTL_TNTI_IRWSL: {

 // Reader/Writer Spin Locks have been in Windows since
 // Vista SP1. Finally, they're documented.
 //
 Introducing Reader/Writer Spin Locks (Page 6)
 break;
 }

 case IOCTL_TNTI_UMKM: {

 // Devs always ask: "How can I call a user-mode function
 // from my driver." You can't. But you don't need to.
 //
 Calling User Mode Functions from Kernel Mode (Page 8)
 break;
 }

 case IOCTL_TNTI_FBDE: {

 // Ever find a missing symbol in the Windows PDBs, or wish
 // you could fix a symbol error? We tell you how.
 //
 Fixing Broken Debugger Extensions (Page 10)
 break;
 }

 case IOCTL_TNTI_ALAL: {

 // Pre-Fast + SDV = not enough?
 //
 Another Look at Lint (Page 12)
 break;
 }
 case IOCTL_TNTI_PP: {

 //
 Peter Pontificates (Page 3)
 break;
 }
 default:
 http://www.osr.com
 break;
}

A
 p

u
b
lic

a
ti
o
n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

http://www.osr.com

Page 2
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partners
W. Anthony Mason
Peter G. Viscarola

Executive Editor
Daniel D. Root

Contributing Editors
Scott J. Noone
OSR Associate Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2013 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

OSR: JUST ASK

Ask us to cogently explain the Windows I/O Manager to a couple
dozen Windows developers of varied background and
experience. Ask us how to address latency issues in a given
design of a driver. Ask us to look at a post-mortem system crash,
determine its root cause, and suggest a fix. Ask us to design and
implement a solution that plays well with Windows, even if it has
no business being a Windows solution in the first place.

Ask us to perform any of the above activities for your company,
and you will be pleased with the definitive answer or result we
provide. We’ll quite literally fall asleep at our keyboards to make
sure you are happy.

So, the only question WE have is, “How can we help you?”

Contact: sales@osr.com

F irst and foremost, our apologies for the extended vacation we’ve taken from The NT Insider.
We’d like for you to believe we simply fell asleep at our keyboards, but the reality is that we

just got busy. Maybe that’s the same thing...

Suffice it to say, we have plenty to tell you about, as much has happened in our absence, and it’s
high time we bring our faithful readership up to speed.

In this issue, we start to smother you with some additional detail on the new, integrated
development environment for driver development, in MSBuild 101.

We’re not afraid to revisit topics from the past, either, and coverage of The Inverted Call Model in
KMDF is a good example of this, as well as a guest article offering Another Look at Lint .

Toss in a topic WE found interesting ourselves, in Introducing Reader/Writer Spin Locks, and
something esoteric such as Fixing Kernel Debugger Extensions, PLUS the Pontifications of our
fearless leader, and you’ve got the March-April 2013 issue of The NT Insider—enjoy!

How are we doing? Are these article topics interesting? What else do you want to hear/know
about? Maybe you ‘ve been yearning to write up something yourself that you’d like us to consider
publishing in this journal?

We DO enjoy hearing from you and appreciate your patronage. Drop us an email at
ntinsider@osr.com.

mailto:sales@osr.com
mailto:ntinsider@osr.com?subject=The%20NT%20Insider

Page 3
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

A bout two years ago in my
Pontification here in The NT

Insider, I was musing about some
of the things I would do if I were
president of the Windows
division at Microsoft. I wrote, in
part:

The other thing I’d do is I would start designing and
manufacturing Microsoft-branded hardware. Yes, yes, I
know all about how important the OEMs (Dell, HP, and
the like) are to Microsoft, and how Microsoft needs to
be careful about treading on their turf. Those
relationships can be managed.

What Microsoft sorely needs right now is a BIG win in
the tablet space. They cannot settle for releasing a
solution that’s just OK. They need something that
overtakes, and not merely imitates, the iPad. The only
way they can control the end-to-end quality and
experience, and get a device to market sufficiently
quickly is by having total control of the solution.

Given the above, you can imagine how excited I was about the
Surface when it was announced. In fact, on the day the Surface
RT was released, I slogged down to the Bellevue Mall after work
and actually stood in line to get one. I’m not sure if you
understand how significant that last statement is. I wouldn’t
stand in line to go “around the world” with Beyoncé, never mind
to buy a freaking computer. But stand in line to be one of the
first to get my paws on a Surface RT I did.

It was impressive: the only time I’ve actually seen a Microsoft
store packed with people. Ouch. Sorry.

I got my Surface RT and – after playing with it for about an hour
-- came to the same conclusion as just about everyone who
bought one. Great hardware, but in general pretty useless. It
doesn’t run “normal” Windows software (duh… it’s an ARM
processor). It doesn’t come with Outlook. And I’m convinced
the guy who invented the email client that the Surface RT does
have, spends time in his office quietly snickering while people
try to actually use the software he invented.

And when it comes to apps? Not only are there very few apps,
but the apps that do exist for the Surface RT are super terrible
compared to their iPad counterparts. For example, consider the
app for reading The Wall Street Journal (Yes… I read The Wall
Street Journal. Cut me some slack, OK? I have the responsibility
of actually running a small consulting company… though Dan
would tell you I appear to be doing that mostly in my spare time
these days, as I’ve generally been sticking to writing code, doing

code reviews, writing articles, or playing with my dogs… or, you
know, anyone’s dog that happens to be around, really).
Anyhow, the app for reading the Wall Street Journal on the iPad
is a tour de force. Fabulous. So good, in fact, that whoever
designed and wrote it should get some kind of award and a
raise. It has become my preferred way of reading The Journal
each morning. But that same app on the Surface bears no visual
or functional resemblance to either the print edition of the
newspaper or the iPad app. It’s terrible. So terrible, in fact, that
I find it completely unusable. Sadly, this is not an exception.
Rather, it’s the norm when it comes to apps for the Surface.

It would be wrong for me to not acknowledge that there are
some people who absolutely love the Surface RT. I know this
because I have actually met one such person. I had the pleasure
of sitting next to her on a flight from Boston to Seattle. She was
charming, intelligent, and a real pleasure to talk with. And she
loved the Surface RT. She also happened to be the wife of a
very senior and long tenured Microsoft software engineer. She
loved the Surface RT so much she bought one for each of her
kids in college. Perhaps they love it as much as she does. I just
hope they don’t try to find the Facebook or Twitter app. But,
what college kid would want either of those? After all, they get
a swell version of Excel for free. They shouldn’t need more
than that. Well, that and a copy of Word. And that super email
client. So they should be set.

My Surface RT now sits at home, alone and unloved, stacked on
an unused desk between a flyer asking for donations to the
Obama campaign and a chart that shows the correlation
between the colored dots on various Motorola antennas and
the frequency range they’re designed to support. It’s not the
sort of pile I access every day. Or, apparently, even every

(CONTINUED ON PAGE 26)

Yes, I waited in THIS line...

Page 4
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

F or years, the driver development community clamored for
integration with Visual Studio. While the application

developers lived in the lap of luxury with slick, integrated
development and debugging environments, we languished with
SOURCES files, command line builds, and a wonky debugger.
With the Windows 8 Driver Kit, our cries have finally been
answered and driver development has been promoted to first
class citizenship by being fully integrated with Visual Studio
2012.

Death to SOURCES!
Being integrated with Visual Studio means many things, from
integrated static analysis, to automated deployment, to
debugging. For this article, the change that we’re most
interested in is the switch from the compilation and linking of
drivers being driven by Build, which used SOURCES, DIRS, and
MAKEFILEs, to the compilation and linking process being driven
by MSBuild and Project Files.

The fact that drivers are now built using MSBuild puts them in
good company. This is the current, modern build system
provided by Microsoft, thus MSBuild is currently used for all
application development, including native, managed, and
Windows Store applications. While this may just seem like a
burden at first (who wants to learn a new build system?), you’ll
quickly get to love the amount of community support available
over the old system.

Under the covers, Visual Studio projects are really just MSBuild
projects with some custom information used to drive the GUI.
For example, Visual Studio adds some information to the project
file about which debugger to use while debugging the project.
When it comes to learning the new build environment, the thing
you really want to know about is MSBuild, not Visual Studio. In
fact, MSBuild has a command line interface, which means that
you could entirely skip the Visual Studio GUI if you were so
inclined!

Anatomy of an MSBuild Project File
At the end of this article, we provide the entire contents of a
simple MSBuild project file for a KMDF driver. Our hope is that
by the time you reach the example you’ll be able to understand
it and feel comfortable with its structure.

This driver project contains one C module, nothing.c, and a
header file located in a sibling directory of the source. In the
interest of clarity, this project file does not work properly from
within Visual Studio. Instead, we’ll be processing this by directly
running MSBuild from within a Visual Studio Tools Command
Prompt. This allows us to avoid discussing a lot of things that
you can figure out for yourself once you’ve mastered the basics.
MSBuild project files are really just globs of XML. Thus, before
we get to the example we’ll describe the various elements
commonly found in a project file and some of their uses.

Project Element
All project files start off with a Project element. This indicates
the version of MSBuild required as well as the XML schema to
use for validation. We’re using MSBuild version 4.0 and the
standard schema:

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/
developer/msbuild/2003">

</Project>

Pretty simple so far, right?

Property and PropertyGroup Elements
Property elements are an important concept in project files.
They are basically a name and value pair, where the name of the
property is provided by naming the element and the value is the
element contents. Due to the fact that the element name is, in
fact, the property, all Property elements must be defined within
a PropertyGroup element. There is, however, no restriction on
the number of PropertyGroup elements you may have, thus (if
you wanted to) you could declare each Property in its own
PropertyGroup.

Property elements may have custom names that you create as
part of your project, or they may have pre-defined names that
are used to pass values to the build procedure. The next step in
our project file will be to set some pre-defined Property
elements to indicate that we are targeting Windows 8 and that
we are building a KMDF driver:

 <PropertyGroup>

 <TargetVersion>Windows8</TargetVersion>

 <PlatformToolset>WindowsKernelModeDriver8.0</PlatformToolset>

 <ConfigurationType>Driver</ConfigurationType>

 <DriverType>KMDF</DriverType>

 </PropertyGroup>

Property elements can be referenced in the project file using the
$(PropertyName) syntax. Thus, if we wanted to reference the
target version later in the project file we would use
$(TargetVersion).

When MSBuild is invoked, a Property element can be specified
on the command line via the /p: switch.

ItemGroup Element
Item elements are similar to Property elements, but are much
more powerful. Instead of being a one to one concept, where a
single name corresponds to a single value, Item elements are
one to many, with a single name including multiple values. In
addition, Item elements can (and often do) have metadata

(CONTINUED ON PAGE 5)

Page 5
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

associated with them. As with Property elements, Item
elements may have custom names that you create as part of
your project or they may have pre-defined names used to pass
values to the build procedure. Again, like Property elements are
always defined in PropertyGroups, Item elements are always
defined within an ItemGroup.

Given that Item elements can have multiple values as well as
metadata associated with them, the simple element and value
pair that we use to define a Property element is not sufficient to
describe an Item. Instead, we’ll use the Include attribute of the
element to specify a semicolon delimited list of values to assign
to the Item. It is also possible to have multiple definitions of the
Item element with separate Include properties, in which case
the subsequent values are appended to the previous values. To
create metadata for the Item, we simply add child elements in
the form of element and value pairs.

In the following example, we define an ItemGroup containing
the ProjectConfiguration element. This is another pre-defined
element with a pre-defined value for each build configuration
that we support. In this project, we’ll only support building
Debug Win32 and Release x64 binaries:

 <ItemGroup>

 <ProjectConfiguration Include="Debug|Win32">
 </ProjectConfiguration>

 <ProjectConfiguration Include="Release|x64">
 <MyMetaDescription>This is an x64 build
 </MyMetaDescription>
 </ProjectConfiguration>

 </ItemGroup>

In this example, we see two forms of defining an Item element.
In the first element, “Debug|Win32”, we do not explicitly
provide any metadata. However, for the second element,
“Release|x64”, we provide a custom metadata element
MyMetaDescription that contains a description of the project
configuration.

All Item elements have built in metadata elements, which can
be extracted and used as part of expressions. In the final
example, we’ll also see that the element value can be something
more complex than just a simple string.

Item elements can be referenced within the project file in one of
two ways. By using the @(Item) syntax, you can retrieve a semi-
colon delimited list of all of the Item values. To access individual
metadata elements, you use the @(Item->’%
(MetadataElement)’) syntax. We’ll see examples of each of
these in the upcoming section.

(CONTINUED FROM PAGE 4)

Target and Task Elements
Target elements contain one or more Task elements, which use
the previously set Property and Item elements to actually do
some work. Many Task elements are already provided by
MSBuild, Visual Studio, and the WDK and it’s possible to create
your own if necessary. When MSBuild is invoked, the Target
element to execute is chosen on the command line via the /t:
switch.

Let’s add a few Target elements to our project file that invoke
the Message Task element, which is a Task provided by MSBuild
for printing messages to the console:

 <Target Name="PrintProperty">
 <Message Text="Driver Target Version is $(TargetVersion)"/>
 </Target>

 <Target Name="PrintItems">
 <Message Text="@(ProjectConfiguration)"/>
 </Target>

 <Target Name="PrintItemMetadata">
 <Message Text="@(ProjectConfiguration->'%
 (MyMetaDescription)')"/>
 </Target>

The following three command lines result in the following
outputs:

msbuild nothing.vcxproj /t:PrintProperty
 “Driver Target Version is Windows8”

msbuild nothing.vcxproj /t:PrintItems
 “Debug|Win32;Release|x64”

msbuild nothing.vcxproj /t:PrintItemMetadata
 “;This is an x64 build”

(CONTINUED ON PAGE 16)

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2
Learning Kit is available in the Store at
www.osronline.com

The board design is based on the well-known
Cypress Semiconductor USB FX2 chipset
and is ideal for learning how to write
Windows device drivers in general (and USB
specifically of course!). Even better, grab the
sample WDF driver for this board, available
in the Windows Driver Kit.

http://www.osronline.com

Page 6
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

I regularly enjoy teasing my file system developer colleagues
over the pain they suffer about whether some structure

should be stored in paged pool or nonpaged pool or exactly
which type of locking primitive they should use for a particular
task. “You should switch to writing device drivers,” I tell them.
“It’s much easier. In the land of device drivers, all pool is
nonpaged and all locks are spin.”

It’s plain fact that the life of a device driver writer is easy in
some ways. However, I do admit that sometimes, just
sometimes, I get a bit jealous over the variety of locking
choices available to devs who never have to be concerned about
running at IRQL DISPATCH_LEVEL or higher. Over the years, I’ve
particularly lusted over ERESOURCES.

ERESOURCES are locks that can be acquired in either shared
mode or exclusive mode. When acquired shared, the lock allows
multiple threads to simultaneously read from a data area. When
acquired exclusive, the lock ensures that there’s only one
accessor to a data area and thus
allows the data to be updated
atomically. Because
ERESOURCES allow multiple
simultaneous readers of a given
data area but only a single
writer, this category of lock is
most often referred to as a
reader/writer lock.

One problem with ERESOURCES is that they can only be used in
code running at less than IRQL DISPATCH_LEVEL. That pretty
much leaves them out of contention as a possible solution for
most device driver work. And there hasn’t been any sort of
reader/writer lock documented as being available for use at
IRQL DISPATCH_LEVEL. That is, there hasn’t been one until the
introduction of the WDK for Windows 8.

Reader/Writer Spin Locks
The WDK for Windows 8 tells us that starting in Vista SP1,
Windows includes support for Reader/Writer Spin Locks. These
locks are just what their name implies: they are spin locks that
can be acquired in either shared mode (for reading, but not
modifying, shared data) or exclusive mode (for reading and
modifying shared data). Because they’re spin locks, they can be
acquired at IRQLs less than or equal to DISPATCH_LEVEL.

Reader/Writer Spin Locks are wonderful additions to the driver
writer’s tool chest. Here at OSR, we’ve been using them on OS
versions as early as Windows 7 without any problem. Using
Reader/Writer Spin Locks keeps us from having to choose
between (a) acquiring a “regular” Spin Lock when you want to
read some data, thereby guaranteeing data integrity but
blocking anyone else who might simultaneously want to read
that same data, and (b) acquiring no lock at all to read the data,

thus risking data inconsistency due to the possibility that the
data could be changed while you’re in the process of reading it.
Reader/Writer Spin Locks can be useful in all sorts of situations.
Consider the case when you have a block of statistics. Prior to
the introduction of Reader/Writer Spin Locks you would guard
the structure holding those statistics with a traditional Spin Lock.
That means that only one thread could access the statistics at a
time, regardless of whether that thread wanted to read or
update those statistics. With Reader/Writer Spin Locks,
however, when you just want to read the statistics you would
acquire the lock shared by calling ExAcquireSpinLockShared.
While you’re holding the lock shared, other threads can also
acquire the lock shared and simultaneously read the data.
When you need to update the statistics, you acquire the lock
exclusive by calling ExAcquireSpinLockExclusive. This blocks all
other acquisitions of the lock, and once the lock is granted
allows you exclusive access to the statistics so you can perform
your update.

Acquiring and Releasing
Reader/Writer Spin Locks
There are a few interesting
things about the
implementation of Reader/
Writer Spin Locks that are
worthy of note. First, notice
that the functions are part of
the Executive and not the
Kernel. So, instead of calling,

for example, KeAcquireSpinLock as we’ve been used to, the
functions for Reader/Writer Spin Locks are
ExAcquireSpinLockXxxx. Also, note that the data type for
Reader/Writer Spin Locks is an EX_SPIN_LOCK, as opposed to
the KSPIN_LOCK used for traditional Spin Locks. Yay! Let’s hear
it for strong data typing. You must allocate space for the
EX_SPIN_LOCK structure in nonpaged memory. Prior to the first
use of a Reader/Writer Spin Lock you’re required to initialize the
EX_SPIN_LOCK by setting it to zero.

Here’s an example of the definition of a Reader/Writer Spin Lock
in a driver’s device context:

typedef struct _MY_DEVICE_CONTEXT {

 WDFDEVICE Device;

 //
 // Statistics area
 //
 ULONG ReadCount;
 ULONG WriteCount;
 EX_SPIN_LOCK StatisticsLock;

 //...

} MY_DEVICE_CONTEXT, *PMY_DEVICE_CONTEXT;

(CONTINUED ON PAGE 7)

“It should really go without saying but I’m going

to say it anyway: Reader/Writer Spin Locks and

traditional kernel Spin Locks are different data

types and cannot be used interchangeably.”

Page 7
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Note that this satisfies the requirement for the lock being in
nonpaged memory because a driver’s device context is always
stored in nonpaged memory. You would initialize that lock prior
to its first use by simply setting its value to zero:

 // ...
 devContext = MyGetContextFromDevice(device);
 devContext->StatisticsLock = 0;

The function call you use to acquire the Reader/Writer Spin Lock
indicates whether you want to acquire that lock in shared or
exclusive mode. To acquire a Reader/Writer Spin Lock in shared
mode call the following function:

KIRQL ExAcquireSpinLockShared(
Inout PEX_SPIN_LOCK SpinLock
);

The prototype for the function to acquire a Reader/Writer Spin
Lock in exclusive mode is similar:

KIRQL ExAcquireSpinLockExclusive(
Inout PEX_SPIN_LOCK SpinLock
);

As with traditional Spin Locks, there are ExAcquireSpinLock
SharedAtDpcLevel and ExAcquireSpinLockExclusiveAtDpcLevel
functions that you can optionally use if you know in advance
that you’re code will always be running at IRQL DISPATCH_LEVEL
when you attempt to acquire the lock. This would be the case,
for example, when you acquire a Reader/Writer Spin Lock from
a DPC. These functions provide the small optimization of
assuming the current IRQL is already set and not calling
KeRaiseIRQL to raise the IRQL to DISPATCH_LEVEL before
attempting to acquire the lock.

The function you call to release a Reader/Writer Spin Lock
depends on the mode in which you acquired the lock. If you
acquired the lock shared, you would call ExReleaseSpinLock
Shared, which has the following prototype:

VOID ExReleaseSpinLockShared (
 Inout PEX_SPIN_LOCK SpinLock,
 In KIRQL OldIrql
);

Similarly, to release a lock you’ve acquired in exclusive mode,
you call the following function:

VOID ExReleaseSpinLockExclusive (
 Inout PEX_SPIN_LOCK SpinLock,
 In KIRQL OldIrql
);

(CONTINUED FROM PAGE 6)

If you acquired the lock with one of the ExAcquireSpinLockXxxAt
DpcLevel calls, you must release the lock by calling the
matching ExReleaseSpinLockXxxxFromDpcLevel function. Note
the acquire call is “AtDpcLevel” and the release call is
“FromDpcLevel”, thus preserving the naming pattern
established by the traditional Spin Lock functions.

Finally, there’s a function that lets you attempt to “promote” to
exclusive mode a Reader/Writer Spin Lock that you’re holding in
shared mode. The prototype for this function is:

BOOLEAN ExTryConvertSharedSpinLockExclusive(
 Inout PEX_SPIN_LOCK SpinLock
);

This function returns TRUE if the lock was successfully promoted
from shared mode to exclusive mode, and FALSE otherwise. The
promotion from shared to exclusive will only work if no other
threads are holding the lock shared and there are no threads
waiting to acquire the lock exclusive. One thing that’s easy to
overlook whenever you use ExTryToConvertSharedSpinLock

(CONTINUED ON PAGE 20)

WE KNOW WHO YOU ARE

You’re the guy on NTDEV who’s been asking
about how to call a user-mode function from
kernel-mode, right?

OK, maybe not. But in any case, you can
read all the articles ever published in The NT
Insider and STILL not learn as much as you
will in one week in our KMDF seminar. So
why not join us to

Next presentation:

Santa Clara, CA
22-26 April

For questions, contact an OSR seminar
coordinator at seminars@osr.com

http://www.osr.com/wdf.html
mailto:seminars@osr.com

Page 8
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

O ne of the most common questions we see from students,
clients, and new Windows driver writing colleagues is,

“How can a driver perform a callback to a user-mode program?”
The answer to this is simple: it can’t. There is no architected
way in Windows for a driver to call a given callback in a user
program. It’s simply not something you can do.

If it’s that simple, should we just end this article here? Probably
not. Because when we investigate further, people who ask this
question typically don’t actually want to know how a driver can
call a user-mode callback. Rather, what they really want to
know is, “How can my driver notify a user-mode program that
some event has occurred in the driver.” It seems that devs who
mostly work in user mode just naturally think “perform a
callback” when they have the requirement “notify about an
event.”

Enter the Inverted Call Model
So, what is the best way for a driver to notify a user-mode
program that a given event has occurred? The answer to that
question is simple: The driver should use what is referred to as
the Inverted Call Model. We first described this technique in
The NT Insider back in January of 2002: http://
www.osronline.com/article.cfm?id=94.

Using this technique is much easier than its fancy name makes it
sound. The application sends one or more requests (typically
device controls, also known as IOCTLs) to the driver, with a pre-
determine control code. The driver keeps these requests
pending. When the driver needs to notify the application of the
occurrence of an event, the driver simply completes one of the
pending IOCTLs. The application discovers that the event has
occurred by noticing that the previously issued IOCTL has been
completed by the driver. Once notified, the application sends
the IOCTL back to the driver where the driver once again holds
the request pending until it needs to notify the application of
another event.

That’s all there is to it. I did tell you this was simple, didn’t I?

One objection that new Windows driver writers often raise to
this approach is that it seems like “an awful lot of overhead” to
use an I/O completion as an event notification mechanism. But,
in fact, this isn’t true at all. The Windows I/O Subsystem and its
companion Win32 are both highly optimized for handling I/O
completions. If you’re using asynchronous I/O (supplying an
OVERLAPPED structure) to send multiple IOCTLs to the driver to
hold for event notification purposes, using Completion Ports for
handling the notification is particularly efficient. And, when you
think about it, using something like a shared event between
user-mode and kernel-mode has at least as much overhead as,
and many more disadvantages than, the Inverted Call Model.

Implementing the Driver
The pattern for implementing the Inverted Call Model in your
driver couldn’t be simpler. You define an IOCTL control code
that the driver and the application will use for notification
purposes:

#define IOCTL_OSR_INVERT_NOTIFICATION \
 CTL_CODE (FILE_DEVICE_INVERTED, 2049, METHOD_BUFFERED, FILE_ANY_ACCESS)

In the driver’s EvtIoDeviceControl Event Processing Callback, the
driver takes each IOCTL Request it received with the designated
control code, and forwards it to a Queue with manual
dispatching. The code for doing this is shown in Figure 1.

(CONTINUED ON PAGE 9)

Figure 1

Click to Expand

http://www.osronline.com/article.cfm?id=94
http://www.osronline.com/article.cfm?id=94
http://insider.osr.com/2013/code/callingUM_Fig1.html
http://insider.osr.com/2013/code/callingUM_Fig1.html
http://insider.osr.com/2013/code/callingUM_Fig1.html

Page 9
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

In the example in Figure 1, when the driver is presented with a
Request that has a control code value of
IOCTL_OSR_INVERT_NOTIFICATION, it checks to see if the length
of the output buffer associated with the Request is at least the
size of a LONG integer (4 bytes). It does this because in this
example when the driver notifies the application of an event, it
will also return a 32-bit value containing additional information
about the event. If the output buffer length is less than the size
of a LONG integer, the driver completes the Request with
STATUS_INVALID_PARAMETER.

If the output buffer accompanying the Request is of sufficient
length, the driver calls WdfRequestForwardToIoQueue to ask
the Framework to place the Request on the driver’s notification

(CONTINUED FROM PAGE 8)

queue. This Queue is only used for holding
IOCTL_OSR_INVERT_NOTIFICATION Requests until they are
completed to notify the application of an event, and is
configured with manual dispatching. The driver created the
Queue in its EvtDriverDeviceAdd Event Processing Callback, and
the handle for the Queue was saved in the WDFDEVICE’s
context area in the field named NotificationQueue. If the
driver’s attempt to forward the Request to its notification queue
is not successful, the Request is completed with
STATUS_INVALID_PARAMETER.

If the driver successfully forwards the Request to its notification
queue, it simply returns. The Request is not completed in the
EvtIoDeviceControl Event Processing Callback, and thus remains
in progress (i.e. pending) until it is completed later by the driver.
When an event occurs, and the driver wants to notify the
application of the occurrence of that event, the driver simply
removes the first pending IOCTL Request that it finds on its
notification queue and completes that Request. Prior to
completing the Request, the driver can optionally return

(CONTINUED ON PAGE 22)

WHAT SHOULD I EXPECT FROM AN OSR SEMINAR?

Our students routinely tell us that their experience at an OSR seminar is THE most positive one
they’ve had in technical training. Seriously. After a recent Windows Internals & Software Drivers
seminar from OSR engineer Scott Noone, we were happy to see this tweet:

Training the Windows driver developers, debugging gurus and file system experts of the future
is a particular joy for us. And, while we can’t guarantee a training room with wallpaper as
“attractive” as you see in the picture, we can guarantee you will learn a lot of good stuff.

Want to know more? Drop us an email, or
better yet, call and speak live and in-
person to an OSR seminar coordinator.
We want you to be confident in choosing a
topic and format that suits you or your
team, and comfortable in that you’ll be
maximally prepared and attended to, from
your initial contact, all the way through
(and AFTER) your seminar experience is
over.

Phone: +1.603.595.6500
Email: seminars@osr.com

mailto:seminars@osr.com?subject=OSR%20seminar%20interest

Page 10
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

A s I’m sure you’re all aware at this point, there are two
different sets of PDB files generated for Microsoft provided

components: private and public. The private symbols are used
internally for source level debugging of the operating system.
The public symbols are the private symbols with interesting bits
stripped from them. These interesting bits include:

 Data structure types

 Local variable names

 Function parameters

 Global variable data types

 Source line information

Around the XP timeframe, it was determined that the public
PDBs weren’t as useful as they could be. Notably, the absence of
the data structure type information made it difficult to debug OS
level issues and created a maintenance burden for the public
debugger release (anyone else remember when the debugger
extensions had hard coded versions of the internal data
structures?).

It was then decided that some of the interesting information
lost during the stripping process should be put back into the
public PDBs. Note that I did say some of the interesting
information, not all. Thus, only data type information is added
back into the public PDBs. To restrict this even further, only
those data types considered to be necessary or appropriate for
public use are added back into the PDBs.

Inevitably, this results in problems with the debugging tools.
These tools are developed internally using private PDBs,
therefore they don’t always function properly when run against
the public PDBs due to missing types. Luckily there is a way to fix
this in some cases, as it is possible to add type information to an
existing PDB.

The trick is to simply compile a C source file containing the types
of interest and specify an existing PDB as the location of the
debug information. Instead of overwriting this PDB, the
compiler will add the missing types to the file. What’s pretty
neat about this solution is that you can even do this to override
existing types in the PDB, which you could use to fix broken data
structures present in the PDB (and, yes, this does happen too!).

Invoking CL through MSBuild
To do this, we’ll need to invoke the Microsoft C/C++ compiler
directly via CL.EXE and carefully supply the debug parameters of
interest. But, you didn’t think that we’d wimp out and invoke CL
directly from a command window, did you? Of course not! It’s a
new year and we have a new build system, so why wouldn’t we
do this through an MSBuild project file? The beginning of
PDBFix.proj can be seen in Figure 1.

Figure 1

In our project file, we include the properties necessary for a
kernel mode driver. This allows us to easily add the WDK include
path to our compilation step. For this project, we want complete
control over the parameters passed to CL.EXE, thus we import
the CPP properties and targets to obtain access to the CL Task.

Minimally, compilation requires that we set the pre-processor
define to indicate the processor architecture that we are
compiling for. In this project, we rely on the Platform property
to indicate which pre-processor define should be set. Lastly, we
use the custom PdbParameter property to determine the
location of the PDB file. This allows the user to supply the path
to the PDB on the command line via the /property (/p) switch.

Figure 2 shows the remainder of the project file, which is
responsible for executing the CL Task.

Figure 2

(CONTINUED ON PAGE 11)

Click to Expand

Click to Expand

http://insider.osr.com/2013/code/yourdead_fig1.html
http://insider.osr.com/2013/code/yourdead_fig2.html
http://insider.osr.com/2013/code/yourdead_fig1.html
http://insider.osr.com/2013/code/yourdead_fig1.html
http://insider.osr.com/2013/code/yourdead_fig2.html
http://insider.osr.com/2013/code/yourdead_fig2.html

Page 11
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Adding Types to the Source File
Now that we have our project file, the next step is to add data
types to our source file, PDBFix.c. This is pretty straightforward;
just add the data structure definition as you would in any other
driver. The only thing to remember is unused types do not go in
the PDB, thus you’ll need to create a global variable that
actually uses the type you define. An example PDBFix.c is shown
in its entirety in Figure 3.

#include <ntddk.h>

typedef struct _OSR_MISSING_STRUCTURE {
 ULONG Field1;
 ULONG Field2;
}OSR_MISSING_STRUCTURE, *POSR_MISSING_STRUCTURE;

OSR_MISSING_STRUCTURE OsrMissingStructureDummy;

Figure 3

Compiling the Code and Adding the Types
Let’s now finally put this together and see how we can add types
to an existing PDB using MSBuild. All we need to do is to build
our PDBFix project, pointing the output PDB path of that project
to an existing PDB file. This results in the linker adding the
symbol definitions we create in our PDBFix project to the
already existing PDB file. Pretty cool, eh?

Let’s walk through the steps: First, we need to find the location
of the PDB that has the missing type information. Once you have
the path of the PDB of interest, you’ll need to unload the
symbols for the module so that CL can modify the PDB. You can
see an example of the steps necessary in Figure 4.

(CONTINUED FROM PAGE 10)

Figure 4

The next step is to open a VS2012 Tools Command Prompt of
the appropriate architecture for the target, in this case x86.
Once there, navigate to the location of the PDBFix project and
execute MSBuild, passing the full path to the PDB as the
PdbName property. If all goes well, you should see output
resembling that in Figure 5.

Figure 5

(CONTINUED ON PAGE 24)

THE NT INSIDER
Hey...Get Your Own!

If a colleague three cubes down with less than stellar hygiene forwarded this on to you and you
fear that this act of kindness may be interpreted as the start of a budding relationship, get your
own subscription at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm

http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 12
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

By Don Burn, community contributor

I t’s been ages since The NT Insider published All About Lint -
PC Lint and Windows Drivers which introduced driver writers

to compile time checking tools. The original article pointed out
that PC-lint was already fully integrated into the build process
used by the DDK at that time, and included a configuration file
to tailor the errors and warnings that PC-lint reported. Thanks
to changes in the WDK development and build environments,
the original setup no longer works well and when it does work it
produces a large number of
false positives. The new tools
that accompany this article
easily work with all versions of
the Windows Driver Kit (WDK)
and at the same time
significantly reduce the spew
that PC-Lint produces.

A lot of developers figure that
once they have their driver
building successfully at /W4, and passing PREfast and SDV
without errors, they don’t need to do any further checking.
While some folks believe those tools are sufficient, I personally
don’t. My background is in fault-tolerant computing, and there
you can never check too much.

This article is going to take a look at what PC-lint can do for you,
and give you some tools and pointers to make the experience of
using PC-lint easier. The original article referenced above has a
lot of good examples of using PC-lint with drivers.

A number of the errors PC-lint will report are of categories that
the Microsoft tools also check. Even here I find the tool to be of
significant value. For example, if you fix a problem that PREfast
identifies, PC-lint may flag the problem again because Lint’s
algorithms are different enough that the tool can identify an
edge condition you missed in your original fix. For a code review
you are likely to ask more than one person to review your code,
right? Well, I think the same should be true of using tools to
find potential bugs in your code.

Like all good tools, PC-lint provides ways to easily disable any of
its checks that you don’t consider valuable. So don’t be put off
if a small number of the checks PC-lint performs are not to your
liking. Similarly, options can be used to enable a specific check
that you want that the accompanying configuration file disables.
In fact, Gimpel provides configuration files for some of the
popular coding guidelines such as Scott Meyer’s books and the
MISRA consortium.

To me, the most valuable thing that PC-lint does is highlight
code that is likely to contain omission errors. Omission errors

are where you forget to do something, and tend to be some of
the hardest category of errors to find. Thus, any assistance in
locating this category of problem is likely to be very worthwhile.
So let’s take a look at some of the things that PC-lint can do for
you.

PC-lint is exceptionally good at identifying unused fields and
variables. Before you think the Microsoft tools identify unused
variables sufficiently well, consider that Visual Studio with /W4
only catches unused local variables. If you have an unused
static variable, global variable or structure member, neither the

MS VC compiler nor PREfast
will flag them; But PC-lint will
identify them for you. In many
cases I find that an
unreferenced variable means
that a piece of code is missing.
There had to be a reason you
declared the item in the first
place, right? So what was it?

Related to unused variables

are unreferenced variables and values. A simple case is
initializing a variable but then never using it is the following:

ULONG index = 0;

If you never use the variable index, the compiler won’t complain
– but, once again, PC-lint will. Before you think, “who cares”, I
once encountered a driver that initialized a structure it allocated
for each channel with over 128KB of data through several
thousand lines of code, when only 256 bytes of the structure
were ever used! That particular driver consumed over 4MB of
space where 8KB was needed.

In the same category, if a function does not have the PREfast
annotation __checkreturn, no tool except PC-lint will complain
about:

status = Func1(Param1, Param2);
return;

If you don’t care about the returned status, it is clearer to future
maintainers reading your code if you cast the function call to
void indicating that the return value is being ignored, like this:

(void)Func1(Param1, Param2);
return;

How about data and functions that are only used in one
module? The original author may know what was intended, but
the next person who maintains your code may appreciate if you
put a static qualifier on the variable or function. It definitely

(CONTINUED ON PAGE 13)

“Like all good tools, PC-lint provides ways to

easily disable any of its checks that you don’t

consider valuable. So don’t be put off if a small

number of the checks PC-lint performs are not to

your liking.”

http://www.osronline.com/article.cfm?id=143
http://www.osronline.com/article.cfm?id=143

Page 13
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

makes it clear this is only used in this source file. PC-lint will flag
these in its global wrap-up of the analysis.

PC-lint also does a better job of expression checking than any of
the Microsoft tools. This can be a great help when you wonder
why a complex piece of code in a conditional statement is never
executed. A simple example of this can be found in a number of
WDK driver samples, like the following:

ULONG ux;
...
if (ux < 0) {
 // do something
}

Of course ux can never be less than zero because it’s an nsigned
variable! There were an amazing number of cases like this in
the samples I used for testing, with a significant amount of code
that will never be executed.

PC-lint tracks values and reports questionable actions. For
example:

#define FLAG 0 // definition in some include
...
x = x & FLAG;

While this may be the intent, it does not hurt to be reminded
that FLAG is zero, and it may confuse the next developer who
looks at the code. In my testing, I found some cases where
expressions evaluated to zero without any constants hiding the
result.

(CONTINUED FROM PAGE 12)

Another area that PC-lint checks is compatibility of variables in
expressions. A number of these can show up as integer
overflow or underflow problems and lead to security holes or
crashes. The Microsoft tools do some of this, but PC-lint is
outstanding in finding potential problems such as mixing signed
and unsigned variables in the same expression. PC-lint applies a
stricter set of tests for loss of precision and loss of sign than
Microsoft does. Think of these tests as the equivalent to
PREfast’s requirement for using safe string functions. Microsoft
does provide safe integer runtimes, but few of us use them.

A number of things that PC-lint checks for could be best
described as coding style verification. As previously mentioned,
you can disable any of these checks (or any PC-lint check at all) if
you wish. Take C preprocessor macro handling:

#define TEST_MACRO(a,b) (a + (b & 0x111) + (2 * a))

The above may look good but consider what happens when:

x = TEST_MACRO(i++, y + 2);

The double increment of i and the calculation y + 2 & 0x111 are
probably not what you expected. PC-lint will flag these errors.
[ED: This is also a great example of why macros are inherently
evil and should be avoided in favor of inline functions.]

PC-lint will complain about multiple definitions of a global
symbol. If the symbols are different types or qualifiers, this can
cause some nasty problems even if the compiler accepts it.
When the definitions are the same, having the redundant
definition still makes changing the code harder, and is more
likely to lead to confusion for the next developer who looks at
the code.

(CONTINUED ON PAGE 14)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or
contract programming house, that’s why. The money you think you’ll save in hiring inexpensive
help by-the-hour will disappear once you realize this trial and error method of development has
turned your time and materials project into a lengthy “mopping up” exercise...long after your
“inexpensive” programming team is gone. Seriously, just a short time ago, we heard from a
Turkish entity looking for help to implement a solution that a team it previously hired in Asia
spent two years on trying to get right. Who knows how much money they spent—losing two
years in market opportunity and still ending up without a solution is just plain lousy.

You deserve (and should demand) definitive expertise. You shouldn't pay for inexperienced
devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

mailto:sales@osr.com

Page 14
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

And then there are issues with being overly clever with Boolean
expressions. For example, consider the following:

if (NdisEqualMemory(pStation->Config.DesiredBSSIDList[index],
 StaEntry->Dot11BSSID,
 sizeof(DOT11_MAC_ADDRESS)) == 1)

This example from the WDK may be obvious after a little
reflection, but it could be written a lot more clearly, especially
given that not everyone remembers the semantics of memcmp
with a length of zero!

Another area that PC-lint checks is for bugs in switch
statements. The tool will flag the lack of a default case and
cases not ending in a break statement.

PC-lint will check for strange indentation that could indicate you
messed up on closing braces. The Win7 WDK has an example of
code where the indentation goes down in the middle of a
compound statement for no reason; luckily that one is correct –
the indentation is just broken. A similar case in a demo driver
from elsewhere was actually a logic bug that would impact
correct execution.

The tool also flags questionable semi-colons:

while (Hw->PhyState.RadioAccessRef != 0) ;

The above example from the WDK is correct, with the code
being used to ensure all references by other threads have
exited. It could easily have been a mistake, replacing the semi-
colon with braces is preferable here.

And those are just a few things that PC-lint does today. One of
the nicest things I like about PC-lint is that it keeps evolving. At
present they have developed a minimal checking capability for
multi-threaded programs. The current support does not provide
much in the way of useful data for a Windows driver, but as the
tool evolves this and other features will keep PC-lint in my mix
of tools for a long time.

Using PC-lint with the WDK
Since the original All About Lint article, a lot has changed in the
Windows driver development environment so I’ve developed a
new package called Lint Driver Extensions (LDX). You can
download a zip archive containing this tool from the link
provided at the conclusion of this article.

LDX is packaged with an installer. On your development system
run the install package after you have installed the WDK and
Gimpel’s PC-lint. For PC-lint you should install all the patches
from the Gimpel website and have either the co-msc110.* or co-
msc100.* files installed. While the environment is optimized for

(CONTINUED FROM PAGE 13)

PC-lint version 9.0 it works fine with the earlier version 8.0
(aside: Version 8.0 will both miss some errors and have more
false positives.) . If you installed the package before the required
software or if you add an additional WDK then just go into Add/
Remove programs and select Change for the Lint Driver
Extension package. This will update the software for all WDK’s.

To use PC-lint with the WDK you have several options:

 If you are using an older WDK, the tool installs a command
in the WDK’s Bin directory called Lint. Simply preface your
build command with lint e.g., lint build <options> or lint
prefast build <options>. The Lint output is placed in a log
file following the conventions of the build log with the
name lint replacing build. For example, for a lint in the
Windows 7 Checked build environment
lintchk_win7_x86.log will be generated.

 For the Windows 8 WDK that is integrated with Visual
Studio, you will find a new external tool on the tools menu.
This is LDX Solution which will rebuild and lint the current
solution, placing the results in the Output pane.

 If you are using a command line build with the Windows 8
WDK, then LdxMsb from the LDX install directory will run
MSBuild to rebuild the solution with Lint and display the
output to stdout.

 Finally the ultimate tool for using PC-Lint with the WDK is
Riverblade’s Visual Lint. This is a third party tool providing
an integrated package that works inside VS2012. The tool is
an add-on to PC-Lint which you must still purchase. The
capabilities include background analysis of the project,
coded display listings that like Visual Studio clicking on the
error takes you to the line to edit and provides easy lookup
of the description of the errors. The latest version of Visual
Lint (4.0.2.198) is required for use with the WDK. The tool
has a minor bug that if there are two subprojects with the
same name, such as filter in the Toaster sample, one needs
to be renamed for analysis to work. A fix is in the works.

To use Visual Lint with the WDK choose LintLdx.lnt as the
standard lint configuration file for the tool. There is a 30-
day free trial of Visual Lint available so if you are
considering PC-Lint, take a look at what Visual Lint can add
to the experience. I expect to be using it for much of my
work.

One of the biggest problems with the configuration from
original article was the large number of spurious errors that
were reported. As stated earlier my LDX tool contains a much
richer lint options file that significantly reduces the errors. The
file is far from a complete coverage of the entire set of kernel
API’s, and I’ll gladly accept additions. The options do disable a
number of errors that PC-lint complains about but which are
false positives.

(CONTINUED ON PAGE 15)

http://www.riverblade.co.uk/

Page 15
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Choosing errors to suppress is always something where people
have strong opinions, so the new package provides the ability to
customize the lint options. When the package is installed the
first time, an empty file LdxCustom.lnt is placed in the PC-lint
installation directory. Edit this file to add the options you wish
to use for lint. Re-installing the tool will not change the
LdxCustom.lnt file.

If you find problems with the package please let me know. My
email address is at the end of the article. Hopefully I’ve

(CONTINUED FROM PAGE 14)

encouraged you to grab PC-lint and give it a try. Using my LDX
tool makes it easy. Enjoy writing better, more reliable, drivers
using PC-lint!

Code associated with this article:

http://insider.osr.com/2013/code/ldx.zip

Don Burn is a Windows system software architect, specializing in
drivers and file systems, with 35 years of industry experience. He
provides consulting services for Windows drivers, specializing in
challenging problems for the Windows architecture. Don can be
reached at burn@windrvr.com

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an
OSR seminar consultant at +1.603.595.6500 or by email at seminars@osr.com

TRANSPARENT, FILE ENCRYPTION FOR WINDOWS
How Hard Can it Be?

Several commercially shipping products are a testament to the success of OSR’s most recent
development toolkit, the Data Modification Kit. With the hassle of developing transparent file
encryption solutions for Windows on the rise, why not work with a codebase and an industry-
recognized company to implement your encryption or other data-modifying file system solution?

Visit www.osr.com/dmk.html, and/or contact the OSR sales team:

Phone: +1 603.595.6500
Email: sales@osr.com

http://insider.osr.com/2013/code/ldx.zip
mailto:burn@windrvr.com
mailto:seminars@osr.com
http://www.osr.com/dmk.html
http://www.osr.com/dmk.html
mailto:sales@osr.com

Page 16
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

ItemDefinitionGroup Element
You’ll note in the previous section that when we printed the
metadata of ProjectConfiguration, we received a blank string for
the first entry in the element. This is due to the fact that we did
not provide a MyMetaDescription metadata element for the
first entry. Here’s the definition of that ProjectConfiguration
item group that we saw previously:

 <ItemGroup>

 <ProjectConfiguration Include="Debug|Win32">
 </ProjectConfiguration>

 <ProjectConfiguration Include="Release|x64">
 <MyMetaDescription>This is an x64 build
 </MyMetaDescription>
 </ProjectConfiguration>

 </ItemGroup>

Notice that, as we just mentioned, there’s no
MyMetaDescription for one of the values. If we wanted to
provide a default value for this metadata element in all
ProjectConfiguration items, we could define an
ItemDefinitionGroup element and create somewhat of a
template for any ProjectConfiguration items defined:

 <ItemDefinitionGroup>

 <ProjectConfiguration>
 <MyMetaDescription>No Description Available
 </MyMetaDescription>
 </ProjectConfiguration>

 </ItemDefinitionGroup>

And we run our PrintItemMetadata task again and get the
following results:

msbuild nothing.vcxproj /t:printitemmetadata
 “No Description Available;This is an x64 build”

Import Element
The Import element is an easy one, it simply allows you to
include other MSBuild project files that define more Property,
Item, and Target elements. Most MSBuild project files are going
to have Import elements for the standard MSBuild files:

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

MSBuild Project File Processing
When MSBuild processes a project file, it evaluates all Property
and Item elements, including imports, before evaluating the
chosen Target. If a Property or Item element is declared multiple
times, the last element wins. For example:

(CONTINUED FROM PAGE 5)

 <PropertyGroup>
 <IncludePath>..\inc</IncludePath>
 </PropertyGroup>

 <PropertyGroup>
 <IncludePath>..\inc_other</IncludePath>
 </PropertyGroup>

Results in $(IncludePath) evaluating to, “..\inc_other”. However,
Property and Item elements may be self-referential. For
example, the following syntax is valid for a Property:

 <PropertyGroup>
 <IncludePath>..\inc</IncludePath>
 </PropertyGroup>

 <PropertyGroup>
 <IncludePath>$(IncludePath);..\inc_other</IncludePath>
 </PropertyGroup>

And provides the desired result of, “..\inc;..\inc_other”.

To extend our ItemDefinitionGroup element, we simply need to
use the metadata syntax:

 <ItemDefinitionGroup>

 <ProjectConfiguration>
 <MyMetaDescription>No Description Available
 </MyMetaDescription>
 </ProjectConfiguration>

 </ItemDefinitionGroup>

 <ItemDefinitionGroup>

 <ProjectConfiguration>
 <MyMetaDescription>%(MyMetaDescription), seriously!
 </MyMetaDescription>
 </ProjectConfiguration>

 </ItemDefinitionGroup>

And the result:

msbuild nothing.vcxproj /t:printitemmetadata
 “No Description Available, seriously!;This is an x64 build”

Build Related Property and Target Elements
Now that we’ve had our fun, we’d like to actually build some
code! In order to drive the build procedure, we need to be sure
to supply three bits of interesting information. First is the
configuration, meaning whether or not we’re building Debug or
Release. This is done by providing a value for the Configuration
Property element, typically on the command line.

Next is the platform to build for: x86 or x64. This is done using
the Platform Property element, again typically passed on the
command line. Annoyingly, MSBuild refers to the x86 platform
as, “Win32”, thus you’ll need to use this name when you’re
building 32-bit versions of your driver.

Lastly, we need to specify a Target element that will actually do
some useful work. The most common Target elements used are
Clean, Build, or Rebuild and, again, this is typically specified on
the command line.

(CONTINUED ON PAGE 17)

Page 17
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Project File Walkthrough
Now we’ve (finally!) covered everything that we need to know
to allow us to walk through a functional MSBuild project file.
Note that some sections have been abbreviated from what
we’ve shown earlier for clarity, though it is 100% functional as
shown. In addition, none of the Property or Item elements or
values shown here are custom, they are all well-known names
that are used by the build procedure.

Example command lines to build this code would be:

msbuild nothing.vcxproj /p:platform=Win32 /
p:configuration=Debug /t:rebuild

msbuild nothing.vcxproj /p:platform=x64 /
p:configuration=Release /t:build

Let’s talk a bit about the sections in the example shown in Figure
1. The numbers 1-8 in the example correspond to the numbered
items described below.

1. The example starts with a PropertyGroup element that

defines four properties:

a. TargetVersion – Set to Windows8
b. PlatformToolset – Set to

WindowsKernelModeDriver8.0
c. ConfigurationType – Set to Driver
d. DriverType – Set to KMDF

These properties are all “known” to the WDK build
environment and cause it to build a KMDF driver for
Windows 8. This makes sure that we link to the appropriate
libraries, such as the KMDF wrapper, and have the proper
include paths set for compilation.

(CONTINUED FROM PAGE 16)

(CONTINUED ON PAGE 18)

DESIGN AND CODE REVIEWS
When You Can’t Afford Not To

Have a great product design, but looking for validation before bringing it to your board of
directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your
client base. Consider what a team of internals, device driver and file system experts can do for
you.

Contact OSR Sales — sales@osr.com

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/
developer/msbuild/2003">

 1.
 <PropertyGroup>
 <TargetVersion>Windows8</TargetVersion>
 <PlatformToolset>WindowsKernelModeDriver8.0</PlatformToolset>
 <ConfigurationType>Driver</ConfigurationType>
 <DriverType>KMDF</DriverType>
 </PropertyGroup>

 2.
 <ItemGroup>
 <ProjectConfiguration Include="Debug|Win32"/>
 <ProjectConfiguration Include="Release|x64"/>
 </ItemGroup>

 3.
 <PropertyGroup Condition="'$(Configuration)'=='Debug'">
 <UseDebugLibraries>true</UseDebugLibraries>
 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)'=='Release'">
 <UseDebugLibraries>false</UseDebugLibraries>
 </PropertyGroup>

 4.
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" /
>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />

 5.
 <ItemDefinitionGroup>
 <Link>
 <AdditionalDependencies>
 $(DDK_LIB_PATH)\wdmsec.lib;%(AdditionalDependencies)
 </AdditionalDependencies>
 </Link>
 </ItemDefinitionGroup>

 6.
 <ItemDefinitionGroup>
 <ClCompile>
 <AdditionalIncludeDirectories>
 ..\inc;%(AdditionalIncludeDirectories)
 </AdditionalIncludeDirectories>
 </ClCompile>
 </ItemDefinitionGroup>

 <PropertyGroup>
 <IncludePath>$(IncludePath);..\inc</IncludePath>
 </PropertyGroup>

 7.
 <ItemGroup>
 <ClCompile Include="nothing.c" />
 </ItemGroup>

 8.
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

</Project>

Figure 1—Fully Functional Project File

mailto:sales@osr.com

Page 18
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

2. We specify our possible configurations as Item elements. In
this example, we have two possible configurations: Win32
Debug and x64 Release. Again, this Item element and its
values are known to the build environment. Thus, for
example, specifying, “Debug|x86” or, “Release|Win64”
would result in a build error indicating an unknown project
configuration.

3. UseDebugLibraries is another known Property element to
indicate whether this is a debug or release build. In the
example, we show the optional Conditional attribute used
on the PropertyGroup. This is pretty self-explanatory and
allows you to conditionally set Property elements, though
note that this syntax is not exclusive to PropertyGroup
elements.

4. Here we import the standard Microsoft C++ compiler
properties. Note that the placement of these statements is
important as it will use the previously defined Item and
Property elements to construct further elements. Also, we
do this before our subsequent statements so that we can
pass further information to the compiler and linker by
modifying the elements defined by the props files.

5. Passing additional libraries to the linker can only be
achieved via an ItemDefinitionGroup that overrides the Link
item’s metadata. Our need to link to wdmsec.lib here is
fabricated, but we just wanted to show the technique.

6. We show two ways to modify the include path: one via an
ItemDefinitionGroup element and the other via a Property
element. There’s no apparent advantage between the two,

(CONTINUED FROM PAGE 17)

but we wanted to demonstrate that both methods were
viable. Note that the IncludePath property only works
because it is handled especially within
Microsoft.Cpp.Targets (search, “$(IncludePath)” to see
how!).

7. The ClCompile Item element is how we actually tell the
compiler which files to compile. It makes sense for this to
be an Item instead of a property because we are likely
compiling multiple files as part of a project. In our simple
project, we have a one value in the item: nothing.c. While
there’s nothing special about the item as it is declared here,
because nothing.c exists as a file on disk the item takes on
special properties. For example, we could use the built in
AccessedTime metadata element to get the accessed time
of the file.

8. Lastly, we include the Microsoft C++ targets definition file.
This is going to define the targets that we use to build,
rebuild, or clean our project.

SOURCES Files are Dead! Long Live…er, SOURCES Files?
It’s really too bad that the Windows 8 Driver Kit didn’t provide
XP support. While it takes some getting used to, once you know
the basics the new build system is far more flexible (do some
research on, “Property Functions” to see some crazy stuff you
can do!) and sane than the previous one. Also, trust me when I
say that having a wealth of documentation, books, and forums
to reference is a nice change. However, with no ability to build
drivers for XP, I’m sure we’ll all be suffering with SOURCES files
for many years to come.

Code associated with this article:

http://insider.osr.com/2013/code/msbuild101.zip

A fter reading the MSBuild related articles in this issue, you’re
probably ready to dive in and start using the new build

environment for upcoming projects. But, wait! What about all of
those existing projects using SOURCES files? Should you switch
those to the new build environment?

The short answer is yes, absolutely! This is the build
environment of the future, so if you’re planning on supporting
the project through Windows 8 and beyond you’ll need to make
the switch eventually. However, don’t forget that Windows XP
targets are not supported in the new kit, thus you’re still stuck
with SOURCES and the old environment if you care about XP.

Once you settle on the fact that you want to switch, you have to
ask yourself how you want to switch. As you may know, the

WDK ships with a nifty utility to automatically convert your
SOURCES based project into an MSBuild one:
nmake2msbuild.exe. This utility is even easily accessible via the
Visual Studio GUI, just navigate to File->Open->Convert Sources/
Dirs. This means that you have two distinct paths available to
switch your existing projects: you can have the WDK
automatically convert them for you or cast away your SOURCES
files and manually convert from scratch.

To Automatically Convert?
Conversion using the WDK-provided conversion utility is a
breeze; it should take only a few seconds and even provides a
detailed log of the conversion steps that were performed. As

(CONTINUED ON PAGE 19)

http://insider.osr.com/2013/code/msbuild101.zip

Page 19
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Now, we jump back to our project file and see the ClSourceFiles
item included in the ClCompile item, which actually indicates the
files we want to compile:

 <ClCompile Include="@(ClSourceFiles)" Exclude="@(ClCompile)" />

Phew! Quite the trip that information has to take, isn’t it? To be
fair, this is all compile time overhead so it’s not that big of a deal
in terms of performance. However, it does increase the
complexity of the build files when it comes time to maintain or
debug them.

To Manually Convert?
Manual conversion means starting from complete scratch or
with the new project wizard in Visual Studio. You’ll need to
import all of your source files and settings manually or via the
GUI. So, manually converting your project will take a lot longer
than using the WDK built-in tool before you actually get
something working. In order to go this route, you’ll likely need
to understand not only your old build procedure but also the
new one.

The good news is that even though driver writers are just getting
around to using it, MSBuild has been around for quite a while. If
you stumble along the way, you’ll surely find support out there
someplace to get you back on track.

The Answer…
In our opinion, converted projects that are built using the WDK-
provided conversion utility are simply not worth the extra
complexity relative to real projects. Using the conversion tool is

a great way to jump into the new kit and get
something to play with. In many cases it will
simply, “just work” and you’ll be able to spend
the afternoon playing with SDV and Code
Analysis.

However, in terms of long term maintainability it

just doesn’t make sense to ship products using converted
projects. Not converting also provides you the opportunity to
take a critical eye to your build practices and get rid of some
cruft you’ve accumulated over the years. It’s also a good time to
think about your static analysis policies. Should you pass Code
Analysis clean on all warnings? What about SDV? /W4? Just
remember, the short term pain may just pay off in the long run!

you can imagine, writing a utility that is able to convert any
possible SOURCES file ever written in history to a new build
system is a massive undertaking. For the most part, we found
the utility did an admirable job of converting the various
projects that we threw at it. It particularly did well on standard
driver projects that didn’t attempt to do anything exotic in the
old build system. We were able to convert, compile, and load
the resulting binaries of these projects without issue.

The conversion didn’t do nearly as great of a job, however,
when applied to really complex projects involving both user and
kernel mode components. We had problems ranging from the
conversion failing, to the conversion succeeding but the compile
or link steps failing when we tried to build the converted
project. In one case, a static kernel library was improperly
identified as a static user library, which resulted in the wrong
include paths being used. In another, the resulting project failed
to specify an entry point to the linker. In one case we were able
to massage the project files into the correct state to work, in the
other we simply gave up.

In the case where the conversion does succeed, the end product
of the conversion is a bit of an oddity when compared to other
MSBuild project files. Your SOURCES file stays mostly intact,
though your directives are converted into property elements
and stored in a sources.props file:

As part of being a driver, your project file imports WDK
properties files. These files import the sources.props file and
convert the property elements into other item and property
elements, which are then used to drive the compilation process.
For example, within the WDK’s PostToolsetRules.props the
SOURCES property is converted into the ConvertedSources
property:

 <ConvertedSources>$(SOURCES.ToLower())</ConvertedSources>

Which is then converted into the ClSourceFiles item using a
regular expression match looking for C and C++ files:

(CONTINUED FROM PAGE 18)

 <PropertyGroup>
 <TARGETNAME Condition="'$(OVERRIDE_TARGETNAME)'!='true'">NOTHING</TARGETNAME>
 <TARGETTYPE Condition="'$(OVERRIDE_TARGETTYPE)'!='true'">DRIVER</TARGETTYPE>
 <INCLUDES Condition="'$(OVERRIDE_INCLUDES)'!='true'">..\inc</INCLUDES>
 <C_DEFINES Condition="'$(OVERRIDE_C_DEFINES)'!='true'">-DFOODEF=1</C_DEFINES>
 <SOURCES Condition="'$(OVERRIDE_SOURCES)'!='true'">nothing.c</SOURCES>
 </PropertyGroup>

<ClSourceFiles Include="$([System.Text.RegularExpressions.Regex]::Matches
($(ConvertedSources), '(?%3C=^|;)[^;]+\.(c|cpp|cxx)(?=;|$)'))"/>

Page 20
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

Exclusive is that you must call the correct function based on
the mode of the lock when you release it. In other words, if
your call to ExTryToConvertSharedSpinLockExclusive succeeds,
you hold the lock in exclusive mode, and therefore must release
it by calling ExReleaseSpinLockExclusive. Likewise, if your call to
ExTryToConvertSharedSpinLockExclusive fails you still own the
lock in shared mode, and must call ExReleaseSpinLockShared to
release it.

Having to know the mode in which you’re holding the Reader/
Writer Spin Lock so you can use the matching call to release it is
annoying. Some people might claim it provides nice built-in
documentation, but all I see is a built-in opportunity for a bug or
a cut/paste error. When you release an ERESOURCE, you simply
call a common release function and the function knows if you
were holding the lock shared or exclusive. Perhaps that’s not
really a fair comparison, because ERESOURCES have much more
overhead than Reader/Writer Spin Locks. However, even given
the low cost algorithm Windows uses for Reader/Writer Spin
Locks, the release function could in fact know whether the lock
was currently held shared or exclusive and just “do the right
thing.” See the sidebar, Why Not a Single Function for
Release at the conclusion of this article for an extended
discussion of why there isn’t a single release function.

Usage Details
Enough about syntax and calling patterns. Let’s now turn our
attention to the details of how you use these locks.

You acquire Reader/Writer Spin Locks from code running at
IRQL DISPATCH_LEVEL or lower. Regardless of the mode in
which the lock is acquired, there is no timeout on the acquisition
attempt and you don’t return from the call until the lock has
been acquired. When you do return, you’re holding the lock
and your thread is running at IRQL DISPATCH_LEVEL. There are
no functions available that attempt to acquire the lock and
return without waiting if the lock is not immediately available.

It should really go without saying but I’m going to say it
anyways: Reader/Writer Spin Locks and traditional kernel Spin
Locks are different data types and cannot be used
interchangeably. You can’t, for example, call KeAcquireSpinLock
on an EX_SPIN_LOCK in one place, and call ExAcquireSpinLock
Shared on that same EX_SPIN_LOCK in another place.
KeAcquireXxx and KeReleaseXxx can only be used with
traditional KSPIN_LOCKs. And ExAcquireXxx and ExReleaseXxx
can only be used on Reader/Writer Spin Locks that always have
the EX_SPIN_LOCK data type.

Note that the calls to acquire Reader/Writer Spin Locks differ
slightly from the pattern used by KeAcquireSpinLock, in that the
ExAcquireSpinLockXxxx functions return the previous IRQL at

(CONTINUED FROM PAGE 7)

which the calling thread was running as the function’s return
value. I think that’s rather handy.

So, how do attempts to acquire the lock in various modes
simultaneously interact? If you attempt to acquire the lock in
exclusive mode and there are one or more threads that already
hold the lock in shared mode, the exclusive mode acquisition
attempt will:

 Block any subsequent requests to obtain the lock
shared and

 Wait until all the current shared holders have
released the lock.

This is done to ensure the lock is granted as promptly as
possible to an exclusive requestor.

Obviously, only one thread can hold the lock in exclusive mode
at a time. When multiple threads are waiting to acquire the lock
in exclusive mode, the lock is granted to waiters in random
order. The way the lock is granted to exclusive waiters very
closely resembles the mechanism used for traditional (non-
reader/writer) Spin Locks.

The overhead for acquiring a Reader/Writer Spin Lock exclusive
is approximately the same as that for a traditional Spin Lock. It’s
important to recall what we said previously, that these are not
queued locks. Thus, they can suffer from the same propensity as
traditional Spin Locks to favor some waiters over others in
certain systems.

The overhead of acquiring a Reader/Writer Spin Lock shared is
also low and involves little more than an increment, an assign, a
test, and an interlocked operation. Couldn’t be simpler, could
it?

We previously described the function ExAcquireSpinLockXxxxAt
DpcLevel and noted that it avoids setting the IRQL to
DISPATCH_LEVEL like the function ExAcquireSpinLockXxxx does.
At that point we said that calling ExAcquireSpinLockXxxxAtDpc
Level can be used as a small optimization when you know in
advance that you’re already running at IRQL DISPATCH_LEVEL.
But those of you who like to push beyond the limit of what’s
documented might like to know that ExAcquireSpinLock
SharedAtDpcLevel preserves the tradition started by
KeAcquireSpinLockAtDpcLevel by allowing calls at any IRQL
greater than or equal to DISPATCH_LEVEL. Note the SAL
notations (from the WDK for Win8):

_IRQL_requires_min_(DISPATCH_LEVEL)
VOID
ExAcquireSpinLockSharedAtDpcLevel (
 Inout _Requires_lock_not_held_(*_Curr_)
 _Acquires_lock_ (*_Curr_)
 PEX_SPIN_LOCK SpinLock
);

(CONTINUED ON PAGE 21)

Page 21
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

The IRQL notation doesn’t require IRQL DISPATCH_LEVEL, it
simply requires any IRQL greater than or equal to
DISPATCH_LEVEL. Interesting, eh? What this does is allow you
to construct your own Reader/Writer Spin Locks that work at
specific IRQLs greater than IRQL DISPATCH_LEVEL. Just raise the
IRQL to the IRQL of your new spin lock (say, DIRQL), and call
ExAcquireSpinLockXxxxAtDpcLevel. Note that we’re not
recommending this. We’re simply saying that if you need a
feature like this, and you don’t mind writing code using a
feature that’s neither supported nor documented, this is a
possibility.

(CONTINUED FROM PAGE 20)

W hen you want to release a Reader/Writer Spin Lock, you
have to call the function that matches the mode in which

you’re holding the lock. If you’re holding the lock shared, you
need to call ExReleaseSpinLockShared. If you’re holding it
exclusive, you need to call ExReleaseSpinLockExclusive. Screw
up and you screw up the lock. It’s dumb, if you ask me. Just
another unnecessary opportunity to create a bug.

So why don’t we have a common release function for Reader/
Writer Spin Locks? Well, one reason is almost certainly the
desire to keep the overhead for releasing locks as absolutely low
as possible. But I suspect the real reason is rooted in history. If
you look at WDM.H, you’ll see that the traditional (non-reader/
writer) Spin Locks all have alternate names that start with Ex
instead of Ke:

#define ExAcquireSpinLock(Lock, OldIrql) \
 KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) \
 KeReleaseSpinLock((Lock), (OldIrql))
#define ExAcquireSpinLockAtDpcLevel(Lock) \
 KeAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock) \
 KeReleaseSpinLockFromDpcLevel(Lock)

I bet you didn’t know that! These executive names for the
kernel spin lock functions have in fact been defined since the
earliest days of Windows NT. And now that we have Reader/
Writer Spin Locks, if we wanted to have a common function for
releasing the lock without regard to whether we were holding it
shared or exclusive, what would we name that function? Well,
if we were to follow the current naming pattern you would
probably want to name that function ExReleaseSpinLock. But,
oooops! We already have a function with that name. And if we
named it something out of the pattern such as

ExReleaseReaderWriterSpinLock, that would just be an
opportunity for developers to create a bug by accidentally
coding ExReleaseSpinLock anyhow. Perhaps having to know the
mode that you’re holding the lock so you can call the
appropriate function to release it isn’t so bad after all. Oh well,
whatever, never mind.

Exclusive

Owners or

Waiters?

Yes

No

Increment Shared

Owner Count

Raise IRQL to

DISPATCH_LEVEL

Acquire Shared

Done!

Decrement

Shared Owner

Count

Release Shared

Lower IRQL to

Previous IRQL

Done!

Summary
Starting in Windows Vista SP1, Windows introduced a cool new
set of synchronization primitives: Reader/Writer Spin Locks.
Using these, you can properly support multiple simultaneous
read accessors to shared data, and create code that’s more
scalable. Here at OSR, we’ve used these “new” primitives
extensively in code that runs on Windows 7 and later. We
recommend you check them out.

Page 22
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

additional information associated with the event such as an
event code. This procedure is shown in Figure 2.

(CONTINUED FROM PAGE 9)

As shown Figure 2, in the function InvertedNotify, the driver
starts by attempting to remove a Request from its notification
queue, by calling WdfIoQueueRetrieveNextRequest. The
Request the driver is attempting to remove is an IOCTL with the
control code IOCTL_OSR_INVERT_NOTIFICATION. This Request
would have been forwarded to the notification queueby the
driver’s EvtIoDeviceControl Event Processing Callback that was
described previously.

If the driver is not successful in getting a Request from its
Notification Queue the driver just returns from this function.
This would be the case when, for example, the notification
queue is empty. In this case, the driver will either need to store
the event in some driver-specific way, or the user application
will simply not be notified of this event occurrence. If it’s
important for the application to not miss any event
notifications, it will need to be sure to always keep one or more
IOCTL_OSR_INVERT_NOTIFICATION Requests pending in the
driver. The application would do this by calling DeviceIoControl
multiple times, most likely using asynchronous completing with
an OVERLAPPED structure for each request, and by immediately
re-issuing the IOCTL each time it is completed by the driver to
notify the application of an event occurrence.

If the driver successfully removes a Request from its notification
queue, it calls WdfRequestRetrieveOutputBuffer to get a pointer
to the output buffer associated with the Request. Recall that on
receiving the IOCTL, the driver verified that an output buffer was
supplied with the Request and that the output buffer was at
least sizeof(LONG) bytes in length. If the driver is successful in
getting a pointer to application’s specified output buffer, it
returns into that output buffer additional information associated
with the event. In the example, this information is an event
sequence number – a signed 32-bit value that increases by one
for each event signaled back to the user.

Whether the driver was successfully able to get a pointer to the
application’s output buffer or not, the driver next completes the
Request by calling WdfRequestCompleteWithInformation. The
application interprets this completion as notification of the
event occurring. If an output buffer was specified, the
application can examine the additional information about the
event returned by the driver into that buffer.

Looks Too Simple
Well, of course it looks simple. Because it is simple. We’re
using KMDF, after all. Note that one very important, but
perhaps easily overlooked, feature of the example is that it
keeps the Requests to be completed when an event occurs on a
WDFQUEUE. This isn’t chance, and you couldn’t (for example)
easily substitute a WDFCOLLECTION or a vector of
WDFREQUESTS for that WDFQUEUE. This is because the
WDFQUEUE automatically handles request cancellation. When
the application exits with Requests in progress on the
notification queue, the Framework will automatically complete

(CONTINUED ON PAGE 23) Figure 2

Click to Expand

http://insider.osr.com/2013/code/callingUM_Fig2.html
http://insider.osr.com/2013/code/callingUM_Fig2.html
http://insider.osr.com/2013/code/callingUM_Fig2.html

Page 23
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

those Requests with STATUS_CANCELLED. The driver doesn’t
even have to get involved.

Another detail that you’ll notice when you read the full example
is the notification queue is setup so that it is not power-
managed. That is, the PowerManaged field of the
WDF_IO_QUEUE_CONFIG structure is set to FALSE. This is
actually pretty important. If the notification queue was power
managed, the driver’s ability to remove Requests from that
Queue would change based on the device’s power state (D
State). So if an event occurred that the driver wanted to notify
the application about while the device was in a low power D
State, that call to WdfIoQueueRetrieveNextRequest would fail
with a return status of STATUS_WDF_PAUSED.

The Application Side?
A gentleman was asking in the NTDEV forum recently how to
implement the user side of this model. Frankly, we don’t do
user-mode here at OSR, so there’s not a lot we can tell you
that’s both clever and definitive. However, we can repeat what
we said earlier in this article: You probably want to implement
this notification using asynchronous I/O and completion ports,
and you almost certainly want to be careful in your application
to send up enough notification requests to ensure that the
driver always has one pending. That doesn’t seem very difficult
to us.

Just to give you an idea of how you might approach the user-
mode side of things, we threw together an example application
that you can find in the ZIP archive accompanying this article.
But be warned: It’s just test code. We don’t care that it’s
sloppy or that it never calls free or CloseHandle, or that it’s got
bugs. We already know its crap, so don’t email us to tell us
about how badly the code is written. Of course, please do feel
free to write something that’s proper, elegant, attractive, and
well-documented... and then send it to us. We’ll be happy to
share it with the community.

Natural Extensions
We’ve outlined just the basics in this article. There are several
extensions to this model that should be relatively easy for you
to implement. For example, on receiving the event notification
you might want the user-mode application to do some
processing and return some data back to kernel mode. To do
this, the user-mode app could copy the sequence number that it
received with the original event notification to a structure in its
input buffer. Then the app would then add any data it wants to
send to kernel mode to that structure, and sends the
IOCTL_OSR_INVERT_NOTIFICATION back to the driver. When
the driver receives this IOCTL it would process the information
received from the application’s input buffer and then forward
the received IOCTL Request to the notification queue. Part of

(CONTINUED FROM PAGE 22)

the processing done by the driver might be to match the
supplied sequence number with an event the driver has
buffered. Or something. I hope you get the idea.

Summary
That’s the Inverted Call Model. When you want your driver to
be able to notify a user-mode application about the occurrence
of an event, have the driver complete a request back to the
application! It’s an easy model to implement, it’s easy to test,
and it’s remarkably efficient. Just be sure to have the
application keep enough IOCTLs in progress at the driver, so
there’s always one available when the driver wants to notify it
of an event.

Code associated with this article:

http://insider.osr.com/2013/code/inverted_call_example.zip

WINDOWS FILE SYSTEM
DEVELOPMENT SEMINAR
A Must for Mini-Filter Developers

Whether developing file systems, or file
system mini-filters, OSR’s Developing File
Systems for Windows seminar has proved
year after year to be the most effective way
to understand the fundamentals of the
Windows file system “interface”, and the
subtle nuances of file system and mini-filter
development on Windows.

Next presentation:

Boston/Waltham, MA
23-26 April

To communicate directly with our seminar
coordinator:

Phone: +1.603.595.6500
Email: seminars@osr.com

http://www.osronline.com/cf.cfm?PageURL=showLists.cfm?list=ntdev
http://insider.osr.com/2013/code/inverted_call_example.zip
mailto:seminars@osr.com?subject=Seminar%20interest

Page 24
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

We can now return to WinDBG, reload our now fixed PDB, and
see that the type information has indeed been added (Figure 6).

Figure 6

Applying our Technique: Fixing !exqueue on Windows 8
x86 Targets
Now that we know how to add information to PDBs, we can use
what we’ve learned to fix the !exqueue command on Windows 8
x86 targets. This is a command that we at OSR use all the time,
thus the fact that it’s not working in some cases is an
annoyance. We filed a bug report on the problem when we
discovered it a while back, but we’re impatient so we set out to
fix it ourselves in the meantime.

First, let’s see what happens when we run the command against
the public symbols, as shown in Figure 7.

(CONTINUED FROM PAGE 11)

Figure 7

As we discussed earlier, in creating the public PDBs, the data
types associated with global variables are stripped out. Thus, as
we see from Figure 7’s x and dt command outputs, we have no
type information to go with the global and therefore the
debugger cannot query its size.

Note that, up to this point, we have only discussed adding
missing data types to an existing PDB and have said nothing
about associating a global with a type. This isn’t by accident,
after several attempts we were unsuccessful in getting this
information wired back into the PDB. This is unfortunate, as it
would have been an elegant solution to an otherwise ugly
problem. All is not lost, however, as we discovered an ugly
solution instead.

(CONTINUED ON PAGE 25)

KERNEL DEBUGGING & CRASH ANALYSIS
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Next presentations:

Boston/Waltham, MA
25-29 March 2013

Santa Clara, CA

9-13 September 2013

For more information, visit www.osr.com/debug.html, or contact an OSR seminar coordinator at
seminars@osr.com

http://www.osr.com/debug.html
http://www.osr.com/debug.html
mailto:seminars@osr.com

Page 25
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

As it turns out, it’s possible to trick the debugger into getting a
size for the global by creating an appropriately sized data type
of the same name. In the case of KeNumberNodes, dumping the
memory location with the d command shows that the global is
likely at most two bytes long. In order to account for this, we
created a data type KeNumberNodes with a single USHORT
member (Figure 8).

#include <pshpack1.h>
struct KeNumberNodes {
 //
 // Add a dummy member to get the size right.
 //
 USHORT Dummy;
};
#include <popack.h>

//
// Unused types are NOT in the PDB! So, make a dummy variable to
// get the type in the PDB.
//
struct KeNumberNodes KeNumberNodesDummy;

Figure 8

While the x command will still not be able to resolve a type for
the global variable, dt will pick up the type definition and
correctly interpret the size of that structure as two bytes. This
trick is enough to fool the !exqueue command into getting a size
for the global, resulting in it happily dumping out the worker
queues (Figure 9).

(CONTINUED FROM PAGE 24)

Figure 9

It’s definitely a hack, but the usefulness of the extension makes
it worth it until the command is fixed in a future release.

Conclusion
Sources for this article are provided for download, giving you a
method to fix most categories of public symbol issues you may
come across. If you use it to resolve any problems let us know,
one less broken command for us to stumble over when we need
it!

Code associated with this article:

http://insider.osr.com/2013/code/fix.zip

OSR IS HIRING!
Have a Passion for OS Internals?

OSR is hiring one or more Software Development Engineers to implement, test and debug
Windows kernel mode software.

We’re looking for a very talented individual (or two) to grow into valued contributors to the OSR
engineering team, our clients, and the community.

Do you need to be a Windows internals guru? No—we’ll help you with that—but you DO have to
LOVE operating system internals. It’s what we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so if this is YOU or someone you know, get in touch
with us and tell us why we can’t afford NOT to hire you.

See www.osr.com/careers for more detail.

http://insider.osr.com/2013/code/fix.zip
http://www.osr.com/careers

Page 26
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

quarter given that the US presidential election took place more
than 4 months ago. I guess I could throw that flyer away now,
huh? Lest there be any doubt, I am keeping the Motorola
antenna color chart.

So, I think you can guess that when the Surface Pro was
announced, I wasn’t very interested. Fool me once, shame on
you and all that. Sure, the Surface Pro has an x86 processor.
And yes, you can run actual applications on it. But I had already
lived the Surface experience
(if you can fairly call using
the device for a total of two
hours “living”) and I wasn’t
interested in going that
route again.

Then the guy who has an
office across the hall from
me got one. In fact, he went
so far as to pre-order his
Surface Pro. The one with
128GB of storage. He
ordered both the Touch
Cover and the Type Cover.
And some strange, Italian
design influenced mouse
that looks like a hunk of
cheese. And when it finally
came, he installed Microsoft
Office, Visual Studio, the
WDK (the one for Win7 and
the one for Win8), WinDbg,
VMWare Workstation, and
even the fussy little
application that we use for
accessing the OSR VPN. It all
installed without a problem.
Why shouldn’t it, right? The Surface Pro is running Windows 8,
after all.

What’s even scarier is that not only did all that stuff install, but it
ran really well. In fact, I’d label the Surface Pro a little speed
demon. Outlook fired-up and connected to our Exchange server
without a hitch. He built a driver in Visual Studio using the
Windows 8 WDK without any problems. And so it came to be
that on his next trip, the Surface Pro owner left his corpulent
(1/2 inch thick), excessively weighty (3.3 pounds) Lenovo laptop
at home and just took (a) his iPad Mini, and (b) his Surface Pro.
After carrying it around for a day, all he could say was “I'm
pretty obsessed with it already, not sure how I'd ever go back.”

(CONTINUED FROM PAGE 3)

That’s not to say the Surface Pro doesn’t have a few big ugly
warts. He reports that the Bluetooth stack sucks, just like every
other Bluetooth stack on the planet (WTF is it about Bluetooth
that makes it suck so badly, huh? It doesn’t work right in my
car. It doesn’t work right on my phone. And it sure doesn’t work
right on the Surface Pro, if “working right” means you don’t
regularly lose connectivity to your mouse… but I digress). The
screen occasionally and randomly becomes unresponsive,
requiring a reboot. And he discovered, as did I when using the
Surface RT, that whoever decided that swiping in from the right
side of the screen to bring up the charms is a good idea should
be publically flogged. You try to turn the page of a document
and ooops… a little over-swipe brings up the charms instead of
your turned page. Arrrgh. Would whoever was responsible for
approving this gesture please meet me for lunch over in The

Commons so we can discuss
how annoying it is? Thanks.

There are a couple of other
issues as well. Where the
WWAN? C’mon… even my
Kindle talks on 3G. How can
you not build this into this type
of device? And, of course,
there’s the whole battery life
thing. 4 hours of battery life?
Really? Well, that wouldn’t
even come close to being an
iPad replacement now, would
it.

About the same time as the
arrival of my colleague’s
Surface Pro, I started looking
for a new laptop. One that
would replace my gargantuan
Lenovo X301 and that also had
a touch screen to optimize its
use with Windows 8. When I
travel, I really only need a
computing device to do three
things: (a) keep me from
losing my mind while in the
boarding area of the plane and

while on the plane, (b) project PowerPoint slides when I get
where I’m going, and (c) maybe let me read and reply to an
email that’s too big to comfortably digest on my mobile phone.
In addition, if the device can let me remotely access my desktop
machine to do other stuff (look at a crash dump once or twice a
year, for example) I’ll be in heaven.

At this point, nothing’s going to replace my iPad for keeping me
amused while I travel, except maybe another iPad. I learned my
lesson well with my Surface RT experience. I read books on my
iPad, I play games on it, I surf the web with it. It lasts more than

(CONTINUED ON PAGE 27)

OSR IS HIRING!

Want to get pontificated to on a regular basis?
OSR is hiring one or more Software
Development Engineers to implement, test and
debug Windows kernel mode software.

We’re looking for a very talented individual (or
two) to grow into valued contributors to the
OSR engineering team, our clients, and the
community.

Do you need to be a Windows internals guru?
No—we’ll help you with that—but you DO have
to LOVE operating system internals. It’s what
we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so
if this is YOU or someone you know, get in
touch with us and tell us why we can’t afford
NOT to hire you.

See www.osr.com/careers for more detail.

http://www.osr.com/careers

Page 27
www.osr.com

The NT Insider March-April 2013 © OSR Open Systems Resources, Inc.

10 hours on one battery charge. It works in Delhi just as well as
it works in Seattle. Basically, I’ll give up my iPad when they pry
my cold dead fingers from around it.

So, that leaves to the laptop the jobs of projecting PowerPoint
slides and sometimes doing email. And sometimes maybe,
rarely, perhaps accessing my desktop machine. For these things
I definitely need a keyboard. Pecking with my fat fingers at a
flat glass screen does not equal actual typing in my book.

In my search for a new lightweight replacement I looked at
Lenovos. I looked at Dells. Heck, I even looked at
Chromebooks. These devices all failed to meet my criteria in
one or more ways. Most are fat and heavy. You’d think
something with as little stuff in it as a Chromebook would weigh,
I don’t know, maybe 6 ounces or something. But no. All but
one of the Chromebooks weigh more than 3 pounds. Dell has a
cute tablet… but it only offers a Bluetooth keyboard. So now I
have to get the tablet, get a case for it, get a keyboard, and get a
case for the keyboard. Wait! That’s more work than carrying
the Thinkpad I already have. The Lenovo tablet is cute, but it
has exactly the same problem. In that case, the Bluetooth
keyboard (which is rigid plastic) weighs as much as the tablet!

At this point, I started thinking… maybe that Surface Pro would
be a good idea after all. Maybe it would work as a replacement
for my laptop, not my iPad. Sure the Surface RT sucked. But it
sucked because it was neither an iPad replacement nor a laptop
replacement.

But the Surface Pro? Well…. As I said earlier, the Surface Pro
runs office. If I need it to project PowerPoint slides, I could keep
it plugged-in, so the battery life wouldn’t be an issue. The Pro
runs our fussy little VPN client, and therefore not only will
Outlook be able to connect to our Exchange Server, but I could
use remote desktop to access my office dev box if I needed to.
It’s got an integral cover with a keyboard with a touchpad (of
course you have to pay extra for it, but you know… it’s not my
personal money that I’m spending). And it weighs less than 2.5
pounds including the keyboard and cover.

I searched and searched, but I could not find any device with
similar capabilities at similar weight. When viewed as a laptop
replacement, and not an iPad replacement, the damn kickstand
and the integrated type and/or touch covers are all nothing
short of brilliant.

In fact, I think Microsoft may be on to something. Just like
Apple invented a new device category with the iPad, I don’t
think it’s going too far at all to suggest that Microsoft has
invented a new device category with the Surface Pro. It’s a
Super Ultra-Portable Laptop Replacement. It kicks the ass of

(CONTINUED FROM PAGE 26)

any Ultrabook I’ve seen in terms of weight and portability. And
so far the OEMs seem to be missing the boat with their tablets
that need cumbersome add-on Bluetooth keyboards.

Good work, Microsoft. Way to go.

So I ordered a Surface Pro (see above). It just arrived. Wish me
luck. After playing with it for a couple of months, I’ll tell you
how I like it.

Peter Pontificates is a regular column by OSR Consulting Partner,
Peter Viscarola. Peter doesn’t care if you agree or disagree with
him, but there’s always the chance that your comments or
rebuttal could find its way into a future issue. Send your own
comments, rants or distortions of fact to: PeterPont@osr.com.

See, OSR actually had to pay for it...

THE NT INSIDER
Hey...Get Your Own!

If a colleague three cubes down with less
than stellar hygiene forwarded this on to
you and you fear that this act of kindness
may be interpreted as the start of a budding
relationship, get your own subscription at:

http://www.osronline.com/custom.cfm?nam
e=login_joinok.cfm

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

®

A private, on-site seminar format
allows you to:

 Get project specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping, or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

Seminar Dates Location

Kernel Debugging & Crash Analysis 25-29 March 2013 Boston/Waltham, MA

Writing WDF Drivers 22-26 April Santa Clara, CA

Developing File Systems 23-26 April Boston/Waltham, MA

Internals & Software Drivers 5-9 August Santa Clara, CA

Kernel Debugging & Crash Analysis 9-13 September Santa Clara, CA

W hen we say “we practice what we teach”, this mantra directly translates into the value
we bring to our seminars. But don’t take our word for it...this is what a recent survey

of attendees of OSR’s Windows Internals & Software Drivers seminar had to say:

 [Instructor] was simply awesome. I'd be eager to take any other seminar he teaches.

 [Instructor] is extremely knowledgeable regarding Windows internals. He has the
communications skills to provide an informative, in-depth seminar with just the right
amount of entertainment value.

 [Instructor] was amazing. He really knows his stuff and was able to handle off-topic
questions very well.

 [Instructor] was great; very clear he knows the subject and even more importantly he
can teach it.

 [Instructor] is an awesome instructor for these seminars. The venue was absolutely
fantastic! The conference room where the seminar was held was less than 100 steps
from my room. It was great not to have to drive there and back each day. The
conference center staff seemed very eager to please. I really can't think of anything bad
to say.

 I learned a lot of useful information that will get me working productively a lot sooner
than if I had to pick this info up on the job. I also learned a lot that will be useful in the
future.

 The course was very good and I will highly recommend OSR to colleagues in the future.

 It was a great course. I enjoyed the experience and learned a lot.

 One of the better training programs I have attended.

http://www.osr.com/debug.html
http://www.osr.com/wdf.html
http://www.osr.com/fsd.html
http://www.osr.com/swdrivers.html
http://www.osr.com/debug.html

