See below for recent champions and first five holes in each table. List of old champions for factoring Cunningham numbers: Continued fraction method: 1692 C63 5,171+ K. McCurdy & M. C. Wunderlich on the MPP 1602 C62 3,204+ J. W. Smith & S. S. Wagstaff, Jr. on the EPOC SPAR: 1066 C60 3,131+ A. O. L. Atkin & N. W. Rickert on a large IBM 941 C59 12,59- A. O. L. Atkin & N. W. Rickert on a large IBM Pollard p-1: 5267 P58 2,2098M P. Zimmermann 4871 P57 6,396+ P. Zimmermann p-1/FFT: 2590 P28 2, 733+ R. Silverman on an Alliant 2550 P27 2,1008+ R. Silverman on an Alliant p+1: 0 P21 2,439- R. P. Brent on a Univac 1100/82 5 P20 2,509- R. P. Brent on a Univac 1100/82 Brent-Pollard rho: 1343 P19 2,2386L H. Dubner on a special processor 1254 P19 2,1049- H. Dubner on a special processor Quadratic sieve method: 4682 C135 2,1606L Dodson, A.K.Lenstra, Leyland, Muffett, Wagstaff 4564 C124 2,895- Jens Franke Hybrid Special/General number field sieve by size of number factored: 4083 C123 2,1155+ CWI 4036 C121 2,1650L CWI List of recent champions for factoring Cunningham numbers: Special number field sieve by size of number factored: 6297 C355 2,1193- J.Bos+T.Kleinjung+A.K.Lenstra 6315 C342 2,1171- J.Bos+T.Kleinjung+A.K.Lenstra Special number field sieve by SNFS difficulty: 6297 C355 2,1193- J.Bos+T.Kleinjung+A.K.Lenstra 6315 C342 2,1171- J.Bos+T.Kleinjung+A.K.Lenstra General number field sieve by size of number factored: 6319 C221 3,697+ NFS@Home 6393 C218 2,1285- NFS@Home 6269 C216 3,766+ NFS@Home Elliptic curve method: 6208 P83 7,337+ R. Propper 6135 P79 11,306+ S. Wagstaff Largest penultimate prime factor (ultimate factor shown also): 6630 p151*p160 7,889M NFS@Home 6537 p147*p156 12,293+ NFS@Home 6302 p146*p156 2,1109- J.Bos+T.Kleinjung+A.K.Lenstra First five holes in each table on August 22, 2022 2,1207- c337 2,1213- c297 2,1217- c248 2,1229- c284 2,1231- c329 2,1091+ c307 2,1097+ c288 2,1109+ c225 2,1123+ c338 2,1129+ c330 2,2194L c304 2,2194M c301 2,2206L c243 2,2222L c228 2,2222M c289 2,1108+ c271 2,1124+ c311 2,1136+ c247 2,1168+ c326 2,1180+ c249 3,691- c265 3,703- c269 3,715- c211 3,725- c217 3,731- c265 3,683+ c256 3,692+ c277 3,701+ c302 3,709+ c327 3,712+ c330 5,503- c260 5,509- c271 5,521- c364 5,529- c281 5,533- c336 5,464+ c223 5,467+ c230 5,472+ c317 5,478+ c311 5,479+ c224 6,421- c281 6,431- c321 6,437- c273 6,439- c293 6,445- c259 6,419+ c261 6,421+ c246 6,431+ c331 6,436+ c258 6,439+ c270 7,389- c299 7,395- c220 7,419- c214 7,421- c305 7,425- c221 7,386+ c245 7,388+ c314 7,395+ c221 7,397+ c300 7,398+ c332 10,353- c328 10,365- c288 10,377- c311 10,383- c230 10,389- c270 10,332+ c295 10,346+ c300 10,347+ c318 10,353+ c300 10,356+ c292 11,313- c273 11,317- c319 11,323- c241 11,331- c344 11,341- c289 11,311+ c247 11,326+ c334 11,328+ c242 11,331+ c258 11,332+ c282 12,311- c335 12,313- c283 12,319- c260 12,331- c290 12,337- c265 12,307+ c304 12,326+ c347 12,328+ c301 12,331+ c241 12,332+ c289