THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Wed 12 Oct 2022 12:38:55 AM CDT) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13b 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 14c 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 15 202705*2^21320516+1 6418121 L5181 2021 16 2^20996011-1 6320430 G6 2003 Mersenne 40 17 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 18 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 19d 7*2^20267500+1 6101127 L4965 2022 20 168451*2^19375200+1 5832522 L4676 2017 21d 69*2^19374980-1 5832452 L4965 2022 22 3*2^18924988-1 5696990 L5530 2022 23 69*2^18831865-1 5668959 L4965 2021 24 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 25 3*2^18196595-1 5477722 L5461 2022 26 3*2^17748034-1 5342692 L5404 2021 27 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 28 3622*5^7558139-1 5282917 L4965 2022 29 7*6^6772401+1 5269954 L4965 2019 30 8508301*2^17016603-1 5122515 L4784 2018 Woodall 31 3*2^16819291-1 5063112 L5230 2021 32 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 33 69*2^15866556-1 4776312 L4965 2021 34 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 35 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 36 6*5^6546983+1 4576146 L4965 2020 37 69*2^14977631-1 4508719 L4965 2021 38 192971*2^14773498-1 4447272 L4965 2021 39d 4*5^6181673-1 4320805 L4965 2022 40 6962*31^2863120-1 4269952 L5410 2020 41e 37*2^14166940+1 4264676 L4965 2022 42 99739*2^14019102+1 4220176 L5008 2019 43 69*2^13832885-1 4164116 L4965 2022 44 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 45b 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 46a 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 47 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 48 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 49 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 50a 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 51 2^13466917-1 4053946 G5 2001 Mersenne 39 52 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 53 206039*2^13104952-1 3944989 L4965 2021 54 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 55 19249*2^13018586+1 3918990 SB10 2007 56 2293*2^12918431-1 3888839 L4965 2021 57b 81*2^12804541+1 3854553 L4965 2022 58 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 59 69*2^12231580-1 3682075 L4965 2021 60 27*2^12184319+1 3667847 L4965 2021 61d 3761*2^11978874-1 3606004 L4965 2022 62 3*2^11895718-1 3580969 L4159 2015 63f 37*2^11855148+1 3568757 L4965 2022 64 3*2^11731850-1 3531640 L4103 2015 65 69*2^11718455-1 3527609 L4965 2020 66e 41*2^11676439+1 3514960 L4965 2022 67f 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 68c 81*2^11616017+1 3496772 L4965 2022 69 69*2^11604348-1 3493259 L4965 2020 70 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 71 3*2^11484018-1 3457035 L3993 2014 72 193997*2^11452891+1 3447670 L4398 2018 73 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 74 9221*2^11392194-1 3429397 L5267 2021 75 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 76 5*2^11355764-1 3418427 L4965 2021 77 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 78 146561*2^11280802-1 3395865 L5181 2020 79 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 80d 6929*2^11255424-1 3388225 L4965 2022 81 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 82 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 83 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 84 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 85 9271*2^11134335-1 3351773 L4965 2021 86 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 87 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 88 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 89 27*2^10902757-1 3282059 L4965 2022 90 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 91f 11*2^10803449+1 3252164 L4965 2022 92f 11*2^10797109+1 3250255 L4965 2022 93f 7*2^10612737-1 3194754 L4965 2022 94e 37*2^10599476+1 3190762 L4965 2022 95 5*2^10495620-1 3159498 L4965 2021 96 5*2^10349000-1 3115361 L4965 2021 97 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 98 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 99 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 100 475856^524288+1 2976633 L3230 2012 Generalized Fermat 101 9*2^9778263+1 2943552 L4965 2020 102 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 103 356926^524288+1 2911151 L3209 2012 Generalized Fermat 104 341112^524288+1 2900832 L3184 2012 Generalized Fermat 105 43*2^9596983-1 2888982 L4965 2022 106 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 107 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 108b 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 109 27653*2^9167433+1 2759677 SB8 2005 110 90527*2^9162167+1 2758093 L1460 2010 111 6795*2^9144320-1 2752719 L4965 2021 112 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 113c 57*2^9075622-1 2732037 L4965 2022 114e 63838*5^3887851-1 2717497 L5558 2022 115 13*2^8989858+1 2706219 L4965 2020 116 4159*2^8938471-1 2690752 L4965 2022 117 273809*2^8932416-1 2688931 L1056 2017 118 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 119 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 120 2038*366^1028507-1 2636562 L2054 2016 121e 64598*5^3769854-1 2635020 L5427 2022 122e 8*785^900325+1 2606325 L4786 2022 123 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 124 75898^524288+1 2558647 p334 2011 Generalized Fermat 125 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 126 39*2^8413422+1 2532694 L5232 2021 127 31*2^8348000+1 2513000 L5229 2021 128 27*2^8342438-1 2511326 L3483 2021 129 3687*2^8261084-1 2486838 L4965 2021 130 273662*5^3493296-1 2441715 L5444 2021 131b 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 132 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 133 102818*5^3440382-1 2404729 L5427 2021 134 11*2^7971110-1 2399545 L2484 2019 135 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 136 3177*2^7954621-1 2394584 L4965 2021 137 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 138 7*6^3072198+1 2390636 L4965 2019 139 3765*2^7904593-1 2379524 L4965 2021 140 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 141 861*2^7895451-1 2376771 L4965 2021 142 28433*2^7830457+1 2357207 SB7 2004 143c 2589*2^7803339-1 2349043 L4965 2022 144 5*2^7755002-1 2334489 L4965 2021 145 2545*2^7732265-1 2327648 L4965 2021 146 5539*2^7730709-1 2327180 L4965 2021 147 4817*2^7719584-1 2323831 L4965 2021 148 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 149 9467*2^7680034-1 2311925 L4965 2022 150 45*2^7661004+1 2306194 L5200 2020 151 15*2^7619838+1 2293801 L5192 2020 152 3597*2^7580693-1 2282020 L4965 2021 153 7401*2^7523295-1 2264742 L4965 2021 154 45*2^7513661+1 2261839 L5179 2020 155 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 156c 1875*2^7474308-1 2249995 L4965 2022 157d 4*5^3189669-1 2229484 L4965 2022 158 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 159 109838*5^3168862-1 2214945 L5129 2020 160 101*2^7345194-1 2211126 L1884 2019 161 15*2^7300254+1 2197597 L5167 2020 162 422429!+1 2193027 p425 2022 Factorial 163 1759*2^7284439-1 2192838 L4965 2021 164 737*2^7269322-1 2188287 L4665 2017 165 118568*5^3112069+1 2175248 L690 2020 166 6039*2^7207973-1 2169820 L4965 2021 167 502573*2^7181987-1 2162000 L3964 2014 168 402539*2^7173024-1 2159301 L3961 2014 169 3343*2^7166019-1 2157191 L1884 2016 170 161041*2^7107964+1 2139716 L4034 2015 171 27*2^7046834+1 2121310 L3483 2018 172 1759*2^7046791-1 2121299 L4965 2021 173 327*2^7044001-1 2120459 L4965 2021 174 5*2^7037188-1 2118406 L4965 2021 175 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 176 33661*2^7031232+1 2116617 SB11 2007 177 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 178 207494*5^3017502-1 2109149 L5083 2020 179 15*2^6993631-1 2105294 L4965 2021 180 8943501*2^6972593-1 2098967 L466 2022 181b 6020095*2^6972593-1 2098967 L466 2022 182 2^6972593-1 2098960 G4 1999 Mersenne 38 183 6219*2^6958945-1 2094855 L4965 2021 184 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 185 238694*5^2979422-1 2082532 L5081 2020 186 4*72^1119849-1 2079933 L4444 2016 187 33*2^6894190-1 2075360 L4965 2021 188 2345*2^6882320-1 2071789 L4965 2022 189 146264*5^2953282-1 2064261 L1056 2020 190 69*2^6838971-1 2058738 L5037 2020 191 35816*5^2945294-1 2058677 L5076 2020 192 127*2^6836153-1 2057890 L1862 2018 193 19*2^6833086+1 2056966 L5166 2020 194 40597*2^6808509-1 2049571 L3749 2013 195 283*2^6804731-1 2048431 L2484 2020 196 1861709*2^6789999+1 2044000 L5191 2020 197 5781*2^6789459-1 2043835 L4965 2021 198 8435*2^6786180-1 2042848 L4965 2021 199 51*2^6753404+1 2032979 L4965 2020 200 9995*2^6711008-1 2020219 L4965 2020 201 39*2^6684941+1 2012370 L5162 2020 202 6679881*2^6679881+1 2010852 L917 2009 Cullen 203 37*2^6660841-1 2005115 L3933 2014 204 39*2^6648997+1 2001550 L5161 2020 205 304207*2^6643565-1 1999918 L3547 2013 206 69*2^6639971-1 1998833 L5037 2020 207 6471*2^6631137-1 1996175 L4965 2021 208 1319*2^6506224-1 1958572 L4965 2021 209 322498*5^2800819-1 1957694 L4954 2019 210 88444*5^2799269-1 1956611 L3523 2019 211 13*2^6481780+1 1951212 L4965 2020 212 21*2^6468257-1 1947141 L4965 2021 213 138514*5^2771922+1 1937496 L4937 2019 214e 33*2^6432160-1 1936275 L4965 2022 215 15*2^6429089-1 1935350 L4965 2021 216 398023*2^6418059-1 1932034 L3659 2013 217 631*2^6359347-1 1914357 L4965 2021 218a 4965*2^6356707-1 1913564 L4965 2022 219 1995*2^6333396-1 1906546 L4965 2021 220 1582137*2^6328550+1 1905090 L801 2009 Cullen 221b 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 222 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 223c 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 224d 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 225 3303*2^6264946-1 1885941 L4965 2021 226 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 227 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 228 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 229 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 230 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 231 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 232 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 233 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 234 7*6^2396573+1 1864898 L4965 2019 235 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 236 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 237 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 238 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 239 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 240 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 241 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 242 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 243 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 244 194368*5^2638045-1 1843920 L690 2018 245 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 246 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 247 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 248 66916*5^2628609-1 1837324 L690 2018 249 3*2^6090515-1 1833429 L1353 2010 250 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 251 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 252 8349*2^6082397-1 1830988 L4965 2021 253 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 254 32*470^683151+1 1825448 L4064 2021 255 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 256 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 257 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 258 9999*2^6037057-1 1817340 L4965 2021 259 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 260f 33*2^6019138-1 1811943 L4965 2022 261 1583*2^5989282-1 1802957 L4036 2015 262 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 263 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 264 327926*5^2542838-1 1777374 L4807 2018 265 81556*5^2539960+1 1775361 L4809 2018 266 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 267 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 268 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 269 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 270 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 271 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 272 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 273 7*2^5775996+1 1738749 L3325 2012 274 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 275 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 276 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 277 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 278f (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 279 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 280 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 281 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 282 1243*2^5686715-1 1711875 L1828 2016 283 25*2^5658915-1 1703505 L1884 2021 284 41*2^5651731+1 1701343 L1204 2020 285 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 286 9*2^5642513+1 1698567 L3432 2013 287 10*3^3550446+1 1693995 L4965 2020 288 2622*11^1621920-1 1689060 L2054 2015 289c 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 290 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 291 301562*5^2408646-1 1683577 L4675 2017 292 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 293 171362*5^2400996-1 1678230 L4669 2017 294 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 295 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 296 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 297 252191*2^5497878-1 1655032 L3183 2012 298 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 299 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 300 258317*2^5450519+1 1640776 g414 2008 301 7*6^2104746+1 1637812 L4965 2019 302 5*2^5429494-1 1634442 L3345 2017 303 43*2^5408183-1 1628027 L1884 2018 304 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 305d 2*296598^296598-1 1623035 L4965 2022 306 1349*2^5385004-1 1621051 L1828 2017 307 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 308 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 309 45*2^5308037+1 1597881 L4761 2019 310 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 311 7*2^5229669-1 1574289 L4965 2021 312 180062*5^2249192-1 1572123 L4435 2016 313 124125*6^2018254+1 1570512 L4001 2019 314 27*2^5213635+1 1569462 L3760 2015 315 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 316 308084!+1 1557176 p425 2022 Factorial 317 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 318 25*2^5152151-1 1550954 L1884 2020 319 53546*5^2216664-1 1549387 L4398 2016 320 773620^262144+1 1543643 L3118 2012 Generalized Fermat 321 39*2^5119458+1 1541113 L1204 2019 322 607*26^1089034+1 1540957 L5410 2021 323c 81*2^5115131+1 1539810 L4965 2022 324 223*2^5105835-1 1537012 L2484 2019 325 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 326c 81*2^5100331+1 1535355 L4965 2022 327 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 328 51*2^5085142-1 1530782 L760 2014 329 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 330 676754^262144+1 1528413 L2975 2012 Generalized Fermat 331 296024*5^2185270-1 1527444 L671 2016 332 5359*2^5054502+1 1521561 SB6 2003 333 13*2^4998362+1 1504659 L3917 2014 334 525094^262144+1 1499526 p338 2012 Generalized Fermat 335 92158*5^2145024+1 1499313 L4348 2016 336 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 337 77072*5^2139921+1 1495746 L4340 2016 338 2*3^3123036+1 1490068 L5043 2020 339e 519397*2^4908893-1 1477730 L5410 2022 340 306398*5^2112410-1 1476517 L4274 2016 341 265711*2^4858008+1 1462412 g414 2008 342 154222*5^2091432+1 1461854 L3523 2015 343 1271*2^4850526-1 1460157 L1828 2012 344f 333*2^4846958-1 1459083 L5546 2022 345 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 346 361658^262144+1 1457075 p332 2011 Generalized Fermat 347 100186*5^2079747-1 1453686 L4197 2015 348 288465!+1 1449771 p3 2022 Factorial 349 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 350 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 351 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 352 653*10^1435026-1 1435029 p355 2014 353 197*2^4765318-1 1434506 L5175 2021 354 188*468^535963+1 1431156 L4832 2019 355 3267113#-1 1418398 p301 2021 Primorial 356 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 357 1229*2^4703492-1 1415896 L1828 2018 358 144052*5^2018290+1 1410730 L4146 2015 359 195*2^4685711-1 1410542 L5175 2021 360 9*2^4683555-1 1409892 L1828 2012 361 31*2^4673544+1 1406879 L4990 2019 362 34*993^469245+1 1406305 L4806 2018 363 79*2^4658115-1 1402235 L1884 2018 364 39*2^4657951+1 1402185 L1823 2019 365 4*650^498101-1 1401116 L4294 2021 366 11*2^4643238-1 1397755 L2484 2014 367 68*995^465908-1 1396712 L4001 2017 368 7*6^1793775+1 1395830 L4965 2019 369 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 370 27*2^4583717-1 1379838 L2992 2014 371 121*2^4553899-1 1370863 L3023 2012 372d 9473*2^4543680-1 1367788 L5037 2022 373 27*2^4542344-1 1367384 L1204 2014 374 29*2^4532463+1 1364409 L4988 2019 375 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 376 145310^262144+1 1353265 p314 2011 Generalized Fermat 377 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 378 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 379 36772*6^1723287-1 1340983 L1301 2014 380 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 381 151*2^4424321-1 1331856 L1884 2016 382 195*2^4373994-1 1316706 L5175 2020 383f (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 384 49*2^4365175-1 1314051 L1959 2017 385 49*2^4360869-1 1312755 L1959 2017 386 13*2^4333087-1 1304391 L1862 2018 387 353159*2^4331116-1 1303802 L2408 2011 388f 9959*2^4308760-1 1297071 L5037 2022 389 23*2^4300741+1 1294654 L4147 2019 390 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 391 141941*2^4299438-1 1294265 L689 2011 392e 612749*2^4254500-1 1280738 L5410 2022 393 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 394 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 395 3*2^4235414-1 1274988 L606 2008 396 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 397 45*436^481613+1 1271213 L5410 2020 398 109208*5^1816285+1 1269534 L3523 2014 399 1091*2^4215518-1 1269001 L1828 2018 400 191*2^4203426-1 1265360 L2484 2012 401 1259*2^4196028-1 1263134 L1828 2016 402 325918*5^1803339-1 1260486 L3567 2014 403 133778*5^1785689+1 1248149 L3903 2014 404c 81*2^4131975+1 1243851 L4965 2022 405 17*2^4107544-1 1236496 L4113 2015 406 24032*5^1768249+1 1235958 L3925 2014 407 172*159^561319-1 1235689 L4001 2017 408 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 409 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 410 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 411 64*425^467857-1 1229712 p268 2021 412 97*2^4066717-1 1224206 L2484 2019 413 1031*2^4054974-1 1220672 L1828 2017 414 37*2^4046360+1 1218078 L2086 2019 415 39653*430^460397-1 1212446 L4187 2016 416a 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 417 40734^262144+1 1208473 p309 2011 Generalized Fermat 418 9*2^4005979-1 1205921 L1828 2012 419 12*68^656921+1 1203815 L4001 2016 420 67*688^423893+1 1202836 L4001 2017 421 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 422f (146^276995+1)^2-2 1199030 p405 2022 423 138172*5^1714207-1 1198185 L3904 2014 424 50*383^463313+1 1196832 L2012 2021 425 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 426 29*2^3964697+1 1193495 L1204 2019 427 39*2^3961129+1 1192421 L1486 2019 428 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 429b 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 430 22478*5^1675150-1 1170884 L3903 2014 431 1199*2^3889576-1 1170883 L1828 2018 432 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 433c 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 434 94*872^397354+1 1168428 L5410 2019 435 27*2^3855094-1 1160501 L3033 2012 436 164*978^387920-1 1160015 L4700 2018 437 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 438 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 439d 125*392^444161+1 1151839 L4832 2022 440 30*514^424652-1 1151218 L4001 2017 441 24518^262144+1 1150678 g413 2008 Generalized Fermat 442 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 443 241*2^3815727-1 1148651 L2484 2019 444 109*980^383669-1 1147643 L4001 2018 445 123547*2^3804809-1 1145367 L2371 2011 446 2564*75^610753+1 1145203 L3610 2014 447 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 448 166*443^432000+1 1143249 L5410 2020 449 326834*5^1634978-1 1142807 L3523 2014 450b 447*2^3780151+1 1137942 L5596 2022 451b 345*2^3779921+1 1137873 L5557 2022 452b 477*2^3779871+1 1137858 L5197 2022 453b 251*2^3774587+1 1136267 L5592 2022 454b 439*2^3773958+1 1136078 L5557 2022 455 43*182^502611-1 1135939 L4064 2020 456 415267*2^3771929-1 1135470 L2373 2011 457 11*2^3771821+1 1135433 p286 2013 458b 427*2^3768104+1 1134315 L5192 2022 459f 1455*2^3768024-1 1134292 L1134 2022 460b 711*2^3767492+1 1134131 L5161 2022 461 265*2^3765189-1 1133438 L2484 2018 462b 297*2^3765140+1 1133423 L5197 2022 463b 381*2^3764189+1 1133137 L5589 2022 464b 115*2^3763650+1 1132974 L5554 2022 465b 411*2^3759067+1 1131595 L5589 2022 466b 405*2^3757192+1 1131031 L5590 2022 467 938237*2^3752950-1 1129757 L521 2007 Woodall 468 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 469c 701*2^3744713+1 1127274 L5554 2022 470 207394*5^1612573-1 1127146 L3869 2014 471 684*10^1127118+1 1127121 L4036 2017 472 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 473 104944*5^1610735-1 1125861 L3849 2014 474 23451*2^3739388+1 1125673 L591 2015 475c 615*2^3738023+1 1125260 L5161 2022 476c 347*2^3737875+1 1125216 L5178 2022 477c 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 478c 375*2^3733510+1 1123902 L5584 2022 479 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 480c 629*2^3731479+1 1123290 L5283 2022 481c 113*2^3728113+1 1122276 L5161 2022 482c 303*2^3725438+1 1121472 L5161 2022 483c 187*2^3723972+1 1121030 L5178 2022 484 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 485c 105*2^3720512+1 1119988 L5493 2022 486c 447*2^3719024+1 1119541 L5493 2022 487c 177*2^3717746+1 1119156 L5279 2022 488 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 489c 123*2^3716758+1 1118858 L5563 2022 490c 313*2^3716716+1 1118846 L5237 2022 491c 367*2^3712952+1 1117713 L5264 2022 492c 53*2^3709297+1 1116612 L5197 2022 493 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 494c 395*2^3701693+1 1114324 L5536 2022 495c 589*2^3699954+1 1113800 L5576 2022 496 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 497 119*2^3698412-1 1113336 L2484 2018 498d 391*2^3693728+1 1111926 L5493 2022 499d 485*2^3688111+1 1110235 L5237 2022 500d 341*2^3686613+1 1109784 L5573 2022 501d 87*2^3686558+1 1109767 L5573 2022 502d 675*2^3682616+1 1108581 L5231 2022 503d 569*2^3682167+1 1108446 L5488 2022 504 330286*5^1584399-1 1107453 L3523 2014 505 34*951^371834-1 1107391 L5410 2019 506 45*2^3677787+1 1107126 L1204 2019 507d 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 508 13*2^3675223-1 1106354 L1862 2016 509 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 510d 463*2^3671262+1 1105163 L5524 2022 511d 735*2^3670991+1 1105082 L5575 2022 512d 475*2^3670046+1 1104797 L5524 2022 513 15*2^3668194-1 1104238 L3665 2013 514d 273*2^3665736+1 1103499 L5192 2022 515 13*2^3664703-1 1103187 L1862 2016 516 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 517d 609*2^3662931+1 1102655 L5573 2022 518 118*892^373012+1 1100524 L5071 2020 519 33300*430^417849-1 1100397 L4393 2016 520d 655*2^3653008+1 1099668 L5574 2022 521 33*2^3649810+1 1098704 L4958 2019 522d 295*2^3642206+1 1096416 L5161 2022 523 989*2^3640585+1 1095929 L5115 2020 524 567*2^3639287+1 1095538 L4959 2019 525 639*2^3635707+1 1094460 L1823 2019 526 753*2^3631472+1 1093185 L1823 2019 527d 2*205731^205731-1 1093111 L4965 2022 528 65531*2^3629342-1 1092546 L2269 2011 529 1121*2^3629201+1 1092502 L4761 2019 530 215*2^3628962-1 1092429 L2484 2018 531 113*2^3628034-1 1092150 L2484 2014 532 1175*2^3627541+1 1092002 L4840 2019 533 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 534 951*2^3623185+1 1090691 L1823 2019 535 29*920^367810-1 1090113 L4064 2015 536 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 537 485*2^3618563+1 1089299 L3924 2019 538 95*2^3614033+1 1087935 L1474 2019 539 1005*2^3612300+1 1087414 L1823 2019 540 861*2^3611815+1 1087268 L1745 2019 541 1087*2^3611476+1 1087166 L4834 2019 542 485767*2^3609357-1 1086531 L622 2008 543 675*2^3606447+1 1085652 L3278 2019 544 669*2^3606266+1 1085598 L1675 2019 545 65077*2^3605944+1 1085503 L4685 2020 546f 1365*2^3605491+1 1085365 L1134 2022 547 851*2^3604395+1 1085034 L2125 2019 548 1143*2^3602429+1 1084443 L4754 2019 549 1183*2^3601898+1 1084283 L1823 2019 550 189*2^3596375+1 1082620 L3760 2016 551 1089*2^3593267+1 1081685 L3035 2019 552e 19581121*2^3589357-1 1080512 p49 2022 553 1101*2^3589103+1 1080431 L1823 2019 554 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 555 275*2^3585539+1 1079358 L3803 2016 556 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 557 651*2^3579843+1 1077643 L3035 2018 558 583*2^3578402+1 1077210 L3035 2018 559 309*2^3577339+1 1076889 L4406 2016 560 1185*2^3574583+1 1076060 L4851 2018 561 251*2^3574535+1 1076045 L3035 2016 562f 1485*2^3574333+1 1075985 L1134 2022 563 1019*2^3571635+1 1075173 L1823 2018 564 119*2^3571416-1 1075106 L2484 2018 565 35*2^3570777+1 1074913 L2891 2014 566 33*2^3570132+1 1074719 L2552 2014 567 5*2^3569154-1 1074424 L503 2009 568 81*492^399095-1 1074352 L4001 2015 569 22934*5^1536762-1 1074155 L3789 2014 570 265*2^3564373-1 1072986 L2484 2018 571 771*2^3564109+1 1072907 L2125 2018 572 381*2^3563676+1 1072776 L4190 2016 573 555*2^3563328+1 1072672 L4850 2018 574 1183*2^3560584+1 1071846 L1823 2018 575 415*2^3559614+1 1071554 L3035 2016 576 1103*2^3558176-1 1071121 L1828 2018 577 1379*2^3557072-1 1070789 L1828 2018 578 681*2^3553141+1 1069605 L3035 2018 579 599*2^3551793+1 1069200 L3824 2018 580 621*2^3551472+1 1069103 L4687 2018 581 773*2^3550373+1 1068772 L1808 2018 582 1199*2^3548380-1 1068172 L1828 2018 583 191*2^3548117+1 1068092 L4203 2015 584 867*2^3547711+1 1067971 L4155 2018 585 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 586 351*2^3545752+1 1067381 L4082 2016 587 93*2^3544744+1 1067077 L1728 2014 588 1159*2^3543702+1 1066764 L1823 2018 589 178658*5^1525224-1 1066092 L3789 2014 590 1085*2^3539671+1 1065551 L3035 2018 591 465*2^3536871+1 1064707 L4459 2016 592 1019*2^3536312-1 1064539 L1828 2012 593 1179*2^3534450+1 1063979 L3035 2018 594 447*2^3533656+1 1063740 L4457 2016 595 1059*2^3533550+1 1063708 L1823 2018 596 345*2^3532957+1 1063529 L4314 2016 597 553*2^3532758+1 1063469 L1823 2018 598 543131*2^3529754-1 1062568 L4925 2022 599 141*2^3529287+1 1062424 L4185 2015 600 13*2^3527315-1 1061829 L1862 2016 601 1393*2^3525571-1 1061306 L1828 2017 602 1071*2^3523944+1 1060816 L1675 2018 603 329*2^3518451+1 1059162 L1823 2016 604 135*2^3518338+1 1059128 L4045 2015 605 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 606 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 607 599*2^3515959+1 1058412 L1823 2018 608 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 609a 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 610 1135*2^3510890+1 1056887 L1823 2018 611a 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 612b 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 613b 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 614b 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 615b 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 616b 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 617c 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 618c 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 619c 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 620c 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 621c 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 622c 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 623c 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 624c 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 625d 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 626d 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 627d 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 628d 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 629d 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 630d 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 631d 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 632 428639*2^3506452-1 1055553 L2046 2011 633d 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 634d 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 635d 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 636d 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 637d 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 638e 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 639e 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 640e 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 641e 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 642f 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 643 104*383^408249+1 1054591 L2012 2021 644f 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 645 555*2^3502765+1 1054441 L1823 2018 646f 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 647f 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 648f 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 649 643*2^3501974+1 1054203 L1823 2018 650 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 651 1159*2^3501490+1 1054057 L2125 2018 652 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 653 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 654 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 655 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 656 1189*2^3499042+1 1053320 L4724 2018 657 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 658 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 659 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 660 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 661 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 662 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 663 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 664 609*2^3497474+1 1052848 L1823 2018 665 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 666 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 667 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 668 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 669 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 670 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 671 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 672 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 673 87*2^3496188+1 1052460 L1576 2014 674 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 675 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 676 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 677 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 678 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 679 783*2^3494129+1 1051841 L3824 2018 680 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 681 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 682 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 683 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 684 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 685 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 686 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 687 51*2^3490971+1 1050889 L1823 2014 688 1485*2^3490746+1 1050823 L1134 2021 689 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 690 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 691 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 692 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 693 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 694 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 695 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 696 753*2^3488818+1 1050242 L1823 2018 697 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 698 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 699 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 700 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 701 699*2^3487253+1 1049771 L1204 2018 702 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 703 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 704 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 705 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 706 249*2^3486411+1 1049517 L4045 2015 707 195*2^3486379+1 1049507 L4108 2015 708 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 709 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 710 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 711 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 712 59912*5^1500861+1 1049062 L3772 2014 713 495*2^3484656+1 1048989 L3035 2016 714 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 715 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 716 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 717 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 718 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 719 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 720 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 721 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 722 323*2^3482789+1 1048427 L1204 2016 723 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 724 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 725 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 726 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 727 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 728 1149*2^3481694+1 1048098 L1823 2018 729 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 730 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 731 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 732 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 733 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 734 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 735 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 736 701*2^3479779+1 1047521 L2125 2018 737 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 738 813*2^3479728+1 1047506 L4724 2018 739 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 740 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 741 197*2^3477399+1 1046804 L2125 2015 742 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 743 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 744 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 745 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 746 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 747 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 748 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 749 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 750 491*2^3473837+1 1045732 L4343 2016 751 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 752 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 753 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 754 1061*2^3471354-1 1044985 L1828 2017 755 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 756 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 757 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 758 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 759 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 760 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 761 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 762 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 763 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 764 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 765 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 766 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 767 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 768 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 769 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 770 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 771 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 772 641*2^3464061+1 1042790 L1444 2018 773 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 774 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 775 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 776 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 777 453*2^3461688+1 1042075 L3035 2016 778 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 779 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 780 571*2^3460216+1 1041632 L3035 2018 781 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 782 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 783 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 784 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 785 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 786 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 787 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 788 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 789 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 790 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 791 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 792 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 793 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 794 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 795 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 796 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 797 1155*2^3455254+1 1040139 L4711 2017 798 37292*5^1487989+1 1040065 L3553 2013 799 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 800 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 801 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 802 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 803 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 804 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 805 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 806 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 807 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 808 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 809 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 810 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 811 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 812 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 813 1273*2^3448551-1 1038121 L1828 2012 814 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 815 1065*2^3447906+1 1037927 L4664 2017 816 1155*2^3446253+1 1037429 L3035 2017 817 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 818 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 819 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 820 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 821 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 822 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 823 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 824 943*2^3442990+1 1036447 L4687 2017 825 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 826 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 827 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 828 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 829 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 830 943*2^3440196+1 1035606 L1448 2017 831 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 832 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 833 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 834 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 835 543*2^3438810+1 1035188 L3035 2017 836 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 837 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 838 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 839 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 840 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 841 74*941^348034-1 1034913 L5410 2020 842 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 843 113*2^3437145+1 1034686 L4045 2015 844 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 845 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 846 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 847 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 848 1147*2^3435970+1 1034334 L3035 2017 849 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 850a 9863*2^3434697+1 1033951 L5189 2022 851a 4065*2^3434623+1 1033929 L5197 2022 852 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 853b 9187*2^3434126+1 1033779 L5600 2022 854a 9531*2^3434103+1 1033772 L5601 2022 855b 1757*2^3433547+1 1033604 L5594 2022 856b 1421*2^3433099+1 1033469 L5237 2022 857b 3969*2^3433007+1 1033442 L5189 2022 858b 6557*2^3433003+1 1033441 L5261 2022 859b 7335*2^3432982+1 1033435 L5231 2022 860b 7125*2^3432836+1 1033391 L5594 2022 861b 2517*2^3432734+1 1033360 L5231 2022 862 911*2^3432643+1 1033332 L1355 2017 863b 5413*2^3432626+1 1033328 L5231 2022 864 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 865b 3753*2^3432413+1 1033263 L5261 2022 866b 2691*2^3432191+1 1033196 L5585 2022 867b 3933*2^3432125+1 1033177 L5387 2022 868 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 869 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 870c 1435*2^3431284+1 1032923 L5587 2022 871 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 872c 6783*2^3430781+1 1032772 L5261 2022 873c 8079*2^3430683+1 1032743 L5585 2022 874 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 875 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 876c 6605*2^3430187+1 1032593 L5463 2022 877c 3761*2^3430057+1 1032554 L5582 2022 878c 6873*2^3429937+1 1032518 L5294 2022 879c 8067*2^3429891+1 1032504 L5581 2022 880c 3965*2^3429719+1 1032452 L5579 2022 881d 3577*2^3428812+1 1032179 L5401 2022 882d 8747*2^3428755+1 1032163 L5493 2022 883d 9147*2^3428638+1 1032127 L5493 2022 884d 3899*2^3428535+1 1032096 L5174 2022 885 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 886 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 887d 8891*2^3428303+1 1032026 L5532 2022 888d 2147*2^3427371+1 1031745 L5189 2022 889 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 890 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 891 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 892 1127*2^3427219+1 1031699 L3035 2017 893 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 894d 3021*2^3427059+1 1031652 L5554 2022 895d 3255*2^3426983+1 1031629 L5231 2022 896d 1733*2^3426753+1 1031559 L5565 2022 897d 2339*2^3426599+1 1031513 L5237 2022 898d 4729*2^3426558+1 1031501 L5493 2022 899 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 900e 5445*2^3425839+1 1031285 L5237 2022 901 159*2^3425766+1 1031261 L4045 2015 902 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 903e 3405*2^3425045+1 1031045 L5261 2022 904 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 905e 1695*2^3424517+1 1030886 L5387 2022 906e 4715*2^3424433+1 1030861 L5557 2022 907e 5525*2^3424423+1 1030858 L5387 2022 908e 8615*2^3424231+1 1030801 L5261 2022 909e 5805*2^3424200+1 1030791 L5237 2022 910 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 911 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 912 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 913e 2109*2^3423797+1 1030669 L5197 2022 914e 4929*2^3423494+1 1030579 L5554 2022 915f 2987*2^3422911+1 1030403 L5226 2022 916 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 917e 4843*2^3422644+1 1030323 L5553 2022 918e 5559*2^3422566+1 1030299 L5555 2022 919f 7583*2^3422501+1 1030280 L5421 2022 920 1119*2^3422189+1 1030185 L1355 2017 921f 2895*2^3422030+1 1030138 L5237 2022 922f 2835*2^3421697+1 1030037 L5387 2022 923f 3363*2^3421353+1 1029934 L5226 2022 924 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 925f 9147*2^3421264+1 1029908 L5237 2022 926f 9705*2^3420915+1 1029803 L5540 2022 927 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 928f 8919*2^3420758+1 1029755 L5226 2022 929 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 930 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 931f 5489*2^3420137+1 1029568 L5174 2022 932f 9957*2^3420098+1 1029557 L5237 2022 933 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 934 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 935f 7213*2^3419370+1 1029337 L5421 2022 936f 7293*2^3419264+1 1029305 L5192 2022 937 975*2^3419230+1 1029294 L3545 2017 938f 4191*2^3419227+1 1029294 L5421 2022 939f 2393*2^3418921+1 1029202 L5197 2022 940 999*2^3418885+1 1029190 L3035 2017 941f 2925*2^3418543+1 1029088 L5174 2022 942 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 943 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 944 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 945 7383*2^3418297+1 1029014 L5189 2022 946 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 947 907*2^3417890+1 1028891 L3035 2017 948 5071*2^3417884+1 1028890 L5237 2022 949 3473*2^3417741+1 1028847 L5541 2022 950 191249*2^3417696-1 1028835 L1949 2010 951 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 952 3299*2^3417329+1 1028723 L5421 2022 953 6947*2^3416979+1 1028618 L5540 2022 954 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 955 8727*2^3416652+1 1028519 L5226 2022 956 8789*2^3416543+1 1028486 L5197 2022 957 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 958 7917*2^3415947+1 1028307 L5537 2022 959 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 960 2055*2^3415873+1 1028284 L5535 2022 961 4731*2^3415712+1 1028236 L5192 2022 962 2219*2^3415687+1 1028228 L5178 2022 963 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 964 5877*2^3415419+1 1028148 L5532 2022 965 3551*2^3415275+1 1028104 L5231 2022 966 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 967 2313*2^3415046+1 1028035 L5226 2022 968 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 969 7637*2^3414875+1 1027984 L5507 2022 970 2141*2^3414821+1 1027967 L5226 2022 971 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 972 3667*2^3414686+1 1027927 L5226 2022 973 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 974 6159*2^3414623+1 1027908 L5226 2022 975 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 976 4577*2^3413539+1 1027582 L5387 2022 977 5137*2^3413524+1 1027577 L5261 2022 978 8937*2^3413364+1 1027529 L5527 2022 979 8829*2^3413339+1 1027522 L5531 2022 980 7617*2^3413315+1 1027515 L5197 2022 981 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 982 3141*2^3413112+1 1027453 L5463 2022 983 8831*2^3412931+1 1027399 L5310 2022 984 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 985 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 986 5421*2^3412877+1 1027383 L5310 2022 987 9187*2^3412700+1 1027330 L5337 2022 988 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 989 8243*2^3412577+1 1027292 L5524 2022 990 1751*2^3412565+1 1027288 L5523 2022 991 9585*2^3412318+1 1027215 L5197 2022 992 9647*2^3412247+1 1027193 L5178 2022 993 3207*2^3412108+1 1027151 L5189 2022 994 479*2^3411975+1 1027110 L2873 2016 995 245*2^3411973+1 1027109 L1935 2015 996 177*2^3411847+1 1027071 L4031 2015 997 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 998 9963*2^3411566+1 1026988 L5237 2022 999 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1000 9785*2^3411223+1 1026885 L5189 2022 1001 5401*2^3411136+1 1026858 L5261 2022 1002 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1003 9431*2^3411105+1 1026849 L5237 2022 1004 8227*2^3410878+1 1026781 L5316 2022 1005 4735*2^3410724+1 1026734 L5226 2022 1006 9515*2^3410707+1 1026730 L5237 2022 1007 6783*2^3410690+1 1026724 L5434 2022 1008 8773*2^3410558+1 1026685 L5261 2022 1009 4629*2^3410321+1 1026613 L5517 2022 1010 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1011 113*2^3409934-1 1026495 L2484 2014 1012 5721*2^3409839+1 1026468 L5226 2022 1013 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1014 6069*2^3409493+1 1026364 L5237 2022 1015 1981*910^346850+1 1026347 L1141 2021 1016 5317*2^3409236+1 1026287 L5471 2022 1017 7511*2^3408985+1 1026211 L5514 2022 1018 7851*2^3408909+1 1026188 L5176 2022 1019 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1020 6027*2^3408444+1 1026048 L5239 2022 1021 59*2^3408416-1 1026038 L426 2010 1022 2153*2^3408333+1 1026014 L5237 2022 1023 9831*2^3408056+1 1025932 L5233 2022 1024 3615*2^3408035+1 1025925 L5217 2022 1025 6343*2^3407950+1 1025899 L5226 2022 1026 8611*2^3407516+1 1025769 L5509 2022 1027 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1028 7111*2^3407452+1 1025750 L5508 2022 1029 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1030 6945*2^3407256+1 1025691 L5507 2022 1031 6465*2^3407229+1 1025682 L5301 2022 1032 1873*2^3407156+1 1025660 L5440 2022 1033 7133*2^3406377+1 1025426 L5279 2022 1034 7063*2^3406122+1 1025349 L5178 2022 1035 3105*2^3405800+1 1025252 L5502 2022 1036 953*2^3405729+1 1025230 L3035 2017 1037 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1038 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1039 373*2^3404702+1 1024921 L3924 2016 1040 7221*2^3404507+1 1024863 L5231 2022 1041 6641*2^3404259+1 1024788 L5501 2022 1042 9225*2^3404209+1 1024773 L5250 2022 1043 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1044 833*2^3403765+1 1024639 L3035 2017 1045 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1046 2601*2^3403459+1 1024547 L5350 2022 1047 8835*2^3403266+1 1024490 L5161 2022 1048 7755*2^3403010+1 1024412 L5161 2022 1049 3123*2^3402834+1 1024359 L5260 2022 1050 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1051 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1052 1417*2^3402246+1 1024182 L5497 2022 1053 5279*2^3402241+1 1024181 L5250 2022 1054 6651*2^3402137+1 1024150 L5476 2022 1055 1779*2^3401715+1 1024022 L5493 2022 1056 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1057 8397*2^3401502+1 1023959 L5476 2022 1058 4057*2^3401472+1 1023949 L5492 2022 1059 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1060 4095*2^3401174+1 1023860 L5418 2022 1061 5149*2^3400970+1 1023798 L5176 2022 1062 4665*2^3400922+1 1023784 L5308 2022 1063 24*414^391179+1 1023717 L4273 2016 1064 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1065 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1066 1725*2^3400371+1 1023617 L5197 2022 1067 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1068 9399*2^3400243+1 1023580 L5488 2022 1069 1241*2^3400127+1 1023544 L5279 2022 1070 1263*2^3399876+1 1023468 L5174 2022 1071 1167*2^3399748+1 1023430 L3545 2017 1072 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1073 7679*2^3398569+1 1023076 L5295 2022 1074 6447*2^3398499+1 1023054 L5302 2022 1075 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1076 2785*2^3398332+1 1023004 L5250 2022 1077 611*2^3398273+1 1022985 L3035 2017 1078 2145*2^3398034+1 1022914 L5302 2022 1079 3385*2^3397254+1 1022679 L5161 2022 1080 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1081 4463*2^3396657+1 1022500 L5476 2022 1082 2889*2^3396450+1 1022437 L5178 2022 1083 8523*2^3396448+1 1022437 L5231 2022 1084 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1085 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1086 3349*2^3396326+1 1022400 L5480 2022 1087 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1088 4477*2^3395786+1 1022238 L5161 2022 1089 3853*2^3395762+1 1022230 L5302 2022 1090 2693*2^3395725+1 1022219 L5284 2022 1091 8201*2^3395673+1 1022204 L5178 2022 1092 255*2^3395661+1 1022199 L3898 2014 1093 1049*2^3395647+1 1022195 L3035 2017 1094 9027*2^3395623+1 1022189 L5263 2022 1095 2523*2^3395549+1 1022166 L5472 2022 1096 3199*2^3395402+1 1022122 L5264 2022 1097 342924651*2^3394939-1 1021988 L4166 2017 1098 3825*2^3394947+1 1021985 L5471 2022 1099 1895*2^3394731+1 1021920 L5174 2022 1100 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1101 555*2^3393389+1 1021515 L2549 2017 1102 1865*2^3393387+1 1021515 L5237 2022 1103 4911*2^3393373+1 1021511 L5231 2022 1104 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1105 5229*2^3392587+1 1021275 L5463 2022 1106 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1107 609*2^3392301+1 1021188 L3035 2017 1108 9787*2^3392236+1 1021169 L5350 2022 1109 303*2^3391977+1 1021090 L2602 2016 1110 805*2^3391818+1 1021042 L4609 2017 1111 6475*2^3391496+1 1020946 L5174 2022 1112 67*2^3391385-1 1020911 L1959 2014 1113 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1114 4639*2^3390634+1 1020687 L5189 2022 1115 5265*2^3390581+1 1020671 L5456 2022 1116 663*2^3390469+1 1020636 L4316 2017 1117 6945*2^3390340+1 1020598 L5174 2021 1118 5871*2^3390268+1 1020577 L5231 2021 1119 7443*2^3390141+1 1020539 L5226 2021 1120 5383*2^3389924+1 1020473 L5350 2021 1121 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1122 9627*2^3389331+1 1020295 L5231 2021 1123 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1124 8253*2^3388624+1 1020082 L5226 2021 1125 3329*2^3388472-1 1020036 L4841 2020 1126 4695*2^3388393+1 1020012 L5237 2021 1127 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1128 7177*2^3388144+1 1019937 L5174 2021 1129 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1130 9611*2^3388059+1 1019912 L5435 2021 1131 1833*2^3387760+1 1019821 L5226 2021 1132 9003*2^3387528+1 1019752 L5189 2021 1133 3161*2^3387141+1 1019635 L5226 2021 1134 7585*2^3387110+1 1019626 L5189 2021 1135 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1136 453*2^3387048+1 1019606 L2602 2016 1137 5177*2^3386919+1 1019568 L5226 2021 1138 8739*2^3386813+1 1019537 L5226 2021 1139 2875*2^3386638+1 1019484 L5226 2021 1140 7197*2^3386526+1 1019450 L5178 2021 1141 1605*2^3386229+1 1019360 L5226 2021 1142 8615*2^3386181+1 1019346 L5442 2021 1143 3765*2^3386141+1 1019334 L5174 2021 1144 5379*2^3385806+1 1019233 L5237 2021 1145 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1146 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1147 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1148 173198*5^1457792-1 1018959 L3720 2013 1149 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1150 2109*2^3384733+1 1018910 L5261 2021 1151 7067*2^3384667+1 1018891 L5439 2021 1152 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1153 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1154 2077*2^3384472+1 1018831 L5237 2021 1155 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1156 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1157 9165*2^3383917+1 1018665 L5435 2021 1158 5579*2^3383209+1 1018452 L5434 2021 1159 8241*2^3383131+1 1018428 L5387 2021 1160 7409*2^3382869+1 1018349 L5161 2021 1161 4883*2^3382813+1 1018332 L5161 2021 1162 9783*2^3382792+1 1018326 L5189 2021 1163 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1164 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1165 8877*2^3381936+1 1018069 L5429 2021 1166 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1167 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1168 6675*2^3381688+1 1017994 L5197 2021 1169 2445*2^3381129+1 1017825 L5231 2021 1170 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1171 3381*2^3380585+1 1017662 L5237 2021 1172 7899*2^3380459+1 1017624 L5421 2021 1173 5945*2^3379933+1 1017465 L5418 2021 1174 1425*2^3379921+1 1017461 L1134 2020 1175 4975*2^3379420+1 1017311 L5161 2021 1176 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1177 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1178 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1179 9065*2^3378851+1 1017140 L5414 2021 1180 2369*2^3378761+1 1017112 L5197 2021 1181 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1182 621*2^3378148+1 1016927 L3035 2017 1183 7035*2^3378141+1 1016926 L5408 2021 1184 2067*2^3378115+1 1016918 L5405 2021 1185 1093*2^3378000+1 1016883 L4583 2017 1186 9577*2^3377612+1 1016767 L5406 2021 1187 861*2^3377601+1 1016763 L4582 2017 1188 5811*2^3377016+1 1016587 L5261 2021 1189 2285*2^3376911+1 1016555 L5261 2021 1190 4199*2^3376903+1 1016553 L5174 2021 1191 6405*2^3376890+1 1016549 L5269 2021 1192 1783*2^3376810+1 1016525 L5261 2021 1193 5401*2^3376768+1 1016513 L5174 2021 1194 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1195 2941*2^3376536+1 1016443 L5174 2021 1196 1841*2^3376379+1 1016395 L5401 2021 1197 6731*2^3376133+1 1016322 L5261 2021 1198 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1199 8121*2^3375933+1 1016262 L5356 2021 1200 5505*2^3375777+1 1016214 L5174 2021 1201 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1202 3207*2^3375314+1 1016075 L5237 2021 1203 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1204 5307*2^3374939+1 1015962 L5392 2021 1205 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1206 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1207 208003!-1 1015843 p394 2016 Factorial 1208 6219*2^3374198+1 1015739 L5393 2021 1209 3777*2^3374072+1 1015701 L5261 2021 1210 9347*2^3374055+1 1015696 L5387 2021 1211 1461*2^3373383+1 1015493 L5384 2021 1212 6395*2^3373135+1 1015419 L5382 2021 1213 7869*2^3373021+1 1015385 L5381 2021 1214 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1215 4905*2^3372216+1 1015142 L5261 2021 1216 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1217 2839*2^3372034+1 1015087 L5174 2021 1218 7347*2^3371803+1 1015018 L5217 2021 1219 9799*2^3371378+1 1014890 L5261 2021 1220 4329*2^3371201+1 1014837 L5197 2021 1221 3657*2^3371183+1 1014831 L5360 2021 1222 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1223 179*2^3371145+1 1014819 L3763 2014 1224 5155*2^3371016+1 1014781 L5237 2021 1225 7575*2^3371010+1 1014780 L5237 2021 1226 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1227 9195*2^3370798+1 1014716 L5178 2021 1228 1749*2^3370786+1 1014711 L5362 2021 1229 8421*2^3370599+1 1014656 L5174 2021 1230 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1231 4357*2^3369572+1 1014346 L5231 2021 1232 6073*2^3369544+1 1014338 L5358 2021 1233 839*2^3369383+1 1014289 L2891 2017 1234 65*2^3369359+1 1014280 L5236 2021 1235 8023*2^3369228+1 1014243 L5356 2021 1236 677*2^3369115+1 1014208 L2103 2017 1237 1437*2^3369083+1 1014199 L5282 2021 1238 9509*2^3368705+1 1014086 L5237 2021 1239 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1240 4851*2^3368668+1 1014074 L5307 2021 1241 7221*2^3368448+1 1014008 L5353 2021 1242 5549*2^3368437+1 1014005 L5217 2021 1243 715*2^3368210+1 1013936 L4527 2017 1244 617*2^3368119+1 1013908 L4552 2017 1245 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1246 1847*2^3367999+1 1013872 L5352 2021 1247 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1248 6497*2^3367743+1 1013796 L5285 2021 1249 2533*2^3367666+1 1013772 L5326 2021 1250 6001*2^3367552+1 1013738 L5350 2021 1251 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1252 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1253 777*2^3367372+1 1013683 L4408 2017 1254 9609*2^3367351+1 1013678 L5285 2021 1255 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1256 2529*2^3367317+1 1013667 L5237 2021 1257 5941*2^3366960+1 1013560 L5189 2021 1258 5845*2^3366956+1 1013559 L5197 2021 1259 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1260 9853*2^3366608+1 1013454 L5178 2021 1261 61*2^3366033-1 1013279 L4405 2017 1262 7665*2^3365896+1 1013240 L5345 2021 1263 8557*2^3365648+1 1013165 L5346 2021 1264 369*2^3365614+1 1013154 L4364 2016 1265 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1266 8201*2^3365283+1 1013056 L5345 2021 1267 9885*2^3365151+1 1013016 L5344 2021 1268 5173*2^3365096+1 1012999 L5285 2021 1269 8523*2^3364918+1 1012946 L5237 2021 1270 3985*2^3364776+1 1012903 L5178 2021 1271 9711*2^3364452+1 1012805 L5192 2021 1272 7003*2^3364172+1 1012721 L5217 2021 1273 6703*2^3364088+1 1012696 L5337 2021 1274 7187*2^3364011+1 1012673 L5217 2021 1275 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1276 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1277 2345*2^3363157+1 1012415 L5336 2021 1278 6527*2^3363135+1 1012409 L5167 2021 1279 9387*2^3363088+1 1012395 L5161 2021 1280 8989*2^3362986+1 1012364 L5161 2021 1281 533*2^3362857+1 1012324 L3171 2017 1282 619*2^3362814+1 1012311 L4527 2017 1283 2289*2^3362723+1 1012284 L5161 2021 1284 7529*2^3362565+1 1012237 L5161 2021 1285 7377*2^3362366+1 1012177 L5161 2021 1286 4509*2^3362311+1 1012161 L5324 2021 1287 7021*2^3362208+1 1012130 L5178 2021 1288 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1289 104*873^344135-1 1012108 L4700 2018 1290 4953*2^3362054+1 1012083 L5323 2021 1291 8575*2^3361798+1 1012006 L5237 2021 1292 2139*2^3361706+1 1011978 L5174 2021 1293 6939*2^3361203+1 1011827 L5217 2021 1294 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1295 3^2120580-3^623816-1 1011774 CH9 2019 1296 8185*2^3360896+1 1011735 L5189 2021 1297 2389*2^3360882+1 1011730 L5317 2021 1298 2787*2^3360631+1 1011655 L5197 2021 1299 6619*2^3360606+1 1011648 L5316 2021 1300 2755*2^3360526+1 1011623 L5174 2021 1301 1445*2^3360099+1 1011494 L5261 2021 1302 8757*2^3359788+1 1011401 L5197 2021 1303 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1304 5085*2^3359696+1 1011373 L5261 2021 1305 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1306 6459*2^3359457+1 1011302 L5310 2021 1307 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1308 6115*2^3358998+1 1011163 L5309 2021 1309 7605*2^3358929+1 1011143 L5308 2021 1310 2315*2^3358899+1 1011133 L5197 2021 1311 6603*2^3358525+1 1011021 L5307 2021 1312 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1313 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1314 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1315 5893*2^3357490+1 1010709 L5285 2021 1316 6947*2^3357075+1 1010585 L5302 2021 1317 4621*2^3357068+1 1010582 L5301 2021 1318 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1319 1479*2^3356275+1 1010343 L5178 2021 1320 3645*2^3356232+1 1010331 L5296 2021 1321 1259*2^3356215+1 1010325 L5298 2021 1322 2075*2^3356057+1 1010278 L5174 2021 1323 4281*2^3356051+1 1010276 L5295 2021 1324 1275*2^3356045+1 1010274 L5294 2021 1325 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1326 4365*2^3355770+1 1010192 L5261 2021 1327 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1328 2183*2^3355297+1 1010049 L5266 2021 1329 3087*2^3355000+1 1009960 L5226 2021 1330 8673*2^3354760+1 1009888 L5233 2021 1331 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1332 3015*2^3353943+1 1009641 L5290 2021 1333 6819*2^3353877+1 1009622 L5174 2021 1334 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1335 6393*2^3353366+1 1009468 L5287 2021 1336 3573*2^3353273+1 1009440 L5161 2021 1337 4047*2^3353222+1 1009425 L5286 2021 1338 1473*2^3353114+1 1009392 L5161 2021 1339 1183*2^3353058+1 1009375 L3824 2017 1340 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1341 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1342 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1343 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1344 7123*2^3352180+1 1009111 L5161 2021 1345 2757*2^3352180+1 1009111 L5285 2021 1346 9307*2^3352014+1 1009061 L5284 2021 1347 2217*2^3351732+1 1008976 L5283 2021 1348 543*2^3351686+1 1008961 L4198 2017 1349 4419*2^3351666+1 1008956 L5279 2021 1350 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1351 3059*2^3351379+1 1008870 L5278 2021 1352 7789*2^3351046+1 1008770 L5276 2021 1353 9501*2^3350668+1 1008656 L5272 2021 1354 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1355 9691*2^3349952+1 1008441 L5242 2021 1356 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1357 3209*2^3349719+1 1008370 L5269 2021 1358 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1359 393*2^3349525+1 1008311 L3101 2016 1360 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1361 5487*2^3349303+1 1008245 L5266 2021 1362 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1363 2511*2^3349104+1 1008185 L5264 2021 1364 1005*2^3349046-1 1008167 L4518 2021 1365 7659*2^3348894+1 1008122 L5263 2021 1366 9703*2^3348872+1 1008115 L5262 2021 1367 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1368 7935*2^3348578+1 1008027 L5161 2021 1369 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1370 7821*2^3348400+1 1007973 L5260 2021 1371 7911*2^3347532+1 1007712 L5250 2021 1372 8295*2^3347031+1 1007561 L5249 2021 1373 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1374 4029*2^3346729+1 1007470 L5239 2021 1375 9007*2^3346716+1 1007466 L5161 2021 1376 8865*2^3346499+1 1007401 L5238 2021 1377 6171*2^3346480+1 1007395 L5174 2021 1378 6815*2^3346045+1 1007264 L5235 2021 1379 5*326^400785+1 1007261 L4786 2019 1380 5951*2^3345977+1 1007244 L5233 2021 1381 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1382 1257*2^3345843+1 1007203 L5192 2021 1383 4701*2^3345815+1 1007195 L5192 2021 1384 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1385 7545*2^3345355+1 1007057 L5231 2021 1386 5559*2^3344826+1 1006897 L5223 2021 1387 6823*2^3344692+1 1006857 L5223 2021 1388 4839*2^3344453+1 1006785 L5188 2021 1389 7527*2^3344332+1 1006749 L5220 2021 1390 7555*2^3344240+1 1006721 L5188 2021 1391 6265*2^3344080+1 1006673 L5197 2021 1392 1299*2^3343943+1 1006631 L5217 2021 1393 2815*2^3343754+1 1006574 L5216 2021 1394 5349*2^3343734+1 1006568 L5174 2021 1395 2863*2^3342920+1 1006323 L5179 2020 1396 7387*2^3342848+1 1006302 L5208 2020 1397 9731*2^3342447+1 1006181 L5203 2020 1398 7725*2^3341708+1 1005959 L5195 2020 1399 7703*2^3341625+1 1005934 L5178 2020 1400 7047*2^3341482+1 1005891 L5194 2020 1401 4839*2^3341309+1 1005838 L5192 2020 1402 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1403 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1404 8989*2^3340866+1 1005705 L5189 2020 1405 6631*2^3340808+1 1005688 L5188 2020 1406 1341*2^3340681+1 1005649 L5188 2020 1407 733*2^3340464+1 1005583 L3035 2016 1408 2636*138^469911+1 1005557 L5410 2021 1409 3679815*2^3340001+1 1005448 L4922 2019 1410 57*2^3339932-1 1005422 L3519 2015 1411 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1412 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1413 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1414 3651*2^3339341+1 1005246 L5177 2020 1415 3853*2^3339296+1 1005232 L5178 2020 1416 8015*2^3339267+1 1005224 L5176 2020 1417 3027*2^3339182+1 1005198 L5174 2020 1418 9517*2^3339002+1 1005144 L5172 2020 1419 4003*2^3338588+1 1005019 L3035 2020 1420 6841*2^3338336+1 1004944 L1474 2020 1421 2189*2^3338209+1 1004905 L5031 2020 1422 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1423 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1424 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1425 2957*2^3337667+1 1004742 L5144 2020 1426 1515*2^3337389+1 1004658 L1474 2020 1427 7933*2^3337270+1 1004623 L4666 2020 1428 1251*2^3337116+1 1004576 L4893 2020 1429 651*2^3337101+1 1004571 L3260 2016 1430 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1431 8397*2^3336654+1 1004437 L5125 2020 1432 8145*2^3336474+1 1004383 L5110 2020 1433 1087*2^3336385-1 1004355 L1828 2012 1434 5325*2^3336120+1 1004276 L2125 2020 1435 849*2^3335669+1 1004140 L3035 2016 1436 8913*2^3335216+1 1004005 L5079 2020 1437 7725*2^3335213+1 1004004 L3035 2020 1438 611*2^3334875+1 1003901 L3813 2016 1439 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1440 403*2^3334410+1 1003761 L4293 2016 1441 5491*2^3334392+1 1003756 L4815 2020 1442 6035*2^3334341+1 1003741 L2125 2020 1443 1725*2^3334341+1 1003740 L2125 2020 1444 4001*2^3334031+1 1003647 L1203 2020 1445 2315*2^3333969+1 1003629 L2125 2020 1446 6219*2^3333810+1 1003581 L4582 2020 1447 8063*2^3333721+1 1003554 L1823 2020 1448 9051*2^3333677+1 1003541 L3924 2020 1449 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1450 4091*2^3333153+1 1003383 L1474 2020 1451 9949*2^3332750+1 1003262 L5090 2020 1452 3509*2^3332649+1 1003231 L5085 2020 1453 3781*2^3332436+1 1003167 L1823 2020 1454 4425*2^3332394+1 1003155 L3431 2020 1455 6459*2^3332086+1 1003062 L2629 2020 1456 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1457 5257*2^3331758+1 1002963 L1188 2020 1458 2939*2^3331393+1 1002853 L1823 2020 1459 6959*2^3331365+1 1002845 L1675 2020 1460 8815*2^3330748+1 1002660 L3329 2020 1461 4303*2^3330652+1 1002630 L4730 2020 1462 8595*2^3330649+1 1002630 L4723 2020 1463 673*2^3330436+1 1002564 L3035 2016 1464 8163*2^3330042+1 1002447 L3278 2020 1465 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1466 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1467 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1468 2829*2^3329061+1 1002151 L4343 2020 1469 5775*2^3329034+1 1002143 L1188 2020 1470 7101*2^3328905+1 1002105 L4568 2020 1471 7667*2^3328807+1 1002075 L4087 2020 1472 129*2^3328805+1 1002073 L3859 2014 1473 7261*2^3328740+1 1002055 L2914 2020 1474 4395*2^3328588+1 1002009 L3924 2020 1475 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1476 143183*2^3328297+1 1001923 L4504 2017 1477 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1478 9681*2^3327987+1 1001828 L1204 2020 1479 2945*2^3327987+1 1001828 L2158 2020 1480 5085*2^3327789+1 1001769 L1823 2020 1481 8319*2^3327650+1 1001727 L1204 2020 1482 4581*2^3327644+1 1001725 L2142 2020 1483 655*2^3327518+1 1001686 L4490 2016 1484 8863*2^3327406+1 1001653 L1675 2020 1485 659*2^3327371+1 1001642 L3502 2016 1486 3411*2^3327343+1 1001634 L1675 2020 1487 4987*2^3327294+1 1001619 L3924 2020 1488 821*2^3327003+1 1001531 L3035 2016 1489 2435*2^3326969+1 1001521 L3035 2020 1490 1931*2^3326850-1 1001485 L4113 2022 1491 2277*2^3326794+1 1001469 L5014 2020 1492 6779*2^3326639+1 1001422 L3924 2020 1493 6195*2^3325993+1 1001228 L1474 2019 1494 555*2^3325925+1 1001206 L4414 2016 1495 9041*2^3325643+1 1001123 L3924 2019 1496 1965*2^3325639-1 1001121 L4113 2022 1497 1993*2^3325302+1 1001019 L3662 2019 1498 6179*2^3325027+1 1000937 L3048 2019 1499 4485*2^3324900+1 1000899 L1355 2019 1500 3559*2^3324650+1 1000823 L3035 2019 1501 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1502 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1503 6927*2^3324387+1 1000745 L3091 2019 1504 9575*2^3324287+1 1000715 L3824 2019 1505 1797*2^3324259+1 1000705 L3895 2019 1506 4483*2^3324048+1 1000642 L3035 2019 1507 791*2^3323995+1 1000626 L3035 2016 1508 6987*2^3323926+1 1000606 L4973 2019 1509 3937*2^3323886+1 1000593 L3035 2019 1510 2121*2^3323852+1 1000583 L1823 2019 1511 1571*2^3323493+1 1000475 L3035 2019 1512 2319*2^3323402+1 1000448 L4699 2019 1513 2829*2^3323341+1 1000429 L4754 2019 1514 4335*2^3323323+1 1000424 L1823 2019 1515 8485*2^3322938+1 1000308 L4858 2019 1516 6505*2^3322916+1 1000302 L4858 2019 1517 597*2^3322871+1 1000287 L3035 2016 1518 9485*2^3322811+1 1000270 L2603 2019 1519 8619*2^3322774+1 1000259 L3035 2019 1520 387*2^3322763+1 1000254 L1455 2016 1521 1965*2^3322579-1 1000200 L4113 2022 1522 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1523 6366*745^348190-1 1000060 L4189 2022 1524 5553507*2^3322000+1 1000029 p391 2016 1525 5029159647*2^3321910-1 1000005 L4960 2021 1526 5009522505*2^3321910-1 1000005 L4960 2021 1527 4766298357*2^3321910-1 1000005 L4960 2021 1528 4759383915*2^3321910-1 1000005 L4960 2021 1529 4635733263*2^3321910-1 1000005 L4960 2021 1530 4603393047*2^3321910-1 1000005 L4960 2021 1531 4550053935*2^3321910-1 1000005 L4960 2021 1532 4288198767*2^3321910-1 1000005 L4960 2021 1533 4229494557*2^3321910-1 1000005 L4960 2021 1534 4110178197*2^3321910-1 1000005 L4960 2021 1535 4022490843*2^3321910-1 1000005 L4960 2021 1536 3936623697*2^3321910-1 1000005 L4960 2021 1537 3751145343*2^3321910-1 1000005 L4960 2021 1538 3715773735*2^3321910-1 1000005 L4960 2021 1539 3698976057*2^3321910-1 1000005 L4960 2021 1540 3659465685*2^3321910-1 1000005 L4960 2020 1541 3652932033*2^3321910-1 1000005 L4960 2020 1542 3603204333*2^3321910-1 1000005 L4960 2020 1543 3543733545*2^3321910-1 1000005 L4960 2020 1544 3191900133*2^3321910-1 1000005 L4960 2020 1545 3174957723*2^3321910-1 1000005 L4960 2020 1546 2973510903*2^3321910-1 1000005 L4960 2019 1547 2848144257*2^3321910-1 1000005 L4960 2019 1548 2820058827*2^3321910-1 1000005 L4960 2019 1549 2611553775*2^3321910-1 1000004 L4960 2020 1550 2601087525*2^3321910-1 1000004 L4960 2019 1551 2386538565*2^3321910-1 1000004 L4960 2019 1552 2272291887*2^3321910-1 1000004 L4960 2019 1553 2167709265*2^3321910-1 1000004 L4960 2019 1554 2087077797*2^3321910-1 1000004 L4960 2019 1555 1848133623*2^3321910-1 1000004 L4960 2019 1556 1825072257*2^3321910-1 1000004 L4960 2019 1557 1633473837*2^3321910-1 1000004 L4960 2019 1558 1228267623*2^3321910-1 1000004 L4808 2019 1559 1148781333*2^3321910-1 1000004 L4808 2019 1560 1065440787*2^3321910-1 1000004 L4808 2019 1561 1055109357*2^3321910-1 1000004 L4960 2019 1562 992309607*2^3321910-1 1000004 L4808 2019 1563 926102325*2^3321910-1 1000004 L4808 2019 1564 892610007*2^3321910-1 1000004 L4960 2019 1565 763076757*2^3321910-1 1000004 L4960 2019 1566 607766997*2^3321910-1 1000004 L4808 2019 1567 539679177*2^3321910-1 1000004 L4808 2019 1568 425521077*2^3321910-1 1000004 L4808 2019 1569 132940575*2^3321910-1 1000003 L4808 2019 1570 239378138685*2^3321891+1 1000001 L5104 2020 1571 464253*2^3321908-1 1000000 L466 2013 1572 3^2095902+3^647322-1 1000000 x44 2018 1573 191273*2^3321908-1 1000000 L466 2013 1574f ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1575 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1576 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1577 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1578 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1579 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1580 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1581 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1582 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1583 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1584 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1585 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1586 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1587 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1588 10^999999+308267*10^292000+1 1000000 CH10 2021 1589 10^999999-1022306*10^287000-1 999999 CH13 2021 1590 10^999999-1087604*10^287000-1 999999 CH13 2021 1591 531631540026641*6^1285077+1 999999 L3494 2021 1592 3139*2^3321905-1 999997 L185 2008 1593 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1594 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1595 4847*2^3321063+1 999744 SB9 2005 1596 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1597 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1598 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1599 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1600d 439*2^3318318+1 998916 L5573 2022 1601 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1602 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1603 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1604 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1605 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1606 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1607d 975*2^3312951+1 997301 L5231 2022 1608 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1609 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1610d 689*2^3311423+1 996841 L5226 2022 1611 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1612d 593*2^3309333+1 996212 L5572 2022 1613d 383*2^3309321+1 996208 L5570 2022 1614 49*2^3309087-1 996137 L1959 2013 1615 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1616 139413*6^1279992+1 996033 L4001 2015 1617 51*2^3308171+1 995861 L2840 2015 1618d 719*2^3308127+1 995849 L5192 2022 1619 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1620 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1621 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1622 245114*5^1424104-1 995412 L3686 2013 1623 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1624 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1625 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1626 175124*5^1422646-1 994393 L3686 2013 1627d 453*2^3303073+1 994327 L5568 2022 1628 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1629d 531*2^3301693+1 993912 L5226 2022 1630 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1631 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1632d 195*2^3301018+1 993708 L5569 2022 1633d 341*2^3300789+1 993640 L5192 2022 1634 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1635d 849*2^3296427+1 992327 L5571 2022 1636 1611*22^738988+1 992038 L4139 2015 1637 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1638 2017*2^3292325-1 991092 L3345 2017 1639 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1640 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1641d 885*2^3290927+1 990671 L5161 2022 1642 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1643 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1644 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1645 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1646 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1647 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1648d 219*2^3286614+1 989372 L5567 2022 1649 61*2^3286535-1 989348 L4405 2016 1650 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1651 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1652 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1653 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1654 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1655d 531*2^3284944+1 988870 L5536 2022 1656 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1657d 301*2^3284232+1 988655 L5564 2022 1658 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1659 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1660 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1661d 311*2^3282455+1 988120 L5568 2022 1662 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1663d 833*2^3282181+1 988038 L5564 2022 1664d 561*2^3281889+1 987950 L5477 2022 1665 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1666 87*2^3279368+1 987191 L3458 2015 1667d 965*2^3279151+1 987126 L5564 2022 1668 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1669 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1670 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1671d 427*2^3275606+1 986059 L5566 2022 1672 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1673d 337*2^3274106+1 985607 L5564 2022 1674d 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 1675d 1045*2^3273488+1 985422 L5192 2022 1676 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1677 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1678d 1047*2^3272351+1 985079 L5563 2022 1679 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1680 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1681d 933*2^3270993+1 984670 L5562 2022 1682e 311*2^3270759+1 984600 L5560 2022 1683 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1684 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1685 65*2^3270127+1 984409 L3924 2015 1686 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1687d 579*2^3269850+1 984326 L5226 2022 1688 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1689 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1690 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1691 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1692 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1693 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1694 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1695e 335*2^3266237+1 983238 L5559 2022 1696e 1031*2^3265915+1 983142 L5364 2022 1697 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1698 5*2^3264650-1 982759 L384 2013 1699 223*2^3264459-1 982703 L1884 2012 1700e 1101*2^3264400+1 982686 L5231 2022 1701e 483*2^3264181+1 982620 L5174 2022 1702e 525*2^3263227+1 982332 L5231 2022 1703 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1704 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1705e 683*2^3262037+1 981974 L5192 2022 1706e 923*2^3261401+1 981783 L5477 2022 1707 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1708 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1709 9*2^3259381-1 981173 L1828 2011 1710e 1059*2^3258751+1 980985 L5231 2022 1711 6*5^1403337+1 980892 L4965 2020 1712 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1713 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1714 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1715 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1716f 875*2^3256589+1 980334 L5550 2022 1717 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1718 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1719 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1720 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1721f 779*2^3253063+1 979273 L5192 2022 1722 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1723f 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1724 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1725f 417*2^3248255+1 977825 L5178 2022 1726 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1727 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1728 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1729 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1730 33*2^3242126-1 975979 L3345 2014 1731 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1732 39*2^3240990+1 975637 L3432 2014 1733 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1734 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1735 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1736 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1737 225*2^3236967+1 974427 L5529 2022 1738 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1739 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1740f 1075*2^3234606+1 973717 L5192 2022 1741 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1742 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1743 6*5^1392287+1 973168 L4965 2020 1744 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1745 325*2^3231474+1 972774 L5536 2022 1746 933*2^3231438+1 972763 L5197 2022 1747 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 1748 26172278^131072+1 972272 L4245 2021 Generalized Fermat 1749 697*2^3229518+1 972185 L5534 2022 1750c 22598*745^338354-1 971810 L4189 2022 1751 385*2^3226814+1 971371 L5178 2022 1752 211195*2^3224974+1 970820 L2121 2013 1753 1173*2^3223546+1 970388 L5178 2022 1754 7*6^1246814+1 970211 L4965 2019 1755 25128150^131072+1 969954 L4738 2021 Generalized Fermat 1756 25124378^131072+1 969946 L5102 2021 Generalized Fermat 1757 1089*2^3221691+1 969829 L5178 2022 1758 35*832^332073-1 969696 L4001 2019 1759 600921*2^3219922-1 969299 g337 2018 1760 939*2^3219319+1 969115 L5178 2022 1761 24734116^131072+1 969055 L5070 2021 Generalized Fermat 1762 24644826^131072+1 968849 L5070 2021 Generalized Fermat 1763 24642712^131072+1 968844 L5070 2021 Generalized Fermat 1764 24641166^131072+1 968840 L5070 2021 Generalized Fermat 1765 129*2^3218214+1 968782 L5529 2022 1766 24522386^131072+1 968565 L5070 2021 Generalized Fermat 1767 24486806^131072+1 968483 L4737 2021 Generalized Fermat 1768 811*2^3216944+1 968400 L5233 2022 1769 24297936^131072+1 968042 L4201 2021 Generalized Fermat 1770 1023*2^3214745+1 967738 L5178 2022 1771 187*2^3212152+1 966957 L5178 2022 1772e 301*2^3211281-1 966695 L5545 2022 1773 6*409^369832+1 965900 L4001 2015 1774 23363426^131072+1 965809 L5033 2021 Generalized Fermat 1775 1165*2^3207702+1 965618 L5178 2022 1776 94373*2^3206717+1 965323 L2785 2013 1777 2751*2^3206569-1 965277 L4036 2015 1778 761*2^3206341+1 965208 L5178 2022 1779 23045178^131072+1 965029 L5023 2021 Generalized Fermat 1780 23011666^131072+1 964946 L5273 2021 Generalized Fermat 1781 911*2^3205225+1 964872 L5364 2022 1782 22980158^131072+1 964868 L4201 2021 Generalized Fermat 1783 22901508^131072+1 964673 L4743 2021 Generalized Fermat 1784 22808110^131072+1 964440 L5248 2021 Generalized Fermat 1785 22718284^131072+1 964215 L5254 2021 Generalized Fermat 1786 22705306^131072+1 964183 L5248 2021 Generalized Fermat 1787 113983*2^3201175-1 963655 L613 2008 1788 34*888^326732-1 963343 L4001 2017 1789 899*2^3198219+1 962763 L5503 2022 1790 22007146^131072+1 962405 L4245 2020 Generalized Fermat 1791 4*3^2016951+1 962331 L4965 2020 1792 21917442^131072+1 962173 L4622 2020 Generalized Fermat 1793 987*2^3195883+1 962060 L5282 2022 1794 21869554^131072+1 962048 L5061 2020 Generalized Fermat 1795 21757066^131072+1 961754 L4773 2020 Generalized Fermat 1796 21582550^131072+1 961296 L5068 2020 Generalized Fermat 1797 21517658^131072+1 961125 L5126 2020 Generalized Fermat 1798 20968936^131072+1 959654 L4245 2020 Generalized Fermat 1799 671*2^3185411+1 958908 L5315 2022 1800 20674450^131072+1 958849 L4245 2020 Generalized Fermat 1801 1027*2^3184540+1 958646 L5174 2022 1802 789*2^3183463+1 958321 L5482 2022 1803 855*2^3183158+1 958229 L5161 2022 1804 20234282^131072+1 957624 L4942 2020 Generalized Fermat 1805 20227142^131072+1 957604 L4677 2020 Generalized Fermat 1806 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 1807 20185276^131072+1 957486 L4201 2020 Generalized Fermat 1808 935*2^3180599+1 957459 L5477 2022 1809 573*2^3179293+1 957066 L5226 2022 1810 33*2^3176269+1 956154 L3432 2013 1811 81*2^3174353-1 955578 L3887 2022 1812 19464034^131072+1 955415 L4956 2020 Generalized Fermat 1813 600921*2^3173683-1 955380 g337 2018 1814 587*2^3173567+1 955342 L5301 2022 1815 19216648^131072+1 954687 L5024 2020 Generalized Fermat 1816 1414*95^482691-1 954633 L4877 2019 1817 305*2^3171039+1 954581 L5301 2022 1818 755*2^3170701+1 954479 L5302 2022 1819 775*2^3170580+1 954443 L5449 2022 1820 78*236^402022-1 953965 L5410 2020 1821 18968126^131072+1 953946 L5011 2020 Generalized Fermat 1822 18813106^131072+1 953479 L4201 2020 Generalized Fermat 1823 18608780^131072+1 952857 L4488 2020 Generalized Fermat 1824 1087*2^3164677-1 952666 L1828 2012 1825 18509226^131072+1 952552 L4884 2020 Generalized Fermat 1826 18501600^131072+1 952528 L4875 2020 Generalized Fermat 1827 459*2^3163175+1 952214 L5178 2022 1828 15*2^3162659+1 952057 p286 2012 1829 18309468^131072+1 951934 L4928 2020 Generalized Fermat 1830 18298534^131072+1 951900 L4201 2020 Generalized Fermat 1831 849*2^3161727+1 951778 L5178 2022 1832 67*2^3161450+1 951694 L3223 2015 1833 119*2^3161195+1 951617 L5320 2022 1834 1759*2^3160863-1 951518 L4965 2021 1835 58*117^460033+1 951436 L5410 2020 1836 417*2^3160443+1 951391 L5302 2022 1837 9231*70^515544+1 951234 L5410 2021 1838 671*2^3159523+1 951115 L5188 2022 1839 17958952^131072+1 950834 L4201 2020 Generalized Fermat 1840 17814792^131072+1 950375 L4752 2020 Generalized Fermat 1841 17643330^131072+1 949824 L4201 2020 Generalized Fermat 1842 19*2^3155009-1 949754 L1828 2012 1843 281*2^3151457+1 948686 L5316 2022 1844 179*2^3150265+1 948327 L5302 2021 1845 17141888^131072+1 948183 L4963 2019 Generalized Fermat 1846 17138628^131072+1 948172 L4963 2019 Generalized Fermat 1847 17119936^131072+1 948110 L4963 2019 Generalized Fermat 1848 17052490^131072+1 947885 L4715 2019 Generalized Fermat 1849 17025822^131072+1 947796 L4870 2019 Generalized Fermat 1850 16985784^131072+1 947662 L4295 2019 Generalized Fermat 1851 865*2^3147482+1 947490 L5178 2021 1852 963*2^3145753+1 946969 L5451 2021 1853 16741226^131072+1 946837 L4201 2019 Generalized Fermat 1854 387*2^3144483+1 946587 L5450 2021 1855 1035*2^3144236+1 946513 L5449 2021 1856 1065*2^3143667+1 946342 L4944 2021 1857 193*2^3142150+1 945884 L5178 2021 1858 915*2^3141942+1 945822 L5448 2021 1859 939*2^3141397+1 945658 L5320 2021 1860 1063*2^3141350+1 945644 L5178 2021 1861 16329572^131072+1 945420 L4201 2019 Generalized Fermat 1862 69*2^3140225-1 945304 L3764 2014 1863 3*2^3136255-1 944108 L256 2007 1864 417*2^3136187+1 944089 L5178 2021 1865 15731520^131072+1 943296 L4245 2019 Generalized Fermat 1866 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 1867 15667716^131072+1 943064 L4387 2019 Generalized Fermat 1868 15567144^131072+1 942698 L4918 2019 Generalized Fermat 1869 299*2^3130621+1 942414 L5178 2021 1870 15342502^131072+1 941870 L4245 2019 Generalized Fermat 1871 15237960^131072+1 941481 L4898 2019 Generalized Fermat 1872 571*2^3127388+1 941441 L5440 2021 1873 15147290^131072+1 941141 L4861 2019 Generalized Fermat 1874 197*2^3126343+1 941126 L5178 2021 1875 15091270^131072+1 940930 L4760 2019 Generalized Fermat 1876 1097*2^3124455+1 940558 L5178 2021 1877 3125*2^3124079+1 940445 L1160 2019 1878 495*2^3123624+1 940308 L5438 2021 1879 14790404^131072+1 939784 L4871 2019 Generalized Fermat 1880 1041*2^3120649+1 939412 L5437 2021 1881 14613898^131072+1 939101 L4926 2019 Generalized Fermat 1882 3317*2^3117162-1 938363 L5399 2021 1883 763*2^3115684+1 937918 L4944 2021 1884 581*2^3114611+1 937595 L5178 2021 1885 14217182^131072+1 937534 L4387 2019 Generalized Fermat 1886 134*864^319246-1 937473 L5410 2020 1887 700057*2^3113753-1 937339 L5410 2022 1888 1197*2^3111838+1 936760 L5178 2021 1889 14020004^131072+1 936739 L4249 2019 Generalized Fermat 1890 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 1891 755*2^3110759+1 936435 L5320 2021 1892 13800346^131072+1 935840 L4880 2019 Generalized Fermat 1893 13613070^131072+1 935062 L4245 2019 Generalized Fermat 1894 628*80^491322+1 935033 L5410 2021 1895 761*2^3105087+1 934728 L5197 2021 1896 13433028^131072+1 934305 L4868 2018 Generalized Fermat 1897 1019*2^3103680-1 934304 L1828 2012 1898 579*2^3102639+1 933991 L5315 2021 1899 99*2^3102401-1 933918 L1862 2017 1900 256612*5^1335485-1 933470 L1056 2013 1901 13083418^131072+1 932803 L4747 2018 Generalized Fermat 1902 69*2^3097340-1 932395 L3764 2014 1903 153*2^3097277+1 932376 L4944 2021 1904 12978952^131072+1 932347 L4849 2018 Generalized Fermat 1905 12961862^131072+1 932272 L4245 2018 Generalized Fermat 1906 207*2^3095391+1 931808 L5178 2021 1907 12851074^131072+1 931783 L4670 2018 Generalized Fermat 1908 45*2^3094632-1 931579 L1862 2018 1909 259*2^3094582+1 931565 L5214 2021 1910 553*2^3094072+1 931412 L4944 2021 1911 57*2^3093440-1 931220 L2484 2020 1912 12687374^131072+1 931054 L4289 2018 Generalized Fermat 1913 513*2^3092705+1 931000 L4329 2016 1914 12661786^131072+1 930939 L4819 2018 Generalized Fermat 1915 933*2^3091825+1 930736 L5178 2021 1916 38*875^316292-1 930536 L4001 2019 1917 5*2^3090860-1 930443 L1862 2012 1918 12512992^131072+1 930266 L4814 2018 Generalized Fermat 1919d 4*5^1330541-1 930009 L4965 2022 1920 12357518^131072+1 929554 L4295 2018 Generalized Fermat 1921 12343130^131072+1 929488 L4720 2018 Generalized Fermat 1922 297*2^3087543+1 929446 L5326 2021 1923 1149*2^3087514+1 929438 L5407 2021 1924 745*2^3087428+1 929412 L5178 2021 1925 373*520^342177+1 929357 L3610 2014 1926 19401*2^3086450-1 929119 L541 2015 1927 75*2^3086355+1 929088 L3760 2015 1928 65*2^3080952-1 927461 L2484 2020 1929 11876066^131072+1 927292 L4737 2018 Generalized Fermat 1930 1139*2^3079783+1 927111 L5174 2021 1931 271*2^3079189-1 926931 L2484 2018 1932 766*33^610412+1 926923 L4001 2016 1933 11778792^131072+1 926824 L4672 2018 Generalized Fermat 1934 555*2^3078792+1 926812 L5226 2021 1935 31*332^367560+1 926672 L4294 2018 1936 167*2^3077568-1 926443 L1862 2019 1937 10001*2^3075602-1 925853 L4405 2019 1938 116*107^455562-1 924513 L4064 2021 1939 11292782^131072+1 924425 L4672 2018 Generalized Fermat 1940 14844*430^350980-1 924299 L4001 2016 1941 11267296^131072+1 924297 L4654 2017 Generalized Fermat 1942 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 1943 1105*2^3069884+1 924131 L5314 2021 1944 319*2^3069362+1 923973 L5377 2021 1945 11195602^131072+1 923933 L4706 2017 Generalized Fermat 1946 973*2^3069092+1 923892 L5214 2021 1947 765*2^3068511+1 923717 L5174 2021 1948 60849*2^3067914+1 923539 L591 2014 1949 674*249^385359+1 923400 L5410 2019 1950 499*2^3066970+1 923253 L5373 2021 1951 553*2^3066838+1 923213 L5368 2021 1952 629*2^3066827+1 923210 L5226 2021 1953 11036888^131072+1 923120 L4660 2017 Generalized Fermat 1954 261*2^3066009+1 922964 L5197 2021 1955 10994460^131072+1 922901 L4704 2017 Generalized Fermat 1956 21*2^3065701+1 922870 p286 2012 1957 10962066^131072+1 922733 L4702 2017 Generalized Fermat 1958 10921162^131072+1 922520 L4559 2017 Generalized Fermat 1959 875*2^3063847+1 922313 L5364 2021 1960 43*2^3063674+1 922260 L3432 2013 1961 677*2^3063403+1 922180 L5346 2021 1962 8460*241^387047-1 921957 L5410 2019 1963 10765720^131072+1 921704 L4695 2017 Generalized Fermat 1964 111*2^3060238-1 921226 L2484 2020 1965 1165*2^3060228+1 921224 L5360 2021 1966 5*2^3059698-1 921062 L503 2008 1967 10453790^131072+1 920031 L4694 2017 Generalized Fermat 1968 453*2^3056181+1 920005 L5320 2021 1969 791*2^3055695+1 919859 L5177 2021 1970 10368632^131072+1 919565 L4692 2017 Generalized Fermat 1971 582971*2^3053414-1 919175 L5410 2022 1972 123*2^3049038+1 917854 L4119 2015 1973 10037266^131072+1 917716 L4691 2017 Generalized Fermat 1974 400*95^463883-1 917435 L4001 2019 1975 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1976 454*383^354814+1 916558 L2012 2020 1977 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1978 435*2^3041954+1 915723 L5320 2021 1979 639*2^3040438+1 915266 L5320 2021 1980 1045*2^3037988+1 914529 L5178 2021 1981 291*2^3037904+1 914503 L3545 2015 1982 311*2^3037565+1 914401 L5178 2021 1983 373*2^3036746+1 914155 L5178 2021 1984 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1985 801*2^3036045+1 913944 L5348 2021 1986 915*2^3033775+1 913261 L5178 2021 1987 38804*3^1913975+1 913203 L5410 2021 1988 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1989 869*2^3030655+1 912322 L5260 2021 1990 643*2^3030650+1 912320 L5320 2021 1991 99*2^3029959-1 912111 L1862 2020 1992 417*2^3029342+1 911926 L5178 2021 1993 345*2^3027769+1 911452 L5343 2021 1994 26*3^1910099+1 911351 L4799 2020 1995 355*2^3027372+1 911333 L5174 2021 1996 99*2^3026660-1 911118 L1862 2020 1997 417*2^3026492+1 911068 L5197 2021 1998 1065*2^3025527+1 910778 L5208 2021 1999 34202*3^1908800+1 910734 L5410 2021 2000 8343*42^560662+1 910099 L4444 2020 2001 699*2^3023263+1 910096 L5335 2021 2002 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2003 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2004 383731*2^3021377-1 909531 L466 2011 2005 46821*2^3021380-374567 909531 p363 2013 2006 2^3021377-1 909526 G3 1998 Mersenne 37 2007 615*2^3019445+1 908947 L5260 2021 2008 389*2^3019025+1 908820 L5178 2021 2009 875*2^3018175+1 908565 L5334 2021 2010 555*2^3016352+1 908016 L5178 2021 2011 7*2^3015762+1 907836 g279 2008 2012 759*2^3015314+1 907703 L5178 2021 2013 32582*3^1901790+1 907389 L5372 2021 2014 75*2^3012342+1 906808 L3941 2015 2015 459*2^3011814+1 906650 L5178 2021 2016 991*2^3010036+1 906115 L5326 2021 2017 583*2^3009698+1 906013 L5325 2021 2018 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2019 593*2^3006969+1 905191 L5178 2021 2020 367*2^3004536+1 904459 L5178 2021 2021 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2022 1003*2^3003756+1 904224 L5320 2021 2023 573*2^3002662+1 903895 L5319 2021 2024 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2025 329*2^3002295+1 903784 L5318 2021 2026d 4*5^1292915-1 903710 L4965 2022 2027 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2028 268514*5^1292240-1 903243 L3562 2013 2029 7*10^902708+1 902709 p342 2013 2030 435*2^2997453+1 902326 L5167 2021 2031 583*2^2996526+1 902047 L5174 2021 2032 1037*2^2995695+1 901798 L5178 2021 2033 717*2^2995326+1 901686 L5178 2021 2034 885*2^2995274+1 901671 L5178 2021 2035 43*2^2994958+1 901574 L3222 2013 2036 1065*2^2994154+1 901334 L5315 2021 2037 561*2^2994132+1 901327 L5314 2021 2038 1095*2^2992587-1 900862 L1828 2011 2039 519*2^2991849+1 900640 L5311 2021 2040 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2041 459*2^2990134+1 900123 L5197 2021 2042 15*2^2988834+1 899730 p286 2012 2043 29*564^326765+1 899024 L4001 2017 2044 971*2^2982525+1 897833 L5197 2021 2045 1033*2^2980962+1 897362 L5305 2021 2046 39*2^2978894+1 896739 L2719 2013 2047 38*977^299737+1 896184 L5410 2021 2048 4348099*2^2976221-1 895939 L466 2008 2049 205833*2^2976222-411665 895938 L4667 2017 2050 18976*2^2976221-18975 895937 p373 2014 2051 2^2976221-1 895932 G2 1997 Mersenne 36 2052 1024*3^1877301+1 895704 p378 2014 2053 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2054 24704*3^1877135+1 895626 L5410 2021 2055 591*2^2975069+1 895588 L5299 2021 2056 249*2^2975002+1 895568 L2322 2015 2057 195*2^2972947+1 894949 L3234 2015 2058 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2059 391*2^2971600+1 894544 L5242 2021 2060 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2061 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2062 493*72^480933+1 893256 L3610 2014 2063 561*2^2964753+1 892483 L5161 2021 2064 1185*2^2964350+1 892362 L5161 2021 2065 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2066 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2067 21*2^2959789-1 890987 L5313 2021 2068 627*2^2959098+1 890781 L5197 2021 2069 45*2^2958002-1 890449 L1862 2017 2070 729*2^2955389+1 889664 L5282 2021 2071 198677*2^2950515+1 888199 L2121 2012 2072 88*985^296644+1 887987 L5410 2020 2073f 303*2^2949403-1 887862 L1817 2022 2074 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2075f 321*2^2946654-1 887034 L1817 2022 2076 17*2^2946584-1 887012 L3519 2013 2077 489*2^2944673+1 886438 L5167 2021 2078 141*2^2943065+1 885953 L3719 2015 2079 757*2^2942742+1 885857 L5261 2021 2080 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2081 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2082 33*2^2939063-1 884748 L3345 2013 2083 5903*2^2938744-1 884654 L4036 2015 2084 717*2^2937963+1 884418 L5256 2021 2085 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2086 243*2^2937316+1 884223 L4114 2015 2087 973*2^2937046+1 884142 L5253 2021 2088 61*2^2936967-1 884117 L2484 2017 2089 903*2^2934602+1 883407 L5246 2021 2090 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2091 188*228^374503+1 883056 L4786 2020 2092 53*248^368775+1 883016 L5196 2020 2093 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2094 17*326^350899+1 881887 L4786 2019 2095 855*2^2929550+1 881886 L5200 2021 2096 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2097 839*2^2928551+1 881585 L5242 2021 2098 7019*10^881309-1 881313 L3564 2013 2099 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2100 577*2^2925602+1 880697 L5201 2021 2101 97366*5^1259955-1 880676 L3567 2013 2102 973*2^2923062+1 879933 L5228 2021 2103 1126*177^391360+1 879770 L4955 2020 2104 243944*5^1258576-1 879713 L3566 2013 2105 693*2^2921528+1 879471 L5201 2021 2106 6*10^879313+1 879314 L5009 2019 2107 269*2^2918105+1 878440 L2715 2015 2108 331*2^2917844+1 878362 L5210 2021 2109 169*2^2917805-1 878350 L2484 2018 2110 1085*2^2916967+1 878098 L5174 2020 2111 389*2^2916499+1 877957 L5215 2020 2112 431*2^2916429+1 877936 L5214 2020 2113 1189*2^2916406+1 877929 L5174 2020 2114 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2115 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2116 465*2^2914079+1 877228 L5210 2020 2117 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2118 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2119 493*2^2912552+1 876769 L5192 2021 2120 143157*2^2911403+1 876425 L4504 2017 2121 567*2^2910402+1 876122 L5201 2020 2122 683*2^2909217+1 875765 L5199 2020 2123 674*249^365445+1 875682 L5410 2019 2124 475*2^2908802+1 875640 L5192 2021 2125 371*2^2907377+1 875211 L5197 2020 2126 207*2^2903535+1 874054 L3173 2015 2127 851*2^2902731+1 873813 L5177 2020 2128 777*2^2901907+1 873564 L5192 2020 2129 717*2^2900775+1 873224 L5185 2020 2130 99*2^2899303-1 872780 L1862 2017 2131 63*2^2898957+1 872675 L3262 2013 2132 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2133 747*2^2895307+1 871578 L5178 2020 2134 403*2^2894566+1 871354 L5180 2020 2135 629*2^2892961+1 870871 L5173 2020 2136 627*2^2891514+1 870436 L5168 2020 2137f 325*2^2890955-1 870267 L5545 2022 2138 363*2^2890208+1 870042 L3261 2020 2139 471*2^2890148+1 870024 L5158 2020 2140 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2141 583*2^2889248+1 869754 L5139 2020 2142 955*2^2887934+1 869358 L4958 2020 2143f 303*2^2887603-1 869258 L5184 2022 2144 937*2^2887130+1 869116 L5134 2020 2145 885*2^2886389+1 868893 L3924 2020 2146 763*2^2885928+1 868754 L2125 2020 2147 1071*2^2884844+1 868428 L3593 2020 2148 1181*2^2883981+1 868168 L3593 2020 2149f 327*2^2881349-1 867375 L5545 2022 2150 51*2^2881227+1 867338 L3512 2013 2151 933*2^2879973+1 866962 L4951 2020 2152 261*2^2879941+1 866952 L4119 2015 2153 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2154 65*2^2876718-1 865981 L2484 2016 2155 21*948^290747-1 865500 L4985 2019 2156 4013*2^2873250-1 864939 L1959 2014 2157 41*2^2872058-1 864578 L2484 2013 2158 359*2^2870935+1 864241 L1300 2020 2159 165*2^2870868+1 864220 L4119 2015 2160 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2161 665*2^2869847+1 863913 L2885 2020 2162 283*2^2868750+1 863583 L3877 2015 2163 845*2^2868291+1 863445 L5100 2020 2164 3125*2^2867399+1 863177 L1754 2019 2165 701*2^2867141+1 863099 L1422 2020 2166 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2167 307*2^2862962+1 861840 L4740 2020 2168 147*2^2862651+1 861746 L1741 2015 2169 1207*2^2861901-1 861522 L1828 2011 2170 231*2^2860725+1 861167 L2873 2015 2171 193*2^2858812+1 860591 L2997 2015 2172 629*2^2857891+1 860314 L3035 2020 2173 493*2^2857856+1 860304 L5087 2020 2174 241*2^2857313-1 860140 L2484 2018 2175 707*2^2856331+1 859845 L5084 2020 2176 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2177 949*2^2854946+1 859428 L2366 2020 2178 222361*2^2854840+1 859398 g403 2006 2179 725*2^2854661+1 859342 L5031 2020 2180 399*2^2851994+1 858539 L4099 2020 2181 225*2^2851959+1 858528 L3941 2015 2182 247*2^2851602+1 858421 L3865 2015 2183 183*2^2850321+1 858035 L2117 2015 2184 1191*2^2849315+1 857733 L1188 2020 2185 717*2^2848598+1 857517 L1204 2020 2186 795*2^2848360+1 857445 L4099 2020 2187 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2188 705*2^2846638+1 856927 L1808 2020 2189 369*2^2846547+1 856899 L4099 2020 2190 233*2^2846392-1 856852 L2484 2021 2191 955*2^2844974+1 856426 L1188 2020 2192 753*2^2844700+1 856343 L1204 2020 2193 11138*745^297992-1 855884 L4189 2019 2194 111*2^2841992+1 855527 L1792 2015 2195 44*744^297912-1 855478 L5410 2021 2196 649*2^2841318+1 855325 L4732 2020 2197 228*912^288954-1 855305 L5410 2022 2198 305*2^2840155+1 854975 L4907 2020 2199 1149*2^2839622+1 854815 L2042 2020 2200 95*2^2837909+1 854298 L3539 2013 2201 199*2^2835667-1 853624 L2484 2019 2202 595*2^2833406+1 852943 L4343 2020 2203 1101*2^2832061+1 852539 L4930 2020 2204 813*2^2831757+1 852447 L4951 2020 2205 435*2^2831709+1 852432 L4951 2020 2206 543*2^2828217+1 851381 L4746 2019 2207 704*249^354745+1 850043 L5410 2019 2208 1001*2^2822037+1 849521 L1209 2019 2209 84466*5^1215373-1 849515 L3562 2013 2210 97*2^2820650+1 849103 L2163 2013 2211 107*2^2819922-1 848884 L2484 2013 2212 84256*3^1778899+1 848756 L4789 2018 2213 45472*3^1778899-1 848756 L4789 2018 2214 14804*3^1778530+1 848579 L4064 2021 2215 497*2^2818787+1 848543 L4842 2019 2216 97*2^2818306+1 848397 L3262 2013 2217 313*2^2817751-1 848231 L802 2021 2218 177*2^2816050+1 847718 L129 2012 2219 553*2^2815596+1 847582 L4980 2019 2220 1071*2^2814469+1 847243 L3035 2019 2221 105*2^2813000+1 846800 L3200 2015 2222 1115*2^2812911+1 846774 L1125 2019 2223 96*10^846519-1 846521 L2425 2011 Near-repdigit 2224 763*2^2811726+1 846417 L3919 2019 2225 1125*2^2811598+1 846379 L4981 2019 2226 891*2^2810100+1 845928 L4981 2019 2227 441*2^2809881+1 845862 L4980 2019 2228 711*2^2808473+1 845438 L1502 2019 2229 1089*2^2808231+1 845365 L4687 2019 2230 63*2^2807130+1 845033 L3262 2013 2231 1083*2^2806536+1 844855 L3035 2019 2232 675*2^2805669+1 844594 L1932 2019 2233 819*2^2805389+1 844510 L3372 2019 2234 1027*2^2805222+1 844459 L3035 2019 2235 437*2^2803775+1 844024 L3168 2019 2236 4431*372^327835-1 842718 L5410 2019 2237 150344*5^1205508-1 842620 L3547 2013 2238 311*2^2798459+1 842423 L4970 2019 2239 81*2^2797443-1 842117 L3887 2021 2240 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2241 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2242 43*2^2795582+1 841556 L2842 2013 2243 1001*2^2794357+1 841189 L1675 2019 2244 117*2^2794014+1 841085 L1741 2015 2245 1057*2^2792700+1 840690 L1675 2019 2246 345*2^2792269+1 840560 L1754 2019 2247 711*2^2792072+1 840501 L4256 2019 2248 315*2^2791414-1 840302 L2235 2021 2249 973*2^2789516+1 839731 L3372 2019 2250 27602*3^1759590+1 839543 L4064 2021 2251 2187*2^2786802+1 838915 L1745 2019 2252 15*2^2785940+1 838653 p286 2012 2253 333*2^2785626-1 838560 L802 2021 2254 1337*2^2785444-1 838506 L4518 2017 2255 711*2^2784213+1 838135 L4687 2019 2256 58582*91^427818+1 838118 L5410 2020 2257 923*2^2783153+1 837816 L1675 2019 2258 1103*2^2783149+1 837815 L3784 2019 2259 485*2^2778151+1 836310 L1745 2019 2260 600921*2^2776014-1 835670 g337 2017 2261 1129*2^2774934+1 835342 L1774 2019 2262 750*1017^277556-1 834703 L4955 2021 2263 8700*241^350384-1 834625 L5410 2019 2264 1023*2^2772512+1 834613 L4724 2019 2265 656*249^348030+1 833953 L5410 2019 2266 92*10^833852-1 833854 L4789 2018 Near-repdigit 2267 437*2^2769299+1 833645 L3760 2019 2268 967*2^2768408+1 833377 L3760 2019 2269 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2270 1171*2^2768112+1 833288 L2676 2019 2271 57*2^2765963+1 832640 L3262 2013 2272 1323*2^2764024+1 832058 L1115 2019 2273 77*2^2762047+1 831461 L3430 2013 2274 745*2^2761514+1 831302 L1204 2019 2275 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2276 7*10^830865+1 830866 p342 2014 2277 893*2^2758841+1 830497 L4826 2019 2278 537*2^2755164+1 829390 L3035 2019 2279 579*2^2754370+1 829151 L1823 2019 2280 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2281 215*2^2751022-1 828143 L2484 2018 2282 337*2^2750860+1 828094 L4854 2019 2283 701*2^2750267+1 827916 L3784 2019 2284 467*2^2749195+1 827593 L1745 2019 2285 245*2^2748663+1 827433 L3173 2015 2286 591*2^2748315+1 827329 L3029 2019 2287 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2288 1089*2^2746155+1 826679 L2583 2019 2289 707*2^2745815+1 826576 L3760 2019 2290 459*2^2742310+1 825521 L4582 2019 2291 777*2^2742196+1 825487 L3919 2019 2292 609*2^2741078+1 825150 L3091 2019 2293 684*157^375674+1 824946 L5112 2022 2294 639*2^2740186+1 824881 L4958 2019 2295 905*2^2739805+1 824767 L4958 2019 2296 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2297 777*2^2737282+1 824007 L1823 2019 2298 765*2^2735232+1 823390 L1823 2019 2299 609*2^2735031+1 823330 L1823 2019 2300 305*2^2733989+1 823016 L1823 2019 2301 165*2^2732983+1 822713 L1741 2015 2302 1133*2^2731993+1 822415 L4687 2019 2303 251*2^2730917+1 822091 L3924 2015 2304 1185*2^2730620+1 822002 L4948 2019 2305f (10^410997+1)^2-2 821995 p405 2022 2306 173*2^2729905+1 821786 L3895 2015 2307 1981*2^2728877-1 821478 L1134 2018 2308 693*2^2728537+1 821375 L3035 2019 2309 501*2^2728224+1 821280 L3035 2019 2310 763*2^2727928+1 821192 L3924 2019 2311 10*743^285478+1 819606 L4955 2019 2312 17*2^2721830-1 819354 p279 2010 2313 1006*639^291952+1 819075 L4444 2021 2314 1101*2^2720091+1 818833 L4935 2019 2315 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2316 165*2^2717378-1 818015 L2055 2012 2317 68633*2^2715609+1 817485 L5105 2020 2318 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2319 9574*5^1169232+1 817263 L5410 2021 2320 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2321 133*2^2713410+1 816820 L3223 2015 2322 45*2^2711732+1 816315 L1349 2012 2323 569*2^2711451+1 816231 L4568 2019 2324 12830*3^1709456+1 815622 L5410 2021 2325 335*2^2708958-1 815481 L2235 2020 2326 93*2^2708718-1 815408 L1862 2016 2327 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2328 837*2^2708160+1 815241 L4314 2019 2329 1005*2^2707268+1 814972 L4687 2019 2330 13*458^306196+1 814748 L3610 2015 2331 253*2^2705844+1 814543 L4083 2015 2332 657*2^2705620+1 814476 L4907 2019 2333 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2334 303*2^2703864+1 813947 L1204 2019 2335 141*2^2702160+1 813434 L1741 2015 2336 753*2^2701925+1 813364 L4314 2019 2337 133*2^2701452+1 813221 L3173 2015 2338 521*2^2700095+1 812813 L4854 2019 2339 393*2^2698956+1 812470 L1823 2019 2340 417*2^2698652+1 812378 L3035 2019 2341 525*2^2698118+1 812218 L1823 2019 2342 3125*2^2697651+1 812078 L3924 2019 2343 153*2^2697173+1 811933 L3865 2015 2344 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2345 26*3^1700041+1 811128 L4799 2020 2346 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2347 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2348 58*536^296735-1 809841 L5410 2021 2349 33016*3^1696980+1 809670 L5366 2021 2350 7335*2^2689080-1 809498 L4036 2015 2351 1049*2^2688749+1 809398 L4869 2018 2352 329*2^2688221+1 809238 L3035 2018 2353 865*2^2687434+1 809002 L4844 2018 2354 989*2^2686591+1 808748 L2805 2018 2355 136*904^273532+1 808609 L5410 2020 2356 243*2^2685873+1 808531 L3865 2015 2357 909*2^2685019+1 808275 L3431 2018 2358 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2359 1455*2^2683953-1 807954 L1134 2020 2360 11210*241^339153-1 807873 L5410 2019 2361 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2362 975*2^2681840+1 807318 L4155 2018 2363d 999*2^2681353-1 807171 L4518 2022 2364 295*2^2680932+1 807044 L1741 2015 2365 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2366 575*2^2679711+1 806677 L2125 2018 2367 2386*52^469972+1 806477 L4955 2019 2368 219*2^2676229+1 805628 L1792 2015 2369 637*2^2675976+1 805552 L3035 2018 2370 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2371 951*2^2674564+1 805127 L1885 2018 2372 1372930^131072+1 804474 g236 2003 Generalized Fermat 2373 662*1009^267747-1 804286 L5410 2020 2374 261*2^2671677+1 804258 L3035 2015 2375 895*2^2671520+1 804211 L3035 2018 2376 1361244^131072+1 803988 g236 2004 Generalized Fermat 2377 789*2^2670409+1 803877 L3035 2018 2378 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2379 503*2^2668529+1 803310 L4844 2018 2380 255*2^2668448+1 803286 L1129 2015 2381 4189*2^2666639-1 802742 L1959 2017 2382 539*2^2664603+1 802129 L4717 2018 2383b 3^1681130+3^445781+1 802103 CH9 2022 2384 26036*745^279261-1 802086 L4189 2020 2385 1396*5^1146713-1 801522 L3547 2013 2386 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2387 51*892^271541+1 801147 L5410 2019 2388 297*2^2660048+1 800757 L3865 2015 2389 99*2^2658496-1 800290 L1862 2021 2390 851*2^2656411+1 799663 L4717 2018 2391 487*2^2655008+1 799240 L3760 2018 2392 371*2^2651663+1 798233 L3760 2018 2393 69*2^2649939-1 797713 L3764 2014 2394 207*2^2649810+1 797675 L1204 2015 2395 505*2^2649496+1 797581 L3760 2018 2396 993*2^2649256+1 797509 L3760 2018 2397 517*2^2648698+1 797341 L3760 2018 2398 340*703^280035+1 797250 L4001 2018 2399 441*2^2648307+1 797223 L3760 2018 2400 1129*2^2646590+1 796707 L3760 2018 2401 128*518^293315+1 796156 L4001 2019 2402 211*744^277219-1 796057 L5410 2021 2403 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 2404 1176694^131072+1 795695 g236 2003 Generalized Fermat 2405 13*2^2642943-1 795607 L1862 2012 2406 119*410^304307+1 795091 L4294 2019 2407 501*2^2641052+1 795039 L3035 2018 2408 879*2^2639962+1 794711 L3760 2018 2409 57*2^2639528-1 794579 L2484 2016 2410 342673*2^2639439-1 794556 L53 2007 2411 813*2^2639092+1 794449 L2158 2018 2412 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 2413 197*972^265841-1 794247 L4955 2022 2414 1027*2^2638186+1 794177 L3760 2018 2415 889*2^2637834+1 794071 L3545 2018 2416 92182*5^1135262+1 793520 L3547 2013 2417 5608*70^429979+1 793358 L5390 2021 2418 741*2^2634385+1 793032 L1204 2018 2419 465*2^2630496+1 791861 L1444 2018 2420 189*2^2630487+1 791858 L3035 2015 2421 87*2^2630468+1 791852 L3262 2013 2422d 4*5^1132659-1 791696 L4965 2022 2423 1131*2^2629345+1 791515 L4826 2018 2424 967*2^2629344+1 791515 L3760 2018 2425 267*2^2629210+1 791474 L3035 2015 2426 154*883^268602+1 791294 L5410 2020 2427 819*2^2627529+1 790968 L1387 2018 2428 17152*5^1131205-1 790683 L3552 2013 2429 183*2^2626442+1 790641 L3035 2015 2430 813*2^2626224+1 790576 L4830 2018 2431 807*2^2625044+1 790220 L1412 2018 2432 1063730^131072+1 789949 g260 2013 Generalized Fermat 2433 1243*2^2623707-1 789818 L1828 2011 2434 693*2^2623557+1 789773 L3278 2018 2435 981*2^2622032+1 789314 L1448 2018 2436 145*2^2621020+1 789008 L3035 2015 2437 963*792^271959-1 788338 L5410 2021 2438 541*2^2614676+1 787099 L4824 2018 2439f (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2440 1061*268^323645-1 785857 L5410 2019 2441d 1662*483^292719-1 785646 L5410 2022 2442 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 2443 1071*2^2609316+1 785486 L3760 2018 2444 87*2^2609046+1 785404 L2520 2013 2445 18922*111^383954+1 785315 L4927 2021 2446 543*2^2608129+1 785128 L4822 2018 2447 329584*5^1122935-1 784904 L3553 2013 2448 10*311^314806+1 784737 L3610 2014 2449 1019*2^2606525+1 784646 L1201 2018 2450 977*2^2606211+1 784551 L4746 2018 2451 13*2^2606075-1 784508 L1862 2011 2452 693*2^2605905+1 784459 L4821 2018 2453 147*2^2604275+1 783968 L1741 2015 2454 105*2^2603631+1 783774 L3459 2015 2455 93*2^2602483-1 783428 L1862 2016 2456 155*2^2602213+1 783347 L2719 2015 2457 303*2^2601525+1 783140 L4816 2018 2458 711*2^2600535+1 782842 L4815 2018 2459 1133*2^2599345+1 782484 L4796 2018 2460 397*2^2598796+1 782319 L3877 2018 2461 1536*177^347600+1 781399 L5410 2020 2462 1171*2^2595736+1 781398 L3035 2018 2463f (146^180482+1)^2-2 781254 p405 2022 2464 909548^131072+1 781036 p387 2015 Generalized Fermat 2465 2*218^333925+1 780870 L4683 2017 2466 1149*2^2593359+1 780682 L1125 2018 2467 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 2468 333*2^2591874-1 780235 L2017 2019 2469 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 2470 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 2471 703*2^2586728+1 778686 L4256 2018 2472 2642*372^302825-1 778429 L5410 2019 2473 120*825^266904+1 778416 L4001 2018 2474 337*2^2585660+1 778364 L2873 2018 2475 393*2^2584957+1 778153 L4600 2018 2476 151*2^2584480+1 778009 L4043 2015 2477 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 2478 385*2^2584280+1 777949 L4600 2018 2479 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 2480 65*2^2583720-1 777780 L2484 2015 2481 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 2482 82*920^262409-1 777727 L4064 2015 2483 1041*2^2582112+1 777297 L1456 2018 2484 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2485 229*2^2581111-1 776995 L1862 2017 2486 61*2^2580689-1 776867 L2484 2015 2487 1113*2^2580205+1 776723 L4724 2018 2488 51*2^2578652+1 776254 L3262 2013 2489 173*2^2578197+1 776117 L3035 2015 2490 833*2^2578029+1 776067 L4724 2018 2491 80*394^298731-1 775358 L541 2020 2492 302*423^295123-1 775096 L5413 2021 2493 460*628^276994+1 775021 L5410 2020 2494 459*2^2573899+1 774824 L1204 2018 2495 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 2496 627*2^2567718+1 772963 L3803 2018 2497 933*2^2567598+1 772927 L4724 2018 2498 757*2^2566468+1 772587 L2606 2018 2499 231*2^2565263+1 772224 L3035 2015 2500 4*737^269302+1 772216 L4294 2016 Generalized Fermat 2501 941*2^2564867+1 772105 L4724 2018 2502 923*2^2563709+1 771757 L1823 2018 2503 151*596^278054+1 771671 L4876 2019 2504 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 2505 303*2^2562423-1 771369 L2017 2018 2506 75*2^2562382-1 771356 L2055 2011 2507 147559*2^2562218+1 771310 L764 2012 2508 117*412^294963+1 771300 p268 2021 2509 829*2^2561730+1 771161 L1823 2018 2510 404*12^714558+1 771141 L1471 2011 2511 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 2512 295*80^404886+1 770537 L5410 2021 2513 1193*2^2559453+1 770476 L2030 2018 2514 19*984^257291+1 770072 L5410 2020 2515 116*950^258458-1 769619 L5410 2021 2516 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 2517 65*752^267180-1 768470 L5410 2020 2518 419*2^2552363+1 768341 L4713 2018 2519 34*759^266676-1 768093 L4001 2019 2520 315*2^2550412+1 767754 L4712 2017 2521 415*2^2549590+1 767506 L4710 2017 2522 1152*792^264617-1 767056 L4955 2021 2523 693*2^2547752+1 766953 L4600 2017 2524 673*2^2547226+1 766795 L2873 2017 2525 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2526 196*814^263256+1 766242 L5410 2021 Generalized Fermat 2527 183*2^2545116+1 766159 L3035 2015 2528 311*2^2544778-1 766058 L2017 2018 2529 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2530 67*446^288982+1 765612 L4273 2020 2531 663*2^2542990+1 765520 L4703 2017 2532 705*2^2542464+1 765361 L2873 2017 2533 689186^131072+1 765243 g429 2013 Generalized Fermat 2534 745*2^2540726+1 764838 L4696 2017 2535 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 2536 64*177^340147-1 764644 L3610 2015 2537 421*2^2539336+1 764419 L4148 2017 2538 123287*2^2538167+1 764070 L3054 2012 2539 305716*5^1093095-1 764047 L3547 2013 2540 223*2^2538080+1 764041 L2125 2015 2541 83*2^2537641+1 763908 L1300 2013 2542 543539*2^2536028-1 763427 L4187 2022 2543 645*2^2532811+1 762455 L4600 2017 2544 953*2^2531601+1 762091 L4404 2017 2545 694*567^276568-1 761556 L4444 2021 2546 545*2^2528179+1 761061 L1502 2017 2547 203*2^2526505+1 760557 L3910 2015 2548 967*2^2526276+1 760488 L1204 2017 2549 3317*2^2523366-1 759613 L5399 2021 2550 241*2^2522801-1 759442 L2484 2018 2551 360307*6^975466-1 759066 p255 2017 2552 326*80^398799+1 758953 L4444 2021 2553 749*2^2519457+1 758436 L1823 2017 2554 199*2^2518871-1 758259 L2484 2018 2555 6*10^758068+1 758069 L5009 2019 2556 87*2^2518122-1 758033 L2484 2014 2557 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 2558 711*2^2516187+1 757451 L3035 2017 2559 967*2^2514698+1 757003 L4600 2017 2560 33*2^2513872-1 756753 L3345 2013 2561 973*2^2511920+1 756167 L1823 2017 2562 679*2^2511814+1 756135 L4598 2017 2563 1093*2^2511384+1 756005 L1823 2017 2564 38*875^256892-1 755780 L4001 2019 2565 45*2^2507894+1 754953 L1349 2012 2566 130484*5^1080012-1 754902 L3547 2013 2567 572186^131072+1 754652 g0 2004 Generalized Fermat 2568 242*501^279492-1 754586 L4911 2019 2569 883*2^2506382+1 754500 L1823 2017 2570 847*2^2505540+1 754246 L4600 2017 2571 191*2^2504121+1 753818 L3035 2015 2572 783*2^2500912+1 752853 L1823 2017 2573 165*2^2500130-1 752617 L2055 2011 2574 33*2^2499883-1 752542 L3345 2013 2575 319*2^2498685-1 752182 L2017 2018 2576 321*2^2496594-1 751553 L2235 2018 2577 365*2^2494991+1 751070 L3035 2017 2578 213*2^2493004-1 750472 L1863 2017 2579 777*2^2492560+1 750339 L3035 2017 2580 57*2^2492031+1 750178 L1230 2013 2581 879*2^2491342+1 749972 L4600 2017 2582 14*152^343720-1 749945 L3610 2015 2583 231*2^2489083+1 749292 L3035 2015 2584 255*2^2488562+1 749135 L3035 2015 2585c 708*48^445477-1 748958 L5410 2022 2586 221*780^258841-1 748596 L4001 2018 2587 303*2^2486629+1 748553 L3035 2017 2588 6*433^283918-1 748548 L3610 2015 2589 617*2^2485919+1 748339 L1885 2017 2590 515*2^2484885+1 748028 L3035 2017 2591 1095*2^2484828+1 748011 L3035 2017 2592 1113*2^2484125+1 747800 L3035 2017 2593 607*2^2483616+1 747646 L3035 2017 2594 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 2595 723*2^2482064+1 747179 L3035 2017 2596 26*3^1565545+1 746957 L4799 2020 2597 14336*3^1563960+1 746203 L5410 2021 2598 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2599 1071*2^2477584+1 745831 L3035 2017 2600 22*30^504814-1 745673 p355 2014 2601d 2074*483^277812-1 745637 L5410 2022 2602 11*2^2476839+1 745604 L2691 2011 2603 825*2^2474996+1 745051 L1300 2017 2604 1061*2^2474282-1 744837 L1828 2012 2605 435*2^2473905+1 744723 L3035 2017 2606 1005*2^2473724-1 744669 L4518 2021 2607 1121*2^2473401+1 744571 L3924 2017 2608 325*2^2473267-1 744531 L2017 2018 2609 11996*3^1559395+1 744025 L5410 2021 2610 889*2^2471082+1 743873 L1300 2017 2611 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 2612 883*2^2469268+1 743327 L4593 2017 2613 5754*313^297824-1 743237 L5089 2020 2614 81*2^2468789+1 743182 g418 2009 2615 55154*5^1063213+1 743159 L3543 2013 2616 119*2^2468556-1 743112 L2484 2018 2617 2136*396^285974+1 742877 L5410 2021 2618 525*2^2467658+1 742842 L3035 2017 2619 715*2^2465640+1 742235 L3035 2017 2620 26773*2^2465343-1 742147 L197 2006 2621 581*550^270707-1 741839 L5410 2020 2622 993*2^2464082+1 741766 L3035 2017 2623 1179*2^2463746+1 741665 L3035 2017 2624 857*2^2463411+1 741564 L3662 2017 2625 103*2^2462567-1 741309 L2484 2014 2626 12587*2^2462524-1 741298 L2012 2017 2627 5*2^2460482-1 740680 L503 2008 2628 763*2^2458592+1 740113 L1823 2017 2629 453*2^2458461+1 740074 L3035 2017 2630 519*2^2458058+1 739952 L3803 2017 2631 137*2^2457639+1 739826 L4021 2014 2632 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2633 2688*991^246849+1 739582 L5410 2021 2634 133*2^2455666+1 739232 L2322 2014 2635 99*2^2455541-1 739194 L1862 2015 2636 377*2^2452639+1 738321 L3035 2017 2637 2189*138^345010+1 738284 L5410 2020 2638 1129*2^2452294+1 738218 L3035 2017 2639 1103*2^2451133+1 737868 L4531 2017 2640 65*2^2450614-1 737711 L2074 2014 2641 549*2^2450523+1 737684 L3035 2017 2642 4*789^254595+1 737582 L4955 2019 2643 3942*55^423771-1 737519 L4955 2019 2644d 2166*483^274670-1 737204 L5410 2022 2645 765*2^2448660+1 737123 L4412 2017 2646 607*2^2447836+1 736875 L4523 2017 2647 1261*988^246031+1 736807 L5342 2021 2648 1005*2^2446722+1 736540 L4522 2017 2649 703*2^2446472+1 736465 L2805 2017 2650 75*2^2446050+1 736337 L3035 2013 2651 115*26^520277-1 736181 L1471 2014 2652 114986*5^1052966-1 735997 L3528 2013 2653 1029*2^2444707+1 735934 L3035 2017 2654 1035*2^2443369+1 735531 L3173 2017 2655 1017*2^2442723+1 735336 L4417 2017 2656 962*3^1540432+1 734976 L5410 2021 2657 1065*2^2441132+1 734857 L1823 2017 2658 393*2^2436849+1 733568 L3035 2016 2659 1425*2^2435607-1 733194 L1134 2020 2660 386892^131072+1 732377 p259 2009 Generalized Fermat 2661 465*2^2431455+1 731944 L3035 2016 2662 905*2^2430509+1 731660 L4408 2016 2663 223*2^2430490+1 731653 L4016 2014 2664 8*410^279991+1 731557 L4700 2019 2665 69*2^2428251-1 730979 L384 2014 2666 6070*466^273937+1 730974 L5410 2021 2667 233*2^2426512-1 730456 L2484 2020 2668 645*2^2426494+1 730451 L3035 2016 2669 665*2^2425789+1 730239 L3173 2016 2670 23*2^2425641+1 730193 L2675 2011 2671 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 2672 753*2^2422914+1 729373 L3035 2016 2673 5619*52^424922+1 729172 L5410 2019 2674 105*2^2422105+1 729129 L2520 2014 2675 62*962^244403+1 729099 L5409 2021 2676 3338*396^280633+1 729003 L5410 2021 2677 201*2^2421514-1 728951 L1862 2016 2678 1084*7^862557+1 728949 L5211 2021 2679 239*2^2421404-1 728918 L2484 2018 2680 577*2^2420868+1 728757 L4489 2016 2681 929*2^2417767+1 727824 L3924 2016 2682 4075*2^2417579-1 727768 L1959 2017 2683 303*2^2417452-1 727729 L2235 2018 2684 895*2^2417396+1 727712 L3035 2016 2685 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 2686 3317*2^2415998-1 727292 L5399 2021 2687 5724*313^291243-1 726814 L4444 2020 2688 1081*2^2412780+1 726323 L1203 2016 2689 333*2^2412735-1 726309 L2017 2018 2690 6891*52^423132+1 726100 L5410 2019 2691 83*2^2411962-1 726075 L1959 2018 2692 69*2^2410035-1 725495 L2074 2013 2693 12362*1027^240890-1 725462 L4444 2018 2694 143157*2^2409056+1 725204 L4504 2016 2695 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 2696 339*2^2408337+1 724985 L3029 2016 2697 811*2^2408096+1 724913 L2526 2016 2698 157*2^2407958+1 724870 L1741 2014 2699 243686*5^1036954-1 724806 L3549 2013 2700 3660*163^327506+1 724509 L4955 2019 2701 303*2^2406433+1 724411 L4425 2016 2702 345*2^2405701+1 724191 L3035 2016 2703 921*2^2405056+1 723997 L2805 2016 2704 673*2^2403606+1 723561 L3035 2016 2705 475*2^2403220+1 723444 L4445 2016 2706 837*2^2402798+1 723318 L3372 2016 2707 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 2708 231*2^2402748+1 723302 L3995 2014 2709 375*2^2401881+1 723041 L2805 2016 2710 107*2^2401731+1 722996 L3998 2014 2711 1023*2^2398601+1 722054 L4414 2016 2712 539*2^2398227+1 721941 L4061 2016 2713 659*2^2397567+1 721743 L4441 2016 2714 40*844^246524+1 721416 L4001 2017 2715 465*2^2395133+1 721010 L4088 2016 2716 56*318^288096+1 720941 L1471 2019 2717 667*2^2394430+1 720799 L4408 2016 2718 15*2^2393365+1 720476 L1349 2010 2719 1642*273^295670+1 720304 L5410 2019 2720 8*908^243439+1 720115 L5410 2021 2721 633*2^2391222+1 719833 L3743 2016 2722 273*2^2388104+1 718894 L3668 2014 2723 118*558^261698+1 718791 L4877 2019 2724 1485*2^2386037-1 718272 L1134 2017 2725 399*2^2384115+1 717693 L4412 2016 2726 99*2^2383846+1 717612 L1780 2013 2727 737*2^2382804-1 717299 L191 2007 2728 111*2^2382772+1 717288 L3810 2014 2729 61*2^2381887-1 717022 L2432 2012 2730 202*249^299162+1 716855 L5410 2019 2731 321*2^2378535-1 716013 L2017 2018 2732 435*2^2378522+1 716010 L1218 2016 2733 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 2734 147*2^2375995+1 715248 L1130 2014 2735 915*2^2375923+1 715228 L1741 2016 2736 1981*2^2375591-1 715128 L1134 2017 2737 81*2^2375447-1 715083 L3887 2021 2738 1129*2^2374562+1 714818 L3035 2016 2739 97*2^2374485-1 714794 L2484 2018 2740 1117*2^2373977-1 714642 L1828 2012 2741 949*2^2372902+1 714318 L4408 2016 2742 1005*2^2372754-1 714274 L4518 2021 2743 659*2^2372657+1 714244 L3035 2016 2744 1365*2^2372586+1 714223 L1134 2016 2745 509*2^2370721+1 713661 L1792 2016 2746 99*2^2370390+1 713561 L1204 2013 2747 959*2^2370077+1 713468 L1502 2016 2748 1135*2^2369808+1 713387 L2520 2016 2749 125*2^2369461+1 713281 L3035 2014 2750 1183953*2^2367907-1 712818 L447 2007 Woodall 2751 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 2752 119878*5^1019645-1 712707 L3528 2013 2753 453*2^2367388+1 712658 L3035 2016 2754 150209!+1 712355 p3 2011 Factorial 2755 281*2^2363327+1 711435 L1741 2014 2756 2683*2^2360743-1 710658 L1959 2012 2757 409*2^2360166+1 710484 L1199 2016 2758 305*2^2358854-1 710089 L2017 2018 2759 1706*123^339764+1 710078 L5410 2021 2760 403*2^2357572+1 709703 L3029 2016 2761 155*2^2357111+1 709564 L3975 2014 2762 365*2^2355607+1 709111 L2117 2016 2763 33706*6^910462+1 708482 L587 2014 2764 1087*2^2352830+1 708276 L1492 2016 2765 152*1002^235971+1 708120 L5410 2019 2766 179*2^2352291+1 708113 L1741 2014 2767 559*2^2351894+1 707994 L3924 2016 2768 24573*2^2350824+1 707673 p168 2018 2769 1035*2^2350388+1 707541 L2526 2016 2770 433*2^2348252+1 706897 L2322 2016 2771 329*2^2348105+1 706853 L3029 2016 2772 45*2^2347187+1 706576 L1349 2012 2773 7675*46^424840+1 706410 L5410 2019 2774 127*2^2346377-1 706332 L282 2009 2775 933*2^2345893+1 706188 L3035 2016 2776 903*2^2345013+1 705923 L2006 2016 2777 33*2^2345001+1 705918 L2322 2013 2778 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 2779 627*2^2343140+1 705359 L3125 2016 2780 83*2^2342345+1 705119 L2626 2013 2781 61*380^273136+1 704634 L5410 2019 2782 277*2^2340182+1 704468 L1158 2014 2783 159*2^2339566+1 704282 L3035 2014 2784 335*2^2338972-1 704104 L2235 2017 2785 22*422^268038+1 703685 L4955 2019 2786 9602*241^295318-1 703457 L5410 2019 2787 1149*2^2336638+1 703402 L4388 2016 2788 339*2^2336421-1 703336 L2519 2017 2789 231*2^2335281-1 702992 L1862 2019 2790 275293*2^2335007-1 702913 L193 2006 2791 105*2^2334755-1 702834 L1959 2018 2792 228188^131072+1 702323 g124 2010 Generalized Fermat 2793 809*2^2333017+1 702312 L2675 2016 2794 795*2^2332488+1 702152 L3029 2016 2795 3^1471170-3^529291+1 701927 p269 2019 2796 229*2^2331017-1 701709 L1862 2021 2797 118*761^243458+1 701499 L5410 2019 2798 435*2^2329948+1 701387 L2322 2016 2799 585*2^2329350+1 701207 L2707 2016 2800 213*2^2328530-1 700960 L1863 2017 2801 1482*327^278686+1 700773 L5410 2020 2802 26472*91^357645+1 700646 L5410 2020 2803 1107*2^2327472+1 700642 L3601 2016 2804 435*2^2327152+1 700546 L2337 2016 2805 4161*2^2326875-1 700463 L1959 2016 2806 427*2^2326288+1 700286 L2719 2016 2807 438*19^547574-1 700215 L5410 2020 2808 147855!-1 700177 p362 2013 Factorial 2809 5872*3^1467401+1 700132 L4444 2021 2810 451*2^2323952+1 699582 L3173 2016 2811 431*2^2323633+1 699486 L3260 2016 2812 228*912^236298-1 699444 L5366 2022 2813 1085*2^2323291+1 699384 L1209 2016 2814 15*2^2323205-1 699356 L2484 2011 2815 7566*46^420563+1 699299 L5410 2019 2816 1131*2^2322167+1 699045 L1823 2016 2817 385*2^2321502+1 698845 L1129 2016 2818 8348*3^1464571+1 698782 L5367 2021 2819 645*2^2320231+1 698462 L3377 2016 2820 1942*877^237267+1 698280 L5410 2022 2821 165*2^2319575+1 698264 L2627 2014 2822 809*2^2319373+1 698204 L3924 2016 2823 125098*6^896696+1 697771 L587 2014 2824 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 2825 381*2^2314743+1 696810 L4358 2016 2826 120*825^238890+1 696714 L4837 2018 2827 3375*2^2314297+1 696677 L1745 2019 2828 4063*2^2313843-1 696540 L1959 2016 2829 345*2^2313720-1 696502 L2017 2017 2830 74*830^238594-1 696477 L5410 2020 2831 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 2832 1983*366^271591-1 696222 L2054 2012 2833 3*2^2312734-1 696203 L158 2005 2834 2643996*7^823543-1 695981 p396 2021 2835 53653*2^2311848+1 695941 L2012 2017 2836 873*2^2311086+1 695710 L2526 2016 2837 1033*2^2310976+1 695677 L4352 2016 2838 4063*2^2310187-1 695440 L1959 2016 2839 4063*2^2309263-1 695162 L1959 2016 2840 565*2^2308984+1 695077 L2322 2016 2841 450457*2^2307905-1 694755 L172 2006 2842 1018*3^1455600+1 694501 L5410 2021 2843 1185*2^2306324+1 694276 L4347 2016 2844 3267*2^2305266+1 693958 L1204 2019 2845 107*770^240408-1 693938 L4955 2020 2846 537*2^2304115+1 693611 L3267 2016 2847 842*1017^230634-1 693594 L4001 2017 2848 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 2849 641*2^2302879+1 693239 L2051 2016 2850 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 2851 189*2^2299959+1 692359 L2627 2014 2852 2582*111^338032-1 691389 L4786 2021 2853 659*2^2294393+1 690684 L3378 2016 2854 1087*2^2293345-1 690369 L1828 2011 2855 97768*5^987383-1 690157 L1016 2013 2856 4761657101009*2^2292504-1 690126 L257 2019 2857 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 2858 319*2^2290722+1 689579 L1792 2015 2859 779*2^2290273+1 689444 L3034 2016 2860 1001*2^2289438-1 689193 L4518 2020 2861 971*2^2289135+1 689102 L4198 2016 2862 399*2^2288691+1 688968 L1990 2015 2863 1425*2^2288483-1 688906 L1134 2021 2864 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 2865 74270*151^315734-1 687982 L4001 2018 2866 23902*52^400831+1 687832 L5410 2019 2867 417*2^2284402+1 687677 L2322 2015 2868 130*686^242244+1 687085 L4064 2018 2869 427*2^2282080+1 686978 L3260 2015 2870 109*2^2280194+1 686409 L2520 2014 2871 105*2^2280078-1 686374 L2444 2014 2872 1019*2^2278467+1 685890 L4323 2016 2873 213*2^2277870-1 685710 L1863 2017 2874 904*957^229937-1 685425 L5410 2022 2875 547*2^2276648+1 685343 L3260 2015 2876 26*3^1435875+1 685088 L4799 2020 2877 7913*2^2275664-1 685048 L4036 2015 2878 651*2^2275040+1 684859 L4082 2016 2879 155877*2^2273465-1 684387 L541 2014 2880 16*710^240014+1 684344 L5410 2019 Generalized Fermat 2881 739*2^2272938+1 684226 L1209 2016 2882 279*798^235749-1 684147 L541 2021 2883 4821*396^263301+1 683980 L5410 2021 2884 (362^133647+1)^2-2 683928 p403 2019 2885 943*2^2269594+1 683219 L1823 2016 2886 182*792^235539+1 682766 L4837 2019 2887 1286*603^245567+1 682758 L4444 2019 2888 50*893^231310-1 682564 L4975 2019 2889 329*2^2266631+1 682327 L4109 2015 2890 739*2^2266602+1 682319 L2520 2016 2891 19683*2^2265896+1 682107 L2914 2019 2892 1151*2^2265761+1 682066 L1823 2016 2893 851*2^2265691+1 682044 L3173 2016 2894 977*2^2265655+1 682034 L2413 2016 2895 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 2896 185*2^2264906-1 681807 L2484 2022 2897 31924*3^1428855+1 681742 L5410 2021 2898 217*2^2264546+1 681699 L3179 2014 2899 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 2900 93*2^2263894+1 681502 L2826 2013 2901d 34*912^230098+1 681091 L5410 2022 2902 74*932^229308-1 680913 L4444 2021 2903 217499*28^470508-1 680905 p366 2013 2904 963*2^2261357+1 680740 L1300 2016 2905 2138*3^1426626+1 680677 L5410 2021 2906 1065*2^2260193+1 680389 L1204 2016 2907 837*2^2259470+1 680172 L1823 2016 2908 927*2^2258112+1 679763 L4287 2016 2909 265*2^2258071-1 679750 L2484 2018 2910 561*2^2256600+1 679308 L3877 2015 2911 495*2^2255944+1 679110 L4119 2015 2912 129*2^2255199+1 678885 L3049 2014 2913 735*2^2254660+1 678724 L4283 2016 2914 162*814^233173+1 678682 L5410 2021 2915 973*2^2254320+1 678621 L1204 2016 2916 275102*151^311399-1 678537 L4001 2018 2917 603*2^2252402+1 678044 L1803 2016 2918 1029*2^2252198+1 677983 L3125 2016 2919 39*2^2251104-1 677652 L177 2015 2920 575*2^2250751+1 677547 L1741 2015 2921 2838*88^348438+1 677536 L5410 2020 2922 725*2^2250697+1 677531 L2859 2016 2923 65*2^2250637+1 677512 L3487 2013 2924 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 2925 187*2^2249974+1 677312 L2322 2014 2926 141*2^2249967+1 677310 L3877 2014 2927 459*2^2249183+1 677075 L3877 2015 2928 904*957^227111-1 677001 L5410 2022 2929 319*2^2248914+1 676994 L2322 2015 2930 569*2^2248709+1 676932 L4133 2015 2931 221*2^2248363+1 676828 L1130 2014 2932 144912*151^310514-1 676609 L4001 2018 2933 649*2^2247490+1 676565 L1204 2016 2934 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 2935 721*2^2246420+1 676243 L3037 2016 2936 875*2^2246363+1 676226 L2859 2016 2937 3888*931^227714-1 676075 L4001 2018 2938 347*2^2245598-1 675995 L2519 2017 2939 1199*2^2244631+1 675705 L3593 2016 2940 137*2^2244398-1 675634 L2484 2022 2941 197*2^2244347+1 675619 L1129 2014 2942c 6510*565^245490+1 675605 L5410 2022 2943 5055*2^2242777-1 675147 L4036 2015 2944 651*2^2241783+1 674847 L3260 2016 2945 35*2^2241049+1 674625 L2742 2013 2946 4161*2^2240358-1 674419 L1959 2016 2947 164978*151^309413-1 674210 L4001 2018 2948 2354*138^314727+1 673482 L5410 2020 2949 20*698^236810-1 673455 L5410 2020 2950 146*447^254042-1 673292 L4001 2018 2951 675*2^2236244+1 673180 L4191 2016 2952 615*2^2235833+1 673056 L1823 2016 2953 53069*28^465060-1 673021 p257 2016 2954 831*2^2235253+1 672882 L3432 2013 2955 185*2^2235003+1 672806 L2322 2014 2956 103*2^2234536+1 672665 L3865 2014 2957 885*2^2234318+1 672600 L3125 2016 2958 963*2^2234249+1 672579 L1823 2016 2959 305*2^2233655+1 672400 L4118 2015 2960 267*2^2233376+1 672316 L1792 2014 2961 221*994^224221-1 672080 L5410 2020 2962 103*2^2232551-1 672067 L2484 2013 2963 889*2^2231034+1 671612 L2526 2016 2964 1779*88^345359+1 671548 L5410 2020 2965 907*2^2230776+1 671534 L4269 2016 2966 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 2967 1425*2^2229009+1 671002 L1134 2016 2968 747*2^2228814+1 670943 L2526 2016 2969 9760*3^1406070+1 670870 L4444 2021 2970 969*2^2228379+1 670812 L4262 2016 2971 887*2^2228179+1 670752 L2840 2015 2972 130816^131072+1 670651 g308 2003 Generalized Fermat 2973 1123*2^2227338+1 670499 L3924 2015 2974 3478*378^260076+1 670348 L4955 2021 2975 213*2^2226329+1 670195 L2125 2014 2976 505*2^2225296+1 669884 L4111 2015 2977 11*878^227481+1 669591 L5410 2019 2978 271*2^2223601-1 669374 L2484 2018 2979 325*2^2223243-1 669266 L2235 2016 2980f (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 2981 84363*2^2222321+1 668991 L541 2014 2982 2516745*2^2222222+1 668962 p396 2017 2983 7043*48^397817-1 668831 p255 2016 2984 1137*2^2221062+1 668610 L4040 2015 2985 152*806^229984-1 668413 L4001 2018 2986 1425*2^2219664-1 668189 L1134 2021 2987 1031*2^2218785+1 667924 L1204 2015 2988 911*2^2218151+1 667733 L3260 2015 2989 27*2^2218064+1 667706 L690 2009 2990 587*2^2217355+1 667494 L4109 2015 2991 547*2^2216110+1 667119 L2322 2015 2992 67*2^2215581-1 666959 L268 2010 2993 33*2^2215291-1 666871 L3345 2013 2994 157533*2^2214598-1 666666 L3494 2013 2995 1105*2^2213846+1 666438 L2321 2015 2996 33*2^2212971-1 666173 L3345 2013 2997 101*2^2212769+1 666112 L1741 2014 2998 3*10^665829+1 665830 p300 2012 2999 4207801666259*2^2211084-1 665616 L257 2019 3000d 298*912^224846+1 665546 L5410 2022 3001 631*2^2210260+1 665358 L2322 2015 3002 479*2^2209541+1 665141 L4106 2015 3003 165*2^2207550-1 664541 L2055 2011 3004 819*2^2206370+1 664187 L2526 2015 3005 19*2^2206266+1 664154 p189 2006 3006 45*2^2205977-1 664067 L1862 2015 3007 1323*2^2205832+1 664025 L4893 2019 3008 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3009 73*416^253392+1 663660 L3610 2015 3010 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3011 1041*2^2201196+1 662630 L3719 2015 3012 481*2^2201148+1 662615 L1741 2015 3013 1344*73^355570+1 662545 L3610 2014 3014 783*2^2200256+1 662346 L3924 2015 3015 969*2^2200223+1 662337 L1209 2015 3016 173*2^2199301+1 662058 L1204 2014 3017 5077*2^2198565-1 661838 L251 2008 3018 114487*2^2198389-1 661787 L179 2006 3019 1035*2^2197489+1 661514 L2517 2014 3020 903*2^2197294+1 661455 L2322 2014 3021 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3022 638*520^243506-1 661366 L4877 2019 3023 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3024 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3025 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3026 10880*151^302997-1 660228 L4001 2018 3027 1073*2^2193069+1 660183 L2487 2014 3028 169*2^2193049-1 660176 L2484 2018 3029 26040*421^251428+1 659823 L5410 2021 3030 202064*151^302700-1 659582 L4001 2018 3031 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3032 819*2^2190853+1 659516 L3234 2014 3033 1179*2^2189870+1 659220 L2517 2014 3034 269*2^2189235+1 659028 L1204 2014 3035 39*2^2188855+1 658913 p286 2013 3036 433*2^2188076+1 658680 L3855 2014 3037 1323*2^2186806+1 658298 L4974 2019 3038 815*2^2185439+1 657886 L3035 2014 3039 249*2^2185003+1 657754 L1300 2014 3040 585*2^2184510+1 657606 L3838 2014 3041 1033*2^2183858+1 657410 L3865 2014 3042 1035*2^2183770+1 657384 L3514 2014 3043 193020*151^301686-1 657373 L4001 2018 3044 353938*7^777777+1 657304 L4789 2020 3045 1179*2^2182691+1 657059 L2163 2014 3046 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3047 23902*52^382687+1 656697 L4876 2019 3048 525*2^2180848+1 656504 L3797 2014 3049 135*2^2180256-1 656325 L1959 2019 3050 1107*2^2180142+1 656292 L1741 2014 3051 447*2^2180102+1 656279 L3760 2014 3052 315*2^2179612-1 656132 L2235 2015 3053 1423*2^2179023-1 655955 L3887 2015 3054 995*2^2178819+1 655893 L1741 2014 3055 219*2^2178673-1 655849 L5313 2021 3056 1423*2^2178363-1 655756 L3887 2015 3057 196597*2^2178109-1 655682 L175 2006 3058 6*10^655642+1 655643 L5009 2019 3059 879*2^2177186+1 655402 L2981 2014 3060 67*410^250678+1 654970 L4444 2019 3061 70082*5^936972-1 654921 L3523 2013 3062 699*2^2175031+1 654753 L3865 2014 3063 1260*991^218477+1 654577 L5410 2021 3064 69*2^2174213-1 654506 L2055 2012 3065 1069*2^2174122+1 654479 L3865 2014 3066 793*2^2173720+1 654358 L2322 2014 3067 3267*2^2173170+1 654193 L1204 2019 3068 651*2^2173159+1 654189 L3864 2014 3069 187*2^2172693-1 654049 L1959 2019 3070 10001*2^2172615+1 654027 L4405 2018 3071 1011*2^2172063+1 653860 L2826 2014 3072 1105*2^2171956+1 653827 L3035 2014 3073 4165*2^2171145-1 653584 L1959 2017 3074 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3075 739*2^2170786+1 653475 L2121 2014 3076 134*937^219783-1 653140 L5410 2021 3077 701*2^2169041+1 652950 L3863 2014 3078 1779*88^335783+1 652928 L5410 2020 3079 295*2^2168448+1 652771 L1935 2014 3080 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3081 359*2^2165551+1 651899 L3838 2014 3082 1059*2^2164149+1 651477 L2322 2014 3083 329*2^2163717+1 651347 L2117 2014 3084 559*2^2163382+1 651246 L1741 2014 3085 235*2^2163273-1 651213 L5313 2021 3086 775*2^2162344+1 650934 L3588 2014 3087 21*2^2160479-1 650371 L2074 2012 3088b 399*2^2160379-1 650342 L5545 2022 3089 102976*5^929801-1 649909 L3313 2013 3090 1007*2^2158720-1 649843 L4518 2021 3091 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3092 617*2^2156699+1 649234 L1675 2014 3093 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3094 57*572^235362+1 648989 L4444 2021 3095 2*3^1360104-1 648935 p390 2015 3096 483*2^2155456+1 648860 L3760 2014 3097 105*2^2155392+1 648840 L3580 2014 3098 40*1017^215605+1 648396 L4927 2018 3099 1005*2^2153712-1 648335 L4518 2021 3100 31340*6^833096+1 648280 p271 2013 3101 427*2^2153306+1 648213 L3838 2014 3102 834*709^227380-1 648183 L5410 2021 3103b 395*2^2152816-1 648065 L5598 2022 3104 261*2^2152805+1 648062 L1125 2014 3105 371*2^2150871+1 647480 L2545 2014 3106 111*2^2150802-1 647458 L2484 2013 3107 357*2^2148518+1 646771 L1741 2014 3108 993*2^2148205+1 646678 L1741 2014 3109 67*2^2148060+1 646633 L3276 2013 3110 243*2^2147387-1 646431 L2444 2014 3111 693*2^2147024+1 646322 L3862 2014 3112 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3113 143157*2^2144728+1 645633 L4504 2016 3114 509*2^2144181+1 645466 L3035 2014 3115 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3116 161*2^2142431+1 644939 L3105 2014 3117 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3118 23*2^2141626-1 644696 L545 2008 3119 519*2^2140311+1 644301 L2659 2014 3120 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3121 315*2^2139665+1 644106 L3838 2014 3122 193*2^2139400+1 644026 L3538 2014 3123 1113*2^2139060+1 643925 L3914 2014 3124 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3125 307*2^2137553-1 643471 L2235 2015 3126 1051*2^2137440+1 643437 L3865 2014 3127 1185*2^2137344+1 643408 L3877 2014 3128 405*2^2137280-1 643388 L1862 2016 3129 513*2^2135642+1 642896 L3843 2014 3130 241*2^2135279-1 642786 L2484 2018 3131 915*2^2135151+1 642748 L2322 2014 3132 61*2^2134577-1 642574 L2055 2011 3133 2*3^1346542+1 642465 L5043 2020 3134 93*10^642225-1 642227 L4789 2020 Near-repdigit 3135 26362*421^244658+1 642057 L5388 2021 3136 5428*378^249058+1 641949 L5410 2021 3137 711*2^2132477+1 641943 L2125 2014 3138 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3139 215*2^2131988-1 641795 L2484 2018 3140 319*2^2130729-1 641416 L1817 2015 3141 78792*151^294324-1 641331 L4001 2018 3142 75*2^2130432-1 641326 L2055 2011 3143 1145*2^2130307+1 641290 L3909 2014 3144 110488*5^917100+1 641031 L3354 2013 3145 37*2^2128328+1 640693 L3422 2013 3146 103*2^2128242+1 640667 L3787 2014 3147 185*2^2127966-1 640584 L1959 2019 3148 3762*70^347127+1 640487 L4876 2019 3149 253*2^2126968+1 640284 L1935 2014 3150 583*2^2126166+1 640043 L1741 2014 3151 999*2^2125575+1 639865 L1741 2014 3152 7*848^218439-1 639677 L5410 2020 3153 587*2^2124947+1 639676 L3838 2014 3154 451*2^2124636+1 639582 L1741 2014 3155 887*2^2124027+1 639399 L3865 2014 3156 721751*2^2123838-1 639345 L4001 2022 3157 693*2^2121393+1 638606 L3278 2014 3158 118*107^314663-1 638575 L5227 2021 3159 8331405*2^2120345-1 638295 L2055 2013 3160 975*2^2119209+1 637949 L1158 2014 3161 33*2^2118570-1 637755 L3345 2013 3162 117*2^2117600-1 637464 L1959 2019 3163 254*5^911506-1 637118 p292 2010 3164 1139*2^2115949+1 636968 L3865 2014 3165 771*2^2115741+1 636905 L1675 2014 3166 411*2^2115559+1 636850 L2840 2014 3167 34*3^1334729+1 636830 L4799 2021 3168 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3169 929*2^2114679+1 636585 L3035 2014 3170 1065*2^2113463+1 636219 L2826 2014 3171 609179*2^2111132-1 635520 L5410 2022 3172 591*2^2111001+1 635478 L1360 2014 3173c 357*2^2109585-1 635051 L5546 2022 3174 1051*2^2109344+1 634979 L3035 2014 3175 433*2^2109146+1 634919 L1935 2014 3176 519*2^2108910+1 634848 L1356 2014 3177 1047*2^2108751+1 634801 L3824 2014 3178 257*2^2108554-1 634741 L5313 2021 3179 3261*46^381439+1 634245 L5000 2019 3180 765*2^2106027+1 633981 L3838 2014 3181 503*2^2106013+1 633976 L1741 2014 3182 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 3183 113*2^2104825+1 633618 L3785 2014 3184 381*2^2103999+1 633370 L2322 2014 3185 1246461300659*2^2103424-1 633206 L2484 2015 3186 57*2^2103370-1 633180 L2055 2011 3187 539*2^2102167+1 632819 L3125 2014 3188 1425*2^2101260-1 632546 L1134 2020 3189 1001*2^2101062-1 632486 L4518 2020 3190 179*894^214290-1 632445 L5209 2020 3191 687*2^2100243+1 632239 L3867 2014 3192 329*2^2099771+1 632097 L2507 2014 3193 35*2^2099769+1 632095 L3432 2013 3194 405*2^2099716+1 632081 L3154 2014 3195 575*2^2098483+1 631710 L3168 2014 3196a 523*2^2098043-1 631577 L5516 2022 3197 1005*2^2097683-1 631469 L4518 2021 3198 522335*2^2097154-1 631312 L466 2022 3199 695265*2^2097153-1 631312 L466 2020 3200 208703*2^2097153+1 631312 L466 2018 3201 28401*2^2097152+1 631311 L4547 2017 3202d 399*2^2096857-1 631220 L5546 2022 3203 907*2^2095896+1 630931 L1129 2014 3204 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 3205 2503*2^2094587-1 630537 L4113 2017 3206 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 3207 103*2^2093350+1 630164 L3432 2013 3208 4001*2^2093286-1 630146 L1959 2014 3209 14172*1027^209226-1 630103 L4001 2018 3210 369*2^2093022+1 630065 L3514 2014 3211 217*2^2092673-1 629960 L2484 2018 3212 2188*253^262084+1 629823 L5410 2020 3213 68*920^212407+1 629532 L4001 2017 3214 165*2^2090645+1 629350 L1209 2014 3215 1119*2^2090509+1 629309 L2520 2014 3216 941*2^2090243+1 629229 L1356 2014 3217a 435*2^2089948-1 629140 L5516 2022 3218 62722^131072+1 628808 g308 2003 Generalized Fermat 3219 401*2^2088713+1 628768 L3035 2014 3220 1702*1021^208948+1 628734 L5410 2021 3221 819*2^2088423+1 628681 L3890 2014 3222d 363*2^2088182-1 628608 L5545 2022 3223a 423*2^2088102-1 628584 L5516 2022 3224 1009*2^2087690+1 628461 L3728 2014 3225 85*2^2087651-1 628448 L2338 2013 3226 467*2^2085835+1 627902 L3625 2014 3227 563528*13^563528-1 627745 p262 2009 Generalized Woodall 3228 55*2^2084305-1 627441 L3887 2021 3229f (146^144882-1)^2-2 627152 p405 2022 3230 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 3231 18*984^209436-1 626843 L5410 2019 3232 247*2^2082202+1 626808 L3294 2014 3233 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3234 159*2^2081069-1 626467 L1959 2019 3235 27*634^223550+1 626409 L4001 2018 3236d 399*2^2080579-1 626320 L5546 2022 3237 655*2^2080562+1 626315 L3859 2014 3238 201*2^2080464+1 626285 L1741 2014 3239 269328*211^269328+1 626000 p354 2012 Generalized Cullen 3240 153*2^2079401+1 625965 L3601 2014 3241 279*2^2079167+1 625895 L2413 2014 3242 692*95^316400-1 625755 L4444 2019 3243 643*2^2078306+1 625636 L3035 2014 3244 79*2^2078162+1 625591 L2117 2013 3245 1485*2^2077172+1 625295 L1134 2015 3246b 405*2^2076673-1 625144 L5516 2022 3247 239*2^2076663+1 625141 L2413 2014 3248 1003*2^2076535-1 625103 L51 2008 3249 2186*7^739474-1 624932 p258 2011 3250 73*2^2075936+1 624921 L3464 2013 3251 807*2^2075519+1 624797 L3555 2014 3252b 585*2^2075384-1 624756 L5516 2022 3253 1425*2^2075382+1 624756 L1134 2015 3254 65*2^2073229+1 624106 L1480 2013 3255 693*2^2072564+1 623907 L3290 2014 3256 55*552^227540-1 623903 L4786 2019 3257 375*2^2071598+1 623616 L2413 2014 3258 73*2^2071592+1 623614 L1480 2013 3259 125*2^2071555+1 623603 L3432 2013 3260 1107*2^2071480+1 623581 L2520 2014 3261 6207*28^430803-1 623444 L1471 2014 3262 299*2^2070979+1 623430 L1741 2014 3263 99*2^2070908-1 623408 L1862 2015 3264 19062*1027^206877-1 623029 L4444 2018 3265 891*2^2069024+1 622842 L2520 2014 3266 943*2^2068944+1 622818 L1741 2014 3267 579*2^2068647+1 622728 L2967 2014 3268 911*2^2068497+1 622683 L1741 2014 3269b 501*2^2067915-1 622508 L5551 2022 3270 1005*2^2067272+1 622314 L3895 2014 3271b 441*2^2067233-1 622302 L5516 2022 3272 3474*5^890253+1 622264 L5410 2021 3273 393*2^2066540+1 622094 L3700 2014 3274 44*950^208860-1 621929 L4187 2021 3275 951*2^2065180+1 621685 L1403 2014 3276 915*2^2064663+1 621529 L3035 2014 3277 213*2^2064426-1 621457 L1863 2017 3278 29*468^232718+1 621416 L4832 2018 3279 1455*2^2064103-1 621361 L1134 2016 3280 824*423^236540-1 621238 L5410 2021 3281b 447*2^2063218-1 621094 L5551 2022 3282 9*2^2060941-1 620407 L503 2008 3283 1455*2^2059553+1 619991 L1134 2015 3284 659*2^2058623+1 619711 L3860 2014 3285 128448*151^284308-1 619506 L4001 2018 3286b 477*2^2057225-1 619290 L5516 2022 3287 575*2^2056081+1 618945 L1935 2014 3288 1095*2^2055975+1 618914 L3518 2014 3289b 589*2^2055877-1 618884 L5516 2022 3290 3*10^618853+1 618854 p300 2012 3291 225*2^2055433-1 618750 L2484 2022 3292 819*2^2054470+1 618461 L2826 2014 3293 969*2^2054054+1 618335 L3668 2014 3294 3394*28^427262+1 618320 p385 2015 3295 318564*151^283711-1 618206 L4444 2018 3296 675*2^2053578+1 618192 L1792 2014 3297 178998*151^283702-1 618186 L4001 2018 3298b 551*2^2051922-1 617693 L5516 2022 3299 281*2^2051865+1 617676 L5519 2022 3300 5916*277^252878-1 617654 L5410 2020 3301 739*2^2051658+1 617614 L3838 2014 3302 71*2^2051313+1 617509 L1480 2013 3303 265*2^2051155-1 617462 L2484 2018 3304 779*2^2050881+1 617380 L3453 2014 3305 75*2^2050637-1 617306 L2055 2011 3306e 377*2^2050148-1 617159 L2235 2022 3307 935*2^2050113+1 617149 L3696 2014 3308 847*2^2049400+1 616934 L2322 2014 3309 4998*235^260170-1 616885 L5410 2019 3310b 541*2^2049193-1 616872 L5516 2022 3311 73*2^2048754+1 616739 L3432 2013 3312 30*712^215913+1 615889 L4444 2022 3313 527*2^2045751+1 615836 L4123 2014 3314 785*2^2045419+1 615736 L3861 2014 3315 195*2^2044789+1 615546 L3744 2014 3316 537*2^2044162+1 615357 L1741 2014 3317 413*2^2043829+1 615257 L1300 2014 3318 1682*655^218457-1 615231 L4925 2022 3319b 431*2^2043666-1 615208 L5516 2022 3320 1334*567^223344-1 615000 L5410 2021 3321 345*2^2042295+1 614795 L2562 2014 3322 216848*151^282017-1 614514 L4700 2018 3323 104*579^222402-1 614428 L4001 2018 3324 57257*2^2040062-1 614125 L4812 2019 3325 1069*2^2039562+1 613973 L1741 2014 3326 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 3327 7188*313^245886-1 613624 L5410 2020 3328 1085*2^2038005+1 613504 L2520 2014 3329 125*2^2037752-1 613427 L2444 2014 3330 1069*2^2036902+1 613172 L3876 2014 3331 10020*171^274566+1 613109 L5410 2019 3332 417*2^2036482+1 613045 L1847 2014 3333 701*2^2035955+1 612887 L2823 2014 3334 1025*2^2034405+1 612420 L1741 2014 3335 651*2^2034352+1 612404 L3459 2014 3336 121*2^2033941-1 612280 L162 2006 3337 19683*2^2033900+1 612270 L1823 2019 3338 57*2^2033643+1 612190 L3432 2013 3339 4175*2^2032552-1 611863 L1959 2017 3340 249*2^2031803+1 611637 L2327 2014 3341 783*2^2031629+1 611585 L2126 2014 3342b 10005*2^2031284+1 611482 p168 2022 3343 (290^124116-1)^2-2 611246 p403 2019 3344 872*268^251714-1 611199 L5410 2019 3345 4157*2^2029894-1 611063 L1959 2017 3346 293028*151^280273-1 610714 L4001 2018 3347 285*2^2028495+1 610641 L2594 2014 3348 775*2^2027562+1 610360 L1204 2014 3349 199*686^215171-1 610297 L4001 2018 3350 4190*235^257371-1 610248 L5410 2019 3351 621*2^2026864+1 610150 L3446 2014 3352 357*2^2026846+1 610144 L2163 2014 3353c 425*2^2026610-1 610074 L5516 2022 3354 122112*151^279966-1 610045 L4001 2018 3355 879*2^2026501+1 610041 L1139 2014 3356 4185*2^2026400-1 610011 L1959 2017 3357 787*2^2026242+1 609963 L2122 2014 3358 2*3^1277862+1 609696 L5043 2020 3359 273*2^2024810-1 609531 L5118 2020 3360 919*2^2024094+1 609316 L1741 2014 3361 325*2^2024035-1 609298 L4076 2015 3362 235*2^2023486+1 609133 L2594 2014 3363c 559*2^2023437-1 609118 L5516 2022 3364 195*2^2023030+1 608996 L4122 2014 3365 8*10^608989-1 608990 p297 2011 Near-repdigit 3366 1485*2^2022873+1 608949 L1134 2015 3367 233*2^2022801+1 608927 L3767 2014 3368 521*2^2022059+1 608704 L3760 2014 3369c 569*2^2021884-1 608651 L5516 2022 3370 5678*1027^202018-1 608396 L4001 2018 3371 94*790^209857+1 608090 L4001 2018 3372c 19650619*2^2019807-1 608030 L3432 2022 3373 431*2^2019693+1 607991 L2100 2014 3374 1155*2^2019244+1 607857 L3873 2014 3375 195*2^2018866+1 607742 L2413 2014 3376 59506*6^780877+1 607646 p254 2013 3377 4101*2^2018133-1 607523 L1959 2017 3378 2152*177^270059+1 607089 L5410 2020 3379d 5844*693^213666+1 606972 L5410 2022 3380 4081*2^2015959-1 606868 L1959 2017 3381 4191*2^2015150-1 606625 L1959 2017 3382 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3383 251749*2^2013995-1 606279 L436 2007 Woodall 3384 126*523^222906-1 605973 L4001 2017 3385 1023*2^2012570+1 605847 L1741 2014 3386 403*2^2012412+1 605799 L3538 2014 3387 1173*2^2012185+1 605732 L1413 2014 3388 85*730^211537+1 605701 L4001 2018 3389 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 3390 751*2^2010924+1 605352 L3859 2014 3391 101*2^2009735+1 604993 L3432 2013 3392 1069*2^2008558+1 604640 L1595 2014 3393 881*2^2008309+1 604565 L3260 2014 3394 959*2^2008035+1 604482 L1422 2014 3395 633*2^2007897+1 604441 L3857 2014 3396 143*2^2007888-1 604437 L384 2016 3397 4*5^864751-1 604436 L4881 2019 3398 223*2^2007748+1 604395 L1741 2014 3399 461*2^2007631+1 604360 L1300 2014 3400d 1731*352^237258-1 604191 L5410 2022 3401 477*2^2006719+1 604086 L3803 2014 3402 428551*2^2006520+1 604029 g411 2011 3403c 6844*565^219383+1 603757 L5580 2022 3404 1097*2^2005203+1 603630 L3868 2014 3405 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 3406 6*5^862923+1 603159 L4965 2020 3407 493*2^2002964+1 602955 L3800 2014 3408 315*2^2002904+1 602937 L3790 2014 3409 77*2^2002742-1 602888 L2074 2013 3410 585*2^2002589+1 602843 L3035 2014 3411 1059*2^2001821+1 602612 L2103 2014 3412 249*2^2001627-1 602553 L1862 2015 3413 47*158^273942-1 602307 L541 2020 3414 1115*2^2000291+1 602151 L3588 2014 3415 891*2^2000268+1 602144 L3440 2014 3416 1067*792^207705-1 602083 L5410 2021 3417 17872*430^228564+1 601921 L4955 2020 3418 343388*151^276191-1 601820 L4700 2018 3419c 537*2^1999105-1 601794 L5516 2022 3420 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3421 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 3422 573*2^1998232+1 601531 L1300 2013 3423 1323*2^1998103-1 601493 L1828 2016 3424 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 3425 1274*3^1260173+1 601259 L5410 2021 3426c 561*2^1996865-1 601120 L5516 2022 3427 669*2^1995918+1 600835 L2659 2013 3428 19861029*2^1995311-1 600656 L895 2013 3429 261*2^1995105+1 600589 L3378 2013 3430 68398*1027^199397+1 600503 L4001 2018 3431 1031*2^1994741+1 600480 L2626 2014 3432 577*2^1994634+1 600448 L3035 2013 3433 497*2^1994051+1 600272 L2413 2013 3434 8331405*2^1993674-1 600163 L260 2011 3435 1965*2^1993666-1 600157 L4113 2022 3436 467917*2^1993429-1 600088 L160 2005 3437 137137*2^1993201-1 600019 L321 2007 3438 589*2^1992774+1 599888 L2322 2013 3439 209*2^1992071+1 599676 L3422 2013 3440 2955*2^1991780-1 599589 L1862 2019 3441 317*2^1991592-1 599532 L1809 2014 3442 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 3443 547*2^1990606+1 599235 L3173 2013 3444 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3445 508*1017^199220-1 599122 L4700 2017 3446 1606*877^203564+1 599092 L5410 2022 3447 105*2^1989208-1 598814 L1959 2014 3448f 1925975*2^1989191+1 598813 L5327 2022 3449 1019*2^1988959+1 598740 L3514 2013 3450 1455*2^1988795-1 598691 L1134 2015 3451 629*2^1988579+1 598625 L2117 2013 3452 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3453 733*2^1988086+1 598477 L3502 2013 3454 135*2^1987735+1 598370 L1300 2013 3455 162434*5^856004-1 598327 L3410 2013 3456 749*2^1986977+1 598143 L1492 2013 3457 4141*2^1986959-1 598138 L1959 2016 3458 34*3^1253399+1 598025 L4799 2020 3459 3792*217^255934-1 597984 L5410 2020 3460 32*236^251993+1 597959 L4786 2019 3461 174344*5^855138-1 597722 L3354 2013 3462 6292*1027^198459+1 597678 L4001 2018 3463 4125*2^1984855-1 597505 L1959 2017 3464 8331405*2^1984565-1 597421 L260 2011 3465 1133*2^1984488-1 597394 L1828 2016 3466 195*2^1983875-1 597209 L1828 2014 3467f 2631730144*10^597115+1 597125 L4789 2022 3468 1071855*2^1981910-1 596621 L5340 2021 3469 523895*2^1981910-1 596621 L5340 2021 3470 496177*2^1981910+1 596621 L5340 2021 3471 445*2^1980900+1 596313 L3577 2013 3472 731*2^1980503+1 596194 L3035 2013 3473 1147*2^1978390+1 595558 L1741 2013 3474 5758*211^256223+1 595539 L5410 2020 3475 25*2^1977369-1 595249 L426 2008 3476 245478*151^273168-1 595233 L4001 2018 3477 1197*2^1977152-1 595186 L1828 2016 3478 43*780^205685+1 594863 L5410 2019 3479 1234*95^300749-1 594802 L4444 2019 3480 866*183^262883+1 594763 L3610 2015 3481 386*117^287544+1 594698 L5410 2020 3482 1149*2^1975451-1 594674 L1828 2016 3483 381*2^1974841-1 594489 L1809 2014 3484 19920911*2^1974666-1 594441 L806 2017 3485 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 3486 148323*2^1973319-1 594034 L587 2011 3487 705*2^1972428+1 593763 L3043 2013 3488d 549*2^1971947-1 593618 L5516 2022 3489 74*894^201093+1 593496 L5410 2022 3490 549*2^1971183+1 593388 L2840 2013 3491 4197*2^1970430-1 593163 L1959 2016 3492 1387*2^1970033-1 593043 L1828 2016 3493 1616*277^242731-1 592869 L5410 2020 3494 1693*396^228140+1 592642 L5410 2021 3495 441*2^1968431+1 592560 L3035 2013 3496 1485*2^1968400-1 592551 L1134 2014 3497 1159*2^1968190+1 592488 L3035 2013 3498 731*2^1968039+1 592442 L3682 2013 3499 833*2^1967841+1 592383 L3744 2013 3500 989*2^1967819+1 592376 L3738 2013 3501 1035*2^1967708+1 592343 L3739 2013 3502 148*789^204455+1 592325 L5410 2019 3503 1309*2^1967613-1 592314 L1828 2016 3504d 449*2^1967140-1 592171 L5516 2022 3505 4025*2^1966732-1 592049 L1959 2016 3506 203*2^1966689+1 592035 L1408 2013 3507 101594*151^271697-1 592027 L4001 2018 3508 273*2^1966630+1 592018 L2532 2013 3509 93*2^1965880+1 591791 L1210 2011 3510d 465*2^1965363-1 591636 L5516 2022 3511 253*2^1965215-1 591592 L3345 2012 3512 1089*2^1964781+1 591462 L3737 2013 3513 10*173^264234+1 591369 L1471 2015 3514 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 3515 125*2^1963964-1 591215 L1959 2014 3516 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 3517 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3518 102088*6^759012-1 590632 L4521 2019 3519 4065*2^1961907-1 590597 L1959 2016 3520 113*2^1960341+1 590124 L3091 2013 3521 57406*5^844253-1 590113 L3313 2012 3522c 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 3523 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3524 1111*2^1959625-1 589909 L1828 2016 3525 24838*421^224768+1 589860 L5410 2021 3526 803*2^1959445+1 589855 L2724 2013 3527 552*360^230680+1 589691 L5410 2021 3528 6166*3^1235741+1 589603 L5365 2021 3529 45*2^1957377-1 589231 L1862 2014 3530 1065*2^1957291-1 589207 L1828 2016 3531 1149*2^1957223+1 589186 L1935 2013 3532 6326*333^233552+1 589126 L4001 2017 3533 129*2^1956915+1 589093 L2826 2013 3534 229*2^1956294+1 588906 L3548 2013 3535 74*500^218184-1 588874 p355 2013 3536 27*342^232379+1 588856 L5410 2021 3537d 525*2^1955409-1 588640 L5516 2022 3538 1045*2^1955356+1 588624 L1186 2013 3539 112*113^286643-1 588503 L426 2012 3540 1137*2^1954730+1 588436 L3733 2013 3541 673*2^1954456+1 588353 L3666 2013 3542 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 3543 121*2^1954243-1 588288 L162 2006 3544 351*2^1954003+1 588217 L2413 2013 3545d 539*2^1953060-1 587933 L5516 2022 3546 641*2^1952941+1 587897 L3487 2013 3547 188378*151^269725-1 587730 L4001 2018 3548 4027*2^1951909-1 587587 L1959 2016 3549 1019*138^274533+1 587471 L5410 2020 3550 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 3551 1173*2^1951169+1 587364 L3171 2013 3552 1101*2^1950812+1 587256 L2719 2013 3553 P587124 587124 p414 2020 3554 3317*2^1949958-1 587000 L5399 2021 3555 4007*2^1949916-1 586987 L1959 2016 3556 313*2^1949544+1 586874 L2520 2013 3557 391*2^1949159-1 586758 L2519 2014 3558 539*2^1949135+1 586751 L1130 2013 3559 1167*2^1949013-1 586715 L1828 2016 3560 351*2^1947281-1 586193 L1809 2014 3561 3068*5^838561+1 586133 L5410 2021 3562d 4892*693^206286+1 586008 L5410 2022 3563 21290*745^203998-1 585919 L4189 2017 3564 111*2^1946322-1 585904 L2484 2012 3565 1209*2^1946260-1 585886 L1828 2016 3566 1339*2^1945965-1 585797 L1828 2016 3567 149*2^1945668-1 585707 L3967 2015 3568 4011*2^1945630-1 585697 L1959 2016 3569 639*2^1945473+1 585649 L2649 2013 3570 675*2^1945232+1 585577 L3688 2013 3571 30364*1027^194319+1 585210 L4001 2018 3572 417*2^1943755+1 585132 L3173 2013 3573 89*2^1943337+1 585005 L2413 2011 3574 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 3575 269*2^1942389+1 584720 L3548 2013 3576d 549*2^1942139-1 584645 L5545 2022 3577 4173*2^1941820-1 584550 L1959 2016 3578 1093*2^1941672+1 584505 L2322 2013 3579 144*471^218627-1 584397 L4064 2021 3580 193*2^1940804+1 584243 L3418 2013 3581 827*2^1940747+1 584226 L3206 2013 3582 221*2^1940211+1 584065 L2327 2013 3583 421*138^272919-1 584017 L5410 2020 3584 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 3585 9*10^583696+1 583697 L4789 2020 Generalized Fermat 3586 575*2^1938673+1 583602 L2019 2013 3587 1179*2^1938570+1 583571 L1300 2013 3588 865*2^1938180+1 583454 L3233 2013 3589 17702*1027^193732-1 583442 L4700 2018 3590 1091*2^1937857+1 583357 L3731 2013 3591 555*2^1937595+1 583277 L2826 2013 3592 9299*2^1937309+1 583193 L3886 2014 3593 30*386^225439+1 583120 L3610 2015 3594 34910*430^221380-1 583002 L4001 2015 3595 56064*1027^193573+1 582964 L4700 2018 3596 239*2^1936025+1 582804 L1741 2013 3597 1191*2^1935613-1 582681 L1828 2016 3598 4047*2^1934881-1 582461 L1959 2016 3599 357*2^1934704-1 582407 L1809 2014 3600 182627*2^1934664-1 582398 L3336 2012 3601 64*497^215875-1 582078 L4925 2019 3602 14172*1027^193213-1 581879 L4001 2018 3603 363*2^1932724+1 581811 L3171 2013 3604 1265*2^1932660-1 581792 L1828 2016 3605 134*383^225187+1 581705 L2012 2019 3606 143*2^1932112-1 581626 L1828 2012 3607 48764*5^831946-1 581510 L3313 2012 3608 1095*2^1931213-1 581357 L1828 2016 3609 1365*2^1931200+1 581353 L1134 2016 3610 1789*138^271671+1 581347 L5211 2020 3611 387*2^1930200+1 581051 L1129 2013 3612 2135489665061*2^1929362-1 580809 L2484 2015 3613 1101*2^1929297-1 580780 L1828 2016 3614 735*2^1929225+1 580758 L3378 2013 3615 214519*2^1929114+1 580727 g346 2006 3616d 481*2^1928773-1 580622 L5516 2022 3617 1071*2^1928515-1 580544 L1828 2016 3618 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3619f 3871*2^1925976+1 579781 L5327 2022 3620 633*2^1925684+1 579692 L1408 2013 3621 3580*408^222030+1 579649 L5410 2021 3622 5724*313^232269-1 579642 L5410 2020 3623 1965*2^1925248-1 579561 L4113 2022 3624 968*288^235591+1 579414 L5410 2020 3625 1283*2^1924402-1 579306 L1828 2016 3626 1005*2^1923658+1 579082 L3514 2013 3627 243*2^1923567-1 579054 L2055 2011 3628 4005*2^1923385-1 579001 L1959 2016 3629 319*2^1923378+1 578997 L3548 2013 3630 1620198*7^684923-1 578834 L4786 2021 3631 280992*151^265553-1 578640 L4001 2018 3632 851*2^1922179+1 578637 L3180 2013 3633 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 3634 314159*2^1920875+1 578247 L4994 2019 3635 157*2^1920152+1 578026 L2494 2013 3636 14066*60^324990+1 577886 L4444 2018 3637 143171*2^1918679+1 577586 L4504 2017 3638 1187*2^1918188-1 577436 L1828 2015 3639 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 3640 75492*151^264966-1 577360 L4444 2018 3641e 459*2^1917881-1 577343 L5551 2022 3642 1071*2^1917749-1 577304 L1828 2015 3643 335*2^1917610-1 577261 L1809 2014 3644 51*712^202369-1 577256 L4001 2018 3645 133631*28^398790-1 577118 p255 2013 3646 191*2^1916611+1 576960 L1792 2013 3647 1087*2^1916212+1 576841 L2719 2013 3648 1065*2^1916200-1 576837 L1828 2015 3649 1682*161^261371+1 576804 L5410 2020 3650 1125*2^1915695+1 576685 L3719 2013 3651 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 3652 63348*1027^191392+1 576396 L4001 2018 3653 93788*151^264402-1 576131 L4001 2018 3654e 461*2^1913118-1 575909 L5551 2022 3655 207*2^1913067+1 575893 L1741 2013 3656 80618*151^264291-1 575889 L4001 2018 3657 849*2^1913021+1 575880 L2413 2013 3658 72844*1027^191206+1 575836 L4001 2018 3659 859*430^218562+1 575580 L5410 2020 3660e 535*2^1911715-1 575487 L5545 2022 3661 280*53^333574+1 575177 L4294 2021 3662 85*2^1910520+1 575126 L2703 2011 3663 267*2^1909876-1 574933 L1828 2013 3664 4103*2^1909766-1 574901 L1959 2016 3665 621*2^1909716+1 574885 L2117 2013 3666 611*2^1909525+1 574828 L2413 2013 3667 379*2^1909097-1 574699 L1809 2014 3668 435*2^1908579+1 574543 L3385 2013 3669 4035*2^1907685-1 574275 L1959 2016 3670 291*2^1907541-1 574230 L2484 2013 3671 573*2^1907450+1 574203 L2520 2013 3672 10005*2^1906876-1 574031 L4405 2019 3673 14*814^197138-1 573796 L4001 2018 3674c 19061965*2^1905351-1 573576 p286 2022 3675 263*2^1904406-1 573286 L2484 2015 3676 969*2^1904357+1 573272 L2719 2013 3677 17*962^192155+1 573234 L4786 2020 3678 27*2^1902689-1 572768 L1153 2009 3679 553*2^1902102+1 572593 L2520 2013 3680 1112*423^218014-1 572583 L5410 2021 3681 4171*2^1901433-1 572392 L1959 2016 3682 86*394^220461-1 572208 L541 2020 3683 20707410481*2^1900579-1 572142 L5327 2021 3684 271562*151^262431-1 571837 L4001 2018 3685 1323*2^1899548-1 571825 L1828 2014 3686 10005*2^1898938-1 571642 L4405 2019 3687 4806*37^364466-1 571560 L4001 2015 3688 314159*2^1898333+1 571461 L4994 2019 3689 2707*352^224386+1 571412 L5410 2021 3690 633*2^1897632+1 571247 L1741 2013 3691e 451*2^1897621-1 571244 L5516 2022 3692 1131*2^1897379-1 571172 L1828 2014 3693 7092*313^228770-1 570910 L5410 2020 3694 707*2^1895035+1 570466 L3035 2013 3695e 429*2^1894947-1 570439 L5516 2022 3696 3945*2^1894329-1 570254 L4036 2015 3697 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 3698 4157*2^1892772-1 569785 L1959 2015 3699 154*730^198988+1 569770 L4001 2018 3700 10005*2^1892466-1 569694 L4405 2019 3701 1053*2^1891799-1 569492 L1828 2014 3702 687*2^1891730+1 569471 L3221 2013 3703 5758*211^244970+1 569384 L5410 2020 3704 87*2^1891391+1 569368 L2673 2011 3705 85287*2^1890011+1 568955 p254 2011 3706 221*2^1889983+1 568944 L1741 2013 3707e 597*2^1889088-1 568675 L5516 2022 3708 585*2^1887819+1 568293 L3171 2013 3709 347*2^1887507+1 568199 L3548 2013 3710 391*2^1886863-1 568005 L1809 2014 3711 791*2^1885961+1 567734 L3075 2013 3712 975*2^1885724+1 567663 L1129 2013 3713 22*615^203539-1 567647 L4001 2018 3714 987*2^1885160+1 567493 L2070 2013 3715 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 3716 744716047603963*2^1884575-1 567329 L257 2013 3717 485*2^1884579+1 567318 L3548 2013 3718 14296*421^216090+1 567086 L5410 2021 3719 879*2^1883385+1 566959 L3223 2013 3720 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 3721 693*2^1881882+1 566506 L2322 2013 3722 30*7^670289+1 566462 L3610 2014 3723 639*2^1880451+1 566075 L3141 2013 3724 277*2^1880022+1 565946 L3418 2013 3725 46498*1027^187913+1 565918 L4001 2018 3726 2655*2^1879275-1 565722 L2484 2018 3727 89*2^1879132-1 565678 L1828 2013 3728 441*2^1879067+1 565659 L2840 2013 3729 283*2^1879051-1 565654 L2484 2015 3730 214*378^219424-1 565566 L5410 2020 3731 729*2^1877995+1 565336 L1792 2013 3732 645*2^1877756+1 565264 L2981 2013 3733 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 3734 613*2^1876758+1 564964 L2413 2013 3735 10005*2^1876648-1 564932 L4405 2019 3736 267*2^1876604+1 564917 L1792 2013 3737 345067*2^1876573-1 564911 g59 2005 3738 1063*2^1876427-1 564864 L1828 2014 3739 1389*2^1876376-1 564849 L1828 2014 3740 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 3741 4015*2^1875453-1 564572 L1959 2014 3742 1043*2^1875213+1 564499 L2413 2013 3743 1209*2^1874804-1 564376 L1828 2014 3744 4125*2^1874718-1 564350 L1959 2015 3745 1199*2^1874495+1 564283 L2827 2013 3746 495*2^1874077+1 564157 L1344 2013 3747f 505*2^1873631-1 564022 L5516 2022 3748 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 3749 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 3750 21*2^1872923-1 563808 L2074 2012 3751 4039*2^1872875-1 563796 L1959 2015 3752f 439*2^1872789-1 563769 L5516 2022 3753 399878576^65536+1 563736 L4964 2019 Generalized Fermat 3754 357*2^1871600-1 563411 L2519 2014 3755 1309*2^1871045-1 563244 L1828 2014 3756 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 3757 735*2^1870118+1 562965 L3075 2013 3758 575*2^1869989+1 562926 L3650 2013 3759 315*2^1869119-1 562664 L2235 2012 3760 19683*2^1868828+1 562578 L3784 2019 3761 400*315^225179-1 562570 L4444 2021 3762 933*2^1868602+1 562509 L3709 2013 3763 503*2^1868417+1 562453 L3378 2013 3764 1073*2^1867944-1 562311 L1828 2014 3765 2*1595^175532-1 562188 L4961 2019 3766 13162*3^1177896+1 562004 L5410 2021 3767 1115*2^1866094-1 561754 L1828 2014 3768 70*905^189879-1 561408 L541 2017 3769 407*2^1864735+1 561344 L2520 2013 3770 10005*2^1864432-1 561254 L4405 2019 3771 489*2^1864339+1 561225 L2520 2013 3772 427*2^1863702+1 561033 L3586 2013 3773 1161*2^1863637+1 561014 L3213 2013 3774 2*3^1175232+1 560729 p199 2010 3775 347*2^1861974-1 560513 L2519 2014 3776 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 3777 411*2^1861627+1 560409 L1741 2013 3778 281*2^1860862-1 560178 L2484 2015 3779 1165*2^1860749-1 560145 L1828 2014 3780 231*2^1860743-1 560142 L1862 2015 3781 103*2^1860103-1 559949 L2484 2012 3782 350006744^65536+1 559945 L4964 2019 Generalized Fermat 3783 11726*1027^185913-1 559895 L4001 2018 3784 2655*2^1859692-1 559827 L1862 2018 3785 161*2^1859586-1 559794 L177 2013 3786 51*2^1859193+1 559675 L1204 2011 3787 1177*2^1859144+1 559662 L3625 2013 3788 1818*378^217098+1 559572 L5410 2021 3789 1455*2^1858634-1 559508 L1134 2015 3790 8331405*2^1858587-1 559498 L260 2011 3791 8*3^1172480+1 559417 L4799 2020 3792 145*590^201814+1 559199 L5410 2022 3793f 435*2^1857332-1 559116 L5551 2022 3794 669*2^1857223+1 559083 L2413 2013 3795 296990*151^256535-1 558990 L4700 2018 3796f 525*2^1856834-1 558966 L5516 2022 3797 1125*2^1856703-1 558927 L1828 2014 3798f 429*2^1856373-1 558827 L5516 2022 3799 52600*91^285235+1 558792 L5410 2020 3800 1155*2^1855389-1 558531 L1828 2014 3801 4031*2^1855338-1 558516 L1959 2014 3802 229*372^217261-1 558482 L4876 2019 3803 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 3804 126072*31^374323-1 558257 L2054 2012 3805 3^1170000+3^364398+1 558232 x44 2017 3806 4918*3^1169850+1 558164 L5410 2021 3807f 19*932^187910+1 557985 L5410 2022 3808 435*2^1853363-1 557921 L4036 2015 3809 1229*2^1853192-1 557870 L1828 2014 3810 3161*618^199877+1 557858 L4714 2018 3811 333*2^1853115-1 557846 L1830 2012 3812 87*2^1852590-1 557688 L2055 2011 3813 765*2^1849609+1 556791 L1792 2013 3814 137*2^1849238-1 556679 L321 2007 3815 639*2^1848903+1 556579 L3439 2013 3816 1061*268^229202-1 556537 L5410 2019 3817 261*2^1848217+1 556372 L1983 2013 3818 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 3819f 465*2^1847589-1 556183 L5516 2022 3820 88*107^273915-1 555881 L4444 2021 3821 275*2^1846390-1 555822 L2444 2014 3822 1011*2^1846173+1 555757 L3221 2013 3823f 575*2^1845718-1 555620 L5516 2022 3824 1029*2^1844975+1 555396 L2626 2013 3825 133*2^1843619-1 554987 L1959 2014 3826 261*2^1843555-1 554968 L1828 2013 3827 2^120*611953#*611957^50000+1 554832 p383 2015 3828 73246*1027^184192+1 554713 L4001 2018 3829f 503*2^1842034-1 554511 L5516 2022 3830 953*2^1841461+1 554338 L3612 2013 3831 4171*2^1841157-1 554248 L1959 2016 3832c 19061965*2^1840922+1 554181 p286 2022 3833 1089*2^1840695-1 554108 L1828 2014 3834 105*2^1840262-1 553977 L1959 2014 3835 1009*2^1840225-1 553966 L1828 2014 3836 1323*2^1839623-1 553785 L1828 2014 3837 681*2^1839269+1 553678 L3141 2013 3838 399*2^1839019-1 553603 L1809 2014 3839 779*2^1838955+1 553584 L3640 2013 3840f 503*2^1838444-1 553430 L5545 2022 3841 135*2^1838124+1 553333 L3472 2013 3842 15*2^1837873-1 553257 L632 2008 3843 28*392^213295-1 553137 L4001 2017 3844 1111*792^190801-1 553083 L5426 2021 3845 379*2^1837291-1 553083 L1809 2014 3846 333*2^1837105+1 553027 L3470 2013 3847 4167*2^1836466-1 552835 L1959 2015 3848 523061!5+1 552801 x46 2022 Multifactorial 3849 309*2^1836139+1 552736 L3460 2013 3850 271018852^65536+1 552666 L4704 2019 Generalized Fermat 3851 4061*2^1835582-1 552569 L1959 2014 3852 423*2^1835585+1 552569 L2873 2013 3853 1181*2^1834802-1 552334 L1828 2014 3854 73*2^1834526+1 552250 L1513 2011 3855 309*2^1834379+1 552206 L3471 2013 3856 3748*333^218908+1 552187 L4575 2017 3857 87*2^1834098+1 552121 L1513 2011 3858 26*578^199886-1 552073 L5415 2021 3859 1021*2^1833459-1 551930 L1828 2014 3860 34*813^189659-1 551927 L4001 2018 3861f 489*2^1833431-1 551921 L5545 2022 3862 121458*151^253264-1 551862 L4001 2018 3863 1485*2^1832651-1 551687 L1134 2014 3864 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 3865 549*2^1832457+1 551628 L3641 2013 3866 295*2^1832129-1 551529 L2444 2014 3867 761*2^1831569+1 551361 L2117 2013 3868 519*2^1831415+1 551314 L3277 2013 3869f 517*2^1831257-1 551267 L5516 2022 3870 21*2^1830919+1 551163 g279 2004 3871f 489*2^1830584-1 551064 L5516 2022 3872 197*2^1830255+1 550964 L1360 2013 3873 4*3^1154598+1 550884 L4962 2019 Generalized Fermat 3874 63708*151^252785-1 550818 L4001 2018 3875 10*3^1153674+1 550444 L4965 2020 3876 6297*46^330940-1 550277 L4001 2019 3877 220*848^187868+1 550155 L5436 2021 3878 1021*2^1827279-1 550069 L1828 2013 3879f 573*2^1827066-1 550005 L5184 2022 3880 825*2^1825439+1 549515 L3289 2013 3881 679*2^1824918+1 549358 L2100 2013 3882 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 3883f 439*2^1824841-1 549335 L5184 2022 3884 4029*2^1824569-1 549254 L1959 2015 3885 235*2^1824515-1 549237 L2444 2014 3886 162668*5^785748-1 549220 L3190 2012 3887 389*2^1824385+1 549198 L1487 2013 3888 1135*2^1824103-1 549113 L1828 2013 3889 4005*2^1823819-1 549028 L1959 2015 3890 91179*2^1823580-1 548958 L2777 2016 3891 3874*253^228394+1 548862 L5410 2020 3892 991*2^1822216+1 548545 L1312 2013 3893 13984*24^397259+1 548306 L4806 2019 3894 1089*2^1821417+1 548305 L1741 2013 3895 552*1006^182599-1 548275 L4064 2021 3896 993*2^1821088+1 548206 L2131 2013 3897 513*2^1820982+1 548173 L2826 2013 3898a 979*2^1820167-1 547928 L1817 2022 3899f 591*2^1820118-1 547913 L5516 2022 3900 933*2^1820068+1 547899 L2895 2013 3901 921*2^1819560+1 547746 L1741 2013 3902a 677*2^1819216-1 547642 L1817 2022 3903 557*2^1819191+1 547634 L2526 2013 3904 20*317^218953+1 547616 L541 2020 3905 593*2^1818825+1 547524 L3630 2013 3906 1161*2^1818637+1 547468 L2399 2013 3907 1387*2^1818593-1 547455 L1828 2012 3908 875*2^1818427+1 547405 L3035 2013 3909 229*2^1818078+1 547299 L3456 2013 3910 323473!3+1 547270 x46 2022 Multifactorial 3911 454483*2^1817935-1 547259 p77 2014 3912 127*2^1817862+1 547234 L3452 2013 3913 4065*2^1817502-1 547127 L1959 2015 3914 35*2^1817486-1 547120 L2074 2011 3915 1155*2^1816779-1 546909 L1828 2012 3916 69*2^1816739+1 546895 L1204 2011 3917 4101*2^1816007-1 546677 L1959 2015 3918 875*2^1814911+1 546346 L3691 2013 3919 18092*565^198465-1 546190 L4001 2017 3920 1029*2^1813839+1 546023 L3378 2013 3921 555*2^1813556+1 545938 L3233 2013 3922 138*273^224093-1 545930 L4444 2022 3923 33*2^1813526-1 545928 L621 2008 3924 1347*2^1813433-1 545901 L1828 2012 3925 1143*2^1813125+1 545809 L3514 2013 3926 1197*2^1811852+1 545425 L3035 2013 3927 10007*2^1811598-1 545350 L1751 2018 3928 693*2^1811517+1 545324 L2967 2013 3929 1099*2^1810686+1 545074 L3458 2013 3930 92*10^544905-1 544907 L3735 2015 Near-repdigit 3931 1305*2^1809766-1 544797 L1828 2011 3932 1185*2^1809466-1 544707 L1828 2011 3933 659*2^1808691+1 544474 L3625 2013 3934 145*2^1807767-1 544195 L840 2013 3935 9*2^1807574+1 544135 L2419 2011 Generalized Fermat 3936 4117*2^1807085-1 543991 L1959 2014 3937 375*2^1806591+1 543841 L3233 2013 3938 889*2^1806470+1 543805 L2967 2013 3939 1033*2^1805844+1 543617 L1502 2013 3940 561*2^1805767-1 543593 L5516 2022 3941 4039*2^1805627-1 543552 L1959 2015 3942 981*2^1805368+1 543473 L2413 2013 3943 915*2^1805031+1 543372 L1741 2013 3944 691*2^1804332+1 543161 L3625 2013 3945b 741*2^1803805-1 543003 L1817 2022 3946 4089*2^1803463-1 542901 L1959 2016 3947 1965*2^1803256-1 542838 L4113 2017 3948 385*2^1802362+1 542568 L3279 2013 3949b 707*2^1802270-1 542541 L2519 2022 3950b 603*2^1802231-1 542529 L1817 2022 3951 661*2^1802024+1 542467 L2967 2013 3952 96*439^205245-1 542355 L5410 2021 3953 2415*2^1801615-1 542344 L2484 2018 3954 985*2^1801582+1 542334 L3035 2013 3955 285*2^1801236-1 542229 L5313 2021 3956 301*2^1801207-1 542220 p281 2010 3957 1193*2^1801112-1 542192 L1828 2011 3958 513755!5-1 542165 x46 2019 Multifactorial 3959 417643*2^1800787-1 542097 L134 2005 3960 1045*2^1800784+1 542094 L3141 2013 3961 4017*2^1800617-1 542044 L1959 2014 3962b 977*2^1800512-1 542012 L1817 2022 3963 33910*1027^179973+1 542006 L4700 2018 3964 320607*2^1800434-1 541991 g337 2019 3965 1045*2^1800025-1 541865 L1828 2011 3966 4009*2^1799073-1 541579 L1959 2015 3967 43*2^1799016+1 541560 L2562 2011 3968 437*2^1798830-1 541505 L5516 2022 3969 4079*2^1798192-1 541314 L1959 2014 3970d 2096*352^212554-1 541282 L5410 2022 3971 3271*372^210566-1 541273 L5410 2019 3972 19683*2^1797997+1 541256 L4970 2019 3973 220502!2+1 541239 p394 2017 Multifactorial 3974 1047*2^1797890+1 541222 L3473 2013 3975 1965*2^1797877-1 541219 L4113 2017 3976 423*2^1797511-1 541108 L5516 2022 3977 3^1134000+3^360654+1 541056 x44 2017 3978 319*2^1797261-1 541032 L1819 2013 3979 1712*333^214484+1 541028 L4575 2017 3980 1103*2^1796969+1 540945 L2826 2013 3981 197*2^1796284-1 540738 L1862 2015 3982 4137*2^1796226-1 540722 L1959 2015 3983 537*2^1796196-1 540712 L5516 2022 3984 174*643^192540-1 540696 L4001 2018 3985 10041*2^1795990-1 540651 p168 2017 3986 43*2^1795628+1 540540 L1129 2011 3987 11682*1027^179399+1 540277 L4001 2018 3988 383*2^1794636-1 540242 L1809 2014 3989 14172*1027^179381-1 540223 L4001 2018 3990 4119*2^1794544-1 540216 L1959 2015 3991 423*2^1794546+1 540215 L3131 2013 3992 736663*2^1794419-1 540180 L541 2021 3993 1101*2^1794417-1 540177 L1828 2014 3994 387*2^1793857-1 540008 L2519 2014 3995 Phi(3,-311095^49152) 539974 L4142 2016 Generalized unique 3996 105*2^1793519-1 539906 L1959 2014 3997 1223*618^193431+1 539867 L4001 2018 3998c 653*2^1792810-1 539693 L5545 2022 3999a 171665424^65536+1 539669 L5101 2022 Generalized Fermat 4000a 171538424^65536+1 539648 L4853 2022 Generalized Fermat 4001a 171516682^65536+1 539644 L5604 2022 Generalized Fermat 4002a 171422110^65536+1 539628 L5603 2022 Generalized Fermat 4003 33*20^414757+1 539613 L4789 2021 4004a 171312534^65536+1 539610 L5602 2022 Generalized Fermat 4005 1103*2^1792513+1 539604 L3262 2013 4006a 171267078^65536+1 539603 L4387 2022 Generalized Fermat 4007a 171206776^65536+1 539593 L4387 2022 Generalized Fermat 4008c 773*2^1792454-1 539586 L1817 2022 4009b 171101678^65536+1 539575 L4387 2022 Generalized Fermat 4010b 170856176^65536+1 539534 L5599 2022 Generalized Fermat 4011b 170826210^65536+1 539529 L4387 2022 Generalized Fermat 4012b 170762742^65536+1 539519 L4677 2022 Generalized Fermat 4013b 170752522^65536+1 539517 L5101 2022 Generalized Fermat 4014b 170751752^65536+1 539517 L4387 2022 Generalized Fermat 4015b 170573784^65536+1 539487 L5070 2022 Generalized Fermat 4016b 170485780^65536+1 539472 L5597 2022 Generalized Fermat 4017b 170480348^65536+1 539472 L4677 2022 Generalized Fermat 4018b 170458468^65536+1 539468 L5595 2022 Generalized Fermat 4019b 170453992^65536+1 539467 L5347 2022 Generalized Fermat 4020b 170404522^65536+1 539459 L5101 2022 Generalized Fermat 4021b 170378114^65536+1 539454 L5593 2022 Generalized Fermat 4022b 170372754^65536+1 539454 L4853 2022 Generalized Fermat 4023b 170327188^65536+1 539446 L4387 2022 Generalized Fermat 4024b 170312504^65536+1 539443 L5526 2022 Generalized Fermat 4025b 170290454^65536+1 539440 L4747 2022 Generalized Fermat 4026b 170214064^65536+1 539427 L4387 2022 Generalized Fermat 4027b 170192994^65536+1 539423 L4905 2022 Generalized Fermat 4028b 170102850^65536+1 539408 L5591 2022 Generalized Fermat 4029b 169934432^65536+1 539380 L4862 2022 Generalized Fermat 4030b 169896218^65536+1 539374 L4249 2022 Generalized Fermat 4031b 169865462^65536+1 539369 L5347 2022 Generalized Fermat 4032c 169759134^65536+1 539351 L5347 2022 Generalized Fermat 4033c 169647304^65536+1 539332 L5588 2022 Generalized Fermat 4034 431*2^1791441+1 539281 L3453 2013 4035 1185*2^1791429-1 539277 L1828 2014 4036c 169277952^65536+1 539270 L4387 2022 Generalized Fermat 4037c 169256018^65536+1 539266 L4387 2022 Generalized Fermat 4038c 805*2^1791273-1 539230 L1817 2022 4039 429*2^1791163-1 539197 L5516 2022 4040c 168789060^65536+1 539188 L4387 2022 Generalized Fermat 4041c 168736614^65536+1 539179 L4387 2022 Generalized Fermat 4042b 168640932^65536+1 539163 L5586 2022 Generalized Fermat 4043 13460*171^241448+1 539157 L5410 2019 4044c 168441316^65536+1 539129 L4387 2022 Generalized Fermat 4045c 168392570^65536+1 539121 L4387 2022 Generalized Fermat 4046c 168272988^65536+1 539101 L4387 2022 Generalized Fermat 4047c 168158620^65536+1 539081 L4729 2022 Generalized Fermat 4048c 168085014^65536+1 539069 L4835 2022 Generalized Fermat 4049c 168070968^65536+1 539066 L4359 2022 Generalized Fermat 4050 16*140^251178+1 539062 L4940 2019 Generalized Fermat 4051c 167989240^65536+1 539053 L5586 2022 Generalized Fermat 4052c 167952588^65536+1 539046 L4387 2022 Generalized Fermat 4053e 167811262^65536+1 539022 L5357 2022 Generalized Fermat 4054e 167786168^65536+1 539018 L5101 2022 Generalized Fermat 4055f 167692050^65536+1 539002 L5549 2022 Generalized Fermat 4056f 167555208^65536+1 538979 L5526 2022 Generalized Fermat 4057f 167552298^65536+1 538978 L5101 2022 Generalized Fermat 4058f 167392398^65536+1 538951 L5544 2022 Generalized Fermat 4059f 167367704^65536+1 538947 L5544 2022 Generalized Fermat 4060f 167333098^65536+1 538941 L5357 2022 Generalized Fermat 4061f 167217958^65536+1 538922 L5101 2022 Generalized Fermat 4062 607*2^1790196+1 538906 L4123 2013 4063f 167061856^65536+1 538895 L5548 2022 Generalized Fermat 4064 1293991*2^1790128+1 538889 L4789 2019 4065f 166987494^65536+1 538882 L5544 2022 Generalized Fermat 4066f 166787224^65536+1 538848 L5101 2022 Generalized Fermat 4067f 166707658^65536+1 538835 L4245 2022 Generalized Fermat 4068f 166695390^65536+1 538832 L5101 2022 Generalized Fermat 4069e 166579910^65536+1 538813 L5552 2022 Generalized Fermat 4070f 166444082^65536+1 538790 L5322 2022 Generalized Fermat 4071 143157*2^1789798+1 538789 L4504 2016 4072f 166245178^65536+1 538756 L5544 2022 Generalized Fermat 4073f 166199362^65536+1 538748 L5526 2022 Generalized Fermat 4074f 166133392^65536+1 538736 L5101 2022 Generalized Fermat 4075 165758598^65536+1 538672 L5355 2022 Generalized Fermat 4076 165693636^65536+1 538661 L5543 2022 Generalized Fermat 4077 1059*2^1789353+1 538652 L1130 2013 4078 975*2^1789341+1 538649 L2085 2013 4079 165300848^65536+1 538593 L4201 2022 Generalized Fermat 4080 165182046^65536+1 538573 L5539 2022 Generalized Fermat 4081 165119758^65536+1 538562 L5542 2022 Generalized Fermat 4082 165107060^65536+1 538560 L4201 2022 Generalized Fermat 4083 165071282^65536+1 538554 L4861 2022 Generalized Fermat 4084 165042714^65536+1 538549 L4299 2022 Generalized Fermat 4085 165035994^65536+1 538548 L4861 2022 Generalized Fermat 4086 165006098^65536+1 538543 L5539 2022 Generalized Fermat 4087 164975524^65536+1 538537 L5538 2022 Generalized Fermat 4088 164961074^65536+1 538535 L5347 2022 Generalized Fermat 4089 164947166^65536+1 538532 L4201 2022 Generalized Fermat 4090 273*2^1788926-1 538523 L1828 2013 4091 164688674^65536+1 538488 L5526 2022 Generalized Fermat 4092 164664420^65536+1 538484 L4201 2022 Generalized Fermat 4093 164634446^65536+1 538478 L5512 2022 Generalized Fermat 4094 164607472^65536+1 538474 L5512 2022 Generalized Fermat 4095 164585942^65536+1 538470 L5386 2022 Generalized Fermat 4096 164541530^65536+1 538462 L5128 2022 Generalized Fermat 4097 4125*2^1788660-1 538444 L1959 2015 4098 164410268^65536+1 538440 L5533 2022 Generalized Fermat 4099 164331980^65536+1 538426 L5101 2022 Generalized Fermat 4100 163984990^65536+1 538366 L4753 2022 Generalized Fermat 4101 163837248^65536+1 538340 L5347 2022 Generalized Fermat 4102 163714676^65536+1 538319 L5101 2022 Generalized Fermat 4103 163667476^65536+1 538311 L5025 2022 Generalized Fermat 4104 289184*5^770116-1 538294 p353 2012 4105 163415294^65536+1 538267 L5416 2022 Generalized Fermat 4106 163384952^65536+1 538262 L5332 2022 Generalized Fermat 4107 163335900^65536+1 538253 L4584 2022 Generalized Fermat 4108 1065*2^1787993-1 538243 L1828 2014 4109 163241232^65536+1 538237 L5528 2022 Generalized Fermat 4110 163148472^65536+1 538220 L5025 2022 Generalized Fermat 4111 163096432^65536+1 538211 L5526 2022 Generalized Fermat 4112 162990842^65536+1 538193 L5370 2022 Generalized Fermat 4113 162936076^65536+1 538183 L5525 2022 Generalized Fermat 4114 441*2^1787789+1 538181 L1209 2013 4115 162841028^65536+1 538167 L5522 2022 Generalized Fermat 4116 162722282^65536+1 538146 L5521 2022 Generalized Fermat 4117 162521980^65536+1 538111 L5070 2022 Generalized Fermat 4118 162512058^65536+1 538109 L5070 2022 Generalized Fermat 4119c 623*2^1787546-1 538108 L1817 2022 4120 162494828^65536+1 538106 L5070 2022 Generalized Fermat 4121 162423200^65536+1 538094 L4737 2022 Generalized Fermat 4122 162341418^65536+1 538079 L4747 2022 Generalized Fermat 4123 162244902^65536+1 538062 L5520 2022 Generalized Fermat 4124c 161961620^65536+1 538013 L5577 2022 Generalized Fermat 4125c 161892534^65536+1 538000 L4853 2022 Generalized Fermat 4126d 161812882^65536+1 537986 L4672 2022 Generalized Fermat 4127 565*2^1787136+1 537985 L1512 2013 4128d 161729494^65536+1 537972 L4729 2022 Generalized Fermat 4129d 161652768^65536+1 537958 L5347 2022 Generalized Fermat 4130d 161552358^65536+1 537941 L4729 2022 Generalized Fermat 4131d 161533952^65536+1 537937 L4729 2022 Generalized Fermat 4132 247*2^1786968+1 537934 L2533 2013 4133d 161390048^65536+1 537912 L4729 2022 Generalized Fermat 4134d 161373520^65536+1 537909 L4729 2022 Generalized Fermat 4135d 161336572^65536+1 537902 L4387 2022 Generalized Fermat 4136d 161336170^65536+1 537902 L4387 2022 Generalized Fermat 4137d 161284686^65536+1 537893 L5347 2022 Generalized Fermat 4138 227*2^1786779+1 537877 L2058 2013 4139d 161155178^65536+1 537870 L4249 2022 Generalized Fermat 4140d 161040604^65536+1 537850 L5222 2022 Generalized Fermat 4141d 161019960^65536+1 537847 L5222 2022 Generalized Fermat 4142d 160896206^65536+1 537825 L4729 2022 Generalized Fermat 4143d 160652984^65536+1 537782 L4853 2022 Generalized Fermat 4144 11812*5^769343-1 537752 p341 2012 4145d 160477270^65536+1 537750 L4387 2022 Generalized Fermat 4146d 160459326^65536+1 537747 L5101 2022 Generalized Fermat 4147 933*2^1786320+1 537739 L1505 2013 4148d 160300770^65536+1 537719 L5561 2022 Generalized Fermat 4149e 160280252^65536+1 537716 L5526 2022 Generalized Fermat 4150e 160278312^65536+1 537715 L5452 2022 Generalized Fermat 4151 507*2^1786194+1 537701 L3422 2013 4152e 160186476^65536+1 537699 L5101 2022 Generalized Fermat 4153e 160144132^65536+1 537691 L5101 2022 Generalized Fermat 4154e 159680478^65536+1 537609 L5499 2022 Generalized Fermat 4155e 159679014^65536+1 537609 L5349 2022 Generalized Fermat 4156e 159660244^65536+1 537605 L5101 2022 Generalized Fermat 4157e 159548422^65536+1 537585 L5101 2022 Generalized Fermat 4158 921*2^1785808+1 537585 L3262 2013 4159 179114*151^246711-1 537583 L4700 2018 4160e 159424086^65536+1 537563 L5556 2022 Generalized Fermat 4161 1187*2^1785707+1 537555 L1753 2013 4162 55555*2^1785446+1 537478 L4828 2018 4163 158595406^65536+1 537415 L4861 2022 Generalized Fermat 4164 158534146^65536+1 537404 L5374 2022 Generalized Fermat 4165c 825*2^1785134-1 537382 L1817 2022 4166 158375834^65536+1 537375 L4726 2022 Generalized Fermat 4167 158345700^65536+1 537370 L5416 2022 Generalized Fermat 4168 158184126^65536+1 537341 L4894 2022 Generalized Fermat 4169 158097404^65536+1 537325 L4694 2022 Generalized Fermat 4170 256*14^468784+1 537289 L3802 2014 Generalized Fermat 4171 157878038^65536+1 537286 L5030 2022 Generalized Fermat 4172 157792502^65536+1 537270 L5515 2022 Generalized Fermat 4173 157778292^65536+1 537268 L5483 2022 Generalized Fermat 4174 157696604^65536+1 537253 L5024 2022 Generalized Fermat 4175 157640030^65536+1 537243 L5030 2022 Generalized Fermat 4176 157582320^65536+1 537232 L4774 2022 Generalized Fermat 4177 157568692^65536+1 537230 L4737 2022 Generalized Fermat 4178 157479388^65536+1 537214 L4904 2022 Generalized Fermat 4179 157372184^65536+1 537194 L5512 2022 Generalized Fermat 4180 63*2^1784498+1 537190 L1415 2011 4181 158*911^181509+1 537182 L5410 2019 4182 157254464^65536+1 537173 L4410 2022 Generalized Fermat 4183 157080152^65536+1 537142 L4763 2022 Generalized Fermat 4184 117134*151^246492-1 537106 L4001 2018 4185 156882252^65536+1 537106 L5273 2022 Generalized Fermat 4186 156830996^65536+1 537096 L4733 2022 Generalized Fermat 4187 156828668^65536+1 537096 L5069 2022 Generalized Fermat 4188 1333*2^1784103-1 537072 L1828 2014 4189 156614630^65536+1 537057 L4726 2022 Generalized Fermat 4190 156606194^65536+1 537055 L4544 2022 Generalized Fermat 4191 156566756^65536+1 537048 L4774 2022 Generalized Fermat 4192 156491914^65536+1 537035 L5057 2022 Generalized Fermat 4193 156414678^65536+1 537021 L4726 2022 Generalized Fermat 4194 156413292^65536+1 537020 L4942 2022 Generalized Fermat 4195 156400210^65536+1 537018 L4726 2022 Generalized Fermat 4196 156384608^65536+1 537015 L5022 2022 Generalized Fermat 4197 2060*135^252066-1 536989 L5410 2019 4198 231*2^1783821+1 536986 L3262 2013 4199 155990522^65536+1 536943 L5204 2022 Generalized Fermat 4200 155883376^65536+1 536924 L5483 2022 Generalized Fermat 4201 155788986^65536+1 536907 L4656 2022 Generalized Fermat 4202 155750578^65536+1 536900 L4726 2022 Generalized Fermat 4203 155257984^65536+1 536809 L4904 2022 Generalized Fermat 4204 155253336^65536+1 536809 L4245 2022 Generalized Fermat 4205 3098*565^195049-1 536788 L4001 2017 4206 4416*217^229737-1 536775 L5410 2020 4207 216*558^195427-1 536769 L5196 2021 4208 563*2^1782872-1 536701 L2519 2022 4209 154546726^65536+1 536679 L4755 2022 Generalized Fermat 4210 154210752^65536+1 536617 L4308 2022 Generalized Fermat 4211 154011386^65536+1 536580 L5500 2022 Generalized Fermat 4212 153760922^65536+1 536534 L5005 2022 Generalized Fermat 4213 153583464^65536+1 536501 L5500 2022 Generalized Fermat 4214 153431116^65536+1 536473 L5500 2022 Generalized Fermat 4215 968*837^183539-1 536438 L5410 2021 4216 153012732^65536+1 536395 L5453 2022 Generalized Fermat 4217 152967836^65536+1 536386 L4201 2022 Generalized Fermat 4218 152899418^65536+1 536374 L5251 2022 Generalized Fermat 4219 152866426^65536+1 536368 L5251 2022 Generalized Fermat 4220 4069*2^1781691-1 536347 L1959 2014 4221 152702128^65536+1 536337 L5275 2022 Generalized Fermat 4222 152482638^65536+1 536296 L4245 2022 Generalized Fermat 4223 152329200^65536+1 536267 L4905 2022 Generalized Fermat 4224 152257544^65536+1 536254 L4245 2022 Generalized Fermat 4225 152246980^65536+1 536252 L4245 2022 Generalized Fermat 4226 152143536^65536+1 536233 L4745 2022 Generalized Fermat 4227 575*2^1781313+1 536232 L3262 2013 4228 152024526^65536+1 536210 L4544 2022 Generalized Fermat 4229 151770050^65536+1 536163 L5467 2022 Generalized Fermat 4230 151648712^65536+1 536140 L4201 2022 Generalized Fermat 4231 151556938^65536+1 536123 L4745 2022 Generalized Fermat 4232 151514532^65536+1 536115 L5498 2022 Generalized Fermat 4233 151336498^65536+1 536081 L4245 2022 Generalized Fermat 4234 151009320^65536+1 536020 L5495 2022 Generalized Fermat 4235 150994194^65536+1 536017 L4760 2022 Generalized Fermat 4236 150809098^65536+1 535982 L4734 2022 Generalized Fermat 4237 150722260^65536+1 535966 L4245 2022 Generalized Fermat 4238 150644616^65536+1 535951 L4201 2022 Generalized Fermat 4239 150591018^65536+1 535941 L4201 2022 Generalized Fermat 4240 883*2^1780324+1 535934 L2963 2013 4241 150482286^65536+1 535920 L5019 2022 Generalized Fermat 4242 391*2^1780155-1 535883 L1809 2014 4243 479*2^1780112-1 535870 L5516 2022 4244 150142948^65536+1 535856 L5491 2022 Generalized Fermat 4245 150132248^65536+1 535854 L4914 2022 Generalized Fermat 4246 150098876^65536+1 535848 L5469 2022 Generalized Fermat 4247 150078542^65536+1 535844 L5490 2022 Generalized Fermat 4248 150061008^65536+1 535840 L5470 2022 Generalized Fermat 4249 150034754^65536+1 535835 L4550 2022 Generalized Fermat 4250c 915*2^1779982-1 535831 L1817 2022 4251 149996492^65536+1 535828 L4544 2022 Generalized Fermat 4252 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 4253 149957710^65536+1 535821 L4905 2022 Generalized Fermat 4254 149814764^65536+1 535794 L4201 2022 Generalized Fermat 4255 357659*2^1779748-1 535764 L47 2005 4256 149621682^65536+1 535757 L5297 2022 Generalized Fermat 4257 123*2^1779728-1 535754 L3967 2014 4258 149579792^65536+1 535749 L5265 2022 Generalized Fermat 4259 149578510^65536+1 535749 L4692 2022 Generalized Fermat 4260 149495200^65536+1 535733 L5030 2022 Generalized Fermat 4261 149491768^65536+1 535732 L4550 2022 Generalized Fermat 4262 149465356^65536+1 535727 L4245 2022 Generalized Fermat 4263 1061*2^1779595+1 535715 L3445 2013 4264 149265044^65536+1 535689 L5275 2022 Generalized Fermat 4265 455*2^1779315+1 535630 L2121 2013 4266 148896558^65536+1 535619 L5485 2022 Generalized Fermat 4267 71899*1234547#+1 535609 p195 2022 4268 26864*1234547#+1 535609 p195 2022 4269 148806450^65536+1 535601 L5391 2022 Generalized Fermat 4270 45*20^411657+1 535580 L4789 2021 4271 148402470^65536+1 535524 L4245 2022 Generalized Fermat 4272 148366966^65536+1 535517 L4245 2022 Generalized Fermat 4273 663251*2^1778899+1 535508 L4789 2018 4274 31521*2^1778899-1 535507 L3519 2015 4275 148302820^65536+1 535505 L4760 2022 Generalized Fermat 4276 148275334^65536+1 535500 L4760 2022 Generalized Fermat 4277 148221832^65536+1 535489 L4773 2022 Generalized Fermat 4278 863*2^1778737+1 535457 L1505 2013 4279 316594*5^766005-1 535421 L3157 2012 4280 147834014^65536+1 535415 L4245 2022 Generalized Fermat 4281 147796196^65536+1 535408 L5460 2022 Generalized Fermat 4282 147761138^65536+1 535401 L4245 2022 Generalized Fermat 4283 1468*3^1122083+1 535373 L5410 2021 4284 147570204^65536+1 535364 L4245 2022 Generalized Fermat 4285 147512094^65536+1 535353 L4544 2022 Generalized Fermat 4286 147382164^65536+1 535328 L4898 2022 Generalized Fermat 4287 147208122^65536+1 535294 L5030 2022 Generalized Fermat 4288 147202056^65536+1 535293 L5460 2022 Generalized Fermat 4289 147170456^65536+1 535287 L5483 2022 Generalized Fermat 4290 2016*991^178654+1 535264 L5410 2021 4291 146933674^65536+1 535241 L4245 2022 Generalized Fermat 4292 146925950^65536+1 535239 L4956 2022 Generalized Fermat 4293 146924772^65536+1 535239 L4245 2022 Generalized Fermat 4294 146826798^65536+1 535220 L4245 2022 Generalized Fermat 4295 146780644^65536+1 535211 L4245 2022 Generalized Fermat 4296 146680212^65536+1 535192 L4956 2022 Generalized Fermat 4297 146653986^65536+1 535187 L4245 2022 Generalized Fermat 4298 146504914^65536+1 535158 L4905 2022 Generalized Fermat 4299 146425914^65536+1 535142 L5265 2022 Generalized Fermat 4300 99*2^1777688-1 535140 L1862 2011 4301 1806*213^229825+1 535124 L5410 2020 4302 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 4303 511*2^1777488+1 535080 L2873 2013 4304 243*2^1777467-1 535074 L2055 2011 4305 145932888^65536+1 535046 L5469 2022 Generalized Fermat 4306 145585776^65536+1 534979 L4774 2022 Generalized Fermat 4307 66*163^241811+1 534934 L5410 2019 4308 145072510^65536+1 534878 L5425 2022 Generalized Fermat 4309 145066756^65536+1 534877 L5460 2022 Generalized Fermat 4310 112*281^218429-1 534871 L4001 2018 4311 145016656^65536+1 534867 L5078 2022 Generalized Fermat 4312 144973634^65536+1 534859 L5460 2022 Generalized Fermat 4313 144973524^65536+1 534859 L5072 2022 Generalized Fermat 4314 144882226^65536+1 534841 L5460 2022 Generalized Fermat 4315 144756106^65536+1 534816 L5470 2022 Generalized Fermat 4316 144716102^65536+1 534808 L5460 2022 Generalized Fermat 4317 144684440^65536+1 534802 L5474 2022 Generalized Fermat 4318 144675274^65536+1 534800 L5474 2022 Generalized Fermat 4319 144585734^65536+1 534782 L5277 2022 Generalized Fermat 4320 144568054^65536+1 534779 L5460 2022 Generalized Fermat 4321 144485588^65536+1 534763 L5016 2022 Generalized Fermat 4322 144470894^65536+1 534760 L5025 2022 Generalized Fermat 4323 144386092^65536+1 534743 L5473 2022 Generalized Fermat 4324 144248374^65536+1 534716 L4892 2022 Generalized Fermat 4325 144128416^65536+1 534692 L5234 2022 Generalized Fermat 4326 144086288^65536+1 534684 L4905 2022 Generalized Fermat 4327 144084846^65536+1 534684 L4977 2022 Generalized Fermat 4328 143986848^65536+1 534664 L5255 2022 Generalized Fermat 4329 143963966^65536+1 534660 L4899 2022 Generalized Fermat 4330 143877852^65536+1 534643 L5460 2022 Generalized Fermat 4331 143862854^65536+1 534640 L5254 2022 Generalized Fermat 4332 143735714^65536+1 534615 L5265 2022 Generalized Fermat 4333 143676278^65536+1 534603 L4387 2022 Generalized Fermat 4334 143620534^65536+1 534592 L5297 2022 Generalized Fermat 4335 143476918^65536+1 534563 L5460 2022 Generalized Fermat 4336 177*2^1775674-1 534534 L2101 2012 4337 143258560^65536+1 534520 L4742 2022 Generalized Fermat 4338 143228594^65536+1 534514 L5460 2022 Generalized Fermat 4339 143155562^65536+1 534500 L4905 2022 Generalized Fermat 4340 293*2^1775450-1 534467 L2074 2014 4341 142911028^65536+1 534451 L4550 2022 Generalized Fermat 4342 142840816^65536+1 534437 L5470 2022 Generalized Fermat 4343 142701560^65536+1 534409 L4737 2022 Generalized Fermat 4344 593*2^1775256-1 534409 L5516 2022 4345 1005*2^1775235-1 534402 L1828 2014 4346 773*138^249730-1 534395 L5092 2020 4347 142563056^65536+1 534382 L5036 2022 Generalized Fermat 4348d 5468*693^188110+1 534375 L5410 2022 4349 142505312^65536+1 534370 L4899 2022 Generalized Fermat 4350 142306284^65536+1 534330 L4726 2022 Generalized Fermat 4351 142293110^65536+1 534328 L5297 2022 Generalized Fermat 4352d 897*2^1774913-1 534306 L2519 2022 4353 142036092^65536+1 534276 L5254 2022 Generalized Fermat 4354 142015204^65536+1 534272 L4737 2022 Generalized Fermat 4355 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 4356 141868280^65536+1 534242 L5025 2022 Generalized Fermat 4357 141821432^65536+1 534233 L5297 2022 Generalized Fermat 4358d 957*2^1774672-1 534233 L1817 2022 4359 141477572^65536+1 534164 L5051 2022 Generalized Fermat 4360 141368280^65536+1 534142 L4249 2022 Generalized Fermat 4361 141176792^65536+1 534103 L5297 2022 Generalized Fermat 4362 141159612^65536+1 534100 L5467 2022 Generalized Fermat 4363 141127960^65536+1 534094 L5297 2022 Generalized Fermat 4364 140825230^65536+1 534032 L4726 2022 Generalized Fermat 4365 140596486^65536+1 533986 L5101 2022 Generalized Fermat 4366 140563252^65536+1 533979 L5005 2022 Generalized Fermat 4367 140561102^65536+1 533979 L4950 2022 Generalized Fermat 4368 140278338^65536+1 533922 L5432 2022 Generalized Fermat 4369 140182506^65536+1 533902 L5005 2022 Generalized Fermat 4370 140173342^65536+1 533900 L4249 2022 Generalized Fermat 4371 140069668^65536+1 533879 L5374 2022 Generalized Fermat 4372 139976206^65536+1 533860 L5457 2022 Generalized Fermat 4373 139948998^65536+1 533855 L4747 2022 Generalized Fermat 4374 139878242^65536+1 533840 L5453 2022 Generalized Fermat 4375 139530936^65536+1 533770 L5005 2022 Generalized Fermat 4376 139462208^65536+1 533756 L4245 2022 Generalized Fermat 4377 4053*2^1773028-1 533739 L1959 2015 4378 139295348^65536+1 533722 L4371 2021 Generalized Fermat 4379 139275160^65536+1 533717 L4249 2021 Generalized Fermat 4380 139241582^65536+1 533711 L5205 2021 Generalized Fermat 4381 139168954^65536+1 533696 L4245 2021 Generalized Fermat 4382d 723*2^1772872-1 533691 L1817 2022 4383 139145838^65536+1 533691 L4245 2021 Generalized Fermat 4384 139138610^65536+1 533689 L4249 2021 Generalized Fermat 4385 139082038^65536+1 533678 L4249 2021 Generalized Fermat 4386 139065554^65536+1 533675 L5312 2021 Generalized Fermat 4387 139061582^65536+1 533674 L5455 2021 Generalized Fermat 4388 1471*2^1772755-1 533656 L1830 2020 4389 138973204^65536+1 533656 L5101 2021 Generalized Fermat 4390 138793926^65536+1 533619 L4747 2021 Generalized Fermat 4391 138710732^65536+1 533602 L4774 2021 Generalized Fermat 4392 138688732^65536+1 533597 L5157 2021 Generalized Fermat 4393 138628730^65536+1 533585 L5101 2021 Generalized Fermat 4394 138554746^65536+1 533570 L4774 2021 Generalized Fermat 4395 24328*52^310932+1 533565 L5410 2019 4396 138484612^65536+1 533555 L4249 2021 Generalized Fermat 4397 137963452^65536+1 533448 L5441 2021 Generalized Fermat 4398 137907846^65536+1 533437 L4774 2021 Generalized Fermat 4399 137877692^65536+1 533430 L4774 2021 Generalized Fermat 4400 137817880^65536+1 533418 L4774 2021 Generalized Fermat 4401d 833*2^1771960-1 533417 L1817 2022 4402 137781496^65536+1 533411 L4774 2021 Generalized Fermat 4403 137657614^65536+1 533385 L5332 2021 Generalized Fermat 4404 137591622^65536+1 533371 L5347 2021 Generalized Fermat 4405 137461508^65536+1 533344 L4249 2021 Generalized Fermat 4406 163*2^1771524+1 533285 L1741 2013 4407 137162364^65536+1 533282 L5441 2021 Generalized Fermat 4408 137160034^65536+1 533282 L4249 2021 Generalized Fermat 4409 381*2^1771493+1 533276 L3444 2013 4410 137017216^65536+1 533252 L4249 2021 Generalized Fermat 4411 136992032^65536+1 533247 L4747 2021 Generalized Fermat 4412 136884136^65536+1 533225 L5441 2021 Generalized Fermat 4413 136787614^65536+1 533204 L4267 2021 Generalized Fermat 4414 136637696^65536+1 533173 L5416 2021 Generalized Fermat 4415 136632020^65536+1 533172 L5157 2021 Generalized Fermat 4416d 603*2^1771079-1 533151 L1817 2022 4417 136440590^65536+1 533132 L4584 2021 Generalized Fermat 4418 136342206^65536+1 533112 L5416 2021 Generalized Fermat 4419d 923*2^1770932-1 533107 L1817 2022 4420 136292214^65536+1 533101 L4905 2021 Generalized Fermat 4421 136268486^65536+1 533096 L4905 2021 Generalized Fermat 4422 795*2^1770840+1 533079 L1505 2013 4423 136030188^65536+1 533046 L5157 2021 Generalized Fermat 4424 135915704^65536+1 533022 L5332 2021 Generalized Fermat 4425 135811052^65536+1 533001 L5157 2021 Generalized Fermat 4426 135805928^65536+1 532999 L4249 2021 Generalized Fermat 4427 135731100^65536+1 532984 L4249 2021 Generalized Fermat 4428 Phi(3,-264017^49152) 532969 L4142 2016 Generalized unique 4429 135579990^65536+1 532952 L4249 2021 Generalized Fermat 4430 135367280^65536+1 532907 L5374 2021 Generalized Fermat 4431 135237122^65536+1 532880 L5432 2021 Generalized Fermat 4432 135052616^65536+1 532841 L5332 2021 Generalized Fermat 4433 134819600^65536+1 532792 L5430 2021 Generalized Fermat 4434 134719104^65536+1 532771 L5430 2021 Generalized Fermat 4435 134695448^65536+1 532766 L4249 2021 Generalized Fermat 4436 134624202^65536+1 532751 L4249 2021 Generalized Fermat 4437 134584144^65536+1 532742 L4249 2021 Generalized Fermat 4438 134346884^65536+1 532692 L5374 2021 Generalized Fermat 4439 134343600^65536+1 532691 L5416 2021 Generalized Fermat 4440 134117398^65536+1 532643 L4249 2021 Generalized Fermat 4441 134014306^65536+1 532621 L5428 2021 Generalized Fermat 4442 665*2^1769303+1 532617 L3441 2013 4443 133971864^65536+1 532612 L4773 2021 Generalized Fermat 4444 133931782^65536+1 532604 L5425 2021 Generalized Fermat 4445 133853526^65536+1 532587 L4942 2021 Generalized Fermat 4446 133718586^65536+1 532559 L5157 2021 Generalized Fermat 4447 473*2^1769101+1 532556 L3459 2013 4448 133629454^65536+1 532540 L5420 2021 Generalized Fermat 4449 133593704^65536+1 532532 L4584 2021 Generalized Fermat 4450 133555442^65536+1 532524 L5419 2021 Generalized Fermat 4451 133476288^65536+1 532507 L5101 2021 Generalized Fermat 4452 133433854^65536+1 532498 L5321 2021 Generalized Fermat 4453 133400670^65536+1 532491 L5347 2021 Generalized Fermat 4454 133350482^65536+1 532480 L5416 2021 Generalized Fermat 4455 133334188^65536+1 532477 L5101 2021 Generalized Fermat 4456 133271846^65536+1 532463 L4788 2021 Generalized Fermat 4457 133215546^65536+1 532451 L5157 2021 Generalized Fermat 4458 133140712^65536+1 532435 L4737 2021 Generalized Fermat 4459 133065238^65536+1 532419 L4299 2021 Generalized Fermat 4460 855*2^1768644+1 532418 L1675 2013 4461 133048112^65536+1 532416 L5101 2021 Generalized Fermat 4462 132987318^65536+1 532403 L4865 2021 Generalized Fermat 4463 132970814^65536+1 532399 L5157 2021 Generalized Fermat 4464 132488280^65536+1 532296 L5101 2021 Generalized Fermat 4465 132429416^65536+1 532283 L4672 2021 Generalized Fermat 4466 99*2^1768187+1 532280 L2517 2011 4467 132385596^65536+1 532273 L5157 2021 Generalized Fermat 4468 132372878^65536+1 532271 L5412 2021 Generalized Fermat 4469 132358424^65536+1 532268 L4672 2021 Generalized Fermat 4470 132285402^65536+1 532252 L5403 2021 Generalized Fermat 4471 132266908^65536+1 532248 L5333 2021 Generalized Fermat 4472 132186042^65536+1 532231 L4672 2021 Generalized Fermat 4473 132120644^65536+1 532216 L5333 2021 Generalized Fermat 4474 132003152^65536+1 532191 L5403 2021 Generalized Fermat 4475 131814642^65536+1 532150 L5101 2021 Generalized Fermat 4476 131796386^65536+1 532146 L4672 2021 Generalized Fermat 4477 131775982^65536+1 532142 L4865 2021 Generalized Fermat 4478 131728816^65536+1 532132 L5254 2021 Generalized Fermat 4479 131714718^65536+1 532129 L4672 2021 Generalized Fermat 4480 131691588^65536+1 532124 L5254 2021 Generalized Fermat 4481 131450430^65536+1 532072 L5101 2021 Generalized Fermat 4482 131419368^65536+1 532065 L5398 2021 Generalized Fermat 4483 131255146^65536+1 532029 L5157 2021 Generalized Fermat 4484 131130622^65536+1 532002 L4359 2021 Generalized Fermat 4485 131123850^65536+1 532001 L5312 2021 Generalized Fermat 4486 131105428^65536+1 531997 L4865 2021 Generalized Fermat 4487 130897212^65536+1 531952 L5395 2021 Generalized Fermat 4488 130660644^65536+1 531900 L5396 2021 Generalized Fermat 4489 130612142^65536+1 531890 L4939 2021 Generalized Fermat 4490 130585094^65536+1 531884 L5371 2021 Generalized Fermat 4491 130452302^65536+1 531855 L5391 2021 Generalized Fermat 4492 273*2^1766747-1 531847 L1828 2013 4493 130408582^65536+1 531845 L4737 2021 Generalized Fermat 4494 130271172^65536+1 531815 L4737 2021 Generalized Fermat 4495 130181574^65536+1 531796 L5391 2021 Generalized Fermat 4496 130060566^65536+1 531769 L4820 2021 Generalized Fermat 4497 129984458^65536+1 531752 L5157 2021 Generalized Fermat 4498 129834872^65536+1 531720 L5383 2021 Generalized Fermat 4499 129811608^65536+1 531715 L4865 2021 Generalized Fermat 4500 86*488^197778-1 531713 L4444 2022 4501 129790924^65536+1 531710 L4371 2021 Generalized Fermat 4502 129750926^65536+1 531701 L5101 2021 Generalized Fermat 4503 129697198^65536+1 531690 L5157 2021 Generalized Fermat 4504 191*2^1766221+1 531688 L2539 2013 4505 129640544^65536+1 531677 L5101 2021 Generalized Fermat 4506 129630358^65536+1 531675 L4773 2021 Generalized Fermat 4507 129574744^65536+1 531663 L5386 2021 Generalized Fermat 4508 129448306^65536+1 531635 L5374 2021 Generalized Fermat 4509 129420854^65536+1 531629 L4865 2021 Generalized Fermat 4510 129358462^65536+1 531615 L5193 2021 Generalized Fermat 4511 129320968^65536+1 531607 L5333 2021 Generalized Fermat 4512 4045*2^1765913-1 531597 L1959 2015 4513 129254948^65536+1 531592 L4839 2021 Generalized Fermat 4514 129232776^65536+1 531587 L4201 2021 Generalized Fermat 4515 129053932^65536+1 531548 L5101 2021 Generalized Fermat 4516 129047526^65536+1 531547 L5157 2021 Generalized Fermat 4517 108*20^408551+1 531540 L4789 2021 4518 128990040^65536+1 531534 L5321 2021 Generalized Fermat 4519 128965452^65536+1 531528 L4201 2021 Generalized Fermat 4520 128866024^65536+1 531507 L5101 2021 Generalized Fermat 4521 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 4522 128663166^65536+1 531462 L5371 2021 Generalized Fermat 4523 1005*2^1765454-1 531458 L1828 2014 4524 35*2^1765449+1 531455 L1204 2011 4525 128565012^65536+1 531440 L5370 2021 Generalized Fermat 4526 1347*2^1765384-1 531437 L1828 2014 4527 128445376^65536+1 531413 L5369 2021 Generalized Fermat 4528 128375820^65536+1 531398 L4865 2021 Generalized Fermat 4529 981*2^1765221+1 531388 L1204 2013 4530 128212560^65536+1 531362 L5157 2021 Generalized Fermat 4531 128210296^65536+1 531361 L5157 2021 Generalized Fermat 4532 255*2^1765113+1 531355 L2085 2013 4533 128144964^65536+1 531347 L4903 2021 Generalized Fermat 4534 128132420^65536+1 531344 L5361 2021 Generalized Fermat 4535 127973506^65536+1 531309 L5322 2021 Generalized Fermat 4536 127951638^65536+1 531304 L5347 2021 Generalized Fermat 4537 399*2^1764851-1 531276 L1809 2014 4538 65*2^1764687+1 531226 L1125 2011 4539 127405738^65536+1 531182 L5359 2021 Generalized Fermat 4540 127252554^65536+1 531148 L4737 2021 Generalized Fermat 4541 127201666^65536+1 531137 L5357 2021 Generalized Fermat 4542 127034204^65536+1 531099 L4903 2021 Generalized Fermat 4543 127023728^65536+1 531097 L5101 2021 Generalized Fermat 4544 126973536^65536+1 531085 L5355 2021 Generalized Fermat 4545 126867872^65536+1 531062 L5157 2021 Generalized Fermat 4546 126861078^65536+1 531060 L4903 2021 Generalized Fermat 4547 126749898^65536+1 531035 L4456 2021 Generalized Fermat 4548 126713710^65536+1 531027 L4865 2021 Generalized Fermat 4549 126681288^65536+1 531020 L4456 2021 Generalized Fermat 4550 126474178^65536+1 530973 L4865 2021 Generalized Fermat 4551 126416802^65536+1 530960 L5351 2021 Generalized Fermat 4552 126171566^65536+1 530905 L5349 2021 Generalized Fermat 4553 126041092^65536+1 530876 L5347 2021 Generalized Fermat 4554 125998694^65536+1 530866 L5332 2021 Generalized Fermat 4555 125988718^65536+1 530864 L5204 2021 Generalized Fermat 4556 125961714^65536+1 530858 L4862 2021 Generalized Fermat 4557 717*2^1763367+1 530830 L3440 2013 4558 125772166^65536+1 530815 L4903 2021 Generalized Fermat 4559 255*2^1763221-1 530785 L2484 2015 4560 125564488^65536+1 530768 L5157 2021 Generalized Fermat 4561 125540838^65536+1 530762 L5341 2021 Generalized Fermat 4562 125515108^65536+1 530757 L5339 2021 Generalized Fermat 4563 125489168^65536+1 530751 L5157 2021 Generalized Fermat 4564 125472480^65536+1 530747 L5077 2021 Generalized Fermat 4565 125469830^65536+1 530746 L5077 2021 Generalized Fermat 4566 125418570^65536+1 530735 L4299 2021 Generalized Fermat 4567 43809*6^681994-1 530700 L4521 2018 4568 125238224^65536+1 530694 L4299 2021 Generalized Fermat 4569 125045320^65536+1 530650 L4584 2021 Generalized Fermat 4570 124801100^65536+1 530594 L4853 2021 Generalized Fermat 4571 335*2^1762548-1 530583 L1809 2014 4572 124703608^65536+1 530572 L4753 2021 Generalized Fermat 4573 124698848^65536+1 530571 L5333 2021 Generalized Fermat 4574 124583790^65536+1 530545 L5322 2021 Generalized Fermat 4575 124575028^65536+1 530543 L5321 2021 Generalized Fermat 4576 124490560^65536+1 530523 L4753 2021 Generalized Fermat 4577 124389098^65536+1 530500 L5332 2021 Generalized Fermat 4578 1399*2^1762191-1 530476 L1828 2014 4579 2895*2^1762011-1 530422 L2484 2018 4580 16193*22^395119-1 530421 p255 2013 4581 123999938^65536+1 530411 L5205 2021 Generalized Fermat 4582 531*2^1761689+1 530324 L3458 2013 4583 123590068^65536+1 530317 L5312 2021 Generalized Fermat 4584 123507760^65536+1 530298 L4853 2021 Generalized Fermat 4585 123440486^65536+1 530282 L5205 2021 Generalized Fermat 4586 123388310^65536+1 530270 L4249 2021 Generalized Fermat 4587 123364798^65536+1 530265 L4905 2021 Generalized Fermat 4588 123133394^65536+1 530211 L4747 2021 Generalized Fermat 4589 123104850^65536+1 530205 L5007 2021 Generalized Fermat 4590 122938900^65536+1 530166 L5271 2021 Generalized Fermat 4591 122873426^65536+1 530151 L4726 2021 Generalized Fermat 4592 122809274^65536+1 530136 L5304 2021 Generalized Fermat 4593 963*2^1761050+1 530132 L1204 2013 4594 122745454^65536+1 530122 L5030 2021 Generalized Fermat 4595 122700492^65536+1 530111 L5030 2021 Generalized Fermat 4596 122691846^65536+1 530109 L5206 2021 Generalized Fermat 4597 1253*2^1760738-1 530039 L1828 2014 4598 122354882^65536+1 530031 L4308 2021 Generalized Fermat 4599 122264264^65536+1 530010 L4659 2021 Generalized Fermat 4600d 945*2^1760509-1 529969 L1817 2022 4601 122011650^65536+1 529951 L4880 2021 Generalized Fermat 4602 121974060^65536+1 529942 L5275 2021 Generalized Fermat 4603 121857822^65536+1 529915 L5275 2021 Generalized Fermat 4604 62176*1027^175956+1 529909 L4001 2018 4605 4199*2^1760292-1 529905 L1959 2014 4606 1037*2^1760216-1 529881 L1828 2014 4607 121568608^65536+1 529847 L4880 2021 Generalized Fermat 4608 121372932^65536+1 529802 L4341 2021 Generalized Fermat 4609 121281656^65536+1 529780 L5025 2021 Generalized Fermat 4610 121238358^65536+1 529770 L5157 2021 Generalized Fermat 4611 121237796^65536+1 529770 L5234 2021 Generalized Fermat 4612 121140458^65536+1 529747 L5275 2021 Generalized Fermat 4613 121086190^65536+1 529734 L5056 2021 Generalized Fermat 4614 121075332^65536+1 529732 L4672 2021 Generalized Fermat 4615 121000342^65536+1 529714 L4945 2021 Generalized Fermat 4616 120749884^65536+1 529655 L5005 2021 Generalized Fermat 4617 969*2^1759430+1 529645 L3262 2013 4618 120681448^65536+1 529639 L4308 2021 Generalized Fermat 4619 119*2^1759247+1 529589 L3035 2013 4620 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 4621 417*2^1759055+1 529531 L2623 2013 4622 120186908^65536+1 529522 L4285 2021 Generalized Fermat 4623 2565*2^1758906-1 529487 L2484 2018 4624 119738978^65536+1 529416 L5040 2021 Generalized Fermat 4625 119717536^65536+1 529411 L4942 2021 Generalized Fermat 4626 119690728^65536+1 529404 L4308 2021 Generalized Fermat 4627 119624454^65536+1 529389 L5255 2021 Generalized Fermat 4628 119491626^65536+1 529357 L5039 2021 Generalized Fermat 4629 3846*24^383526+1 529351 L4806 2019 4630 119452152^65536+1 529347 L4308 2021 Generalized Fermat 4631 119418048^65536+1 529339 L4977 2021 Generalized Fermat 4632 119298770^65536+1 529311 L4904 2021 Generalized Fermat 4633 119199112^65536+1 529287 L4977 2021 Generalized Fermat 4634 119063128^65536+1 529255 L4672 2021 Generalized Fermat 4635 119032648^65536+1 529247 L5030 2021 Generalized Fermat 4636 118708030^65536+1 529170 L4726 2021 Generalized Fermat 4637 118641422^65536+1 529154 L5025 2021 Generalized Fermat 4638 118589830^65536+1 529141 L4672 2021 Generalized Fermat 4639 787*2^1757702+1 529124 L3436 2013 4640d 657*2^1757664-1 529113 L2519 2022 4641 118270626^65536+1 529065 L4760 2021 Generalized Fermat 4642 118264992^65536+1 529063 L5025 2021 Generalized Fermat 4643 118192550^65536+1 529046 L4760 2021 Generalized Fermat 4644 118147416^65536+1 529035 L5025 2021 Generalized Fermat 4645 118050932^65536+1 529012 L5289 2021 Generalized Fermat 4646 2386*52^308276+1 529007 L5410 2019 4647 117874676^65536+1 528969 L4308 2021 Generalized Fermat 4648 117805866^65536+1 528952 L4308 2021 Generalized Fermat 4649 117701722^65536+1 528927 L5165 2021 Generalized Fermat 4650 117686134^65536+1 528924 L4308 2021 Generalized Fermat 4651 117457872^65536+1 528868 L4905 2021 Generalized Fermat 4652 357*2^1756764-1 528842 L2519 2014 4653 57*2^1756702+1 528822 L1741 2011 4654 117048732^65536+1 528769 L4550 2021 Generalized Fermat 4655 135*2^1756478+1 528755 L3127 2013 4656 116954070^65536+1 528746 L5025 2021 Generalized Fermat 4657 116911588^65536+1 528736 L5254 2021 Generalized Fermat 4658 855*2^1756269+1 528693 L2636 2013 4659 116720780^65536+1 528689 L5288 2021 Generalized Fermat 4660 116701162^65536+1 528684 L4210 2021 Generalized Fermat 4661 603*2^1756142+1 528655 L2559 2013 4662 116572908^65536+1 528653 L4720 2021 Generalized Fermat 4663 116501302^65536+1 528636 L4904 2021 Generalized Fermat 4664 116462144^65536+1 528626 L5234 2021 Generalized Fermat 4665 71*2^1755965+1 528600 L1741 2011 4666 485*2^1755887+1 528578 L3262 2013 4667 116249158^65536+1 528574 L4308 2021 Generalized Fermat 4668 115797490^65536+1 528463 L4308 2021 Generalized Fermat 4669 115709936^65536+1 528442 L5234 2021 Generalized Fermat 4670 115707022^65536+1 528441 L5234 2021 Generalized Fermat 4671 31*2^1755317-1 528405 L330 2011 4672 955*2^1755312+1 528405 L1741 2013 4673 471*2^1755262-1 528390 L2519 2022 4674 115457324^65536+1 528379 L4747 2021 Generalized Fermat 4675 115408880^65536+1 528367 L4920 2021 Generalized Fermat 4676 115357190^65536+1 528355 L4599 2021 Generalized Fermat 4677 115354566^65536+1 528354 L4871 2021 Generalized Fermat 4678 115347856^65536+1 528352 L4726 2021 Generalized Fermat 4679 115294854^65536+1 528339 L4544 2021 Generalized Fermat 4680 115268620^65536+1 528333 L4308 2021 Generalized Fermat 4681 115220208^65536+1 528321 L5234 2021 Generalized Fermat 4682 115157240^65536+1 528305 L5040 2021 Generalized Fermat 4683 1391*2^1754922-1 528288 L1828 2014 4684d 785*2^1754836-1 528262 L1817 2022 4685 114722794^65536+1 528198 L4591 2021 Generalized Fermat 4686 114698234^65536+1 528192 L5057 2021 Generalized Fermat 4687 114681358^65536+1 528187 L5234 2021 Generalized Fermat 4688 114630516^65536+1 528175 L5033 2021 Generalized Fermat 4689 4111*2^1754463-1 528150 L1959 2016 4690 114387906^65536+1 528114 L4742 2021 Generalized Fermat 4691 114302338^65536+1 528093 L5271 2021 Generalized Fermat 4692 114277670^65536+1 528087 L5016 2021 Generalized Fermat 4693 114250806^65536+1 528080 L4308 2021 Generalized Fermat 4694 161*2^1754223+1 528076 L3014 2013 4695 114119336^65536+1 528048 L4245 2021 Generalized Fermat 4696 114065784^65536+1 528034 L4530 2021 Generalized Fermat 4697 545*2^1754062-1 528029 L5516 2022 4698 4171*2^1754017-1 528016 L1959 2016 4699 113950766^65536+1 528006 L5057 2021 Generalized Fermat 4700 113930586^65536+1 528000 L4550 2021 Generalized Fermat 4701 113912436^65536+1 527996 L5281 2021 Generalized Fermat 4702 113899746^65536+1 527993 L4387 2021 Generalized Fermat 4703 447*2^1753942-1 527992 L5516 2022 4704 113856050^65536+1 527982 L5280 2021 Generalized Fermat 4705 113821900^65536+1 527973 L4977 2021 Generalized Fermat 4706 113766500^65536+1 527959 L5040 2021 Generalized Fermat 4707 113743984^65536+1 527954 L4308 2021 Generalized Fermat 4708 113743008^65536+1 527954 L5056 2021 Generalized Fermat 4709 113630364^65536+1 527925 L4726 2021 Generalized Fermat 4710 113583948^65536+1 527914 L4963 2021 Generalized Fermat 4711 113547832^65536+1 527905 L5023 2021 Generalized Fermat 4712 113499172^65536+1 527893 L5057 2021 Generalized Fermat 4713 113441586^65536+1 527878 L4755 2021 Generalized Fermat 4714 113430012^65536+1 527875 L5234 2021 Generalized Fermat 4715 113399408^65536+1 527867 L4755 2021 Generalized Fermat 4716 113385930^65536+1 527864 L5234 2021 Generalized Fermat 4717 113296320^65536+1 527842 L5277 2021 Generalized Fermat 4718 113290542^65536+1 527840 L4308 2021 Generalized Fermat 4719 113219876^65536+1 527822 L5275 2021 Generalized Fermat 4720 5077*2^1753317-1 527805 L251 2008 4721 113148382^65536+1 527804 L4308 2021 Generalized Fermat 4722 113106664^65536+1 527794 L4308 2021 Generalized Fermat 4723 113006358^65536+1 527769 L4308 2021 Generalized Fermat 4724 112904842^65536+1 527743 L4905 2021 Generalized Fermat 4725 112897156^65536+1 527741 L4308 2021 Generalized Fermat 4726 112832188^65536+1 527725 L4726 2021 Generalized Fermat 4727 112822300^65536+1 527722 L4308 2021 Generalized Fermat 4728 1261*2^1753021-1 527716 L1828 2014 4729 112707138^65536+1 527693 L5275 2021 Generalized Fermat 4730 387*2^1752919+1 527684 L2636 2013 4731 65*2^1752885+1 527673 L1204 2011 4732 355*2^1752713-1 527622 L2519 2014 4733 112155968^65536+1 527554 L5274 2021 Generalized Fermat 4734 112138030^65536+1 527549 L4977 2021 Generalized Fermat 4735 111979738^65536+1 527509 L4977 2021 Generalized Fermat 4736 111841318^65536+1 527474 L5054 2021 Generalized Fermat 4737 4*5^754611-1 527452 L4881 2019 4738 111749388^65536+1 527450 L4963 2021 Generalized Fermat 4739 363*2^1752116+1 527443 L2085 2013 4740 111402066^65536+1 527362 L4326 2021 Generalized Fermat 4741 111391036^65536+1 527359 L4410 2021 Generalized Fermat 4742 641*2^1751823+1 527355 L3459 2013 4743 Phi(3,-231255^49152) 527312 L4142 2016 Generalized unique 4744 111149164^65536+1 527297 L4963 2021 Generalized Fermat 4745 111075226^65536+1 527278 L5271 2021 Generalized Fermat 4746 111001326^65536+1 527259 L5011 2021 Generalized Fermat 4747 110980170^65536+1 527254 L4772 2021 Generalized Fermat 4748 110835044^65536+1 527216 L4737 2021 Generalized Fermat 4749 261*2^1751160+1 527155 L3192 2013 4750 32*905^178286-1 527131 L541 2017 4751 110431446^65536+1 527113 L4659 2021 Generalized Fermat 4752 110395028^65536+1 527103 L5270 2021 Generalized Fermat 4753 110280272^65536+1 527074 L5234 2021 Generalized Fermat 4754 545*2^1750858-1 527064 L2519 2022 4755 1179*2^1750847+1 527061 g387 2009 4756e 741*2^1750817-1 527052 L1817 2022 4757 110139930^65536+1 527037 L5265 2021 Generalized Fermat 4758 110077040^65536+1 527021 L4738 2021 Generalized Fermat 4759 109986750^65536+1 526998 L5025 2021 Generalized Fermat 4760 1293*2^1750532-1 526966 L1828 2014 4761 109655942^65536+1 526912 L5268 2021 Generalized Fermat 4762 109649344^65536+1 526910 L5206 2021 Generalized Fermat 4763 109564026^65536+1 526888 L5255 2021 Generalized Fermat 4764 340168*5^753789-1 526882 p323 2012 4765 109464346^65536+1 526862 L4672 2021 Generalized Fermat 4766 109323574^65536+1 526826 L5025 2021 Generalized Fermat 4767 109287254^65536+1 526816 L4905 2021 Generalized Fermat 4768 109144682^65536+1 526779 L5057 2021 Generalized Fermat 4769 109034994^65536+1 526750 L4898 2021 Generalized Fermat 4770 109031182^65536+1 526749 L5255 2021 Generalized Fermat 4771 109000284^65536+1 526741 L4892 2021 Generalized Fermat 4772e 711*2^1749737-1 526727 L1817 2022 4773 108618244^65536+1 526641 L4308 2021 Generalized Fermat 4774 108551550^65536+1 526624 L4308 2021 Generalized Fermat 4775 483*2^1749283-1 526590 L5516 2022 4776 108306062^65536+1 526560 L5068 2021 Generalized Fermat 4777 108244272^65536+1 526543 L4861 2021 Generalized Fermat 4778 108153408^65536+1 526519 L4880 2021 Generalized Fermat 4779 2955*2^1748957-1 526492 L2484 2018 4780 107970076^65536+1 526471 L4956 2021 Generalized Fermat 4781 107894268^65536+1 526451 L5011 2021 Generalized Fermat 4782 107747194^65536+1 526412 L4308 2021 Generalized Fermat 4783 107658460^65536+1 526389 L4308 2021 Generalized Fermat 4784 4147*2^1748201-1 526265 L1959 2016 4785 107167054^65536+1 526259 L4672 2021 Generalized Fermat 4786 107137714^65536+1 526251 L5143 2021 Generalized Fermat 4787 107058940^65536+1 526230 L5057 2021 Generalized Fermat 4788 106997372^65536+1 526213 L5025 2021 Generalized Fermat 4789 106967132^65536+1 526205 L4963 2021 Generalized Fermat 4790 106913102^65536+1 526191 L5025 2021 Generalized Fermat 4791 106830890^65536+1 526169 L4726 2021 Generalized Fermat 4792 106795692^65536+1 526160 L4308 2021 Generalized Fermat 4793 106679112^65536+1 526129 L4550 2021 Generalized Fermat 4794 106665218^65536+1 526125 L4210 2021 Generalized Fermat 4795 106616682^65536+1 526112 L5126 2021 Generalized Fermat 4796 106599192^65536+1 526107 L5234 2021 Generalized Fermat 4797 106579844^65536+1 526102 L5259 2021 Generalized Fermat 4798 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 4799 106449610^65536+1 526067 L5025 2021 Generalized Fermat 4800 106297214^65536+1 526027 L5070 2021 Generalized Fermat 4801 106206510^65536+1 526002 L4308 2021 Generalized Fermat 4802 106125374^65536+1 525981 L5252 2021 Generalized Fermat 4803 105956334^65536+1 525935 L5251 2021 Generalized Fermat 4804 105831918^65536+1 525902 L4905 2021 Generalized Fermat 4805 105830180^65536+1 525901 L4526 2021 Generalized Fermat 4806 105825012^65536+1 525900 L4526 2021 Generalized Fermat 4807 105814272^65536+1 525897 L5255 2021 Generalized Fermat 4808 105629226^65536+1 525847 L4308 2021 Generalized Fermat 4809 105579852^65536+1 525834 L4760 2021 Generalized Fermat 4810 105542202^65536+1 525824 L4904 2021 Generalized Fermat 4811 105352114^65536+1 525772 L4308 2021 Generalized Fermat 4812 105317236^65536+1 525763 L4308 2021 Generalized Fermat 4813 105253618^65536+1 525746 L4905 2021 Generalized Fermat 4814 105201924^65536+1 525732 L4905 2021 Generalized Fermat 4815 105121886^65536+1 525710 L5025 2021 Generalized Fermat 4816 105109090^65536+1 525707 L5011 2021 Generalized Fermat 4817 1700*471^196669+1 525704 L5397 2021 4818 104985656^65536+1 525673 L5033 2021 Generalized Fermat 4819 507*2^1746026-1 525609 L5184 2022 4820 104719178^65536+1 525601 L4308 2021 Generalized Fermat 4821 1485*2^1745772+1 525533 L1134 2014 4822 104397268^65536+1 525513 L5047 2021 Generalized Fermat 4823 104153644^65536+1 525447 L4326 2021 Generalized Fermat 4824 265*2^1745450+1 525436 L3423 2013 4825 297*2^1745377-1 525414 L2074 2014 4826 103980898^65536+1 525400 L5070 2021 Generalized Fermat 4827 103965794^65536+1 525395 L4956 2021 Generalized Fermat 4828 103917532^65536+1 525382 L5206 2021 Generalized Fermat 4829 103917130^65536+1 525382 L4726 2021 Generalized Fermat 4830 433*2^1745267-1 525381 L5516 2022 4831 103793686^65536+1 525348 L5070 2021 Generalized Fermat 4832 103607034^65536+1 525297 L5051 2021 Generalized Fermat 4833 1293*2^1744930-1 525280 L1828 2014 4834 103410380^65536+1 525243 L5057 2021 Generalized Fermat 4835 158670*151^241039-1 525224 L4001 2018 4836 103244358^65536+1 525197 L5057 2021 Generalized Fermat 4837 103232286^65536+1 525194 L4963 2021 Generalized Fermat 4838 103014016^65536+1 525134 L5234 2021 Generalized Fermat 4839 1485*2^1744384+1 525116 L1134 2014 4840 102936406^65536+1 525112 L4249 2021 Generalized Fermat 4841 102927846^65536+1 525110 L4249 2021 Generalized Fermat 4842 102905922^65536+1 525104 L4853 2021 Generalized Fermat 4843 102871184^65536+1 525094 L4424 2021 Generalized Fermat 4844 102820362^65536+1 525080 L4308 2021 Generalized Fermat 4845 102815216^65536+1 525079 L4308 2021 Generalized Fermat 4846 325034*151^240969-1 525072 L4001 2018 4847 102770410^65536+1 525066 L4599 2021 Generalized Fermat 4848 495*2^1744183+1 525055 L1933 2013 4849 102413650^65536+1 524967 L5225 2021 Generalized Fermat 4850 102290630^65536+1 524933 L5202 2021 Generalized Fermat 4851 327*2^1743751+1 524924 L1130 2013 4852 102240736^65536+1 524919 L5222 2021 Generalized Fermat 4853 102179404^65536+1 524902 L4456 2021 Generalized Fermat 4854 102152180^65536+1 524895 L5202 2021 Generalized Fermat 4855 102077788^65536+1 524874 L5202 2021 Generalized Fermat 4856 102001552^65536+1 524853 L5221 2021 Generalized Fermat 4857 101940908^65536+1 524836 L5202 2021 Generalized Fermat 4858 28198*52^305828+1 524807 L5410 2019 4859 101833680^65536+1 524806 L5202 2021 Generalized Fermat 4860 589*2^1743325-1 524796 L5516 2022 4861 415*2^1743176+1 524751 L3428 2013 4862 101588976^65536+1 524737 L5202 2021 Generalized Fermat 4863 101542004^65536+1 524724 L5202 2021 Generalized Fermat 4864 11*10^524706-1 524708 L1958 2021 4865 101373072^65536+1 524677 L4853 2020 Generalized Fermat 4866 101330432^65536+1 524665 L4747 2020 Generalized Fermat 4867 101328148^65536+1 524664 L4747 2020 Generalized Fermat 4868 695*2^1742755+1 524625 L1741 2013 4869 1285*2^1742735-1 524619 L1828 2014 4870 243*2^1742689+1 524605 L1204 2013 4871 345*2^1742652-1 524594 L1830 2012 4872 101053038^65536+1 524587 L4747 2020 Generalized Fermat 4873 867*2^1742474+1 524540 L3188 2013 4874 100809238^65536+1 524518 L5206 2020 Generalized Fermat 4875 170*709^183988-1 524487 L5410 2021 4876 100635028^65536+1 524469 L5202 2020 Generalized Fermat 4877 100547206^65536+1 524444 L4387 2020 Generalized Fermat 4878 100541736^65536+1 524442 L5205 2020 Generalized Fermat 4879 100492452^65536+1 524428 L5204 2020 Generalized Fermat 4880 100480774^65536+1 524425 L4387 2020 Generalized Fermat 4881 91*2^1742093-1 524425 L2338 2012 4882 100445354^65536+1 524415 L4853 2020 Generalized Fermat 4883 905*2^1742026-1 524406 L2012 2014 4884 100394394^65536+1 524401 L4387 2020 Generalized Fermat 4885 100366730^65536+1 524393 L4245 2020 Generalized Fermat 4886 100292652^65536+1 524372 L5202 2020 Generalized Fermat 4887 100278340^65536+1 524368 L5157 2020 Generalized Fermat 4888 1295*2^1741794-1 524336 L1828 2014 4889 100061390^65536+1 524306 L4530 2020 Generalized Fermat 4890 100033834^65536+1 524298 L4249 2020 Generalized Fermat 4891 99985498^65536+1 524284 L5198 2020 Generalized Fermat 4892 99949404^65536+1 524274 L4245 2020 Generalized Fermat 4893 99938996^65536+1 524271 L4252 2020 Generalized Fermat 4894 99873084^65536+1 524252 L4963 2020 Generalized Fermat 4895 99812398^65536+1 524235 L4963 2020 Generalized Fermat 4896 99811816^65536+1 524235 L4963 2020 Generalized Fermat 4897 99717520^65536+1 524208 L4963 2020 Generalized Fermat 4898 315*2^1741334-1 524197 L1830 2012 4899 99605982^65536+1 524176 L4747 2020 Generalized Fermat 4900 99605678^65536+1 524176 L4963 2020 Generalized Fermat 4901 99543174^65536+1 524158 L4963 2020 Generalized Fermat 4902 99458608^65536+1 524134 L5193 2020 Generalized Fermat 4903 99443134^65536+1 524130 L4747 2020 Generalized Fermat 4904 99416780^65536+1 524122 L4747 2020 Generalized Fermat 4905 99316110^65536+1 524093 L5156 2020 Generalized Fermat 4906 99184362^65536+1 524055 L4747 2020 Generalized Fermat 4907 99086572^65536+1 524027 L4245 2020 Generalized Fermat 4908 98752904^65536+1 523931 L4787 2020 Generalized Fermat 4909 98679336^65536+1 523910 L4747 2020 Generalized Fermat 4910 98638136^65536+1 523898 L5127 2020 Generalized Fermat 4911 525*2^1740079-1 523819 L5516 2022 4912 525*2^1740056+1 523812 L1204 2013 4913 319*2^1740047-1 523809 L1819 2013 4914 1157*2^1739902-1 523766 L1828 2014 4915 98174624^65536+1 523764 L5157 2020 Generalized Fermat 4916 98165150^65536+1 523761 L5163 2020 Generalized Fermat 4917 98160134^65536+1 523760 L5165 2020 Generalized Fermat 4918 98087154^65536+1 523739 L4747 2020 Generalized Fermat 4919 98046450^65536+1 523727 L5157 2020 Generalized Fermat 4920 98014656^65536+1 523718 L4245 2020 Generalized Fermat 4921 357*2^1739732+1 523715 L3427 2013 4922 97876302^65536+1 523678 L4245 2020 Generalized Fermat 4923 97796840^65536+1 523654 L4456 2020 Generalized Fermat 4924 97789752^65536+1 523652 L4245 2020 Generalized Fermat 4925 97784106^65536+1 523651 L5157 2020 Generalized Fermat 4926 97689780^65536+1 523623 L5152 2020 Generalized Fermat 4927 97647644^65536+1 523611 L5156 2020 Generalized Fermat 4928 97646596^65536+1 523611 L5155 2020 Generalized Fermat 4929 36481*2^1739380+1 523611 L4789 2021 Generalized Fermat 4930 97610728^65536+1 523600 L4495 2020 Generalized Fermat 4931 687*2^1739343+1 523598 L2117 2013 4932 97496720^65536+1 523567 L4267 2020 Generalized Fermat 4933 1041*2^1739189-1 523552 L1828 2014 4934 627*2^1738864+1 523454 L2117 2013 4935 97104830^65536+1 523452 L5152 2020 Generalized Fermat 4936 141*138^244616+1 523451 L4444 2020 4937e 885*2^1738611-1 523378 L1817 2022 4938 96763400^65536+1 523352 L5121 2020 Generalized Fermat 4939 96670202^65536+1 523325 L4672 2020 Generalized Fermat 4940 95*2^1738427+1 523321 L2085 2011 4941 793*2^1738400+1 523314 L3035 2013 4942 96534690^65536+1 523285 L5143 2020 Generalized Fermat 4943 144*648^186106+1 523254 L3886 2015 Generalized Fermat 4944 96338398^65536+1 523227 L5124 2020 Generalized Fermat 4945 96255150^65536+1 523202 L5127 2020 Generalized Fermat 4946 96228408^65536+1 523194 L4205 2020 Generalized Fermat 4947 729*2^1737901+1 523164 L2603 2013 4948 96048808^65536+1 523141 L4387 2020 Generalized Fermat 4949 95740866^65536+1 523050 L5132 2020 Generalized Fermat 4950 95668512^65536+1 523028 L5130 2020 Generalized Fermat 4951 95658826^65536+1 523025 L4245 2020 Generalized Fermat 4952 95485038^65536+1 522974 L5128 2020 Generalized Fermat 4953 95476682^65536+1 522971 L5127 2020 Generalized Fermat 4954 95330936^65536+1 522928 L5126 2020 Generalized Fermat 4955 95306976^65536+1 522920 L4729 2020 Generalized Fermat 4956 95060694^65536+1 522847 L5124 2020 Generalized Fermat 4957 95031090^65536+1 522838 L4245 2020 Generalized Fermat 4958 95020906^65536+1 522835 L4245 2020 Generalized Fermat 4959 94683814^65536+1 522734 L4861 2020 Generalized Fermat 4960 94560386^65536+1 522697 L5121 2020 Generalized Fermat 4961 1065*2^1736222+1 522658 L1204 2013 4962 94395438^65536+1 522647 L4853 2020 Generalized Fermat 4963 94371750^65536+1 522640 L5117 2020 Generalized Fermat 4964 94238958^65536+1 522600 L4267 2020 Generalized Fermat 4965 111*618^187244+1 522598 L4444 2018 4966 94148218^65536+1 522572 L5088 2020 Generalized Fermat 4967 94134450^65536+1 522568 L4659 2020 Generalized Fermat 4968 94127096^65536+1 522566 L4986 2020 Generalized Fermat 4969 93899840^65536+1 522497 L5005 2020 Generalized Fermat 4970 93838842^65536+1 522479 L4764 2020 Generalized Fermat 4971 93815892^65536+1 522472 L4245 2020 Generalized Fermat 4972 93786286^65536+1 522463 L4267 2020 Generalized Fermat 4973 93780678^65536+1 522461 L4928 2020 Generalized Fermat 4974e 957*2^1735552-1 522457 L1817 2022 4975 93680368^65536+1 522430 L4677 2020 Generalized Fermat 4976 573*2^1735454+1 522427 L2675 2013 4977 93294956^65536+1 522313 L4308 2020 Generalized Fermat 4978 545*2^1735043+1 522303 L2131 2013 4979 93229866^65536+1 522293 L5023 2020 Generalized Fermat 4980 93218152^65536+1 522290 L5103 2020 Generalized Fermat 4981 61*2^1734983-1 522284 L2055 2011 4982 93125776^65536+1 522261 L5101 2020 Generalized Fermat 4983 93098062^65536+1 522253 L5098 2020 Generalized Fermat 4984 93063952^65536+1 522243 L5098 2020 Generalized Fermat 4985 1125*2^1734821-1 522237 L1828 2014 4986 93043462^65536+1 522236 L5099 2020 Generalized Fermat 4987 92966428^65536+1 522213 L5096 2020 Generalized Fermat 4988 92914244^65536+1 522197 L4308 2020 Generalized Fermat 4989 92914140^65536+1 522197 L4753 2020 Generalized Fermat 4990 92766842^65536+1 522152 L4920 2020 Generalized Fermat 4991 6*10^522127+1 522128 p342 2012 4992 92690940^65536+1 522128 L4747 2020 Generalized Fermat 4993 92674306^65536+1 522123 L4308 2020 Generalized Fermat 4994 92548750^65536+1 522085 L5094 2020 Generalized Fermat 4995 92102646^65536+1 521947 L4205 2020 Generalized Fermat 4996 92081038^65536+1 521940 L4920 2020 Generalized Fermat 4997 92048794^65536+1 521930 L4747 2020 Generalized Fermat 4998 91987174^65536+1 521911 L4620 2020 Generalized Fermat 4999 91903298^65536+1 521885 L5088 2020 Generalized Fermat 5000 1113*2^1733627-1 521877 L1828 2014 5001 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5002 110059!+1 507082 p312 2011 Factorial 5003 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5004 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 5005 30981*14^433735-1 497121 p77 2015 Generalized Woodall 5006 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 5007 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5008 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 5009 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5010 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 5011 1098133#-1 476311 p346 2012 Primorial 5012 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 5013 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5014 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 5015 103040!-1 471794 p301 2010 Factorial 5016 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5017 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 5018 341351*22^341351-1 458243 p260 2017 Generalized Woodall 5019 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5020 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5021 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 5022 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5023 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 5024 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 5025 176660*18^353320-1 443519 p325 2011 Generalized Woodall 5026 1467763*2^1467763-1 441847 L381 2007 Woodall 5027 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 5028 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5029 94550!-1 429390 p290 2010 Factorial 5030 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5031 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 5032 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5033 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5034 2^1398269-1 420921 G1 1996 Mersenne 35 5035 182402*14^364804-1 418118 p325 2011 Generalized Woodall 5036 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5037 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 5038 338707*2^1354830+1 407850 L124 2005 Cullen 5039 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5040 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5041 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5042 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5043 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 5044 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5045 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5046 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5047 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5048 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5049 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5050 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5051 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5052 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5053 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5054 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5055 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5056 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 5057 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5058 1268979*2^1268979-1 382007 L201 2007 Woodall 5059 2^1257787-1 378632 SG 1996 Mersenne 34 5060 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5061 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 5062 843301#-1 365851 p302 2010 Primorial 5063 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5064 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5065 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5066 1195203*2^1195203-1 359799 L124 2005 Woodall 5067 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5068 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5069 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5070 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5071 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5072 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5073 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5074 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 5075 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5076 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 5077 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5078 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5079 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5080 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5081 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5082 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5083 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5084 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5085 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5086 2^859433-1 258716 SG 1994 Mersenne 33 5087 2^756839-1 227832 SG 1992 Mersenne 32 5088 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5089 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 5090 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5091 667071*2^667071-1 200815 g55 2000 Woodall 5092 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5093 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5094 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5095 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5096 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 5097 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 5098 392113#+1 169966 p16 2001 Primorial 5099 366439#+1 158936 p16 2001 Primorial 5100 481899*2^481899+1 145072 gm 1998 Cullen 5101 34790!-1 142891 p85 2002 Factorial 5102 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5103 361275*2^361275+1 108761 DS 1998 Cullen 5104 26951!+1 107707 p65 2002 Factorial 5105 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5106 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5107 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5108 21480!-1 83727 p65 2001 Factorial 5109 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5110 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5111 262419*2^262419+1 79002 DS 1998 Cullen 5112 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5113 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5114 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5115 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5116 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5117 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5118 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5119 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5120 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5121 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5122 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5123 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5124 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5125 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5126 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5127 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5128 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5129 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5130 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5131 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5132 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5133 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 5134 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 5135 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5136 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 5137 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 5138 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5139 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5140 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5141 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5142 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5143 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5144 145823#+1 63142 p21 2000 Primorial 5145 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5146 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5147 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5148 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5149 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5150 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5151 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5152 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5153 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5154 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5155 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5156 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5157 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5158 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5159 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5160 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5161 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5162 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5163b Ramanujan tau function at 199^4518 ECPP 57125 E3 2022 ECPP 5164 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5165 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5166 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5167 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5168 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5169 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5170 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5171 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5172 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5173 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5174 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5175 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5176 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5177 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5178 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5179 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5180f 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5181f 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5182 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5183 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5184 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5185 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5186 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5187 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5188 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5189 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5190 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5191 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5192 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5193 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5194 33218925*2^169690-1 51090 g259 2002 Twin (p) 5195 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5196e 10^50000+65859 50001 E3 2022 ECPP 5197 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5198 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5199 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5200 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5201 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5202 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5203 110427610*3^100003-1 47722 p415 2021 Twin (p) 5204 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5205 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5206 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 5207 3706785456*13^42069-1 46873 p412 2020 Twin (p) 5208 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5209 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5210 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5211 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5212 151023*2^151023-1 45468 g25 1998 Woodall 5213 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5214 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5215 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5216 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5217 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5218 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5219 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5220 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5221 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5222 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5223 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5224 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 5225 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 5226 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5227 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5228 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5229c E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5230e 10^40000+14253 40001 E3 2022 ECPP 5231 p(1289844341) 40000 c84 2020 Partitions, ECPP 5232 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5233 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5234e tau(47^4176) 38404 E3 2022 ECPP 5235d 3^78296+479975120078336 37357 E4 2022 ECPP 5236 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5237c (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5238c p(1000007396) 35219 E4 2022 Partitions, ECPP 5239 2^116224-15905 34987 c87 2017 ECPP 5240 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5241 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5242 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5243 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5244 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 5245 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5246 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5247 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5248 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5249 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5250e (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 5251 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5252 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5253 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5254 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5255 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5256 V(148091) 30950 c81 2015 Lucas number, ECPP 5257 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5258 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5259b 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5260e Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5261e 2^99069+9814666761 29823 E4 2022 ECPP 5262 49363*2^98727-1 29725 Y 1997 Woodall 5263 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5264 -τ(331^2128) 29492 c80 2015 ECPP 5265 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5266 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5267 V(140057) 29271 c76 2014 Lucas number,ECPP 5268 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5269 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5270 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5271 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5272 primV(205011) 28552 x39 2009 Lucas primitive part 5273 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5274 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5275 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5276 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5277 90825*2^90825+1 27347 Y 1997 Cullen 5278 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5279 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5280 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5281 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5282 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5283 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5284 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5285 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5286 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5287 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5288e (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5289f (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5290 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5291 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5292 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5293 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5294 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5295 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5296 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5297 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5298 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5299 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5300 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5301 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5302 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5303 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5304 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5305f (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5306 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5307 6917!-1 23560 g1 1998 Factorial 5308 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5309 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5310 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5311 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5312c p(398256632) 22223 E1 2022 Partitions, ECPP 5313d U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5314 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5315 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5316 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5317 6380!+1 21507 g1 1998 Factorial 5318 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5319 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5320 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5321 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5322 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5323 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5324d p(355646102) 21000 E1 2022 Partitions, ECPP 5325d p(350199893) 20838 E7 2022 Partitions, ECPP 5326 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5327b primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5328b primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5329 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5330 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5331 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5332f primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5333 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5334 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5335 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5336 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5337 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5338 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5339 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5340e p(322610098) 20000 E1 2022 Partitions, ECPP 5341e primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5342 V(94823) 19817 c73 2014 Lucas number, ECPP 5343 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5344 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5345 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5346d V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5347e (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5348d V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5349 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5350e primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5351f primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5352e (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5353 V(89849) 18778 c70 2014 Lucas number, ECPP 5354 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5355 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5356e (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5357 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5358e primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5359f primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5360 42209#+1 18241 p8 1999 Primorial 5361 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5362 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5363 7457*2^59659+1 17964 Y 1997 Cullen 5364f primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5365f primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5366e (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5367 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5368 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5369f primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5370 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5371 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5372 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5373 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5374 U(81839) 17103 p54 2001 Fibonacci number 5375e (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5376 V(81671) 17069 c66 2013 Lucas number, ECPP 5377f primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5378 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5379 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5380 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5381 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5382 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5383 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5384 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5385 p(221444161) 16569 c77 2017 Partitions, ECPP 5386e (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5387f primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5388 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5389e (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5390 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 5391 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5392 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5393f primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5394 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5395 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5396 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5397 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5398 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5399 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5400 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5401 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5402 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5403 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5404 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5405 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5406 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5407 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5408 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5409 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5410 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5411 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5412 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5413 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5414 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5415 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5416 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5417 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5418 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5419 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5420 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5421 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5422d p(158375386) 14011 E1 2022 Partitions, ECPP 5423d p(158295265) 14007 E1 2022 Partitions, ECPP 5424d p(158221457) 14004 E1 2022 Partitions, ECPP 5425 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5426 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5427 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5428 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5429 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5430 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5431 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5432 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5433 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5434 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5435 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5436f 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5437 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5438 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5439 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5440d p(141528106) 13244 E6 2022 Partitions, ECPP 5441d p(141513546) 13244 E6 2022 Partitions, ECPP 5442d p(141512238) 13244 E6 2022 Partitions, ECPP 5443d p(141255053) 13232 E6 2022 Partitions, ECPP 5444d p(141150528) 13227 E6 2022 Partitions, ECPP 5445d p(141112026) 13225 E6 2022 Partitions, ECPP 5446d p(141111278) 13225 E6 2022 Partitions, ECPP 5447d p(140859260) 13213 E6 2022 Partitions, ECPP 5448d p(140807155) 13211 E6 2022 Partitions, ECPP 5449d p(140791396) 13210 E6 2022 Partitions, ECPP 5450 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5451 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5452 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5453 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5454 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5455 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5456 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5457 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5458 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5459 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5460 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5461 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5462 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5463 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5464 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5465 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5466 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5467 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5468 V(56003) 11704 p193 2006 Lucas number 5469 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5470 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5471 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5472 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5473 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5474 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5475 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5476 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5477 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5478 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5479 primU(67825) 11336 x23 2007 Fibonacci primitive part 5480 3610!-1 11277 C 1993 Factorial 5481 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5482 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5483 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5484 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5485 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5486 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5487 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5488 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5489 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5490 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5491 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5492 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5493 3507!-1 10912 C 1992 Factorial 5494 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5495 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5496 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5497 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5498 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5499 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5500 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5501 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5502 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5503 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5504 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5505 V(51169) 10694 p54 2001 Lucas number 5506 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5507 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5508 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5509 U(50833) 10624 CH4 2005 Fibonacci number 5510 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5511 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5512 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5513 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5514 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5515 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5516 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5517 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5518 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5519 24029#+1 10387 C 1993 Primorial 5520 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5521 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5522 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5523 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5524 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5525 23801#+1 10273 C 1993 Primorial 5526 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5527 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5528 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5529 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5530 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5531 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5532 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5533 32469*2^32469+1 9779 MM 1997 Cullen 5534 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5535 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5536 8073*2^32294+1 9726 MM 1997 Cullen 5537 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5538 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5539 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5540 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5541 V(44507) 9302 CH3 2005 Lucas number 5542 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5543 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5544 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5545 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5546 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 5547 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5548 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5549 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 5550 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 5551 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5552 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5553 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5554 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5555 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5556 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5557 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5558 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5559 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5560 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5561 18523#+1 8002 D 1989 Primorial 5562 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5563 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5564 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5565 U(37511) 7839 x13 2005 Fibonacci number 5566 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5567 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5568 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5569 V(36779) 7687 CH3 2005 Lucas number 5570 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5571 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5572 V(35449) 7409 p12 2001 Lucas number 5573 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5574 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5575 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5576 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5577 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 5578 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 5579 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5580 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5581 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5582 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5583 23005*2^23005-1 6930 Y 1997 Woodall 5584 22971*2^22971-1 6920 Y 1997 Woodall 5585 15877#-1 6845 CD 1992 Primorial 5586 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5587 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5588 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5589 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5590 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5591 13649#+1 5862 D 1987 Primorial 5592 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5593 18885*2^18885-1 5690 K 1987 Woodall 5594 1963!-1 5614 CD 1992 Factorial 5595 13033#-1 5610 CD 1992 Primorial 5596 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5597 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5598 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5599 U(25561) 5342 p54 2001 Fibonacci number 5600 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5601 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5602 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5603 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5604 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5605 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5606 11549#+1 4951 D 1986 Primorial 5607 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5608 7911*2^15823-1 4768 K 1987 Woodall 5609 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5610 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5611 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5612 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5613 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5614 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5615 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5616 1477!+1 4042 D 1984 Factorial 5617 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5618 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5619 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 5620 12379*2^12379-1 3731 K 1984 Woodall 5621 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5622 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5623 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5624 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5625 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5626 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5627 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5628 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5629 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5630 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5631 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5632 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 5633 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 5634 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 5635 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 5636e 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5637e 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5638 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5639 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5640 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5641 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5642 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5643 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5644 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5645 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5646 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5647 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5648 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5649 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5650 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5651 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5652 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5653 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5654 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5655 V(14449) 3020 DK 1995 Lucas number 5656 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5657 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5658 U(14431) 3016 p54 2001 Fibonacci number 5659 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5660 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5661 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5662 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5663 V(13963) 2919 c11 2002 Lucas number, ECPP 5664 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5665 9531*2^9531-1 2874 K 1984 Woodall 5666 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5667 6569#-1 2811 D 1992 Primorial 5668 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5669 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5670 V(12251) 2561 p54 2001 Lucas number 5671 974!-1 2490 CD 1992 Factorial 5672 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5673 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 5674 7755*2^7755-1 2339 K 1984 Woodall 5675 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5676 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5677 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5678 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5679 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5680 V(10691) 2235 DK 1995 Lucas number 5681 872!+1 2188 D 1983 Factorial 5682 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 5683 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 5684 4787#+1 2038 D 1984 Primorial 5685 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5686 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5687 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5688 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5689 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5690 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5691 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5692 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5693 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5694 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5695 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5696 6611*2^6611+1 1994 K 1984 Cullen 5697 4583#-1 1953 D 1992 Primorial 5698 U(9311) 1946 DK 1995 Fibonacci number 5699 4547#+1 1939 D 1984 Primorial 5700 4297#-1 1844 D 1992 Primorial 5701 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5702 V(8467) 1770 c2 2000 Lucas number, ECPP 5703 4093#-1 1750 CD 1992 Primorial 5704 5795*2^5795+1 1749 K 1984 Cullen 5705 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5706 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5707 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5708 V(7741) 1618 DK 1995 Lucas number 5709 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5710 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5711 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5712 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5713 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5714 83*2^5318-1 1603 K 1984 Woodall 5715 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5716 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5717 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5718 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5719 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5720 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5721 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5722 4713*2^4713+1 1423 K 1984 Cullen 5723 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5724 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5725 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5726 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5727 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5728 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5729 V(5851) 1223 DK 1995 Lucas number 5730 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5731 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 5732 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5733 U(5387) 1126 WM 1990 Fibonacci number 5734 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5735 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 5736 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5737 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5738 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5739 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5740 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5741 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5742 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5743 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5744 R(1031) 1031 WD 1985 Repunit 5745 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5746 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5747 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5748 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5749 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5750 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5751 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5752 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5753 V(4793) 1002 DK 1995 Lucas number 5754 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5755 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5756 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5757 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5758 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5759 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g387 Muzik, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L47 Bishop_D, ProthSieve, RieselSieve, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L134 Childers, ProthSieve, RieselSieve, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L330 Tjung, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L621 Sutton1, Srsieve, Rieselprime, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L840 Vogel, Srsieve, Rieselprime, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1312 Nye, PSieve, Srsieve, PrimeGrid, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1415 Englund, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1487 Krompolc, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1505 Watanabe, PSieve, Srsieve, PrimeGrid, LLR L1512 Obara, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1753 Iwasaki, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1819 Gunn, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1933 Ingram, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1958 DUrso, Srsieve, NewPGen, OpenPFGW, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2058 Sas, PSieve, Srsieve, PrimeGrid, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2101 Tutusaus, PSieve, Srsieve, Rieselprime, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2131 Johnson4, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2399 Bouch, PSieve, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2419 Gathright, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2533 Yoshikawa, PSieve, Srsieve, PrimeGrid, LLR L2539 Gielkens, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2559 Watanabe1, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2623 Pabis, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2636 Fick, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2895 Leonard1, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2963 Newberry, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3014 Janda, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3127 Gilles, PSieve, Srsieve, PrimeGrid, LLR L3131 Kopp, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3157 Becker2, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3188 Oenen, PSieve, Srsieve, PrimeGrid, LLR L3190 Vogel, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3192 Gundermann, PSieve, Srsieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3277 Wijnen, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3279 Hollander, PSieve, Srsieve, PrimeGrid, LLR L3289 Evans1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3423 Collins, PSieve, Srsieve, PrimeGrid, LLR L3427 Pasanen, PSieve, Srsieve, PrimeGrid, LLR L3428 Cristian, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3436 Linder, PSieve, Srsieve, PrimeGrid, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3441 Ilves, PSieve, Srsieve, PrimeGrid, LLR L3444 Crane, PSieve, Srsieve, PrimeGrid, LLR L3445 Bishopp, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3452 Resto, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3456 Murai, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3473 Mizelle, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3630 Brebois, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3641 Adams4, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3691 Williams5, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4299 Ertemalp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4495 Ostaszewski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4734 Howe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4788 Griffin1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4820 Clinton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4828 Gahan, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4853 Jackson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4862 McNary, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4865 Schmeisser, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4894 Bredl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4940 Baur, Srsieve, CRUS, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4950 Baur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4986 Bertelloni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5040 Heyward, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5054 Drager, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5092 Javens1, Srsieve, CRUS, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5096 Mauno, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5098 Trice1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5103 Foulher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5121 Spinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5124 Nitobe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5128 Gulla, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5132 Clemence, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5152 Carpenter2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5163 Kawamura1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5165 AnkerRasch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5193 Tapper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5204 Lachance, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5221 NeSmith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5222 Wolff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5225 Barr1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5251 Bowe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5252 Sheridan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5255 Hochwald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5259 Mccausland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5268 Polansky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5271 Hicks3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5274 Streifel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5280 Fries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5281 Keimer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5289 Nemeth1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5304 Smith11, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5333 Jurgen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5339 Middleton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5341 Toenjes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5349 Piliksers, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5351 Daniel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5357 Ivanek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5371 Tisdell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5374 Yanev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5383 Johnson8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5386 Greubel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5397 Chaplin, Srsieve, CRUS, LLR L5398 Mittelstadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5419 Straub, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5420 Gaillard2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5428 Akimori, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5430 TakashitaBynum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5436 Dewar1, Srsieve, CRUS, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5455 Shtov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5474 Burns1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5483 DeRoest, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5495 Gauch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5498 Shimizu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5515 Pollak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5520 Bennett1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5521 Terwisscha, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5522 Lynch1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5525 Ou1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5528 Hebr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5533 Schadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5538 Derrera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5539 Choliy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5542 Rauso, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5552 Plotkin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5561 Howell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5591 Yuan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5593 DeGroot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5597 Kodey, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5603 Homola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p195 Ogawa, NewPGen, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p281 Domanov1, Srsieve, NPLB, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p323 Myllyvirta, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p341 Schmidt2, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p353 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown Y Young