18.225 PROBLEM SET (FALL 2021)

A. RAMSEY

- A1. Upper bound on Ramsey numbers. Let s and t be positive integers. Show that if the edges of a complete graph on $\binom{s+t-2}{s-1}$ vertices are colored with red and blue, then there must be either a red K_s or a blue K_t .
- A2. Ramsey's theorem. Show that for every s and r there exists some N = N(s, r) such that every coloring of the edges of K_N using r colors, there exists some monochromatic copy clique on s vertices.

Generalize this statement to hypergraphs.

- A3. Prove that it is possible to color N using two colors so that there is no infinitely long monochromatic arithmetic progression.
- A4. Many monochromatic triangles

ps1

ps1

ps1

ps1*

ps1*

- (a) True or false: If the edges of K_n are colored using 2 colors, then at least 1/4 o(1) fraction of all triangles are monochromatic. (Note that 1/4 is the fraction one expects if the edges were colored uniformly at random.)
- (b) True or false: if the edges of K_n are colored using 3 colors, then at least 1/9 o(1) fraction of all triangles are monochromatic.

B. FORBIDDING A SUBGRAPH

- **ps1** B1. Show that a graph with *n* vertices and *m* edges has at least $\frac{4m}{3n}\left(m-\frac{n^2}{4}\right)$ triangles.
- **ps1*** B2. Prove that every *n*-vertex graph with at least $\lfloor n^2/4 \rfloor + 1$ edges contains at least $\lfloor n/2 \rfloor$ triangles.
- **ps1*** B3. Prove that every *n*-vertex graph with at least $\lfloor n^2/4 \rfloor + 1$ edges contains some edge in at least (1/6 o(1))n triangles, and that this constant 1/6 is best possible.
- ps1B4. If not bipartite, consider an odd cycle of minimum length. Every vertex on the cycle has
>2n/5 2 edges out, and every vertex not on the cycle is adjacent to at most two vertices on
the cycle (or else you get a shorter cycle or a triangle). Combining gives a contradiction.
 - B5. K_{r+1} -free graphs close to the Turán bound are nearly r-partite
 - (a) Let G be an *n*-vertex triangle-free graph with at least $\lfloor n^2/4 \rfloor k$ edges. Prove that G can be made bipartite by removing at most k edges.
 - (b) Let G be an n-vertex K_{r+1} -free graph with at least $e(T_{n,r}) k$ edges, where $T_{n,r}$ is the Turán graph. Prove that G can be made r-partite by removing at most k edges.
 - (c) Let G be an n-vertex graph with [n²/4] k edges (here k ∈ Z) and t triangles. Prove that G can be made bipartite by removing at most k+6t/n edges, and that this constant 6 is best possible.
- ps1* B6. Large induced bipartite subgraph. Prove that for every $\epsilon > 0$, there exist $\delta, C > 0$ so that the following holds. If G is an n-vertex graph with at least $n^2/4$ edges such that every edge of G

lies in at most $(1/2 - \varepsilon)n$ triangles, and the number of triangles t of G is at most δn^3 , then there is an induced bipartite subgraph containing all but at most Ct/n^2 vertices of G.

- B7. Let G be a K_{r+1} -free graph. Prove that there is another graph H on the same vertex set as G such that $\chi(H) \leq r$ and $d_H(x) \geq d_G(x)$ for every vertex x (here $d_H(x)$ is the degree of x in H, and likewise with $d_G(x)$ for G). Give another proof of Turán's theorem from this fact.
- **ps1** B8. Let X and Y be independent and identically distributed random vectors in \mathbb{R}^d according to some arbitrary probability distribution. Prove that

$$\mathbb{P}(|X+Y| \ge 1) \ge \frac{1}{2}\mathbb{P}(|X| \ge 1)^2.$$

- B9. Let S be a set of n points in the plane, with the property that no two points are at distance greater than 1. Show that S has at most $\lfloor n^2/3 \rfloor$ pairs of points at distance greater than $1/\sqrt{2}$. Also, show that the bound $\lfloor n^2/3 \rfloor$ is tight (i.e., cannot be improved).
- **ps1** B10. Density Ramsey. Prove that for every s and r, there exist c > 0 and n_0 such that for all $n > n_0$, if the edges of K_n are colored using r colors, then at least c fraction of all copies of K_s are monochromatic.
 - B11. Density version of Szemerédi's theorem. Let $k \ge 3$. Assuming Szemerédi's theorem for k-term arithmetic progressions (i.e., every subset of [N] without a k-term arithmetic progression has size o(N)), prove the following density version of the Szemerédi's theorem:

For every $\delta > 0$ there exist c and N_0 (both depending only on k and δ) such that every $A \subset [N]$ with $|A| \ge \delta N$ and $N \ge N_0$, the number of k-term arithmetic progressions in A is at least cN^2 .

ps2 B12. (How not to define density in a product set) Let $S \subset \mathbb{Z}^2$. Define

$$d_k(S) = \max_{\substack{A,B \subset \mathbb{Z} \\ |A| = |B| = k}} \frac{|S \cap (A \times B)|}{|A||B|}.$$

Show that $\lim_{k\to\infty} d_k(S)$ exists and is always either 0 or 1.

(Note: You are only allowed to invoke theorems we proved in class.)

- B13. Show that, for every $\epsilon > 0$, there exists $\delta > 0$ such that every graph with *n* vertices and at least ϵn^2 edges contains a copy of $K_{s,t}$ where $s \ge \delta \log n$ and $t \ge n^{0.99}$.
- ps2 B14. Density version of Kővári–Sós–Turán. Prove that for every positive integers $s \leq t$, there are constants C, c > 0 such that every n-vertex graph with $p\binom{n}{2}$ edges contains at least $cp^{st}n^{s+t}$ copies of $K_{s,t}$, provided that $p \geq Cn^{-1/s}$.
 - B15. Erdős-Stone theorem for hypergraphs. Let H be an r-graph. Show that $\pi(H[s]) = \pi(H)$, where H[s], the s-blow-up of H, is obtained by replacing every vertex of H by s duplicates of itself.
- **ps2** B16. Let T be a tree with k edges. Show that $ex(n,T) \le kn$.
- ps2 B17. Find a graph H with $\chi(H) = 3$ and $ex(n, H) > \frac{1}{4}n^2 + n^{1.99}$ for all sufficiently large n.

The next two problems concern the dependent random choice technique.

- **ps2** B18. Let $\epsilon > 0$. Show that, for sufficiently large n, every K_4 -free graph with n vertices and at least ϵn^2 edges contains an independent set of size at least $n^{1-\epsilon}$.
- ps2* B19. Extremal numbers of degenerate graphs

- (a) Prove that there is some absolute constant c > 0 so that for every positive integer r, every n-vertex graph with at least $n^{2-c/r}$ edges contains disjoint non-empty vertex subsets A and B such that every subset of at most r vertices in A has at least n^c common neighbors in B and every subset of at most r vertices in B has at least n^c neighbors in A.
- (b) We say that a graph H is r-degenerate if its vertices can be ordered so that every vertex has at most r neighbors that appear before it in the ordering. Show that for every rdegenerate bipartite graph H there is some constant C > 0 so that $ex(n, H) \leq Cn^{2-c/r}$, where c is the same absolute constant from part (a) (c should not depend on H or r).

C. The graph regularity method

For simplicity, you are welcome to apply the equitable version of Szemerédi's regularity lemma.

- C1. Unavoidability of irregular pairs. Let the half-graph H_n be the bipartite graph on 2n vertices $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ with edges $\{a_i b_j : i \leq j\}$.
 - (a) For every $\epsilon > 0$, explicitly construct an ϵ -regular partition of H_n into $O(1/\epsilon)$ parts.
 - (b) Show that there is some c > 0 such that for every $\epsilon \in (0, c)$, every integer k and sufficiently large multiple n of k, every partition of the vertices of H_n into k equal-sized parts contains at least ck pairs of parts which are not ϵ -regular.
- C2. Show that there is some absolute constant C > 0 such that for every $0 < \epsilon < 1/2$, every graph on *n* vertices contains an ϵ -regular pair of vertex subsets each with size at least δn , where $\delta = 2^{-\epsilon^{-C}}$.
 - C3. Existence of a regular set. Given a graph G, we say that $X \subset V(G)$ is ϵ -regular if the pair (X, X) is ϵ -regular, i.e., for all $A, B \subset X$ with $|A|, |B| \ge \epsilon |X|$, one has $|d(A, B) d(X, X)| \le \epsilon$. This problem asks for two different proofs of the claim: for every $\epsilon > 0$, there exists $\delta > 0$ such that every graph contains an ϵ -regular subset of vertices of size at least δ fraction of the vertex set.
 - (a) Prove the claim using Szemerédi's regularity lemma, showing that one can obtain the ϵ -regular subset by combining a suitable sub-collection of parts from some regularity partition.
 - (b) Give an alternative proof of the claim showing that one can take $\delta = \exp(-\exp(\epsilon^{-C}))$ for some constant C.
- ps2* C4. Regularity partition into regular sets. Prove or disprove: for every $\epsilon > 0$ there exists M so that every graph has an ϵ -regular partition into at most M parts, with every part being ϵ -regular with itself.
- C5. Arithmetic triangle removal lemma. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if $A \subset [n]$ has fewer than δn^2 many triples $(x, y, z) \in A^3$ with x + y = z, then there is some $B \subset A$ with $|A \setminus B| \le \epsilon n$ such that B is sum-free, i.e., there do not exist $x, y, z \in B$ with x + y = z.
- ps3 C6. The (6,3) theorem. Let H be an n-vertex 3-uniform hypergraph without a subgraph having 6 vertices and 3 edges. Prove that H has $o(n^2)$ edges.
 - C7. Ramsey-Turán.

ps2

ps2

ps2*

- (a) Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that every *n*-vertex K_4 -free graph with at least $(\frac{1}{8} + \epsilon)n^2$ edges contains an independent set of size at least δn .
- (b) Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that every *n*-vertex K_4 -free graph with at least $(\frac{1}{8} \delta)n^2$ edges and independence number at most δn can be made bipartite by removing at most ϵn^2 edges.
- C8. Show that for every H and $\epsilon > 0$ there exists $\delta > 0$ such that every graph on n vertices without an induced copy of H contains an induced subgraph on at least δn vertices whose edge density is at most ϵ or at least 1ϵ .
- C9. Show that for every Δ there exists a constant C_{Δ} so that if H is a graph with maximum degree at most Δ , then every 2-edge-coloring of a complete graph on at least $C_{\Delta}v(H)$ vertices contains a monochromatic copy of H.
- ps3* C10. Using regularity, show that the number of *n*-vertex triangle-free graphs is $2^{(1/4+o(1))n^2}$. (Your proof should be easily extendable to show that for every fixed graph *H*, the number of *n*-vertex *H*-free graphs is $2^{(\pi(H)+o(1))\binom{n}{2}}$.)
- **ps3** \star C11. Show that for every graph H there is some graph G such that if the edges of G are colored with two colors, then some induced subgraph of G is a monochromatic copy of H.
- ps3* C12. Show that for every $\alpha > 0$, there exists $\beta > 0$ such that every graph on n vertices with at least αn^2 edges contains a d-regular subgraph for some $d \ge \beta n$ (here d-regular refers to every vertex having degree d).
- ps3 C13. Multidimensional Szemerédi theorem for axis-aligned squares. Assuming the tetrahedron removal lemma for 3-uniform hypergraphs, deduce that if $A \subset [N]^2$ contains no axes-aligned squares (i.e., four points of the form (x, y), (x + d, y), (x, y + d), (x + d, y + d), where $d \neq 0$), then $|A| = o(N^2)$.

D. PSEUDORANDOM GRAPHS

- **ps4** D1. Let q be a prime. Let $S \subset \mathbb{F}_q \cup \{\infty\}$. Construct a graph G on vertex set \mathbb{F}_q^2 where two points are joined if the slope of the line connecting them lies in S. Viewed as a sequence of graphs as $q \to \infty$, prove that G is quasirandom as long as |S|/q converges to a limit.
- **ps4*** D2. Quasirandomness through fixed sized subsets. Fix $p \in [0,1]$. Let (G_n) be a sequence with $v(G_n) = n$. Write $G = G_n$.

(a) Fix a single $\alpha \in (0, 1)$. Suppose

ps3

ps3

$$e(S) = \frac{p\alpha^2 n^2}{2} + o(n^2)$$
 for all $S \subset V(G)$ with $S = \lfloor \alpha n \rfloor$.

Prove that G is quasirandom.

(b) Fix a single $\alpha \in (0, 1/2)$. Write $\overline{S} = V(G) \setminus S$. Suppose

 $e(S,\overline{S}) = p\alpha(1-\alpha)n^2 + o(n^2)$ for all $S \subset V(G)$ with $S = \lfloor \alpha n \rfloor$.

Prove that G is quasirandom. Furthermore, show that the conclusion is false for $\alpha = 1/2$.

D3. Quasirandomness and regularity partitions. Fix $p \in [0, 1]$. Let (G_n) be a sequence of graphs with $v(G_n) \to \infty$. Suppose that for every $\epsilon > 0$, there exists $M = M(\epsilon)$ so that each G_n has an ϵ -regular partition where all but ϵ -fraction of vertex pairs lie between pairs of parts with edge density p + o(1) (as $n \to \infty$). Prove that G_n is quasirandom.

- ★ D4. Triangle counts on induced subgraphs. Fix $p \in (0, 1]$. Let (G_n) be a sequence of graphs with $v(G_n) = n$. Let $G = G_n$. Suppose that for every $S \subset V(G)$, the number of triangles in the induced subgraph G[S] is $p^3\binom{|S|}{3} + o(n^3)$. Prove that G is quasirandom.
 - D5. Prove that there are constant $\beta, \epsilon > 0$ such that for every even positive integer n and real $p \ge n^{-\beta}$, if G is an n-vertex graph where every vertex has degree $(1 \pm \epsilon)pn$ (meaning within ϵpn of pn) and every pair of vertices has codegree $(1 \pm \epsilon)p^2n$, then G has a perfect matching.

The next two exercises ask you to prove *Cheeger's inequality*:

$$\kappa/2 \le h \le \sqrt{2d\kappa}$$

for every d-regular graph with spectral gap $\kappa = d - \lambda_2$ and edge-expansion ratio

$$h := \min_{\substack{S \subset V \\ 0 < |S| \le |V|/2}} \frac{e_G(S, V \setminus S)}{|S|}$$

- ps4 D6. Spectral gap implies expansion. Prove that every d-regular graph with spectral gap κ has edge-expansion ratio $\geq \kappa/2$.
- D7. Expansion implies spectral gap. Let G = (V, E) be a connected d-regular graph with spectral gap κ . Let $x = (x_v)_{v \in V} \in \mathbb{R}^V$ be an eigenvector associated to the second largest eigenvalue $\lambda_2 = d \kappa$ of the adjacency matrix of G. Assume that $x_v > 0$ on at most half of the vertex set (or else we replace x by -x). Let $y = (y_v)_{v \in V} \in \mathbb{R}^V$ be obtained from x by replacing all its negative coordinates by zero.

(a) Prove that

$$d - \frac{\langle y, Ay \rangle}{\langle y, y \rangle} \le \kappa.$$

Hint: recall that $\lambda_2 x_v = \sum_{u \sim v} x_u$.

(b) Let

$$\Theta = \sum_{uv \in E} \left| y_u^2 - y_v^2 \right|.$$

Prove that

$$\Theta^{2} \leq 2d(d\langle y, y \rangle - \langle y, Ay \rangle) \langle y, y \rangle.$$

Hint: $y_u^2 - y_v^2 = (y_u - y_v)(y_u + y_v)$. Apply Cauchy–Schwarz. (c) Relabel the vertex set V by [n] so that $y_1 \ge y_2 \cdots \ge y_t > 0 = y_{t+1} = \cdots = y_n$. Prove

$$\Theta = \sum_{k=1}^{t} (y_k^2 - y_{k+1}^2) \ e([k], [n] \setminus [k]).$$

(d) Prove that for some $1 \le k \le t$,

$$\frac{e([k],[n]\setminus [k])}{k} \leq \frac{\Theta}{\langle y,y\rangle}.$$

(e) Prove the G has edge-expansion ratio $\leq \sqrt{2d\kappa}$.

ps4*

- **ps4** D8. Prove that the diameter of an (n, d, λ) -graph is at most $\lceil \log n / \log(d/\lambda) \rceil$. (The diameter of a graph is the maximum distance between a pair of vertices.)
- **ps4*** D9. Counting cliques. For each part below, prove that for every $\epsilon > 0$, there exists $\delta > 0$ such that the conclusion holds for every (n, d, λ) -graph G with d = pn.
 - (a) If $\lambda \leq \delta p^2 n$, then the number of triangles of G is within a $1 \pm \epsilon$ factor of $p^3 \binom{n}{3}$.
 - (b) If $\lambda \leq \delta p^3 n$, then the number of K_4 's in G is within a $1 \pm \epsilon$ factor of $p^6 \binom{n}{4}$.
- **ps4** D10. Let p be an odd prime and $A, B \subset \mathbb{Z}/p\mathbb{Z}$. Show that

$$\left|\sum_{a \in A} \sum_{b \in B} \left(\frac{a+b}{p}\right)\right| \le \sqrt{p |A| |B|}$$

where (a/p) is the Legendre symbol defined by

 $\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a nonzero quadratic residue mod } p \\ -1 & \text{if } a \text{ is a quadratic nonresidue mod } p \end{cases}$

- D11. No spectral gap if too few generators. Prove that for every $\epsilon > 0$ there is some c > 0 such that for every $S \subset \mathbb{Z}/n\mathbb{Z}$ with $0 \notin S = -S$ and $|S| \leq c \log n$, the second largest eigenvalue of the adjacency matrix of $\operatorname{Cay}(\mathbb{Z}/n\mathbb{Z}, S)$ is at least $(1 \epsilon) |S|$.
- ps4* D12. Let p be a prime and let S be a multiplicative subgroup of \mathbb{F}_p^{\times} . Suppose $-1 \in S$. Prove that all eigenvalues of the adjacency matrix of $\operatorname{Cay}(\mathbb{Z}/p\mathbb{Z}, S)$, other than the top one, are at most \sqrt{p} in absolute value.
 - D13. Growth and expansion in quasirandom groups. Let Γ be a finite group with no non-trivial representations of dimension less than K. Let $X, Y, Z \subset \Gamma$. Suppose $|X| |Y| |Z| \ge |\Gamma|^3 / K$. Then $XYZ = \Gamma$ (i.e., every element of Γ can be expressed as xyz for some $(x, y, z) \in X \times Y \times Z$).
- D14. Prove that for every positive integer d and real $\epsilon > 0$, there is some constant c > 0 so that every *n*-vertex *d*-regular graph has at least cn eigenvalues greater than $2\sqrt{d-1} - \epsilon$. (Full credit will be awarded for proving the weaker statement that $\geq cn$ eigenvalues have absolute value $> 2\sqrt{d-1} - \epsilon$.)
- **ps4*** D15. Show that for every d and r, there is some $\epsilon > 0$ such that if G is a d-regular graph, and $S \subset V(G)$ is such that every vertex of G is within distance r of S, then the top eigenvalue of the adjacency matrix of G S (i.e., remove S and its incident edges from G) is at most $d \epsilon$.

E. GRAPH LIMITS

- E1. Zero-one valued graphons. Let W be a $\{0,1\}$ -valued graphon. Suppose graphons W_n satisfy $\|W_n W\|_{\square} \to 0$ as $n \to \infty$. Show that $\|W_n W\|_1 \to 0$ as $n \to \infty$.
- **ps5** E2. Define $W: [0,1]^2 \to \mathbb{R}$ by $W(x,y) = 2\cos(2\pi(x-y))$. Let *F* be a graph. Show that t(F,W) is the number of ways to orient all edges of *F* so that every vertex has the same number of incoming edges as outgoing edges.

ps5

E3. Weak regularity decomposition. The following exercise offers alternate approach to the weak regularity lemma. It gives an approximation of a graphon as a linear combination of $\leq \epsilon^{-2}$

indictor functions of boxes. The polynomial dependence of ϵ^{-2} is important for designing efficient approximation algorithms.

(a) Let $\epsilon > 0$. Show that for every graphon W, there exist measurable $S_1, \ldots, S_k, T_1, \ldots, T_k \subseteq [0, 1]$ and reals $a_1, \ldots, a_k \in \mathbb{R}$, with $k < \epsilon^{-2}$, such that

$$\left\| W - \sum_{i=1}^{k} a_i \mathbf{1}_{S_i \times T_i} \right\|_{\Box} \le \epsilon.$$

The rest of the exercise shows how to recover a regularity partition from the above approximation.

- (b) Show that the stepping operator is contractive with respect to the cut norm, in the sense that if $W: [0,1]^2 \to \mathbb{R}$ is a measurable symmetric function, then $\|W_{\mathcal{P}}\|_{\square} \leq \|W\|_{\square}$.
- (c) Let \mathcal{P} be a partition of [0,1] into measurable sets. Let U be a graphon that is constant on $S \times T$ for each $S, T \in \mathcal{P}$. Show that for every graphon W, one has

$$||W - W_{\mathcal{P}}||_{\square} \le 2||W - U||_{\square}.$$

- (d) Use (a) and (c) to give a different proof of the weak regularity lemma (with slightly worse bounds than the one given in class): show that for every $\epsilon > 0$ and every graphon W, there exists partition \mathcal{P} of [0, 1] into $2^{O(1/\epsilon^2)}$ measurable sets such that $||W - W_{\mathcal{P}}||_{\Box} \leq \epsilon$.
- E4. Second neighborhood distance. Let W be a graphon. Define $\tau_{W,x}: [0,1] \to [0,1]$ by

$$au_{W,x}(z) = \int_{[0,1]} W(x,y) W(y,z) \, dy$$

(This models the second neighborhood of x.) Let $0 < \epsilon < 1/2$. Prove that if a finite set $S \subset [0,1]$ satisfies

$$\|\tau_{W,s} - \tau_{W,t}\|_1 > \epsilon$$
 for all distinct $s, t \in S$,

then $|S| \leq (1/\epsilon)^{C/\epsilon^2}$, where C is some absolute constant.

- E5. Show that for every $0 < \epsilon < 1/2$, every graphon lies within cut distance at most ϵ from some graph on at most C^{1/ϵ^2} vertices, where C is some absolute constant.
- E6. Inverse counting lemma. Using the uniqueness of moments theorem, deduce that for every $\epsilon > 0$ there is some $\eta > 0$ and integer k > 0 such that if U and W are graphons with

$$|t(F,U) - t(F,W)| \le \eta$$
 whenever $v(F) \le k$,

then $\delta_{\Box}(U, W) \leq \epsilon$.

ps5*

ps5

ps5* E7. Generalized maximum cut. For symmetric measurable functions $W, U: [0, 1]^2 \to \mathbb{R}$, define

$$\mathcal{C}(W,U) := \sup_{\phi} \langle W, U^{\phi} \rangle = \sup_{\phi} \int W(x,y) U(\phi(x),\phi(y)) \, dx dy,$$

where ϕ ranges over all invertible measure preserving maps $[0,1] \to [0,1]$. Extend the definition of $\mathcal{C}(\cdot, \cdot)$ to graphs by $\mathcal{C}(G, \cdot) := \mathcal{C}(W_G, \cdot)$, etc.

(a) Is $\mathcal{C}(U, W)$ continuous jointly in (U, W) with respect to the cut norm? Is it continuous in U if W is held fixed?

- (b) (Key part of the problem) Show that if W_1 and W_2 are graphons such that $\mathcal{C}(W_1, U) = \mathcal{C}(W_2, U)$ for all graphons U, then $\delta_{\Box}(W_1, W_2) = 0$.
- (c) Let G_1, G_2, \ldots be a sequence of graphs such that $\mathcal{C}(G_n, U)$ converges as $n \to \infty$ for every graphon U. Show that G_1, G_2, \ldots is convergent.
- (d) Can the hypothesis in (c) be replaced by " $\mathcal{C}(G_n, H)$ converges as $n \to \infty$ for every graph H"?
- E8. (a) Let G_1 and G_2 be two graphs such that $hom(F, G_1) = hom(F, G_2)$ for every graph F. Show that G_1 and G_2 are isomorphic.
 - (b) Let G_1 and G_2 be two graphs such that $hom(G_1, H) = hom(G_2, H)$ for every graph H. Show that G_1 and G_2 are isomorphic.

F. GRAPH HOMOMORPHISM INEQUALITIES

Recall some definitions. A graph F is said to be

- Sidorenko if $t(F, W) \ge t(K_2, W)^{e(F)}$ for all graphons W;
- forcing if every graphon W with $t(F, W) = t(K_2, W)^{e(F)}$ is a constant graphon;
- common if $t(F, W) + t(F, 1 W) \ge 2^{-e(F)+1}$ for all graphons W.
- F1. Tensor power trick. Let F be a bipartite graph. Suppose there is some constant c > 0 such that

 $t(F,G) \ge c t(K_2,G)^{e(F)}$ for all graphs G.

Show that F is Sidorenko.

- F2. Prove that C_6 is Sidorenko.
- F3. Prove that $Q_3 = \square$ is Sidorenko.
- F4. Prove that K_4^- is common, where K_4^- is K_4 with one edge removed.
- F5. Prove that every forcing graph is bipartite and has at least one cycle.
- F6. Prove that every forcing graph is Sidorenko.
- F7. Forcing and quasirandomness. Show that a graph F is forcing if and only if for every constant $p \in [0, 1]$, every sequence of graphs $G = G_n$ with

$$t(K_2, G) = p + o(1)$$
 and $t(F, G) = p^{e(F)} + o(1)$

is quasirandom.

ps5

ps5

- F8. Forcing and stability. Show that a graph F is forcing if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that if a graph G satisfies $t(F, G) \le t(K_2, G)^{e(F)} + \delta$, then $\delta_{\Box}(G, p) \le \epsilon$.
- F9. Prove that $K_{s,t}$ is forcing whenever $s, t \geq 2$.
- F10. A lower bound on clique density. Show that for every positive integer $r \ge 3$, and graphs G, writing $p = t(K_2, W)$,

$$t(K_r, W) \ge p(2p-1)(3p-2)\cdots((r-1)p-(r-2)).$$

Note that this inequality is tight when W is the associated graphon of a clique.

ps5* F11. Prove there is a function $f: [0,1] \to [0,1]$ with $f(x) \ge x^2$ and $\lim_{x\to 0} f(x)/x^2 = \infty$ such that

$$t(K_4^-, G) \ge f(t(K_3, G))$$

for all graphs G. Here K_4^- is K_4 with one edge removed.

- **ps5** F12. Cliquey edges. Let n, r, t be nonnegative integers. Show that every *n*-vertex graph with at least $(1 \frac{1}{r})\frac{n^2}{2} + t$ edges contains at least rt edges that belong to a K_{r+1} .
- **ps5*** F13. Maximizing $K_{1,2}$ density. Prove that, for every $p \in [0,1]$, among all graphons W with $t(K_2, W) = p$, the maximum possible value of $t(K_{1,2}, W)$ is attained by either a "clique" or a "hub" graphon, illustrated below.

F14. Let F be the 3-graph with 10 vertices and 6 edges illustrated below (with the line segments denoting edges). Prove that the hypergraph Turán density of F is 2/9.

G. FORBIDDING 3-TERM ARITHMETIC PROGRESSIONS

ps5 G1. Fourier uniformity does not control 4-AP counts. Let

$$A = \{ x \in \mathbb{F}_5^n : x \cdot x = 0 \}.$$

Prove that:

ps6

(a)
$$|A| = (5^{-1} + o(1))5^n$$
 and $|\widehat{1_A}(r)| = o(1)$ for all $r \neq 0$;

(b)
$$|\{(x,y) \in \mathbb{F}_5^n : x, x+y, x+2y, x+3y \in A\}| \neq (5^{-4}+o(1))5^{2n}$$
.

ps5* G2. Fix $0 < \alpha < 1$. Let N be a prime. Let

$$A = \left\{ x \in [N] : x^2 \mod N < \alpha N \right\}.$$

Viewing $A \subset \mathbb{Z}/N\mathbb{Z}$, prove that, as $N \to \infty$ with fixed α ,

(a) $|A| = (\alpha + o(1))N$ and $\max_{r \neq 0} |\widehat{1_A}(r)| = o(1);$

(b)
$$|(x,y) \in \mathbb{Z}/N\mathbb{Z} : x, x+y, x+2y, x+3y \in A| \neq (\alpha^4 + o(1))N^2.$$

ps6 G3. Linearity testing. Show that for every prime p there is some $C_p > 0$ such that if $f : \mathbb{F}_p^n \to \mathbb{F}_p$ satisfies

$$\mathbb{P}_{x,y\in\mathbb{F}_n^n}(f(x)+f(y)=f(x+y))=1-\epsilon$$

then there exists some $a \in \mathbb{F}_p^n$ such that

$$\mathbb{P}_{x \in \mathbb{F}_p^n}(f(x) = a \cdot x) \ge 1 - C_p \epsilon$$

In the above \mathbb{P} expressions x and y are chosen i.i.d. uniform from \mathbb{F}_p^n .

G4. Counting solutions to a single linear equation.

(a) Given a function $f: \mathbb{Z} \to \mathbb{C}$ with finite support, define $\widehat{f}: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ by

$$\widehat{f}(t) = \sum_{n \in \mathbb{Z}} f(n) e^{-2\pi i n t}$$

Let $c_1, \ldots, c_k \in \mathbb{Z}$. Let $A \subset \mathbb{Z}$ be a finite set. Show that

$$|\{(a_1,\ldots,a_k)\in A^k: c_1a_1+\cdots+c_ka_k=0\}| = \int_0^1 \widehat{1_A}(c_1t)\widehat{1_A}(c_2t)\cdots\widehat{1_A}(c_kt)\,dt.$$

- (b) Show that if a finite set A of integers contains $\beta |A|^2$ solutions $(a, b, c) \in A^3$ to a+2b = 3c, then it contains at least $\beta^2 |A|^3$ solutions $(a, b, c, d) \in A^4$ to a + b = c + d.
- G5. Let $a_1, \ldots, a_m, b_1, \ldots, b_m, c_1, \ldots, c_m \in \mathbb{F}_2^n$. Suppose that the equation $a_i + b_j + c_k = 0$ holds if and only if i = j = k. Show that there is some constant c > 0 such that $m \leq (2 c)^n$ for all sufficiently large n.
- G6. Sunflower-free subset. Three sets A, B, C form a sunflower if $A \cap B = B \cap C = A \cap B = A \cap B \cap C$. Prove that there exists some c > 0 such that if \mathcal{F} is a collection of subsets of [n] without a sunflower, then $|\mathcal{F}| \leq (3-c)^n$ provided that n is sufficiently large.
- G7. Gowers U^2 uniformity norm. Let $f: \mathbb{F}_p^n \to \mathbb{C}$, define

$$\|f\|_{U^2} := \left(\mathbb{E}_{x,h,h'\in\Gamma}f(x)\overline{f(x+h)f(x+h')}f(x+h+h')\right)^{1/4}$$

- (a) Show that the expectation above is always a nonnegative real number, so that the above expression is well defined. Also, show that $||f||_{U^2} \ge |\mathbb{E}f|$.
- (b) For $f_1, f_2, f_3, f_4 \colon \mathbb{F}_p^n \to \mathbb{C}$, let

$$\langle f_1, f_2, f_3, f_4 \rangle = \mathbb{E}_{x,h,h' \in \Gamma} f_1(x) \overline{f_2(x+h)f_3(x+h')} f_4(x+h+h').$$

Prove that

$$|\langle f_1, f_2, f_3, f_4 \rangle| \le \|f_1\|_{U^2} \, \|f_2\|_{U^2} \, \|f_3\|_{U^2} \, \|f_4\|_{U^2}$$

(c) By noting that $\langle f_1, f_2, f_3, f_4 \rangle$ is multilinear, and using part (b), show that

 $||f+g||_{U^2} \le ||f||_{U^2} + ||g||_{U^2}.$

Conclude that $\| \|_{U^2}$ is a norm.

(d) Show that

$$\|f\|_{U^2} = \|\widehat{f}\|_{\ell^4}$$

Furthermore, deduce that if $||f||_{\infty} \leq 1$, then

$$\|\widehat{f}\|_{\infty} \le \|f\|_{U^2} \le \|\widehat{f}\|_{\infty}^{1/2}.$$

(This gives a so-called "inverse theorem" for the U^2 norm: if $||f||_{U^2} \ge \delta$ then $|\hat{f}(r)| \ge \delta^2$ for some $r \in \mathbb{F}_p^n$, i.e., if f is not U^2 -uniform, then it must correlate with some character.)

H. Structure of set addition

ps6 H1. Show that for every real $K \ge 1$ there is some C_K such that for every finite set A of an abelian group with $|A + A| \le K |A|$, one has $|nA| \le n^{C_K} |A|$ for every positive integer n.

рsб

- H2. Show that there is some constant C so that if S is a finite subset of an abelian group, and k is a positive integer, then $|2kS| \leq C^{|S|} |kS|$.
- H3. Show that for every sufficiently large K there is there some finite set $A \subset \mathbb{Z}$ such that $|A + A| \leq K |A|$ and $|A A| \geq K^{1.99} |A|$.
- H4. Loomis–Whitney for sumsets. Show that for every finite subsets A, B, C in an abelian group, one has

$$|A + B + C|^2 \le |A + B| |A + C| |B + C|.$$

- H5. Sumset versus difference set. Let $A \subset \mathbb{Z}$. Prove that $|A A|^{2/3} \le |A + A| \le |A A|^{3/2}$.
- H6. Another covering lemma. Let A and B be finite sets in an abelian group satisfying $|A + A| \leq K |A|$ and $|A + B| \leq K' |B|$. Show that there exist some set X in the abelian group with $|X| = O(K \log(KK'))$ so that $A \subset \Sigma X + B B$, where ΣX denotes the set of all elements that can be written as the sum of a subset of elements of X (including zero as the sum of the empty set).
- H7. Modeling arbitrary sets of integers. Let $A \subset \mathbb{Z}$ with |A| = n.
 - (a) Let p be a prime. Show that there is some integer t relatively prime to p such that $\|at/p\|_{\mathbb{R}/\mathbb{Z}} \leq p^{-1/n}$ for all $a \in A$.
 - (b) Show that A is Freiman 2-isomorphic to a subset of [N] for some $N = (4 + o(1))^n$.
 - (c) Show that (b) cannot be improved to $N = 2^{n-2}$.
 - (You may use the fact that the smallest prime larger than m has size m + o(m).)
- H8. Sumset with 3-AP-free set. Let A and B be n-element subsets of the integers. Suppose A is 3-AP free. Prove that $|A + B| \ge n(\log \log n)^{1/100}$ provided that n is sufficiently large.
 - H9. 3-AP-free subsets of arbitrary sets of integers. Prove that there is some constant C > 0 so that every set of n integers has a 3-AP-free subset of size at least $ne^{-C\sqrt{\log n}}$.
- H10. Bogolyubov with 3-fold sums. Let $A \subset \mathbb{F}_p^n$ with $|A| = \alpha p^n$. Prove that A + A + A contains a translate of a subspace of codimension $O(\alpha^{-3})$.
- **ps6*** H11. Slightly better bounds on Bogolyubov. Let $A \subset \mathbb{F}_2^n$ with $|A| = \alpha 2^n$.
 - (a) Show that if $|A + A| < 0.99 \cdot 2^n$, then there is some $r \in \mathbb{F}_2^n \setminus \{0\}$ such that $|\widehat{1}_A(r)| > c\alpha^{3/2}$ for some constant c > 0.
 - (b) By iterating (a), show that A + A contains 99% of a subspace of codimension $O(\alpha^{-1/2})$.
 - (c) Deduce that 4A contains a subspace of codimension $O(\alpha^{-1/2})$ (i.e., Bogolyubov's lemma with better bounds than the one shown in class)

рs6*

ps6*

ps6

рsб