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To Gabriella 



As long as a branch of science offers an abundance of problems, so long 

is it alive; a lack of problems foreshadows extinction or the cessation of 

independent development. Just as any human undertaking pursues certain 

objects, so also mathematical research requires its problems. It is by the 

solution of problems that the investigator tests the temper of his steel; he 

finds new methods and new outlooks, and gains a wider and freer horizon. 

David Hilbert, Mathematical Problems, 

International Congress of Mathematicians, 
Paris, 1900. 



Apologia 

This b ook has grown out of Graph Theory-An Introductory Course (GT), a b ook 
I wrote about twenty years ago. Although I am still happy to recommend GT for 
a fairly fast-paced introduction to the b asic results of graph theory, in the light 
of the developments in the past twenty years it seemed desirab le to write a more 
sub stantial introduction to graph theory, rather than just a slightly changed new 
edition. 

In addition to the classical results of the subject from GT, amounting to about 
40% of the material, this book contains many beautiful recent results, and also 
explores some of the exciting connections with other branches of mathematics that 
have come to the fore over the last two decades. Among the new results we discuss 
in detail are: Szemeredi's  Regularity Lemma and its use, Shelah's extension of the 
Hales-Jewett Theorem, the results of Galvin and Thomassen on list colourings, the 
Perf ect Graph Theorem of Lovasz and Fulkerson, and the precise descri ption of 
the phase transition in the random graph process, extending the classical theorems 
of Erdos and Renyi. One whole field that has been brought into the light in recent 
years concerns the interplay b etween electrical networks, random walks on graphs, 
and the rapid mixing of Markov chains. Another important connection we present 
is between the Tutte polynomial of a graph, the partition functions of theoretical 
physics, and the powerful new knot polynomials. 

The deepening and broadening of the sub ject indicated by all the developments 
mentioned ab ove is evidence that graph theory has reached a point where it should 
be treated on a par with all the well-established disciplines of pure mathematics. 
The time has surely now arrived whe n  a rigorous and challenging course on the 
subject should be taught in every mathematics department. An other reason why 
graph theory demands prominence in a mathematics curr iculum is its status as that 
branch of pure mathematics which is closest to computer science. This proximity 
enriches both disciplines :  not only is graph theory fundamental to theoretical 
computer science, but problems arising in computer science and other areas of 
application greatly influence the direction taken by graph theory. In this book we 
shall not stress applications: our treatment of graph theory will be as an exciting 
branch of pure mathematics, full of elegant and innovative ideas. 



viii Apologia 

Graph theory, more than any other branch of mathematics, feeds on problems. 
There are a great many significant open problems which arise naturally in the 
subject: many of these are simple to state and look innocent but are proving to 
be surprisingly hard to resolve. It is no coincidence that Paul Erdos, the greatest 
problem-poser the world has ever seen, devoted much of his time to graph theory. 
This amazing wealth of open problems is mostly a blessing, but also, to some 
extent, a curse. A blessing, because there is a constant flow of exciting problems 
stimulating the development of the subject: a curse, because people can be misled 
into working on shallow or dead-end problems which, while bearing a superficial 
resemblence to important problems, do not really advance the subject. 

In contrast to most traditional branches of mathematics, for a thorough ground­
ing in graph theory, absorbing the results and proofs is only half of the battle. It 
is rare that a genuine problem in graph theory can be solved by simply applying 
an existing theorem, either from graph theory or from outside. More typically, 
solving a problem requires a "bare hands" argument together with a known re­
sult w ith a new twist. More often than not, it turns out that none of the existing 
high-powered machinery of mathematics is of any help to us, and nevertheless a 
solution emerges. The reader of this book will be exposed to many examples of 
this phenomenon, both in the proofs presented in the text and in the exercises. 
Needless to say, in graph theory we are just as happy to have powerful tools at 
our disposal as in any other branch of mathematics, but our main aim is to solve 
the substantial problems of the subject, rather than to build machinery for its own 
sake. 

Hopefully, the reader will appreciate the beauty and significance of the major 
results and their proofs in this book. However, tackling and solving a great many 
challenging exercises is an equally vital part of the process of becoming a graph 
theorist. To this end, the book contains an unusually large number of exercises: 
well over 600 in total. No reader is expected to attempt them all, but in order to 
really benefit from the book, the reader is strongly advised to think about a fair 
proportion of them. Although some of the exercises are straightforward, most of 
them are substantial, and some will stretch even the most able reader. 

Outside pure mathematics, problems that arise tend to lack a clear stru cture 
and an obvious line of attack. As such, they are akin to many a problem in gr aph 
theory: their solution is likely to require ingenuity and original thought. Thus the 
expertise gained in solving the exercises in this book is likely to pay dividends not 
only in graph theory and other branches of mathematics, but also in other scientific 
disciplines. 

"As long as a branch of science offers an abundance of problems, so long is it 
alive ", said David Hilbert in his address to the Congress in Paris in 1900. Judged 
by this criterion, graph theory could hardly be more alive. 

B .  B .  
Memphis 

March 1 5, 1 998 



Preface 

Graph theory is a young but rapidly maturing subject. Even during the quarter of 
a century that I lectured on it in Cambridge, it changed considerably, and I have 
found that there is a clear need for a text which introduces the reader not only to 
the well-established results, but to many of the newer developments as well. It is 
hoped that this volume will go some way towards satisfying that need. 

There is too much here for a single course. However, there are many ways of 
using the book for a single-semester course: after a little preparation any chapter 
can be included in the material to be covered. Although strictl y  speaking there are 
almost no mathematical prerequisites, the subject matter and the pace of the book 
demand mathematical maturity from the stu dent. 

Each of the ten chapters consists of about five sections, together with a selection 
of exercises, and some bibliographical notes. In the opening sections of a chapter 
the material is introduced gently: much of the time results are rather simple, and 
the proofs are presented in detail. The later sections are more specialized and 
proceed at a brisker pace: the theorems tend to be deeper and their proofs, which 
are not always simple, are given rapidly. These sections are for the reader whose 
interest in the topic has been excited. 

We do not attempt to give an exhaustive list of theorems, but hope to show 
how the results come together to form a cohesive theory. In order to preserve 
the freshness and elegance of the material, the presentation is not over-pedantic : 
occasionally the reader is expected to formalize some details of the argument. 
Throughout the book the reader will discover connections with various other 
branches of mathematics, like optimization theory, group theory, matrix algebra, 
probability theory, logic, and knot theory. Although the reader is not expected to 
have intimate knowledge of these fields, a modest acquaintance with them would 
enhance the enjoyment of this book. 

The bibliographical notes are far from exh austive: we are careful in our attribu­
tions of the major results, but beyond that we do little more than give suggestions 
for further readings. 

A vital feature of the book is that it contains hundreds of exercises. Some are 
very simple, and test only the understanding of the concepts, but many go way 



x Preface 

beyond that, demanding mathematical ingenuity. We have shunned routine drills: 
even in the simplest questions the overriding criterion for inclusion was beauty. An 
attempt has been made to grade the exercises: those marked by - signs are five­
finger exercises, while the ones with + signs need some inventiveness. Solving 
an exercise marked with ++ should give the reader a sense of accomplishment. 
Needless to say, this grading is subjective: a reader who has some problems with 
a standard exercise may well find a + exercise easy. 

The conventions adopted in the book are standard. Thus, Theorem 8 of Chap­
ter IV is referred to as Theorem 8 within the chapter, and as Theorem IV.8 
elsewhere. Also, the symbol, D, denotes the end of a proof; we also use it to 
indicate the absence of one. 

The quality of the book would not have been the same without the valuable 
contributions of a host of people, and I thank them all sincerely. The hundreds 
of talented and enthusiastic Cambridge students I have lectured and supervised 
in graph theory; my past research students and others who taught the subject and 
provided useful feedback; my son, Mark, who typed and retyped the manuscript a 
number of times. Several of my past research students were also generous enough 
to give the early manuscript a critical reading: I am particularly grateful to Graham 
Brightwell, Yoshiharu Kohayakawa, Irnre Leader, Oliver Riordan, Amites Sarkar, 
Alexander Scott and Andrew Thomason for their astute comments and perceptive 
suggestions . The deficiencies that remain are entirely my fault. 

Finally, I would like to thank Springer-Verlag and especially Ina Lindemann, 
Anne Fossella and Anthony Guardiola for their care and efficiency in producing 
this book. 

B. B .  
Memphis 

March 15 ,  1998 

For help with preparation of the third printing, I would like to thank Richard 
Arratia, Peter Magyar, and Oliver Riordan. I am especially grateful to Don Knuth 
for sending me lists of misprints. Fcir the many that undoubtedly remain, I 
apologize. Please refer to the website for this book, where I will maintain a 
list of further misprints that come to my attention; I'd be grateful for any as­
sistance in making this list as complete as possible. The uri for this book is 
http:/ /www.msci .memphis.edu/faculty /bollobasb.html 

B. B .  
Memphis 

April 1 6, 2002 
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I 

Fundamentals 

The basic concepts of graph theory are extraordinarily simple and can be used 
to express problems from many different subjects. The purpose of this chapter is 
to familiarize the reader with the terminology and notation that we shall use in 
the book. In order to give the reader practice with the definitions, we prove some 
simple results as soon as possible. With the exception of those in Section 5, all 
the proofs in this chapter are straightforward and could have safely been left to 
the reader. Indeed, the adventurous reader may wish to find his own proofs before 
reading those we have given, to check that he is on the right track. 

The reader is not expected to have complete mastery of this chapter before 
sampling the rest of the book; indeed, he is encouraged to skip ahead, since 
most of the terminology is self-explanatory. We should add at this stage that the 
terminology of graph theory is still not standard, though the one used in this book 
is well accepted. 

1. 1 Definitions 

A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of 
the set v<2l of unordered pairs of V. Unless it is explicitly stated otherwise, we 
consider only finite graphs, that is, V and E are always finite. The set V is the set 
of vertices and E is the set of edges. If G is a graph, then V = V (G) is the vertex 
set of G,  and E = E (G) is the edge set. An edge {x , y }  is said to join the vertices 
x and y and is denoted by x y .  Thus x y  and yx mean exactly the same edge; the 
vertices x and y are the endvertices of this edge. If x y  E E(G), then x and y are 
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adjacent, or neighbouring, vertices of G, and the vertices x and y are incident with 
the edge xy. Two edges are adjacent if they have exactly one common end vertex. 

As the terminology suggests, we do not usually think of a graph as an ordered 
pair, but as a collection of vertices some of which are joined by edges. It is then 
a natural step to draw a picture of the graph. In fact, sometimes the easiest way 
to describe a small graph is to draw it; the graph with vertices 1 ,  2, . . .  , 9 and 
edges 12 , 23, 34, 45, 56, 6 1 ,  17 ,  72, 29, 95, 57, 74, 48, 83, 39, 96, 68, and 8 1  is 
immediately comprehended by looking at Fig. 1. 1 .  

5 

3 

2 

FIGURE 1.1. A graph. 

We say that G' = (V' ,  E') is a sub graph of G = (V, E) if V' C V and E' C E. 
In this case we write G' C G. If G' contains all edges of G that join two vertices 
in V' then G' is said to be the subgraph induced or spanned by V' and is denoted 
by G[V'] . Thus, a subgraph G' of G is an induced subgraph if G' = G[V(G') ] .  
If  V' = V, then G' i s  said to be a spanning subgraph of  G. These concepts are 
illustrated in Fig. 1.2. 

• • 

FIGURE 1.2. A subgraph, an induced subgraph and a spanning subgraph of the graph in 
Fig. 1.1. 

We shall often construct new graphs from old ones by deleting or adding some 
vertices and edges. If W C V (G), then G - W = G[V \ W] is the subgraph of G 
obtained by deleting the vertices in W and all edges incident with them. Similarly, 
if E' c E(G), then G - E' = (V(G) , E(G) \ E') .  If W = {w} and E' = {xy } ,  
then this notation i s  simplified to G - w and G - xy. Similarly, i f  x and y are 
nonadjacent vertices of G, then G + xy is obtained from G by joining x to y .  
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If x is a vertex of a graph G ,  then occasionally we write x E G instead of 
x E V (G) .  The order of G is the number of vertices in G; it is denoted by I G I .  
The same notation i s  used for the number of elements (cardinality) of a set: l X I  
denotes the number of elements of the set X .  Thus I G I = I V  (G) 1. The size of G 
is the number of edges in G; it is denoted by e(G) .  We write en for an arbitrary 
graph of order n .  Similarly, G (n ,  m) denotes an arbitrary graph of order n and 
size m .  

Given disjoint subsets U and W of the vertex set of a graph, we write E ( U ,  W )  
for the set of U - W edges, that is, for the set o f  edges joining a vertex i n  U to 
a vertex in W. Also, e (U, W) = IE(U, W) l is the number of U- W edges. If 
we wish to emphasize that our underlying graph is G, then we put Ea ( U, W) and 
ea(U, W) .  

Two graphs are isomorphic if  there is a correspondence between their vertex 
sets that preserves adjacency. Thus G = (V,  E) is isomorphic to G'  = (V ' ,  E') 
if there is a bijection¢ : V -+ V' such that xy E E iff ¢(x)¢(y) E E' . Clearly, 
isomorphic graphs have the same order and size. Usually we do not distinguish 
between isomorphic graphs, unless we consider graphs with a distinguished or 
labelled set of vertices (for example, subgraphs of a given graph). In accordance 
with this convention, if G and H are isomorphic graphs, then we write either 
G � H or simply G = H. In Fig. 1.3 we show all graphs (up to isomorphism) 
that have order at most 4 and size 3. 

FIGURE 1.3. Graphs of order at most 4 and size 3. 

The size of a graph of order n is at least 0 and at most G). Clearly, for every m, 
0 _::: m _::: (�).there i s  a graph G (n , m). A graph of  order n and size m i s  called 
a complete n-graph and is denoted by Kn; an empty n-graph En has order n and 
no edges . In Kn every two vertices are adjacent, while in En no two vertices are 
adjacent. The graph K 1 = E 1 is said to be trivial. 

As En is rather close to the notation for the edge set of a graph, we frequently 
use K n for the empty graph of order n, signifying that it is the complement of 
the complete graph. In general, for a graph G = (V ,  E) the complement of G is 
G = (V ,  v<2> - E); thus, two vertices are adjacent in G if and only if they are 
not adjacent in G. 

The set of vertices adjacent to a vertex x E G, the neighbourhood of x, is 
denoted by r(x) .  Occasionally one calls r(x) the open neighbourhood of x ,  and 
r U {x } the closed neighbourhood of x. Also, x '""" y means that the vertex x 
is adjacent to the vertex y .  Thus y E r(x) ,  X E r(y) ,  X '""" y ,  and y '""" X 

are all equivalent: each of them means that xy is an edge. The degree of x is 
d (x ) = lf(x) l .  If we want to emphasize that the underlying graph is G ,  then we 
write ra(x) and da(x); a similar convention will be adopted for other functions 
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depending on an underlying graph. Thus if x E H = G[W] ,  then 

rH(X) = {y E H: xy E E(H)} = rG(X) n W. 
The minimal degree of the vertices of a graph G is denoted by 8 (G) and the 

maximal degree by l\(G). A vertex of degree 0 is said to be an isolated vertex. If 
8 (G) = l\(G) = k, that is, every vertex of G has degree k, then G is said to be 
k-regular or regular of degree k. A graph is regular if it is k-regular for some k. A 
3-regular graph is said to be cubic. 

If V (G) = {x i , x2 , . . . , Xn } . then (d(x; ))'j is a degree sequence of G. Usually 
we order the vertices in such a way that the degree sequence obtained in this way 
is monotone increasing or monotone decreasing, for example, 8 (G) = d(x! ) � 
· · · � d (xn) = l\ (G). Since each edge has two end vertices, the sum of the degrees 
is exactly twice the number of edges: 

n 
L d(x; ) = 2e(G) . ( 1 )  
I 

In particular, the sum of degrees is even: 
n 

L d(x; ) = 0 (mod 2) . (2) 
I 

This last observation is sometimes called the handshaking lemma, since it 
expresses the fact that in any party the total number of hands shaken is even. 
Equivalently, (2) states that the number of vertices of odd degree is even. We see 
also from ( 1 )  that 8 (G) � L2e (G)/nJ and l\(G) � r2e(G)fnl . Here LxJ denotes 
the greatest integer not greater than X and r X l = -L-X J is the smallest integer 
not less than x .  

A path i s  a graph P of the form 

V (P) = {xo,XJ, ... ,xi }, E(P) = {xoxi, XJX2, . . . , xr- Ixr} . 
This path P is usually denoted by xox1 · · · xr. The vertices xo and xr are the 
endvertices of P and 1 = e(P) is the length of P .  We say that P is a path.from xo 
to xr, or an xo-xr path. Of course, P is also a path from xr to xo, or an xr-xo path. 
Sometimes we wish to emphasize that P is considered to go from xo to xr, and we 
then call xo the initial and xr the terminal vertex of P. A path with initial vertex x 
is an x-path. 

The term independent will be used in connection with vertices, edges, and paths 
of a graph. A set of vertices (edges) is independent if no two elements of it are 
adjacent; also, W c V(G) consists of independent vertices iff G[W] is an empty 
graph. A set of paths is independent if for any two paths each vertex belonging 
to both paths is an endvertex of both. Thus P1 , P2 , .. . , Pk are independent x-y 
paths iff V ( P; ) n V ( Pj ) = { x ,  y }  whenever i =f:. j .  The paths P; are also said to 
be internally disjoint. There are several notions closely related to that of a path in 
a graph. A walk W in a graph is an alternating sequence of vertices and edges, 
say xo, e 1 , X!, e2, . . .  , er, xr where e; = Xi-JX;, 0 < i � l. In accordance with the 
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terminology above, W is an xo-XJ walk and is denoted by xox1 · · · x1 ; the length 
of W is l .  This walk W is called a trail if all its edges are distinct. Note that a path 
is a walk with distinct vertices. A trail whose end vertices coincide (a closed trail) 
is called a circuit. To be precise, a circuit is a closed trail without distinguished 
endvertices and direction, so that, for example, two triangles sharing a single 
vertex give rise to precisely two circuits with six edges. If a walk W = xox 1 · · · XJ 
is such that 1 � 3, xo = XJ, and the vertices Xi , 0 < i < 1, are distinct from each 
other and xo , then W is said to be a cycle. For simplicity this cycle is denoted by 
XJ X2 · · · XJ. Note that the notation differs from that of a path since XJ Xi is also an 
edge of this cycle. A cycle has neither a starting vertex nor a direction, so that 
XJ X2 · · · X/, XJXI- l · · · Xj, X2X3 · · · XJXJ , and Xi Xi- ! · · · XJ X/Xl- 1 · ·· Xi+! all denote 
the same cycle. 

We frequently use the symbol Pi to denote an arbitrary path of length l and 
Ci to denote a cycle of length l. We call C3 a triangle, C4 a quadrilateral, Cs a 
pentagon, and so on; also, Ci is called an l-cycle (see Fig. 1.4). A cycle is even 
(odd) if its length is even (odd). 

• DO 
It would be less confusing to use pi and C i for generic paths and cycles, and to 

reserve P1 , P2 , . . .  , C1 , C2 , . . . for particular paths and cycles . However, in order 
to conform to the widely accepted usage of subscripts , we also opt for subscripts, 
although with some reluctance. It is to be hoped that this convention will not lead 
to any misunderstanding. 

Before continuing with our definitions, let us present two results concerning 
cycles. The first was noted by Veblen in 1912. 
Theorem 1 The edge set of a graph can be partitioned into cycles if, and only if, 
every vertex has even degree. 

Proof The condition is clearly necessary, since if a graph is the union of some 
edge disjoint cycles and isolated vertices, then a vertex contained in k cycles has 
degree 2k. 

Suppose that every vertex of a graph G has even degree and e(G) > 0. How 
can we find a single cycle in G? Let xox1 · · · Xi be a path of maximal length l in 
G. Since xox1 E E(G), we have d(xo) � 2. But then xo has another neighbour y 
in addition to Xi ; furthermore, we must have y = Xi for some i ,  2 � i � l, since 
otherwise yxox1 · ·· Xi would be a path of length l + I. Therefore, we have found 
our cycle: xox1 . . .  Xi . 

Having found one cycle, C1 , say, all we have to do is to repeat the procedure 
over and over again. To formalize this, set G1 = G, so that C1 is a cycle in G1 , 
and define G2 = G1  - E(CJ ) .  Every vertex of G2 has even degree; so either 
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E ( G2) = 0 or else G2 contains a cycle C2. Continuing in this way, we find vertex 
disjoint cycles c,, c2 . . . .  ' Cs such that E(G) = Uf=I E(C; ) .  D 

To prove the second result, a beautiful theorem of Mantel from 1907, we shall 
use observation ( 1 )  and Cauchy's inequality. 

Theorem 2 Every graph of order n and size greater than Ln2 /4J contains a 
triangle. 
Proof. Let G be a triangle-free graph of order n .  Then r (x) n r (y) = 0 for every 
edge xy E E(G), so 

d(x) + d(y) :=:: n .  
Summing these inequalities for all e(G) edges xy, we find that 

L d(x)2 :=:: ne(G) . 
xeG 

Now by ( 1 )  and Cauchy's inequality, 

(2e(G))2 = (I: d(x)) 2 :=:: n (L d(x)2) . 
xeG xeG 

Hence, by (3), 

implying that e (G) :=:: n2 /4. 

(3) 

D 

The bound in this result is easily seen to be best possible (see Exercise 4). 
Mantel 's theorem was greatly extended by Tunin in 194 1 :  as we shall see in 
Chapter IV, this theorem of Turan is the starting point of extremal graph theory. 

Given vertices x and y ,  their distance d(x ,  y) is the minimal length of an x-y 
path. If there is no x-y path then d(x ,  y) = oo. 

A graph is connected if for every pair {x , y }  of distinct vertices there is a path 
from x to y .  Note that a connected graph of order at least 2 cannot contain an 
isolated vertex. A maximal connected subgraph is a component of the graph. 
A cutvertex is a vertex whose deletion increases the number of components. 
Similarly, an edge is a bridge if its deletion increases the number of components. 
Thus an edge of a connected graph is a bridge if its deletion disconnects the graph. 
A graph without any cycles is a forest, or an acyclic graph; a tree is a connected 
forest. (See Fig. 1 .5.) The relation of a tree to a forest sounds less absurd if we note 
that a forest is a disjoint union of trees; in other words, a forest is a graph whose 
every component is a tree. 

A graph G is a bipartite graph with vertex classes v, and V2 if V (G) = 
V, U V2, V, n V2 = 0 and every edge joins a vertex of Vt to a vertex of V2. 
One also says that G has bipartition (V,, V2) .  Similarly G is r-partite with vertex 
classes V,, V2 , . . .  , Vr (or r-partition (V,, ... , Vr)) if V (G) = V, U V2 U · · · U Vr. 
V; n Vj = 0 whenever 1 :=:: i < j :=:: r , and no edge joins two vertices in the same 
class. The graphs in Fig. 1. 1 and Fig. 1.5 are bipartite. The symbol K (n 1 ,  . . .  , n r) 
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FIGURE 1.5. A forest. 
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lY 
denotes a complete r-partite graph: it has n; vertices in the i th class and contains 
all edges joining vertices in distinct classes. For simplicity, we often write Kp,q 
instead of K(p ,  q) and K, (t) instead of K(t , . . .  , t) . 

We shall write G U H = (V(G) U V(H),  E(G) U E(H)) and kG for the union 
of k disjoint copies of G. We obtain the join G + H from G U H by adding all 
edges between G and H .  Thus, for example, K2,3 = E 2 + E3 = K 2 + K 3 and 
K, (t) = E1 + . . .  E, = K1 + ... + K1• 

There are several notions closely related to that of a graph. A hypergraph is a 
pair (V,  E) such that V n E = 0 and E is a  subset of P(V) ,  the power set of V ,  
that i s  the set of  all subsets of  V (see Fig. 1.6). In fact, there i s  a simple 1 -to- 1 
correspondence between the class of hypergraphs and the class of certain bipartite 
graphs. Given a hypergraph H = (V, E), the incidence graph of H is the bipartite 

3 

4 

FIGURE 1.6. The hypergraph of the Fano plane, the projective plane PG(2, 2) of seven 
points and seven lines: the lines are 124, 235,  346, 457, 561 ,  672, and 7 1 3. 

graph with vertex classes V and E in which x E V is joined to a hyperedge S E E 
iff x E S (see Fig. 1.7). 

By definition a graph does not contain a loop, an "edge" joining a vertex to itself; 
neither does it contain multiple edges, that is, several "edges" joining the same 
two vertices�In a multi graph both multiple edges and multiple loops are allowed; 
a loop is a special edge. When there is any danger of confusion, graphs are called 
simple graphs. In this book the emphasis will be on graphs rather than multigraphs. 
However, sometimes multigraphs are the natural context for our results, and it is 
artificial to restrict ourselves to (simple) graphs. For example, Theorem 1 is valid 
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2 3 4 5 6 7 

1 24 235 346 457 561 672 7 13 

235 

713  

4 457 

FIGURE I. 7. The drawings of the Heawood graph, the incidence graph of the Fano plane 
in Fig. 1.6. 

for multigraphs, provided that a loop is taken to contribute 2 to the degree of a 
vertex, and we allow cycles of length 1 (loops) and length 2 (formed by two edges 
joining the same vertices. 

If the edges are ordered pairs of vertices, then we get the notions of a directed 
graph and directed multigraph. An ordered pair (a , b) is said to be an edge directed 
from a to b, or an edge beginning at a and ending at b, and is denoted by -:b or 
simply ab. The notions defined for graphs are easily carried over to multigraphs, 
directed graphs, and directed multigraphs, mutatis mutandis .  Thus a (directed) 
trail in a directed multigraph is an alternating sequence of vertices and edges: 
xo, e 1 , x 1 , e2 , . . .  , e1 , x1 . such that ei begins at xi- 1 and ends at xi . Also, a vertex 
x of a directed graph has an outdegree and an indegree: the outdegree d+ (x) is 
the number of edges starting at x, and the indegree d- (x) is the number of edges 
ending at x .  

An oriented graph i s  a directed graph obtained by orienting the edges of a 

graph, that is, by giving the edge ab an orientation -:b or �. Thus an oriented 

graph is a directed graph in which at most one of -:b and � occurs. 
Note that Theorem 1 has a natural variant for directed multigraphs as well: the 

edge set of a directed multigraph can be partitioned into (directed) cycles if and 
only if each vertex has the same outdegree as indegree, that is, d+(x) = d- (x) 
for every vertex x .  To see the sufficiency of the condition, all we have to notice is 
that, as before, if our graph has an edge, then it has a (directed) cycle as well. 

1.2 Paths, Cycles, and Trees 

With the concepts defined so far we can start proving some results about graphs.  
Though these results are hardly more than simple observations, in keeping with 
the style of the other chapters we shall call them theorems. 
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Theorem 3 Let x be a vertex of a graph G and let W be the vertex set of a 
component containing x. Then the following assertions hold. 

i .  W = {y E G : G contains an x-y path}. 
ii. W = {y E G : G contains an x-y trail}. 

iii. W = {y E G :  d(x , y) < oo}. 
iv. For u, v E V = V(G) put uRv iff uv E E (G), and let R be the smallest 

equivalence relation on V containing R. Then W is the equivalence class 
ofx. D 

This little result implies that every graph is the vertex disjoint union of its 
components (equivalently, every vertex is contained in a unique component), and 
that an edge is a bridge iff it is not contained in a cycle. 

Theorem 4 A graph is bipartite iff it does not contain an odd cycle. 
Proof. Suppose G is bipartite with vertex classes VI and V2. Let XIX2 · · · X I be a 
cycle in G.  We may assume that XI  E VI . Then x2 E V2, x3 E VI , and so on: 
x; E VI iff i is odd. Since XI  E V2, we find that 1 is even. 

Suppose now that G does not contain an odd cycle. Since a graph is bipartite 
iff each component of it is, we may assume that G is connected. Pick a vertex 
x E V (G) and put VI = {y : d(x ,  y) is odd}, V2 = V \ VI . There is no edge 
joining two vertices of the same class V; , since otherwise G would contain an odd 
cycle. Hence G is bipartite. D 

A bipartite graph with bipartition (VI , V2) has at most I VI I I V2 I edges, so a 
bipartite graph of order n has at most maxk k (n - k) = Ln2 /4J edges, with the 
maximum attained at the complete bipartite graph K Ln/2J.r n/21 · By Theorem 4, 
Ln2 j4J is also the maximal size of a graph of order n containing no odd cycles. In 
fact, as we saw in Theorem 2, forbidding a single odd cycle, the triangle, restricts 
the size just as much. 

Theorem 5 A graph is a forest iff for every pair {x , y} of distinct vertices it 
contains at most one x-y path. 
Proof. If XIX2 · · · X I is a cycle in a graph G,  then XIX2 · · · X i and X I  Xi are two 
XI-Xi paths in G.  

Conversely, let PI = xoxi · · · X i and P2 = XOYI  Y2 · · · YkX I  be  two distinct xo-Xi 
paths in a graph G.  Let i + 1 be the minimal index for which xi+ I =f. Yi+ I and let 
j be the minimal index for which j � i and Yj+ 1 is a vertex of PI , say Yi + 1 = Xh . 
Then Xi Xi+ I · · · XhYjYj-I · · · Yi+ I  is a cycle in G. D 

Theorem 6 The following assertions are equivalent for a graph G. 

i .  G is a tree. 
ii. G is a minimal connected graph, that is, G is connected and if xy E E (G), 

then G - xy is disconnected. [In other words, G is connected and every edge 
is a bridge.] 

iii . G is a maximal acyclic graph; that is, G is acyclic and if x and y are 
nonadjacent vertices of G, then G + xy contains a cycle. 
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Proof. Suppose G is a tree. For an edge xy E E(G), the graph G -xy cannot con­
tain an x-y path XZ IZ2 · · · ZkY,  since otherwise G contains the cycle XZ IZ2 · · · ZkY· 
Hence G - xy is disconnected; and so G is a minimal connected graph. Simi­
larly, if x and y are nonadjacent vertices of the tree G then G, contains a path 
XZ IZ2 · · · ZkY· and so G + xy contains the cycle XZI Z2 · · · ZkY · Hence G + xy 
contains a cycle, and so G is a maximal acyclic graph. 

Suppose next that G is a minimal connected graph. If G contains a cycle 
XZ IZ2 · · · ZkY· then G - xy is still connected, since in any u-v walk in G the edge 
xy can be replaced by the path XZ IZ2 · · · ZkY · As this contradicts the minimality 
of G, we conclude that G is acyclic and so it is a tree. 

Suppose, finally, that G is a maximal acyclic graph. Is G connected? Yes, since 
if x and y belong to different components, the addition of xy to G cannot create 
a cycle XZ I Z2 · · · ZkY ,  since otherwise the path XZ IZ2 · · · ZkY is in G .  Thus G is a 
�. 0 

Corollary 7 Every connected graph contains a spanning tree, that is, a tree 
containing every vertex of the graph. 

Proof. Take a minimal connected spanning sub graph. 0 

There are several simple constructions of a spanning tree of a graph G ;  we 
present two of them. Pick a vertex x and put Vi = {y E G : d(x ,  y) = i } , 
i = 0, 1 ,  . . . . Note that if Yi E Vi , i > 0, and XZI Z2 · · · Zi- I Yi is an x-yi path 
(whose existence is guaranteed by the definition of Vi ), then d (x , Zj) = j for 
every j ,  0 < j < i .  In particular, Vj =f. 0, and for every y E Vi , i > 0, there is 
a vertex y' E Vi- I joined to y .  (Of course, this vertex y' is usually not unique, 
but for each y =f. x we pick only one y' .) Let T be the subgraph of G with vertex 
set V and edge set E(T) = {yy' : y =f. x} .  Then T is connected, since every 
y E V - {x } is joined to x by a path yy' y" · · · x .  Furthermore, T is acyclic, since 
if W is any subset of V and w is a vertex in W furthest from x, then w is joined 
to at most one vertex in W. Thus T is a spanning tree. 

The argument above shows that with k = maxy d(x ,  y) ,  we have Vi =f. 0 for 
0 � i � k and V = V (G) = U� Vi . At this point it is difficult to resist the 
remark that diamG = maxx ,y d (x , y) is called the diameter of G and radG = 
minx maxy d(x ,  y) is the radius of G .  

I f  we choose x E G with k = maxy d (x , y) = radG, then the spanning tree T 
also has radius k. 

A slight variant of the above construction of T goes as follows. Pick x E G and 
let T1 be the subgraph of G with this single vertex x .  Then T1 is a tree. Suppose 
we have constructed trees T1 C Tz C · · · C Tk C G, where T; has order i .  If 
k < n = I G I  then by the connectedness of G there is a vertex y E V(G) \ V(Tk) 
that is adjacent (in G) to a vertex z E Tk . Let Tk+ 1 be obtained from Tt by adding 
to it the vertex y and the edge yz. Then Tk+I is connected and as yz cannot be an 
edge of a cycle in Tk+I , it is also acyclic. Thus Tk+I is also a tree, so the sequence 
To C T1 C · · · can be continued to Tn . This tree Tn is then a spanning tree of G .  
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The spanning trees constructed by either of the methods above have order n (of 
course ! ) and size n - 1 .  In the first construction there is a 1 -to- 1 correspondence 
between V - {x } and E(T), given by y � yy' , and in the second construction 
e (n) = k - 1 for each k, since e(TI ) = 0 and Tk+I has one more edge than Tk . 
Since by Theorem 6 every tree has a unique spanning tree, namely itself, we have 
arrived at the following result, observed by Listing in 1 862. 

Corollary 8 A tree of order n has size n - 1; a forest of order n with k components 
has size n - k. 

The first part of this corollary can be incorporated into several other character­
izations of trees. In particular, a graph of order n is a tree iff it is connected and 
has size n - 1 .  The reader is invited to prove these characterizations (Exercises 5 
and 6). 

Corollary 9 A tree of order at least 2 contains at least 2 vertices of degree 1. 

Proof Let d1 � d2 � · · · � dn be the degree sequence of a tree T of order n � 2. 
Since T is connected, 8 (T) = d1 � 1 . Hence if T had at most one vertex of 
degree 1, by (1) and Corollary 8 we would have 

n 
2n - 2 = 2e(T) = L:>i � 1 + 2(n - 1) .  0 

I 
A well-known problem in optimization theory asks for a relatively easy way of 

finding a spanning subgraph with a special property. Given a graph G = (V, E) 
and a positive valued cost function f defined on the edges, f : E � JR+, find a 
connected spanning subgraph T = (V, E') of G for which 

f(T) = L f(xy) 
xyeE' 

is minimal. We call such a spanning sub graph T an economical spanning sub graph. 
One does not need much imagination to translate this into a "real life" problem. 
Suppose certain villages in an area are to be joined to a water supply situated in 
one of the villages. The system of pipes is to consist of pipelines connecting the 
water towers of two villages. For any two villages we know how much it would 
cost to build a pipeline connecting them, provided such a pipeline can be built at 
all. How can we find an economical system of pipes? 

In order to reduce the second question to the above problem about graphs, let G 
be the graph whose vertex set is the set of villages and in which xy is an edge iff it 
is possible to build a pipeline joining x to y; denote the cost of such a pipeline by 
f (xy) (see Fig. 1 .8). Then a system of pipes corresponds to a connected spanning 
sub graph T of G .  Since the system has to be economical, T is a minimal connected 
spanning sub graph of G,  that is, a spanning tree of G .  

The connected spanning sub graph T we look for has to be a minimal connected 
subgraph, since otherwise we could find an edge a whose deletion would leave 
T connected, and then T - a would be a more economical spanning subgraph. 
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FIGURE 1.8. A graph with a function f : E --+ JR+; the number next to an edge xy is the 
cost f (xy) of the edge. 

Thus T is a spanning tree of G. Corresponding to the various characterizations 
and constructions of a spanning tree, we have several easy ways of finding an 
economical spanning tree; we shall describe four of these methods. 

( 1 )  Given G and f :  E(G) --+ JR+, we choose one of the cheapest edges of G, 
that is, an edge a for which f(a) is minimal. Each subsequent edge will be chosen 
from among the cheapest remaining edges of G with the only restriction that we 
must not select all edges of any cycle; that is, the subgraph of G formed by the 
selected edges is acyclic. 

The process terminates when no edge can be added to the set E' of edges 
selected so far without creating a cycle. Then T1 = (V(G), E') is a maximal 
acyclic sub graph of G, so by Theorem 6(iii), it is a spanning tree of G. 

(2) This method i s  based on the fact that i t  i s  foolish to use a costly edge 
unless it is needed to ensure the connectedness of the sub graph. Thus let us delete 
one by one a costliest edge whose deletion does not disconnect the graph. By 
Theorem 6(ii) the process ends in a spanning tree T2. 

(3) Pick a vertex x1 of G and select one of the least costly edges incident 
with x1 , say x1x2 . Then choose one of the least costly edges of the form XjX , 
where 1 :::: i :::: 2 and x ¢:. {x1 , x2 } .  Having found vertices x1 , x2 , . . .  , Xk and an 
edge XiXj, i < j ,  for each vertex Xj with j :::: k, select one of the least costly edges 
of the form XjX, say XiXk+l • where 1 :::: i :::: k and Xk+ l  f/. {x1 , x2 , . . .  , Xk } . The 
process terminates after we have selected n - 1 edges. Denote by T3 the spanning 
tree given by these edges (see Fig. 1.9). 

FIGURE 1.9. Three of the six economical spanning trees of the graph shown in Fig. 1 .8. 
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(4) This method i s  applicable only i f  no  two pipelines cost the same. The 
advantage of the method is that every village can make its own decision and start 
building a pipeline without bothering to find out what the other villages are going 
to do. Of course, each village will start building the cheapest pipeline ending in 
the village. It may happen that both village x and village y will build the pipeline 
xy ; in this case they meet in the middle and end up with a single pipeline from x 
to y .  Thus at the end of this stage some villages will be joined by pipelines but 
the whole system of pipes need not be connected. At the next stage each group 
of villages joined to each other by pipelines finds the cheapest pipeline going 
to a village not in the group and begins to build that single pipeline. The same 
procedure is repeated until a connected system is obtained. Clearly, the villages 
will never build all the pipes of a cycle, so the final system of pipes will be a 
spanning tree (see Fig. I. lO) .  

4+e 

FIGURE 1. 10. The graph of Fig. 1.8 with a slightly altered cost function (0 < e < ! ) and 
its unique economical spanning tree. 

Theorem 10 Each of the four methods described above produces an economical 
spanning tree. If no two edges have the same cost, then there is a unique economical 
spanning tree. 

Proof Choose an economical spanning tree T of G that has as many edges in 
common with T1 as possible, where T1 is a spanning tree constructed by the first 
method. 

Suppose that E(TI ) =f:. E(T) . The edges of T1 have been selected one by one: 
let xy be the first edge of T1 that is not an edge of T.  Then T contains a unique 
x - y path, say P. This path P has at least one edge, say uv , that does not belong 
to T1 , since otherwise T1 would contain a cycle. When xy was selected as an edge 
of T1 , the edge uv was also a candidate. As xy was chosen and not uv ,  the edge 
xy cannot be costlier then uv ; that is, f(xy) ::::= f(uv) . Then T' = T - uv  + xy 
is a spanning tree, and since f(T') = f(T) - f(uv) + f(xy) ::::= f(T) , the new 
tree T' is an economical spanning tree of G. (Of course, this inequality implies 
that f(T') = f(T) and f(xy) = f(uv) .) This tree T' has more edges in common 
with T1 than T, contradicting the choice of T. Hence T = T1 , so T1 is indeed an 
economical spanning tree. 
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Slight variants of the proof above show that the spanning trees T2 and T3 , 
constructed by the second and third methods, are also economical. We invite the 
reader to furnish the details (Exercise 44). 

Suppose now that no two edges have the same cost; that is, f(xy) =f. f(uv) 
whenever xy =f. uv. Let T4 be the spanning tree constructed by the fourth method 
and let T be an economical spanning tree. Suppose that T =f. T4 , and let xy be 
the first edge not in T that we select for T4 . The edge xy was selected, since it is 
the least costly edge of G joining a vertex of a subtree F of T4 to a vertex outside 
F. The x - y path in T has an edge uv joining a vertex of F to a vertex outside 
F so f(xy) < f(uv) . However, this is impossible, since T' = T - uv  + xy 
is a spanning tree of G and f(T') < f(T). Hence T = T4 . This shows that 
T4 is indeed an economical spanning tree. Furthermore, since the spanning tree 
constructed by the fourth method is unique, the economical spanning tree is unique 
if no two edges have the same cost. 0 

I.3 Hamilton Cycles and Euler Circuits 

The so-called travelling salesman problem greatly resembles the economical span­
ning tree problem discussed in the preceding section, but the similarity is only 
superficial. A salesman is to make a tour of n cities, at the end of which he 
has to return to the head office he starts from. The cost of the journey between 
any two cities is known. The problem asks for an efficient algorithm for find­
ing a least expensive tour. (As we shall not deal with algorithmic problems, 
we leave the term "efficient" undefined; loosely speaking, an algorithm is ef­
ficient if the computing time is bounded by a polynomial in the number of 
vertices.) Though a considerable amount of work has been done on this prob­
lem, since its solution would have important practical applications, it is not 
known whether or not there is an efficient algorithm for finding a least expensive 
route. 

In another version of the travelling salesman problem the route is required to be 
a cycle, that is, the salesman is not allowed to visit the same city twice (except the 
city of the head office, where he starts and ends his journey). A cycle containing 
all the vertices of a graph is said to be a Hamilton cycle of the graph. The origin of 
this term is a game invented in 1 857 by Sir William Rowan Hamilton based on the 
construction of cycles containing all the vertices in the graph of the dodecahedron 
(see Fig. 1. 1 1 ) .  A Hamilton path of a graph is a path containing all the vertices of 
the graph. A graph containing a Hamilton cycle is said to be Hamiltonian. 

In fact, Hamilton cycles and paths in special graphs had been studied well before 
Hamilton proposed his game. In particular, the puzzle of the knight's tour on a 
chess board, thoroughly analysed by Euler in 1759, asks for a Hamilton cycle in 
the graph whose vertices are the 64 squares of a chessboard and in which two 
vertices are adjacent if a knight can jump from one square to the other. Fig. 1. 1 2  
shows two solutions of  this puzzle. 
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FIGURE 1. 1 1 . A Hamilton cycle in the graph of the dodecahedron. 

FIGURE 1. 1 2. Two tours of a knight on a chessboard. 

If in the second, more restrictive, version of the travelling salesman problem 
there are only two travel costs, 1 and oo (expressing the impossibility of the 
journey), then the question is whether or not the graph formed by the edges with 
travel cost 1 contains a Hamilton cycle. Even this special case of the travelling 
salesman problem is unsolved: no efficient algorithm is known for constructing a 
Hamilton cycle, though neither is it known that there is no such algorithm. 

If the travel cost between any two cities is the same, then our salesman has no 
difficulty in finding a least expensive tour: any permutation of the n - 1 cities (the 
nth city is that of the head office) will do. Revelling in his new found freedom, 
our salesman decides to connect duty and pleasure, and promises not to take the 
same road xy again whilst there is a road u v  he hasn't seen yet. Can he keep his 
promise? In order to plan a required sequence of journeys for our salesman, we 
have to decompose Kn into the union of some edge-disjoint Hamilton cycles. For 
which values ofn is this possible? Since Kn is (n - 1 )-regular and a Hamilton cycle 
is 2-regular, a necessary condition is that n - 1 should be even, that is, n should be 
odd. This necessary condition also follows from the fact that e (Kn) = in (n - 1 )  
and a Hamilton cycle contains n edges, s o  Kn has to be the union o f  i <n - 1 )  
Hamilton cycles. 
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FIGURE 1. 13 .  Three edge disjoint Hamilton paths in K6 . 

Let us assume now that n is odd, n � 3 .  Deleting a vertex of Kn we see that if 
Kn is the union of ! <n - 1) Hamilton cycles then Kn- 1 is the union of ! <n - 1 )  
Hamilton paths. (In fact, n - 1 has to be even if Kn- 1 is the union of some 
Hamilton paths, since e (Kn-d = ! <n - 1 ) (n - 2) and a Hamilton path in Kn- 1 
has n - 2 edges.) With the hint shown in Fig. 1. 1 3  the reader can show that for odd 
values ofn the graph Kn- 1 is indeed the union of ! <n - 1 ) Hamilton paths. In this 
decomposition of Kn- 1 into ! <n - 1 )  Hamilton paths each vertex is the endvertex 
of exactly one Hamilton path. (In fact, this holds for every decomposition of Kn- 1 
into ! (n - 1 )  edge-disjoint Hamilton paths, since each vertex x of Kn- 1 has odd 
degree, so at least one Hamilton path has to end in x .) Consequently, if we add a 
new vertex to Kn- 1 and extend each Hamilton path in Kn- 1 to a Hamilton cycle in 
Kn . then we obtain a decomposition of Kn into ! <n - 1) edge-disjoint Hamilton 
cycles. Thus we have proved the following result. 

Theorem 11 Forn � 3 the complete graph Kn is decomposable into edge disjoint 
Hamilton cycles iff n is odd. For n � 2 the complete graph Kn is decomposable 
into edge-disjoint Hamilton paths iff n is even. 

The result above shows that if n � 3 is odd, then we can string together ! (n - 1)  
edge disjoint cycles in  Kn to obtain a circuit containing all the edges of  Kn . In 
general, a circuit in a graph G containing all the edges is said to be an Euler circuit 
of G. Similarly, a trail containing all edges is an Euler trail. 

A graph is Eulerian if it has an Euler circuit. Euler circuits and trails are named 
after Leonhard Euler, who, in 1736, characterized those graphs that contain them. 
At the time Euler was a professor of mathematics in St. Petersburg, and was led to 
the problem by the puzzle of the seven bridges on the Pregel (see Fig. 1. 14) in the 
ancient Prussian city Konigsberg (birthplace and home of Kant and seat of a great 
German university, which was taken over by the USSR and renamed Kaliningrad 
in 1 946; since the collapse of the Soviet Union it has belonged to Russia). The 
good burghers of Konigsberg wondered whether it was possible to plan a walk in 
such a way that each bridge would be crossed once and only once? It is clear that 
such a walk is possible iff the graph (or multigraph) in Fig. 1. 1 5  has an Euler trail. 
Here is then Euler's theorem inspired by the puzzle of the bridges of Konigsberg. 

Theorem 12 A non-trivial connected graph has an Euler circuit iff each vertex 
has even degree. 
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FIGURE 1. 14. The seven bridges on the Pregel in Konigsberg. 

c c 

B B 

FIGURE 1. 15 .  A graph of the Konigsberg bridges and its simpler representation by a 
multigraph. 

A connected graph has an Euler trail from a vertex x to a vertex y =I= x iff x 
and y are the only vertices of odd degree. 

Proof. The conditions are clearly necessary. For example, if G has an Euler circuit 
X JX2 · · · Xm , and x occurs k times in the sequence XJ , x2 , . • .  , Xm , then d(x) = 2k. 

We prove the sufficiency of the first condition by induction on the number 
of edges. If there are no edges, there is nothing to prove, so we proceed to the 
induction step. 

Let G be a non-trivial connected graph in which each vertex has even degree. 
Since e(G) ?:: 1 ,  we find that 8 (G) ?:: 2, so by Corollary 9, G contains a cycle. Let 
C be a circuit in G with the maximal number of edges. Suppose C is not Eulerian. 
As G is connected, C contains a vertex x that is in a non-trivial component H 
of G - E(C) .  Every vertex of H has even degree in H, so by the induction 
hypothesis, H contains an Euler circuit D. The circuits C and D (see Fig. I . l6) are 
edge-disjoint and have a vertex in common, so they can be concatenated to form 
a circuit with more edges than C. As this contradicts the maximality of e(C), the 
circuit C is Eulerian. 

Suppose now that G is connected and x and y are the only vertices of odd 
degree. Let G* be obtained from G by adding to it a vertex u together with the 
edges ux and uy . Then, by the first part, G* has an Euler circuit C* . Clearly, 
C* - u is an Euler trail from x to y .  0 
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FIGURE 1. 16.  The circuits C and D. 

The alert reader has no doubt noticed that Theorem 12 is practically the same as 
Theorem 1 :  every Euler circuit is a union of edge-disjoint cycles, and if a connected 
graph is a union of edge-disjoint cycles, then these cycles can be concatenated to 
form an Euler circuit. Like Theorem 1 ,  Theorem 12  holds for multigraphs as well : 
in fact, the natural models that arise (as in Fig. 1. 15) are frequently multigraphs. 

It is also very easy to guess the variant of Theorem 12 for directed multigraphs: 
a directed multigraph has a (directed) Euler circuit if and only if the underlying 
multigraph is connected and each vertex has the same outdegree as indegree. To 
see this, we proceed as before, but take care to concatenate the circuits in the right 
(that is, permissible) direction. 

There is a beautiful connection between the set of Euler circuits and certain 
sets of oriented spanning trees. In order to state this connection precisely, let 
G be a directed multigraph with vertex set V (G) = { v1 , . . .  , Vn } ,  such that 
d+ ( v; ) = d- ( v; ) for every i .  We know that if G has a (directed) Euler circuit, then 
these conditions are satisfied. Let & be the set of (directed) Euler circuits, and let &; 
be the set of (directed) Euler trails starting and ending in v; . Since each Euler circuit 
passes through v; exactly d+(v; )  = d- (v; ) times, l ed = d+(v; ) l & l  = d- (v; ) l £ 1 .  

We say that a spanning tree i s  oriented towards v; , its root, if for every j # i 
the unique path from Vj to v; is oriented towards v; . Let Ti be the set of spanning 
trees oriented towards v; . 

Our aim is to define a map c/J; : &; � Ti, but for notational simplicity we take 
i = 1 .  Given an Euler trail S E £1 , for j = 2, . . .  , n, let ei be the edge through 
which S exits from Vj for the last time, never to return to Vj . In particular, ei is not 
a loop but an edge from Vj to another vertex. Also, if e; goes from v; to Vj then on 
S the edge e; precedes ei . 

Let T be the directed graph with vertices V} , . . .  , Vn and edges e2 , . . .  , en . We 
claim that T E Tj .  To prove this, we have to show that ( 1 )  T is a tree, and (2) T 
is oriented towards V} . 

Suppose first that T contains a cycle C. Since d:j(vl ) = 0 and d:j(vj ) = 1 for 
j > 1 ,  it follows that C is an oriented cycle that does not contain V} . But if et is 
the last edge of S on C, going from Vt to Vm , say, then S gets back to Vm after 
having left it for the last time (through em) . This contradiction shows that T is 
indeed a tree. 
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Is T oriented towards VJ ?  Suppose T contains the path VkVk- 1 · · · V J . Then the 
edge v2v1 is e2 , since there is no e1 . What about v3v2? It is either e2 or e3 . But it 
is not e2 , so it is e3 . Continuing in this way, we find that our path VkVk- 1 · · · VI is 
indeed oriented towards VJ .  Hence T E 7i ,  as claimed. 

To get our map ¢1 : £1 � 'Ji ,  set ¢I (S) = T.  Now, for T E 'Ji ,  the set ¢!
1 (T) 

is easily described. Indeed, to construct an Euler trail S E £1 with ¢1  (S) = T,  
one has to  proceed as follows. Start at VJ through any edge; also, having returned 
to v 1 , leave it by an unused edge, if there is any; otherwise; terminate the trail. 
More importantly, having arrived in Vj , j > 1 ,  leave Vj by an unused edge that 
is different from ei , if there are any such edges; otherwise, leave Vj by ei . Since 
d+ ( Vj ) = d- ( Vj ) for every j, this process does give us an Euler trail S E £1 with 
¢1 (S) = T .  Consequently, 

and so 

n 
1¢!

1 (T) I = d+(v1 ) !  n (d+ (vj ) - 1 ) ! ,  
j=2 

n 
1£ 1 = I'Ii l n <d+(Vj ) - 1 ) ! .  

j= I  
With this, we have proved a theorem of  de Bruijn, van Aardenne-Ehrenfest, Smith, 
and Tutte; the result is occasionally called the BEST theorem. 

Theorem 13 Let G be a directed multi graph with vertex set V (G) = { V J , . • • , Vn }, 
such that d+ (Vi ) = d- (Vi ) for every i. Denote by s (G) the number of Euler circuits 
of G, and by ti (G) the number of spanning trees oriented towards i .  Then 

n 
s (G) = ti (G) n (d+(vj ) - 1 ) !  

j = I  
for every i , 1 .S: i .S: n .  In particular, t 1  (G) = · · · = tn (G). 

Note that the conditions of Theorem 13 are satisfied if G is Eulerian, that is, 
has an Euler circuit. 

Concerning the puzzle of the seven bridges on the Pregel, Theorem 12 tells 
us that there is no suitable tour, since the associated graph in Fig. 1 . 1 5  has four 
vertices of odd degree (and, needless to say, so has the associated multigraph: each 
of its vertices has odd degree). 

The plan of the corridors of an exhibition is also easily turned into a graph: an 
edge corresponds to a corridor and a vertex to the conjunction of several corridors. 
If the entrance and exit are the same, a visitor can walk along every corridor exactly 
once iff the corresponding graph has an Eulerian circuit. In general, a visitor must 
have a plan in order to achieve this: he cannot just walk through any new corridor 
he happens to come to. However, in a well planned ( ! )  exhibition a visitor would 
be certain to see all the exhibits, provided that he avoided going along the same 
corridor twice and continued his walk until there were no new exhibits ahead of 
him. The graph of such an exhibition is said to be randomly Eulerian from the 
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u v ~ 
X w 

FIGURE 1. 17. The graph G is randomly Eulerian from x ;  H is randomly Eulerian from 
both u and v ;  the multigraph M is randomly Eulerian from w. 

vertex corresponding to the entrance (which is also the exit). See Fig. 1 . 1 7  for three 
examples. Randomly Eulerian graphs are also easily characterized (Exercises 50-
52). 

To conclude this section, let us note a result from the first half of this 
century, concerning two-way infinite Euler trails in infinite graphs. These 
are the natural analogues of Euler circuits in finite graphs : given an infinite 
graph G = (V, E), a two-way infinite Euler trail in G is a two-way in­
finite sequence · · · X-2X- !XOX !X2 · · · of vertices of G such that Xi "' Xi+ ! 
for all i E Z and each edge of G occurs precisely once in the sequence 
. . . , x_2x_ 1 ,  x_ 1xo ,  xox 1 ,  X !X2 ,  · · ·. In 1936, Erdos, Grunwald and Weiszfeld 
proved the following analogue of Theorem 12. 

Theorem 14 Let G = (V, E) be a connected multigraph with E infinite. Then 
G has a two-way infinite Euler trail if and only if the following conditions are 
satisfied: 

(i) E is countable, 
(ii) every degree is even or infinite, 

(iii) for every subgraph G' C G, G' = (V, E'), with E' finite, the graph 
G - E' has at most two infinite components; furthermore, if dG' (x ) is even for 
every x E V, then G - E' has precisely one infinite component. 

Although the proof is not too difficult, we do not give it here. The reader is 
encouraged to do Exercises 54-56, which are related to this result. 

1.4 Planar Graphs 

The graph of the corridors of an exhibition is a planar graph: it can be drawn in the 
plane in such a way that no two edges intersect. Putting it a little more rigorously, it 
is possible to represent it by a drawing in the plane in which the vertices correspond 
to distinct points and the edges to simple Jordan curves connecting the points of 
its endvertices. In this drawing every two curves are either disjoint or meet only 
at a common endpoint. The above representation of a graph is said to be a plane 
graph. 

There is a simple way of associating a topological space with a graph, which 
leads to another definition of planarity, trivially equivalent to the one given above. 
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Let PI , p2 , . . .  be distinct points i n  JR3, the 3-dimensional Euclidean space, such 
that every plane in JR3 contains at most 3 of these points. Write (Pi , Pj ) for the 
straight line segment with endpoints Pi and Pj (open or closed, as you like). Given 
a graph G = (V, E) , V = (x 1 , x2 , . . .  , Xn) .  the topological space 

n 
R(G) = u{(pi . Pj ) :  XiXj E E} u u{pi } c JR3 

I 

is said to be a realization of G. A graph G is planar if R (G) is homeomorphic to 
a subset of JR2

, the plane. 
Let us make some more remarks in connection with R (G). A graph H is said to 

be a subdivision of a graph G, or a topological G graph if H is obtained from G by 
subdividing some of the edges, that is, by replacing the edges by paths having at 
most their endvertices in common. We shall write T G for a topological G graph. 
Thus T G denotes any member of a rather large family of graphs; for example, 
T K3 is an arbitrary cycle, and TCs is an arbitrary cycle of length at least 8. It is 
clear that for any graph G the spaces R(G) and R(TG) are homeomorphic. We 
shall say that a graph G is homeomorphic to a graph H if R( G) is homeomorphic 
to R(H) or, equivalently, G and H have isomorphic subdivisions. 

At first sight one may think that in the study of planar graphs one might run 
into topological difficulties. This is certainly not the case. It is easily seen that 
the Jordan curves corresponding to the edges can be assumed to be polygons. 
More precisely, every plane graph is homotopic to a plane graph representing the 
same graph, in which the Jordan curves are piecewise linear. Indeed, given a plane 
graph, let 8 > 0 be less than half the minimal distance between two vertices. 
For each vertex a place a closed disc Da of radius 8 about a. Denote by la the 
curve corresponding to an edge a = ab and let aa be the last point of la in Da 
when going from a to b. Denote by J� the part of la from aa to ba . Let £ > 0 
be such that if a =f. f3 then J� and l/J are at a distance greater than 3£. By the 
uniform continuity of a Jordan curve, each J� can be approximated within £ by 
a polygon 1:; from aa to ba . To get the required piecewise linear representation 
of the original graph simply replace each la by the polygon obtained from 1:; by 
extending it in both directions by the segments aaa and bah (see Fig. 1 . 1 8). 

FIGURE 1. 18 .  Constructing a piecewise linear representation. 
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A less pedestrian argument shows that every planar graph has a straight line 
representation: it can be drawn in the plane in such a way that the edges are 
actually straight line segments (Exercise 63+) . 

If we omit the vertices and edges of a plane graph G from the plane, the 
remainder falls into connected components, called faces. Clearly, each plane graph 
has exactly one unbounded face. The boundary of a face is the set of edges in its 
closure. Since a cycle (that is a simple closed polygon) separates the points of the 
plane into two components, each edge of a cycle is in the boundary of two faces. A 
plane graph together with the set of faces it determines is called a plane map. The 
faces of a plane map are usually called countries. Two countries are neighbouring 
if their boundaries have an edge in common. 

If we draw the graph of a convex polyhedron in the plane, then the faces of 
the polyhedron clearly correspond to the faces of the plane graph. This leads 
us to another contribution of Leonhard Euler to graph theory, namely Euler's 
polyhedron theorem or simply Euler's formula. 

Theorem 15 If a connected plane graph G has n vertices, m edges, and f faces, 
then 

n - m +  f = 2 . 

Proof Let us apply induction on the number of faces. If f = 1 ,  then G does not 
contain a cycle, so it is a tree, and the result holds by Corollary 8 . 

Suppose now that f > 1 and the result holds for smaller values of f. Let ab 
be an edge in a cycle of G .  Since a cycle separates the plane, the edge ab is in 
the boundary of two faces, say S and T. Omitting ab, in the new plane graph G' 
the faces S and T join up to form a new face, while all other faces of G remain 
unchanged. Thus ifn', m' and f' are the parameters of G', then n' = n ,  m' = m- 1 ,  
and f '  = f - 1 .  Hence n - m + f = n' - m '  + f' = 2. D 

Let G be a connected plane graph with n vertices, m edges, and f faces; 
furthermore, denote by f; the number of faces having exactly i edges in their 
boundaries. Clearly, 

(4) 

and if G has no bridge, then 

(5) 

since every edge is in the boundary of two faces. Relations (4), (5), and Euler's 
formula give an upper bound for the number of edges of a planar graph of order n . 
This bound can be improved if  the girth of the graph, that i s  the number of  edges 
in a shortest cycle, is large. (The girth of an acyclic graph is defined to be oo.) 

Theorem 16 A planar graph of order n � 3 has at most 3n - 6 edges. Further­
more, a planar graph of order n and girth at least g, 3 � g < oo, has size at 
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max {-g-(n - 2) , n - 1 } . 
g - 2  
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Proof The first assertion is the case g = 3 of the second, so it suffices to prove 
the second assertion. Let G be a planar graph of order n, size m, and girth at least 
g . If n ::=: g - 1 ,  then G is acyclic, so m ::=: n - 1 .  Assume now that n � g and the 
assertion holds for smaller values of n. We may assume without loss of generality 
that G is connected. If ab is a bridge then G - ab is the union of two vertex 
disjoint subgraphs, say G 1 and G2. Putting ni = ! Gi l , mi = e (Gi ) , i = 1 ,  2, by 
induction we find that 

m = m 1 + m2 + 1 ::=: max { _g_(n i - 2) , n 1 - 1 } 
g - 2  

+ max {-g-(n2 - 2) , n2 - 1 } + 1 
g - 2 

::=: max {-g-(n - 2) , n - 1 } . 
g - 2  

On the other hand, if G is bridgeless, (4) and (5) imply that 

2m = L: iti = L: iti � g L: ti = gJ. 
i i�g i 

Hence, by Euler's formula, 

and so 

2 m + 2 = n + f ::=: n + -m ,  
g 

m ::=: _g_(n - 2) . 
g - 2  

D 

Theorem 16 can often be used to show that certain graphs are nonplanar. Thus 
Ks , the complete graph order 5, is nonplanar since e(Ks) = 10  > 3 (5 - 2) . 
Another nonplanar graph is K3,3 , the complete 3 by 3 bipartite graph, also called 
the Thomsen graph, since its girth is 4 and e(K3,3) = 9 > (4/(4 - 2)) (6 - 2) . 
The nonplanarity of K3,3 implies that it is impossible to join each of 3 houses to 
each of 3 wells by non-crossing paths, as demanded by a well-known puzzle (see 
Fig. 1 . 19). 

FIGURE 1. 19.  The Thomsen graph: three houses and three wells. 
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G 

FIGURE 1.20. G contains a T  Ks and H contains a T  K3, 3 ·  

If  a graph G is  nonplanar, then so i s  every topological G graph and every graph 
containing a topological G graph. Thus the graphs in Fig. 1.20 are nonplanar, since 
they contain T Ks and T K3, 3 , respectively. 

It is somewhat surprising that the converse of the trivial remarks above is also 
true: this beautiful result was proved by Kuratowski in 1930. 

Theorem 17 A graph is planar iff it does not contain a subdivision of K 5 or K 3,3· 
0 

A variant of Theorem 17  characterizes planar graphs in terms of forbidden 
minors, rather than forbidden topological sub graphs. At first sight, the concept of 
a minor may seem a little artificial, but it is, in fact, the right notion related to 
drawing graphs on surfaces. 

Given an edge xy of a graph G, the graph Gfxy is obtained from G by con­
tracting the edge xy;  that is, to get Gfxy we identify the vertices x and y and 
remove all resulting loops and duplicate edges. A graph G obtained by a sequence 
of edge-contractions is said to be a contraction of G. A graph H is a minor of 
G, written G >- H or H -< G, if it is a subgraph of a graph obtained from G 
by a sequence of edge-contractions (see Fig. 1.2 1 ) .  It is easily checked that if 
V (H) = {yJ , Y2 • . . .  , Yk } then H -< G if and only if G has vertex-disjoint con­
nected subgraphs G 1 ,  G2 , . . .  , Gk such that if YiYj E E(H), then G has an edge 
from G; to Gj (see Exercise 88-) . 

In 1937, Wagner proved the following analogue of Kuratowski's theorem. 

Theorem 18 A graph is planar iff it contains neither Ks nor K3,3 as a minor. 0 

2 2 3 2 

xy 

G G/xy H 

FIGURE 1.2 1 .  A graph G, its contraction Gfxy and a minor H. 
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It is easy to see that Theorems 17 and 1 8  are equivalent. Indeed, if G :J T H, 
then, rather trivially, G >- H. In  fact, if H has maximal degree at most 3 ,  then 
G :J T H iff G >- H. In particular, G :J T K3,3 if and only if G >- H. Also, if 
G >- Ks then either G :J T Ks or G :J T K3,3 · The reader is encouraged to fill in 
the details (see Exercise 91 ) . 

I .5 An Application of Euler Trails to Algebra 

To conclude this chapter we shall show that even simple notions like the ones 
presented so far may be of use in proving important results . The result we are 
going to prove is the fundamental theorem of Amitsur and Levitzki on polynomial 
identities. The commutator of two elements a and b of a ring S is [a , b] = ab -ba . 
Similarly, i f  a ; E S, 1 :S i :S k,  we  write 

[a! , az , . . . , ak ] = L sgn(a )aa laaz · · · auk . 
(1 

where the summation is over all permutations a of the integers 1 ,  2, . . . , k, and 
sgn( a)  is the sign of a .  For example, [a ! ,  az , a3 ] = a1 aza3 - a1 a3a2 + a3a1 az -
a3aza1 +aza3a1 -aza1a3 .  If [a ! ,  az , . . .  , ak ] = 0 for all a; E S, 1 :S i :S k, then S 
is said to satisfy the kth polynomial identity. The theorem of Amitsur and Levitzki 
states that the ring Mk (R) of k by k matrices with entries in a commutative ring 
R satisfies the (2k)th polynomial identity. 

Theorem 19 Let R be a commutative ring and let the matrices A 1 ,  Az , . . .  , Azk 
be in Mk (R). Then [A J , Az , . . .  , Azk] = 0. 
Proof We shall deduce the result from a lemma about Euler trails in directed 
multigraphs. Let G be a directed multigraph of order n with edges e 1 , ez , . . .  , em . 
Thus to each edge e; we associate an ordered pair of not necessarily distinct 
vertices : the initial vertex of e; and the terminal vertex of e; . Every (directed) 
Euler trail P is readily identified with a permutation of { 1 , 2, . . .  , m } ;  define e(P) 
to  be  the sign of  this permutation. Given not necessarily distinct vertices x,  y of 
G, put e(G; x ,  y) = LP e(P) , where the summation is over all Euler trails from 
x to y .  

Lemma 20 lfm :::: 2n then e(G ; x ,  y ) = 0. 
Before proving this lemma, let us see how it implies Theorem 19 . Write Eij E 

Mn (R) for the matrix whose only non-zero entry is a 1 in the i th row and j th 
column. Since [A 1 ,  Az , . . .  , Azn ] is R-linear in each variable and {EiJ : 1 :S i ,  j :s 
n } is a basis of Mn (R) as an R-module, it suffices to prove Theorem 19 when Ak = 
E;dk for each k. Assuming that this is the case, let G be the directed multigraph 
with vertex set { 1 ,  2, . . .  , n } whose set of directed edges is {i J }I ,  iziz , . . .  , i2nizn l · 
By the definition of matrix multiplication, a product Aal Aaz · · · Aazn is Ei j if 
the corresponding sequence of edges is a (directed) Euler trail from i to j and 



26 I. Fundamentals 

otherwise it is 0. Hence [A J, A 2, . . .  , A 2nl = Li,j .s(G ; i ,  j )Eij . By Lemma 20 
each summand is 0, so the sum is also 0, and Theorem 19 is proved. D 

Proof of Lemma 20. We may clearly assume that G has no isolated vertices. Let G' 
be obtained from G by adding to it a vertex x' ,  a path of length m + 1 - 2n from x' 
to x ,  and an edge from y to x' (see Fig. 1.22). Then G' has order n + (m +  1 - 2n) = 
m + 1 - n and size m + m + 1 - 2n + 1 = 2(m + 1 - n) .  Furthermore, it is easily 
checked that j .s (G ;  x ,  y) l = j .s (G' ; x' , x') l .  Hence it suffices to prove the theorem 
when m = 2n and x = y .  

FIGURE 1.22. The construction of G'. 
Given a vertex z , recall that d+(z) is the number of edges starting at z and 

recall that d- (z) is the number of edges ending at z .  Call d(z) = d+ (z) + d- (z) 
the degree of z and f(z) = d+(z) - d- (z) the .flux at z .  We may assume that G 
contains an Euler circuit (an Euler trail from x to x ;  otherwise, there is nothing to 
prove. In this case, each vertex has 0 flux, even degree, and the degree is at least 
2. Furthermore, we may assume that there is no double edge (and so no double 
loop), for otherwise the assertion is trivial. 

In order to prove the theoren;t in the case m = 2n and x = y we apply induction 
on n .  The case n = 1 being trivial, we tum to the induction step. We shall 
distinguish three cases. 

(i) There is a vertex b =f:. x of degree 2; say em-I = ab ends at b and em = be 
starts at b. If a = c, the assertion follows by applying the induction hypothesis 
to G - b. If a =f:. c, then without loss of generality x =f:. c. Let e 1 = cq ,  
e2 = cc2 , . . .  , e1 = cc1 be the edges starting at c .  For each i ,  1 � i � t ,  construct 
a graph G i from G - b by omitting ei and adding < = aci (see Fig. 1.23). Then 

� t � 

.s(G ;  x ,  x) = Li=I s(Gi ; x ,  x) = 0. 
(ii) There is a loop at a vertex b =f:. x of degree 4. Let em be the loop at b and 

let em-2 = ab and em-I = be be the other edges at b. Let Go be obtained from 

a 

FIGURE 1.23. The construction of G I · 
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G - b by adding to it an edge e�_2 = ac. Then e( G ; x ,  x) = e( Go ; x ,  x ) , which 
is 0 by the induction hypothesis. 

(iii) The cases (i) and (ii) do not apply. Since m = 2n = ! L,j d; and each 
vertex distinct from x has degree at least 4, either each vertex has degree 4 or else 
d (x) = 2 and there is a vertex of degree 6 and all other vertices have degree 4. It is 
easily checked (Exercise 93) that there are two adjacent vertices of degree 4, say 
a and b, since otherwise (ii) holds. Now we shall apply our fourth and final graph 
transformation. This is more complicated than the previous ones, since we shall 
construct two pairs of essentially different graphs from G: the graphs G 1 ,  G2, H6, 
and H7 shown in Fig. 1.24. Each Euler trail from x to x in G is transformed to an 
Euler trail in exactly one of G, and G2 . However, the graphs G, and G2 contain 
some spurious Euler trails :  Euler trails that do not come from Euler trails in G. As 
these spurious Euler trails are Euler trails in exactly one of H6 and H7 and they 
exhaust all the Euler trails of H6 and H7, we find that 

2 7 
e (G ; x , x) = I:S (c; ; x , x) - I:S (ii; ; x , x) .  

i= l i=6 

The first two terms are 0 because of (i), and the second two tenns are 0 because 
of (ii), so e(G ; x ,  x) = 0, completing the proof of Lemma 20. 0 

-+ 
G 

a b 
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The operations G r-+ G 1 ,  G2 , H6 , H7 are somewhat similar to various graph 
operations used to construct graph polynomials; a simple example is that of the 
chromatic polynomial, to be studied in Chapter V. 

1.6 Exercises 

1. Prove that either a graph or its complement is connected. 

2. (i) Show that every graph contains two vertices of equal degree. 
(ii) Determine all graphs with one pair of vertices of equal degree. 

3 .- Let a be a vertex of a connected graph G. Show that G is bipartite if and 
only if d(a ,  b) =f. d(a ,  c) for every edge be. 

4. Prove that the bound in Mantel's theorem (Theorem 2) is best possible: even 
more, for every n ;:: 1 ,  the complete bipartite graph K Ln/2J ,  r n/21 is the unique 
triangle-free graph of order n and maximal size. 

5. Show that the following conditions are equivalent for a graph G of size at 
least 2: 

(i) G is connected and has no cutvertex, 
(ii) any two vertices are on a cycle, 

(iii) any two edges are on a cycle, 
(iv) for any three vertices x ,  y and z ,  there is an x-z path containing y .  

6. Let G be  a graph of  order n. Prove the equivalence of  the following assertions. 
(i) G is a tree. 
(ii) G is connected and has at most n - 1 edges. 

(iii) G is acyclic and has at least n - 1 edges. 
(iv) G = Kn for n = 1 ,  2, and if n ;:: 3 , then G =f. Kn and the addition of an 
edge to G produces exactly one new cycle. 

7 .- Show that every connected graph G of order at least two contains vertices x 
and y such that both G - x and G - y are connected. 

8. In the puzzle of jealous husbands, three husbands and their wives wish to 
cross a river. They have only one small boat, which can take two persons 
at a time. No husband ever allows his wife to be in the company of other 
men unless he is also present. Draw the graph of permissible distributions of 
people and advise the travelers how they could cross the river. 

9. In the puzzle of the man and his dog, goat, and (large) cabbage, a man 
wishes to cross the river with his dog, goat, and (large) cabbage, but the small 
boat he has access to can take only one of his possessions besides himself. 
To complicate matters, for obvious reasons, the goat cannot be left in the 
company of the dog or the cabbage, unless the man is also present. Draw the 
very simple bipartite graph of permissible situations, and advise the man how 
he should proceed. 

10. Show that in an infinite graph G with countably many edges there exists a 
set of cycles and two-way infinite paths such that each edge of G belongs to 
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exactly one of these iff for every X C V (G) either there are infinitely many 
edges joining X to V (G) - X, or else e(X,  V (G) - X) is even. 

1 1 . Show that every graph G has a bipartition V(G) = UUW such that e (U, W) � 
�e(G) .  Show also that if G is cubic of order n , then we may demand that 
e (U, W) � n .  

12 . Show that for every graph G = (V, E) there is a partition V = V1 U V2 such 
that 

1 
e(G [ VJ ]) + e (G [ V2]) :::: 2e(G) . 

Show also that one may also demand that each V; span at most a third of the 
edges, that is, e(G [ Vi ] ) ::=:: �e(G) for i = 1 ,  2. 

1 3 .  Show that every graph with average degree d contains a sub graph of minimal 
degree at least d /2. 

1 4. Show that every graph with average degree d contains a bipartite sub graph of 
average degree at least d /2. 

15 . Show that every graph of order n and average degree d contains a subgraph 
of order greater than n/2 and maximal degree at most d. 

16. Let G be a graph of average degree d > 0. Show that for some vertex x of 
G the average of the degrees of the neighbours of x is at least d .  What if we 
replace "at least" by "at most"? 

17. Show that d1 ::=:: d2 ::=:: · · · ::=:: dn is the degree sequence of a tree iff d1 � 1 and 
2:7 di = 2n - 2. 

1 8 . Show that every integer sequence d1 ::=:: d2 ::=:: · · · ::=:: dn with d1 � 1 and 
2:7 di = 2n -2k,  k � 1 ,  is the degree sequence of a forest with k components. 

19 . Characterize the degree sequences of forests ! 

20.- Show that, up to isomorphism, there is a unique graph with degree sequence 
2, 2, 0 0 0 ' 2 , 1 ,  1 .  

2 1 .  Show that for every degree sequence (di ) 7 ,  1 ::=:: d1 ::=:: · · · ::=:: dn ::=:: n - 1 ,  there 
are at most (n - 2) ! trees on {XJ , . . . , Xn } ,  with d (Xi ) = di for every i .  Show 
also that, for every n there is a unique degree sequence on which this upper 
bound is attained. 

22.- Show that there is a unique sequence (di )7 , 1 ::=:: d1 ::=:: · · · ::=:: dn , for which 
there is only one tree on {X J ,  . . .  , Xn } with d (Xi ) = di for every i .  

23. Show that if n is large enough, then for every sequence 1 ::=:: d1 ::=:: · · · ::=:: dn ::=:: 
n - 2, with 2:?=1 di = 2n - 2, there are at least n - 2 trees on {XI , . . .  , Xn } 
with d (xi ) = di for every i .  

24. Prove that a regular bipartite graph of degree at least 2 does not have a bridge. 

25. Let V (G) = u:=l Vi be a partition of the vertex set of a connected graph 
G into k � 2 nonempty subsets such that each G [ V; ] is connected. Prove 
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that there are indices 1 � i < j � k such that both G - Vi and G - Vj are 
connected. 

26.- Let G be a connected graph of order n and let 1 � k � n .  Show that G 
contains a connected subgraph of order k .  

27 .  Let A = {A 1 ,  A2 ,  . . .  , An } be a family of n :::: 1 distinct subsets of a set X 
with n elements . Define a graph G with vertex set A in which Ai AJ is an edge 
iff there exists an x E X such that Ai �AJ = {x }. Label the edge Ai AJ with 
x .  For H c G let Lab( H) be the set of labels used for edges of H. Prove that 
there is a forest F c G such that Lab( F) = Lab( G) .  

28 .  (Exercise 27 contd.) Deduce that there i s  an element x E X such that the sets 
A 1 - {x } ,  A2 - {x } ,  . . . , An - {x } are all distinct. Show that this need not 
hold for any n if IA I  = n + 1 .  

29. + (Exercise 27 contd.) Describe all families A = {A 1 ,  A 2 ,  . . .  , An+ 1 }  of n + 1 
distinct subsets of X, I X I = n ,  such that for every x E X there are i, j ,  
1 � i < j � n + 1 , with A i  - {x } = AJ - {x } .  

30. A tournament i s  a complete oriented graph, that i s ,  a directed graph in  which 
for any two distinct vertices x and y either there is an edge from x to y or there 
is an edge from y to x ,  but not both. Prove that every tournament contains a 
(directed) Hamilton path. 

3 1 .- Prove that the radius and diameter of a graph satisfy the inequalities 

radG � diamG � 2radG, 

and both inequalities are best possible. 

32.- Given d :::: 1 ,  determine 

max min{diamT : T is a spanning tree of G } .  
diamG=d 

33. Let a and b be vertices of a tree T at maximal distance d(a ,  b) = 2r, and let 
c be the vertex on the unique a - b path at distance r from a and b. Show that 
c is the unique vertex of T with d(c, x) � r for every x E T.  

34 . Deduce from the proof of  Theorem 1 the following strengthening of  the 
assertion. Let G be a triangle-free graph of order n . Then e (G) � Ln2/4J , 
with equality iff G is a complete bipartite graph K Ln/2J , rn/21 · 

35. Denote by ct (G) the maximal cardinality of a set of independent vertices in G .  
Prove that i f  G does not contain a triangle, then � (G) � a( G) and deduce 
that e(G) � 1nct(G) , where n = I G I .  

36.- Show that if for every vertex z of a directed graph there is an edge starting at 
z (that is, d+ (z) > 0) then the graph contains a (directed) cycle. 

37. A grading of a directed graph G = (V, E) is a partitioning of V into sets 
V1 , V2 , . . .  , Vk such that if xy E £, then x E Vi and y E Vi+l for some i .  
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Given a directed graph G and a (nondirected) path P = xox i  · · · Xs , denote by 
v (xo , Xs ; P) the number of edges xix� I minus the number of edges x/;txi. 
Prove that G has a grading iff v(xo , Xs ; P )  i s  independent of P for every pair 
of vertices xo, Xs . 

38 . Is it true that, for every n � 2, the complete graph Kn is the union of cycles 
C3 , C4 , . . .  , Cn- I ,  an edge, and a path of length 2? 

39. Show that a complete graph Kn has a decomposition into edge-disjoint paths 
of length 2 if and only if n = 0 or 1 (mod 4). 

40. Show that for n � 2 the complete graph Kn is the union of paths of distinct 
lengths. 

4 1 .  A Steiner triple system of order n is a decomposition of a complete graph Kn 
into edge disjoint triangles. Equivalently, a Steiner triple system on a set X is 
a set system A c x<3l such that every pair e E x<2l is contained in precisely 
one triple A E A; the number of elements of the ground set X is the order 
of A. Show that if there is a Steiner triple system of order n then n = 1 or 3 
(mod 6). 

42. Show that up to relabelling, there is a unique Steiner triple system of order 7, 
namely the Fano plane in Fig. 1 .6 . 

43. Let A c x<3l and B c r<3l be Steiner triple systems. Let C c (X x Y) <3l 
consist of all triples of the form 
( 1 )  { (x i , y) , (x2 ,  y) , (x3 , y) } with A =  {x i , x2 ,  x3 } E A and y E f, 
(2) { (x , YI ) , (x , Y2) , (x , y3) } with B = {y i , y2 ,  Y3 } E B and x E X, 
(3) { (X I , Y I ) , (x2 , Y2) , (x3 , Y3) } with A = {x i , X2 , X3 } E A and B = 
{y i , Y2 ,  Y3 } E B. 
[Note that in (3) each pair of triples (A , B) gives rise to precisely six different 
triples.] Show that C, the product of A and B, is a Steiner triple system on 
X x Y. Deduce that there are infinitely many Steiner triple systems of order 
congruent to 1 (mod 6), and likewise for 3 (mod 6). 

44. Complete the proof of Theorem 10 by showing in detail that both the second 
and third methods construct an economical spanning tree. 

45. Show how the fourth method in Theorem 10 can be applied to find an 
economical spanning tree even if several edges have the same cost ( cf. Fig. 1.8). 

46. Show that every economical spanning tree can be constructed by each of the 
first three methods. 

47. Deduce from Theorem 12 that a graph contains an Euler circuit iff all but 
at most one of its components are isolated vertices and each vertex has even 
degree. State and prove an analogous statement about the existence of an 
Euler trail from x to y . 

48. Show that every multigraph with 2£ � 2 vertices of odd degrees is the 
edge-disjoint union of i trails. 
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49. Fleury gave the following algorithm for finding an Euler circuit X JX2 · · · Xn 
in a graph G .  Pick XI arbitrarily. Having chosen XI , x2 , . . .  , Xk . put Gk = 
G - {XJX2 , x2x3 , . . .  , Xk- !Xk } .  If every edge incident with Xk in Gk is a 
bridge (in particular, if Xk is an isolated vertex of Gk), then terminate the 
algorithm. Otherwise, let Xk+ 1 be a neighbour of Xk in G k such that XkXk+ 1 is 
not a bridge of Gk . 
Prove that if G has an Euler circuit, then the trail X JX2 · · · xe constructed by 
the algorithm is an Euler circuit. 

50. Recall that a graph G is randomly Eulerian from a vertex x if any maximal 
trail starting at x is an Euler circuit. (If T = XXI · · ·  xe , then T is a maximal 
trail starting at x iff xe is an isolated vertex in G - E(T) . )  Prove that a 
nonempty graph G is randomly Eulerian from x iff G has an Euler circuit and 
x is contained in every cycle of G .  

51 .  Let F be a forest. Add a vertex x to F and join x to each vertex of  odd degree 
in F. Prove that the graph obtained in this way is randomly Eulerian from x ,  
and every graph randomly Eulerian from x can be obtained i n  this way. 

52. Prove that a graph G is randomly Eulerian from each of two vertices x and 
y iff G is the union of an even number of x-y paths, any two of which have 
only x and y in common. 

53 .+ A one-way infinite Euler trail in an infinite multigraph G = (V, E) is an 
infinite sequence X I ,  e 1 , x2, e2 , . . .  such that X I , x2 , . . .  E V, e; is the edge 
x;x;+I • e; =f. ej if i =f. j ,  and E = {e J ,  e2 , . . .  } .  
Let G be a connected infinite multigraph with countably many edges and with 
one vertex of odd degree. (Thus d(x i )  is odd for some vertex x 1 ; for every 
other vertex x either d(x) is infinite or it is finite and even.) Show that G has 
a one-way infinite Euler trail if, and only if, for every finite set Eo C E, the 
graph G - Eo has only one infinite component. 

54. Show the necessity of the conditions in Theorem 14. 

55. Show that condition (iii) in Theorem 14 can be replaced by the following 
condition: 
(iii ' )  there is a vertex x such that if T is a finite trail starting at x then 
G - E(T) has at most two infinite components; furthermore, if T is a closed 
trail (circuit), then G - E(T) has precisely one infinite component. 

56. Deduce Theorem 14 from the results in the previous two exercises. 

57. Show that for every n ::::: 1 the graph of the lattice zn has a two-way infinite 
Euler trail. 

58 .+ Each of n :=::: 4 elderly professors know some item of gossip not known to the 
others. They communicate by telephone and in each conversation they part 
with all the gossip they know. Show that 2n - 4 calls are needed before each 
of them knows everything. 
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59. How would you define the number of sides of a face so that formula (4) 
continues to hold for graphs with bridges? Rewrite the proof of Theorem 1 5  
accordingly. 

60. Let G be a planar graph of order at least 3, with degree sequence (d; )J. .  Show 
that 

n L:: (6 - d;) ::: L::<6 - d;) ::: 12 .  
di :S.6 i= l 

Deduce that if 8 (G) ::: 5, then G has at least 12 vertices of degree 5, and if 
8 (G) ::: 4 then G has at least 6 vertices of degree at most 5 . 

6 1 .+ Let (d; )J. be the degree sequence of a planar graph of order n ::: 3 .  Prove that 
for k ::: 3 we have 

k 
Ld; ::;: 2n + 6k - 16 . 
i=l 

62.- Make use of the nonplanarity of Ks to show that every face of a maximal 
planar graph is a triangle. 

63.+ Prove that every planar graph has a drawing in the plane in which every edge 
is a straight line segment. [Hint. Apply induction on the order of a maximal 
planar graph by omitting a suitable vertex.] 

64. A plane drawing of an infinite graph is defined as that of a finite graph with 
the additional condition that each point has a neighbourhood containing at 
most one vertex and meeting only edges incident with that vertex. 
Show that Kuratowski's theorem does not hold for infinite graphs ;  that is, 
construct an infinite nonplanar graph without T Ks and T K3,3 · 
Is there an infinite nonplanar graph without a T K4? 

65. Show that there is no bipartite cubic planar graph of order 10, but for every 
n ::: 4, n =f:. 5, there is a connected bipartite cubic planar graph of order 2n 
(see Fig. 1.25). 

FIGURE 1.25. A bipartite cubic planar graph of order 12 .  
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66. There are n convex sets in the plane such that the boundaries of any two of 
them have at most two common points. Show that the boundary of their union 
consists of at most 6n - 12 connected arcs of the boundaries of the sets. 

67. Let (d; )! be the degree sequence of a planar graph G. 
(i) By making use of an upper bound for 'LI d; , show that if o (G) :=:: 4 then 

n Ldf < 2(n + 3)2 - 62. 
1 

(ii) Prove by induction on n that if n :=:: 4 then 

n Ldf :=:: 2(n + 3)2 - 62. 
1 

Show that equality can hold for every n :=:: 4. 

68.+ Determine the maximum of LI df, where (d; )! is the degree sequence of a 
planar graph of girth at least 4 (that is without triangles). What is the maximum 
if the girth is at least g > 4? 

69. Let G be a graph of order n :=:: 4 such that every graph obtained from G by 
deleting a vertex is regular (i.e. ; all vertices have the same degree). Show that 
G is either the complete graph Kn or the empty graph En . 

70. Show that every graph of maximal degree at most r is an induced subgraph 
of an r-regular graph: if Ll(G) :=:: r, then there is an r-regular graph H and a 
set W C V (H) such that G = H - W. Show also that we can always find a 
pair (H, W) with 

I W I :=:: max l r - o (G), I �(r - d(x))fr l } + 1 .  

7 1 .  Let G be a graph with o (G) :=:: 2 .  Show that there is a connected graph H with 
the same degree sequence, that is with V (H) = V(G) and dH(x) = dc (x) 
for all x E V(H) .  

72 .  Show that for every graph G = (V, E) and natural number k, there i s  a 
partition V = Uf=1 V; such that if x E V; and i =f. j ,  then x is joined to at 
least as many vertices in Vj as in V; . 

73. Let G be a planar graph, with the edges coloured red and blue. Show that there 
is a vertex x such that going round the edges incident with x in the clockwise 
direction, say, we encounter no more than two changes of colour. 

74. Suppose we have n :=:: 3 great circles of the sphere S2 c JR3 , not all through 
the same point, coloured red and blue. Deduce from the result in the previous 
exercise that there is a point x E S2 such that there are at least 2 great circles 
through it and they all have the same colour. 
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75.+ Let PI , P2 , . . .  , Pn be points in the plane, not all on a line, coloured red and 
blue. Prove that there is a line through two of these points such that all points 
on this line have the same colour. 

76. Let XIX2 · · · Xn be a regular n-gon, with n ::: 2k + 1 ,  k ::: 1 .  Show that if 
kn + 1 of the pairs (xi , Xj ) are joined by straight line segments, then k + 1 of 
them are pairwise disjoint. Does this hold for kn pairs? 

77. Prove that in the game of Hex (played on an n x n board) precisely one of the 
players wins .  

78.  Let TI , . . .  , Tk be subtrees of a tree T such that for all 1 � i < j � k the 
trees Ti and 1j have a vertex in common. Show that T has a vertex that is in 
all the Ti . 

79. Given a graph G and an equivalence relation R on V(G), let Gl R be the graph 
whose vertices are the equivalence classes Vi of R, and Vi Vj E E ( G 1 R) if 
G contains a CVi - Vj )-edge. Show that for every connected graph H there 
is a tree T and an equivalence relation R on V (T) such that H � T I R and 
e(H) = e(T) . 

80.  Show that every connected graph with an even number of edges has an 
orientation in which every vertex x has even outdegree d+ (x) .  

8 1 .  Let G be a connected infinite graph and let s : VF � {0, 1 } , where VF is 
the set of vertices of finite degree. Show that G has an orientation such that 
d+ (x) = s(x)  (mod 2) for every x E VF . 

82. Show that every multigraph has an orientation in which the out degree and in 
degree of every vertex differ by at most 1 .  

83 .  Show that for every graph G there is a set W c V (G) such that every vertex 
in W has an even number of neighbours in W and every vertex in V - W has 
an odd number of neighbours in W. 

· 

84. Determine all graphs of order n with a loop at some of the vertices such that 
no two vertices have the same degree. [A loop at a vertex x adds 1 to the 
degree of x . ]  

85. Let G = (V, E) be a (simple) graph, with V = {X I , . . .  , Xn } . and let ti , . . .  , tn 
be distinct real numbers. Show that the map V � JR3 , Xi 1-+ (ti , t[ , t( ) ,  gives 
an embedding of G into JR3 with straight line segments. 

86. Let PI .  qi , p2, q2 , . . .  , Pm .  qm be 2m distinct points in the plane. Show that 
there are m disjoint polygonal arcs, with the jth arc connecting Pi to qj . 

87. A k-book is a topological space homeomorphic to the union of k squares in 
JR3 , with any two sharing the same segment as a common side, called the 
spine of the book. Show that every graph has an embedding into a 3-book. 
[Hint. Put all vertices on a line in a square, parallel to the spine, and join each 
vertex x with d(x)  straight line segments to points on the spine.] 
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88 .- Let G and H be graphs, with V(H) = {yJ , Y2 · . . .  , yk } . Justify the remarks 
before Theorem 1 8 , namely that G >- H iff G has vertex=disjoint connected 
subgraphs G 1 , G2 , . . .  , Gk such that if Yi Yj E E (H) ,  then G contains an edge 
from G; to Gj . 

89. Show that G >- K4 if and only if T K4 c G, that is, G contains a subdivision 
of K4. 

90. Show that if H is a cubic multigraph and G >- H, then G :::> T H. 
9 1 .  Show that i f  Ks i s  a minor of a graph G, then G :::> T Ks or G :::> T K3,3 · 

Check that this implies the equivalence of Theorems 1 7  and 18 .  

92. A graph i s  said to  be  outerplanar i f  i t  can be  drawn in  the plane in  such a way 
that all vertices are on the boundary of the unbounded face (or of any face, of 
course) . Show that a graph is outerplanar iff it contains neither K4 nor K2,3 
as a minor. 

93. Fill in the small gap in the proof of Lemma 20: show that if cases (i) and (ii) 
do not apply then there are two adjacent vertices of degree 4. 

94. Let T be the set of spanning trees of a connected graph of order n . Let H 
be the graph with vertex set T in which T1 E T is joined to T2 E F if 
I E (TJ )�E(T2) 1  = 2, i .e . ,  if T1 has precisely one edge not in T2 (and so T2 
has one edge not in TJ ). Show that H is connected and has diameter at most 
n - 2. 

95. Let G be a graph of size (�} + 1 ,  and maximal degree at least 2. Show that 
there is a set U C V(G) such that l U I  = k + 1 and G[U] has no isolated 
vertices. 

96. (Exercise 95 ctd.) Let G be a graph with 2k + 1 vertices and ekt) - (�) - 1 
edges. Show that there is a partition V (G) = U 1 U U2 of the vertex set such 
that �(G[U; ] )  � k - 1 for i = 1 ,  2. Show also that if G has one more edge 
then such a partition need not exist. 

Notes 

The first book on graph theory was written by the Hungarian D. Konig: Theorie der 
endlichen und unendlichen Graphen, Kombinatorische Topologie und Strecken­
komplexe, Akademische Verlagsgesellschaft, Leipzig, 1936, 258 pp. ;  this book 
contains all the basic results. (For an English translation with commentaries, see it 
Theory of Finite and Infinite Graphs, Birkhauser, Boston, 1990, 426 pp. )  Euler's 
theorem on the bridges of Konigsberg had been published 200 years before, in St. 
Petersburg: L. Euler, Solutio problematis ad geometrian situs pertinentis, Comm. 
Acad. Sci. Imper. Petropol. 8 ( 1736) 128-140. Theorem 14 is from P. Erdos, 
T. Grunwald, and E. Weiszfeld, On Euler lines of infinite graphs (in Hungarian) ,  
Mat. Fiz. Lapok 43 ( 1936), 129-140. In its full  generality, Theorem 1 3  is due 
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to T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and trees in oriented 
linear graphs, Simon Stevin 28 ( 1951  ), 203-2 17 ,  but the case of degree 4 can be 
found in C.A.B. Smith and W.T.Tutte, On unicursal paths in a network of degree 
4, Amer. Math. Monthly 48 ( 1 94 1 ), 233-237. 

Theorem 17 is in K. Kuratowski, Sur le probleme des courbes gauches en 
topologie, Fund. Math. 15 ( 1 930) 27 1-283; for simpler proofs see A.G. Dirac 
and S. Schuster, A theorem of Kuratowski, Indag. Math. 16 ( 1 954) 343-348, 
C. Thomassen, Kuratowski 's theorem, J. Graph Theory 5 ( 1 98 1 )  225-241 ,  and 
H. Tverberg, A proof of Kuratowski 's theorem, in: Graph Theory in Memory of 
G.A. Dirac (eds . L.D. Andersen et al) ,  North Holland, Amsterdam, 1 987. 

The theorem of A.S. Amitsur and J. Levitzki (Theorem 1 9) is in Minimal 
identities for algebras, Proc. Amer. Math. Soc. 1 ( 1950) 449-463 ; the simpler 
and more combinatorial proof is based on R. G. Swan, An application of graph 
theory to algebra, Proc. Amer. Math. Soc. 14 ( 1963) 367-373 and Correction to 
"An application of graph theory to algebra," Proc. Amer. Math. Soc. 21 ( 1969) 
379-380. 

Steiner triple systems, mentioned in Exercises 41-43 are named after Jakob 
Steiner, who, in 1 853, asked whether the necessary condition that n = 1 or 
3 (mod 6) is also sufficient for their existence. In fact, the same problem had 
been posed and answered in the affirmative by the Rev. Thomas Kirkman, On a 
problem of combinations, Cambridge and Dublin Math. J. 2 ( 1 847) 10 1-204. We 
shall prove this in Exercises 84-86 of Chapter III. 





II 

Electrical Networks 

This chapter is something of a diversion from the main line of the book, so at the 
first reading some readers may wish to skip it. The concepts introduced in the first 
half of Section 3 will be used in Section 2 of Chapter VIII, and in Chapter IX we 
shall return to electrical networks, when we connect them with random walks. 

It does not take long to discover that an electrical network may be viewed as a 
graph, so the simplest problems about currents in networks are exactly questions 
about graphs. Does our brief acquaintance with graphs help us tackle the problems? 
As it will transpire in the first section, the answer is yes; for after a short review 
of the basic ideas of electricity we make use of spanning trees to obtain solutions. 
Some of these results can be reformulated in terms of tilings of rectangles and 
squares, as we shall show in Section 2. The last section introduces elementary 
algebraic graph theory, which is then applied to electrical networks. 

It should be emphasized that in the problems we consider we use hardly more 
than the terminology of graph theory; virtually the only concept to be used is that 
of a spanning tree. 

II. l Graphs and Electrical Networks 

A simple electrical network can be regarded as a graph in which each edge e; 
has been assigned a real number r; , called its resistance. If there is a potential 
difference p; between the end vertices of e; , say a; and b; , then an electrical current 
w; will flow in the edge e; from a; to b; according to Ohm 's law: 

Pi 
w; = - . r; 
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Though to start with we could restrict our attention to electrical networks cor­
responding to graphs, in the simplifications that follow it will be essential to allow 
multiple edges, that is, to consider multigraphs instead of graphs. Furthermore, we 
orient each edge arbitrarily from one endvertex to the other so that we may use Pi 
to denote the potential difference in the edge ei , meaning the difference between 
the potentials of the initial vertex and the endvertex. Similarly, Wi is the current 
in the edge ei , meaning the current in ei in the direction of the edge. (Note that 
we regard a negative current -Wi as a positive current Wi in the other direction.) 
Thus, throughout the section we consider directed multigraphs, that is, directed 
graphs that may contain several edges directed from ai to bi . However, in this 
section there is no danger of confusion if we use ai bi to denote an edge from ai to 
bi ; in the next section we shall be more pedantic. Thus, 

Wab = -Wba and Pab = -Pba · 

In many practical problems, electrical currents are made to enter the network at 
some points and leave it at others, and we are interested in the consequent currents 
and potential differences in the edges. These are governed by the famous laws of 
Kirchhoff, another renowned citizen of Konigsberg. 

Kirchhoff's potential (or voltage) law states that the potential differences round 
any cycle XIX2 · • · Xk sum to 0: 

Kirchhoff's current law postulates that the total current outflow from any point 
is 0: 

Wab + Wac + · · · + Wau + Waoo = 0. 

Here ab, ac, . . .  , au are the edges incident with a, and Waoo denotes the amount 
of current that leaves the network at a .  (In keeping with our convention, Wooa = 
-Waoo is the amount of current entering the network at a.) For vertices not 
connected to external points we have 

Wab + Wac + · · · + Wau = 0. 

Note that if we know the resistances then the potential law can be rewritten as a 
restriction on the currents in the edges. Thus we may consider that the currents are 
governed by the Kirchhoff laws only; the physical characteristics of the network 
(the resistances) affect only the parameters in these laws. 

It is also easily seen that the potential law is equivalent to saying that one can 
assign absolute potentials Va , Vb , . . . to the vertices a ,  b, . . .  so that the potential 
difference between a and b is Va - Vb = Pab · If the network is connected and 
the potential differences Pab are given for the edges, then we are free to choose 
arbitrarily the potential of one of the vertices, say Va . but then all the other 
potentials are determined. In this section we shall work with absolute potentials, 
usually choosing the potential of one of the vertices to be 0, but we must keep in 
mind that this is the same as the application of the voltage law. 
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FIGURE II. I .  The resistances, the currents, and the potentials .  

In the most fundamental problems, current is allowed to enter the network only 
at a single vertex s, the source, and leave it only at another vertex t, the sink. (We 
shall indicate later how the general problem can be reduced to these fundamental 
problems.)  If the size of the current from s to t is w and the potential difference 
between s and t is p, then by Ohm's law r = pjw is the total resistance of the 
network between s and t .  As an example of the use of the Kirchhoff laws we 
shall evaluate the total resistance between s and t of the simple network shown in 
Fig. IL l .  

This network has S resistors, of values 1 ,  2 ,  3 ,  4 ,  and S ohms, as shown i n  the 
first picture. If we suppose that a unit current flows into the system at s and leaves 
it at t, then the consequent edge currents must be as in the second picture, for 
suitable values of e and f. Finally, the potentials V1 = 0, Va , Vb , Vs assigned 
to the vertices must satisfy Ohm's law, so Va = 1 · e = e, Vb = 2(1 - e) , and 
Vs = Va + S(e + f) =  6e + Sf. Ohm's law has to be satisfied in two more edges, 
ab and bs , giving us 

Va = e = Vb + 3 f = 2(1 - e) + 3 f 
and 

Vs = 6e + Sf =  Vb + 4(1 - e - f) = 2(1 - e) + 4( 1 - e - f) . 
Hence 

e = 2 - 2e + 3f 
and 

6e + Sf =  6 - 6e - 4f, 
giving e = 4/7, f = -2/21 and Vs = 6e + Sf =  62/2 1 .  In particular, the total 
resistance from s to t is <Vs - V1 ) / 1  = 62/2 1 .  

The calculations are often simplified if we note that Kirchhoff's equations are 
linear and homogeneous in all currents and potential differences. This implies 
the so-called principle of superposition: any combination of solutions is again 
a solution. As an application of the principle of superposition one can show 
that any current resulting from multiple sources and sinks can be obtained by 
superposing flows belonging to one source and sink; that is, solutions of. the 
fundamental problems mentioned above can be used to solve the general problem. 



42 II. Electrical Networks 

Furthermore, the principle of superposition implies immediately that there is at 
most one solution, no matter how the sources and sinks are distributed. Indeed, the 
difference of two distinct solutions is a flow in which no current enters or leaves 
the network at any point. If in this flow there is a positive current in some edge 
from a to b then by the current law a positive current must go from b to c, then 
from c to d, etc . ,  giving a trail abed · · · . Since the network is finite, this trail has 
to return to a point previously visited. Thus we obtain a circuit in whose edges 
positive currents flow in one direction. But this is impossible, since it implies that 
the potential of each vertex is strictly greater than that of the next one round the 
circuit. 

Before proving the existence of a solution (which is obvious if we believe in the 
physical interpretation), we shall calculate the total resistance of two networks. 
Unless the networks are very small, the calculations can get very heavy, and 
electrical engineers have a number of standard tricks to make them easier. 

The very simple networks of Fig. 11.2 show two resistors q and rz connected 
first in series and then in parallel. Let us put a current of size 1 through the 
networks, from s to t .  What are the total resistances? In the first case 

Va = r1 and Vs = Va + rz = TJ + rz , 
so the total resistance is 

r = r1 + rz . 
In the second case, when they are connected in parallel, if a current of size e goes 
through the first resistor and so a current of size 1 - e through the second, then 

Vs = ne = rz ( 1 - e) , rz 
so e =  ---, r1 + rz 

and the total resistance is given by 

nrz 1 1 1 r = ---, or - = - + - .  

T J  + rz r r1 rz 
This indicates that reciprocals of resistances, or conductances, are just as natural 
as the resistances themselves, and indeed are more convenient in our presentation. 
(The conductance of an edge of resistance 1 ohm is 1 mho.) What we have shown 
now is that for series connection the resistances add and for parallel connection 
the conductances add. 

s 

a 

V, = O 

FIGURE 11.2. Resistors connected in series and in parallel. 
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FIGURE 11.3 .  Calculating the total resistance of a cube. 

The use of conductances is particularly convenient when considering certain 
limiting cases of Ohm's law. If the resistance of an edge ab is 0, then we necessarily 
have Va = Vb , and from an electrical point of view the vertices can be regarded as 
identical. In the usual slang, a has been "shorted" (short-circuited) to b. Of course, 
a may be shorted to b if there is some other reason why Va = Vb . At the other 
extreme, we can introduce edges of 0 conductance without affecting the currents 
and potentials. Conversely, we make an edge have 0 conductance by "cutting" it. 
Of course, an edge of 0 resistance is said to have oo conductance, and an edge of 
0 conductance is said to have oo resistance. 

Let us see now how the acquaintance with resistors in series and in parallel and 
the possibility of shorting vertices can help us determine the total resistance. As 
an example, let us take the network formed by the edges of a cube, in which each 
edge has 1 ohm resistance. What is the total resistance across an edge st? Using 
the notation of the first picture in Fig. I1.3 ,  we see that by symmetry Va = Vc 
and Vd = VJ. so c can be shorted to a and f to d, giving us the second picture. 
From now on we can simplify resistors connected in parallel and in series, until 
we find that the total resistance is 7112. Knowing this, it is easy to recover the 
entire current flow. 

Another important device in practical calculations is the so-called star-triangle 
(or star-delta) transformation. If a vertex v is joined to just three vertices, say a , 
b , and c, by edges of  resistances A, B,  and C, then we call v the centre of  a star, 
as in the first picture of Fig. 11.4. If no current is allowed to enter or leave at v, 
then we are allowed to replace this star by the triangle configuration shown in the 
second picture of Fig. 11.4, because, as the reader should check (see Exercise 1 1 ), 
if the vertices a ,  b ,  c are set at potentials Va . Vb , Vc , then in the two networks we 
get precisely the same currents Wa00 ,  Wboo .  Wcoo leaving the network. Needless to 
say, we may apply the transformation in reverse, replacing A', B', and C' by A = 
B' C' I T, B = C' A' I T, and C = A' B' I T, where T = A' + B' + C' . Incidentally, 
the formulae become symmetrical if we use resistances in the first transformation 
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c -D·�· b A' =  S/A. c 

FIGURE 11.4. The star-triangle transformation; S = AB + BC + CA. 

FIGURE 11.5. Applications of the star-triangle transfonnation. 

and conductances in the second: A' = B + C  + B Cj A and a = {3' + y' + fJ'y' fa' , 
where a, {3 ,  . . .  are the conductances. 

As an application of the star-triangle transformation, let us calculate the total 
resistance of a tetrahedron across an edge, in which the resistances are as in 
Fig. II.5 .  The pictures speak for themselves. 

We shall conclude this section on a slightly more theoretical note: we shall prove 
the existence of a solution. More precisely, we shall present Kirchhoff's theorem 
stating that, if a current of size 1 is put through a network, then the current in 

an edge can be expressed in terms of the numbers of certain spanning trees. For 
simplicity we assume that the graph G of the network is connected, each edge has 
unit resistance, and a current of size 1 enters at a vertex s and leaves at t . 

Theorem 1 Given an edge ab, denote by N(s ,  a ,  b ,  t) the number of spanning 
trees of G in which the (unique) path from s to t contains a and b, in this order. 
Define N(s , b, a ,  t) analogously and write N for the total number of spanning 
trees. Finally, let Wab = {N(s, a ,  b, t) - N(s, b, a ,  t) }jN. 

Distribute currents in the edges of G by sending a current of size Wab from a to 
b for every edge ab. Then there is a total current size 1 from s to t satisfying the 
Kirchhoff laws. 

Proof To simplify the situation, multiply all currents by N. Also, for every 
spanning tree T and edge ab E E(G), let w<T) be the current of size 1 along 
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the unique s-t path in T :  

Then 

if T has a path s · · · ab · · · t ,  

if  T has a path s · · · ba · · · t ,  

otherwise. 

N(s , a, b , t) - N(s , b, a, t) = L w�r) ' 
T 

where the summation is over all spanning trees T . Therefore, our task is to show 
that if we send a current of size Lr w�r) from a to b for every edge ab, then we 
obtain a total current of size N from s to t satisfying the Kirchhoff laws. 

Now, each w<T) is a current of size 1 from s to t satisfying Kirchhoff's current 
law, and so their sum is a current of size N from s to t satisfying Kirchhoff's 
current law. 

All we have to show then is that the potential law is also satisfied. As all edges 
have the same resistance, the potential law claims that the total current in a cycle 
with some orientation is zero. To show this, we proceed as earlier, but first we 
reformulate slightly the definition of N(s, a, b, t) . Call a spanning forest F of G 
a thicket if it has exactly two components, say Fs and Fr , such that s is in Fs and 
t is in Fr . Then N(s , a ,  b, t) is the number of thickets F = Fs U Fr for which 
a E Fs and b E Fr . and N(s, b, a ,  t) is defined analogously. What is then the 
contribution of a thicket F = Fs U Fr to the total current in a cycle? It is the 
number of cycle edges from Fs to Fr minus the number of cycle edges from Fr to 
Fs ; so it is zero. D 

Let us write out the second part of the proof more formally, to make it even 
more evident that we use the basic and powerful combinatorial principle of double 
counting, or reversing the order of summation. For a thicket F = Fs U Fr and an 
edge ab E E(G), set 

Then 

(F) I w��+ab) if F +  ab is a spanning tree, 
wab = 0 otherwise. 

"" w(T) = "" w(F) 
� ab � ab • 

T F 
where the second summation is over all thickets F. Finally, the total current around 
a cycle X!X2 · · · Xk of G, with Xk+l = X ! ,  is 

k k 
I: I: w�;li+l = I: I: w�;li+l = o. 
i= l F F i= l 

since :L�=I w�;};+1 = 
0 for every thicket F. 
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More importantly, the proof of Theorem I can be rewritten to give a solution in 
the case when the edges have arbitrary conductances. For a spanning tree T define 
the weight w(T) of T as the product of the conductances of its edges . Let N* be 
the sum of the weights of all the spanning trees, let N*(s ,  a, b, t) be the sum of 
the weights of all the spanning trees in which b follows a on the (unique) s-t path 
in the tree, and let N*(s ,  b, a, t) = N*(t ,  a, b, s) .  

Theorem 2 There is a distribution of currents satisfying Ohm 's law and Kirch­
hoff's laws in which a current of size I enters at s and leaves at t. The value of the 
current in an edge ab is given by {N*(s ,  a ,  b, t) - N*(s ,  b, a ,  t ) }/ N*. 0 

Let us note an immediate consequence of this result. 

Corollary 3 If the conductances of the edges are rational and a current of size 1 
goes through the network then the current in each edge has rational value. 0 

The star-triangle transformation tells us that no matter what the rest of the 
network is, every 'star' may be replaced by a suitable 'triangle' ,  and vice versa. 
On an even simpler level, if two networks, N and M, share only two vertices, say a 
and b, and nothing else, and the total resistance of M from a to b is r, then in N U M 
we may replace M by an edge ab of resistance r .  In fact, similar transformations 
can be carried out for networks with any number of vertices of attachment, not 
only two or three, as above. To be precise, if a part M of a network is attached 
to the rest of the network only at a set U of vertices, then we may replace M by 
edges of certain resistances joining the vertices of U (and introducing no other 
vertices) without changing the distribution of currents outside M. We leave this 
as an exercise (Exercise 1 3+) .  

In estimating the resistance of a network, it  is frequently convenient to make 
use of the fact that if the resistance of a wire is increased then the total resistance 
does not decrease. In particular, if some wires are cut then the total resistance 
does not decrease; similarly, if some vertices are shorted, i .e . ,  are identified, then 
the total resistance does not increase. This is obvious if we appeal to physical 
intuition; however, the problem is that the Kirchhoff laws, together with Ohm's 
law, determine all currents, potential differences, and so on : having accepted these 
three laws, we have no right to appeal to any physical intuition. In this chapter we 
leave this assertion as an exercise (Exercise 14+),  but we shall prove it, several 
times over, in Chapter IX, when we give a less superficial treatment of electrical 
networks. 

1!.2 Squaring the Square 

This is a diversion within a diversion; we feel bound to draw attention to a 
famous problem arising from recreational mathematics that is related to the theory 
of electrical networks . Is there a perfect squared square? In other words, is it 
possible to subdivide a closed square into finitely many (but at least two) square 
regions of distinct sizes that intersect only at their boundaries? 
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FIGURE 11.6. The perfect squaring of the 33 x 32 rectangle, due to Moron. 

The answer to this question is far from obvious :  on the one hand, there seems 
to be no reason why there should not be a perfect squared square; on the other 
hand, it is not easy to find even a perfect squared rectangle, a rectangle divided 
into finitely many (but at least two) squares of distinct sizes. 

As it happens, there are perfect squared rectangles: in 1925 Moron found 
the perfect squaring of the 33 x 32 rectangle shown in Fig. Il.6. This squared 
rectangle has order 9: there are 9 squares in the subdivision; in the figure the 
number associated with a square is the length of its side. 

We shall use Moron's squared rectangle to illustrate an argument. Let us cut this 
rectangle out of a sheet of nichrome (or any other material with low conductivity) 
and let us put rods made of silver (or some other material of high conductivity) at 
the top and bottom. 

What happens if we ensure that the silver rod at the top is at 32 volts while the 
rod at the bottom is kept at 0? Trivially, a uniform current will flow from top to 
bottom. In fact, the potential at a point of the rectangle will depend only on the 
height of the point: the potential at height x will be x volts. Furthermore, there will 
be no current across the rectangle, only from top to bottom. Thus the current will 
not change at all if (i) we place silver rods on the horizontal sides of the squares 
and (ii) cut narrow slits along the vertical sides, as shown in the first picture of 
Fig. I1.7. 

Now, since silver is a very good conductor, the points of each silver rod have 
been shortened, so they can be identified. Thus as an electric conductor the whole 
rectangle behaves like the plane network shown in the second picture of Fig. II. 7, in 
which the conductance of an edge is equal to the conductance of the corresponding 
square from top to bottom. Clearly, the conductance of a rectangle from top to 
bottom is proportional to the length of a horizontal side and the resistance is 
proportional to a vertical side. Consequently, all squares have the same resistance, 
say unit resistance, so all edges in Fig. II. 7 have unit resistance. What is the 
potential drop in an edge? It is the side length of the corresponding square. What 
is the resistance of the whole system? The ratio of the vertical side of the original 
big rectangle to the horizontal side, that is, 32/33 .  
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FIGURE 11.7. The electrical network associated with our rectangle. 

V, = 32 

Ya = 1 7  

Vb = 14 

Vc = lO 
Vd = 9 

V1 = 0  

Since the process above is reversible, that is, every squared rectangle can be 
obtained from some network, we have an effective tool to help us in our search 
for squared squares. Take a connected planar graph G and tum it into an electrical 
network by giving each edge resistance 1 .  Calculate the total resistance from a 
vertex s to a vertex t. If this is also 1 ,  the network may correspond to a suitably 
squared square. If the potential differences in the edges are all distinct, all squares 
have different sizes, so we have a perfect squared square. 

Of course, at this stage our problem is far from being solved; we do not even 
know that there must exist a squared square. However, we have a chance to search 
systematically for a solution. What should we look for? A plane graph containing 
s and t on the outer face, lacking all symmetries, such that the total resistance 
from s to t is 1 .  

Many squared squares have been found with the help of computers, but the 
first examples were found without computers by Sprague in 1 939 and by four 
undergraduates at Cambridge - Brooks, Smith, Stone and Thtte - in 1940. The 
smallest number of squares that can tile a square is 2 1 ;  Fig. II.8  shows such a 
tiling, due to Duijvestijn. In fact, this is the only tiling of order 2 1 .  Several other 
tilings are given among the exercises. 

The connection between squaring a rectangle and electrical networks gives us 
immediately a beautiful result first proved by Dehn in 1903 . Corollary 3 tells 
us that if each edge has resistance 1 and a current of size 1 flows through the 
system then in each edge the value of the current is rational. This translates to the 
following result about squared rectangles. 

Theorem 4 If a rectangle can be tiled with squares then the ratio of two 
neighbouring sides of the rectangle is rational. 0 
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FIGURE 11.8 .  A perfect squared square: a tiling of a square with 2 1  incongruent squares. 

Equivalently, a rectangle can be tiled with squares iff it can be tiled with 
congruent squares. 

It is easily seen that electrical networks can be used to obtain tilings of rectangles 
of prescribed shapes: an edge e of resistance r corresponds to a rectangle in which 
the height is r times the base (see Exercise 19) .  

Numerous questions remain about squared rectangles; here we  mention only 
two. First, which plane networks correspond to perfect squared rectangles? The 
answer holds no surprises: if s and t are on the outer face of a plane network, 
with each edge having resistance 1 ,  then this network corresponds to a squared 
rectangle iff the following condition is satisfied: when a non-zero current is put 
through the network from s to t, there is a non-zero current in each edge. 

Second, which rectangles have perfect squarings? This question is considerably 
more difficult to answer. The result below, greatly extending Dehn's theorem 
(Theorem 4), was proved by Sprague in 1940. 

Theorem 5 A rectangle has a perfect squaring if, and only if, the ratio of two 
neighbouring sides is rational. 

The result can be proved by putting together appropriate perfect rectangles; for 
the proof we refer the reader to the original paper of Sprague. 

In the rest of this section, we consider tilings of rectangles by rectangles: our 
aim is to prove some beautiful results that somewhat resemble the results above. 
Suppose that we have a tiling of a rectangle by 1 x 8 and 8 x 1 rectangles. Then, 
as the total area is a multiple of 8, either one of the sides is a multiple of 4 and the 
other is even, or one of the sides is a multiple of 8. Can both possibilities arise? 
There are similar questions in higher dimensions. For example, if a box is filled 
with 1 x 2 x 4 bricks in any position ( 1  x 2 x 4, 4 x 2 x 1 ,  2 x 1 x 4, etc.) , then 
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either all sides of the box are even, or one is a multiple of 4, another is even and 
the third is odd, or else one of the sides is a multiple of 8 and the two other sides 
are odd. But can all possibilities arise? 

The latter problem was posed by de Bruijn in a Hungarian journal in 1959; a 
decade later he proved considerable extensions of the result, including the theorems 
below. There is a galaxy of beautiful proofs of the first theorem: here we give four. 
Call a side of a rectangle integer if its length is an integer. 

Theorem 6 Let a rectangle T be tiled with rectangles T1 , . . .  , h If each Ti has 
an integer side then so does T. 

Remark. In all four proofs we assume, as we may, that T c JR2 is in canonical 
position: it has vertices (0, 0) , (a , 0) , (0, b) and (a , b), where a ,  b > 0. Then the 
sides of the T; are also parallel to the axes. 

First Proof Construct a bipartite graph G, with vertex classes L and R, as follows. 
Let L (for 'left' or 'lattice points ' )  be the set of integer lattice points in the tiled 
rectangle: L = { (x ,  y) E Z2 : 0 :::: x :=:: a ,  0 :::: y :::: b} , and let R (for 'right' or 
'rectangles' )  be the set of tiling rectangles T1 , . . .  , Te . Our graph G has vertex set 
L U R, and (x , y) E L is joined to T; E R if (x , y) is a vertex ( 'comer' ) of Ti . 
Then, since each T; has an integer side, each Ti has degree 0, 2 or 4, so e (G) is 
even. 

Also, every vertex in L, other than the comers of T, has degree 0, 2 or 4, but 
the comer (0, 0) E L has degree 1 .  Hence G has at least one edge incident with 
another comer: in particular, at least one other comer belongs to L, and we are 
done. D 

Second Proof Set F (x , y) = sin 2:n: x sin 2:n:y . Then 

I £; F(x ,  y)dx dy = 0 

for each i ,  so 

But 

e I f  F(x , y)dx dy = �l l F(x , y)dx dy = O. 
lr z= I ' 

I fr F(x ,  y)dx dy = lob (loa F(x ,  y)dx) dy 

= loa sin 2:n: x dx lob sin 2:n:y dy 

= ( 2�) 2 ( 1  - cos 2:n:a) ( l  - cos 2:n:b) . 

Hence at least one of a and b is an integer. D 

Third Proof Colour the 1 /2 x 1 /2 squares of the square lattice !Z2 in a black 
and white checkerboard fashion. Then each tile Ti contains an equal amount of 
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black and white, and so T itself has an equal amount of black and white. But it is 
easily checked that in this case at least one of a and b is an integer. 0 
Fourth Proof. For e > 0 and x E JR., set 

�s(X) = �x 
x + e  

if X E Z, 
otherwise. 

Also, for z = (x , y) E JR.2, define �s(z) = (�8(x), �8 (y)) , and for a rectangle U 
with comers (zi)j let �s( U) be the (possibly degenerate) rectangle with comers 
(�s(Zi))j . 

It is an easy exercise to show that if e > 0 is small enough, say 0 < e < eo, 
then the rectangles �s <Ti) form a tiling of �s(T) .  Writing l U I  for the area of a 
rectangle U, if 0 < e < eo then 

l 

l�s (T) I = L l�s <Ti) l .  
i= l  

Now, as  Ti has an integer side, l�e (Ii) l  is a linear function of e for 0 < e < eo. 
On the other hand, if a, b ¢. Z then l�e (T) I  = ab + (a +  b)e + e2 is a quadratic 
function of e . As this is not the case, our proof is complete. 0 

It is easy to generalize the result to n-dimensional boxes, rectangular 
parallelepipeds. 

Theorem 7 Let a box B in R.n be tiled with boxes Bt, . . .  , Be . If each Bi has at 
least k integer sides, then B itself has at least k integer sides. 
Proof. The fourth proof above carries over, mutatis mutandis. Defining �e as 
before, with �e(z) = (�e(Z t) , . . . , �e(Zn)) , we find that, if e > 0 is small enough, 
each l�e (Bi) l  i s  a polynomial of degree at most n - k .  Also, if B has precisely h 
integer sides then l�e(B) I has degree n - h .  0 
Theorem 8 Let at, . . .  , an be natural numbers with a t laz , . . .  , an- t lan, and let 
B be an A 1 x · · · x An box filled with a t x · · · x an bricks standing in any position. 
Then B can also be filled with these bricks positioned the same way. Equivalently, 
there is a permutation 7( of { 1 ,  . . . , n }  such that a; divides Arr(i) · 

Proof. By Theorem 6, we know that an divides an A ; :  let 7((n) be such that an 
divides Arr(n) . Next, we know by Theorem 7 that an- ! divides at least two Ai : let 
7((n - 1 )  =f. j((n) be such that an- t divides Arr(n- 1) · Continuing in this way, we 
get a permutation as desired. 0 

For some more proofs and extensions of Theorem 6, see Exercises 28-35. 

11.3 Vector Spaces and Matrices Associated with Graphs 

The vertex space Co( G) of a graph G is the complex vector space of all functions 
from V (G) into C. Similarly, the edge space Ct (G) is the complex vector space of 
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FIGURE 11.9. If the thick cycle L is oriented anti-clockwise, its vector in Ct (G) is 
ZL = (- 1 ,  1 ,  1 ,  - 1 ,  0, . . .  , 0) . 

all linear functions from E (G) into C. In these definitions it is sometimes conve­
nient to replace the complex field by Fz , the field of order 2, or by other fields. 
We shall take V(G) = {v t , vz , . . .  , Vn } and E(G) = {et , ez , . . .  , em } , so that 
dim Co(G) = n and dim Ct (G) = m.  The elements of Co( G) are usually written 
in the form x = I:7=t Xi Vi or x = (xi)'j . The sum I:7=t Xi Vi is aformal sum of 
the vertices, but if we think of Vi as the function V (G) --+ C that is 0 everywhere, 
except at the vertex Vi , where it is 1 , then Vi , . . .  , Vn is a basis of Co (G) and the 
sum above simply expresses an element in terms of the basis elements . Similarly, 
an element of Ct (G) may be written as y = L�t Yi ei or y = (yi )j .  We call 
(V t , . . .  , Vm ) the standard basis of the vertex space Co(G) and (e t ,  . . .  , em ) the 
standard basis of the edge space. We shall endow these spaces with the inner 
product in which the standard bases are orthonormal : (x, y} = Li Xi Yi . 

In this section we shall be concerned mostly with the edge space Ct (G) ;  to start 
with we define two subs paces which will tum out to be orthogonal complements of 
each other. Let L be a cycle in G with a given cyclic orientation L = u 1 uz · · · Ut .  
If  e i = UJ Uj+J  and e i i s  oriented from Uj to  UJ+l then we say that e i is oriented 
as L .  This oriented cycle L can be identified with an element ZL of Ct (G) :  1 1  i f  e i E E(L) and e i i s  oriented as  L,  

zL (ei ) = - 1  if ei E E (L) and ei is not oriented as L ,  

0 if ei fj. E(L) .  

A simple example i s  shown in  Fig. 11.9. Denote by Z(G) the subspace of Ct (G) 
spanned by the vectors Z L  as  L runs over the set of  cycles; Z(G) i s  the cycle space 
of G.  

Now let P be a partition V = Vt U Vz o f  the vertex set o f  G.  Consider the set 
ECVt ,  Vz) of edges from Vt to Vz ; such a set of edges is called a cut. There is 
a vector up in Ct (G) called a cut vector, or cocycle vector naturally associated 
with this partition P :  1 1  i f  ei goes from Vt to Vz , 

up (ei ) = - 1 if ei goes from Vz to Vt , 
0 if ei fj. E(V1 ,  Vz) .  



II.3 Vector Spaces and Matrices Associated with Graphs 53 

We write U (G) for the subspace of the edge space C 1 (G) spanned by all the cut 
vectors up,  and we call it the cut (or cocycle) space of G. 
Theorem 9 The inner product space C1 (G) is the orthogonal direct sum of the 
cycle space Z (G) and the cut space U (G). If G has n vertices, m edges and k 
components then 

dim Z(G) = m - n + k and dim U(G) = n - k. 
Proof. Let us see first that Z (G) and U (G) are orthogonal. Let L be a cycle and 
P a partition V = V1 U V2. What is the product (ZL , up } ?  It is simply the number 
of edges of L going from V1 to V2 in the orientation of L, minus the number of 
edges of L from V2 to VJ . Thus (zL , up } = 0 for every cycle L and partition P,  
so  Z (G)  and U (G) are indeed orthogonal. 

Since the dimension of C1 (G) is the number of edges, m, both assertions will 
be proved if we show that dim Z(G) � m - n + k and dim U(G) � n - k. We 
shall first prove this under the assumption that G is connected; the general case 
will follow easily. 

Thus let us assume that G is connected, that is, k = 1 .  Let T be a spanning tree 
of G .  We shall make use of T to exhibit m - n + 1 independent vectors in Z (G) 
and n - 1 independent vectors in U (G) . We may choose the indices of the edges 
in such a way that e 1 ,  e2 , . . .  , en- ! are the tree edges and en , en+ 1 ,  . . .  , em are the 
remaining edges, the chords of T .  

We know that for every chord e i  there i s  a (unique) oriented cycle Ci such that 
zc; ( e i )  = 1 and zc; ( ej )  = 0 for every other chord e j ,  that is, whenever j � n and 
j =f. i .  (For short: zc; (ej )  = Dij if j � n, where Dij is the Kronecker delta.) We 
call Ci the fundamental cycle belonging to ei (with respect to T); also, zc; is a 
fundamental cycle vector (see Fig. 11. 10) .  Similarly, by deleting an edge ei of T 
the remainder of the spanning tree falls into two components. Let Vf be the vertex 
set of the component containing the initial vertex of ei and let V� be the vertex 
set of the component containing the terminal vertex of ei . If Pi is the partition 
V = Vf U V� then clearly UP; (ej )  = Dij for 1 :S j :S n - 1 .  The cut E(Vf ,  V� ) is 
the fundamental cut, or fundamental cocycle, belonging to ei (with respect to T), 
and up; is the fundamental cut vector, or fundamental cocycle vector. 

It is easily seen that {zc; : n ::;: i ::;: m}  is an independent set of cycle vectors. 
Indeed, if z = L�=n AiZC; = 0 then for every j � n we have 0 = z(ej ) = 

L�n AiDij = Aj , and so every coefficient Aj is 0. Similarly, the fundamental cut 
vectors u Pp 1 ::;: i ::;: n - 1 ,  are also independent. Hence dim Z (G) � m - n + 1 
and dim U(G) � n - 1 ,  as required. 

Finally, the general case k � 1 follows immediately from the case k = 1 .  For 
if G has components G 1 ,  G2 , . . .  , G k then C 1 (G) is the orthogonal direct sum of 
the subspaces C1 (Gi ) ,  i = 1 ,  2, . . . , k; furthermore, Z(Gi) = Z(G) n C1 (Gi) 
and U(Gi) = U(G) n C1 (Gi ) .  D 

The proof above shows that n (G) = dim Z(G), called the nullity of G ,  and 
r (G) = dim U(G), the rank of G, are independent of the field over which the 
edge space is defined. The nullity is also called the cyclomatic number or corank 
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FIGURE 11. 1 0. The fundamental cycle vector belonging to eg is zc9 = e9 -e2+e1 +e4 -e6 ; 

the fundamental cut vector belonging to e4 is up4 = e4 - e10 - eg . 

of G. The use of a spanning tree in the proof is not compulsory; in some cases, for 
instance in the case of a planar graph, there are other natural cycle and cut bases 
(cf. Exercise 37). 

There are several matrices naturally associated with a graph and its vector spaces 
discussed above. The adjacency matrix A = A (G) = (aij ) of a graph G is the 
n x n matrix given by 

a · · -
1 1 if v; Vj E E(G) ,  

11 -
0 otherwise. 

In order to define the incidence matrix of a graph, we again consider an orientation 
of the edges, as in the definition of the cycle and cut spaces. The incidence matrix 
B = B(G) = (b;j ) of G is the n x m matrix defined by { 1 if v; is the initial vertex of the edge ej , 

bij = - 1  if v; is the terminal vertex of the edge ej , 
0 otherwise. 

There is a simple connection between the two matrices A and B .  As usual, we 
write M1 for the transpose of a matrix M. 
Theorem 10 Let D = (Dij ) be the n x n diagonal matrix with D;; = d ( v; ), the 
degree of v; in G. Then 

BB1 = D - A . 
Proof. What is (BB1);j ? It is L::/:,1 bubjt .  which is d(v; )  if i = j ,  - 1  if v; vj is 
an edge (if et = v; Vj is directed from v; to Vj , then bu bj 1 = 1 ( - 1 )  = - 1  and all 
other products are 0), and 0 if v; Vj is not an edge and i =f:. j .  D 

The matrix L = D - A, the combinatorial Laplacian or Kirchhoff matrix of a 
graph, is of great importance in spectral graph theory: we shall return to it at the 
end of this section and in Chapter IX. 

We may and will identify the matrices A and B with the linear maps A : 
Co(G) --+ Co(G) and B : C1 (G) --+ Co(G) that they define in the standard bases : 
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(Ax) i = LJ=l  aijXj and (By)i = LJ=i bij Yj · If we wanted to be  pedantic, we 
would write the vectors in the vertex and edge spaces as column vectors, or we 
would put Ax1 and By1 , where t stands for transposition; we shall not do this since 
there is no danger of confusion. If C is a cycle then clearly Bzc = 0 E Co( G) ;  in 
fact, it is easily shown (cf. Exercise 38) that the cycle space is exactly the kernel 
of B. Thus the rank of B is r (B) = m - (m - n + k) = n - k, the rank of G, and 
its nullity is the corank, or cyclomatic number, of G. Furthermore, the transpose 
of B maps Co(G) into C1 (G) , and the image of B1 is exactly the cut space (cf. 
Exercise 39). 

In Chapter VIII we shall discuss in some detail the eigenvalues and eigenvectors 
of the adjacency matrix; in this section we shall use the matrices to solve the 
electrical network problem discussed in the first section. In fact, it was Kirchhoff 
who first realized the applicability of matrix algebra to graph theory, exactly in 
connection with the electrical network problem. 

How can we formulate the Kirchhoff laws in terms of matrices and vectors 
in the edge space? Let us assume that G' is the graph of our electrical network, 
V (G') = { v 1 , v2 , . . . , Vn-d. E(G') = {e 1 , e2 , . . .  , em' } ,  the network is connected 
and we have a voltage generator ensuring that the potential difference between 
Vi and Vj is gi - gj volts for 1 � i � j � k. In order to express Kirchhoff's 
laws in a neat form, we add a vertex Vn to G', and join it to V J , v2 , . . .  , Vk ; the 
new graph is G .  Let m = m' + k and em'+i = Vn Vi , i = 1 ,  2 , . . .  , k, so that 
V (G) = { V J , v2 , . . .  , Vn } and E(G) = {e J , e2 , . . .  , em } .  

Give the edges of G '  an arbitrary orientation and let Wi be  the amount of  current 
flowing in the edge ei ; thus Wi = - 1  means a current of 1 ampere in the opposite 
direction. Direct each new edge em'+i from Vn to Vi and let Wm'+i be the total 
current entering the network at Vi . Once again, Wm'+i = - 1  means that a current 
of 1 ampere leaves the network at Vi . The vector w = ( w 1 , w2 , . . .  , Wm) E C 1 (G) 
is the current vector. In this notation Kirchhoff's current law takes the form 

Bw = O. ( 1 )  
I t  i s  just as easy to formulate Kirchhoff's potential law in matrix form. Let Pi 
be the potential difference in the edge ei and let p = (P i , p2 , . . .  , Pm ) E C 1 (G) 
be the potential vector. The potential law states that (z, p} = 0 for every cycle 
z E C1 (G) . Instead of postulating this about every cycle, we collect all the 
necessary information into a single matrix. As before, we choose a spanning 
tree T in G and label the edges so that e 1 , e2 , . . .  , en- 1 are the tree edges and 
en . en+ i • . . . , em are the chords. Let C be the m x (m - n + 1) matrix whose 
i th column is the fundamental cycle vector zcn-l+i belonging to the edge en- 1 +i , 
i = 1 ,  2, . . .  , m - n + 1 .  Since the fundamental cycle vectors form a basis of the 
cycle space, the potential law takes the form 

C1p = o, (2) 
where C1 denotes the transpose of c. 

Now, in order to find the current through the edges of G' we need one more 
equation, namely the equation relating the potential to the current, the resistance 
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and the voltage generator. For i ::; m', let r; be the resistance of the edge e; , and 
postulate that each new edge ej , j 2: m' + 1 ,  has resistance rj = 0. We may 
assume that r; > 0 for every i ::; m', since otherwise the edge e; could have 
been cut. Let R = (Rij )  be the m x m diagonal matrix with R;; = r; . Finally, 
let g = (0, . . .  , 0, g 1 , gz, . . .  , gk) E C 1 (G) be the vector of the voltage generator. 
Then clearly, 

p =  Rw + g. (3) 

This equation contains all the information we have about the electric current in 
addition to the Kirchhoff laws. 

In order to solve ( 1 ), (2) and (3) for w and p, we shall split C 1 (G) as Er + EN , 
where Er is the subspace spanned by the tree edges and EN is spanned by the 
chords, the edges not belonging to T .  Let w = (wr , WN) and p = (pr , PN) be 
the corresponding splittings; furthermore, writing B for the matrix obtained from 
B by omitting the last row, we have 

C --( c
c

N
r ) and B = (Br BN) .  

As the columns of  c are the fundamental cycles, eN i s  the (m-n+ 1 )  X (m -n+ 1 )  
identity matrix lm-n+ I · Since the kernel of B contains all cycle vectors, B C = 0 
and so BC = 0, giving BrCr = -BN . Now, Br is invertible, as the reader should 
check (cf. Exercise 40), so 

Cr = -Bi 1 BN . 
After this preparation we can easily solve our equations. 
Theorem 11 The electric current w satisfying p = Rw + g is given by w = 
-C(C1 RC)- 1 C1g. 
Proof. Equation ( 1 )  implies that BrWT + BNWN = 0, so WT = -Bi 1 BNWN = 
CrwN . Hence w = CwN . Combining (2) and (3) we find that C' Rw + C1g = 0 
and so (C1 RC)wN = -C1g. As C' RC is easily shown to be invertible, the result 
follows. 0 

Clearly, Theorem 1 1  is valid in a somewhat more general situation, not only 
when G and g are defined as above. In fact, the following conditions are sufficient 
(and more or less necessary) for the existence of a unique current: g;r; = 0 for 
every i and the edges ej with r1 = 0 form a connected sub graph. 

Furthermore, the results hold formultigraphs: all the concepts (incidence matrix, 
cycle and cut spaces, fundamental cycles and cuts) can be defined as before and 
the proofs of the results remain unchanged. 

By considering multigraphs one can set up Theorem 7 in a slightly simpler 
form, without adding a new vertex to the graph G' of the network. Thus if the 
current enters G' at a vertex a and leaves it at a vertex b, then we join a to b by a 
new edge e of 0 resistance (even if a and b had been joined before) and postulate 
(by choosing g = (0, 0, . . .  , 0, 1 ) ,  where e is the last edge) that the potential 
difference in e is I . Using this set-up one can check that the ratio of the current in 
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ei to the total current (that is, the current in e) is indeed given by Theorem 1 of 
Section 1 ,  though this checking is rather tedious and involved. On the other hand, 
as we shall show now, it is very easy to express the total number of spanning trees 
in a graph in terms of the combinatorial Laplacian. 

In fact, let us consider the case of electrical networks with differing resistances 
and weighted spanning trees, as in Theorem 2. Let then G be a graph with 
V (G) = { v1 , . . .  , Vn } and conductance matrix C = (cij ): if i = j or Vi Vj is not 
an edge then Cij is oo, otherwise it is the conductance of the edge Vi Vj . 

As in Theorem 2, given a spanning tree T, write w(T) for the product of the 
conductances of the edges of T ,  and let N* (G) = LT w(T) , with the summation 
over all spanning trees. 

The combinatorial Laplacian, or Kirchhoff matrix, of our electrical network 
is L = D - C, where D is the diagonal matrix whose i th diagonal entry is 
I:}=l  Cij = I:j=1 Cj i · As in L all rows and columns sum to 0, all the first 
cofactors of L are equal: denote by K* (G) this common value. Here then is the 
matrix-tree theorem for electrical networks. 
Theorem 12 With the notation above, N* (G) = K*(G). 
Proof We may assume that G is connected, since otherwise N* (G) = K* (G) = 
0. Also, the result is trivial for n = 1 since then N* (G) = K* (G) = 1 .  

Let us apply induction on the number of edges of G .  As the result holds for 
no edges, we tum to the proof of the induction step. Suppose then that n > 1 ,  G 
is connected, and the assertion holds for networks with fewer edges. Assuming, 
as we may, that v1 and v2 are adjacent, let G - v1 v2 be obtained from G by 
cutting (deleting) the edge v1 v2 , and let G fvl v2 be obtained from G by fusing 
(contracting) the edge v1 v2 . Thus in G /VI v2 the vertices v1 and v2 are replaced 
by a new vertex, v12 . say, which is joined to a vertex Vi , i > 2, by an edge of 
conductance cu + c2i ,  provided cu + c2i > 0. 

The crunch of the proof is that N* and K* satisfy the same cut-and-fuse relation: 
(4) 

and 
K* (G) = K* (G - VI V2) + C!2K*(Gfvl V2) . (5) 

Indeed, N* (G - v1 v2) 'counts ' the spanning trees not containing v 1 v2 , and 
c 12N* ( G fvl v2) 'counts' the remaining spanning trees. To see (5), simply consider 
the cofactors belonging to v1 and v12 . 

This is all: by the induction hypothesis, the right-hand sides of (4) and (5) are 
equal. 0 

A special case of Theorem 12  concerns multigraphs (or even graphs): all we 
have to do is to write Cij for the number of edges joining Vi to Vj . 
Corollary 13 The number of spanning trees in a multigraph is precisely the 
common value of the first cofactors of the combinatorial Laplacian. 

A similar result holds for directed multigraphs; however, this time we have to 
count spanning trees oriented towards a vertex, as in Section 1 .3 . 
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Theorem 14 LetG bea directedmultigraph with vertex set V (G) = {V J , . . .  , Vn } . 
For 1 � i � n, denote by ti (G) the number of spanning trees oriented towards Vi . 
Also, let L = ( .eiJ ) be the combinatorial Laplacian of G: for i =f. j, -.eiJ is the 
number of edges from Vi to Vj , and .eii = - LY,i .eiJ . Then ti (G) is precisely the first cofactor of L belonging to .eii . 

The proof is entirely along the lines of the proof of Theorem 12 :  when consid­
ering t1 (G) , say, all we have to take care is to contract all edges from Vi to VJ for 
some i > 1 .  Note that this result contains Corollary 1 3 :  given a multigraph, replace 
each edge by two edges, oriented in either direction, and apply Theorem 14. 

II.4 Exercises 

In exercises 1-7 every graph is taken as a simple electrical network, with every 
edge having resistance 1 .  

1 .  Calculate the resistance of the network shown in Fig.  11 . 1  measured between 
the vertices 2 and 3 .  

2. For each different pair of  vertices of  a cube calculate the resistance between 
them. 

3. What is the resistance between two adjacent vertices of (a) an octahedron, (b) 
a dodecahedron and (c) an icosahedron? 

4. Suppose each edge of a connected network is in the same number of spanning 
trees .  Prove that the total resistance between two adjacent vertices is (n - 1)/ e, 
where n is the order and e is the size of the network. Verify your answers to 
Exercise 3 . 

5. By applying suitable star-triangle transformations, calculate the resistance of 
a dodecahedron between the midpoints of two adjacent edges. 

6. Show that the resistance across an edge of Kn is 2/n , and so is the resistance 
between two vertices of Kn , m that belong to the second class (having m 
vertices) .  

7. Calculate the resistance between two nonadjacent vertices of the complete 
three-partite graph K n , n ,n .  

8 . Give a detailed proof of Theorem 2. 
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9. Construct the tilings associated with the networks in Fig. 11. 1 1 .  

s ---------. G6 

FIGURE 11. 1 1 .  Networks with edges of differing resistances. 

to.- Consider an electrical network on a complete graph. Indicate a simple way 
of measuring the resistances of the edges by setting the vertices at certain 
potentials and measuring the currents leaving or entering the network at the 
vertices. 

1 1 . Let Mt and M2 be electrical networks, each containing a set U of vertices, 
the vertices of attachment. We say that (Mt , U) is equivalent to (M2 ,  U) if 
whenever N is a network sharing with each M; the set U and nothing else, and 
we set some vertices of N at certain potentials, then in N U M 1 and N U M2 
we obtain precisely the same distribution of currents in the edges of N. For 
a ,  b E U, a # b, let Wab ( M; , U) be the amount of current leaving M; at b if 
the vertex a is set at potential 1 and all other vertices of U are set at 0. Show 
that (Mt , U) is equivalent to (M2 ,  U) if Wab(Mt , U) = Wab(M2 ,  U) for all 
a , b E  U, a =j:; b. 
Use this to verify the star-triangle transformation. 

1 2. (Exercise 1 1  contd.) Show that a network M, with attachment set U, is 
equivalent to a network with vertex set U (and attachment set U) if, and only 
if, Wab (M, U) = Wba (M, U) for all a, b E U, a #  b . 

1 3 .+ Show that every network M with attachment set U i s  equivalent to a network 
with vertex set U. [Hint. By the result in the previous exercise, it suffices 
to show that Wab(M, U) = Wba (M, U), where a, b E U, a =I b. Short all 
vertices of U, other than a and b, to a vertex c. Let Vx be the potential of a 
vertex x when we set a at 1 ,  and b and c at 0, and let it be v; when we set 
b at 1 ,  and a and c at 0. For a vertex x ,  set Px = (Vx . v;) E JR2 and, for 
each edge xy, let the point Px pull Py with a force Cxy (Px - Py) .  Note that 
if Pa = ( 1 , 0) , Pb = (0, 1 )  and Pc = (0, 0) are fixed, then this system is in 
equilibrium, so the torque at Pc is 0.] 

14:+- Show that if the resistance of a wire is increased (in particular, if it is cut) then 
the total resistance of a network does not decrease, and if a wire is shorted (or 
just some vertices are shorted) then the total resistance does not increase. 

15 .  Given a multigraph G and an edge e, write G - e for G without the edge e , 
and Gje for the multigraph obtained by contracting the edge e, i .e . ,  for the 
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graph obtained from G - e by identifying the endvertices of e. Also, for a 
connected multigraph G and an edge e, write lP'c (e E T) for the probability 
that a random spanning tree contains e. Thus 

lP'c (e E T) = N(G/e)/N(G) , 

where N (H) denotes the number of spanning trees of a graph H .  
Show that the result i n  the previous exercise is equivalent to the assertion that 
if e and f are distinct edges of G then 

1P'c!f (e E T) :::: lP'c (e E T) :::: 1P'c-f (e E T) . 

16 . The n-dimensional (hyper-)cube has vertex set {0 ,  l }n , with two sequences 
a = (ai)'{ , b = (b; )i E {0, l }n joined by an edge if they differ in exactly one 
term (so a; =f. b; for precisely one suffix i) .  Show that the resistance across 
an edge is (2n - 1)/(n2n- l ) = � - n2!_1 ,..., � . and calculate the resistance 
between two opposite vertices. 

17 :+ (Exercise 16 contd.) Show that the resistance between any two vertices 
of the n-dimensional cube is at least (2n - 1)/ (n2n- l ) ,..., � and at most 
(n + 1 )/ (�) ,..., � · 

1 8 . Let Gn be the n by n grid, with s and t in the opposite comers, and let Hn 
be its diagonal variant, as shown in Fig. II. 12 . Estimate the total resistance 
between s and t in the two networks if every edge has resistance 1 .  

I 
2 

FIGURE II. l 2. The networks G6 and H6. 

19 .  For k � 1 ,  let Lt . Mk and Nk be the networks indicated in Fig. 11. 1 3 .  Thus 
Mk has 2k + 1 edges, with resistances 1 ,  2, . . .  , k, k + 1 ,  and 1 ,  ! . . . . , f · 
For each network, calculate the resistance from s to t , and find the associated 
tiling. 
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s 

FIGURE 11. 13 .  The networks L6, M6 and N4 ; the numbers indicate the resistances. 

20:+- Let s and t be vertices of the boundary of the outer face of a plane network, 
in which each edge has unit resistance. Suppose that when a non-zero current 
is put through the network from s to t then there is a non-zero current in each 
edge. Show that this network corresponds to a squared rectangle. 

2 1:+- Show that there is no perfect squared rectangle of order less than 9 (that is, 
made up of at most 8 squares). 

22:+-+ Show that there are two essentially different squared rectangles of order 
9 ;  the squaring of the 33 x 32 rectangle in Fig. 11.6 and the squaring of the 
69 x 6 1  rectangle in Fig. 11. 14 . 

33 
36 

5 �1 9 
28 

25 

16  

FIGURE 11. 14. A squaring of the 69 x 6 1  rectangle. 

23. Find the perfect squared square indicated in Fig. 11. 15 .  (This was found by 
A.J.W. Duijvestijn.) 
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r-L- I 

FIGURE 11. 15 .  A perfect squaring of the 1 10 x 1 10 square: the largest squares have side 
lengths 60, 50, 28, 27, 26, 24, 23, 22, 2 1  and 1 8 .  

24. Find the simple perfect squared square given by the network in Fig. 11. 1 6. 
(This example was found by T.H. Willcox.) 

FIGURE Il. 1 6. A network giving a perfect squared square: the main square has side 
length 1 10, and the constituent squares have side lengths 60, 50, 28, 27, 26, 24, 23, 22, 
2 1 ,  19, 18 ,  17, 16, 14, 12, 9, 8, 6, 4, 3, 2 and 1 .  
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25:+- Show that an equilateral triangle cannot be dissected into finitely many 
incongruent equilateral triangles. 

26. Prove that if a rectangular parallelepiped can be decomposed into cubes then 
the ratios of its sides are rational. 

27. Show that a cube cannot be dissected into finitely many incongruent cubes. 
28. Dot the i's in the followingproofofTheorem6. For a rectangle U = [x 1 , xz] x 

[y 1 , yz] , set 1/f(U) = (xz - x1 ) ® (yz - Yl )  E Z(lR/Z) ® Z(lR/Z) .  Then 
1/f (T) = L 1/I<Ti) = 0, and so T has an integer side. 

29. Fill in the details in the following proof of Theorem 6. Let M be the free 
Z-module with basis JR2 ;z2 . For a rectangle U = [x 1 , xz] x [Y l , yz] c JR2, 
set J.L(U) = L:L=l (- 1 )i+J (xi , YJ ) E M. Then J.L(T) = L;=l J.L(Ti ) = 0, so 
T has an integer side. 

30. Prove Theorem 6 in the following way. 
(i) Let p ;::: 2 be a prime. Check that if each Ti has only integer sides and 
one of them is divisible by p, then one of the sides of T is divisible by p. 
(ii) For a prime p ;::: 2 and X = (X l , xz) E JR2, let 1/>p (X) = ( f  px1l ,  f pxzl ) E 
Z.2 . Assume that T = [0, a] x [0, b] . Show that if p is large enough then 
1/>p (T) is tiled with 1/>p (TI ) ,  . . .  , 1/>p (Tt) ,  where 1/>p (U) is the rectangle whose 
vertices are the images of the vertices of U under 1/>p . Apply (i) to this tiling, 
and deduce Theorem 6. 

3 1 .  Prove the following extension of Theorem 6. Let T1 , . . .  , Tt be rectangles 
tiling the rectangle T = [0, a] x [0, b] c JR2 . Suppose that each Ti has 0, 2 
or 4 vertices (corners) in Z2 . Then T has an integer side. [Hint. First proof of 
Theorem 6.] 

32. Adapt the second proof of Theorem 6 to prove Theorem 7. 
33 .  Let T1 , . . .  , Tt be rectangles contained in a rectangle T such that every point 

of T that is not on the boundary of some Ti is contained in the same m :::: 1 
number of rectangles T; .  Show that if each T; has an integer side then so 
does T .  

34 .  We know from Corollary 8 that if an a x b x c box B in  JR3 i s  filled with 
1 x 2 x 4 bricks, then it can also be filled with these bricks all standing in the 
same way. Prove this as follows. First, note that 8 1abc and each of ab, be and 
ca is even. Hence, we are done unless each of a, b and c is even. Assume then 
that we are in this case. Replace the box B by an appropriate set of lattice 
points: B' = { (x , y ,  z) E Z3 : 1 :s X :s a, 1 :s y :s b, 1 :s z :s c} . Check that 
the sum of the coordinates of the points of B' is !abc(a + b + c + 3) and 
that the sum of the coordinates of the points in a box is of the form 8s + 16 . 
Deduce that at least one of a , b and c is divisible by 4. [This was de Bruijn's 
original problem he published in a Hungarian journal in 1959; the solution 
above is his own: it was published in 1960.] 
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35.  Prove the result in the previous exercise in the following way. As before, we 
may assume that each of a, b and c is even. Divide the box B into 2 x 2 x 2 
cubes, and consider a black and white checkerboard colouring of these cubes. 
Check that each 1 x 2 x 4 brick has exactly as much black as white, and so 
there are as many black cubes as white ones. Deduce the result from this. [This 
solution to de Bruijn's problem, given by G. Katona and D. Szasz in 1960, is 
the origin of the 'checkerboard' proof of Theorem 6.] 

36.  Let T be the set of tilings of a simply connected domain with 2 x 1 and 1 x 2 
dominoes. Let H be the graph with vertex set T in which a tiling T1 is joined 
to a tiling Tz if T1 and Tz agree in all but two dominoes. Show that H is 
connected. Show also that the assertion need not hold if the domain is not 
simply connected. 

37. Show that in a plane graph the boundaries of the bounded faces form a cycle 
basis. 

38 .  Show that the cycle space is the kernel of the map C1 (G) --+ Co( G) defined 
by the incidence matrix B .  

39. Let B1  be the transpose of the incidence matrix B of a graph G. Show that 
the cut space is the image of the map Co( G) --+ C 1 (G) defined by B 1 •  

40. Let .f. be a set of  n - 1 edges of  a graph of  order n with incidence matrix B .  
Let BF be an (n - 1)  x (n - 1)  submatrix of  B whose columns correspond 
to the edges of F. Prove that BF is invertible iff F is the edge set of a tree. 

4 1 .  Deduce from Corollary 1 3  that there are nn-Z trees on n distinguishable 
vertices. 

42. Which squared rectangle corresponds to the network in Fig. 11. 17 .  Rotate the 
rectangle through 90° and draw the network for this rectangle. 

FIGURE 11. 17.  A plane network. 

43 . How many essentially different squared rectangles correspond to the network 
of the cube in Exercise 2? 
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44. Show that a graph is planar if, and only if, its cycle space has a basis of cycles 
such that every edge belongs to at most two of these cycles . 

45. Given a tiling of a rectangle by rectangles, write S for the number of segments: 
the number of maximal segments that are unions of some sides of the rectan­
gles, T for the number of tiles, and C for the number of crosses: the number 
of points in four tiles (see Fig. 11. 1 8) .  Prove that S - T + C = 3. [Hint. Let G 
be the plane graph of the tiling, with n vertices, m edges and f = T + 1 faces . 
Write ni for the number of vertices of degree i so that nz = 4 and n4 = C. 
Check that 2m = 8 + 3n3 + 4C and S = n312 + 4. Apply Euler's formula.] 

I 
I I 
I 

I 
I 

FIGURE 11. 1 8 .  A tiling of a rectangle by rectangles, with S = 15 ,  T = 14 and C = 2. 

46. Note that in every triangulation of a convex n-gon there are at least 2n - 3 
segments that occur twice among the sides of the triangles of the triangulation 
and the sides of the original n-gon. Show that the same holds for every tiling of 
a convex n-gon with triangles, as in Fig. 11. 19 .  [Hint. Suppose that our tiling 
is made up of T triangles, and there are t segments that occur twice. The 
polygon and the triangles have, altogether, n + 3T sides, so s = n + 3T - 2t 
sides occur once ( ' singly' ). Suppose also that there are b boundary vertices, 
i .e . ,  vertices of the triangles that are also on a side of a triangle or of the n-gon. 
Check that s � 3b so n +  3T = 2t + s � 2t + 3b. Counting angles, check 
that T � b + n - 2, and deduce the assertion.] 

FIGURE 11. 19 .  A tiling of a square with triangles ; the parameters are n = 4, T = 9, 
t = 5 ,  s = 2 1  and b = 7.  
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47. (Exercise 46 contd.) Show that in a tiling of a convex n-gon with triangles 
there are precisely 2n - 3 segments that occur twice among the sides of the 
triangles and the n-gon if, and if only if, 
(i) every vertex (of a triangle) in the interior of the n-gon is in the interior of 
a side of a triangle, 
(ii) if a segment is a union of sides then it is itself a side. 

11.5 Notes 

The origin of the fundamental results on the distribution of currents, Theorems 1 
and 2, is G. Kirchhoff, Uber die Auftosung der Gleichungen, auf welche man 
i:>ei der Untersuchung der Linearen Vertheilung galvanischer Strome gefiihrt wird, 
Ann. Phys. Chern. 72 ( 1 847) 497-508 . 

Theorem 4 is one of the simplest results from M. Dehn, Uber die Zerlegung 
von Rechtecken in Rechtecke, Math. Ann. 57 ( 1903) 3 1 4-322; its extension, 
Theorem 5, is from R. Sprague, Uber die Zerlegung von Rechtecken in Iauter 
verschiedene Quadrate, J. ftir die Reine und Angewandte Mathematik 182 ( 1940) 
60-64. 

The first perfect squared squares were published independently by R. Sprague, 
Beispiel einer Zerlegung des Quadrats in Iauter verschiedene Quadrate, Math. 
Zeitschrift 45 ( 1939) 607-608, and by R.L. Brooks, C.A.B . Smith, A.H. Stone 
and W. T. Tutte, The dissection of rectangles into squares, Duke. Math. J. 7 ( 1940) 
3 12-340. The square shown in Fig. 11.8 was published in A.J.W. Duijvestijn, 
Simple perfect square of lowest order, J. Combinatorial Theory Ser. B 25 ( 1978) 
240-243 .  

Two survey articles the reader may wish to look at are W.T. Tutte, The quest 
of the perfect square, Amer. Math. Monthly 72 ( 1965) 29-35 and N.D. Kazarinoff 
and R. Weitzenkamp, Squaring rectangles and squares, Amer. Math. Monthly 80 
( 1973) 877-888 . A recent compendium of squaring results is a privately published 
volume by J.D. Skinner II, Squared Squares - Who is Who, and What is What, 
Lincoln, Nebraska, 1993, 167 pp. 

The origins of the results of de Bruijn at the end of Section 2 are two problems 
he published in the Hungarian Matematikai Lapok in 1959 and 196 1 ;  the material 
presented is from N.G. de Bruijn, Filling boxes with bricks, Amer. Math. Monthly 
76 ( 1 969) 37-40. For a rich variety of proofs and generalizations of these results, 
see S. Wagon, Fourteen proofs of a result about tiling a rectangle, Amer. Math. 
Monthly 94 ( 1987) 601-617 .  
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Flows, Connectivity and Matching 

Given a collection of boys and girls, when can all the girls find husbands that they 
know? For a subgroup H of a finite group G, are there group elements g , ,  . . .  , gn 
such that {g ,H, . . .  , gnH}  is the collection of left cosets and {Hg, , . . .  , Hgn } 
is the collection of right cosets of H?  Given sets A 1 ,  . . . , Am , are there distinct 
elements a1 E A , ,  . . . , am E Am? 

These seemingly disparate questions are, in fact, closely related: they all concern 
sets of independent edges, called matchings, in bipartite graphs, and are answered 
by the same basic theorem in various guises, attributed to Hall, Konig and Egervary. 
This theorem, which we shall call Hall 's marriage theorem, is a prime example 
of several results we shall present in this chapter giving necessary and sufficient 
conditions for the existence of certain objects; in each case the beauty of the 
theorem is that a condition whose necessity is obvious is shown to be also sufficient. 
In the natural formulation of our results we shall have two functions, say f and g , 
clearly satisfying f :::S g, and we shall show that max f = min g. The results of 
this chapter are closely interrelated, and so the order they are proved in is a matter 
of taste; to emphasize this, some results will be given several proofs. 

In the previous chapter we discussed flows in electrical networks: in Section 1 of 
this chapter we shall study rather different aspects of flows in directed graphs. Our 
main aim is to present the simple but very powerful max-flow min-cut theorem of 
Ford and Fulkerson, proved in 1962. This result not only implies the central results 
of the next two sections, but it also has a number of other important consequences 
concerning undirected graphs. 

Connectivity of graphs is our theme in the second section: the main result is 
Menger's theorem, first proved in 1927. Hall's marriage theorem and its variants 
are presented in Section 3 .  
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In the first instance we shall deduce the theorems of both Menger and Hall from 
the max-flow min-cut theorem. However, as these results are closely related, and 
are of fundamental importance, we shall also give independent proofs of each. 

Hall 's theorem tells us, in particular, when a bipartite graph has got a ! -factor, 
a sub graph whose vertex set is that of the original graph and in which every vertex 
has degree 1 .  The question of the existence of a 1 -factor in an arbitrary graph is 
considerably harder. It is answered by the theorem of Tutte we shall present in 
Section 4. 

The last section is about so-called stable matchings in bipartite graphs . These 
are matchings which are compatible with 'preferences' at all the vertices : in a 
well defined sense, such a matching is a local maximum for every pair of vertices, 
one from each class. The fundamental result is a theorem of Gale and Shapley, 
proved in 1 962: this result is not only of great interest in its own right, but it also 
has numerous applications . Some of these applications will be given here; another 
important recent application, to list colourings, will be given in Chapter V. 

III. l Flows in Directed Graphs 

Let G be a (finit� directed graph with vertex set V and edge set E .  We shall study 
(static) flows in G from a vertex s (the source) to a vertex t (the sink) . A flow f is a 
non-negative function defined on the edges ; the value f(xy ) is the amount ofjlow 
or current in the edge xy.  For notational simplicity we shall write f (x , y) instead 
of f(xy ) and a similar convention will be used for other functions . Also, we take 
f(x , y) to be 0 whenever xy ¢ E.  The only condition a flow from s to t has to 
satisfy is Kirchhoff's current law: the total current flowing into each intermediate 
vertex (that is, vertex different from s and t) is equal to the total current leaving 
the vertex. Thus if for x E V we put 

r+ (x) = {y E v : xy E E} , 
r- (x) = {y E v : y1 E E} , 

then a flow from s to t satisfies the following condition: 

L f(x , y) = L f(z , x) 
yer+(x) zer- (x} 

for each x E V - {s , t} . Since 

0 = L I L f(x , y) - L f(z , x) ] 
xeV-(s , t J  yer+(x) zer- (x) 

= L I L f(z, u) - L f(u , y) l ' 
ue (s , t J  zer- (u) yer+(u) 



we find that 
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:L f<s . y) - :L f <y . s) = :L f<y . t) - :L f<t . y ) .  
yer+(s) yer- (s) yer- ct) yer+(t) 

In other words, the net current leaving s equals the net current flowing into t. The 
common value, denoted by v(f), is called the value of f or the amount of flow 
from s to t .  

We wish to determine the maximal flow value from s to t provided the flow 
satisfies certain constraints. First we shall deal with the case when the so called 
capacity of an edge restricts the current through the edge. It will tum out that 
several other seemingly more complicated restrictions can be reduced to this case. 

Let us fix our directed graph G = (V, if) and two vertices in it, say s and t .  
With each edge xy of G we associate a non-negative number c(x , y) , called the 
capacity of the edge. We shall assume that the current flowing through the edge 
xy cannot be more than the capacity c(x , y) . 

Given two subsets X, Y of V ,  we write E (X, Y) for the set of directed X - Y 
edges: 

� -+ � 

E(X, Y) = {xyE E :  x E X, y E Y} .  

Whenever g : E -+ lR is  a function, we put 
g (X, Y) = L g(x ,  y) ,  

where the summation is over E(X, Y) . If S is a subset of V containing s but 
not t then E(S, S) is called a cut separating s from t. Here S = V - S is the 
complement of S. If we delete the edges of a cut then no positive-valued flow from 
s to t can be defined on the remainder. Conversely, it is easily seen that if F is a 

set of edges after whose deletion there is no flow from s to t (that is, v(f) = 0 for 
every flow from s to t) then F contains a cut (Exercise 1 ) .  The capacity of a cut 
E(S, S) is c(S, S) (see Fig. 111. 1 ) .  It is easily seen (Exercise 2) that the capacity 
of a cut is at least as large as the value of any flow, so the minimum of all cut 
capacities is at least as large as the maximum of all flow values. The celebrated 
max-flow min-cut theorem of Ford and Fulkerson states that this trivial inequality 
is, in fact, an equality. Before stating this theorem and getting down to the proof, 
let us justify the above use of the words 'minimum' and 'maximum' .  Since there 
are only finitely many cuts, there is a cut whose capacity is minimal. The existence 
of a flow with maximal value is only slightly less trivial. Indeed, rather crudely, 

v(f) ::::: L c(x ,  y) 
.ryeE 

for every flow f ,  so v = sup v(f) < oo. Let f1 , /2,  . . .  be a sequence of flows 
with limn v(fn ) = v. Then, by passing to a subsequence, we may assume that for 

-+ � 

each xy E E the sequence Un (x , y)) is convergent, say to f(x ,  y) . The function 
f is a flow with value v, that is, a flow with maximal value. In a similar way one 
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FIGURE III. l .  A cut with capacity 12. (The numbers next to the edges indicate their 
capacity.) 

can show that even if some of the edges have infinite capacity, there is a flow with 
maximal value which can be either finite or infinite (Exercise 3). 

Theorem 1 (Max-Flow Min-Cut Theorem.) The maximal flow value from s to t 
is equal to the minimum of the capacities of cuts separating s from t. 

Proof We have remarked already that there is a flow f with maximal value, say 
v, and the capacity of every cut is at least v. Thus, in order to prove the theorem we 
have to show that there is a cut with capacity v. We shall, in fact, do considerably 
more than this :  we shall give a very simple procedure for constructing such a cut 
from a flow f with maximal value. 

Define a subset S c V recursively as follows. Let s E S. If x E S, and 

c(x ,  y) > f (x , y) 

or 

f(y , x) > 0, 

then let y E S.  
We claim that E (S, S) is a cut separating s from t with capacity v = v (f). 

Let us see first why t cannot belong to S. If t belongs to S, we can find vertices 
xo = s ,  XI , . . .  , Xi = t such that 

for every i ,  0 � i � l - 1 .  Put e = mini ei . Then f can be augmented to a flow 
f* in the following way: if ei > f(xi+I , Xi ) then increase the flow in x;1;+ 1  by 
e; otherwise, decrease the flow in Xi+!Xi by e. Clearly, f* is a flow and its value 
is v(f*) = v(f) + e, contradicting the maximality of f. This shows that t ¢ S so 
E (S,  S) is a cut separating s from t .  

Now, v(f) i s  equal to the value of  the flow from S to S defined in  the obvious 
way : 

L f(x ,  y) - L f (x , y) . 
xeS,yeS xeS,yeS 



By the definition of S the first sum is exactly 
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L c(x ,  y )  = c(S, S) , 
xeS,yeS 

and each summand in the second sum is zero. Hence c(S, S) = v(f) , as required. 
D 

The max-flow min-cut theorem is the cornerstone of the theory to be presented 
in this chapter. Note that the theorem remains valid (with exactly the same proof) 
if some of the edges have infinite capacity but the maximal flow value is finite. 

The above proof of the theorem also provides a surprisingly efficient algorithm 
for finding a flow with maximal value if the capacity function is integral, that --+ is, if c(x ,  y) is an integer for every edge xy. We start with the identically zero 
flow: fo(x , y) = 0 for every xy E E. We shall construct an increasing sequence 
of flows fo , fi ,  /2 ,  . . .  that has to terminate in a maximal flow. Suppose we have 
constructed f; . As in the proof above, we find the set S belonging to f; . Now, if 
t rf. S then f; is a maximal flow (and E(S, S) is a minimal cut) so we terminate 
the sequence. If, on the other hand, t E S, then f; can be augmented to a flow fi+I 
by increasing the flow along a path from s to t, precisely as in the proof. Since 
each v(f;) is an integer, we have v(fi+J )  � v(f; ) + 1 ,  and the sequence must end 
in at most Lx,y c(x ,  y) steps. 

Moreover, if c is integral then the algorithm constructs a maximal flow which 
is also integral, that is, a flow whose value is an integer in every edge. Indeed, 
fo is integral, and if f; is integral then so is fi+I , since it is obtained from f; by 
increasing the flow in a path by a value that is the minimum of a set of positive 
integers. This result is often called the integrality theorem. 
Theorem 2 If the capacity function is integral then there is a maximal flow that 
is also integral. D 

We shall rely on this simple result when we use the max-flow min-cut theorem 
to find various paths in graphs. It is important to note that the results do not claim 
uniqueness : the algorithm finds one of the maximal flows (usually there are many), 
and Theorem 2 claims that one of the maximal flows is integral. 

The existence of the algorithm proves some other intuitively obvious results as 
well . For instance, there is a maximal acyclic flow, that is, one that does not contain 
a flow around a cycle (see Exercise 4) ; in other words, for no cycle XJX2 • • · Xk do 
we have 

Just as in the case of electrical networks, if instead of one source and one sink 
we take several of each, the problem becomes only a little more complicated. In 
fact, the only difference is that we have to be careful when we define a cut. If 
S J , . . .  , Sk are the sources and t1 , . . .  , t1 are the sinks then E (S, S) is a cut if s; E S 
and tj E S for every i ,  j ,  1 ::;: i ::;: k, 1 ::;: j ::;: l .  
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In order to be able to apply the max-flow min-cut theorem, let us add a new 
source s and a new sin� t to G, together with all the edges "iti and t}t, each having 
infinite capacity. Let H be the graph obtained in this way. Consider those flows 
from SJ ,  . . . , Sk to t1 , . • .  , tt in G in which the total current entering (leaving) a 
source (sink) is not greater than the total curren�leaving (entering) it. These flows 
can easily be extended to a flow from s to t in H, and this extension establishes a 
1 -to- 1 correspondence between the two sets of flows. Furthermore, a cut separating 
s from t in H that has finite capacity cannot contain an edge of the form "iti or t}t 
so it corresponds to a cut of the same capacity in G, separating SJ ,  . . •  , Sk from 
t1 , . . .  , tt . Thus Theorem 1 has the following extension. 
Theorem 3 The maximum of the flow value from a set of sources to a set of sinks 
is equal to the minimum of the capacities of cuts separating the sources from the 
sinks. D 

Let us assume now that we have capacity restrictions on the vertices, except 
for the source and the sink. Thus we are given a function c : V - {s, t} -+ JR+ 
and every flow f from s to t has to satisfy the following inequality for every 
x e V - {s , t } :  

L f(x ,  y) = L f(z , x) � c(x) .  
yEf+ (x) ZEf+ (x) 

How should we define a cut in this situation? A cut is a subset S of V - {s, t } 
such that no positive-valued flow from s to t can be defined on G - S. In order 
to distinguish the two kinds of cuts, we sometimes call this a vertex-cut and the 
other one an edge-cut. However, it is almost always clear which cut is in question. 
Can we carry over the max-flow min-cut theorem to this case? Yes, very easily, 
if we notice that a flow can be interpreted to flow in a vertex as well, namely 
from the part where all the currents enter it to the part where all the currents leave 
it. More precisely, we can tum each vertex of G into an edge (without changing 
the nature of the directed graph) in such a way that any current entering (and 
leaving) the vertex will be forced through the edge. To do this, replace each vertex 
x E V - {s, t} by two vertices, say x_ and x+ ; send each incoming edge to x_ 
and send each outgoing edge out of X+ ·  Finally, for each x , add an edge from x_ 
to X+ with capacity c(x_ , x+) = c(x) (see Fig. 111.2). 

X 

s s 

FIGURE 111.2. Replacing a graph G with restrictions on the capacity of the vertices by a 
graph H with restrictions on the capacity of the edges. 
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There is a simple 1 -to- 1 correspondence between the flows from s to t in G 
and the flows in the new graph H satisfying the capacity restrictions on (some of) 
the edges. Since in H only the edges d+ have finite capacities, an edge-cut of 
finite capacity in H consists entirely of edges of the form x=X + , so it corresponds 
to a vertex-cut in G of the same capacity. Thus we have the following form of 
Theorem 1 .  
Theorem 4 Let G be a directed graph with capacity bounds on the vertices other 
than the source s and the sink t. Then the minimum of the capacity of a vertex-cut 
is equal to the maximum of the flow value from s to t. 0 

Theorems 1 ,  3 and 4 can easily be combined into a single theorem. We leave 
this to the reader (Exercise 6). 

Ill.2 Connectivity and Menger's Theorem 

Recall that a graph is connected if any two of its vertices can be joined by a path, 
and otherwise it is disconnected. A maximal connected subgraph of a graph G is 
a component of G. 

If G i s  connected and, for some set W of vertices or edges, G - W i s  dis­
connected, then we say that W separates G. If in G - W two vertices s and t 
belong to different components then W separates s from t. For k :;:: 2, we say 
that a graph G is k-connected if either G is a complete graph Kk+l or else it 
has at least k + 2 vertices and no set of k - 1 vertices separates it. Similarly, for 
k :;:: 2, a graph G is k-edge-connected if it has at least two vertices and no set of 
at most k - 1 edges separates it. A connected graph is also said to be ! -connected 
and l -edge-connected. The maximal value of k for which a connected graph G is 
k-connected is the connectivity of G, denoted by K (G) . If G is disconnected, we 
put K (G) = 0. The edge-connectivity >.. (G) is defined analogously. 

Clearly, a graph is 2-connected iff it is connected, has at least 3 vertices and 
contains no cutvertex. Similarly, a graph is 2-edge-connected iff it is connected, 
has at least 2 vertices and contains no bridge. It is often easy to determine the 
connectivity of a given graph. Thus if 1 ::; l ::; n then K (Pe) = >.. (Pe ) = 1 ,  
K (Cn) = >.. (Cn) = 2 ,  K (Kn) = >.. (Kn) = n - 1 and K (Ke,n) = >.. (Ke,n ) = l . 
In order to correct the false impression that the vertex-connectivity is equal to 
the edge-connectivity, note that if G is obtained from the disjoint union of two 
complete graphs Ke by adding a new vertex x and joining x to every old vertex, 
then K (G) = 1 ,  since x is a cutvertex, but >.. (G) = l (see also Exercise 1 1 ) . This 
last example shows that >.. (G - x) may be 0 even when >.. (G) is large. However, it 
is clear from the definitions that for every vertex x and edge xy we have 

K (G) - 1 ::; K (G - x) and >.. (G) - 1 ::; >.. (G - xy) ::; >.. (G) . 
If G is nontrivial (that is, has at least two vertices), then the parameters o (G) ,  

>.. (G) and K (G) satisfy the following inequality: 
K(G) :::: >.. (G) :::: o (G) . 
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Indeed, if we delete all the edges incident with a vertex, the graph becomes 
disconnected, so the second inequality holds. To see the other inequality, note 
first that if G is complete then K (G) = ).. (G) = I G I - 1 ,  and if ).. (G) :::: 1 
then ).. (G) = K (G) . Suppose now that G is not complete, ).. (G) = k ::: 2 and 
{X I YI . xzyz , . . .  , XkYk l is a set of edges disconnecting G. If G - {X I , Xz ,  . . .  , xk } 
is disconnected then K (G) :::: k. Otherwise, each vertex x; has degree at most 
k (and so exactly k), as shown in Fig. 111 .3 .  Deleting the neighbours of XI , we 
disconnect G. Hence K = )..(G) . 

FIGURE 111.3. A 4-edge-connected graph G such that G - {XJ , xz , x3 , x4} is connected. 

Another property immediate from the definition of vertex-connectivity is that 
for k ::: 1 ,  if G 1  and Gz are k-connected subgraphs of a graph G having at least 
k common vertices, then G 1 U Gz is also k-connected. Indeed, if W c V (G 1 )  U 
V (Gz) has at most k - 1  vertices, then there is a vertex x in (V(G J )  n Y(Gz)) \ W. 
Therefore, the connected sub graphs G 1 - W and Gz - W of G have at least one 
vertex, namely x , in common, so G 1  U Gz - W = (G 1 - W) U (Gz - W) is 
connected. 

Having seen in Chapter I how useful it is to partition a graph into its components, 
that is, into its maximal connected subgraphs, let us attempt a similar decompo­
sition using all maximal 2-connected subgraphs. A subgraph B of a graph G is 
a block of G if either it is a bridge (together with the vertices incident with the 
bridge) or else it is a maximal 2-connected sub graph of G .  The remarks above 
show that any two blocks have at most one vertex in common, and if x ,  y are dis­
tinct vertices of a block B then G - E(B) contains no x-y path. Therefore, every 
vertex belonging to at least two blocks is a cutvertex of G, and, conversely, every 
cutvertex belongs to at least two blocks. Recalling that a cycle is 2-connected and 
an edge is a bridge iff no cycle contains it, we find that G decomposes into its 
blocks B1 , Bz , . . . , Bp in the following sense: 

p 
E(G) = U E(B; ) ,  and E(B;)  n E(Bj )  = 0 i f  i # j .  

I 

Suppose now that G is a nontrivial connected graph. Let be( G) be the graph 
whose vertices are the blocks and cutvertices of G and whose edges join cutvertices 
to blocks: each cutvertex is joined to the blocks containing it. Then be( G), called 
the block-cutvertex graph of G, is a tree. Each endvertex of be( G), is a block of 
G, called an endblock of G. If G is 2-connected or is a Kz (an "edge") then it 
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fr .K 
FIGURE III.4. The construction of the block--cutvertex tree be( G) .  The subgraph Bt is 
an endblock. 

contains only one block, namely itself: otherwise there are at least two endblocks, 
and a block is an endblock iff it contains exactly one cutvertex (Fig. III.4 ). 

The basic result in the theory of connectivity was proved by Menger in 1927. It 
is the analogue of the max-flow min-cut theorem for (undirected) graphs. Recall 
that two s-t paths are independent if they have only the vertices s and t in common. 
Theorem 5 (i) Let s and t be distinct nonadjacent vertices of a graph G. Then the 
minimal number of vertices separating s from t is equal to the maximal number 
of independent s-t paths. 

(ii) Let s and t be distinct vertices of G. Then the minimal number of edges 
separating s from t is equal to the maximal number of edge-disjoint s-t paths. 

Proof. (i) Replace each edge xy of G by two directed edges, xy and y1, and give 
each vertex other than s and t capacity 1 .  Then by Theorem 4 the maximal flow 
value from s to t is equal to the minimum of the capacity of a cut separating s from 
t. By the integrality theorem (Theorem 2) there is a maximal flow with current 1 
or 0 in each edge. Therefore, the maximal flow value from s to t is equal to the 
maximal number of independent s-t paths. The minimum of the cut capacity is 
clearly the minimal number of vertices separating s from t .  

(ii) Proceed as in (i), except instead of restricting the capacity of the vertices, 
give each directed edge capacity 1 .  0 

The two parts of the above theorem are called the vertex form and the edge 
form of Menger's theorem. One can easily deduce the edge form from the vertex 
form (Exercise 1 5) , but the other implication is not so easy. Since, as we have 
mentioned already, the max-flow min-cut theorem can also be deduced from 
Menger's theorem, we shall give another proof of the vertex form of Menger's 
theorem from first principles. 
Second Proof of the Vertex Form of Menger's Theorem. Denote by k the minimal 
number of vertices separating s and t. Then clearly there are at most k independent 
s-t paths and for k :;: 1 there are k independent s-t paths. 

Suppose the theorem fails. Take the minimal k :=: 2 for which there is a coun­
terexample to the theorem and let G be a counterexample (for this minimal k) 
with the minimal number of edges. Then there are at most k - 1 independent s-t 
paths and no vertex x is joined to both s and t, otherwise, G - x would be a 
counterexample for k - 1 .  
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Let W be a set of k vertices separating s from t. Suppose neither s nor t 
is adjacent to every vertex in W. Let Gs be obtained from G by replacing the 
component of G - W containing s by a single vertex s' and joining s' to each 
vertex in W. In Gs we still need k vertices to separate s' from t, and since the 
component we collapsed had at least two vertices, Gs has fewer edges than G. 
Now, as G is a counterexample of minimal size, in Gs there are k independent 
s' -t paths. The segments of these k paths from t to W are such that any two of 
them have nothing but the vertex t in common. In particular, for every w E W one 
of these paths is a t-w path. If we carry out the analogous procedure for t instead 
of s then we get k paths from s to W. These two sets of paths can be put together 
to give k independent s-t paths, contradicting our assumption. Hence for any set 
W of k vertices separating s from t either s or t  is adjacent to all vertices of W. 

Let SX !X2 · · · Xtt be a shortest s-t path. Then l ::: 2 and, by the minimality of 
G,  in the graph G - x 1 xz we can find a set Wo of k - 1 vertices separating s from 
t. Then both W1 = {X I }  U Wo and Wz = {xz} U Wo are k-sets separating s from t .  
Since t i s  not joined to X I , the vertex s i s  joined to every vertex in WJ . Similarly, 
s is not joined to xz, and so t is joined to every vertex in Wz . This implies the 
contradiction that s and t have at least one common neighbour: every vertex in Wo 
is a common neighbour of s and t, and I Wo I = k - 1 ::: 1 .  D 

Corollary 6 Fork  ::: 2, a graph is k-connected iff it has at least two vertices and 
any two vertices can be joined by k independent paths. Also, for k  ::: 2, a graph is 
k-edge-connected iff it has at least two vertices and any two vertices can be joined 
by k edge disjoint paths. D 

Another characterization of k-connectivity is given in Exercise 12 . 
Corresponding to the max-flow min-cut theorem for multiple sources and sinks, 

one has the following version of Menger's theorem. If S and T are arbitrary 
subsets of vertices of G, then the maximal number of vertex-disjoint (including 
endvertices ! )  S-T paths is min{ I W I : W C V(G), G - W has no S-T path}. To 
see this, add two new vertices to G, say s and t , join s to every vertex in S and t to 
every vertex in T ,  and apply Menger's theorem to the vertices s and t in the new 
graph. 

ID.3 Matching 

Given a finite group G and a subgroup H of index m ,  can you find m ele­
ments of G, say g1 , gz , . . .  , gm such that {g JH, gzH, . . .  , gmH}  is the set of 
all left cosets of H and {Hg 1 ,  Hgz ,  . . . , Hgm } is the set of all right cosets? A 
reformulation of this problem turns out to be a special case of the following prob­
lem, which arises frequently in diverse branches of mathematics. Given a family 
A =  {A J , Az ,  . . .  , Am }  of subsets of a set X, can we find m distinct elements of 
X, one from each A; ? A set {xi , xz , . . .  , Xm } with these properties (i .e. , x; E A; ,  
x ;  =F Xj i f  i =F j ) i s  called a set of distinct representatives of the family A. The 
set system A is naturally identifiable with a bipartite graph with vertex classes 
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V1 = A and Vz = X in which A; E A is joined to every x E X contained in A; .  
A system of  distinct representatives i s  then a set of m independent edges (thus 
each vertex in V1 is incident with one of these edges). We also say that there is a 
complete matching from V1 to Vz. 

It is customary to formulate this problem in terms of marriage arrangements. 
Given m girls and n boys, under what conditions can we marry off all the girls, 
provided that we do not want to carry matchmaking so far as to marry a girl to a 
boy she does not even know? 

It is clear that both the max-flow min-cut theorem and Menger's theorem imply 
a necessary and sufficient condition for the existence of a complete matching. In 
fact, because of the special features of a bipartite graph, there is a particularly 
simple and pleasant necessary and sufficient condition. 

If there are k girls who know at most k - 1 boys altogether, then we cannot find 
suitable marriages for these girls. Equivalently, if there is a complete matching 
from V1 to Vz, then for every S c V1 there are at least l S I vertices of Vz adjacent 
to a vertex in S; that is, 

l r (S) I � l S I . 
The result that this necessary condition is also sufficient is usually called Hall 's 
theorem. This fundamental theorem was proved by Hall in 1935, but an equivalent 
form of it had been proved by Konig and Egervary in 193 1 ,  but both versions follow 
immediately from Menger's theorem from 1927. We shall give three proofs. The 
first is based on Menger's theorem or the max-flow min-cut theorem, the other 
two prove the result from first principles. 
Theorem 7 A bipartite graph G with vertex sets V1 and Vz contains a complete 
matching from V1 to Vz iff 

l f (S) I � l S I for every S C VJ . 
We have already seen that the condition is necessary so we have to prove only 

the sufficiency. 
First Proof. Both Menger's theorem (applied to the sets V1 and Vz as at the end 
of Section 2) and the max-flow min-cut theorem (applied to the directed graph 
obtained from G by sending each edge from V1 to Vz, and giving each vertex 
capacity 1 )  imply the following. If G does not contain a complete matching from 
V1 to Vz then there are T1 C V1 and Tz C Vz such that I T1 l + I Tz l < I V1 I and 
there is no edge from V1 - T1 to Vz - Tz . Then r (VJ - T1 ) c Tz so 

This shows the sufficiency of the condition. D 

Second Proof. In this proof, due to Halmos and Vaughn, we shall use the match­
making terminology. We shall apply induction on m = I V1 l , the number of girls. 
For m = 1 the condition is clearly sufficient, so we assume that m � 2 and the 
condition is sufficient for smaller values of m. 
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Suppose first that any k girls (1 � k < m) know at least k + 1 boys. Then we 
arrange one marriage arbitrarily. The remaining (sets of) girls and boys still satisfy 
the condition, so the other m - 1 girls can be married off by induction. 

Suppose now that for some k, 1 � k < m, there are k girls who know exactly k 
boys altogether. These girls can clearly be married off by induction. What about 
the other girls? We can marry them off (again by induction) if they also satisfy the 
condition, provided that we do not count the boys who are already married. But 
the condition is satisfied, since if some l girls to be married know fewer than l 
remaining boys, then these girls together with the first k girls would know fewer 
than k + l boys. D 

Third Proof This proof is due to Rado. Let G be a minimal graph satisfying the 
condition. It suffices to show that G consists of I Vt l  independent edges. 

If this is not so, then G contains two edges of the form a t X ,  a 2x , where a t , a2 E 
Vt, at # a2, and x E V2. Since the deletion of either of these edges invalidates the 
condition, there are sets A t, A 2  c Vt such that for i = 1, 2 we have l f (A ;) I  = 
I A ; I, and a; is the only vertex of A; adjacent to x .  Then 

l f (A J )  n r(A 2) I  � l f (A t - {aJ }) n r(A 2 - {a2 }) l  + 1 
� l f (A t  n A 2) l + 1 � !A t  n A 2 l  + 1 .  

But this implies the following contradiction: 

l f (A t  U A 2) l = l r (A t)  U r(A 2) 1 
= l f (A t ) l  + l f (A 2) 1 - i f(A t)  n r(A 2) 1 
� I A t l  + I A 2 I - ! A t n A 2 l - 1 
= ! A t  U A 2 l  - 1 .  D 

A regular bipartite graph satisfies the conditions of Hall 's theorem, so it has a 
complete matching. In turn this implies that we can indeed find group elements 
g t , g2 , . . .  , gm . as required at the beginning of the section. 

Let us reformulate the marriage theorem in terms of sets of distinct 
representatives. 

Theorem 8 A family A = {A t, A 2, . . .  , Am } of sets has a set of distinct 
representatives iff 

U A ; � IF ! for every F C { 1, 2, . . .  , m } . 
i eF 

D 

In the next four results we present two natural extensions of the marriage 
theorem. The first two of the these concern deficient forms of the theorem. Suppose 
that the marriage condition is not satisfied. How near can we come to marrying 
off all the girls? When can we marry off all but d of the girls? Clearly, only if any 
k of them know at least k - d boys. This obvious necessary condition is again 
sufficient. 
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Corollary 9 Suppose that a bipartite graph G = Gz(m ,  n), with vertex sets 
VI ,  Vz, satisfies the following condition: 

j r (S) I ?: l S I - d 
for every SI C VI . Then G contains m - d independent edges. 
Proof. Add d vertices to Vz and join them to each vertex in VI . The new graph 
G* satisfies the conditions for a complete matching. At least m - d of the edges 
in a complete matching of G* belong to G. 0 

Let us give another deficient form of the marriage theorem. If an edge e is 
incident with a vertex x ,  then we say that e covers x ,  and x covers e .  Furthermore, 
a vertex is said to cover itself (and no other vertex) . 
Corollary 10 Let G = Gz(m ,  n) be a bipartite graph. Write h for the maximal 
number of independent edges, i for the maximal number of independent vertices, 
and j for the minimal number of edges and vertices covering all the vertices. Then 

i = j = m  + n  - h . 

Proof. Let E' U V' be a set of j edges and vertices covering all vertices, with 
E' C E and V' C V .  If e ,  f E E' share a vertex, then in the cover E' U V' we 
may replace f by its other endvertex. Hence we may assume that E' consists of 
independent edges. This shows that j = m + n - h . 

Also, m + n - i ?: h ,  since if I is a set of i independent vertices (in any graph), 
then every edge is incident with at least one vertex not in I .  

Finally, let S C VI be such that l f (S) I = l S I - (m - h) ,  as guaranteed by 
Corollary 9. Then, with T = Vz - f(S) , the set SU  T is a set of l S I + n - j r (S) I = 
m + n - h independent vertices, proving that i ?: m + n - h .  0 

The next extension concerns matchmaking/or boys in a polygynous country, 
where the i th boy intends to marry di girls. 
Corollary 11 Let G be a bipartite graph with vertex classes VI = {XI ,  . . .  , Xm } 
and Vz = {yi , . . .  , Yn } . Then G contains a subgraph H such that dH (Xi ) = di 
and O :::: dH (Yj ) :::: 1 iff 

j r (S) I ?: L dj 
x; ES 

for every S C VI . 

Proof. Replace each vertex Xi by di vertices joined to every vertex in f (xi ) .  Then 
G has such a subgraph H iff the new graph has a matching from the new first 
vertex class to Vz . The result follows from Theorem 7. 0 

Of course, Corollary 1 1  also has a defect form which the reader is encouraged 
to state and deduce from this. 

The alert reader is probably aware of the fact that these corollaries are still 
special cases of the max-flow min-cut theorem. In fact, the bipartite graph version 
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of the max-flow min-cut theorem is considerably more general than the corollaries 
above. 
Theorem 12 Let G = Gz(m , n) be a bipartite graph with vertex classes V1 = 
{X J ,  . . .  , Xm } and V2 = {yJ , . . .  , Yn }. For S C V1 and 1 � j � n denote by Sj the 
number of edges from Yi to S. Let d1 , . . .  , dm and e1 , . . .  , en be natural numbers 
and let d � 0. Then there exists a sub graph H of G with 

m 
e(H) � L di - d, 

i= ! 

and 
dH (Yj) � ej , 

iff for every S C V1 we have 
1 � j � n ,  

n 
L di � ,Lmin{Sj , ej } + d. 
x; eS j=l 

Proof Tum G into a directed graph G by sending each edge from V1 to V2. Give 
each edge capacity 1 ,  a vertex Xi capacity di , and a vertex Yi capacity ej . Then 
there is a sub graph H with the required properties iff in G there is a flow from V1 
to V2 with value at least L:f di - d, and by the max-flow min-cut theorem, this 
happens iff every cut has capacity at least L:f di - d. Now, minimal cuts are of 
the form T U U U E(V1 - T, Vz - U), where T c V1 and U c V2 . Given a set 
T, the capacity of such a cut will be minimal if a vertex Yi belongs to U iff its 
capacity is smaller than the number of edges from S = V1 - T to Yi . With this 
choice of U the capacity of the cut is exactly 

n 
L di + ,L min{Sj , ej } .  
x;eT  I 

The condition that this is at least L:f di -d is clearly the condition in the theorem. 
0 

The reader is invited to check that the second proof of Theorem 7 can be 
rewritten word for word to give a proof of the exact form of this result (that is, 
with d = 0) and the defect form (the case d � 0) can be deduced from it as 
Corollary 10 was deduced from Theorem 7 (Exercise 33). 

To conclude this section we prove another extension of the marriage theorem. 
This is Dilworth 's theorem concerning partially ordered sets. A partial order < 
on a set is a transitive and irreflexive relation defined on some ordered pairs of 
elements. Thus if x < y and y < z then x < z, but x < y and y < x cannot 
both hold. A set with a partial order on it is a partially ordered set. The relation 
x � y expresses the fact that either x = y or else x < y .  A subset C of a partially 
ordered set P is a chain (or tower) if for x ,  y E C either x � y or y < x .  A set 
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FIGURE III.5.  A partially ordered set and a maximal antichain. (An edge indicates that 
its upper endvertex is greater than its lower endvertex.) 

A c P is an antichain if x < y implies that {x , y} ct. A. See Fig. III.S for an 
example. 

What is the smallest number of chains into which we can decompose a partially 
ordered set? Since no two elements of an antichain can belong to the same chain, 
we need at least as many chains as the maximal size of an antichain. Once again, 
the trivial necessary condition is, in fact, sufficient. 

Theorem 13 If every antichain in a (finite) partially ordered set P has at most 
m elements, then P is the union of m chains. 

Proof Let us apply induction on I P 1 .  If P = 0, there is nothing to prove, so we 
suppose that I P I > 0 and the theorem holds for sets with fewer elements. 

Let C be a maximal chain in P. (Thus if x ¢ C, then C U {x } is no longer a 
chain.) If no antichain of P - C  has m elements, then we are home by induction. 
Therefore, we may assume that P-C  contains an antichain A =  {a1 , a2 , . . .  , am } . 

Define the lower shadow of A as 

s- = {x e P : x :::: ai for some i } ,  

and define the upper shadow s+ o f  A analogously. Then P i s  the union of the two 
shadows, since otherwise A could be extended to an antichain with m + 1 elements. 
Furthermore, neither shadow is the whole of P, since the maximal element of C 
does not belong to s- and the minimal element of C does not belong to s+ . By 
the induction hypothesis both shadows can be decomposed into m chains, say 

m 
and s+ = U cf.  

i=l 
Since different ai belong to different chains, we may assume that ai e ci- and 

. c+ a, e i . 
The proof will be completed if we show that ai is the maximal element of Cj 

and the minimal element of ct, since in that case the chains Cj and ct can be 
strung together to give a single chain ci , and then P = Ui ci . 
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Suppose then that, say, a; is not the maximal element of Cj : a; < x for some 
x E Cj .  Since x is in the lower shadow of A, there is an aj E A with x ::::: aj . 
However, this implies the contradiction a; < aj . 0 

In fact, Dilworth's theorem holds for all partially ordered sets: we leave this to 
the reader (Exercise 53). 

ill.4 Tutte's  1 -Factor Theorem 

A factor of a graph is a spanning subgraph: a subgraph whose vertex set is that of 
the whole graph. If every vertex of a factor has degree r, then we call it an r-factor. 
How can we characterize graphs with a 1-factor? If G has a 1 -factor H and we 
delete a set S of vertices of G, then in a component C of G - S an even number of 
vertices are on edges of H contained in C, and the other vertices of C are on edges 
of H joining a vertex of C to a vertex of S. In particular, for every odd component 
C of G - S (that is, a component with an odd number of vertices) there is an edge 
of H joining a vertex of C to a vertex of S. Now, the edges of H are independent, 
so this implies that the graph G - S has at most l S I odd components, one for each 
vertex in S (see Fig. 111.6). 

FIGURE 111.6. A graph G with a 1-factor: l S I = 4 and G - S has 2 odd components. 

The necessity of the condition we have just found is rather trivial, but it is not 
clear at all that the condition is also sufficient. This surprising and deep result was 
first proved by Thtte in 1947. 1t will be convenient to denote by q (H) the number 
of odd components of a graph H,  that is, the number of components of odd order. 
Theorem 14 A graph G has a 11actor iff 

q (G - S) ::5 l S I (1) 
for every S C V (G). 
Proof We know that the condition is necessary. We shall prove the sufficiency by 
induction on the order of G. For I G I = 0 there is nothing to prove. Now let G be 
a graph of order at least one satisfying ( 1 )  and suppose that the theorem holds for 
graphs of smaller order. 
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Suppose that So c V(G) is a non-empty set for which equality holds in ( 1 ) .  
Denote by Ct , C2 , . . .  , Cm , m = I So l ::': 1 ,  the odd components of G - So and 
let Dt , D2 , . . .  , Dk be the even components of G - So . If the theorem is true 
and G does contain a 1 -factor F, then for each C; there is at least one edge of F 
that joins a vertex of C; to a vertex in So . Since m = I So l ,  for each C; there is 
exactly one such edge, say c; s; , c; E C; , s; E So . Each C; - c; contains a 1 -factor 
(a subgraph of F), and each Dj contains a 1 -factor (a subgraph of F). Finally, 
the edges S t C ! . s2c2 , . . .  , SmCm form a complete matching from So into the set 
{Ct , C2 , . . .  , Cm } .  

The proof i s  based on the fact that one can find an So that has all the properties 
described above. How shall we find such a set So? Let So be a maximal non-empty 
subset of V(G) for which equality holds in ( 1 ) .  Of course, a priori it is not even 
clear that there is such a set So . With S = 0 the condition ( 1 )  implies that G has 
even order. If s is any vertex of G, then G - { s} has odd order, so it has a least one 
odd component. Since ( 1 )  holds, G - {s} has exactly one odd component. Hence 
for every S = {s } we have equality in 1 .  This establishes the existence of So . 

As before, let Ct , C2 , . . .  , Cm . m = I So l be the odd components of G - So and 
Dt , D2 , . . .  , Dk the even components. 

(i) Each Dj has a 1 -factor. Indeed, if S c V(Dj ) then 
q (G - So) + q (Dj - S) = q (G - So U S) ::::: I So U S l  = I So l + l S I , 

so 
q (Dj - S) ::S l S I . 

Hence by the induction hypothesis Dj has a 1 -factor. 
(ii) If c E C; , then C; - c has a 1 -factor. Assume that this is false. Then by the 

induction hypothesis there is a subset S of V ( C; ) - { c} such that 

Since 
q (C; - {c} U S) > l S I . 

q (C; - {c} u S) + I S u {c} l  = I C; I = 1 (mod 2) , 
this implies that 

q (C; - {c} U S) ::: l S I + 2. 
Consequently, 

I So U {c} U S l  = I So l + 1 + lS I ::': q (G - So U {c} U S) 
= q (G - So) - 1 + q (C; - {c} U S) 
::: I So l + 1 + l S I ,  

so in (1 ) we have equality for the set So U { c }  U S as well . This contradicts the 
maximality of So . 

(iii) G contains m independent edges of the form s; c; , s; E So and c; E C; , 
i = 1 ,  2, . . .  , m .  To show this, let us consider the bipartite graph H = G2 (m ,  m) 
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with vertex classes VI = {CI , Cz , . . .  , Cm } and Vz = So, in which C; is joined to 
a vertex s E So if and only if G contains an edge from s to C; . The assertion above 
is true iff H has a 1 -factor, that is, a matching from VI to Vz. Fortunately, we have 
the weapon to check this: Hall 's theorem. Given A c VI , put B = fH (A) c Vz 
(see Fig. 111.7). Then ( 1 )  implies that 

I A I :::: q (G - B) :::: I B I . 

Hence the graph H satisfies Hall 's condition, so it has a 1 -factor. 
We are almost done. To complete the proof we just put together the information 

from (i), (ii) , and (iii). We start with the m independent edges s; c; , s; E So , c; E C; . 
Adding to this set of edges a 1 -factor of each C; - c; , 1 ::=: i ::=: m, and a 1 -factor 
of each Dj . 1 ::=: j ::=: k, we arrive at a 1 -factor of G. 0 

::����} n �;�'j:· 
cl 
c. 

FIGURE III.?. The construction of H from G.  The set A =  {Cz , C3 } determines B C So 
by the rule B = rn (A). 

It is once again very easy to obtain a defect form of the above result. 
Corollary 15 A graph G contains a set of independent edges covering all but at 
most d of the vertices iff 

q (G - S) :::: l S I + d 
for every S C V (G). 

Proof Since the number of vertices not covered by a set of independent edges is 
congruent to I G I modulo 2, we may assume that 

d = I G I (mod 2) . 

Put H = G + Kd ; that is, let H be obtained from G by adding to it a set W of d 
vertices, and joining every new vertex to every other vertex, old and new. Then G 
contains a set of independent edges covering all but d of the vertices iff H has a 
1 -factor. When does ( 1 )  hold for H? If 0 =I= S' C V(H) and W - S' =I= 0, then 
H - S' is connected, so q (H - S') ::=: 1 ,  and then ( 1 )  does hold; if W c S' then, 
setting S = S' - W, we have q (H - S') = q (G - {S' \ W}) = q(G - S), so ( 1 )  
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q ( G - S) :-::: I S' l = I S I + d. 0 
Tutte's theorem has numerous beautiful consequences: for example, it implies 

that every 2-edge-connected cubic graph has a 1 -factor (Exercise 32). 

III.S Stable Matchings 

Let us return to the problem of finding matchings in bipartite graphs. This time 
we shall study so-called stable matchings, that is, matchings satisfying certain 
conditions. These matchings were first studied by Gale and Shapley in 1 96 1 ,  and 
our main aim is to prove their fundamental result. Before we turn to the complete 
graphs studied by Gale and Shapley, we consider general bipartite graphs. 

As in the case of Hall's theorem, it is customary to formulate the conditions and 
results in terms of marriage arrangements between n boys and m girls. Suppose 
then that we have an n by m bipartite graph G = G2(n , m) with bipartition 
(VJ , V2) ,  where V1 = {a , b ,  . . .  } is the set of boys and Y2 = {A , B ,  . . .  } is the set 
of girls. For the moment we do not assume that n = m, i .e. , that we have the same 
number of girls and boys. As before, an edge a A means that the boy a knows the 
girl A .  Suppose that each boy has an order of preferences on the set of girls he 
knows, and each girl has an order of preferences on the set of boys she knows. We 
assume that these orders are linear orders but place no other restriction on them. 
Given the preferences, a stable matching in G is a set M of independent edges of 
G such that if aB E E(G) - M, then either aA E M for some girl A preferred to 
B by a ,  or bB E M for some boy b preferred to a by B. Thus if a is not married 
to B, then either a is married to a girl he prefers to B ,  or else B is married to a boy 
she prefers to a. Otherwise, a and B could (and eventually would) get married, 
perhaps divorcing their present spouses, to the benefit of both. This makes the 
(somewhat unrealistic) assumption that it is always better to be married (to an 
acquaintance) than to stay single. 

Note that a stable matching is not assumed to be complete. However, it is clear 
that every stable matching is a maximal matching in G; that is, it cannot be enlarged 
to a strictly larger matching. Indeed, suppose M U {aB }  is a matching in G for 
some edge aB E E(G) - M. Then under the marriage arrangement M, the boy a 
is a bachelor, so he is certainly not married to a girl he prefers to B ,  and the girl 
B is a spinster, so she is not married to a boy she prefers to a. This contradicts the 
fact that M is stable. 

Although every stable matching is maximal, it need not be a maximum matching; 
that is, it need not have maximal cardinality. A trivial example is shown in Fig. III .8 . 
However, as we shall see later, all stable matchings have the same cardinality. 

The stability condition for a matching is fairly complex, so a priori it is not 
clear that there is always a stable matching. In fact, we shall show that not only is 
there always a stable matching, but there is also a stable matching that is optimal 
for each boy. The existence of an optimal stable matching follows free of charge 
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B 

FIGURE 111.8. If a prefers B to A, and B prefers a to b, then M = {aB}  is the only stable 
matching. 

from the algorithm used to construct a stable matching, so to start with we shall 
not bother with optimality. It is rather quaint that this fundamental algorithm is 
simply the codification of the rules of old-fashioned etiquette: every boy proposes 
to his highest preference and every girl refuses all but her best proposer. This 
goes on until no changes occur; then every boy marries the girl to whom he last 
proposed, and every girl marries her only proposer she has not yet refused. 

Note that the algorithm is such that once a girl gets a proposal, at the end of 
the process she does end up with a husband, for she will refuse a suitor only for 
somebody she finds more desirable. Also, every boy gets married unless in the 
algorithm he is refused by every girl. Finally, as the algorithm progresses, every 
girl gets better and better suitors, and every boy has to be resigned to marrying 
less and less desirable girls. With this we have come close to proving the stable 
matching theorem of Gale and Shapley. 
Theorem 16 For every assignment of preferences in a bipartite graph, there is a 
stable matching. 
Proof Let us describe a variant of the fundamental algorithm we have just men­
tioned, in which all boys and all girls act simultaneously, in rounds. In every odd 
round ( 1  st, 3 rd, . . .  ), each boy proposes to his highest preference among those 
girls whom he knows and who have not yet refused him, and in every even round 
(2 nd, 4 th, . . .  ), each of the m girls refuses all but her highest suitor. The process 
ends when no girl refuses a suitor: then every girl marries her (only) suitor, if she 
has one. 

The algorithm terminates after at most 2nm rounds, since at most m(n - 1 )  
proposals are refused. 

We claim that this fundamental algorithm produces a stable matching. lt clearly 
produces a (partial) matching M, since at every stage each boy proposes to at most 
one girl, and each girl rejects all but at most one boy. To see that M is stable, let 
aB E E(G) - M. Then either a never proposed to B, or a was refused by B 
during the algorithm. In the former case a marries a girl he prefers to B ,  as he 
never goes as low as B ,  and in the latter case B refused a for a boy she prefers to 
a , so eventually ends up with a husband she prefers to her suitor a .  0 

The fundamental algorithm we have just described can be run at various speeds: 
we do not have to have uniform action, in rounds. Every boy and every girl may 



111.5 Stable Matchings 87 

act individually : each boy keeps proposing to the best girl (in his estimation) who 
has not yet refused him, and each girl maximizes her satisfaction by being willing 
to accept only the very best boy (in her estimation) who has ever proposed to 
her. When the dust settles, we have a stable matching independent of the speed at 
which we have run the algorithm (see Exercise 42). 

What can we say about the collection of stable matchings? Somewhat surpris­
ingly, all stable matchings are incident with the same set of vertices; that is, every 
vertex is either matched in every stable matching or remains unmatched in every 
stable matching. This will follow easily from the lemma below. 

Call a cycle preference-oriented if it can be written in the form aAbB · · · zZ 
such that A prefers b to a, b prefers B to A ,  . . .  , and Z prefers a to z .  

Lemma 1 7  Let M and M' be two stable matchings in a bipartite graph with 
certain preferences, and let C be a component of the sub graph H formed by the 
edges of M U M'. If C has at least three vertices, then it is a preference-oriented 
cycle. In particular, if aA, bB E M and aB E M', then a prefers A to B iff B 
prefers a to b. 

Proof In this proof it is best not to distinguish between boys and girls: we shall 
write x 1 ,  x2 , . . . for either of them. We know that C is either a path of length at 
least two or a cycle of length at least four. 

Suppose that C contains a path XI X2X3X4 , with x2 preferring X3 to x I · Assuming, 
as we may, that x2x3 � M, we see that X3 prefers X4 to x2, since M is stable. 

This simple observation implies that if C is a cycle, then it is preference-oriented. 
Indeed, if x 1 x2x3 · · · Xk is a cycle and x2 prefers x3 to x 1 ,  then looking at the path 
XJX2X3X4 we see that X3 prefers X4 to x2 . Next, looking at the path X2X3X4X5 we 
see that X4 prefers xs to X3 . Continuing in this way, we find that Xk prefers XI to 
Xk- I and XJ prefers x2 to Xk . 

Also, if C is a path XJX2 · · · xe with l ::;: 3 and XJX2 � M, say, then x2 prefers 
X3 to XJ , since M is stable and XIX2 � M. Similarly, Xe- I prefers xe-2 to xe . 
However, this is impossible, since, arguing as above, x2 prefers X3 to X ! ,  X3 prefers 
X4 to x2 , X4 prefers xs to X3 , and so on, xe- I prefers xe to xe-2 -

The second assertion is immediate from the fact that the component of H 
containing the path AaB b is a preference-oriented cycle. 0 

Theorem 18 For every assignment of preferences in a bipartite graph with 
bipartition (VI ,  V2), there are subsets Ut C Vt and U2 C V2 such that every 
stable matching is a complete matching from Ut to U2. In particular, all stable 
matchings have the same cardinality. 

Proof Suppose that the assertion fails. Then we may assume that some edge aA 
of M i s  such that a i s  not incident with any edge of M'. As M' i s  a maximal 
matching, bA E M' for some b E  Vt , b # a . But then the component of a in the 
subgraph formed by the edges of M U M' contains a , A ,  and b, and is not a cycle, 
contradicting Lemma 17 .  0 
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It is tempting to expect that every stable matching of the subgraph spanned 
by U1 U U2 is a stable matching in the entire graph, but this is not the case (see 
Exercise 52). 

Let us state an immediate consequence of Theorem 18 and Lemma 17 . 
Corollary 19 Let M and M' be stable matchings in a bipartite graph, with some 
assignment of preferences. Suppose aB E M and aB ¢ M'. Then in M' both a 
and B have mates; also, one of a and B is better off in M' than in M, and the 
other is worse off. 0 

The matching constructed by the fundamental algorithm in the proof of Theo­
rem 1 6  is not only a stable matching, but it is also 'best' for the boys: every boy 
ends up with his highest preference among all stable matchings. 

To make this definition more formal, let G be a bipartite graph with bipartition 
(VJ ,  V2) ,  with a certain assignment of preferences. A stable matching M is said to 
be V1 -optimal (or optimal for the boys) if for every stable matching M' and every 
vertex a E VJ , if aB E M', then aA E M for some girl A, and either A = B or 
else a prefers A to B .  In other words, M is a V1 -optimal stable matching if in M 
every boy is at least as well off as in any other stable matching, once again with 
the assumption that it is better to be married than stay single. It is not clear that 
there is a V1 -optimal stable matching, but it is obvious that if there is one, then it 
is unique. 
Theorem 20 For every assignment of preferences in an n by n complete bipartite 
graph with bipartition (Vi ,  V2), there is a V1 -optimal stable matching. 
Proof Let us denote by S(a) the set of girls a boy a could marry in some stable 
matching: this is the set of possible girls for a .  We claim that in the fundamental 
algorithm no girl in S(a) refuses a ,  so every boy marries his favourite possible 
girl, and thus the stable matching is optimal for the boys. 

Suppose that this is not the case. Let us stop the algorithm when it happens for 
the very first time that a boy, say a , is refused by one of his possible girls, say A .  
By definition, this happens because A prefers another of  her suitors at the time, 
say b. At that time b prefers A to all others that have not yet refused him. Hence, 
a fortiori, b prefers A to all others that are possible for him. As A is possible for 
a ,  there is a stable matching M in which a marries A and b marries a girl B. But 
this is impossible, since b prefers A to B, and A prefers b to a. This contradiction 
completes the proof. 0 

By definition, the V1 -optimal stable matching is 'best' for every boy (element of 
VI ) . How 'good' is it for the girls? Recalling Corollary 19, we see that, somewhat 
surprisingly, it is the worst for every girl, independently of the assignment of 
preferences. To be a little more precise, call a stable matching M V2-pessimal if in 
M no girl is better off than in any other stable matching. Once again, a priori it is 
not clear that there is a V2-pessimal stable matching, but the definition implies that 
if there is a V2-pessimal stable matching, then it is unique. Corollary 19 implies 
that the V1 -optimal stable matching is precisely the V2-pessimal stable matching. 
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There are a good many extensions and variants of the results above; here we shall 
:.:onsider only stable complete matchings in (not necessarily complete) bipartite 
graphs with equal colour classes and stable matchings in a polygynous society. 

Let us set the scene again, in a slightly different way. This rather heavy-handed 
definition of a stable matching will be frequently useful in applications. Suppose 
that we have a set V1 of n boys and a set V2 of n girls. Every boy and every 
girl has a possibly incomplete set of preferences. Thus for every girl A there is a 
list L(A) = {a J ,  a2 , . . .  , ak } ,  signifying that A is willing to marry only the boys 
a1 , a2 , . . .  , at , and this is exactly her order of preferences. Similarly, every boy 
a has a possibly incomplete list L(a) . We call (VJ ,  V2 , L) an incomplete system 
of preferences. This setup clearly corresponds to the bipartite graph (VJ U V2 , E), 
where E = {aA : a  E L(A) and A E L(a) } ,  with the preferences given by the 
lists. In this formulation a matching M from V1 to V2 is stable if any two matched 
vertices appear on each other's lists, and if a E L(B) , B E L(a) but aB ¢ M 
then either aA E M  for some A E L(a) that a prefers to B,  or bB E M for some 
b E L (B) that B prefers to a. 

How can we decide whether an incomplete system has a stable complete 
matching? Resembling our trick in the proof of Corollary 9, we can enlarge the 
incomplete system to a complete system in such a way that the stable matchings 
in the original incomplete system correspond to easily identifiable stable match­
ings in the enlarged complete system. To be precise, let us add a fictitious boy w 
and a fictitious girl W to the system: w is the widower and W is the widow. Set 
V{ = V1 U {w} and V� = V2 U {W} .  Let us define a complete set of preferences 
for (V{ ,  VD as follows: each person slots in the widow (widower) after her (his) 
genuine preferences, and follows it with an arbitrary enumeration of the boys 
(girls) she (he) is unwilling to marry at all. Finally, the widow puts the widower at 
the end of her list, and the widower puts the widow at the end of his preferences. 
We say that this now complete system (V{ , V� . L') is associated to the original 
system. 
Theorem 21 An incomplete system <V1 , V2 , L) with l VI I  = I V2 I has a stable 
complete matching iff the associated complete system (V{ ,  V� , L') has a stable 
matching in which the widow marries the widower. 
Proof Let M be a complete matching from V1 to V2, and let M' be the complete 
matching from V{ to V� obtained from M by adding to it the edge wW. To 
prove the theorem, we shall show that M is a stable matching in the incomplete 
system (VJ ,  V2 , L) iff M' is a stable matching in the associated complete system 
(V{ ,  V� . L') .  

Suppose M i s  a stable matching in (VJ ,  V2 , L) . Then M' i s  stable, since if 
a A E M then A prefers a to w and a prefers A to W. 

Also, if M' is a stable matching in (V{ ,  V� . L') ,  then M is a stable matching in 
(VJ ,  V2 , L). Indeed, if a A E M, then A E L(a) , since otherwise a prefers W to A, 
and W prefers a to w. Similarly, a E L(A) , since otherwise A prefers w to a and 
w prefers A to W. Hence every edge aA of M satisfies A E L(a) and a E L(A) , 
so M is a stable matching in (VJ ,  V2 , L) . D 
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Since the V{ -optimal stable matching in (V; , V2 , L') is precisely the V2-pessimal 
stable matching, if some stable matching in (V{ , V2 , L') contains w W, then every 
stable matching contains w W. This gives us the following slightly stronger form 
of Theorem 2 1 .  
Theorem 21'. Let (VI , Vz , L)  be an incomplete system, with associated complete 
system (V{ , V2 , L'), and let M' be a stable matching for (V{ , V2 , L'). Then there 
is a stable complete matching for (VI , Vz , L) iff M' contains w W. 0 

For the last variant of the stable matching theorem, it is convenient to use 
politically correct terms. In the college admissions problem we are given n ap­
plicants, a t , . . .  , an . wishing to enter m colleges, A t ,  . . .  , Am. with college A; 
willing to admit n; undergraduates, such that .Lr=t n; = n. Each applicant orders 
the colleges according to his preferences and each college orders the applicants 
according to his or her preferences. Once again, an assignment of the applicants 
to the colleges, with n; students assigned to college A; ,  is said to be a stable 
admissions scheme if whenever a student a; is admitted by a college A;' and a 
student aj by a college Aj' •  then either a; prefers A;' to Ap, or Ap prefers aj to 
a; . A stable admissions scheme is said to be optimal (for the applicants) if every 
applicant gets as good a college as possible under any stable admissions scheme. 
Theorem 22 No matter what the orders of preferences are, there is always an 
optimal stable admissions scheme. 

Proof For the sake of argument, call the students boys, and replace each college 
A b . l A(!) A(Z) A (n; ) " th h A(j l  h . th d i y n; g1r s, say i , i , . . .  , i , w1 eac i avmg e same or er 
of preferences among the boys a I ,  . . .  , an as A; . Also, each boy orders the girls 
by taking the girls corresponding to the highest-rated college first (in any order) 
followed by the girls corresponding to the second college (in any order), and so on. 
In the bipartite graph we have just defined, take a stable matching that is optimal 
for {a t ,  . . .  , an } :  the admissions scheme this induces is clearly optimal (for the 
applicants) . 0 

There are · many ways of relaxing the conditions in the college admissions 
problem. The condition .L�=t n; = n need not by kept, an applicant may not wish 
to go to a certain college at all, and a college may not be willing to accept a student 
under any circumstances. For the sake of convenience, we can discard the last 
possibility by declaring that a student will not apply to a college if the college is 
unwilling to accept him under any circumstances. In this more general setup the 
analogue of the fundamental algorithm goes as follows. All students apply to their 
highest-rated colleges. A college of size n; puts on its waiting list the n; applicants 
it rates highest, or all of them if it gets no more than n; applications, and rejects 
the others. The rejected students apply to their second choices, and again a college 
with quota n; rejects all but its n; highest applicants, and so on. The process stops 
when in a round no student gets rejected by a college, and then every college 
admits all the students on its waiting list. It is easy to show (see Exercise 5 1 )  that 
the admissions scheme obtained is such that (i) every college admits at most n; of 
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the students who applied to it, (ii) if a college does not admit its full quota then 
no student left on the shelf has applied to that college, and (iii) the assignment is 
stable in the sense that if a student a is admitted by a college A, and a student b 
by a college B, then either a is unwilling to go to B, or a prefers A to B or B 
prefers b to a .  Furthermore, every student goes to as good a college as under any 
other admissions scheme satisfying these conditions. 

ill.6 Exercises 

1 .  Suppose F is a set of edges after whose deletion there is no flow from s to t 
with positive value. Prove that F contains a cut separating s from t . 

2. By summing an appropriate set of equations show that the capacity of a cut is 
at least as large as the value of a flow. 

-+ � 

3 .  Let G= (V, E) be a directed graph and let c be an extended-real-valued 
capacity function on E. (Thus c(x , y) is a non-negative real or +oo.) Let s 
and t be two vertices. Prove that either there is a flow from s to t with infinite 
value or else there is a flow with maximal finite value. 

4. By successively reducing the number of circular flows in G, prove that there 
is a maximal flow without circular flows in which no current enters the source 
and no current leaves the sink. 

5. Use the method of Exercise 4 to show that if the capacity function is integral, 
then there is a maximal flow that is, also integral. 

6. Formulate and prove the max-flow min-cut theorem of Ford and Fulkerson 
for multiple sources and sinks with bounds on the capacities of the edges and 
vertices. 

7. (Circulation theorem.) A circulation in a directed graph G is a flow without 
a source and a sink. Given a lower capacity l (x , y) and an upper capacity 

-+ c(x ,  y) for each edge xy with 0 ::: l (x , y) ::: c(x ,  y ) ,  we call a circulation g 
feasible if 

l (x ,  y) ::: g(x ,  y) ::: c(x ,  y) 
-+ for every edge xy. Prove that there exists a feasible circulation iff 

l(S, S) ::: c(S, S) for every S c V. 

[Note that the necessity of the condition is trivial, since in a feasible circulation 
the function l forces at least l (S, S) current from S to S and the function c 
allows at most c(S, S) current from S back to S. To prove the sufficiency, 
adjoin a sink s and a source t to G, send an edge from s to each vertex of G 
and send an edge from each vertex of G to t. Define a capacity function c* 
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-+ 
on the edges of the new graph G* by putting c*(x ,  y) = c(x ,  y) - l (x ,  y) ,  
c* (s ,  x) = l (V, x) ,  and c* (x ,  t ) = l (x ,  V) .  Then the relation 

f (x ,  y) = g(x ,  y) - l (x ,  y) 
sets up a 1 -to- 1 correspondence between the feasible circulations g in G and 

-+ 
flows f in G* from s to t with value l (V, V) .  Rewrite the condition given in 
the max-flow min-cut theorem in the form required in this result.] 

8:+" Let H be a bipartite multigraph without loops, with vertex classes VI and 
V2 . (Thus H may contain multiple edges; that is, two vertices belonging to 
different classes may be joined by several edges, which are said to be parallel.) 
As usual, given a vertex x, denote by r (x) the set of edges incident with x 
and by d(x)  = l f (x) l the degree of x .  Prove that, given any natural number 
k, the set E of edges can be partitioned into sets EI , £2 , . . .  , Ek such that for 
every vertex x and every set E; we have l d�) j � l f (x) n Ei l � � d�) l , 
where, as in the rest of the book, r z l is the least integer not less than z and 
LzJ = - r -zl 
Thus if we think of the partition U7 E; as a colouring of the edges with k 
colours, then the colouring is equitable in the sense that in each vertex the 
distribution of colours is as equal as possible. [Hint. Construct a directed 
graph H = (VI U V2 , ii) from H by sending an ed�e from x to y iff x � VI , 
y E V2 and H contains at least one xy edge. Let G be obtained from H by 

-+ -+ adding a vertex u and all the edges ux, yu ,  for x E VI and y E V2 , as shown 
in Fig. Ill.9. Define an appropriate upper and lower capacity for each edge of 
G and prove that there is a feasible integral circulation. Use this circulation 
to define one of the colour classes.] 

... 
H H �' ?5: 

v, 

FIGURE III.9. The graphs H, ii, and G. 

9. (Exercise 8 contd.) Show that we may require that, in addition to the property 
above, the colour classes be as equal as possible, say I E I I � I E2 l � · · · � 
I Ek l � I EI I + 1 ,  and that in each set of parallel edges the distribution of 
colours is as equal as possible. 
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10 . Let d1 � d2 � · · · � dn be the degree sequence of a graph G. Suppose that 
dj ::; j + k - 1 for j = 1 ,  2, . . .  , n - I - dn-k+ l · 

Prove that G is k-connected. 
1 1 . Let k and l be integers with 1 � k � l. Construct graphs G 1 ,  G2 , and G3 such 

that 
(i) K (G J )  = k and .A(G J )  = l ,  
(ii) K (G2) = k and K (G2 - x) = l for some vertex x ,  
(iii) .A(G3 - x) = k and .A(G3 - xy)  = l for some edge xy. 

1 2. Let G be a regular bipartite graph of degree at least 2. Show that K (G) =/; 1 .  
1 3 .  Given U C V(G) and a vertexx E V(G)- U, an x - Ufan is a set of i U i paths 

from x to U any two of which have exactly the vertex x in common. Prove 
that a graph G is k-connected iff IG I ::; k + 1 and for any k-set U c V(G) 
and vertex x not in U, there is an x - U fan in G.  [Hint. Given a pair (x , U), 
add a vertex u to G and join it to each vertex in U. Check that the new graph 
is k-connected if G is. Apply Menger's theorem for x and u . ]  

14. Prove that if G is k-connected (k ::; 2) , then every set of k vertices is contained 
in a cycle. Is the converse true? 

15 .  The line graph L (G) of a graph G = ( V, E) has vertex set E and two vertices 
e , f E E are adjacent iff they have exactly one vertex of G in common. By 
applying the vertex form of Menger's theorem to the line graph L (G), prove 
that the vertex form of Menger's theorem implies the edge form. 

16. Show that if .A(G) = k ::; 2, then the deletion of k edges from G results 
in a graph with at most 2 components. Is there a similar result for vertex­
connectivity? 

17 .  Let G be a connected graph with minimum degree 8 (G) = k ::; 1 .  Prove that 
G contains a path X JX2 · · · Xk such that G - {XJ ,  x2 , . . .  , Xk } is also connected. 
[Hint. Let X JX2 · · · xe be a longest path. Note that l ::; k + 1 .  Suppose that 
G - {X J ,  x2 , . . .  , xk } is disconnected, and let YOYJ · · · Ym be a longest path 
in a component C not containing Xk+J ·  Then dc (yo) � m,  but yo cannot be 
joined to k - m of the vertices x 1 ,  . . .  , Xk .] 

1 8 .  Let G = G2(m , n) be a bipartite graph with vertex classes V1 and V2 
containing a complete matching from V1 to V2 . 
(i) Prove that there is a vertex x E V1 such that for every edge xy there is a 
matching from V1 to V2 that contains xy. 
(ii) Deduce that if d(x) = d for every x E VJ , then G contains at least d !  
complete matchings if d � m and at least d(d - 1 )  · · · (d - m + 1 )  complete 
matchings if d > m. 

19 . Let A = (aij )l be an n x n doubly stochastic matrix; that is, let aij ::; 0 
and Z:7=1 aij = Z:'J =I aij = 1 for all i ,  j .  Show that A is in the convex 
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hull of the n x n permutation matrices, i .e. , there are A.; � 0, LJ A.; = 

1 ,  and permutation matrices PI , Pz , . . .  , P m such that A = LJ A.; Pi . [Let 
aij = faij l .  A* = (at)J. , and let G = Gz(n ,  n) be the bipartite graph 
naturally associated widt A* .  Show that G has a complete matching and 
deduce that there are a permutation matrix P and a real A., 0 < A. .:::; 1 ,  such 
that A - A.P = B = (bij )J. satisfies bij � 0, L:7=I b;J = Ll=I bij = 1 - A.  
for all i ,  j ,  and B has at least one more 0 entry than A. ] 

20. Prove the following form of the Schroder-Bemstein theorem. Let G be a 
bipartite graph with vertex classes X and Y having arbitrary cardinalities. Let 
A C X and B C Y . Suppose there are complete matchings from A into Y 
and from B into X. Prove that G contains a set of independent edges covering 
all the vertices of A U B. [Hint. Consider the components of the union of the 
matchings.] 

2 1 .  Let G be a bipartite graph with vertex sets VI , Vz . Let A be the set of vertices 
of maximal degree. Show that there is a complete matching from A n VI into 
Vz . 

22. Deduce from the previous exercise that every bipartite graph contains a set of 
independent edges such that each vertex of maximal degree (that is, degree 
�(G)) is incident with one of the edges. Deduce that a non-empty regular 
bipartite graph has a 1 -factor. 

23. We say that G is an (r, r - k)-regular graph if r - k .:::; 8 (G) .:::; �(G) .:::; r .  
Prove that for 1 .:::; k .:::; s .:::; r every (r, r - k)-regular graph contains an 
(s , s - k)-regular factor. [Hint. Assume s = r - 1 .  Take a minimal (r, r - k)­
regular factor. Note that in this factor no two vertices of degree r are adjacent. 
Remove a set of independent edges covering the vertices of degree r . ] 

24. Let G be a graph with K (G) = k � 1 and let VI U W U Vz be a partition 
of V(G) with J W I = k, V; =/= 0, i = 1 ,  2, and G containing no VI - Vz 
edges. Show that, for each i ,  G contains either a matching from W into V; or 
a matching from vi into w. 

25. Let G be a connected graph of order at least four such that every edge belongs 
to a 1 -factor of G. Show that G is 2-connected. Show also that if JG J  � 2k 
and every set of k - 1 independent edges in contained in a 1-factor, then G is 
k-connected. 

26. Show that if a graph G has a 1 -factor, I G J � 2k + 2, and every set of k 
independent edges is contained in a 1 -factor, then every set of k - 1 independent 
edges is contained in a 1 -factor. 

27. Let G be a connected graph of order at least 4, and let F = {/I , . . .  , fm } be 
a 1 -factor of G. Show that F contains two edges, fi = a;bi and fJ = aJhJ . 
say, such that G - {ai , b; } and G - {aJ , bJ } are both connected. 

28. An r x s Latin rectangle based on 1 ,  2, . . .  , n is an r x s matrix A = (aij ) 
such that each entry is one of the integers 1 , 2, . . .  , n and each integer occurs 
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in each row and column at most once. Prove that every r x n Latin rectangle 
A can be extended to an n x n Latin square. [Hint. Assume that r < n and 
extend A to an (r + 1 )  x n Latin rectangle. Let Aj be the set of possible values 
of ar+l ,j ; that is, let Aj = {k : 1 � k � n, k =/= aij } .  Check that the system 
{A i : 1 � j � n} has a set of distinct representatives.] 
Prove that there are at least n! (n - 1 ) !  · · · (n - r + 1 ) ! distinct r x n Latin 
rectangles based on 1 ,  2, . . .  , n. [Hint. Apply Exercise 1 8(ii) .] 

29. Let A be an r x s Latin rectangle and denote by A ( i )  the number of times the 
symbol i occurs in A .  Show that A can be extended to an n x n Latin square 
iff A(i )  :=:: r + s - n for every i = 1 ,  2, . . . , n .  

30 .  The fundamental theorem ofTychonov's  from general topology states that the 
product of a family of compact topological spaces is compact in the product 
topology. In combinatorics this result is frequently needed in the following 
simple form: the product of a family of finite sets is compact. Prove this in 
the following formulation. 
Let r be an index set and r<«i.>) the collection of finite subsets of r. For 
each y E r, let Sy be a finite set and, for fl. C r, define Sa = Urea Sy . 
For every I E r<<w), let F1 be a non-empty set of functions f : I --+ S1 , 
with f(y) E Sy for every y E / . Suppose that, for all /' c I E r<<w) and 
f E F1 , the restriction / I I' of f to I' belongs to FI' · Show that there is a 
function F : r --+ Sr such that F l / E F1 for every I E r<<w) . [Hint. For 
I E r<<w), define 9J = {g E F1 : for every J E r<<w), J :::> / , there is 
an f E f.J with f l /  = g} .  Note that 9J =/= 0 for every I E r<<w) _ Find a 
function F : fl. --+ St., , with fl. C r maximal, such that F l / E 9J for every 
1 E fl. (<w) . ]  

3 1 :+- Deduce from Tychonov's theorem in the previous exercise the following 
extension of Hall's theorem. 
Let G be an infinite bipartite graph with vertex classes X and Y, such that 
each vertex in X is incident with finitely many edges. Then there is a complete 
matching from X into Y iff l f (A) I :=:: l A  I for every finite subset A of X. 
Show that the finiteness condition cannot be  omitted. 

32. Prove that a 2-edge-connected cubic graph has a 1 -factor. [This result is 
called Petersen 's theorem. In order to prove it, check that the condition of 
Tutte's theorem is satisfied. If 0 =/= S C V(G) and C is an odd component of 
G - S, then there are at least two S - C edges, since G is 2-edge connected. 
Furthermore, since G is cubic, there are at least three S - C edges. Deduce 
that q (G - S) � l S I .] 
Show also that a cubic graph need not have a 1-factor. 

33 .  Imitate the second proof of Theorem 7 to give a direct proof of the case d = 0 
of Theorem 12  and then deduce from it the general case d :=:: 0. 

34. Let G �e a graph of order n with at most r :=:: 2 independent vertices. Prove 
that if G is any orientation of G that does not contain a directed cycle (acyclic 
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orientation), then G contains a directed path of length at least fn/rl - 1 .  
[Hint. Apply Dilworth's theorem, Theorem 13 .] 

35. Let h ,  h. . . . , Irs+! be intervals in JR., with r, s 2: 1. Show that either some 
r + 1 of these intervals have a non-empty intersection or some s + 1 of them 
are pairwise disjoint. 

36. Let R1 , R2 , . . .  , Rm be rectangular parallelepipeds in canonical position in 
JR.n , so that Ri = 07=1 [ai , hi ] .  Show that if m 2: rsn + 1 then either some 
r + 1 of these parallelepipeds have a non-empty intersection, or some s + 1 
of them are pairwise disjoint. 

37. Deduce from Exercise 34 the following result. Given a set of rk + 1 distinct 
natural numbers, either there exists a set of r + 1 numbers, none of which 
divides any of the other r numbers, or else there exists a sequence ao < a 1 < 
· · · < ak such that if 0 ::=:: i < j ::=:: k, then ai divides ai . 

38 . Describe all maximal graphs of order n = 21 that do not contain a 1 -factor. 
[Hint. Read it out of Tutte's theorem (Theorem 14).] 

39. Make use of Exercise 38 and the convexity of the binomial coefficient G) , 
x 2: 2, to prove that if n 2: 2k + 1 then the maximal size of a graph of order 
n with at most k independent edges is 

Show also that the extremal graphs {that is, the graphs for which equality 
holds) are one or both of the graphs K2k+! U En-2k- ! and Kk + En-k (see 
Fig. III. 10) . 

Kl + £• 

K1 u £2 

0 • 

• 

FIGURE 111. 10. For k = 3, n = 9 there are two extremal graphs: K1 U E2 and K3 + E6 .  

40. Call a sequence d1 , d2 , . . .  , dn of integers graphic i f  there i s  a graph G with 
vertex set V(G) = {x 1 , x2 , . . .  , Xn } such that d(xi ) = di , 1 ::=:: i ::=:: n .  (The 
graph G is said to realize (di )! .) Show that d1 2: d2 2: · · · 2: dn is graphic iff 
so is the sequence 
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4 1 .  Use the algorithm given in Exercise 40 to decide which of the follow­
ing sequences are graphic : 5, 4, 3, 2, 2, 2; 5, 4, 4, 2, 2, 1 ;  4, 4, 3 ,  3, 2, 2, 2; 
and 5 ,  5 ,  5 ,  4, 2, 1 ,  1 ,  1 .  Draw the graphs realizing the appropriate sequences 
constructed by the algorithm. 

42. The general form of the fundamental algorithm for stable matching goes 
as follows. In each step of the algorithm either a boy with no outstanding 
proposal proposes to the next girl on his list or a girl with at least two 
outstanding proposals refuses all but her best suitor. These steps can be taken 
in any order. Show that the algorithm always constructs the same matching, 
namely the unique stable matching optimal for the boys. 

43. Define a stable matching in a bipartite multigraph by defining, for each vertex, 
an order of preference on the set of edges incident with the vertex. Show that 
every bipartite multigraph has a stable matching. 

44. Show that, for every n � 1, there is an assignment of preferences in an n by 
n bipartite graph such that there is precisely one stable matching (and so an 
optimal stable matching is also pessimal). 

45. Show that in the stable matching optimal for the boys at most one boy ends 
up with his worst choice. 

46. Suppose that in a set of n boys and n girls all boys have the same order 
of preferences. How many proposals are made in the fundamental stable 
matching algorithm? 

47. What is the maximal number of proposals made in the fundamental stable 
matching algorithm when applied to n boys and n girls? 

48 .  Let m(n) be the maximal number of stable matchings in a set of n boys and 
n girls. Show that m(n 1 + nz) � m(n t )m(nz), and deduce that m(n) � 2n!Z 
for n � 2. (What is m (3)?) 

49. Show that if a stable matching contains an edge aA, with A being the worst 
for a and a being the worst for A, then every stable matching contains a A .  

50. Let u s  say that a stable matching M i s  less than a stable matching M' (in 
notation, M -< M'), if for all a A E M and a A' E M', either A = A' or a 
prefers A' to A .  Show that the set M of all stable matchings, endowed with 
the partial order -< ,  is a distributive lattice. (All one needs is that if a ,  A ,  and 
A' are as above and A" is the 'better' of A and A' for a, then the edges a A" 
form a suitable matching, and so do the edges aA"' , where A"' is the 'worse' 
of A and A' for a.) Deduce from this that if there are stable matchings, then 
there is a stable matching optimal for the boys. 

5 1 .  Show that the admissions scheme produced by the analogue of the fundamen­
tal algorithm, described at the end of Section 5, has the claimed properties, 
and is optimal for the students. 
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52. Construct a bipartite graph G with preferences such that some stable matching 
of the subgraph spanned by U1 U Uz is not a stable matching in G, where U1 
and Uz are as in Theorem 18 .  

53 .  Let P = (X ,  <) be a partially ordered set containing no  antichain on  m + 1 
elements. Show that P is the union of m chains .  [Hint. Give the space [m]x 

of all functions f : X --+ [m] = { 1 ,  2, . . .  , m }  the product topology. By 
Tychonov's theorem, this space is compact. For two incomparable elements, 
x and y, set 

Vxy = { f E [m]x : f (x) =f:. f(y) } . 

Note that each Vxy is closed and any finitely many of them have a non-empty 
intersection. ]  

54 .  Deduce from Dilworth's theorem the following result of Erdos and Szekeres. 
Every sequence (xi )'! of real numbers with more than kl terms contains either 
an increasing subsequence with k + 1 terms or a decreasing subsequence with 
.e + 1 terms. (A subsequence (xii )0 is increasing if Xio :S Xi1 :S · · · :S Xim ; it 
is decreasing if Xio 2:: Xi1 2:: · · · 2:: Xim ·) Show that a sequence of length kl 
need not contain either. 

55. Show that an incomplete regular graph on n vertices does not contain a 
complete graph on more than n/2 vertices. 

56. Show that every connected regular bipartite graph with more than 2 vertices 
is 2-connected. 

57. Let G be a bipartite graph with bipartition (U, W) , l U I = I W I = n, and 
minimal degree at least n/2. Show that G has a complete matching. 

58 .  Let G be an r-regular bipartite graph, and let Eo be a set of r - 1 edges. Show 
that G - Eo has a complete matching. 

59. Let M be the set of complete matchings of an n by n bipartite graph. Let H 
be the graph with vertex set M in which M1 E M is joined to Mz E M if 
M1 and Mz agree in all but two edges. Is H necessarily connected? 

60:- Let G be a connected graph that is not complete such that for any two distinct 
nonadjacent vertices there are k independent paths joining them. Show that 
K (G) :::: k. 

6 1 .  Let G be an r-regular graph of order 2r - 2 and vertex-connectivity K (G) = k. 
Show that k2 - k + 12 2:: 4r . Show also that equality holds if and only if 
k = O or 1 (mod 4) and V(G) = VI u v2 u v3 . l VI I = r + 1 - k, I V2 1 = k, 
I V3 1 = r - 3, with G[VJ ]  and G[V3) complete, each X! E V1 joined to all 
vertices in v2. each X2 E v2 joined to all vertices in VI and to k - 1 vertices 
in v3 . and each X3 E v3 joined to four vertices in v2. Note, in particular, that 
k = K(G) 2:: 4, and there is a unique r-regular graph of order 2r - 2 and 
connectivity 4, namely a certain graph of order 10. 
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62. An n by n matrix S = (Sij ) is said to be doubly substochastic if L:7=I Sij � 1 
for every j and LJ=I Sij � 1 for every i .  Show that every doubly substochastic 
matrix is element-wise dominated by some doubly stochastic matrix; that is, 
if S = (Sij ) is doubly substochastic, then Sij � dij for some doubly stochastic 
matrix D = (dij ) .  

63 .  (Exercise 19  contd.) Let An 2: 0 be the maximal real number such that for 
every n x n doubly stochastic matrix A = (aij )'1 there is a permutation 
matrix P for which all entries of A - An P are non-negative. Show that 
An = 1 / L(n + 1 )2/4J . 

64. Let n 2: 1 .  Show that every n x n doubly stochastic matrix is the convex 
linear combination of (n - 1 )2 + 1 permutation matrices but it need not be 
expressible as a convex linear combination of (n - 1 )2 permutation matrices. 

65. Let s;; be the set of sequences X = (X I , . . .  , Xn) such that Xj 2: 0 for all i 
and L x; = 1 .  The decreasing rearrangement of a sequence x E S;i is the 
sequence x*  = (X[i] ) where X[il is the i th largest term of x .  Let us write x -< y 
to denote the fact that L� X[i] � L� y[ i ] for every k. Show that if X , y E s;; , 
then x -< y if and only if x = Dy for some doubly stochastic matrix D. 

66. Show that for y E S;i the set {x E S;i : x -< y} i s  the convex hull of the points 
obtained by permuting the elements of y .  

67. Let G be a 3-edge-connected cubic graph without a cutvertex. Show that G 
is also 3-connected. (Thus if A( G) = 3 and K (G) 2: 2 then K (G) = 3 . )  Show 
also that there are cubic graphs G of arbitrarily large order with A( G) = 3 
and K (G) = 1 .  

68. Let G be a bipartite graph with bipartition {V1 ,  V2) ,  and let A i c Vi , i = 1 ,  2. 
Let /; be a set of independent edges covering A i , i = 1 ,  2. (Thus h is a 
complete matching from A 1 into V2 , and h is a complete matching from 
A2 into VJ .) Show that h U h contains a set of independent edges covering 
A 1  U A2. 

69. Let G be a connected bipartite graph with 2k + 3 vertices in each class and 
each vertex having degree k or k + 1 .  Show that G has a complete matching 
unless it is a certain graph, to be determined. [Hint. The exceptional graph 
consists of two not quite full copies of Kk+2,k+I , joined by an edge.] 

70. Let G = {VJ ,  V2 ; E) be a bipartite graph such that l f (A) I 2: I A I + d for every 
· A C V1 . A =f:. 0. Show that G has a subgraph H such that dH (x) = d + 1 for 
every x E V1 and l fH (A) I 2: IA I + d for every A C V1 , A =f:. 0. 

7 1 .  Let 1 � d1 � d2 � · · · � dn . Show that (di )'l is the degree sequence of some 
graph if and only if Ll d; is even and 

n n-k 
L d; � k(k - 1 )  + I: min{d; , k} . 

i=n-k+I i=l 
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72. Let G and H be graphs with vertex set.J such t�at da (x) = dH (x) + 1 for 
every x E V. Show tha..!, there is a graph G = ( V, E) such that de (x) = da (x) 
for every x E V and G contains a 1 -factor (i.e. , a set of I V I /2 independent 
edges) . 

73.- Let G be a graph with vertex set V(G) = {x J ,  x2 , . . .  , Xn } such that every 
vertex x; is joined to at most k - 1 of the vertices x 1 , x2 , . . .  , Xi- ! · Show that 
G is k-partite (i .e. , V (G) = U�=l V; , with no edge joining vertices in the same 
class Vi ). 

74.- Show that for all 1 ::::; k ::::; t there is a graph G with vertex-connectivity 
K (G) = k and edge-connectivity A.( G) = t .  

75.- Deduce from Hall 's theorem the following theorem of Konig and Egervary. 
Let A be an m x n matrix of Os and 1 s, and call a column or row of A a line. 
Then the minimal number of lines containing all the 1s of A is precisely the 
maximal number of 1 s  with no two in the same line. 

76. Let x and y be vertices of G at distance d. Suppose that after the deletion of 
any k - 1 of the vertices the distance between x and y is still d. Show that G 
contains k independent x - y paths, each of length d. 

77. Let x and y be adjacent vertices of degree at least k in a graph G.  Show that 
if Gjxy is k-connected then, so is G .  [The graph Gjxy is obtained from G 
by contracting the edge xy, i .e. , by identifying x and y ,  and joining the new 
vertex to all other vertices of G that are joined in G to at least one of x and 
y . ]  

78. Let G be a graph of  minimal degree 3 without two edge-disjoint cycles. Show 
that G is either K4 or K3, 3 (i.e., it is either a complete graph on 4 vertices or 
a complete bipartite graph with 3 vertices in each class). 

79. Determine all multigraphs (graphs with loops and multiple edges) of minimal 
degree 3 without two edge-disjoint cycles. [ In a multigraph, a loop at x adds 
2 to the degree of x ;  a loop forms a cycle of length 1 ,  and two edges joining 
the same two vertices form a cycle of length 2.] 

80. Deduce from the result of the previous exercise that every graph of order n 
and size n + 4 contains two edge-disjoint cycles. 

8 1 .  Show that a graph with n vertices and m edges has an independent set of at 
least 2nj3 - m/3 vertices. For what graphs is equality attained? (What are 
the extremal graphs?) 
The transversal number r (G) of a graph G is the minimal number of vertices 
meeting every edge. Show that the transversal number of a graph with n 
vertices and m edges is at most (n + m)/3. What are the extremal graphs? 

82. For n ?: 2 even, let Fn be the number of 1-factors of Kn . Show that Fn = 
(n - 1 ) ! !  = (n - 1 ) (n - 3)(n - 5) · · · = n !/ { (n/2) !2nf2} .  
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83 .  Let n � 6 be  even, and let e , ,  . . .  , en- ! be edges of  Kn . Show that Kn -

{e , , . . .  , en-d has a 1-factor unless each e; is incident with the same vertex. 

84. Let A be a Steiner triple system on [n] = { 1 ,  . . .  , n} ,  as defined in Exer­
cise 1.4 1 ,  and let U = {x , ,  . . .  , Xn } U {y1 , . . .  , Yn } U {z } be a set of 2n + 1 
elements. Show that 

B = {x;y;z : 1 ::: i ::: n} U {x;XjXk : ijk E A} U {XiYjYk E A} 
is a Steiner triple system on U. 

85. (Exercise 85 contd.) Show that A contains a set Ao of n triples such that each 
i E [n) is in precisely three triples that belong to Ao. Let 

U = X U Y U Z = {XI , . . .  , Xn } U {y ! , . . .  , Yn } U {zo, . . .  , Z6 } 
be a set of 2n + 7 elements, and let H be the bipartite graph with bipartition 
X U Y and edge set {XiYj : ijk E A} . Show that E(H) is the union of six 
1 -factors, F1 , . . .  , F6} ,  and set Fo = {x;y; : 1 ::: i ::: n } .  Finally, set 

c, = {XiXjXk : ijk E A} , 
C2 = {Xi YjZk : XiYj E Fk . 0 :S k :S 6} , 
C3 = {xiYjYk : iik e A \  Aol .  
C4 = {YiYjYk : ijk E Ao} . 
C = C1 U . . .  U Cs ,  

where Cs is a Steiner triple system on the 7-element set Z .  Show that C is a 
Steiner triple system on U. 

86 .  (Exercise 85 contd.) Deduce Kirkman's theorem that if n i s  of  the form 6k + 1 
or 6k + 3 then there is a Steiner triple system of order n . 

III.? Notes 

The basic book on flows is L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks, 
Princeton University Press, Princeton, 1962. It not only contains all the results 
mentioned in the chapter concerning flows and circulations, but also a number of 
applications to standard optimization problems. 

The fundamental theorems of Menger, Hall, and Tutte are in K. Menger, Zur 
allgemeinen Kurventheorie, Fund. Math. 10 ( 1927) 96-1 15 ,  P. Hall, On repre­
sentatives of subsets, J. London Math. Soc. 10 ( 1935) 26-30, and W.T. Tutte, A 
factorization of linear graphs, J. London Math. Soc. 22 ( 1947) 107-1 1 1 .  The proof 
of Tutte's theorem we give is due to T. Gallai, Neuer Beweis eines Tutte'schen 
Satzes, Magyar Tud. Akad. Kijz/. 8 ( 1963) 1 35-1 39, and was rediscovered inde­
pendently by I. Anderson, Perfect matchings in a graph, J. Combinatorial Theory 
Ser. B 10 ( 1971)  1 83-1 86 and W. Mader, Grad und lokaler Zusammenhang in 
endlichen Graphen, Math. Ann. 205 ( 1973) 9-1 1 .  
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The stable matching theorem of Gale and Shapley and its variant concerning 
college admissions are from D. Gale and L.S. Shapley, College admissions and 
the stability of marriage, American Mathematical Monthly 69 ( 1962), 9-15 .  

The results i n  Exercises 8 and 9 are due to D. de Werra, Multigraphs with 
quasi-weak odd cycles, J. Combinatorial Theory Ser. B 23 ( 1977), 75-82. 

A slightly simpler form of the result in Exercise 23 is due to W.T. Tutte; the 
proof indicated in the hint was found by C. Thomassen. An extensive survey of 
results concerning connectivity and matching can be found in Chapters I and II 
of B .  Bollobas, Extremal Graph Theory, Academic Press, London and New York, 
1978 . 

Stable matchings are discussed in D.E. Knuth, Mariages Stables et Leur Re­
lations avec d'Autres Problemes Combinatoires, Les Presses de l 'Universite de 
Montreal, Montreal, 1976, 106 pp. ,  and in its slightly updated translation, Stable 
Marriage and Its Relation to Other Combinatorial Problems -An Introduction to 
the Mathematical Analysis of Algorithms, Amer. Math. Soc. 1997, xiii + 74 pp. 
For an account of the relationship among stable matchings, non-expansive net­
works and optimization, see Tomas Feder, Stable Networks and Product Graphs, 
Memoirs Amer. Math. Soc. ,  Vol. 116, 1995, x + 223 pp. 



IV 

Extremal Problems 

Extremal problems are at the very heart of graph theory. Interpreting it broadly, 
extremal graph theory encompasses most of graph theory; in its narrow sense, it 
contains many of the deepest and most beautiful results of graph theory. 

Of necessity, in this chapter we cannot take the broad view, so we shall concen­
trate on variants of the quintessential extremal problem, the forbidden sub graph 
problem : given a graph F, determine ex(n ; F), the maximal number of edges in 
a graph of order n not containing F. Equivalently, how many edges guarantee that 
our graph contains F? For example, how many edges in a graph of order n force 
it to contain a path of length t? A cycle of length at least t? A cycle of length at 
most t? A complete graph Kr ? 

More generally, an extremal question asks for the extreme values of certain 
graph parameters in various classes of graphs. For example, what is the maximal 
value of r for which there is a 2-connected r-regular graph of order n that is 
not Hamiltonian? Equivalently, how small a value of r guarantees that every 2-
connected r-regular graph of order n is Hamiltonian? We shall not say much about 
these more general extremal questions, although occasionally we shall demand 
that our graphs be k-connected for some k or that their minimal degrees not be too 
small. 

Before going into the details, it is appropriate to say a few words about termi­
nology. If, for a given class of graphs, a certain graph parameter, say the number of 
edges or the minimal degree, is at most some number f, then the graphs for which 
equality holds are the extremal graphs of the inequality. As a trivial example, note 
that an acyclic graph of order n has at most n - 1 edges, and the extremal graphs 
are the trees of order n .  

When we talk of  extremal graphs, uniqueness i s  always understood up to iso­
morphism. Thus, a disconnected graph of order at least n ?: 2d + 2 and minimal 
degree at least d ?: 0 has at most (d!1) + (n-�- 1) edges, and Kd+I U Kn-d- I is 
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the unique extremal graph (see Exercise 2-). Also, a graph of order n without odd 
cycles has at most Ln2 /4J edges, and K Ln/2J , rn/2l is the only extremal graph. 

In the forbidden subgraph problem a graph is extremal if it does not contain 
F and has ex(n ; F) edges; the set of extremal graphs is EX(n ; F) . Thus we 
know from Mantel 's theorem (Theorem 1.2) that ex(n ; K3) = Ln2 /4J and, in fact, 
EX(n ; K3) = {KLn/2J . rnf21 } .  Also, in the previous chapter, Tutte's factor theorem 
enabled us to solve a beautiful extremal problem: how many edges guarantee 
k + 1 independent edges? In this case F consists of k + 1 independent edges ; 
that is, F = (k + 1 )K2 , and for n ;:: 2k + 1 the extremal graphs of ex(n ; F) are 
K2k+! U Kn-2k- ! and/or Kk + Kn-k (see Exercises 111 .38-39). 

The material in this chapter falls conveniently into two parts: the odd sections 
concern paths and cycles, while the even ones are about complete sub graphs. We 
have chosen to alternate the topics in order to have the simpler results first, as in 
most other chapters. 

The first section is about paths and cycles (short and long) in graphs of large 
size. Among other results, we shall give a good bound on ex(n ; Pe) ,  the maximal 
number of edges in a graph of order n without a path of length e. We shall also 
present some fundamental results about Hamilton cycles. 

Extremal graph theory really started in 194 1 ,  when Tunin, considerably ex­
tending Mantel's theorem, determined both the function ex(n ; Kr) and the set 
EX(n ; Kr) .  The second section is devoted to this fundamental theorem together 
with some related results. 

When discussing ex(n ; Pe) and ex(n ; Kr ) , we mostly care about the case when 
n is large compared to e and r. We get rather different problems if F and G have 
the same order. A prime example of these problems will be discussed in the third 
section, the problem of Hamilton cycles. Over the years considerable effort has 
gone into the solution of this problem, and in a certain rather narrow sense the 
present answers are satisfactory. 

The fourth section is devoted to a deep and surprising theorem of Erdos and 
Stone, proved in 1946. The theorem, occasionally called the fundamental theorem 
of extremal graph theory, concerns ex(n ; F) , where F is a complete r-partite graph 
with t vertices in each class, but as an immediate corollary of this result one can 
determine limn-+oo ex(n ; F)jn2 for every graph F. 

The last two sections are about considerable new developments: Szemeredi 's 
regularity lemma and its applications. In 1975, while proving his celebrated the­
orem on arithmetical progressions (see Section VI.4), Szemeredi discovered a 
beautiful result concerning the coarse structure of every graph. This theorem, Sze­
meridi 's regularity lemma, is a vital tool in attacking numerous extremal problems. 
Once again, we do hardly more than point the way. 

IV 1 Paths and Cycles 

When looking for cycles in a graph, the most natural questions concern short 
cycles and long cycles. At most how large is the girth, the minimal length of a 
cycle? At least how large is the circumference, the maximal length of a cycle? 
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Let us see first what we can say about graphs with only a few more edges than 
vertices. A graph G = G(n ,  n + 1 ) ,  that is, a graph with n vertices and n + 1 
edges, has girth g (G) � L2(n + 1 )/3J . Indeed, G has at least two cycles, as its 
cyclomatic number is at least two. Now, if there are two edge-disjoint cycles, then 
g(G) � n!l ; otherwise, there are two vertices joined by three independent paths. 
Writing n 1 ,  n2 and n3 for the lengths of these paths, we have n 1 + n2 + n3 = n + 1 ,  
and the three cycles formed by these three paths have lengths n 1 + n2 , n2 + n3 , 
and n 1 + n3 . The sum of these three lengths is 2(n 1 + n2 + n3) � 2(n + 1 ) ,  so 
G has at least one cycle of length at most 2(n + 1 )/3. 1t is also easily seen that G 
need not contain a cycle of length less than L2(n + 1 ) /3 J .  

Similarly, every graph G(n ,  n + 2) has girth at most (n + 2)/2, and every 
G(n ,  n + 3) has girth at most 4(n + 3)/9 (see Exercises 12-14. Although this 
sequence can be continued for a few more values, the results become more and 
more complicated. 

In looking for short cycles, it is more convenient to postulate that the minimal 
degree is large, rather than that the graph has many edges, so this is what we shall 
do now. In its natural formulation our first theorem gives a lower bound on the 
order of a graph in terms of the minimal degree and the girth, the length of a 
shortest cycle. Equivalently, the result gives an upper bound on the girth in terms 
of the order and minimal degree. 

Theorem 1 For g 2:: 3 and 8 2:: 3 put 

no(g ,  8) = 

{ 1 + -8 -{(8 - 1 ) (g- l)/2 - 1 }  8 - 2 
2 /2 - { (8 - l )g - 1 }  8 - 2 

ifg is odd, 

if g is even. 

Then a graph G with minimal degree 8 and girth g has at least no(g ,  8) vertices. 
Proof Suppose first that g is odd, say g = 2d + 1 ,  d 2:: 1 .  Pick a vertex x .  There is 
no vertex z for which g contains two distinct z-x paths of length at most d, since 
otherwise G has a cycle of length at most 2d. Consequently, there are at least 8 
vertices at distance 1 from x ,  at least 8 ( 8 - 1) vertices at distance 2, and so on, 
and at least 8 (8 - 1 )d- l vertices at distance d from x (Fig. N. 1) . 

* 
FIGURE IV. l .  The cases 8 = g = 5 and 8 = 4, g = 6. 

Thus 

n 2:: 1 + 8 + 8 (8 - 1) + . . · + 8 (8 - 1 )d- l , 
as claimed. 
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Suppose now that g is even, say g = 2d. Pick two adjacent vertices, say x and 
y .  Then there are 2(8 - 1 )  vertices at distance 1 from {x , y} ,  2(8 - 1 )2 vertices 
at distance 2, and so on, and 2(8 - 1 )d- l vertices at distance d - 1 from {x , y} ,  
implying the required inequality. D 

Let Go be an extremal graph of Theorem 1 ,  that is, a graph with parameters 
8 and g, for which equality holds. The proof above implies that Go is regular 
of degree 8; if g = 2d + 1 ,  then Go has diameter d, and if g = 2d, then every 
vertex is within distance d - 1 of each pair of adjacent vertices. It is easily seen 
that no (g , 8) is also the maximal number for which there is a graph with maximal 
degree 8 having the latter property (Exercise 4). We call Go a Moore graph of 
degree 8 and girth g or, if g = 2d + 1 ,  a Moore graph of degree 8 and diameter 
d. In Chapter VIII we shall use algebraic methods to investigate Moore graphs. 
Here let us note only that the Heawood graph, the incidence graph of the Fano 
plane, shown in Fig. I. 7, is a bipartite cubic graph of order 14  and girth 6, so it 
is a Moore graph of degree 3 and girth 6. Similarly, the Petersen graph, shown in 
Fig. V. 1 1 , is a Moore graph of degree 3 and diameter 2 (or girth 5). 

Let us see now what we can say about long cycles and paths in a graph. Our first 
result in this direction is a theorem of P6sa, extending a fundamental theorem of 
Dirac from 1952. If a graph of order n is Hamiltonian, then its circumference is 
n, while the length of a longest path is n - 1 .  However, every non-Hamiltonian 
connected graph contains at least as long paths as the circumference of the graph. 
Indeed, if C = XJX2 • · • xe is a longest cycle and l < n then there is a vertex y not 
on C that is adjacent to a vertex of C, say x, .  But then yx,xz · · · xe is a path of 
length l .  

Theorem 2 Let G be a connected graph of order n =:: 3 such that for any two 
non-adjacent vertices x and y we have 

d(x) + d(y) =:: k . 

If k = n then G is Hamiltonian, and if k < n then G contains a path of length k 
and a cycle of length at least (k + 2) /2. 

Proof Assume that G is not Hamiltonian and let P = X!X2 · · · xe be a longest 
path in G. The maximality of P implies that the neighbours of X! and Xt are 
vertices of P. As G does not contain a cycle of length l ,  x 1 is not adjacent to xe . 
Even more, the path P cannot contain vertices Xi and Xi+! such that X! is adjacent 
to Xi+ !  and xe is adjacent to Xi ,  since otherwise X!X2 . · · XiXtX£- ! · · · Xi+ ! is a 
cycle of length l (Fig. IV.2). 

Consequently, the sets 

f(x ! )  = {Xj : X !Xj E E(G) } and r+(xe) = {Xi+! : XiXl E E(G)} 

are disjoint subsets of {xz , X3 , . . .  , xi } , and so 
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� �� x1 _ 1 x1 .:./-;....__---· --· ... ---.. - - - - · � x 1  X z X; 
� ----

FIGURE IV.2. The construction of a cycle of length l.  

Now, if k = n then this is a contradiction, so G is Hamiltonian. Also, if k < n , 
then this relation implies that G has a path of length .e. - 1 � k. This proves the 
first two assertions of the theorem. 

Finally, the assertion about cycles is even simpler. Assume that d(x 1 ) � d(xt) .  
so  d(x1 ) � fk/21 . Put t = max{i : X !Xi E E(G)} .  Then t � d(x 1 ) + 1 > 
fk/21 + 1 ,  and G contains the cycle XIX2 · • • x1 of length t .  0 

Theorem 2 contains Dirac's theorem: every graph of order n � 3 and minimal 
degree at least n /2 is Hamiltonian. 

In Section 3 we shall make use of the proof of Theorem 2 to obtain detailed 
information about graphs without long cycles and paths. For the moment we 
confine ourselves to noting two of its consequences. 

Theorem 3 Let G be a graph of order n without a path of length k(� 1) .  Then 
k - 1 e(G) :::; -2-n. 

A graph is an extremal graph (that is, equality holds for it) iff all its components 
are complete graphs of order k. 

Proof. We fix k and apply induction on n .  The assertion is clearly true if n :::; k. 
Assume now that n > k and the assertion holds for smaller values of n. 

If  G is disconnected, then the induction hypothesis implies the result. Now, if 
G is connected, then it contains no Kk and, by Theorem 2, it has a vertex x of 
degree at most (k - 1)/2. Since G - x is not an extremal graph, 

k - 1  k - 1 k - 1  e(G) :::; d(x) + e(G - x) < -2- + -2-(n - 1 )  = -2-n. 0 

Theorem 4 Let k � 2 and let G be a graph of order n in which every cycle has 
length at most k. Then 

k e(G) :::; 2 (n - 1 ) .  

A graph is extremal iff it is connected and all its blocks are complete graphs of 
order k. 0 

The proof of this result is somewhat more involved than that of Theorem 3 .  
Since a convenient way of presenting it uses "simple transforms" to be  introduced 
in Section 3, the proof is left as an exercise (Exercise 37), with a detailed hint. 
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IV.2 Complete Subgraphs 

What is ex(n ; Kr+ l ) ,  the maximal number of edges in a graph of order n not 
containing a Kr+l • a complete graph of order r + 1 ?  If G is r-partite, then it does 
not contain a Kr+l • since every vertex class of G contains at most one vertex 
of a complete subgraph. Thus ex(n ; Kr+d is at least as large as the maximal 
size of an r-partite graph of order n. In fact, there is a unique r-partite graph 
of order n that has maximal size. This graph is the Turan graph Tr (n) ,  the 
complete r-partite graph with n vertices and as equal classes as possible (see 
Fig. IV.3), so that if we order the classes by size and there are nk vertices in the 
k th class, then n 1 ::; n 2 ::; · · · ::; n r ::; n 1 + 1 .  To see that this is the case, let 
G be an r-partite graph of order n and maximal size. Clearly, G is a complete 
r-partite graph. Suppose the classes are not as equal as possible; say there are 
m 1 vertices in the one class and mz 2:: m 1 + 2 in another. Then, by transferring 
one vertex from the second class to the first, we would increase the number of 
edges by (m 1 + 1 ) (mz - 1 ) - m 1m2 = mz - m 1 - 1 2:: 1 .  Note that the relations 
n 1 ::; nz ::; · · · ::; nr and L�=l ni = n uniquely determine the ni , and so Tr (n) is 
unique. In fact, ni = L(n + i - 1 )/r J for i = 1 ,  . . . , r .  

FIGURE IV.3 .  The Tunin graph T3 (7) . 

The number of edges in the Tunin graph Tr (n) is usually denoted by tr (n) ;  thus, 
for example, tz (n) = Ln2 /4J . Simple calculations show that 

( 1 )  

In  fact, i f  r 2:: 1 i s  fixed and n --+ oo ,  then 

tr (n) = ( 1 - � + o(l )) G) . 
Here and elsewhere, we use Landau's notation: g = O(f) if g/f is bounded as 
n --+ oo, and g = o(f) if gff --+ 0 as n --+ oo. In particular, o(1 ) denotes a 
function tending to 0 as n --+ oo. 

A fundamental theorem ofTunin states that the trivial inequality ex(n ; Kr+ 1 ) 2:: 
tr (n) is, in fact, an equality for every n and r .  In provmg this, somewhat as in 
the case of Hall's theorem, we have an embarrassment of riches: there are many 
beautiful ways of proving the theorem, since the Tunin graph Tr (n) is ideal for all 
kinds of induction arguments. Before getting down to some proofs, we observe 
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some simple properties of T, (n) and, in general, of graphs of order n and size 
t, (n) ; indeed, after these observations, several proofs of Tunin's theorem will be 
almost immediate. 

Clearly, 8 (T, (n)) = n - fnfrl and �(T, (n)) = n - Lnfr J ,  so the minimal 
degree of a Tunin graph is at most one smaller than its maximal degree. In other 
words, given that T, (n) has n vertices and t, (n) edges, its degrees are as equal as 
possible: if G = G(n , t, (n)) , then 8 (G) :=:: 8(T, (n)) and �(G) :::: � (T, (n)) . Also, 
if x E T, (n) is a vertex of minimal degree, then T, (n) - x is precisely T, (n - 1 ) .  
If H i s  an ( r  - I)-partite graph of  order n - k and H + Kk � T, (n) ,  then, k is 
Ln/r J or fnfrl and H � Tr- 1 (n - k) . As a slight variant of this, we see that if 
H = G(n - k,  tr- 1 (n - k)) and e(H + Kk) = t, (n) ,  then k is Lnfr J or fn/rl . 
Equivalently, t, (n) - k(n - k) > tr- 1 (n - k) unless k is Ln/r J or fnfrl . 

We dignify the final observation by calling it a theorem. 

Theorem 5 Let G be a graph with n vertices and at least t, (n) edges, and let 
x be a vertex of maximal degree, say, d(x) = n - k = �(G). Set W = r (x), 
U = V (G) \ W and H = G[W]. Then e(H) :::: tr- 1 (n - k), and the inequality 
is strict unless k = Lnfr J and U is an independent set of vertices, each of degree 
n - k. 

Proof As we noted above, k ::S Lnfr J .  Assume that e(H) :::: tr- 1 (n - k) . Then 

1 1 t, (n) :::: e (G) = e(H) + "2 L d(u) + 2e(U, W) 
ueU 

::S e(H) + k(n - k) ::S tr- 1  (n - k) + k(n - k) . 

Consequently, k = LnfsJ , e(U, W) = k(n - k), and so G = H + Kk. as claimed. 
0 

From here it is but a short step to connect T, (n) with complete sub graphs and 
thereby deduce the following extension of Tunin's theorem. 

Theorem 6 Let G be a graph with n vertices and at least t, (n) edges. Consider 
the following simple algorithm for finding a complete sub graph of order r + 1 .  
Pick a vertex X! of maximal degree in G 1 = G, then a vertex x2 of maximal degree 
in the subgraph G2 of G 1 spanned by the neighbours of X! , then a vertex X3 of 
maximal degree in the sub graph G3 of G2 spanned by the neighbours of x2 (in 
G2), and so on, stopping with Xl if it has no neighbours in Gt. Then either G is a 
Turan graph T, (n ), or else the procedure above constructs at least r + 1 vertices, 
X ! , x2 , . . .  , Xr+l • which then span a complete sub graph. 

In particular, ex(n ; Kr+ l ) = t, (n), and T, (n) is the unique extremal graph. 
Proof We apply induction on r, noting that for r = 1 there is nothing to prove. Set 
n -k = d(x! )  = �(G). Ife (G2) > tr- t (n - k) , then we are done by the induction 
hypothesis, since G2 cannot be isomorphic to Tr- 1 (n - k) ,  and x 1 ,  followed by the 
vertices x2 , X3 , . . .  , Xr+l we find in G2, gives the sequence as claimed. Otherwise, 
by Theorem 5, k = Lnfr J ,  e(G2) = tr- 1 (n - k) , and G = G2 + Kk . Hence, 
by another application of the induction hypothesis to G2, we see that either our 
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procedure constructs xz, . . .  , Xr+l · or else Gz � T,_z (n - k) and G 1 � Tr- ! (n) , 
as claimed. D 

In I970 Erdos proved a beautiful result about all graphs containing no Kr+! • 
regardless of their number of edges, namely that the degree sequence of a graph 
without a Kr+! is dominated by the degree sequence of an r-partite graph. This 
result again implies Tunin's theorem. 

Theorem 7 Let G be a graph with vertex set V that does not contain Kr+l • a 
complete graph of order r. Then there is an r-partite graph H with vertex set V 
such that for every vertex z E V we have 

IJG is not a complete r-partite graph, then there is at least one vertex zfor which 
the inequality above is strict. 

Proof. We shall apply induction on r .  For r = I there is nothing to prove, since 
G is the empty graph Kn . which is I -partite. Assume now that r � 2 and the 
assertion holds for smaller values of r .  

Pick a vertex x E V for which de (x) i s  maximal and denote by W the set 
of vertices of G that are joined to x .  Then Go = G[W] does not contain a K, 
for otherwise with x it would form a Kr+! · By the induction hypothesis we can 
replace Go by an (r - I)-partite graph Ho with vertex set W in such a way that 
dc0 (y) :::: dH0 (y) for every y E W and strict inequality holds for at least one y 
unless Go is a complete (r - I )-partite graph. Add to Ho the vertices in V - W 
and join each vertex in V - W to each vertex in W. To complete the proof let us 
check that the r-partite graph H obtained in this way has the required properties. 

If z E U = V - W, then dH(Z) = dH(x) = dc (x) � dc (z) , and if z E W, then 
dH (Z) = dH0 (z) + n - I W I � dc0 (z) + n - I W I � dc (z) .  Thus dc (z) :::: dH (Z) 
holds for every z E V .  

What can we say about G if e(H) = e(G)? Then e(Ho) = e (Go), s o  Go i s  a 
complete (r - I )-partite graph. Also, by counting the edges outside Go = Ho, we 
see that 

0 = e(G) - e(Go) = L dc (u) - e(G[U]) - l U l l  W I 
ueU 

:::: l U l l  W I - e(G[U]) - l U l l  WI =  -e(G[U]) , 

implying that G i s  a complete r-partite graph. D 

In order to emphasize the importance ofTunin's theorem, we state it once more, 
this time in its original form, as it was stated in I940. 

Theorem 8 For r, n � 2 we have ex(n ; Kr+! )  = t, (n) and EX (n ; Kr+! )  = 
{T, (n) }. In words, every graph of order n with more than t, (n) edges contains 
a Kr+ ! · Also, T, (n) is the unique graph of order n and size t, (n) that does not 
contain a K r+ I · 
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Proof. The theorem is contained in Theorem 6, and it is also an immediate con­
sequence of Theorem 7, since Tr (n) is the unique r-partite graph of order n and 
maximal size. 

Nevertheless, let us give two more proofs of the theorem itself, based again on 
the properties of Tr (n) .  

3 rd Proof. For r = 1 there i s  nothing to prove, so  fix  r 2:: 2 and apply induction 
on n. For n :::: r + 1 the assertion is trivial, so suppose that n > r + 1 and the 
theorem holds for smaller values of n .  

Suppose G has n vertices, tr (n) edges, and i t  contains no  Kr+l · As Tr (n) is a 
maximal graph without a K r+ 1 (that is, no edge can be added to it without creating 
a Kr+1 ), the induction step will follow if we show that G is exactly a Tr (n) .  Since 
the degrees in Tr (n) differ by at most 1 ,  we have 

8 (G) :::: 8(Tr (n)) :::: �(Tr (n)) :::: �(G) . 

Let x be a vertex of G with degree d(x) = 8 (G) :::: 8(Tr (n)) .  Then 

e(G - x) = e(G) - d(x)  2:: e(Tr (n - 1 ) ) ,  

so  by  the induction hypothesis Gx = G - x is exactly a Tr (n - 1 ) .  
A smallest vertex class of Gx contains L(n - 1 )/r J vertices, and the vertex x is 

joined to all but 

n - 1 - ( n - r� l) = l n � 1 J 
vertices of Gx . Since x cannot be joined to a vertex in each class of Gx . it has 
to be joined to all vertices of Gx save the vertices in a smallest vertex class. This 
shows that G = Tr (n) , as required. D 
4 th Proof. This time we apply induction on n + r. Assume that 2 :::: r < n and 
the assertion holds for smaller values of r + n .  Fix a graph G = G(n , tr (n)) 
without a K r+ 1 : as before, it suffices to prove that we must have G � Tr (n) .  Since 
tr (n) > tr- 1 (n) ,  by the induction hypothesis G contains a Kr . say, with vertex set 
W = {X I ,  x2 , . . . , Xr }. Set U = V (G) \ W and H = G[U] . Clearly, no vertex 
x e U sends r edges to W, so 

e(H) = e(G) - (;) - e(U, W) 

2:: tr- 1 (n) - (;) - (n - r)(r - 1) = tr (n - r) . 

The second equality above follows from the fact that if we remove (the vertex set 
of) a Kr from Tr (n) then we remove precisely (;) + (n - r)(r - 1 )  edges, and we 
are left with a Tr (n - r) .  Now, as H contains no Kr+1 , by the induction hypothesis 
the inequality above implies that H � Tr (n - r ), and every vertex of H is joined 
to precisely r - 1 vertices of W. It is easily checked that this forces G � Tr (n) ,  
as  in  the previous proof. D 
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The proofs above can easily be adapted to give a number of related results ( cf. 
Exercises 1 8-23). Yet another proof of Turan's theorem will be given in Chapter 
VIII. 

In a slightly different formulation, Turan's theorem gives a lower bound on the 
clique number of a graph with given order and size. A maximal complete subgraph 
of a graph is a clique, and the clique number w(G) of a graph G is the maximal 
order of a clique in G. Simply, w( G) is the maximal order of a complete subgraph 
of G. Now, Turan's theorem states that if a graph G has n vertices and m ::=: tr- I (n) 
edges then w( G) ::=: r, unless m = tr- I (n) and G = Tr- I (n ) .  

Now let u s  tum to the problem ofZarankiewicz, which i s  the analogue ofThran's 
problem in bipartite graphs. Write G2(m , n) for a bipartite graph with m vertices in 
the first class and n in the second. What is the maximal size of a G2 (m , n) if it does 
not contain a complete bipartite graph with s vertices in the first class and t in the 
second? This maximum is usually denoted by z(m ,  n ;  s, t) . The following simple 
lemma seems to imply a very good upper bound for the function z (m , n ;  s, t) . 

Lemma 9 Let m ,  n ,  s, t, k, r be non-negative integers, 2 � s � m, 2 � t � n, 
0 � r < m, and let G = G2(m , n) be an m by n bipartite graph of size 
z = my = km + r without a Ks,t sub graph having s vertices in the first class and 
t in the second. Then 

(2) 

Proof. Denote by V1 and V2 the vertex classes of G. We shall say that a t -set (i.e., 
a set with t elements) T of V2 is covered by a vertex x E V1 if x is joined to 
every vertex in T .  The number of t-sets covered by a vertex x E V1 is (d�x)) . Since 
the assumption on G is exactly that each t-set in V2 is covered by at most s - 1 
vertices of V1 , we find that 

(3) 

As Lxev1 d(x) = z = my =  km + r, 0 � r < m, and f(u) = (�) is a convex 
function of u for u ::=: t, inequality (3) implies (2). 0 

The proof of Lemma 9 is the simple but powerful double counting argument; 
as this is perhaps the most basic combinatorial argument, let us spell it out again, 
this time in terms of the edges of a bipartite graph H .  One of the vertex classes of 
H is just VI , but the other is V2(t) , the set of all t-subsets of V2. In our new graph 
H,  join x E V1 to A E vi') if in G the vertex x is joined to all t vertices of A .  
Now, counting from V1 , we see that 

" (d(x )) e(H) = � 
t 

. 
xEVt 
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On the other hand, as G contains no Ks,z . in H every vertex A E vir) has at most 
s - 1 neighbours. Thus 

e(H) � (s - l )G) . 

and the rest is simple algebra. 

Theorem 10 For all natural numbers m, n, s and t we have 

z (m ,  n; s, t) � (s - 1 ) 1 11 (n - t + l )m 1- 1 ft + (t - l )m . 

Proof Let G = Gz(m ,  n) be an extremal graph for the function z (m ,  n ;  s ,  t) = 
my without a K(s , t) subgraph. As y � n, inequality (2) implies 

(y - (t - 1) )1 � (s - l) (n - (t - 1 ) )1m- 1 . D 
The only advantage of Theorem 10  is that it is fairly transparent: for any 

particular choice of the parameters we are better off dealing with inequality (2). 
Thus, for example, 

z(n ,  n; s, 2) � � ( 1 + (4(s - l ) (n - 1 )  + 1 ) 1 12) .  
Indeed, with the notation of Lemma 9 we have n (i} � (s - 1)  (�) . Hence 

y2 - y - (s - l ) (n - 1 )  � 0, 

implying that ny is at most the right-hand side of (4). 

(4) 

The method of proof of Lemma 9 also gives an upper bound for ex(n ; Kz(t)) ,  
the maximal number of  edges in  a graph of  order n without a complete t by t 
bipartite subgraph. 

Theorem 11 Let n, s, t, k and r be non-negative integers, and let G be a graph 
of order z = ny /2 = i (kn + r ), containing no Ks , t · Then 

Furthermore, 
1 1 

ex(n , Ks, r ) � 2Y - 1 ) 1 ftn2- 1 /t + 2Y - l )n . 

Proof As in Lemma 9, let us say that a t -set of the vertices is covered by a vertex 
x if x is joined to every vertex of the t-set. Since G does not contain a K8 , 1 , every 
t-set is covered by at most s - 1 vertices. Therefore, if G has degree sequence 
(di )I then 

and the rest is as in Lemma 9 and Theorem 10. D 
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In fact, there is no need to repeat the proof of Lemma 9 to prove Theorem 1 1 :  a 
simple, and general, "duplication" argument will do the job. Given a graph G with 
vertex set V (G) = {x 1 , . . .  , Xn } ,  construct a bipartite graph H = D(G) as follows. 
Take two disjoint copies of V (G), say V1 = {x; , . . .  , x� } and V2 = {x� ,  . . .  , x�} .  
The graph H has bipartition <V1 , V2) , and x;xj' E E(H) iff XiXj e E(G) .  Clearly, 
e(H) = 2e(G) ; in fact, da (x; ) = dn (x;) = dn (x;') for every i .  It is easily seen 
that if Ks,t C/. G, then Ks, t ct. H, and so z(n ,  n; s, t) 2: 2ex(n , K8, 1 ) .  

What about the order of z(n ,  n ;  t ,  t) ? We see from Theorem 10 that i f  t 2: 2 is 
fixed, then 

z(n ,  n; t, t) � (t - 1) 1 11n2- 1it + (t - 1)n . 
Also, by Theorem 1 1 , 

1 1 /t 2 1 /t 1 ex(n , Kt, t ) � 2y - 1) n - + 2y - 1 )n . 

(5) 

(6) 

It is very likely that (5) and (6) give the correct orders of the functions z(n ,  n; t , t) 
and ex(n , K1 , 1 ) ,  but this has been proved only for t = 2 and 3. In fact, it is rather 
hard to find nontrivial lower bounds for z(m ,  n ;  s ,  t) . In Chapter VII we shall 
use the probabilistic method to obtain a lower bound. Here we present an elegant 
result for t = 2, proved by Reiman in 1958, that indicates the connection between 
the problem of Zarankiewicz and designs, in particular projective spaces, and we 
shall conclude the section with some recent results for t 2: 3 .  
Theorem 12 For n 2: 1 ,  we have 

1 z (n ,  n ; 2, 2) � 2n { 1  + (4n - 3) 1 12} ,  

and equality holds for infinitely many values of n. Furthermore, 

ex(n , C4) � � ( 1  + J4n - 3) . 

Proof Since 2ex(n , Ks, t ) � z(n ,  n ;  s ,  t) , the second inequality is immediate from 
the first. Moreover, the first inequality is just the case s = 2 of (4). In fact, the 
proof of Lemma 9 tells us a considerable amount about the graphs G for which 
equality is attained. We must have d1 = d2 = · · · = dn = d, and any two vertices 
in the second vertex class V2 have degree d and any two vertices in V1 have exactly 
one common neighbour. Also, precisely the same assertions hold with V1 and V2 
interchanged. 

Call the vertices in V2 points and the sets f(x) ,  x e V1 , lines. By the remarks 
above there are n points and n lines, each point is on d lines; and each line contains 
d points, there is exactly one line through any two points and any two lines meet 
in exactly one point. Thus we have arrived at the projective plane of order d - 1 .  
Since the steps are easy to trace back, we see that equality holds for every n for 
which there is a projective plane with n points. In particular, equality holds for 
every n = q2 + q + 1 where q is a prime power. 

In conclusion, let us see the actual construction of G for the above values of n . 
Let q be a prime power and let PG(2, q) be the projective plane over the field of 
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order q .  Let V1 be the set of points and V2 the set of lines. Then 

l VI I = I V2 I = q2 + q + 1 = n .  
Let G be  the bipartite graph G2(n , n )  with vertex classes v, and V2 in  which we 
join a point P E v, to a line l E V2 by an edge iff the point P is on the line 
l. (For q = 2 this gives us the Heawood graph, shown in Fig. 1.7.) Then G has 
n (q + 1 )  = !n { 1  + (4n - 3) 1 12} edges, and it does not contain a quadrilateral. 

0 
A variant of the construction above can be used to show that the bound for 

ex (n ; K2,2) = ex(n ; C4) given in Theorem 1 1  is also essentially best possible. 
The results for K3,3 are almost as satisfactory as the results above for K2,2 = C4 . 

We see from (5) and (6) that z(n ,  n ;  3 ,  3) ::S (2 1 13 + o( l ))n513 and ex(n , K3,3) ::S 
! (2 1 /3 +o( l ))n513 . By using an ingenious construction based on finite geometries, 
Brown showed in 1966 that z (n ,  n ;  3 ,  3) :=:: ( 1  + o( 1 ))n513 and so ex(n , K3,3) :=:: 
<! + o( l ))n513 . Thus (5) and (6) do give the correct orders for K3,3 · However, 30 
years passed before it was proved that the constants ( 1 and 1 /2) in the lower bounds 
of Brown are best possible. In 1996, Fiiredi gave the first substantial improvement 
on the simple upper bound in Theorem 10 when he proved that for 1 ::S t ::S s ::S m 
we have 

z (m ,  n ;  s , t) ::S (s - t + 1 ) 1 11nm 1- lft + tn + tm2-211 • (7) 

Combining (7) with the lower bound given by Brown, we see that z (n ,  n; 3, 3) = 

( 1  + o(1 ))n513 and ex(n , K3,3) = <! + o(1 ))n513 . 
In spite of all these results, much remains to be done. It is very likely that (5) 

and (6) not only give the correct orders but z(n ,  n; t, t) = (c1 + o( 1 ))n2-( l /t) and 
ex(n , K1 , 1 ) = ! <c1 + o( l ))n2-( lft) . Even more, perhaps Fiiredi's inequality (7) is 
essentially best possible and c1 = 1 .  

IV.3 Hamilton Paths and Cycles 

A class of graphs is said to be monotone if whenever a graph L belongs to the 
class and M is obtained from L by adding to it an edge (but no vertex) then M also 
belongs to the class. Most theorems in graph theory can be expressed by saying 
that a monotone class M is contained in a monotone class P. Of course, these 
classes are usually described in terms of graph invariants or sub graphs contained 
by them. For example, the simplest case of Turan's theorem, discussed in the 
previous section, states that the class M = {G(n , m) : m > n2 /4} is contained in 
P = { G : G contains a triangle} .  It is worth noting that a class P of graphs is said 
to be a property of graphs if L E P and L � M imply M E P. 

How should we go about deciding whether M is contained in P? Bondy and 
Chvatal showed in 1976 that in some cases there is a simple and beautiful way of 
tackling this problem. Suppose we have a class T of triples ( G, x ,  y) , where G is 
a graph and x and y are non-adjacent vertices of G, such that if ( G, x ,  y) E T and 
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G E M ,  then G belongs to P iff a+ = G + xy does. This holds, for example, if 
P is the property of containing a Kr and T = { (G, x ,  y) : l f (x) n f(y) l < r - 2} . 
In this case G can be replaced by a+. If a+ also contains two non-adjacent 
vertices, say u and v, such that (G+ , u , v) E T, then we can repeat the operation: 
we can replace a+ by a++ = a+ + uv . Continuing in this way we arrive at a 
graph G* ::::> G that belongs to P if G does and that is a closure of G with respect 
to T; that is, it has the additional property that for no vertices a, b E G* does 
(G* , a, b) E T hold. Thus it is sufficient to decide about these graphs G* E M  
whether or not they belong to P. 

Of course, the method above is feasible only if (i) the class T is simple enough, 
(ii) it is easy to show that G belongs to P iff a+ does, and (iii) if we start with 
a graph G E M, then a graph G* E M is easily shown to belong to P. In this 
section we give two examples due to Bondy and Chvatal that satisfy all these 
requirements: we shall give sufficient conditions for a graph to contain a Hamilton 
cycle or a Hamilton path. Because of the special features of these examples it will 
be convenient to use slightly different notation and terminology. 

Let n and k be natural numbers and let P be a class of graphs of order n. We 
say that P is k-stable if whenever G is an arbitrary graph of order n ,  and x and y 
are non-adjacent vertices of G with d(x) + d (y) :::: k, then G has property P iff 
a+ = G + xy has it also. It is easily seen that for every graph G of order n there 
is a unique minimal graph G* = Ck (G) containing G such that 

da• (x) + da• (y) � k - 1 for xy ¢ E(G*) . 
In the notation of the previous paragraph, we shall take 

T = {G, x ,  y) : I G I = n ,  xy ¢ E(G) , d(x) + d (y) :::: k} ,  

which is certainly simple enough, so (i) will be satisfied. I t  is also encouraging 
that G* = Ck (G) is unique. Almost by definition we have the following principle 
of stability: if P is a k-stable property of graphs of order n ,  then G has property 
P iff Ck (G) has it also. We call Ck (G) the k-closure of G. 

Requirement (ii) is also satisfied, since the gist of the proof of Theorem 2 i s  
that the property of containing a Hamilton cycle is n-stable and the property of 
containing a Hamilton path is (n - I)-stable. Indeed, if d(x) + d (y) :::: n - 1 
whenever x and y are nonadjacent distinct vertices, then the graph is connected, 
so the proof of Theorem 2 can be applied. (In fact, this is exactly what motivated 
the notion of a k-closure.) By the stability principle we obtain the following 
reformulation of Theorem 2 in the case k = n or n - 1 .  
Lemma 13 A graph G is Hamiltonian iff Cn (G) is, and G has a Hamilton path 
if!Cn- I (G) does. D 

Depending on the amount of work we are able and willing to put in at this 
stage (cf. requirement (iii)), we obtain various sufficient conditions for a graph 
to be Hamiltonian. Of course, the case k = n of Theorem 2 is obtained without 
any work, and so is the case k = n - 1 ,  since the conditions imply immediately 
that Cn (G) = Kn in the first case and Cn- I (G) = Kn in the second, and Kn is 



IV.3 Hamilton Paths and Cycles 1 17 

Hamiltonian if n 2:: 3 .  In order to make better use of Lemma 1 3 ,  we shall prove 
the following ungainly technical lemma. 

Lemma 14 Let G be a graph with vertex set V(G) = {x 1 , x2 , . . .  , Xn }. whose 
k-closure Ck (G) contains at most t :::;: n - 2 vertices of degree n - 1 .  Then there 
are indices i, j, 1 :::;: i < j :::;: n, such that XiXJ E E(G) and each of the following 
four inequalities holds: 

j 2:: max{2n - k - i ,  n - t} ,  
d(x;) ::S i + k - n , d(xj ) ::S j + k - n - 1 , 

d(x; ) + d(xj) :::;: k - 1 .  
(8) 

Remark. It is not assumed that the degree sequence d(x1 ) ,  d(x2) ,  . . .  , d(xn) of G 
is ordered in any way. 

Proof. The graph H = Ck (G) is not complete so, we can define two indices i and 
j as follows: 

j = max{£ : dH (xe) =f:. n - 1 } , 
i = max{£ : xexj ¢. E(H)} .  

Then XiXJ ¢. E(H),  so 

dH (X; ) + dH(Xj ) ::S k - 1 ,  
which implies the fourth inequality in (8). Each of the vertices 

Xj+1 , Xj+2 • . . .  , Xn 
has degree n - 1 in H ,  so 

n - j ::;: t  
and 

n - j ::S o (H) ::S dH (X; ) .  
The vertex Xj i s  joined to the n - j vertices following it and to the j - i - 1 
vertices preceding it, so 

dH (Xj ) 2:: (n - j) + (j - i - 1 )  = n - i - 1 .  

These inequalities enable us to show that the indices i ,  j ,  1 :::;: i < j :::;: n ,  satisfy 
the remaining three inequalities in (8). Indeed, 

da (x; ) :::;: dH (x; ) :::;: k - 1 - dH(Xj ) :::;: k - 1 - (n - i - 1 )  = i + k - n ,  
dc (Xj ) ::S dH (Xj ) ::S k - 1 - dH(X; ) ::S k - 1 - (n - j) = j + k - n - 1 ,  

and 

i + j 2:: (n - dH (Xj ) - 1) + (n - dH (x; )) 2:: 2n - 1 - (k - 1 )  = 2n - k, 
completing the proof. D 
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Combining Lemma 1 3  and Lemma 14 (with t = n - 2 and k = n or n - 1 )  we 
obtain the following theorem of Bondy and Chvatal, giving rather complicated 
but useful conditions for the existence of a Hamilton path or cycle. 

Theorem 15 Let G be a graph with vertex set V (G) = {x i ,  xz, . . .  , Xn }, n :::: 3. 
Let e = 0 or 1 and suppose there are no indices i, j, 1 _:s i < j _:s n, such that 
XiXJ ¢ E(G) and 

j :::: n - i + e, 

d(xi ) .:S i - e, d(xj ) .:S j - 1 - e , 

d(xi ) + d(xj ) .:S n - 1 - e . 

If e = 0 then G has a Hamilton cycle, and if e = 1 then G has a Hamilton path. 
D 

An immediate consequence of this result is the following theorem of Chvatal. 

Corollary 16 Let G be a graph with degree sequence d1 _:s dz _:s • · · _:s dn, 
n :=:: 3, and let e = 0 or 1. Suppose 

1 dn-k+e :=:: n - k whenever dk .:S k - e < l (n - e) . 

If e = 0 then G has a Hamilton cycle, and if e = 1 then G has a Hamilton path. 
D 

We draw the attention of the reader to Exercises 32- 33 which show that the 
assertions in the corollary above are in some sense best possible. In particular, if 
d1 _:s dz _:s • • • _:s dn is a graphic sequence such that 

n dk .:S k < 2 and dn-k < n - k, 

then there is a graph G with vertex set {X J ,  xz, . . .  , Xn } such that d(xi ) :=:: di , 
1 _:s i _:s n, and G does not have a Hamilton cycle. 

There is another customary way of showing that a graph has a Hamilton cycle 
or path. Let S be a longest xo-path in G, that is, a longest path beginning at 
XQ : S = XQX! · · · Xk . Then r(xk) C {xo , X ! , . . .  , Xk-d since otherwise S COuld 
be continued to a longer path. If Xk is adjacent to Xj , 0 .:S j < k - 1 ,  then 
S' = xoXJ · · · XjXkXk- I · · · XJ+I is another longest xo-path. We call S' a simple 
transform of S. It is obtained from S by erasing the edge XjXJ+I and adding to 
it the edge XkXj . Note that if S' is a simple transform of S, then S is a simple 
transform of S' and S has exactly d(xk) - 1 simple transforms. The result of a 
sequence of simple transforms is called a transform (see Fig. IV.4). 

The theorem below is usually called P6sa 's lemma: as we shall see in Chap­
ter VII, it can be used to prove the existence of Hamilton cycles in random graphs. 
To present it, let L be the set of endvertices (different from xo) of transforms of 
S and put N = {Xj E S : Xj- 1 E L or Xj+I E L} and R = V \ N U L. Thus L 
is the collection of the last vertices of the transforms, N is the collection of their 
neighbours on S and R is the rest of the vertices. 
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FIGURE IV.4. An x-path and a simple transform of it. 

Theorem 17 The graph G has no L-R edges. 

Proof Recall that there is no edge between L and V (G) \ V (S) , since S is a 
longest xo-path, so in particular V (S) = V (P) for every transform P of S. 

Suppose XiXj E E(G), where x; E L and Xj E R. Let S; be a transform of S 
ending in x; . Since at least one neighbour of Xj on S; is the end vertex of a simple 
transform of S; , Xj cannot have the same neighbours on S and S; , since otherwise 
Xj would belong to N. However, when the edge xj'Xj ,  j' = j - 1  or j + 1 ,  is erased 
during a sequence S -+ S' -+ S" -+ · · · -+ S; of simple transformations, one of 
the vertices xj' , Xj is put into L and the other into N. Thus xj E L U N  = V (G) \ R, 
contradicting our assumption. 0 

The theorems of this section are also obtained with the use of simple transforms: 
they are due to Thomason, who extended earlier results of Smith. 

Theorem 18 Let W be the set of vertices of even degree in a graph G and let xo 
be a vertex of G. Then there is an even number of longest xo-paths ending in W. 

Proof Let H be the graph whose vertex set is the set :E of longest xo-paths in G, 
in  which P1 E :E i s  joined to P2 E :E if  P2 i s  a simple transform of PJ . Since the 
degree of P = xoXI · · · Xk E :E in H is d(xk) - 1 ,  the set of longest paths ending 
in W is exactly the set of vertices of odd degree in H. The number of vertices of 
odd degree is even in any graph, so the proof is complete. 0 

Theorem 19 Let G be a graph in which every vertex has odd degree. Then every 
edge of G is contained in an even number of Hamilton cycles. 

Proof Let xoy E E(G) . Then in G' = G - xoy only xo and y have even degree, 
so in G' there is an even number of longest xo-paths that end in y .  Thus either 
G has no Hamilton cycle that contains xoy or it has a positive even number of 
them. 0 

The most striking case of Theorem 19 is that in a cubic graph every edge is 
contained in an even number of Hamilton cycles; in particular, for every edge of 
a Hamilton cycle there is another Hamilton cycle containing the edge. 
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IV.4 The Structure of Graphs 

The Tunin graph T, (n) does not contain a complete graph of order r + 1 ,  and 
by ( 1 )  it has at least ( 1 - f ) {�) edges. Therefore, a graph of order n and size at 
least ( 1 - f) {�) need not contain a Kr+I · The main aim of this section is to prove 
a deep result of Erdos and Stone, published in 1946, that if e > 0 is fixed then 
en2 more edges ensure not only a Kr+I , but a Kr+I (t) ,  a complete (r + i ) -partite 
graph with t vertices in each class, with t -+ oo as n -+ oo. The Erdos-Stone 
theorem is rightly called the fundamental theorem of extremal graph theory. 

A considerably sharper result, giving the correct speed log n for t -+ oo, was 
published by Bollobas and Erdos in 1976; this is the theorem we shall prove. To 
be precise, in order to make the calculations more pleasant, we shall present only 
a weaker form of this result. 

For r = 1 the problem is precisely the Zarankiewicz problem discussed in 
Section 2, but this time for rather dense graphs, with t -+ oo. What we want can 
be read out of (6), but as we shall be satisfied with an even simpler result, we run 
through the argument. We claim that if e > 0 is fixed and n is large enough, then 
every graph G of order n and minimal degree at least en contains a K2(t) with 
t 2: e log n .  

To prove this, suppose G does not contain a K2(t) . As before, we say that a set 
of t vertices is covered by a vertex x if x is joined to every vertex in the set. Every 
vertex of G covers at least e1n) sets of t vertices, and no set of t vertices is covered 
by t vertices. Therefore, 

This inequality is false for t = r e log n l and n large, since then 

t fn :::=: -e- (1 - -)- < -e-(n) (en) t 1 t 1 2t 1 

t t n en n 
2t 2t < - elog( l /s)dog n < -n l fs < 1 .  en - en 

What we have just proved is the case r = 1 of the theorem below; this result 
is only slightly weaker than the form of the Erdos-Stone theorem to be given as 
Theorem 22. 

Theorem 20 Let r 2: 1 be an integer and let e > 0. Then there is an integer 
no = no(ri e) such that if i G I  = n 2: no and 

then G :> Kr+I (t), where 

o (G) 2: ( 1 - � + e) n ,  

e logn t > . - 2'- I (r - 1 ) !  
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Proof We apply induction on  r . As the case r = 1 was proved above, we  proceed 
to the induction step. Let then r :=:: 2 and let G be a graph with n vertices and 
minimal degree at least ( 1  - � + e)n . Note that 0 < e < 1 1r .  Since 

8 (G) > ( 1 - � + 1 ) n ,  r r (r - 1 )  
by  the induction hypothesis G contains a Kr (T )  = K, say, with I T I = r dr log n l 
vertices in one class, where dr = 22-r I r ! .  Let U be the set of vertices in G - K 
joined to at least ( 1 - � + !) IK I vertices of K.  We claim that 

l U I :=:: en . 
To see this, note that the number f of edges between K and G - K satisfies 

1 1 e 
I K I { ( 1 - - + e)n - IK I } ::;  f ::;  I U I IK I + (n - I U I ) ( l - - + -2 ) 1K I , r r 

that is, 
ren re 
--;;- ::; I U I ( l - 2) + r iK I . 

This implies that I U I :=:: r en 12 :=:: en if n is large enough, so our claim is justified. 
Set t = flog n12r- I (r - 1) !l . Then t ::; r<rei2)Tl , so 

1 e f( 1 - -;: + i) IK i l = r<r - 1 )T + (eri2)Tl :::: (r - 1 )T + t .  
Calling a sub graph H of G covered by a vertex x i f  x i s  joined to  every vertex of 
H,  this inequality shows that every vertex of U covers at least one Kr (t) subgraph 
of K.  In K there are only (�) r such sub graphs, so there is a set W c U, 

I WI :::: I U I I(�Y · 

such that every vertex of W covers the same Kr (t) subgraph of K.  To complete the 
proof, all we have to check is that I W I :=:: t. Now, tleT > el3 , and by Stirling's 
formula, t :=:: (tIe )t , so 

I W I :::: en c� yr :::: en (el3)tr 

> en (el3)rexp{log(el3)re log nl2r- I (r - 1 ) ! } .  

Since r ::; 2r- 1 (r - 1 ) !  and log(el3)e :=:: log( l l6)12 > - 1 ,  we have I W I > t ,  
� � � �  0 

The following observation enables us to weaken the condition above on the 
minimal degree to a condition on the size of a graph. 

Lemma 21 Let c, e > 0. If n is sufficiently large, say n > 3 I e, then every graph 
of order n and size at least (c + e)G) contains a subgraph H with 8(H) :=:: c iH I 
and IH I :=:: e 1 12n. 
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Proof. Let G be a graph of order n > 3/e and size e(G) :::: (c + e) G) . Note that 
in this case 0 < e < e + c ::::; 1 .  If the assertion fails then there is a sequence of 
graphs Gn = G :::> Gn- 1 :::> • • • :::> Ge , e = Le 112nj , such that I GJ I  = j and for 
n :::: j > e the only vertex of G 1 not in G 1 - I has degree less than c j in G 1 .  Then 

e(Ge) > (c + e) (;) -
1� 1 

cj = (c + e) (;) - c { (n : 1) - e : 1) } 
> e (;) + ce : 1) - en > e (;) > G) · 

since 0 < e < 1 and n :::: 3jn. This contradiction completes the proof. D 
Putting together Theorem 20 and Lemma 2 1 ,  we obtain a strengthening of the 

Erdos-Stone theorem of 1946, published by Bollobas and Erdos in 1973. 

Theorem 22 Let r :::: 1 be an integer and let e > 0. Then there is an integer 
no = no(r, e) such that if iG I  = n :::: no and 

e(G) :::: ( 1 - � + e) (;) . 

then G :::> Kr+J (t) for some t :::: e log nj(2r+I (r - 1 ) !) .  

Proof. If n > 3 I e then, by Lemma 21, G has a sub graph H with I H I = h :::: e 1 12n 
and o (H) :::: ( 1  - t + ej2)h . Hence if n is sufficiently large then H contains a 
Kr+l (t) with t :::: � Iog hj(2r- I (r - 1 ) ! ) :::: e log nj (2r+I (r - 1) ! ) ,  as claimed. 

D 
The function no(r, e) appearing in Theorem 22 is not that large: one can check 

that no(r, e) = max{ f3/el , 100} will do (see Exercise 58). 
In a certain sense Theorem 22 is best possible: for every e and r there is a 

constant d: tending to 0 with e such that the graph described in the theorem need 
not contain a Kr (t) with t = Ld: log nj . In fact, we shall see in Theorem VII.3 
that if 0 < e < ! and d2 > -2/ log(2e) ,  then for every sufficiently large n there 
is a graph G(n ,  m) not containing a Kz(t) ,  where m = Len2 J and t = Ld2 log nj . 
This result will imply immediately (cf. Exercise VII. 1 3) that if r > 2 and 0 < e < 
! <r - 1 )-2 then any value greater than -2/ log(2(r - 1 )2e) will do for d: . 

The fact that this example gives the correct speed for d(e, r) is a much deeper 
result: this was proved by Chvatal and Szemeredi in 198 1 ,  by making use of a very 
powerful tool, Szemeredi's regularity lemma, to be presented in the next section. 

Since d log n --+ oo as n --+ oo, Theorem 22 has the following immediate 
corollaries. The first is a slightly weaker form of the original Erdos-Stone theorem. 

Corollary 23 Let F = Kr+I (t), where r :::: 1 and t :::: 1. Then the maximal size 
ofa graph oforder n without a Kr+I (t) is 

ex(n ; F) = ( 1  - �) (;) + o(n2) .  D 
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Corollary 24 Let F1 , F2 , . . .  , Fe be non-empty graphs. Denote by r + 1 the 
minimum of the chromatic numbers of the h that is, let r + 1 be the minimal 
number for which at least one of the Fi is contained in an F = Kr+I (t) for some 
t. Then the maximal size of a graph of order n not containing any of the Fi is 

ex(n ; F1 , F2 , . . .  , Fe ) =  ( 1 - �)G) + o(n2) .  

Proof The Tunin graph Tr (n) does not contain any of the Fi so, by  ( 1 ), 

ex(n ; F1 , F2 , . . .  , Fe ) ::: e(Tr- I (n)) = tr- I (n) :S ( 1 - �) (;) . 
Conversely, since, say Fj C F = Kr+I (t) for some j and t , 

ex(n ; F1 , F2 , . . .  , Fe ) :S ex(n ; Fj) ::; ex(n ; F) = ( 1  - �) (;) + o(n2) . 0 

Theorem 22 is the basis of a rather detailed study of the structure of extremal 
graphs, initiated by Erdos and Simonovits, giving us considerably more accurate 
results than Corollary 24. This theory is, however, outside the scope of our book. 

The density of a graph G of order n is defined to be e( G) I m. The upper density 
of an infinite graph G is the supremum of the densities of arbitrarily large finite 
sub graphs of G. It is surprising and fascinating that not every value between 0 
and 1 is the upper density of some infinite graph; in fact, the range of the upper 
density is a countable set. 

Corollary 25 The upper density of an infinite graph G is 1, i. �. � . . . . , or 0. 
Each of these values is the upper density of some infinite graph. 

Proof Let Gr be the complete r-partite graph with infinitely many vertices in 
each class. Since the density of Kr (t) tends to 1 - � as t tends to oo, the upper 
density of Gr is 1 - � . proving the second assertion. 

Now, let a be the upper density of G and suppose that 

1 a > 1 - --r - 1 ' 

where r ::: 2. Then there is an e > 0 such that G contains graphs Hk of order nk 
with nk -+ oo satisfying 

e(Hk) ::: � ( 1 - -1- + e) nr 2 r - 1  
By Theorem 20 each Hk contains a subgraph Kr (tk) with tk -+ oo; the subgraphs 
Kr (tk ) show that a ::: � · 0 

The results above give fairly satisfactory answers to the forbidden subgraph 
problem, provided that no forbidden subgraph is bipartite, and Erdos and Si­
monovits have proved several considerably stronger results. However, for a general 
bipartite graph F, the result ex(n ; F) = o (n2) is rather feeble, and for most 
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bipartite graphs F we cannot even determine the exponent a of n for which 

0 < lim ex(n ; F)/na < oo. 
n...,.oo 

Also, we have only rudimentary results for hypergraphs, so much remains to be 
done. 

IV.5 Szemeredi's  Regularity Lemma 

In 1 975 Szemeredi proved one of the most beautiful results in combinatorics: 
every set of natural numbers with positive upper density contains arbitrarily long 
arithmetic progressions (see Section VI.4) . A crucial step in the proof was an inno­
cent looking lemma, which has turned out to be of vital importance in attacking a 
great variety of extremal problems. This lemma has come to be called Szemeredi's 
regularity lemma, although 'uniformity' rather than 'regularity' would be much 
closer to the mark. Roughly speaking, the lemma claims that the vertex set of 
every graph can be partitioned into boundedly many almost equal classes such 
that most pairs of classes are 'regular' , in the sense that the number of edges 
between two subsets of the classes is about proportional to the possible number 
of edges between the subsets , provided that the subsets are not too small. Thus 
for a 'regular' pair of classes it does not happen that some two k-subsets span 
many edges while some others span few edges. In order to formulate the lemma 
precisely, we need some definitions and notation. 

Given a graph G = (V, E) and a pair (X, Y) of disjoint non-empty subsets 
of V ,  denote by e(X, Y) = ec (X, Y) the number of X-Y edges of G, and 
write d(X, Y) = dc (X, Y) = e(X, Y)/( IX ! I Y I )  for the density of the X-Y edges 
of G. Call (X, Y) an 8-uniform pair if 

ld(X* , Y*) - d(X, Y) l < 8 

whenever X* C X and Y* C Y are such that I X* I � 8 IX I  > 0 and I Y* I  � 8 I Y I  > 
0. A partition P = (Ci )7=o of the vertex set V is said to be an equitable partition 
with exceptional class Co if IC1 I = I Cz l  = · · · = ICk 1 .  Finally, an 8-uniform 
partition is an equitable partition (Ci )7=o such that the exceptional class Co has at 
most en vertices and, with the exception of at most 8k2 pairs, the pairs ( Ci , Cj ) , 
1 =::: i < j =::: k ,  are 8-uniform. 

Szemeredi's lemma (Theorem 29) states that every graph has an 8-uniform parti­
tion with a bounded number of classes. We begin the proof with two easy lemmas: 
the first concerns the densities d(X, Y) and the second is a simple inequality. 
Readers are encouraged to skip the proofs. 

Lemma 26 Suppose that X and Y are disjoint sets of vertices of a graph G, 
and X* C X and Y* C Y are such that I X* I  � ( 1  - y ) IX I  > 0 and I Y* I  � 
( 1 - 8) 1 Y I  > 0. Then 

ld(X* , Y*) - d(X, Y) l :S y + 8 (9) 
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and 

Proof. Note that, rather crudely, 

so 

0 � e (X, Y) - e(X* , Y*) � (y + 8 - y8) 1X I I Y I < (y + o) IX I I Y I , 

e(X Y) - e(X* Y*) d(X Y) - d(X* Y*) < ' ' < + 8 . ' ' - IX I I Y I y 

(10) 

If G is replaced by its complement G, then each density d changes to 1 - d, so 

da (X* , Y*) - da (X, Y) = dc(X, Y) - dc(X* , Y*)) < y + o ,  
completing the proof of (9). 

Inequality ( 10) is an immediate consequence of (9): 

ld2 (X* , Y*) - d2(X, f) I 
= ld(X* ,  Y*) + d(X, Y) l ld(X* , Y*) - d(X, f) I < 2(y + 8) . 0 

Lemma 27 Let (di)/=1 C JR, 1 � t < s, D = i Ll=l di . and d = f I:::=l  di . 
Then 

1 � 2 2 t 2 2 t 2 - �di :::: D + -(D - d) :::: D + - (D - d) . s i= l  s - t s 

In particular, ift :::: ys and I D - d l :::: o > 0, then 

Proof. With 

e _ _ l _ � d· - sD - td - � , - ' s - t i=t+l s - t 

the convexity of the function x2 implies that 

s t s 

L:df = I: df + L: df :::: td2 + <s - t)e2 
� f  i= l  i=t+ l  

s2 D2 - 2stdD + t2d2 = td2 + ------­s - t  
= sD2 + _!!_(D - d)2 • s - t 0 
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Given an equitable partition P = (C )7=o with exceptional class Co, let us 
define the square mean of P as 

As d2 ( C; , CJ ) � 1 for all i and j and the sum above has @ terms, we have 0 � 
q (P) < � · 

The final lemma, which is the cornerstone of the proof of the regularity lemma, 
claims that if P is not s-uniform although Co is small enough, then there is a 
partition P' = (C;)f=o • with l a given function of k, such that q (P') is appreciably 
larger than q (P) and I C� I  is only a little larger than I Co l .  To find an s-uniform 
partition, all we need then is to repeatedly replace an appropriate starting partition 
by a partition appreciably increasing the square mean. The process ends after 
boundedly many steps in an s-uniform partition. 

Lemma 28 Let G be a graph of order n with an equitable partition V = u:=o C; 
of the vertex set with exceptional class Co and 

I C1 I = I C2 I = · · · = I Ck l = c � 23k+l . 

Suppose that the partition P = (C; )7=o is not s-uniform, where 0 < s < � 
and 2-k � s5 /8. Then there is an equitable partition P' = (C;)f=o with l = 

k (  4k - 2k- l ) and exceptional class C� :::::> Co such that 

and 

' n I C0 1  � I Co l + 2k 

Proof For a pair (C; , CJ ) that is not s-uniform, let CiJ C C; and CJi C CJ be sets 
showing that (C; , CJ ) is not s-uniform: I CiJ I � s i C; I = sc , I CJi l � s iCJ I = sc , 
and 

( 1 1 )  

Furthermore, for an s-uniform pair (C; , CJ ) , set CiJ = CJi = 0. 
Ideally, we would like to partition each C; into a few (according to the statement 

of the lemma, into 4k - 2k- l ) sets q of size d, say, such that each CiJ is the 
exact union of some of these sets C� . In this way, a large difference ld ( CiJ , CJ i )  -
d(C; , CJ ) I  would guarantee, by Lemma 27, that the part of q(P') arising from 
d2(C; , CJ ) ,  namely 

�: L {d2 (c� . c�) : c� c ciJ . c� c c1; } , 
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is appreciably larger than d2 ( C; , Cj ) .  In tum, this would imply that q (P') is 
considerably larger than q (P) . 

Although we cannot construct sets C� such that each Cij is the exact union of 
some of these sets, we can come fairly close to it: we can achieve that each Cij is 
almost the union of the sets q it contains. We do this by considering, for each C; , 
all the sets C;j at once, and choosing the future C� sets (to be denoted by D;h )  
such that they do not cut across any Cij . The price we have to pay is simply that 
we cannot quite partition C; into the sets C� , so we have to add the remainder to 
the "rubbish bin" Co to obtain a slightly larger exceptional set Cb. 

In order to carry out our plan, for each i ,  1 ::: i ::: k, consider the atoms of the 
algebra on C; induced by the sets Cij , 1 ::: j ::: k, j # i .  These atoms are the 
equivalence classes of the equivalence relation "' on C; in which x "' y means 
that x E C;j iff y E Cij . Note that C; has at most 2k- l atoms. 

Set d = Lc/4kj ,  so that d :=:: 2k+1 and 4kd ::: c ::: 4k (d + 1 ) - 1 ,  and 
put H = 4k - 2k- l . Let D;h , 1 ::: h ::: H, be pairwise disjoint d-subsets of C; 
such that each D;h is contained in some atom of C; . It is possible to choose such 
sets D;h since all but at most d - 1 elements of each atom can be partitioned into 
d-subsets, and 

Hd + 2k- 1 (d - 1 )  = 4kd - 2k- l < 4kd ::: c . 

For i ,  j = 1 , . . .  ' k , i # j ,  set C; = u:=l D;h and C;j = U{D;h : D;h c Cij } = 
U D;h cCij D;h . Our first aim is to show that d ( C; , Cj ) and d ( C; , C i )  are close, and 

so are d(Cij , Cj; )  and d(Cij , Cj; )  if (C; , Cj ) is not £-uniform, so that d(C; , Cj )  
and d(Cij , Cj ; )  are almost as far from each other as d(C; , Cj ) and d(Cij . Cj ; ) .  
Now, 

I C; \ C; l  < 
4k (d + 1 ) - (4k - 2k- 1 )d 

= 
4k + 2k- 1d 

I Cd - 4k (d + 1 )  4k (d + 1 )  
1 1 s5 

< - + - < 2-k < - ( 12) 
d 2k+ 1 - - 8 

Consequently, by Lemma 26, 

and 

Hence 

- - £5 
ld(C C · ) - d(C· C ) l  < -I > 1 l o  1 - 4 

5 2 - - 2 s 
ld (C . C · ) - d (C· C · ) l  < -l o  1 I > 1 - 2 . 

( 1 3) 

( 14) 

( 15) 
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Suppose (C; , Cj ) is not c-unifonn. Then, by ( 12), 

and 

I Cij \ Cij I < I C; \ C; l < c4 

I C;j l - ICij l  - 8 

- - 5 7 I Cij I :::: I Cij I - IC; \ C; l :::: (c - c /8) 1 C; I  :::: ( 1 - T )c iC; I 

( 1 6) 

:::: ( 1 - T7)c iC; I . ( 17) 
Lemma 26 and inequality ( 16) imply that 

- - c4 
ld(Cij . Cj ; ) - d(Cij , Cj ; ) l ::S 4 '  ( 1 8) 

and so, by ( 1 1) , ( 1 3) and ( 1 8), rather crudely, 

ld(Cij ' Cj ; ) - d(C; ' Cj ) I :::: ld(C;j ' Cj; ) - d(C; '  Cj ) I  
- ld(Cij , Cj ; ) - d(Cij , Cj ; ) l - ld(C; , Cj ) - d(C; , Cj ) I  

c4 c5 1 5  
> c - - - - > -c. ( 1 9) 4 4 16  

Hence, i f  ( C; , Cj ) i s  not c-unifonn then, by Lemma 27, 

1 f. f. d2 D D > d2 C C IC;j i i Cj ; l ( 15 ) 2 
H2 LJ LJ ( iu .  j u) - ( ; , j ) + 

I G - I I C · I 
. 

1 6
c 

u= l u=l r 1 

:=:: d2 (C; , Cj ) + (0 - T7)c)2 C!c) 2 
> d2 (C· C · ) + �c4 (20) - , ,  ] 4 ' 

since, by inequality ( 17) , IC;j I ICj ; l  :=:: (0 - 2-7)c)2 1C; I ICj l ·  
Also, for every pair ( C; , Cj ) we have 

1 H H ! 1 H H 1 2 H2 ?;?; d2(D;u .  Dju) :::: H2 ?;?; d(D;u , Dju) 

2 - -
= d (C; , Cj ) . (2 1 )  

All that remains i s  to rename the sets D;h as Cj ,  1 :::; j :::; .e, and check that the 
obtained partition has the required properties. Thus, let { Ci ,  . . .  , C� }  = { D;h :  1 :::; 
i :::; k , 1 :::; h :::; H} and C0 = V \ UJ=1 Cj .  Then C0 ::> Co, with 

k 
I Co \  Co l = L I C; \ C; l :::: 

n
k ' 

i= l 2 

with the inequality following from ( 12). Finally, and most importantly, (20), ( 1 5) , 
and the fact that there are at least ck2 pairs ( C; , Cj ) that are not e-unifonn imply 



that 

as claimed. 
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D 

From Lemma 28 it is a short step to Szemeredi 's regularity lemma. Due to its 
importance we call it a theorem. 

Theorem 29 For m E N and 0 < e < � there is an integer M = M(e, m) 
such that every graph of order at least m has an e-uniform partition (Ci )f=o 
with m � k � M. 

Proof Set t = Le-5 J and define ko , k1 , . . .  , kt+I by letting ko be the minimal 
integer satisfying ko ::: m and 2-ko � e5 /8, and setting ki+I = ki (4k; - 2k; - I ) . 
We claim that M = k123kt+2 will do. 

Let G be a graph of order n ::: m. Partitioning the vertex set of G into n singletons 
and the empty set as the exceptional set, we obtain a 0-uniform partition ( Ci )/=o · 
Hence in proving our claim, we may assume that n > M. 

Let Po = ( Ci(0))�0 
be an equitable partition of the vertex set of G with 

exceptional class c�O) such that I c�O) I = 0 0 0 = I c�) I = Ln I koJ and 0 � I c�O) I � 
n - ko Ln/ koJ < ko < �n . If Po is e-uniform, we are done. Otherwise, let P1 = 

( c?)):�o be the partition guaranteed by Lemma28, with I C�1 ) 1 � I C�o) l +nj2ko < 

en . Once again, if P1 is e-uniform, we are done; otherwise, let P2 = ( c?))::o be 

the partition guaranteed by Lemma28, with I C�2) 1 � I c�O) I +n(2-ko + 2-kl )  < en . 

Continuing in this way, we obtain an e-uniform partition Pj = ( c?)):�o for 
some j with 0 � j � t .  

Indeed, if  Pj i s  not e-uniform and 0 � j � t then I C?) 1 ::: nj2kj ::: 23kj+l 
and 2-kj � e5 /8, so Lemma 28 guarantees a partition Pj+I = ( cij+I ))��d with 

exceptional set I C�j+ I) I � I C�0) 1 + n (2-ko + 2-k1 + · · · + 2-kj )  < en. However, 
Pr+ 1 cannot exist since if it did exist then we would have 

This contradiction completes the proof. D 
The regularity lemma has numerous reformulations : here we give two, leaving 

the easy proofs to the reader (see Exercise 60). 
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Theorem 29' For every e > 0 and m E N there is a natural number M' = 

M' (e, m) such that for every graph G = (V, E) there is a partition V = U�=I C; 
such that m .:=:: k .:=:: M', ICI I .:=:: I Cz l .:=:: · · · _:::: I Ck l _:::: I CI I + 1 and, with the 
exception of at most ek2 pairs, the pairs ( C; , CJ ), 1 _:::: i < j _:::: k, are e-uniform. 

D 
Theorem 29" For every e > 0 and m E N there is a natural number M" = 

M"(e, m) such that for every graph G = (V, E) there is a partition V = U�=O C; 
such that m _:::: k _:::: M", I Co l _:::: k - 1, I CI I = I Cz l = . . .  = I Ck l , and all but at 
most e proportion of the pairs ( C; , CJ ), 1 _:::: i < j _:::: k, are e-uniform. D 

The bound on M(e, m) given in the proof of Theorem 29 is enormous :  unless 
2 

m is immense compared to 1 /e , it is about 22·· · , where the height of the tower 
is about c5 . At first sight this seems to be extremely bad and far from the truth. 
However, in 1997 Gowers proved that M(e, 2) grows at least as a tower of 2s of 
height about e- I / I6 : the argument is a tour de force. 

In fact, it would be a significant achievement to give reasonable estimates for 
a much finer function than M(e, m) or M(e, 2). Given a graph G, call a partition 
V (G) = U�=o V; of the vertex set (,8 , y, o, e)-uniform if ! Vo l _:::: ,B I V (G) I , l VI I _:::: 
I Vz l  .:=:: · • · .:=:: I Vk l .:=:: l VI I + 1 ,  and all but ek2 of the pairs (V; , V1 ) , 1 _:::: i < j _:::: k, 
are such that if W; c V; , W1 c V1 , I W; l :::: y I V; I , and I Wj I :::: y I Vj I , then 

ld(W; , WJ ) - d(V; ,  Yj ) l  < o .  
Let M(,B, y ,  o ,  e )  be the minimal integer such that for every graph G there is 
a (,8 , y, o ,  e)-uniform partition V(G) = U�=O V; with 2 _:::: k _:::: M(,B, y ,  e, 8) . 
Determine the approximate order of M(,B, y ,  o ,  e) as the four variables tend to 
0. This is very likely to be a tall order; as a consolation prize, one could try to 
determine the order of M(,B, y, o, e) as some variables are kept constant and the 
others tend to 0. For example, given some small values ,Bo and eo, what can one 
say about M(,Bo , y ,  o, eo) ,  as y and o tend to 0? 

IV.6 Simple Applications of Szemeredi's  Lemma 

The main use of a Szemeredi-type partition is that it guarantees the existence of 
certain subgraphs, even in graphs with not too many edges. Here is one of the 
standard ways of finding all small r-partite sub graphs. 

Theorem 30 Let f ::;: 2, r ::;: 2, 0 < o < 1/r and let VI , Vz , . . .  , Vr be 
disjoint subsets of vertices of a graph G. Suppose I V; I ::;: 8-f for every i, and 
if 1 _:::: i < j _:::: r and W; C V;, WJ C VJ satisfy I Wi l :::: of i Vi l and I WJ I :::: 
of I Vj 1. then d (W; ,  Wj ) ::;: o. Then for all non-negative integers !I , . . .  , fr with 
Lt=I f; = f there are sets UI C VI , . . .  , Ur C Vr with I U; I = f; for 1 _:::: i _:::: r, 
such that for 1 _:::: i < j _:::: r every vertex of U; is joined to every vertex of UJ . In 
particular, G contains every r-partite graph on f vertices. 
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Proof Let us apply induction on f .  For f = 2 the assertion i s  trivial, s o  suppose 
that f � 3 and the assertion holds for smaller values of f. We may assume 
that ft � 1 .  

For 2 :::= i :::: r ,  let Ri be the set of vertices in VI joined to fewer than o ! Vd 
vertices of vj . Then I Rd < of J Vd ,  so IU�=2 Rd < (r - l)of J VI I  < l VI I · Hence 
there is a vertex x E VI \ U�=2 Ri ; set V{ = VI \ {x } and Vf = Vi n r(x) for 
i = 2, . . .  , r .  Then I V{ I  � o-f - 1 � o-f+I and I V{ I  � ( 1 - of) J VI I  � o J VI I ; 
furthermore, I V[ I � o ! Vd � o-f+I for 2 :::: i :::: r .  Also, if wi c v: and Wj c 
Vj. 1 :::: i < j :::: r, are such that I Wi l  � of- I J V[ I  and I Wi l  � of- I J Vj l .  
then I Wi l  � of J Vi l  and I Wi l  � of i Yj l , so V{ , . . . , v; satisfy the conditions 
for 0 < o < 1 I r and f - 1 .  Hence, by the induction hypothesis, there are 
sets Ui C V{ , . . . , U� C v; with l Ui I = It - 1 and I U[ I = fi for 2 :::: i :::= r 
such that for 1 :::: i < j :::: r , every vertex of Uf is joined to every vertex of Uj. 
Clearly, the sets UI = Ui U {x } ,  U2 = U�, . . . , U, = u; have the required 
properties. 0 

The proof above is very crude indeed, and even as it stands it shows that the 
restrictions on o and Vi are unnecessarily severe and can be relaxed to 0 < o < 
(r - 1 )- I/2 , 0 < o < 1 /2, and ! Vi i � o i-f .  

More often than not, Theorem 30 i s  used in  conjunction with a Szemeredi-type 
partition, as in the following immediate consequence of it. 

Theorem 31 Let f � 2, r � 2, 0 < o < 1 /r, and let VI , . . .  , V, be disjoint sub­
sets of vertices of a graph G. Suppose ! Vi i  � o-f for every i, and all pairs (Vi ,  Vj ) 
are of -regular, with density at least o + of. Then G contains every r-partite graph 
oforder f. 0 

As an application of Theorem 3 1 ,  let us show that if F is a fixed subgraph with 
chromatic number x (F) = r � 2 and n is sufficiently large, then every graph of 
order n not containing F as a subgraph is close to a graph that does not contain 
K, . 

We set the scene in a little more generality than needed for the immediate 
application. Let m � 2, e > 0, and o > 0 be given, and let M = M" (e , m) be 
as in Theorem 29" . For a graph G of order n � M, let V(G) = U�=O Ci be the 
vertex partition guaranteed by Theorem 29" ; thus m :::= k :::= M, I Co I :::= k - 1 ,  
I CI I = I C2 I  = · · · = I Ck l .  and all but e (�) of the pairs (Ci , Cj ) ,  1 :::= i < j :::= n ,  
are e-uniform. Let G[k;  e ;  d > o] be the union of the bipartite subgraphs of 
G spanned by ( C1 , Ci ) for the e-regular pairs of density greater than o. We call 
G[k ;  e ; d > o] an (m ; e ; d > o)-piece of G. For simplicity, we take the 
vertex set to be U�=I C1 , so that G[k; e; d > o] is a k-partite graph with vertex­
classes I CI I  = · · · = I Ck l  = l ,  such that n - k + 1 :::= kl :::= n .  Furthermore, let 
S[k; e; d > o] be the graph on [k] in which ij is an edge if and only if (Ci , Cj ) 
is e-uniform, with density more than o. We call S[k; e ;  d > o] the skeleton of 
G[k;  e; d > o] .  

Note that G[k; e ;  d > o] i s  not unique; we just pick one of the possible graphs 
and for S[k ; e; d > o] take the skeleton it determines. Furthermore, these graphs 
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need not be defined for every k :  all we know is that they are defined for some k in 
the range m ::::; k ::::; M. 

We define G[k;  e ;  0 1 < d < oz] and S[k; e ;  0 1 < d < oz] analogously. 

Theorem 32 Let 0 < e < I and 0 < o < I be real numbers, let m � 2 
be an integer, and let M = M"(e, m) be as in Theorem 29" of the previous 
section. Let G be a graph of order n � M, and let H = G[k ;  e; d > o] be an 
(m ; e; d > o)-piece of G. Then 

e (G) - e(H) < (e + o + � + 2:) n2j2 . 

In particular, ifO < e ::::; o/2, m � 4/o and n � 8Mfo then 
e(G) - e(H) < on2 . 

Proof Let V(G) = U�=O C; be the partition guaranteed by Theorem 29" so that 
! Co l ::::; k - I ,  I C1 l = · · · = I Ck l .  m ::::; k ::::; M, and H is the appropriate k-partite 
graph with classes C 1 , . . .  , Ck . Clearly, E (G) - E (H) consists of four types of 
edges: the edges incident with Co, the edges joining vertices in the same class C; , 
1 ::::; i ::::; k, the C; -CJ edges with (C; , CJ ) not e-uniform, 1 ::::; i < j ::::; k and 
the C; -CJ edges with (C; , Cj ) e-uniform with density at most o, 1 ::::; i < j ::::; k .  
Hence 

as claimed. 0 
Theorem 33 For every e > 0 and graph F, there is a constant no = no(e, F) 
with the following property. Let G be a graph of order n � no that does not 
contain F as a sub graph. Then G contains a set E' of less than en2 edges such 
that the subgraph H = G - E' has no K,, where r = x (F). 
Proof We may assume that r � 2, 0 < e < 1/r ,  and f = I F I � 3. Let o = e/2 
and m � 8/e = 4/o . 

Let M = M" (�J , m) be given by Szemeredi's lemma, as in Theorem 29" . We 
claim that no = rsMo-fl will do. 

Indeed, let H = G[k ;  of ; d > o + of] be an (m ; of ; d > o + of)-piece of 
G, with skeleton S = S[k; of ; d > o + of] .  Then, by Theorem 32, 

e(G) - e(H) < (o + of)n2 < w2• 
Furthermore, by Theorem 30, S contains no K, ; therefore, neither does H .  0 
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Note that Theorem 33 is  a considerable extension of Corollary 23, which is  
essentially the original form of the Erdos-Stone theorem. Indeed, let e > 0 and 
t � 1 be fixed, and let n � no (e, K, (t)) . Then every graph G of order n and size 
at least tr- 1 (n) + en2 edges contains a K, (t) , since otherwise, by Theorem 33 , by 
deleting fewer than en2 edges of G, we would get a graph H without a K, . But as 
e(H) > tr- 1 (n) ,  Tunin's theorem implies that H does contain a K, . Needless to 
say, as a proof of the Erdos-Stone theorem, this is far too heavy-handed. 

Our final application of Szemeredi's lemma concerns a beautiful 'mixed' case 
of the quintessential extremal problem, that of determining ex(n ; F1 , . . .  , Fk) .  We 
have studied ex(n ; K, ) , solved by Turan's theorem, and ex(n ; K8, 1) ,  the problem 
of Zarankiewicz. What happens if we forbid both K, and Ks, t ? How large is 
ex(n ; K, , K8, 1 ) ?  In the case when r and s are fixed and t = Lcnj for some positive 
constant c, in 1988 Frankl and Pach gave an upper bound for this function. First 
we need a result of independent interest. 

Theorem 34 Let H be a k-partite graph with classes C1 , · · · ,  Ck where I C1 I = 
. . .  = i Ck i = l. Suppose there are q pairs (i , j ), 1 � i < j � k, with E(Ci , CJ ) # 
0. Suppose also that 2 � s � t, and G contains no Ks, t with all s vertices in the 
same class ci . Then 

Proof. Except for the minor variation that notall pairs (Ci , Cj ) . 1 � i < j � k, are 
joined by edges, we proceed much as in the standard estimate of the Zarankiewicz 
function z(s , t) . Write d = 2e(G)/k(l) for the average degree of H.  We may 
assume that kd > 2q (s - 1 ) ,  since otherwise there is nothing to prove. For 
x E V (H) and 1 � i � k, let di (x) be the number of neighbours of x in Ci ; also, 
let P = { (x ,  i ) : x E V(H), 1 � i � k, di (x) � 1 } . Then, trivially, 

I P I  � 2ql .  

Let us  define a claw (or s-claw) of  H as a star K1 ,s whose base, the set of  s 
vertices in the second class, is contained in some class Ci . (In the usual estimate 
of the Zarankiewicz function, the base is allowed to be anywhere.) The vertex 
constituting the first class of a claw is the centre of the claw. 

Since H contains no K8, 1 , for every s-subset S of Ci there are at most t - 1 
claws with base S. Hence, writing N for the total number of claws in H,  

On  the other hand, for each vertex x and class Ci , there are (d;;x)) claws with 
centre x and base in Ci , so 

N = L L di (X) = L di (X) . k ( ) ( ) xeV(H) i= l  S (x , i)EP S 
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Therefore, 

In order to give a lower bound for the left-hand side of (22), set l u (u - 1)  . .  · (u - s + 1)fs !  if u � s - 1 , 
fs (U) = 

0 if u � s - 1 .  

(22) 

Then fs : JR. ---+ JR. is a convex function. As L(x, i)eP d; (x) = 2e(H) = kf.d, and 
I P I � 2qf., the convexity of fs implies that 

2qf.Js (kd) � L (d; (x)) · 2q ( ') p s 
X , l  E 

Since �: > s - 1 ,  we have fs ( �:) = (kd�2q) ;  recalling inequality (3) we find that 

2qf.ed�2q) � (t - 1 )kG) . 

But then, rather crudely, (kd ) s 
2qf. 

2q
- (s - 1 )  � (t - l )kf.8 , 

and so 

as claimed. 0 

We are ready to present the theorem of Frankl and Pach that we promised. 

Theorem 35 Let r � 3 and s � 2 be fixed integers, and c and y positive 
constants. Then if n is sufficiently large and G is a graph of order n that contains 
neither K, nor K8 ,1, where t = fen l . then 

e(G) � e lls -=- - + yn2 . 
(r 2) 1- 1/s n2 
r - 1  2 

Proof. We may assume that 0 < y < 1 /2 and c < (r - 2)/(r - 1) ,  since we do 
know that e(G) � tr- 1 (n) � 2(,-=_2

1 ) n
2 . 

Let 8 = yf2, m � 4/8 , and suppose that n � 4Msf8 � 8Mf8, where 
M = M"(8' ; m) .  Let G be a graph of order n containing neither K, nor Ks, t · Let 
H = G[k ;  8' ; d > 8 + 8'] be an (m ; 8' ; d > 8 + 8')-piece of G with skeleton S. 
Then, by Theorem 32, e(G)-e(H) < (8+8')n2 < 2yn2f3, and by Theorem 3 1 , S 
does not contain a K, . Hence, by Tunin's theorem, q = e(S) � (r - 2)k2 f2(r - 1) .  
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As H contains no Ks, t • by Theorem 34 we have, with f. = Ln/ kj , 

2e(H) ::S ( r - 2) I - lls 
(kf.)2- lfs (t - l ) lls + k2f.s r - 1  

Therefore, 

as claimed. 

::s el ls -=-- n2 + Msn ( r 2) I - l ls 

r - 1  

< e lls __ n2 + -. (r _ 2) I - lls yn2 
- r - 1  8 

e(G) < e(H) + yn2 /2+ < e(H) + yn2 , 

0 
In fact, the upper bound in Theorem 35 is essentially best possible: if r :::: 3 and 

s :::: 2 are fixed integers and 0 < c ::S (r - 2)/(r - 1 ) ,  then 

lim ex(n ; Kr , Ks, r )
(n) - l 

= e lls (r - 2) l - l ls
, n-HxJ 2 r - 1 

where t = Lcnj . 
There are a great number of substantial applications of Szemeredi 's regular­

ity lemma. For example, in 1993 Koml6s, Sarkozy, and Szemeredi proved the 
following theorem, conjectured by Bollobas in 1978. 

Theorem 36 For every e > 0 and fl. :::: 1 there is an no = no(e, fl.) such that 
every graph of order n and minimal degree at least ( 1 + e )n /2 contains every tree 
of order n and maximal degree at most fl.. 

In fact, more is true: given e > 0, if c > 0 is small enough, and n is large 
enough then every graph of order n and minimal degree at least ( 1  + e)n/2 
contains every tree of order n and maximal degree at most en .  There are numerous 
related conjectures, the best known of which is the conjecture of Erdos and S6s 
from 1963: every graph of order n and size L(k - 1)n/2J + 1 contains every tree 
with k edges. 

IV. 7 Exercises 

1 :- Show that every graph with n vertices and minimal degree at least Ln/2J is 
connected, but for every n :::: 2 there are disconnected graphs with minimal 
degree Ln/2J - 1 .  

2:- Let G be a graph of order n :::: k + 1 :::: 2 and size at least m - n + k. 
Show that G is k-connected unless it  has a vertex x of degree k - 1 such that 
G - x � Kn- 1 · 
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3. Let 0 ::; k ::; n. Show that an n by n bipartite graph without k + 1 independent 
edges has size at most kn . Determine the unique extremal graph. 

4. (i) Let G be a graph of order n, maximal degree 11 ::;: 3, and diameter d. Let 
no(g ,  8) be as in Theorem 1 .  Prove that n ::; no (2d + 1 ,  /1), with equality iff 
G is /1-regular and has girth 2d + 1 .  
(ii) Let G be a graph of order n ,  maximal degree 11 ::;: 3 ,  and suppose every 
vertex is within distance d - 1 of each pair of adjacent vertices. Prove that 
n ::; no(2d, /1), with equality iff G is /1-regular and has girth 2d. 

5. Prove Theorem 4 for k = 3 and 4. 

6. Show that a graph with n vertices and m > 3(n - 1 )/2 edges contains two 
vertices joined by three independent paths. 

7. Prove that the maximal number of edges in a graph of order n without an even 
cycle is L� (n - l)j . Compare this with the maximal size of a graph without 
an odd cycle. 

8. Show that a tree with 2k endvertices contains k edge-disjoint paths joining 
distinct endvertices. 

9. Suppose x is not a cutvertex and has degree 2k. Prove that there are k edge­
disjoint cycles containing x .  [Cf. Exercise 8 . ]  

10. Show that ifK (G) ::;: 3, then G :J TK4 . Show that the same holds if8 (G) ::;: 3 .  

1 1 .  Deduce from the assertion in Exercise 10 that if e(G) ::;: 2 IG I - 2 then G 
contains a subdivision of K4 . 

12 .  Recall that a graph of order n and size n + 1 has girth at most Lj (n + l )j . 
Show that a graph of order n and size n + 2 has girth at most L(n + 2)/2J . 
Show also that both bounds are best possible. [Hint. Assuming that tS (G) ::;: 3, 
study the multigraph H with 8 (H) ::;: 3 whose subdivision G is.] 

1 3 .  Prove that for k ::;: 1 the maximal girth of a graph of order n = 9k - 3 and 
size 9k is 4k . What is the maximal girth of a graph of order n and size n + 3?  

14. Show that for every k ::;: 1 there i s  a graph of  order 16k - 4 ,  size 16k and girth 
6k. [Hint. Consider an octagon with the opposite vertices joined.] 

1 5 .  Let r ::;: 1. We say that the cycles C1 , . . .  , Cr are nested if Y (G J )  C · · · C 
V (Gr) .  Determine 

min{n : Kn contains r nested cycles} .  

1 6. The domination number of  a graph G is 

min { I W I : W c V(G) ,  W U f(W) = Y(G)} . 

Show that if G has n vertices, then its domination number is at least I .J41i l -
1 - !:i(G), and this inequality is best possible for every n ::;: 1 .  
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17 .  Show that the domination number of a graph of order n and minimal degree 
2 is at most Ln /2J . Note that equality can be attained for every n .  [Hint. 
Assuming, as we may, that every edge of our graph is incident with a vertex 
of degree 2, let U = {u E V(G) : d(u) � 3} ,  and consider the partition 
V (G) = U U W U Z, where W = r(U) . ] 

18:- Show that a graph with n vertices and minimal degree L(r - 2)n/(r - l )J + 1 
contains a Kr . 

19 .  Let G have n � r + 1 vertices and tr- 1 (n) + 1 edges. 
(i) Prove that for every p, r � p � n, G has a subgraph with p vertices and 
at least tr- 1 (p) + 1 edges. 
(ii) Show that G contains two Kr subgraphs with r - 1 vertices in common. 

20:+- Prove that for n � 5 every graph of order n with Ln2 /4J + 2 edges contains 
two triangles with exactly one vertex in common. 

2 1  :+- Prove that if a graph with n vertices and Ln2 /4J - l edges contains a triangle, 
then it contains at least Ln/2J - l - 1 triangles. [Hint. Let X !X2X3 be a 
triangle and denote by m the number of edges joining {x t . x2 , x3 } to V (G) ­
{x t . x2 , x3 } .  Estimate the number of triangles in G - {xt , x2 , x3 } and the 
number of triangles sharing a side with x1X2X3 .) 

22:+- (i) Show that the edges of a graph of order n can be covered with not more 
than Ln2 /4J edges and triangles. 
(ii) Let G be a graph with vertices XI , . . .  , Xn , n � 4. Prove that there is a 
set S, I S I � Ln2/4J , containing non-empty subsets Xt , X2 , . . .  , Xn such that 
XiXj is an edge of G if Xi n Xj =f. 0. 

23.- Let 1 � k � n . Show that every graph of order n and size (k - 1 )n - @ + 1 
contains a subgraph with minimal degree k, but there is a graph of order n 
and size (k - l )n - (�) in which every sub graph has minimal degree at most 
k - 1 .  [Hint. Imitate the proof of Lemma 20.] 

24.- Show that a graph of order n and size (k - 1 )n - (�) + 1 contains every tree 
of order k + 1 .  

25. Let G be a graph of order n that does not contain a cycle with at least one of 
its diagonals. Prove that if n � 4, then G has at most 2n - 4 edges. 
Show that if n � 6 and G has 2n - 4, edges then G is the complete bipartite 
graph K (2, n - 2) . [Hint. Consider a longest path in G.]  

26:- Let k � 1 and let G be a graph of order n without an odd cycle of length less 
than 2k + 1 � 5. Prove that o (G) � Ln/2J and T2(n) is the only extremal 
graph, unless n = 2k + 1 = 5, in which case there is another extremal graph, 
Cs . 

27 :+- Let G be a graph of order n without an odd cycle oflength less than 2k + 1 � 5 . 
Prove that if  G does not contain fn/21 independent vertices then o (G) � 
2n/(2k + 1 ) .  Show that equality holds only for n = (2k + l ) j t  and the 
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extremal graphs are obtained from a cycle Czk+ 1 by replacing each vertex by 
t vertices, as in Fig. IV.S . 

FIGURE IV.5. The graph Cs (2) . 

28. Let X I ,  xz, . . . , Xn be vectors of norm at least 1 in a Euclidean space. Prove 
that there are at most Ln2 /4J unordered pairs i ,  j such that lx; + Xj I < 1 .  
[Hint. Show that if lx 1 l = lxz l = lx3 1 = 1 then lx; + Xj I � 1 for some i ,  j ,  
1 :::: i < j :::: 3. ] 

29:+- Let X and Y be independent identically distributed random variables taking 
values in a Euclidean space. Prove that IP'( IX + Y l � x) � !IP'( IX I � x)2 for 
every x � 0. 

30. Let X I , xz , . . .  , X3p E JR2 be such that lx; - Xj I :::: 1. Prove that at most 3 p2 
of the distances lx; - Xj I are greater than -.fi/2. [Hint. Show that among any 
four of the points there are two within the distance -.fi/2 of each other.] 

3 1 .  Recall that a maximal complete sub graph of a graph is a clique of the graph, 
and the clique number w( G) of a graph G is the maximal order of a clique of 
G .  Thus {x , y }  is the vertex set of a clique of G if xy E E(G) and no vertex 
of G is joined to both x and y. Show that, for every n � 1 ,  there is a graph of 
order n with r n /21 cliques of different orders. 

32. Show also that if G is a regular graph of order n then either w(G) = n or else 
w (G) :::: n /2. Show also that if n � 1 and 1 :::: p :::: n /2 then there is a regular 
graph G of order n with w(G) = p. 

33:+- We say that a set W C V (G) covers the edges of a graph G if every edge 
of G is incident with at least one vertex in W. Denote by ao(G) the minimal 
number of vertices covering the edges of G. Prove that if G has n vertices and 
m edges, then ao(G) :::: 2mnj(2m + n), with equality iff G = pK, for some 
p and r, that is, iff each component of G is K, for some r. [Hint. Note that 
oo (G) = n - w(G), and if w(G) = p, then by Thnin's theorem e(G) :::: tp (n) , 
so m = (�) - tp (n) . ] 

34. The edge clique-cover number Oe (G) of a graph G is the minimal number of 
cliques of G whose union is G. Call two vertices x, y equivalent if xy E E (G) 
and every z E V (G) \ {x , y}  is joined to x iff it is joined to y. Check that if 
x and y are equivalent vertices then e+e(G) = Oe (G') , where G' = G\{y } .  
Prove that if G contains neither isolated vertices, nor equivalent vertices, then 
ee (G) � log2 (n + 1 ) ,  where n is the order of G. [Hint. Let K1 , . . .  , Km 



IV.7 Exercises 1 39 

be cliques of G with G = U�1 K; . For x E V(G), let I (x) = {i : K; 
contains an edge incident with x} .  Check that if x ,  y E V (G) and x =I= y ,  then 
I (x) =I= I (y) . ] 

35:+ (Cf. Corollary 1 6.) Let d1 ::; dz ::: · · · ::: dn be a graphic sequence such that 
for some k, 

n dk ::: k < 2 and dn-k ::; n - k - 1 .  

Show that there is a non-Hamiltonian graph G with vertex set {x i ,  xz , . . .  , Xn } 
such that d(x; ) � d; , 1 ::: i ::: n (cf. Fig. N.6). 

FIGURE IV.6. The graph (K2 U £3) + K3 has no Hamilton cycle and (K2 U £3) + K2 
has no Hamilton path. 

36:+ (Cf. Corollary 1 6.) Let d1 ::; dz ::; · · · ::; dn be a graphic sequence such that 
for some k, 

1 dk ::: k - 1 < 2 (n - 1) and dn+I-k ::: n - k .  

Prove that there is a graph G with vertex set {x i , xz , . . .  , Xn } such that d(x;) � 
d; , 1 ::: i ::: n, and G does not contain a Hamilton path ( cf. Fig. N.6). 

37. Prove that a non-Hamiltonian graph of order n � 3 has at most m - (n - 2) 
edges and there is a unique extremal graph. 
Prove that a graph of order n � 2 without a Hamilton path has at most 
m - (n - 3) edges and Kn- I U K1 is the unique extremal graph. 

38 .  Given 8 < n/2, determine the maximal number of edges in a graph G of order 
n without a Hamilton cycle (path), provided that 8 (G) = 8 .  

39:+ Prove Theorem 4 by making use of  simple transforms of  a longest xo-path 
P = xoxi · · · x1 • [Hint. Apply induction on n. If 8 (G) ::; k/2, the result 
follows by induction; otherwise, consider the set L of endvertices of simple 
transforms of P. Put e = I L l , r = maxxEL d(x) ,  and note that e � r and the 
neighbours of each x E L are contained in {x1 , Xr- I • . . .  , Xr-k+d· Deduce 
that e (G) - e(G - L) ::: t(k - e) + t(r + e - k) ::: ktj2 and complete the 
proof by applying the induction hypothesis to G - L.] 

40. Let 1 < a1 < az < · · · < ak ::: x be natural numbers. Suppose no a; 
divides the product of any two others. Prove that k ::: Jr(x) + x213 , where, 
as usual, Jr(x) denotes the number of primes not exceeding x .  [Hint. Put 
VI = { 1 ,  2, . . .  , Lx213 J }  and Vz = {x : x213 ::; b ::: x and b is a prime} .  Show 
first that a; = b;c; , where b; , c; E V = VI U Vz. Let G be the graph (with 
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loops) with vertex set V whose edges (loops) are bi Ci . Note that G does not 
contain a path of length 3.] 

4 1:++ Let 1 < a1 < az < · · · < ak :::; x be natural numbers. Suppose aiaj =f. ahat 
unless {i , j }  = {h ,  l} .  Prove that k :::; rr(x) + cx314 for some constant c > 0. 
[Hint. The graph G in the previous exercise contains no quadrilaterals ;  apply 
Theorem 8 to the bipartite sub graph of G with vertex classes V1 and Vz. Recall 
the prime number theorem, namely that (rr(x) logx)jx � 1 as x � oo.] 

42:+ Denote by Dk(n) the maximal number of occurrences of the same positive 
distance among n points in JRk . Prove that if k :::; 2 then 

0 2 1 1 
hm Dk(n)jn = - - --n--+oo 2 2 Lk/2J 

[Hint. (i) Note that if x E {z E JRk ; z l + z� = 1 and Zi = 0 if i > 2} and 
y E {z E JRk ; z� + zl = 1 and Zi = 0 if i =f. 4 or 4} , then l x - yl = J2. 
(ii) Deduce from Theorem 20 that Dk (n) is at least as large as claimed.] 

43. Show that a graph of order n :::; k(d + 1) with at least k :::; 2 components and 
minimal degree at least d has at most (d + 1) (n - (k - l ) (d + 1 )) 

(k - 1) 
2 

+ 
2 

edges. What is the unique extremal graph? 

44. By checking the details of the 'duplication' argument, show that ex(n , Ks , t ) :::; 
!z(n ,  n ;  s ,  t) . 

45:+ Show that if any k + 1 vertices of a k-connected graph with at least 3 vertices 
span at least one edge, then the graph is Hamiltonian. 

46. Let k and n be natural numbers. Show that every graph of order n and size 
greater than k(n - (k + 1) /2) contains a subgraph of minimal degree k + 1 .  
Show also that for every m :::; k(n - (k + 1 )  /2) there is a graph of order n and 
size m that has no subgraph of minimal degree at least k + 1 .  

47. Let X c JR2 with l X I = n :::; 3 and max{d(x , y) : (x , y) E xC2) } = 1 .  Show 
that there are at most n pairs (x , y) E xC2) with d(x ,  y) = 1 ,  and this bound 
can be attained for every n :::; 3 .  
[Hint. Apply induction on  n . For the proof of  the induction hypothesis, set 
E = { (x ,  y) E XC2) : d(x ,  y) = 1 }  and let G be the graph (X, E) . Assuming 
that l E I :::; n + 1 ,  show that there is a subgraph H c G with o (H) :::; 2 and 
ll(H) :::; 3, and make use of a vertex of degree at least 3 in H to arrive at a 
contradiction.] 

48. Let X = {XI , . . .  , Xn } be a set of n points in the plane, with no three collinear, 
and let G = (X, E) be a graph with n + 1 edges. Show that there are edges 
X I YI . xzyz E E such that the straight line segments [x i ,  Y21 and [xz , yz] are 
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disjoint. Show also that the bound n + 1 is best possible for every n ::: 3 . 
[Hint. Imitate the proof of Exercise 47.] 

49:+" Show that an r-regular graph of order 2r + 1 is Hamiltonian. Show also that 
if r ::: 2, then our graph contains a triangle. 

50:+" (i) Prove that the maximal number of edges of a non-Hamiltonian graph of 
order 2n and minimal degree n - 1 is 3n (n - 1 )/2. 
(ii) Determine ex(n ; Cn) .  

51 .  Determine ex(n ; Pk) for every n and k, where Pk is a path of length k. 
52. Note that if G is a graph of order n ,  then n - a( G) i s  the minimal number 

of vertices representing all edges of G; i .e. , n - a(G) = min{ I R I  : R C 
V (G) , G - R has no edges} .  Here a(G) is the independence number, the 
maximal number of independent vertices, so that a(G) = w(G) . Show that if 
G has no triangles then e(G) � a(G) (n - a( G)) � n2 /4. 

53. Recall that the maximal number of edges in a graph of order n containing only 
even cycles is precisely Ln2 /4J . What is the maximum if every cycle-length 
is a multiple of 3? And if every cycle-length is a multiple of 4? 

54:+" Describe all 2-connected graphs that do not contain an odd cycle of length at 
least five. 

55 .  Let G be a triangle-free graph of order n. Show that LxEV(G) d(x)2 � n3 /4, 
with equality if and only if n is even and G is T2(n) .  [Hint. Recall the proof 
of Mantel's theorem from Chapter 1.] 

56.- For each r ::: 3 ,  construct a graph of order r + 2 that contains no K, but is 
not (r - 1 )-partite. 

57.- Let G be a graph of order n such that no set of n - k vertices is independent 
(i.e., every set of n - k vertices spans at least one edge) and no set of k + 1 
edges is independent (i.e. , among any k + 1 edges, there are two that share a 
vertex). Show that e(G) ::: k + 2. 

58 .  Show that for n ::: 5, the maximal number of edges of a triangle-free non­
bipartite graph of order n is L(n - 1 )2 /4J + 1 .  [Hint. Delete the vertex set of 
a shortest odd cycle.] 

59. Let G be a triangle-free graph of order n and size Ln2 /4J - m.  Show that G 
contains an induced bipartite subgraph of order at least n - 8m In (i .e . ,  there 
is a set W C V(G) such that I W I  ::: n - 8m/n and G[W] is bipartite). 

60. Given r ::: 3, determine the minimal order of a graph that is not (r - I)-partite 
and contains no K, . 

6 1 .  Let G be a graph of average degree d > 0, and let r = f d/41 . Show that for 
some k ::: r ,  G contains a k by k bipartite graph with a 1 -factor, in which 
every vertex in the first class has degree r .  
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62. Let 0 < c < c + .s ::=:: 1 and 1J > (.s/( 1  - c)) 1 12 . Show that if n is sufficiently 
large, then there is a graph of order n and size at least ( c + .s) (�) such that 
every subgraph H with IH I :=::: 7Jn has minimal degree less than c i H I .  

63:+" Check the estimates in the proofs of Theorems 20 and 22 to show that in 
Theorem 22 we may take no (r, .s) = max{ l3/.sl , 100} . 

64:+" Show that for all .s 1  > eo > 0 there is an TJ > 0 such that if Xo c X 1 , 
Yo c Y1 , X 1 n Y1 = 0, I X  1 l  ::=:: ( 1  + 7J) IXo l .  I YI I ::=:: ( 1  + 7J) I Yo l ,  and (Xo ,  Yo) 
is eo-regular, then (X 1 ,  Y1 ) is e 1 -regular. 

65. Deduce Theorems 29' and 29" from Theorem 29. 
66:+" Let P1 , P2 , . . . , Pn be points in the unit square. Show that there are at least 

< rn/21 2 + Ln/2f - n)/2 pairs (i , j) ,  1 ::=:: i < j ::=:: n, with the distance 
d ( h Pj ) being at most 1 .  

67 :t Let P1 , P2 , . . .  , Pn be points in the unit cube. Show that at least n (n - 7) I 14 
pairs (Pi ,  Pj ), 1 ::=:: i < j ::=:: n, are at distance at most 1 from each other. 

68:+" Let G = G(n, m) be triangle-free. Show that for some vertex x E G we have 

e(G[WxD ::=:: m - 4m2jn2 , 
where Wx = {y E G: d(x ,  y) :=::: 2} .  
Show also that if n is even and m = rn/2 for some integer r then this 
inequality is best possible: for some graph G = G(n ,  m) equality holds for 
every x E G. [Hint. Imitate the proof of Theorem 2 in Chapter 1.] 

69. Deduce from Exercise 68 that if G is a triangle-free graph then e(G[WxD ::=:: 
n2j 16  for some vertex x .  Show also that if n is a multiple of 4 then this 
inequality is best possible. 

70. Let G be a graph of size (�) + 1 .  Show that either k is even and �(G) = 1 ,  
or else G has a sub graph of order k + 1 without isolated vertices. 

7 1 .  For n :=::: 1 ,  let m(n) be the maximal integer m such that every graph of order 
2n + 1 and size at most m is the union of a bipartite graph of maximal degree 
less than n .  Check that m(l )  = 2 and m(2) = 7, and prove that for n :=::: 3 we 
have (2n + 1) (n) m(n) = 2 - 2 - 1 .  

[Hint. Make use of the result in Exercise 70.] 

IV.8 Notes 

There is an immense literature on extremal problems: here we shall give only the 
basic references. 
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Colouring 

We wish to arrange the talks in a congress in such a way that no participant will 
be forced to miss a talk they would like to hear: there are no undesirable clashes. 
Assuming a good supply of lecture rooms enabling us to hold as many parallel 
talks as we like, how long will the programme have to last? What is the smallest 
number k of time slots required? Let us reformulate this question in terms of 
graphs. Let G be the graph whose vertices are the talks and in which two talks 
are joined iff there is a participant wishing to attend both. What is the minimal 
value of k for which V (G) can be partitioned into k classes, say V1 , Vz , . . .  , Vk , 
such that no edge joins two vertices of the same class? As in Section IV.4, we 
denote this minimum by x (G) and call it the (vertex) chromatic number of G .  
The terminology originates in  the usual definition of X (G) : a proper colouring or 
simply a colouring of the vertices of G is an assignment of colours to the vertices 
in such a way that adjacent vertices have distinct colours ; x (G) is then the minimal 
number of colours in a (vertex) colouring of G. Thus, for example, x (Kk) = k, 
x (Kk) = 1 ,  x (Czk) = 2 and x (Czk+I ) = 3. 

In general, it  is difficult to determine the chromatic number of a graph. However, 
it is trivial that if Kk c G then x (G) ::: x (Kk) = k. Putting this slightly 
differently, 

x (G) ::: w(G),  ( 1 )  
where w (G) i s  the clique number of  G, the maximal order of  a complete sub graph 
of G .  

Let u s  remark here that we shall use real colours (red, blue, . . .  ) only i f  there 
are few colours, otherwise the natural numbers will be our "colours" .  Thus a 
k-colouring of the vertices of G is a function c : V (G) � { 1 ,  2, . . .  , k} such 
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that each set c- 1 (}) is independent. The sets c- 1 (} ) are the colour classes of the 
colouring. 

Another scheduling problem goes as follows. Each of n businessmen wishes to 
hold confidential meetings with some of the others. Assuming that each meeting 
lasts a day and at each meeting exactly two businessmen are present, in how many 
days can the meetings be over? In this case one considers the graph H whose 
vertices correspond to the n businessmen and where two vertices are adjacent iff 
the two businessmen wish to hold a meeting. Then the problem above asks for the 
minimal number of colours in an edge-colouring of H, that is, in a colouring of 
the edges of H in such a way that no two adjacent edges have the same colour. 
This number, denoted by x ' (H), is the edge-chromatic number or chromatic index 
of H.  Note that x ' (H) is exactly the chromatic number of the line graph of H:  

x ' (H) = X (L(H)) . (2) 
In the first two sections of the chapter we shall present the basic results con­

cerning colourings of vertices and edges. The chromatic numbers of graphs drawn 
on surfaces, especially on the plane, merit separate study. We shall devote much 
of Section 3 to planar graphs; we shall also discuss graphs on other surfaces, and 
we shall give a brief outline of the proof of the most famous result in graph theory, 
the four colour theorem. 

If, instead of colouring every vertex with a colour from the same set [k] = 
{ 1 ,  2, . . .  , k} ,  we demand that the colour of a vertex x be chosen from a special 
set or list L(x) assigned to x, then we arrive at the concept of list colouring. How 
long do the lists have to be to guarantee that there is a proper colouring with 
this restriction? In terms of our example of talks in a congress, each speaker is 
available to talk only on a set of days L(x) :  for how many days must each speaker 
be available to ensure that we can devise an appropriate programme? Some of the 
many beautiful results concerning list colourings will be presented in Section 4. 
As we shall see, list colourings are connected to the stable matchings we studied 
in Section IlLS. 

In the final section we shall prove the basic results concerning perfect graphs. 
A graph is perfect if for every induced subgraph of it we have equality in ( 1 ) . 
These graphs have a surprisingly beautiful structure, and are important not only 
for their own sake but also because of their connections to optimization, linear 
programming and polyhedral combinatorics. 

V. l Vertex Colouring 

In Section 1.2 we noted the simple fact that a graph is bipartite iff it does not 
contain an odd cycle. Thus x (G) � 2 iff G contains an edge and x (G) � 3 iff 
G contains an odd cycle. For k � 4 we do not have a similar characterization 
of graphs with chromatic number at least k, though there are some complicated 
characterizations (cf. Exercises 30-34). Rather than asking for a characterization, 
let us lower our aim considerably, and ask for the most obvious reasons for a 
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graph to have a large chromatic number. We have already noted one such reason, 
namely the existence of a large complete graph: this gave us inequality ( 1 ) . After 
a moment's thought, another simple reason springs to mind: the absence of a large 
independent set. Indeed, if G does not contain h + 1 independent vertices, then 
in every colouring of G at most h vertices get the same colour (every colour class 
has at most h vertices). Hence 

x (G) :=:: max{w (G) , I G I /a(G)} , (3) 

where a( G), the independence number of G, is the maximal size of an independent 
set. 

Although for many a graph G inequality (3) is very weak, it is a definite 
improvement on ( 1 ) . Nevertheless, it is not too easy to see that w(G) can be much 
smaller than x (G) . In fact, it is also not easy to see that we can have w (G) = 2 
and x (G) large, that is, that there are triangle-free graphs of large chromatic 
number (cf. Exercise 12) .  In Chapter VII we shall make use of random graphs 
and inequality (3) to show that there exist graphs with arbitrarily large chromatic 
number and arbitrarily large girth. The difficulty we encounter in finding such 
graphs shows that it would be unreasonable to expect a simple characterization of 
graphs with large chromatic number. Thus we shall concentrate on finding ways 
of colouring a graph with few colours . 

How would one try to colour the vertices of a graph with colours 1 ,  2, . . .  , using 
as few colours as possible? A simple approach is as follows .  Order the vertices, 
say XJ , x2 , . . .  , Xn , and then colour them one by one: give XJ colour 1 ,  then give 
x2 colour 1 if XJX2 � E(G) and colour 2 otherwise, and so on; colour each vertex 
with the smallest colour it can have at that stage. This so-called greedy algorithm 
does produce a colouring, but the colouring may (and usually does) use many 
more colours than necessary. Fig. V. 1 shows a bipartite (i .e. , 2-colourable) graph 
for which the greedy algorithm wastes two colours . However, it is easily seen 
(Exercise 3) that for every graph the vertices can be ordered in such a way that 
the greedy algorithm uses as few colours as possible. Therefore it is not surprising 
that it pays to investigate the number of colours needed by the greedy algorithm 
in various orders of the vertices . 

FIGURE V. l .  In the order X I , x2 , . . .  , xg the greedy algorithm needs four colours . 

First, note that whatever order we take, the greedy algorithm uses at most 
..1.(G) + 1 colours for colouring the vertices of a graph G. Indeed, when we come 
to colouring a vertex x of degree d (x ), at least one of the first d (x) + 1 colours 
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has not been used for a neighbour of x ,  so at least one of these colours is available 
for x .  This simple observation shows that what matters is not even the maximal 
degree but the maximal number of neighbours of a vertex we have coloured before 
we get to the vertex itself. From here it is but a short step to the following result. 

Theorem 1 Let k = maxH 8 (H), where the maximum is taken over all induced 
sub graphs of G. Then x (G) :::=: k + 1 .  

Proof The graph G itself has a vertex of degree at most k; let Xn be such a vertex, 
and put Hn- 1 = G - {xn } .  By assumption, Hn-1 has a vertex of degree at most 
k. Let Xn- 1 be one of them and put Hn-2 = Hn- 1 - {Xn-d = G - {xn , Xn-d · 
Continuing in this way we enumerate all the vertices. 

Now, the sequence X i , xz, . . .  , Xn is such that each Xj is joined to at most k 
vertices preceding it. Hence the greedy algorithm will never need colour k + 2 to 
colour a vertex. 0 

In a somewhat more down-to-earth formulation, Theorem 1 says that a minimal 
(k + I ) -chromatic graph has minimal degree at least k: if x (G) = k + 1 and 
x (H) :::=: k for every proper (induced) subgraph H of G then 8 (G) � k. 

It is, of course, very easy to improve the efficiency of the greedy algorithm. If 
we already have a sub graph Ho that we know how to colour with x (Ho) colours, 
then we may start our sequence with the vertices of Ho, colour Ho in an efficient 
way, and apply only then the algorithm to colour the remaining vertices. This gives 
us the following extension of Theorem 1 .  

Theorem 2 Let Ho be an induced sub graph of G and suppose every sub graph H 
satisfying Ho c H c G, V(Ho) =f. V(H), contains a vertex x E V(H) - V (Ho) 
with dH (x) :::=: k. Then 

x (G) :::: max{k + 1 ,  x (Ho)} . 0 

In some cases the problem of colouring a graph can be reduced to the problem 
of colouring certain sub graphs of it. This happens if the graph is disconnected or 
has a cutvertex or, slightly more generally, contains a complete subgraph whose 
vertex set disconnects the graph. Then we may colour each part separately since, 
at worst by a change of notation, we can fit these colourings together to produce 
a colouring of the original graph, as shown in Fig. V.2. 

As a rather crude consequence of Theorem 1 we see that x (G) :::=: 11 + 1 ,  
where 11 = 11(G) i s  the maximal degree of G, since maxHcG 8 (H) :::=: 11(G).  
Furthermore, if G is connected and not 11-regular, then clearly maxHcG 8 (H) :::=: 
11 - 1 ,  so x (G) :::=: 11. The following result, due to Brooks, takes care of the regular 
case. 

Theorem 3 Let G be a connected graph with maximal degree 11. Suppose G is 
neither a complete graph nor an odd cycle. Then x (G) :::=: 11. 

Proof We know already that we may assume without loss of generality that G 
is 2-connected and 11-regular. Furthermore, we may assume that 11 � 3, since a 
connected 2-regular 3-chromatic graph is an odd cycle. 
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FIGURE V.2. The vertex set of the thick triangle disconnects G, and we find that x (G) = 

max{x (G t ) .  x <G2) , x (G3) } . 

If G is 3-connected, let Xn be any vertex of G and let XJ , x2 be two nonadjacent 
vertices in f(xn) .  Such vertices exist since G is regular and not complete. If G is 
not 3-connected, let Xn be a vertex for which G - Xn is separable, and thus has at 
least two blocks. Since G is 2-connected, each endblock of G - Xn has a vertex 
adjacent to Xn . Let XI and x2 be such vertices belonging to different endblocks. 

In either case, we have found vertices X J ,  x2 and Xn such that G - {X J ,  x2 } 
is connected, XJX2 ¢ E(G), but X!Xn E E(G) and X2Xn E E(G). Let Xn- I E 
V - {XI , x2 , Xn } be a neighbour of Xn , let Xn-2 be a neighbour of Xn or Xn- I , etc. 
Then the order XI , x2 , x3 , . . .  , Xn is such that each vertex other than Xn is adjacent 
to at least one vertex following it. Thus the greedy algorithm will use at most 
tJ. colours, since Xi and x2 get the same colour and Xn , the only vertex with tJ. 
neighbours preceding it, is adjacent to both. D 

Another colouring algorithm can be obtained by reducing the problem to colour­
ing two other graphs derived from G. This reduction also enables us to obtain some 
information about the number of colourings of a graph with a given set of colours. 

Let a and b be nonadjacent vertices of a graph G. Let G' be obtained from G 
by joining a to b, and let G" be obtained from G by identifying a and b. Thus in 
G" there is a new vertex (ab) instead of a and b, which is joined to the vertices 
adjacent to at least one of a and b (Fig. V.3). 

These operations are even more natural if we start with the G': then G is obtained 
from G' by cutting or deleting the edge ab, and G" is obtained from G" by fusing, 
or contracting, ab. 

The colourings of G in which a and b get distinct colours are in 1 -to- 1 cor­
respondence with the colourings of G' . Indeed c : V (G) -+ { 1 ,  2, . . .  , k} is a 

G G' G" 

FIGURE V.3.  The graphs G, G' and G". 
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colouring of G with c(a) =/= c(b) iff c is a colouring of G'. Similarly the colourings 
of G in which a and b get the same colour are in a 1 -to- 1 correspondence with the 
colourings of G". In particular, if for a natural number x and a graph H we write 
pH (x) for the number of colourings of a graph H with colours 1 ,  2, . . .  , x ,  then 

PG (X) = PG' (x) + PG" (x) .  (4) 
By definition x (G) is the least natural number k for which PG (k) � 1 .  Thus both 
the remarks above and relation (3) imply that 

x (G) = min{x (G') ,  x (G") } .  (5) 
The basic properties of pH (x) are given in our next result. 

Theorem 4 Let H be a graph with n � 1 vertices, m edges and k components. 
Then 

n-k 
PH(X) = L:<- l )ia;xn-i ' 

i=O 
where ao = 1, a1 = m and a; is a positive integer for every i, 0 ::S i ::S n - k. 

Proof We apply induction on n + m .  For n + m = 1 the assertions are trivial 
so we pass to the induction step. If m = 0, we are again done, since in this 
case k = n and, as every map f : V (H) � { 1 ,  2, . . .  , x }  is a colouring of 
H,  we have pH (x) = xn . If m > 0 we pick two adjacent vertices of H, say a 
and b .  Putting G = H - ab we find that G' = H .  Since e(G) = m - 1 and 
I G" I + e(G") ::S n - 1 + m, by the induction hypothesis the assertions of the 
theorem hold for PG (x) and PG" (x) .  Note now that G" has k components and G 
has at least k components. Therefore, 

n-k 
PG (X) = xn - (m - 1)xn- l + L(- 1)ib;xn-i , 

i=2 
where b; is a nonnegative integer for each i ,  and 

n-k 
( ) n- 1 ""< 1)i n-i PG" x = x - � - c;x , 

i=2 
where c; is a positive integer for each i .  Hence, by (3), 

PH(X) = PG' (x) = PG (x) - PG" (x) 
n-k 

= xn - mxn- i + L:<-l )i (b; + c; )xn-i 
i=2 
n-k 

= Xn - mxn- i + L(- l )ia;xn-i , 
i=2 

where a; is a positive integer for each i .  0 
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As a trivial consequence of Theorem 4 ,  we see that PH(x) is a polynomial, 
so we are justified in calling it the chromatic polynomial of H .  In fact, it is very 
easy to see from first principles that PH (X ) is a polynomial in x with integer 
coefficients. Write TCr (H) for the number of partitions of V (H) into r non-empty 
independent sets. Then for every natural number x we have 

n 
PH (X) = L TCr(H)(X)r , 

r= l  

where (x)r = x (x - l ) (x -2) · · · (x -r+ 1 )  i s  the falling factorial. The coefficients 
of the chromatic polynomial have a fairly simple interpretation. 

Theorem 5 Let H be a graph with n vertices and edge set E(H) = 
{e 1 , e2 , . . .  , em }. Call a subset of E(H) a broken cycle if it is obtained from 
the edge set of a cycle by deleting the edge of highest index. Then the chromatic 
polynomial of H is 

n- I 
PH(X) = L(- l )iaiXn-i , 

i=O 
where ai is the number ofi -subsets of E(H) containing no broken cycle. 

Proof Let us apply induction on m .  For m = 0 the assertion is trivial, so suppose 
that m =:::: 1 and the assertion holds for smaller values ofm .  Let e 1 = ab and, as 
before, set G = H - ab, so that G' = G + ab = H and G" = Gfab satisfy ( 1 ) .  

With a slight abuse of  notation, we identify not only E(G) = {e2 , e3 , . . .  , em } ,  
but also E(G"), with a subset of  E(H) .  If  an edge of  E(G") comes from only one 
edge of E(G), we keep its notation, and if an edge (ab)x comes from two edges of 
G, say ei = ax and eh = bx , then we denote (ab)x by eb where k = max{ i ,  h } .  

As ( 1 )  holds, to complete the induction step, all we  have to check i s  that the 
number of i -subsets of E ( G') containing no broken cycle of G' is precisely the sum 
of the number of i -subsets of E (G) containing no broken cycle and the number of 
(i - I )-subsets of E(G") containing no broken cycle. But this is a consequence 
of the following two simple assertions. 

( 1 )  Suppose e 1 f/ F c E(G') .  Then F contains no broken cycle of G' iff F 
contains no broken cycle of G .  

(2) Suppose e1 E F c E(G') .  Then F contains no  broken cycle of  G '  if 
F - {e J }  C E(G") and F - {eJ } contains no broken cycle of G". D 

As a by-product of Theorem 5, we see that the number of i -subsets of E(H) 
containing no broken cycle is independent of the order imposed on E (H)-a fact 
which is far from obvious. 

In general, Theorem 5 does not provide a practical method for determining the 
coefficients of the chromatic polynomial. However, if the graph has no short cycles 
then it does give us the first few coefficients. 
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Corollary 6 Let H be a graph with n vertices, m edges, girth g and chromatic 
polynomial 

n 
py(x) = L(-l)ia;xn-i . 

i=O 
Then a; = (7) for i ::S g - 2. Furthermore, if g is finite and H has Cg cycles of 
length g then ag- 1 = (g� J) - cg. 0 

The reduction G -+ { G1, G"} also gives us a natural, although not very practical, 
algorithm for finding the chromatic number. Given a graph G, construct a sequence 
of graphs Go, G 1 ,  . . .  as follows. Put Go = G. Having constructed G; ,  if G; is 
complete, terminate the sequence; otherwise, let Gi+I be G� or G�1 •  The sequence 
has to end in a complete graph G1 ,  say of order IGr l  = k. A k-colouring of G1 can 
easily be lifted to a k-colouring of the original graph G, so x (G) :::: k. Equality (4) 
shows that if we construct all possible sequences from G then x (G) is precisely 
the maximal order of a terminal graph. 

There are other problems that can be tackled by the reduction G -+ { G1 ,  G"} ;  
a beautiful example is  Exercise 1 5+. 

In Chapter X we shall return to this topic, when we study a substantial gener­
alization of the chromatic polynomial, the Tutte polynomial. As we shall see, one 
of the most important properties of the Tutte polynomial is that it can be defined 
by the analogues of the cut and fuse operations for multi graphs. 

V.2 Edge Colouring 

In a colouring of the edges of a graph G, the edges incident with a vertex get 
distinct colours, so X 1 (G), the edge-chromatic number, is at least as large as the 
maximal degree, A (  G) = maxx d(x) :  

X 1(G) 2: A(G).  (6) 

At first sight it is somewhat surprising that this trivial inequality is, in fact, an 
equality for large classes of graphs, including the class of bipartite graphs. Indeed, 
Exercise 22 of Chapter III, which is an easy consequence of Hall's theorem, asserts 
that the edge set E (G) of a bipartite graph G can be partitioned into A(  G) classes 
of independent edges, that is, x 1 (G) = A (G) . 

Another trivial lower bound on x 1 (G) follows from the fact that if G does not 
contain {3 + 1 independent edges, then each colour class has at most {3 edges, so 
we need at least r e( G) I {31 colour classes to take care of all the edges : 

X 1 (G) :::: le(G)/f3l (7) 

Proceeding as in the proof of Theorem I. 1 1 , it is easy to show that if G is a complete 
graph of order at least 2 then equality holds in (7), that is, X 1  (Kn) = n - 1 if n is 
even, and X 1  (Kn) = n if n ::=: 3 is odd (Exercise 29). 
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How can one obtain an upper bound for x ' (G)? Since each edge is adjacent to 
at most 2(/:l.(G) - 1 )  edges, Theorem 1 implies that 

x ' (G) � 2/:l.(G) - 1 .  

Furthermore, if l:l.(G} � 3 ,  then Brooks' theorem gives 

x ' (G) = x (L(G)) � 2/:l.(G) - 2. 

At first sight this inequality seems reasonably good. However, the following 
fundamental theorem of Vizing shows that this is not the case, because the 
edge-chromatic number is always very close to the maximal degree. 

Theorem 7 A graph G of maximal degree l:l. has edge-chromatic number l:l. or 
l:l. + l . 

Proof Let us assume that we have used 1 ,  2, . . .  , l:l. + 1 to colour all but one of 
the edges. We are home if we can show that by recolouring some of the edges, we 
can colour this last edge as well with one of 1 ,  2, . . .  , l:l. + 1 .  

We say that a colour is missing at a vertex z if no edge incident with z gets that 
colour. If z is incident with d' (z) � d (z) � l:l. edges that have been coloured, then 
l:l. + 1 - d' (z) colours are missing at z. In particular, at each vertex at least one 
colour is missing. Our aim is to move around the colours and the uncoloured edge 
in such a way that a colour will be missing at both endvertices of the uncoloured 
edge, enabling us to complete the colouring. 

Let xy1 be the uncoloured edge; let s be a colour missing at x and let t1 be 
a colour missing at Y 1 ·  We shall construct a sequence of edges xy1 , XY2 , . . . , 
and a sequence of colours t1 , t2 , . . .  such that t; is missing at y; and XYi+l has 
colour t; . Suppose we have constructed xy1 , . . .  , xy; and t1 , . . .  , t; . There is at 
most one edge xy of colour t; . If y fl. {y1 , . . .  , y; } ,  we put Yi+1 = y and pick 
a colour t;H missing at Yi+ l · otherwise we stop the sequence. These sequences 
have to terminate after at most l:l.(G) terms; let xy1 , . . .  , xyh and t1 , . . .  , th be the 
complete sequences. Let us examine the two reasons that may have forced us to 
terminate these sequences. 

(a) No edge xy has colour th .  Then recolour the edges xy; , i < h, giving xy; 
colour t; . In the colouring we obtain, every edge is coloured except XYh . However, 
since th occurs neither at x nor at Yh · we may complete the colouring by assigning 
th to XYh · 

(b) For some j < h the edge xyi has colour th . To start with, recolour the edges 
xy; , i < j ,  giving xy; colour t; . In this colouring the uncoloured edge is XYj . Let 
H (s , th ) be the sub graph of G formed by the edges of colour s and th , where s is 
the original colour missing at x and th is missing at Yh . Each vertex of H (s , th ) is 
incident with at most 2 edges in H (s , th) (one of colour s and the other of colour 
th) .  so the components of H(s , th ) are paths and cycles. Each of the vertices x ,  
Yi and Yh has degree at most 1 i n  H (s , th } ,  s o  they cannot all belong to the same 
component of H (s , th) .  Thus at least one of the following two cases has to hold. 
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(b l )  The vertices x and YJ belong to distinct components of H(s ,  th) .  In this 
case interchange the colours s and th in the component containing YJ .  Then s is 
missing at both x and YJ ,  so we may complete the colouring by giving XYJ colour s .  

(b2) The vertices x and Yh belong to distinct components of H(s ,  th ) .  Now 
continue the recolouring of the edges incident with x by giving xyi colour ti 
for each i < h ,  thereby making XYh the uncoloured edge. This change does not 
involve edges of colours s and th , so H(s , th ) has not been altered. Now switch 
around the colours in the component containing Yh . This switch makes sure that 
s is missing at both x and Yh , so we can use s to colour the so far uncoloured 
edge xyh . 0 

Note that the proof above gives an algorithm for colouring the edges with at 
most 11 + 1 colours. 

V.3 Graphs on Surfaces 

There is no doubt that for well over a hundred years the best known problem in 
graph theory was the the four colour problem: prove that every plane graph is 4-
colourable. After numerous false starts and partial results, the problem was solved 
in 1976 by Appel and Haken, relying on ideas of Heesch, when they proved that 
every plane graph can indeed be coloured with four colours. On the other hand, 
Euler's formula implies that every plane graph can be coloured with 6 colours. 
Indeed, by Theorem 1. 16 ,  every plane graph of order n has at most 3n -6 edges and 
so its minimal degree is at most 5. Hence, by Theorem 1 ,  the chromatic number 
is at most 6. Furthermore, with a little more work we can obtain the following 
stronger assertion. 

Theorem 8 Every plane graph is 5-colourable. 
Proof Suppose the assertion is false and let G be a 6-chromatic plane graph with 
minimal number of vertices. As above, we know that G has a vertex x of degree 
at most 5. Put H = G - x .  Then H is 5-colourable, say with colours 1 ,  2, . . . , 5 .  
Each of these colours must be used to colour at least one neighbour of x ,  otherwise 
the missing colour could be used to colour x .  Hence we may assume that x has 5 
neighbours, say x , , x2 , . . .  , xs in some cyclic order about x ,  and the colour of Xi 
is i ,  i = 1 ,  2, . . . , 5. Denote by H (i , j ) the subgraph of H spanned by vertices of 
colour i and j .  

Suppose first that X !  and X3 belong to distinct components of H( l ,  3) .  Inter­
changing the colours 1 and 3 in the component of X ! , we obtain another 5-colouring 
of H.  However, in this 5-colouring both X! and X3 get colour 3, so 1 is not used 
to colour any of the vertices X ! , . . .  , xs . This is impossible because then x can be 
coloured 1 .  

Since X !  and X3 belong to the same component of H ( 1 ,  3) , there is an X !-X3 
path P13 in H whose vertices are coloured 1 and 3. Analogously, H contains an 
x2-x4 path P24 whose vertices are coloured 2 and 4. However, this is impossible, 
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FIGURE V.4. The paths Pn and P24. 

since the cycle x 1 P13X3 of G separates x2 from X4 but P24 cannot meet this cycle 
(Fig. V.4). 0 

Clearly, not every plane graph is 3-colourable. Indeed, K4 is planar and it does 
need 4 colours. Another 4-chromatic planar graph is obtained by joining all five 
vertices of a Cs to a sixth vertex. Thus xo = max{x (G) : G is planar} trivially 
satisfies xo ?: 4 and xo � 5, and the problem is to prove xo � 4. 

Instead of a plane graph, we may wish to consider a graph drawn on a closed 
surface of arbitrary Euler characteristic. We shall see in a moment that, rather 
curiously, the plane is the exception: for every closed surface other than the plane, 
the problem is of an entirely different nature (and much easier). 

We shall need very little about closed surfaces: in fact, all we need is their 
classification theorem and the Euler-Poincare formula. For p > 0, let Sp be 
the closed surface obtained from a 4p-gon by identifying pairs of sides, as in 
Fig. V.S(i), and for q > 0, let Nq be the closed surface obtained from a 2q-gon by 
identifying pairs of sides, as in Fig. V.S(ii) . Thus S1 is the torus, N1 is the projective 
plane and N2 is the Klein bottle; also, let So be the sphere. By the classification 
theorem, every closed surface is homeomorphic to precisely one of the orientable 
surfaces So , S 1 ,  . . .  or one of the non-orientable surfaces N 1 , N2 , . . . .  For p ?: 0, 
the surface Sp has genus p and Euler characteristic x = x (Sp) = 2( 1 -p), and for 
q > 0, the surface Nq has genus q and Euler characteristic x = x (Nq )  = 2-q .  It 
is rather unfortunate that x is the standard symbol for both the Euler characteristic 
of a surface and the chromatic number of a graph. This conflict will occur only in 
this section and, hopefully, it will not lead to any confusion. 

FIGURE V.5.  The torus S1 , the projective plane N1 and the Klein bottle Nz. 
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A triangulation of a surface is a drawing of a graph on the surface such that 
every face is a triangle. The Euler-Poincare formula states that if a triangulation 
of a closed surface of Euler characteristic x has ao vertices, a 1 edges and az faces, 
then ao - a1 + az = x .  An immediate consequence of this is that if a graph G of 
order n is drawn on a surface of Euler characteristic x , then 

e(G) � 3n - 3x , (8) 

with equality iff G is a triangulation of the surface. 
The following easy upper bound on the chromatic number of a graph drawn on 

a closed surface was obtained by Heawood in 1 890. 

Theorem 9 The chromatic number of a graph G drawn on a closed surface of 
Euler characteristic x � 1 is at most 

h (x )  = L(7 + J49 - 24x)/2J . 
Proof Let k be the chromatic number of G. We may and shall assume that G 
is a minimal graph of chromatic number k; otherwise, we may replace it by a 
subgraph. But then o(G) � k - 1 ,  so all we need is that if, for h = h(x ) ,  G has 
n � h + 1 vertices then its minimal degree is at most h - 1 .  Now, if n � h + 1 
then e (G) � 3n - 3x implies that 

o (G) � 6 - 6x f(h + 1 ) .  

Hence i f  we had 8 (G) � h then we would have 

h � 6 - 6x f(h + 1 ) ,  

that is, 

h2 - Sh + 6(x - 1) � o. 
But this would imply the contradiction 

1 h � 2 (s + J49 - 24x ) .  0 

For a surface M, define its chromatic number, s (M), as the maximum of the 
chromatic numbers of graphs drawn on M. Trivially, s (Sg ) � s (Sg+J )  since 
every graph that can be drawn on Sg can also be drawn on Sg+l ; similarly, 
s (Ng ) � s (Ng+J ) .  The simple Theorem 9 states that if M is a surface of Euler 
characteristic x then the chromatic number s ( M) is at most as large as the H eawood 
bound h (x )  = L(7 + J49 - 24x )/2J . 

When does equality hold? The following easy result shows that, for most values 
of x ,  what matters is whether a complete graph can be drawn on a surface. 

Theorem 10 Let x � 0, h = h(x )  = L(7 + J49 - 24x)/2J , and let G be 
a minimal h-chromatic graph drawn on a surface of Euler characteristic X . If 
x f:. - 1 ,  -2 or -7 then G = Kh. 
Proof All we shall use is inequality (8): a graph of order n drawn on a surface of 
Euler characteristic X has at most 3(n - X ) edges. 
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Suppose G =!= Kh . Then n :=:: h + 2. Furthermore, if n = h + 2 then, as claimed 
by Exercise 38 ,  

e(G) = 
(h � 2) 

- 5, 

whichis easily checked to be greater than 3 (h + 2 - x).  Hence n :=:: h + 3 .  Our 
graph G is a minimal h-chromatic graph, so 8 (G) :=:: h - 1 :=:: 6 and, by Brooks' 
theorem, G is not (h - I )-regular. Therefore 

and so 

e(G) > 
n (h - 1 )

, 
2 

n(h - 1 )  + 1 ::: 6(n - x ) .  

Since h :=:: 1 ,  inequality (9) has to hold for n = h + 3,  that is, 

h2 - 4h - 20 + 6x ::: o. 
This implies that 

(9) 

( 10) 

Simple calculations show that ( 1  0) fails for x ::: -20, and it is easily checked that 
for - 19 ::: x ::: 0 inequality ( 10) fails unless x = - 1 ,  -2 or -7. 0 

In fact, Theorem 10 holds without any exceptions: this can be proved by using 
a slightly better bound on the size of a minimal h-chromatic graph of order n . 

From Theorem 10, i t  i s  easy to determine the chromatic number of  a surface of 
small genus other than the sphere. 

Theorem 11 The torus, the projective plane and the Klein bottle have chromatic 
numbers s (Sr ) = 7, s (Nr ) = 6 and s(Nz) = 6. 

Proof. The Euler characteristics of these surfaces are x ( N 1 ) = 1 and x ( S 1 ) = 
x (Nz) = 0, therefore Theorem 9 implies that s (Nr )  ::: 6 and s (Sr ) ,  s (Nz) ::: 7. 
Fig. V.6 shows that K6 triangulates Nr and K7 triangulates Sr , so s (Nr ) = 6, 
s (Sr ) = 7 and 6 ::: s (Nz) ::: 7 .  

Our problem is then to decide whether the chromatic number of the Klein bottle 
is 6 or 7. We know from Theorem 10 that s (Nz) = 7 iff K1 can be drawn on 
Nz, and so K1 triangulates Nz . To complete the proof, we shall show that K1 
triangulates a unique closed surface, the torus, so that s (Nz) = 6. 

Suppose then that we have a triangulation by K 7 of a closed surface (of Euler 
characteristic 0). Then every vertex of K 7 is on the boundary of six triangular 
faces, and the third sides of these triangles form a 6-cycle. Writing 0, 1 ,  . . .  , 6 
for the vertices, we may assume that the 6-cycle ' surrounding' 0 is 123456. Then 
vertex 1 is surrounded by 602x · y ,  vertex 2 by 301x · · , and so on (see Fig. V.7). 
But then x has to be 4 or 5 :  by symmetry, we may assume that it is 4. Having 
made this choice, everything else is determined: looking at the neighbourhoods 
of 1 and 6, namely the cycles y6024· and 501y  · · , we see that y = 3, then we 
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3 

3 

FIGURE V.6. Triangulations of the projective plane N1 by K6, and of the torus S1 by K 1 .  

get z = 2, u = 1 ,  and so  on, a s  shown in  Fig. V.7 .  What we have proved is that 
if K1 triangulates a surface then this triangulation is unique (up to reflection) and 
is as in Fig. V.7 .  But this labelling is easily seen to be consistent and to give a 
triangulation of the torus. (As it happens, we already know that K7 triangulates 
the torus, but in this proof we were forced to find that triangulation.) In particular, 
K1 cannot be drawn on the Klein bottle, so s (N2) = 6, and we are done. 0 

FIGURE V.7. The start of a triangulation given by K7 , and the labelling of the entire 
triangular lattice. 

In fact, the Heawood bound h (X ) in Theorem 9 is best possible for every closed 
surface other than the Klein bottle: if M is a closed surface of Euler characteristic 
x � 1 and M is not the Klein bottle, then s (M) = h (x ) .  Although this was 
claimed by Heawood in 1 890, his proof was incorrect, and the assertion became 
known as Heawood's conjecture. The first correct proof of Heawood's conjecture 
was found by Ringel and Youngs only over 75 years later. Note that the difficulty 
in proving this deep result lies in finding a drawing of a single fixed graph, Kh(x) • 



V.3 Graphs on Surfaces 159 

on a surface of Euler characteristic x ::::: 1 .  What we have to do for X ::::: -1 is 
rather similar to the proof of Theorem 1 1 :  we have to find a 'consistent colouring' 
of a triangular tessellation of the hyperbolic plane in which every vertex has degree 
h (X ) - 1 .  On the other hand, in order to solve the four colour problem one has to 
show that every plane graph can be coloured with four colours. Thus the difficulty 
in solving the four colour problem has almost nothing to do with the problem of 
determining s (M) for x (M) ::S 1 .  

For fear of upsetting the balance of the book, we shall say only a few words about 
the solution of the four colour problem. We saw in Section I.4 that a plane graph G 
determines a map M = M (G) consisting of the plane graph G and the countries 
determined by the plane graph. A colouring of a map is a colouring of the countries 
such that no two countries sharing an edge in their boundaries get the same colour. 
The original form of the four colour problem, as posed by Francis Guthrie in 1 852, 
asked for a proof of the assertion that every plane map can be coloured with four 
colours. His teacher, de Morgan, circulated the problem amongst his colleagues, 
but it was first made popular in 1 878 by Cayley, who mentioned it before the 
Royal Society. Almost at once "proofs" appeared, by Kempe in 1 879 and by Tait 
in 1 890. Heawood's refutation of Kempe's proof was published in 1 890, though 
he modified the proof to obtain the five colour theorem. Tait's paper also contained 
false assumptions, which prompted Petersen to observe in 1 89 1  that the four colour 
theorem is equivalent to the conjecture that every 2-connected cubic planar graph 
has edge chromatic number three (Exercise 28+). Contributions to the solution 
since the turn of the century include Birkhoff's introduction of the chromatic 
polynomial and works by various authors giving lower bounds on the order of a 
possible counterexample. In 1943 Hadwiger made a deep conjecture containing 
the four colour theorem as a special case: if x (G) = k, then G is contractible to 
Kk (see Exercises 16-1 8). 

In hindsight, the most important advance was made by Heesch. The problem 
was at last solved by Appel and Haken in 1976, making use of a refinement of 
Heesch's method and fast computers. The interested reader is referred to some 
papers of Appel and Haken, to the book of Saaty and Kainen, and a recent paper 
of Robertson, Sanders, Seymour and Thomas for a detailed explanation of the 
underlying ideas of the proof. All we have room for is a few superficial remarks. 

What makes the .five colour theorem true? The following two facts : (i) a minimal 
6-chromatic plane graph cannot contain a vertex of degree at most 5, and (ii) a 
plane graph has to contain a vertex of degree at most 5. We can go a step further 
and ask why (i) and (ii) hold. A look at the proof shows that (i) is proved by 
making a good use of the paths Pij , called Kempe chains after Kempe, who used 
them in his false proof of 1 870, and (ii) follows immediately from Euler's formula 
n - e +  f = 2. 

The attack on the four colour problem initiated by Heesch goes along similar 
lines. A configuration is a connected cluster of vertices of a plane graph together 
with the degrees of the vertices. A configuration is reducible if no minimal 5-
chromatic plane graph can contain it and a set of configurations is unavoidable if 
every plane graph contains at least one configuration belonging to the set. In order 
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to prove that every plane graph is 3-colourable, one sets out to find an unavoidable 
set of reducible configurations. How should one show that a configuration is 
reducible? Replace the cluster of vertices by a smaller cluster, 4-colour the obtained 
smaller graph and use Kempe chains to show that the 4-colouring can be "pulled 
back" to the original graph. How should one show that a set of configurations is 
unavoidable? Make extensive use of Euler's formula. Of course, one may always 
assume that the graph is a maximal plane graph. Assigning a charge of 6 - k to 
a vertex of degree k, Euler's formula guarantees that the total charge is 12 .  Push 
charges around the vertices according to some discharging rules, that is, transfer 
some charge from a vertex to some of its neighbours, until it transpires that the 
plane graph has to contain one of the configurations. 

Looking again at the five colour theorem, we see that the proof was based on 
the fact that the configurations consisting of single vertices of degree at most 5 
form an unavoidable set of configurations (for the five colour theorem). 

The simplistic sketch above does not indicate the difficulty of the actual proof. 
In order to rectify this a little, we mention that Appel and Haken needed over 
1 900 reducible configurations and more than 300 discharging rules to complete 
the proof. Furthermore, we invite the reader to prove the following two simple 
assertions. 

+ 
FIGURE V.8.  Three reducible configurations; in the last two examples the outer vertices 
may have arbitrary degrees. 

1 .  The configurations in Fig. V.8 are reducible. 
2. Let G be a maximal planar graph of order at least 25 and minimal degree 5. Call 
a vertex a major vertex if its degree is at least 7, otherwise, call it minor. Then G 
contains one of the following: 

(a) a minor vertex with 3 consecutive neighbours of degree 5, 
(b) a vertex of degree 5 with minor neighbours only, 
(c) a major vertex with at most one neighbour of degree at least 6. 
For twenty years, the Appel and Haken proof was neither simplified, nor thor­

oughly checked, as in addition to the huge program, the proof requires that 
some 1400 graphs be put into the computer by hand. Recently, however, Robert­
son, Sanders, Seymour and Thomas produced their version of the proof, with an 
unavoidable set of 'only' 633 reducible configurations, and with 'only' 32 dis­
charging rules. This proof is considerably easier to check, since the immense task 
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of  checking unavoidability by  hand i s  replaced by  a formally written proof, which 
can be read and verified by a computer in a few minutes. 

V.4 List Colouring 

Recall that a graph is k-colourable iff to every vertex x we can assign a colour 
c(x) E [k] = { 1 ,  2, . . .  , k} such that adjacent vertices get distinct colours. Now 
suppose that to every vertex x of a k-colourable graph we assign a paint-box or 
list L(x) of k colours. Is it possible to assign to each vertex one of the colours 
from its own list such that adjacent vertices get distinct colours? At first sight, it 
seems trivial that such an assignment is always possible, since "surely the worst 
case is when the lists are identical, as that maximizes the chances of a conflict. " 

However, this first impression is clearly misleading. For example, let G be the 
complete three by three bipartite graph K3,3 with vertex classes V1 = {x 1 , x2 , x3 } 
and V2 = {y 1 , y2 , y3 } ,  and let L (xi ) = L(yi ) = { 1 ,  2, 3 } - {i } , i = 1 ,  2, 3 .  Then in 
any colouring of the vertices from these lists, at least two colours must be used to 
colour V1 , and at least two to colour V2 , so there is bound to be an edge joining two 
vertices of the same colour (see Fig. V.9). This realization leads to an important 
variant of the chromatic number, the list-chromatic number. 

{ 2, 3 } 
Y! 

X! 
{ 2, 3 } 

{ I , 3 } 
Y2 

{ 1 , 2 } 
Y3 

FIGURE V.9. The graph K3.3 with lists of size 2 assigned to the vertices, without a proper 
colouring from the lists . 

Given a graph G and a map L assigning to each vertex a set L (x) ,  an L­
colouring of G is a proper colouring c of the vertices such that c(x) E L(x)  for 
every x E V (G) . The list-chromatic number Xt (G) of G is the minimal integer 
k such that G has an L-colouring whenever IL (x) l � k for every x E V (G) . 

Clearly, Xt (G) � x (G) for every graph G, since x (G) is the minimal integer k 
such that G has an £-colouring when L(x) = [k] for every x E V (G) . 

The example above shows that we may have Xt (G) � 3 and x (G) = 2. In 
fact, it is easily seen that for every k � 2 there is a bipartite graph G with 
Xt (G) > k. Indeed, writing A(k) for the set of all k-subsets of a set A ,  let G 
be the complete bipartite graph with vertex classes V1 = {x 1 , x2 , . . .  , x2k_ J } (k) 
and v2 = {y l ' Y2 · . . .  ' Y2k-d(k) . Also, for X = {Xi! ' Xi2 ' • . .  Xik } E vl and y = 
{YiJ > Yh · · . .  Yik } E V2, set L(x) = L(y) = {i 1 , i2 , . . .  , ik } .  Then G is bipartite 
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and has no L-colouring, since in any L-colouring we would have to use at least 
k colours to colour Vr and at least k colours to colour V2, so we would have two 
adjacent vertices with the same colour. Hence X (G) = 2 and Xl > k. On the other 
hand, the greedy algorithm shows that xe (G) � d(G) + 1 for every graph G. 

Our aim in  this section i s  to prove two beautiful results, due to Thomassen and 
Galvin, claiming that under certain circumstances the list-chromatic number is not 
much larger than the chromatic number. These theorems strengthen considerably 
two of our rather simple earlier results. As the proofs are short and very elegant, 
the reader may be surprised to learn that much effort had gone into proving these 
results before Thomassen and Galvin found their ingenious proofs. 

We start with Thomassen 's theorem, strengthening Theorem 8 by claiming that 
the list-chromatic number of a planar graph is at most 5. The proof below is a 
striking example of the admirable principle that it is frequently much easier to 
prove an appropriate generalization of an assertion than the original clean assertion. 
In this case the generalization concerns list-colourings of alm9st maximal planar 
graphs, with varying list sizes. To be precise, call a plane graph a near-triangulation 
if the outer face is a cycle and all the inner faces are triangles. 

As in a maximal plane graph of order at least 4 every face is a triangle, the 
following result is clearly stronger than the assertion that every planar graph has 
list-chromatic number at most 5 .  

Theorem 12 Let G be a near-triangulation with outer cycle C = x1x2 · · · Xt, 
and for each x E V (G) let L (x) be a list of colours assigned to x, such that 
L(x 1 ) = { 1 }, L(x2) = {2}, I L (x) l ::=:: 3 for 3 � i � k, and IL (x) l ::=:: 5 for 
x E V ( G - C). Then G has an L-colouring. 

Proof Let us apply induction on the order of G. For I G I = 3 the assertion is trivial, 
so suppose that I G I  > 3 and the assertion holds for graphs of order less than I G I .  
We shall distinguish two cases, according to whether C contains a 'diagonal ' from 
Xk or not. 

(i) First suppose that G contains a 'diagonal' XkXj . 2 � j � k - 2, of C. 
Then we can apply the induction hypothesis to the graph formed by the cycle 
XkXIX2 · · · Xj and its interior and then, having fixed the colours of Xk and Xj , to the 
cycle XkXjXj+l · · · Xk- 1 and its interior, to find an L-colouring of G. 

(ii) Now suppose that G contains none of the edges XkXj , 2 � j � k- 2. Let the 
neighbours of Xk be Xk- 1 · Yl · y2 , . . .  , Yl and x1 , in this order, so that XkXk- ! Y I . 
XkY !Y2 · . . .  , XkYtX I are internal faces of our plane graph (see Fig. V. lO) .  

Let a and b be colours in L(xk) , distinct from 1 .  Our aim is to use one of 
a and b to colour Xk . having coloured the rest of the graph. To this end, let 
L' (x)  = L(x) if x ¢ {y1 , . . .  , yt } and L'(y; ) = L(y; ) - {a , b} for 1 � i � l .  
Then, by  the induction hypothesis, the graph G' = G - Xk . with outer cycle 
x 1x2 · · · Xk- I YI Y2 · · · ye , has an L'-colouring. Extend this L'-colouring of G' to 
an L-colouring of G by assigning a or b to Xk such that Xk and Xk- 1 get distinct 
colours. D 
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FIGURE V. lO. The second case in the proof of Theorem 1 2. 

Theorem 12  is not only considerably stronger than Theorem 8 ,  the five colour 
theorem, but it is also best possible: as shown by Voigt, there are planar graphs of 
list-chromatic number exactly 5 .  

Our next aim is  to prove Galvin's theorem concerning list-colourings of the 
edges of a bipartite graph. Suppose that for every edge e E E (G) of a graph 
G, we are given a list L(e) of colours. An L-edge-colouring of G is a proper 
edge-colouring ').. of G such that ).. (e) E L(e) for every e E E(G). For a function 
f : E (G) ---+ N, we say that G is f -edge-choosable if G has an L-edge-colouring 
whenever I L (e) l 2:: f(e) for every e E E(G). The minimal k such that G is k-edge­
choosable is called the list-edge-chromatic number of G, or the list-chromatic 
index of G, or the edge-choosability number of G, and is denoted by x/ (G) or 
ch (G) .  To make this terminology a little less cumbersome, we shall frequently 
omit the word edge when there is no danger of confusion, so we shall talk of 
L-colourings and f -choosable graphs. 

As we shall make use of the existence of a stable matching, we shall follow 
the conventions used in Section III. 5. Let G be a bipartite graph with bipartition 
(V1 ,  V2) and a certain assignment of preferences. For e = aA E E(G) let ta (e) 
be the sum of the number of vertices the vertex a prefers to A and the number of 
vertices the vertex A prefers to a. We call ta : E (G) ---+ z+ = {0, 1 , . . . } the total 
function of the assignment of preferences. 

Note that if H is a subgraph of G and Eo c E(H) then 

ta (e) - ta-E0 (e) = tH (e) - tH-E0 (e) ( 1 1 )  

for every edge e E E(H) - Eo. (Needless to say, the preferences in  subgraphs of 
G are taken as in G.) Furthermore, a matching M in H  is stable iff 

( 12) 

for every edge e E E(H) - M. 
After all this preparation it is easy to state and prove a result that will readily 

imply that X� (G) = x ' (G) for every bipartite graph G. 
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Theorem 13 Let G be a bipartite graph with total function tc given by a certain 
assignment of preferences. Then G is (tc + 1 )-choosable. 
Proof We apply induction on the size of G. If E (G) = 0, there is nothing to 
prove, so suppose E (G) # 0 and the assertion holds for graphs of smaller size. 

Let us fix an assignment of preferences for G. For each edge e E E(G), let 
L(e) be a set of tc (e) + 1 natural numbers. We have to show that the edges of G 
have an £-colouring. 

Let I # 0 be the set of edges whose lists contain a certain colour i ,  and let 
H = (V(G) , I) be the subgraph of G with edge-set I. By Theorem III. 15 ,  the 
graph H contains a stable matching M. Let G' = G - M, and for e E E(G') set 
L' (e) = L(e) - {i } .  We claim that 

I L' (e) l :::: tc, (e) + 1 ( 1 3) 

for every e E E(G'). Indeed, if e ¢. I  then L'(e) = L(e) so this is clearly the case. 
Also, if e E I - M = E(H) - M then, by relations ( 1 1 )  and ( 12), 

tc (e) - tc, (e) = tH (e) - tH' (e) :::: 1 ,  

so 

I L' (e) l = I L (e) l - 1 :::: tc (e) :::: tc, (e) + 1 ,  

proving ( 1 3) .  
By the induction hypothesis, G' has an £'-colouring; colouring the edges of M 

by i ,  we get an £-colouring of the edges of G. D 
From here it is but a short step to Galvin's theorem. 

Theorem 14 The list-chromatic index of a bipartite graph equals its chromatic 
index. 
Proof Let G be a bipartite graph with bipartition (VJ , Vz) ,  and let A. :  E(G) -+ 
[k] be an edge-colouring of G, where k is the chromatic index of G.  Define 
preferences on G as follows: let a E Y1 prefer a neighbour A to a neighbour 
B iff A.(aA) > A.(aB) , and let A E Vz prefer a neighbour a to a neighbour b 
iff A.(aA) < A.(bA) . Note that the total function defined by this assignment of 
preferences is at most k - 1 on every edge, since if A.(aA) = j then a prefers at 
most k - j of its neighbours to A, and A prefers at most j - 1 of its neighbours 
to a. Hence, by Theorem 1 1 , G is k-choosable. D 

As we noted in Section 2, the chromatic index of a bipartite graph equals its 
maximal degree, so Theorem 14 can be restated as 

X� (G) = x' (G) = ll(G) 
for every bipartite graph G. 

It is easily seen that the result above holds for bipartite multigraphs as well 
(see Exercise 52); indeed, all one has to recall is that every bipartite multigraph 
contains a stable matching. 
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We know that, in general, Xt (G) 'I= x (G) even for planar graphs, although we 
do have equality for the line graphs of bipartite graphs. Recall that the line graph 
of a graph G = (V, E) is L(G) = (E, F), where F = {ef : e, f E E, e and f 
are adjacent} . Indeed, it is conjectured that we have equality for all line graphs, in 
other words, X� (G) = x ' (G) for all graphs. Trivially, 

X� (G) = Xt (L(G)) � �((L(G)) + 1 � 2�(G) - 1 ,  
but it is not even easy to see that 

X� ( G) � (2 - 10- 10)�(G) 
if �(G) is large enough. In fact, in 1996 Kahn proved that if e > 0 and �(G) is 
large enough then 

X� ( G) � ( 1  + e)�(G) . 
Even after these beautiful results of Galvin and Kahn, we seem to be far from a 
proof of the full conjecture that x� (G) = x ' (G) for every graph. 

V.S Perfect Graphs 

In the introduction to this chapter we remarked that perhaps the simplest reason 
why the chromatic number of a graph G is at least k is that G contains a k-clique, 
a complete graph of order k. The observation gave us the trivial inequality ( 1 ), 
namely that x (G) is at least as large as the clique number w(G), the maximal 
order of a complete sub graph of G. 

The chromatic number x (G) can be considerably larger than w (G) ; in  fact, we 
shall see in Chapter VII that, for all k and g, there is a graph of chromatic number 
at least k and girth at least g. However, here we shall be concerned with graphs at 
the other end of the spectrum: with graphs all whose induced sub graphs have their 
chromatic number equal to their clique number. These are the so-called peifect 
graphs. Thus a graph G is perfect if X (H) = w(H) for every induced subgraph H 
of G, including G itself. Clearly, bipartite graphs are perfect, but a triangle-free 
graph containing an odd cycle is not perfect since its clique number is 2 and its 
chromatic number is at least 3 .  It is less immediate that the complement of a 
bipartite graph is also perfect. This is perhaps the first result on perfect graphs, 
proved by Gallai and Konig in 1932, although the concept of a perfect graph was 
only explicitly defined by Berge in 1960. Recall that the complement of a graph 
G = (V,  E) is G = (V,  v<2l - E) . Although w(G) is a( G), the independence 
number of G, in order to have fewer functions, we shall use w(G) rather than 
a(G) . 
Theorem 15 The complement of a bipartite graph is peifect. 
Proof Since an induced sub graph of the complement of a bipartite graph is also 
the complement of a bipartite graph, all we have to prove is that if G = ( V, E) is 
a bipartite graph then x (G) = w(G). 
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Now, in a colouring of G, every colour class is either a vertex or a pair of 
vertices adjacent in G. Thus x (G) is the minimal number of vertices and edges of 
G, covering all vertices of G. By Corollary 111. 10, this is precisely the maximal 
number of independent vertices in G, that is, the clique number w( G) of G. D 

For our next examples of perfect graphs, we shall take line graphs and their 
complements. 

Theorem 16 Let G be a bipartite graph with line graph H = L (G). Then H 
and H are perfect. 
Proof Once again, all we have to prove is that x (H) = w(H) and x (H) = w(H) . 

Clearly, w(H) = �(G) and x (H) = x ' (G). But as G i s  bipartite, x ' (G) = 
� (G) (see the beginning of Section 2), so x (H) = �(G) = w(H). 

And what is  x (H)? The minimal number of vertices of G covering all the 
edges. Finally, what is w(H)? The maximal number of independent edges of G. 
By Corollary 111. 10, these two quantities are equal. D 

Yet another class of perfect graphs can be obtained from partially ordered sets. 
Given a partially ordered set P = (X, <), its comparability graph is C(P) = 
(X, E),  where E = {xy E X(2) : x < y or y < x} .  
Theorem 1 7  Comparability graphs and their complements are perfect. 
Proof Once again, it suffices to show that if P is a partially ordered set then for 
H = C(P) we have x (H) = w(H) and x (H) = w(H). 

To see the first equality, for x E P let r (x) , the rank of x ,  be the maximal integer 
r for which P contains a chain of r elements, with maximal element x .  Then for 
k = max, r (x) the map r : P -+ [k] gives a k-colouring of H, and a chain of size 
k gives a k-clique. 

The second equality is deeper. Indeed, x (H) is the minimal number of chains 
into which P can be partitioned, and w(H) is precisely the maximal number of 
elements in an antichain. Therefore the equality x (H) = w(H) is none other than 
Dilworth's theorem, Theorem 111. 12 .  D 

It does not take much to notice that, in all the examples above, the complement 
of a perfect graph is also perfect. In fact, the cornerstone of the theory of perfect 
graphs, the perfect graph theorem, claims that this holds without exception, not 
only for the examples above. This fundamental result was proved by Lovasz and 
Fulkerson in the early 1970s; although the proof below is relatively simple, it 
needs a little preparation. 

Lemma 18 A necessary and sufficient condition for a graph G to be perfect is 
that for every induced sub graph H C G there is an independent set of vertices, /, 
such that 

w(H - /) < w(H). 
That is, a graph is perfect iff every induced sub graph H has an independent set 
meeting every clique of H of maximal order w(H). 



V.5 Perfect Graphs 1 67 

Proof The necessity holds with plenty to spare. Indeed, let H be a graph with 
k = x (H) = w(H),  and let I be a colour class of a k-colouring of H .  Then 
w(H - I) ::; x <H - I) =  x (H) - 1 < w(H).  

The sufficiency of the condition will be proved by induction on w(G) .  For 
w(G) = 1 there is nothing to prove, so suppose that w(G) > 1 and the assertion 
holds for smaller values of the clique number. Let H be an induced subgraph of G 
and I an independent set with w(H - I) < w(H).  By the induction hypothesis, 
we can colour H - I with w(H - I) colours; colouring the vertices of I with 
a new colour, we obtain a colouring of H with w(H - I) + 1 ::; w(H) colours. 
Thus x (H) ::; w(H),  and we are done. 0 

The next result needed in the proof of the perfect graph theorem we shall give is 
of interest in its own right, as it enables one to construct large families of perfect 
graphs. In order to state it, we need the notion of substitution. 

Let G be a graph with vertex-set V (G) = [n] = { 1 ,  . . .  , n } ,  and let G t ,  . . .  , Gn 
be vertex-disjoint graphs. Let G* = G[  G 1 ,  . . .  , Gn] be obtained from U?=l Gi 
by  joining all vertices of  Gi to all vertices of  Gj whenever i j E E(G) .  We say that 
G* is obtained from G by substituting G 1 ,  . . .  , Gn for the vertices or by replacing 
the vertices of G by G 1 ,  . . .  , Gn . Note that if we replace the vertices of G one by 
one with the graphs G 1 ,  . . .  , Gn . we get the same graph G* .  

We are ready to state the replacement theorem for perfect graphs. 

Theorem 19 A graph obtained from a perfect graph by replacing its vertices by 
perfect graphs is perfect. 

Proof As we may replace the vertices one by one, it suffices to prove that if 
a vertex x of a perfect graph G is replaced by a perfect graph Gx then the 
resulting graph G* is perfect. Furthermore, since every induced subgraph of G* 
is of precisely the same form (obtained from a perfect graph by replacing one of 
its vertices by a perfect graph), by Lemma 1 8  it suffices to show that G* itself 
contains an independent set of vertices meeting every clique of G* with w(G*) 
vertices. 

Having identified our task, let us get on with the job. By Lemma 1 8 ,  the graph 
Gx has an independent set / such that w(Gx - I) < w(Gx) .  Colour G with w(G) 
colours, and let Wx be the colour class containing x. Then J = I U (Wx - x) is 
an independent set in G* .  We claim this set J will do for the independent set. Let 
K be a clique of G* with w(G*) vertices, and let us show that J meets K .  

Note that either K i s  a clique in G - x ,  or it i s  the union of a clique of Gx  of 
order w(Gx) and a clique of G[f(x) ] .  Now, if K is a clique in G - x  then, as it has 
w(G*) :=:: w(G) vertices, it meets every colour class of G in our w(G)-colouring, 
including Wx . so K n J = K n Wx =f:. 0. On the other hand, if K meets Gx then 
K meets I ,  as the part of K in Gx is an w(Gx)-clique of Gx . Hence J does meet 
K as claimed. 0 

After all this preparation, we are ready to prove the perfect graph theorem of 
Lovasz and Fulkerson. 
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Theorem 20 The complement of a perfect graph is perfect. 
Proof. Let us prove the theorem by induction on the order n of our perfect graph. 
For n = 1 there is nothing to prove, so suppose that n > 1 and the theorem 
holds for perfect graphs of order less than n .  In order to prove the induction step, 
by Lemma 1 8  all we need is that if G is a perfect graph of order n, then G 
contains an independent set I such that w(G - I) < w(G). Translating this into 
an assertion about G, all we need is that G contains a complete graph K such that 
a(G - K) < a(G) . 

Suppose then that this fails, that is, for every complete sub graph K of G, there 
is an independent set h with a( G) vertices that is disjoint from K.  As we wish 
to count, let us put this slightly differently: if K 1 ,  Kz , . . .  , K1 are all the complete 
sub graphs of G then, for every r, 1 :::: r :::: t, there is an independent set Ir with 
a(G) vertices, which is disjoint from Kr . 

For a vertex x of G, denote by i (x) the number of independent sets Ir containing 
x .  Let G* be obtained from G by substituting a complete graph of order i (x) for 
every vertex x .  We know from the replacement theorem, Theorem 19, that G* is 
perfect. But is it? 

First, let us give an upper bound for the clique nummber w( G*) . Every complete 
subgraph of G* is obtained from a complete sub graph of G by substituting at most 
i (x) vertices for each vertex x . Hence, there is an r, 1 :S r :::: t, such that 

But 

w(G*) = L i (x) .  
xEKr 

t 

L i (x) = L L 1 = L IKr n ls i :::: t - 1 ,  
xeK, xeK, xel, s=l 

since I Kr n ls i  :::: 1 for all r and s , and I Kr n Ir l = 0. Therefore, 

w(G*) :::: t - 1 .  

And what about x (G*)? By the construction of G*, 
t 

I G* I = L i (x) = L l lr l = ta(G), 
xeG r= l 

and as G* is obtained from G by substituting complete graphs for the vertices, 
a(G*) = a(G). Consequently, 

(G*) > E.:l_ = t .  X - a(G*) 
Thus w(G*) < x (G*) , contradicting the fact that G* is perfect, and so completing 
the proof of the theorem. 0 

There is another beautiful proof of the perfect graph theorem or, to be pre­
cise, of a slight extension of the perfect graph theorem, suggested by the trivial 
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inequality (2). Indeed, if H is an induced subgraph of a perfect graph then, by (2), 

w(H) = x (H) 2: I H I /a(H) = I H i fw(H) , 

so that 

I H I :::: w (H)w(H) . ( 14) 

Hajnal and Simonovits conjectured that this trivial necessary condition for a graph 
to be perfect is also sufficient, namely that a graph is perfect if, and only if, ( 14) 
holds for every induced subgraph H. This conjecture was proved by Lovasz in 
1972, and in 1996 Gasp,arian found a shorter proof of it. Note that the perfect 
graph theorem is an immediate consequence of this result. 

Let us tum to yet another characterization of perfect graphs, indicating the 
connection between perfect graphs and linear programming. First we need a variant 
of the independence number of a graph. Identifying a set with its characteristic 
function, an independent set of vertices of a graph G is naturally identified with a 
function f : V (G) -* {0, 1 }  such that LveK f ( v) ::5 1 for every clique K C G. 
The clique number a(G) i s  the maximum of LveK f(v) over all such functions. 

If we allow f to take any value between 0 and 1 (or just any non-negative value), 
then we get the fractional independence number a* (G) of G: 

a* (G) = max L f(v) , 
veG 

where the maximum is over all functions f : V (G) """* [0, 1 ]  such that 
LveK f(v) :::: 1 for every clique K C G. Another beautiful result of Lovasz 
is that a graph is perfect if, and only if, a*(H) = a(H) for every induced 
subgraph H. 

Having seen several classes of perfect graphs, what about graphs that are not 
perfect? We noted earlier that every triangle-free non-bipartite graph is imperfect. 
But what about a characterization of perfect graphs in terms of forbidden induced 
sub graphs? As an induced subgraph of a perfect graph is perfect, it would suffice 
to characterize critically imperfect graphs, that is, imperfect graphs whose every 
induced proper subgraph is perfect. Examples of such graphs are the odd cycles 
of length at least 5 and, by the perfect graph theorem, the complements of these 
graphs.  

Rather surprisingly, no other minimal examples are known. Indeed, the so called 
perfect graph conjecture, proposed by Berge in 1960, claims that these are the 
only examples : a graph G is perfect if, and only if, neither G nor its complement 
G contains an induced odd cycle of length at least 5. Equivalently, the odd cycles 
of length at least 5 and their complements are the only critically imperfect graphs. 

Clearly, the perfect graph theorem would be an immediate consequence of the 
perfect graph conjecture. However, in spite of much effort, we do not seem to be 
close to a proof of this conjecture. 
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V.6 Exercises 

1 .- Show that a graph G has at least (X iGl) edges. 

2. For each k � 3 find a bipartite graph with vertices XJ , xz , . . .  , Xn for which 
the greedy algorithm uses k colours. Can this be done with n = 2k - 2? Show 
that it cannot be done with n = 2k - 3. 

3 .- Given a graph G,  order its vertices in such a way that the greedy algorithm 
uses only k = x (G) colours. 

4.- Order the vertices of a graph G according to their degrees, so that V (G) = 
{XJ , xz , . . .  , Xn } and d(x! ) � d(xz) � · · · . Show that in this order the greedy 
algorithm uses at most maxi min{d(xi ) + 1 ,  i }  colours, and so if k is the 
maximal natural number for which k � d (xk) + 1 then x (G) � k .  

5. Deduce from Exercise 4 that if G has n vertices then 

x (G) + x (G) � n + l . 

6.- Show that X (G) + X (G) � 2y'n. 

7. Let G = (V ,  E) be a graph of maximal degree 3. Show that for some partition 
V = V1 U Vz both G[VJ ]  and G[Vz] consist of independent edges and vertices. 

8. Let d, d1 and dz be nonnegative integers with d1 + dz = d - 1 .  Prove that 
if � (G) = d then the vertex set V (G) of G can be partitioned into two 
classes, say V (G) = V1 U Vz, such that the graphs Gi = G [ Vd satisfy 
� ( G i )  � di , i = 1 ,  2. [Hint. Consider a partition V (G) = V1 U Vz for which 
d1 e(Gz) + dze(G J )  is minimal.] 

9. (Exercise 8 contd.) Let now d, d1 , dz , . . .  , dr be nonnegative integers with 
L� (di + 1) = d + 1 .  Prove that if �(  G) = d then there is a partition V (G) = 
U'j V; such that the graphs G i = G [ Vd satisfy � (G i ) � di , i = 1 ,  2, . . .  , r .  

10 .  Given natural numbers r and t ,  2r � t ,  the Kneser graph K1(r) i s  constructed as 
follows. Its vertex set is r<r) , the set of r-element subsets of T = { 1 ,  2, . . .  , t } ,  
and two vertices are joined iff they are disjoint subsets of T .  Fig. V. 1 1  shows 
K�2) , the so called Petersen graph. Prove that X (K1(r) ) � t -2r +2, X (KF) ) = 
3 and x (K�2) ) = 4. 

FIGURE V. l l . The Petersen graph and the Grotzsch graph. 
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1 1 .  Check that the Grotzsch graph, shown in  Fig. V. 1 1 , has girth 4 and chromatic 
number 4. Show that there is no graph of order 10 with girth at least 4 and 
chromatic number 4. 

12:++ Try to construct a triangle-free graph of chromatic number 1 526 without 
looking at Chapters VI or VII. 

1 3:+  Show that there is a unique graph Go of order n and size m = Ln2 j4J such 
that if G is also of order n and size m then 

PG (X) :S PG0 (X) 

whenever x is sufficiently large. 

14.- Find graphs G and H of order n and the same size such that X (G) < x (H) 
but pc (x) < PH(x) if x is sufficiently large. 

15:+ Given a connected graph G containing at least one cycle, define a graph H on 
the set S of all spanning trees of G by joining T, to T2 iff I E(TI ) \ E(T2) I  = 1 .  
(Cf. simple transforms of an x-path in Section IV. 3 .) Imitate the proof of the 
fact that PH (x) is a polynomial (Theorem 4) and the proof suggested in 
Exercise 12 to show that H is not only Hamiltonian, but every edge of it is 
contained in a Hamilton cycle. 

16 .  Let x be a vertex of a graph G and, for r � 0, let G, be the subgraph of 
G induced by the vertices at distance r from x .  (Thus G, is the 'sphere' of 
radius r about x .) Show that x (G) is at most x (G,) + x (Gr+ I ) for some r .  

17  :+ Recall from Chapter I that a graph G has a sub graph contractible to a graph H 
with vertex set {YI , . . .  , Yk } if G contains vertex disjoint connected sub graphs 
G , ,  . . .  , Gk such that, for i =f:. j ,  there is an edge Yi YJ E E(H) iff G has a 
G;-GJ edge; in notation, G >- H or H -<  G. 
Prove that for every natural number p there is a minimal integer c(p) such that 
every graph with chromatic number at least c(p) has a sub graph contractible to 
Kp . By making use of the result in the previous exercise, show that c ( 1 )  = 1 ,  
c(2) = 2 and c(n + 1)  ::::; 2c(n) - 1 for n � 2. 

18:+ Hadwiger's conjecture states that c(p) = p for every p. Prove this for p ::::; 4. 

19. Can you show that for every p � 1 there is an integer o (p) such that every 
graph of minimal degree at least o (p) is contractible to K p? 

20. Let G be obtained from a 3-connected graph by adding to it a vertex x and 3 
edges incident with x .  Show that G is contractible to K 5 ,  that is, to a complete 
graph of order 5 from which an edge has been deleted. 

2 1 .  Prove that if x (G) � 5 then either Ks -< G or K5 -< G - x for every 
x E V (G) . 

22.  Show that the truth of Hadwiger's conjecture for p = 5 implies the four 
colour theorem. 
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23. Show that a planar map M = M(G) can be 2-coloured iff every vertex of G 
has even degree. [Hint. If every vertex of G has even degree then G is a union 
of edge-disjoint cycles. For another solution, apply induction on the number 
of edges, and delete the edges of a cycle forming the boundary of a face of 
M(G) .] 

24.- Let M = M(G) be a triangular map, that is, a map in which every country 
has three sides. Show that M is 3-colourable unless G = K4 . 

25:- Prove that a map M = M(G) is 4-colourable if G has a Hamilton cycle. 

26:- For each plane graph G construct a cubic plane graph H such that if M(H) 
is 4-colourable then so is M(G) . 

27:- According to Tait's conjecture every 3-connected cubic plane graph has 
a Hamilton cycle. (i) Show that Tait's conjecture implies the four colour 
theorem. (ii) By examining the graph in Fig. V. l2  disprove Tait's conjecture. 

FIGURE V. l 2. Tutte's counterexample to Tait's conjecture. 

28:+- Let G be a cubic plane graph. Show that G is 3-edge-colourable iff M (G) is 
4-colourable. [Hint. Let 1 ,  a , b and c be the elements of the Klein four-group 
c2 X c2. so that a2 = b2 = c2 = 1 .  Colour the edges with a, b and c, and 
the countries with 1 ,  a, b and c.] 

29. Find the edge chromatic number of Kn . 

30.- Show that every cubic Hamiltonian graph has at least three Hamilton cycles. 

3 1 .  Suppose the cubic graph G has exactly one edge-colouring with x ' (G) 
colours, up to a permutation of the colours. Show that x ' (G) = 3 and that G 
has exactly 3 Hamilton cycles. 

32:+- Let Pn,k be obtained from two vertex-disjoint n-cycles, VI v2 · · · Vn and 
WI w2 · · · Wn , say, by joining Vi to Wi+k . with suffices computed modulo 
n .  Show that P9,2 is uniquely 3-edge-colourable (cf. Exercise 3 1 ) ;  that is, 
up to a permutation of the colours it has a unique 3-edge-colouring. Show 
also that if n � 2 then P6n+3, 2 is not uniquely 3-edge-colourable, and it has 
exactly three Hamilton cycles. 
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33. Let n = 2P . Show that Kn+l is not the union of p bipartite graphs but Kn is. 
Deduce that if there are 2P + 1 points in the plane then some three of them 
determine an angle of size at least 1r ( 1 - ( 1 I p)) . 

34. Let x (G) = k. What is the minimal number of r-chromatic graphs whose 
union is G? 

35:- Show that a k-chromatic graph can be oriented in  such a way that a longest 
directed path has k vertices. 

36. Prove the following theorem of Roy and Gallai. lf a graph G can be oriented in 
such a way that no directed path contains more than k vertices then x (G) � k. 
[Hint. Omit a minimal set of edges to destroy all directed cycles. For a vertex 
x let c(x) be the maximal number of vertices on a directed path in the new 
graph starting at x .  Check that c is a proper colouring.] 

37. Let G be a graph of maximal degree at most 2, without a triangle and without 
three independent edges, such that for any two vertices there is an edge 
incident with neither of them. Show that G = Cs U Kn-5 · 

38 .  A graph G is said to be k-critical if x (G) = k and x (H) < k for every 
proper subgraph H of G. Note that K2 is the only 2-critical graph and the 
odd cycles are the only 3-critical graphs. Show that if G # Kk is k-critical 
then I G I  =::: k + 2. Deduce from the previous exercise that if G is a k-critical 
graph with k + 2 vertices then k =::: 3 and G = Cs + Kk-3 · In particular, 
e (G) = (k!2) - 5. 

39. Let G1 and G2 be vertex disjoint graphs, containing edges XJYJ E E(G t )  and 
X2Y2 E E(G2) .  The Haj6s sum G = (G t ,  X JY t )  + (G2 , X2Y2) of the pairs 
(G J ,  X J Y J )  and (G2 , X2Y2) is obtained from G1 U G2 by identifying X !  and 
x2 , deleting the edges X !Y I · X2Y2 · and adding the edge YI Y2 (see Fig.V. 1 3) .  
Check that x (G) =::: min{x (G J ) ,  x (G2) } .  [In fact, Haj6s proved in 1961 that 
{ G : x (G) =::: k} is precisely the smallest class of graphs containing Kk that 
is closed under Haj6s sums and the trivial operations of adding edges and 
identifying non-adjacent vertices.] 

x2 

\V 
Y2 

FIGURE V. 1 3.  The Haj6s sum (G J ,  X JY J )  + (Gz ,  xzyz) of a wheel and a complete graph. 

40:+- (Exercise 39 contd.) Let 1tk be the smallest collection of (isomorphism classes 
of) graphs such that ( 1 )  Kk E 1tk, (2) if H E 1tk and G :::> H then G E 'Ht . 
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(3) if H E 'lik and G is obtained from H by identifying two nonadjacent 
vertices, then G E 'lit. (4) if G1 , Gz E 'lik and G is the Haj6s sum of G1 
and Gz then G E 'lik . Prove that 'lik is precisely the class gk of graphs of 
chromatic number at least k. [Hint. The result in Exercise 39 implies that 
'lik C Qk . Assume that the converse inclusion is false and let G E gk \ 'lik 
be a counterexample of minimal order and maximal size. Then G cannot 
be a complete q-partite graph, so it contains vertices a, b 1 and bz such that 
b 1 b2 E (G) but ab1 , abz E E(G). Let G 1 = G + ab1 and Gz = G + abz . 
Then G1 and Gz are not counterexamples so belong to ?tk . Find out how G 
can be obtained from copies of G1 and Gz by the allowed operations.] 

4 1 .  (Exercises 39 and 40 contd.) Show that, for k � 3,  the Haj6s sum of two 
k-critical graphs is again k-critical. 

42. Show that, for k � 3 and l � 1 ,  there is a k-critical graph of order n = 

(k - 1 )£ + 1 and size £ (�) - 1 .  

43 . Show that a 4-critical graph with 7 vertices has at least 1 1  edges, and this 
bound is best possible. 

44. Let k be a natural number. Prove that an infinite graph is k-colourable iff every 
finite sub graph of it is. [Hint. Apply Tychonov's theorem as in Exercise III.3 1 .] 

45. Check that the chromatic polynomial of a tree T of order n is 

PT (X) = x (x - l )n- l .  
Deduce that the chromatic polynomial of a forest F of order n and size m is 

PF(X) = Xn-m (x - l )m . 
Use Corollary 6 to deduce the same assertion. 

46. Let e be a bridge of a graph G. Show that pc (x) = 
x;I PG-e (x) .  

47 .  Let G be a connected graph with blocks B1 , Bz , . . .  , Be . Show that 

l 
Pc (x) = x-l+I n PBi (x) .  

i= l  
48 .  Let G = G1 U Gz , with H = G1 n Gz being a complete graph Kr . Show that 

PG(X) = 
PG1 (x)pc2 (X) 

= 
PG1 (X)PG2 (X) . (x)r py(x) 

49.  Show that if G is a connected graph of order n then ( -1 )n- l PG (x) > 0 for 
all X ,  0 < X  < 1 .  

50. Show that I PG ( - 1) I is the number of acyclic orientations of G. 
5 1 .  Let us  assign a list L(x) of two colours to every vertex x of  an odd cycle. Show 

that there is an £-colouring unless we assign the same set to every vertex. 

52. Check that Theorem 14 holds for bipartite multigraphs as well. 
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53. A graph is said to be triangulated if every cycle of length at least 4 has a 
diagonal, that is, if the graph contains no induced cycle of length at least 4. 
Show that a connected graph G is triangulated iff whenever S is a minimal 
set of vertices such that G \ S is disconnected then G[S] is complete. 

54. A vertex whose neighbours induce a complete graph is said to be simplicial. 
Show that every non-empty triangulated graph has at least two simplicial ver­
tices. Deduce that a graph G is triangulated iff its vertices have an enumeration 
X J , xz , . . .  , Xn such that each Xk is a simplicial vertex of G[{X J , . . .  , Xk } ] .  

55:+" An interval graph has vertex set {!, , . . .  , In } ,  where each IJ i s  an interval 
[a) , hJ ] C lR, and two intervals Ij and h are adjacent if they meet. Show that 
every interval graph is triangulated, and its complement is a comparability 
graph. 
Without making use of the perfect graph theorem, show that interval graphs 
and their complements are perfect. 

56. Given a permutation JT of [n] = { 1 , 2, . . .  , n} ,  the permutation graph G(JT) 
has vertex set [n ] ,  with ij an edge if  JT switches the order of i and j .  Thus, 
for i < j, we join i to j iff JT (j)  < JT(i ) .  Without making use of the perfect 
graph theorem, show that permutation graphs are perfect. 

57;+-+ To appreciate the depth of Theorem 14, try to give a direct proof of the 
assertion that the list-chromatic index of the complete k by k bipartite graph 
is k. If you fail (and it would be a wonderful achievement if you did not), try 
to prove it for k = 2, 3 and 4. 

58. Griinbaum conjectured in 1970 that for all k =::: 2 and g =::: 3 there are (k, k ,  g)­
graphs, that is, k-chromatic k-regular graphs of girth at least g . Show that the 
graph in Fig.V. l4, constructed by Brinkman, is a (4, 4, 5)-graph. 

59. Fill in the details in the proof of Theorem 10. 

FIGURE V. 14. The Brinkman graph. 
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60. Let n 2:::: 4. Show that if Kn triangulates a closed surface then n =f. 2 
(mod 3). Deduce the converse from the Ringel-Youngs theorem, namely that 
s (M) - h(x) = L(7 + ../49 - 24x)/2J for every closed surface M of Euler 
characteristic x < 0. 

6 1 .  Let G be a graph of order 2n such that for every S C V (G), the graph G - S 
has at most l S I  odd components. Show that x (G) ::S n, and we can have 
equality for every n 2:::: 1 .  

62. Check from first principles that the complement of an odd cycle of length at 
least 5 is imperfect. 

63:+- For a, w 2:::: 2, call a graph G an (a, w)-graph if it has rxw + 1 vertices and for 
every v e G the graph G - v can be partitioned into a cliques, each of order w, 
and also into w independent sets, each with a vertices. Recalling that a graph 
G is perfect iff every induced subgraph H c G satisfies I H I  ::S rx(H)w(H), 
show that every critically imperfect graph is an (rx, w)-graph for some a, 
(J) 2:::: 2. 

64:+- Let a, w 2:::: 2 be integers, and let G be the (w- l)st power of an (rxw+ 1 )-cycle 
Caw+l · Thus V (G) = Zaw+l and ij e E(G) if 

E(G) = {ij : i - j = ±1 ,  ±2, . . .  , ±(w - 1 ) .  

Show that G i s  an (a, w)-graph. I s  G critically imperfect? 

65. For k 2:::: 1 ,  let Gk be the graph with vertex set 

v = [2k + 1 ] (2) = { 1 ,  2 , . . .  ' 2k + 1 } (2) 

in which {a , b} e V is joined to {b, c} e V whenever a < b < c. Thus Gk 
has eki 1) vertices and .Li:o i(2k - i) edges. Prove that Gk is triangle-free 
and x (Gk) = k + 1 .  

66. In 1947, Tutte constructed a sequence G3 , G4 , . . .  of triangle-free graphs as 
follows. Let G3 be an odd cycle with at least 5 vertices. Having constructed 
Gk with nk vertices, set mk = k(nk - 1) + 1 and nk+l = (�:)nk + mk. Let 

W be a set of mk vertices, and for each a e w<nk) , i.e. each nk-subset a 
of W, let Ga be a copy of Gk, with the sets W and V (Ga) . a e w<nk) , all 
disjoint. Let Gk+ l be obtained from Ua Ga U W by adding, for each a, a 
complete matching from a to V (Ga) .  Thus !Gk+l l  = nk+l · Show that each 
Gk is triangle-free and x (Gk) = k. 

67:+- Let G be the infinite graph whose vertex set is JR.2 and in which two points 
are joined if their distance is 1 .  Show that 4 ::S x (G) ::S 7. 

68:+- Show that the chromatic number of a triangle-free graph drawn on a surface 
of Euler characteristic E ::S 0 is at most (5 + ../25 - 16E)/2. 
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69. Let G be a triangle-free graph with vertex set {X J ,  xz , . . .  , Xn } .  Construct a 
graph G' from G by adding to it n + 1 vertices, x i , x� , . . .  , x� and y ,  and 
joining each x; to the vertices in ra (x; )  U {y } .  (Thus x; 'duplicates' x; , 
and y is joined to the other new vertices.) Show that G' is triangle-free and 
x (G') = x (G) . Use this construction to exhibit triangle-free graphs G3 , G4 
and Gs, with x (Gk) = k. 

70. Let G be the graph of order 2n + 1 ::: 5 obtained from Kn,n by subdividing 
an edge by a vertex. Show that x ' (G) = D.(G) + 1 = n + 1 ,  but x '(G - e) = 
D. (G - e) = n for every edge e of G. 

71 .  Show that there is no plane graph G such that 
( 1 )  every face other than XJX2 · · · xe is a triangle, 
(2) all degrees not on this face are even, and 
(3) all degrees d(x t ) ,  . . .  , d(Xm- I ) are odd, where m = Lt/2J , and d(xm) is 
odd iff e is odd. 

72. Let G be a triangulation of the plane, with all degrees even. Show that x (G) = 
3 .  [Hint. Pick a vertex X J .  Let V1 be the smallest set of vertices such that 
( 1 )  X I E Vt , and (2) if x E Vt and both xyz and x'yz are faces then x' E VJ . 
Use the result in Exercise 7 1  to check that Vt is an independent set. Clearly, 
G - Vr is a collection of even cycles.] 

73 .  Let G be a cubic plane graph. Prove that the map M(G) is 3-colourable iff 
each country has an even number of sides. 

74. Show that the only vertex-critical 3-chromatic graphs are the odd cycles : if 
x (G) = 3 and x (G - x) = 2 for every vertex x then G = Czk+ t for some 
k ::: l .  

75. Let G be the graph on Z n  with i joined to j iff i - j E {±2, ±6, ±7, ±8} .  
Show that G i s  a vertex-critical 5-chromatic graph with a critical edge: x (G) = 
5, x (G - x) = 4 for every vertex x ,  and x (G - xy) = 5 for every edge xy. 

76:" Prove that the chromatic number of a triangle-free graph of size m is  at 
most 2m 113 + 1 .  [Hint. Apply induction on m, making use of Exercise 68 of 
Chapter IV.] 
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VI 

Ramsey Theory 

In a party of six people there is always a group of three who either all know each 
other or are all strangers to each other. If the edges of the complete graph on 
an infinite set N are coloured red or blue then for some infinite set M c N all 
the edges joining vertices of M get the same colour. Both of these assertions are 
special cases of a theorem published by Ramsey in 1930. The original theorems of 
Ramsey have been extended in many directions, resulting in what has come to be 
called Ramsey theory: a rich theory expressing the deep mathematical principle, 
vastly extending the pigeon-hole principle, that no matter how we partition the 
objects of a 'large' structure into a 'few' classes, one of these classes contains 
a 'large' subsystem. While Dirichlet's pigeon-hole principle guarantees that we 
have 'many' objects in the same class, without any condition on their relationship 
to each other, in Ramsey theory we look for a large substructure in the same class: 
we do not only want infinitely many red edges, say, but we want all the edges 
joining vertices of an infinite set to be red. Or, in the first example, we do not only 
want three pairs of acquaintances, but we want these three acquaintances to 'form 
a triangle' ,  to be the three pairs of acquaintances belonging to three people. 

The quintessential result of Ramsey theory dealing with richer mathematical 
structures than graphs is van der Waerden's theorem, predating the theorems of 
Ramsey, which states that given k and p, if W is a large enough integer and we 
partition the set of the first W natural numbers into k classes, then one of the 
classes contains an arithmetic progression with p terms. 

Ramsey theory is a large and beautiful area of combinatorics, in which a great 
variety of techniques are used from many branches of mathematics, and whose 
results are important not only in graph theory and combinatorics, but in set theory, 
logic, analysis, algebra, and geometry as well. In order to demonstrate this ,  we 
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shall go well beyond graph theory to present several striking and deep results, in­
cluding the Erdos-Rado canonical theorem, extending Ramsey's original theorem 
to infinitely many colours; Shelah's theorem, extending the Hales-Jewett theorem 
(which itself extends van der Waerden's theorem); and the theorems of Galvin, 
Prikry, and Hindman about Ramsey properties of infinite sequences. Nevertheless, 
we shall hardly do more than scratch the surface of modern Ramsey theory. 

Vl. l The Fundamental Ramsey Theorems 

We shall consider partitions of the edges of graphs and hypergraphs. For the sake 
of convenience a partition will be called a colouring, but one should bear in mind 
that a colouring in this sense has nothing to do with the edge colourings considered 
in Chapter V. Adjacent edges may have the same colour and, indeed, our aim is 
to show that there are large subgraphs all of whose edges have the same colour. 
In a 2-colouring we shall often choose red and blue as colours ; a subgraph is red 
(blue) if all its edges are red (blue). 

As we shall see, given a natural number s ,  there is an integer R(s) such that 
if n 2:: R(s) then every colouring of the edges of Kn with red and blue contains 
either a red Ks or a blue Ks . The assertion about a party of six people claims 
precisely that R (3) = 6 will do. In order to show the existence of R (s) in general, 
for any s and t, we define the Ramsey number R (s , t) as the smallest value of n for 
which every red-blue colouring of Kn yields a red Ks or a blue K1 • In particular, 
R(s , t) = oo if there is no such n such that in every red-blue colouring of Kn 
there is a red Ks or a blue K1 • It is obvious that 

R(s ,  t) = R(t ,  s) 
for every s ,  t 2:: 2 and 

R(s ,  2) = R(2, s) = s , 
since in a red-blue colouring of K 2 either there is a blue edge or else every edge is  
red. The following result, due to Erdos and Szekeres, states that R(s , t) i s  finite 
for every s and t, and at the same time it gives a bound on R(s ,  t) . Although 
qualitatively it is a special case of Ramsey's original theorem, the bound it gives 
is considerably better than that given by Ramsey. 

Theorem 1 The function R (s , t) is finite for all s, t 2:: 2. If s > 2 and t > 2 then 

and 
R(s , t) ::: R(s - 1 ,  t) + R(s , t - 1 )  

R(s , t) ::; (s + t - 2)
· s - 1 

Proof As we shall prove ( 1 )  and (2), it will follow that R (s , t) is finite. 

( 1 )  

(2) 

(i) When proving ( 1 )  we may assume that R(s - 1 ,  t) and R(s ,  t - 1) are finite. 
Let n = R(s - 1 ,  t) + R(s , t - 1) and consider a colouring of the edges of Kn 



Vl. l The Fundamental Ramsey Theorems 1 83 

with red and blue. We have to show that in this colouring there is either a red 
Ks or a blue K1 • To this end, let x be a vertex of Kn . Since d(x) = n - 1 = 

R(s - 1 ,  t) + R(s ,  t - 1 ) - 1 ,  either there are at least n 1 = R(s - 1 ,  t) red edges 
incident with x or there are at least n2 = R(s , t - 1) blue edges incident with x .  
B y  symmetry we may assume that the first case holds. Consider a subgraph Kn1 
of Kn spanned by n 1  vertices joined to x by red edges. If Kn1 has a blue K1 , we 
are done. Otherwise, by the definition of R(s - 1 ,  t) , the graph Kn1 contains a red 
Ks- 1 which forms a red Ks with x .  

(ii) Inequality (2) holds i f  s = 2 or t = 2 (in fact, we have equality since 
R(s ,  2) = R(2 , s) = s). Assume now that s > 2, t > 2 and (2) holds for every 
pair (s' , t') with 2 � s' + t' < s + t. Then by ( 1 )  we have 

R(s ,  t) � R(s - 1 ,  t) + R(s ,  t - 1 )  

� (s + t - 3) + (s + t - 3) 
= 
(s + t - 2)

· s - 2 s - 1  s - 1  ° 

It is customary to distinguish diagonal Ramsey numbers R(s) = R(s ,  s) and 
off-diagonal Ramsey numbers R(s , t) , s # t. It is not surprising that the diagonal 
Ramsey numbers are of greatest interest, and they are also the hardest to estimate. 
Re calling that a graph is trivial if it is either complete or empty, the diagonal 
Ramsey number R(s) is the minimal integer n such that every graph of order n 
has a trivial sub graph of order s .  

We see from Theorem 1 that (2s - 2) 228-2 
R(s) � � r; . s - 1  v S (3) 

Although the proof above is very simple, the bound (3) was hardly improved for 
over 50 years. The best improvement is due to Thomason, who in 1 988 proved 
that 

22s 
R(s) � ­s (4) 

if s is large. Although the improvement over (3) is small, this is a hard result, 
and we shall not prove it. In Chapter VII we shall show that R(s) does grow 
exponentially: R (s) � 2812 . It is widely believed that there is a constant c, perhaps 
even c = 1 ,  such that 

R(s) = 2(c+o( l ))s , 

but this is very far from being proved. 
The result easily extends to colourings with any finite number of colours : given 

k and S J , s2 , . . .  , St , if n is sufficiently large, then every colouring of Kn with 
k colours is such that for some i ,  1 � i � k, there is a Ks; coloured with the 
i th colour. (The minimal value of n for which this holds is usually denoted by 
Rk (S J ,  . . .  , sk) . ) Indeed, if we know this for k - 1 colours, then in a k-colouring 
of Kn we replace the first two colours by a new colour. If n is sufficiently large 
(depending on s1 , s2 , . . .  , Sk) then either there is a K81 coloured with the i th colour 
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for some i ,  3 � i � k, or else for m = R(s1 , sz) there is a Km coloured with the 
new colour. In other words, in the original colouring this Km is coloured with the 
first two (original) colours. In the first case we are home, and in the second, for 
i = 1 or 2 we can find a Ks; in Km coloured with the i th colour. This shows that 

Rk (s 1 , . . .  , sk) � Rk- 1 (R(s 1 , sz) , s3 , . . .  , sk) .  

In fact, Theorem 1 also extends to hypergraphs, that is, to colourings o f  the set 
x<r) of all r-tuples of a finite set X with k colours. This is one of the theorems 
proved by Ramsey. We now tum our attention to this. 

Denote by R(r) (s , t) the minimal value of n for which every red-blue colouring 
of x<r) yields a red s-set or a blue t-set, provided that l X I  = n. Of course, a set 
Y c X is called red (blue) if every element of y(r) is red (blue). Note that 
R(s , t) = R<2> (s ,  t) . As in the case of Theorem 1 ,  the next result not only 
guarantees that R<'> (s ,  t) is finite for all values of the parameters (which is 
certainly not at all obvious at first), but also gives an upper bound on R(r) (s , t) . 
The proof is an almost exact replica of the proof of Theorem 1 .  Note that if 
r > min{s , t} then R<'> (s , t) = min{s, t } ,  and if r = s � t then R<'> (s ,  t) = t .  

Theorem 2 Let 1 < r < min{s , t} . Then R<'> (s ,  t) isfinite and 

R(r) (s , t) � R(r- 1 ) ( R(r) (s - 1 ,  t) , R(r) (s , t - 1 )) + 1 .  

Proof Both assertions follow immediately if we prove the inequality under the 
assumption that R(r- 1 > (u ,  v) is finite for all u ,  v, and both R<'> (s - 1 ,  t) and 
R(r) (s , t - 1 )  are also finite. 

Let X be a set with R(r- 1 ) (R(r) (s - 1 ,  t) , R(r) (s , t - 1 ) )  + 1 elements. Given 
any red-blue colouring c of x<r> ,  pick an x E X and define a red-blue colouring 
c' of the (r - 1 )-sets of Y = X - {x } by colouring a E y(r- 1 ) the colour of 
a U  {x } E x<r> .  By the definition of the function R(r- 1 > (u ,  v) we may assume 
that Y has a red subset Z (for c') with R(r) (s - 1 , t) elements. 

Now let us look at the restriction of c to z<r) . If it has a blue t-set, we are done, 
since z<r> c x<r> ,  so a blue t-set of Z is certainly also a blue t-set of X. On the 
other hand, if there is no blue t-set of Z then there is a red (s - 1 )-set. The union 
of this red (s - 1 )-set with {x } is then a red s-set of X, because {x } U a is red for 
every a E z<r- 1 ) . 0 

It is easily seen that Theorem 2 and the colour-grouping argument described 
after Theorem 1 imply the following assertion. Given r and s1 , sz , . . .  , St . then for 
large enough l X I  every colouring of x<r> with k colours is such that for some i ,  
1 � i � k ,  there is a set Si c X ,  I Si I = Si , all of whose r-sets have colour i .  The 
smallest value of l X I  for which this is true is denoted by Ri') (s1 ,  sz , . . .  , sk) ;  thus 

R<'> (s , t) = Rr> cs , t) and Rk (s 1 , sz , . . .  , sk) = Rk2> (s1 . sz , . . .  , sk) .  The upper 
bound for Ri') (s 1 , sz , . . .  , Sk ) implied (via colour-grouping) by Theorem 2 is not 
very good. Imitating the proof of Theorem 1 one arrives at a better upper bound 
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R(r) ( ) R(r- 1 ) (R(r) ( 1 ) k St , S2 , . . .  , Sk ::S k k S t - , S2 , . . . , Sk , . . . , 

RY) (St , . . .  ' Sk- 1 . Sk - 1 ) ) + 1 .  

Very few of the nontrivial Ramsey numbers are known, even in the case r = 

2. It is easily seen that R(3, 3) = 6, and with some work one can show that 
R(3 ,  4) = 9, R(3 , 5) = 14, R(3, 6) = 1 8 , R(3, 7) = 23 and R(4, 4) = 1 8 . 
Considerably more effort is needed to prove that R(3 ,  8) = 28 and R(3 ,  9) = 36. 
Furthermore, McKay and Radziszowski proved in 1995 that R(4, 5) = 25 . These 
are the only known two-colour Ramsey numbers. For the other ones, all that is 
known are bounds, as shown in Table VI. 1 .  The proofs of many of these bounds 
needed a surprising amount of ingenuity, work and computing time. 

At first sight, the paucity of exact Ramsey numbers may well seem surprising. 
However, there are many reasons why it is unlikely that a large Ramsey number, 
like R(6, 6) , will ever be determined. The two-colourings of Kn without large 
monochromatic complete subgraphs lack order: they look as if they had been 
chosen at random. This apparent disorder makes it highly unlikely that a simple 
induction argument will give a tight upper bound for R (s , t) . On the other hand, 
a head-on attack by computers is also doomed to failure, even for R(5, 5) . For 
example, if all we want to prove is that 48 is an upper bound for R(5 , 5) , we 
have to examine over 21000 graphs of order 48: a task well beyond the power of 
computers. 

It is not too easy to prove general /ower bounds for Ramsey numbers either. As 
the colourings without large complete monochromatic sub graphs are 'disorderly' ,  
it is not surprising that random methods can be used to give fairly good lower 
bounds. In Chapter VII we shall show some beautiful examples of this. 

As it is very difficult to find good estimates for R(s , t) as s ,  t � oo, it is not 
surprising that very few fast-growing Ramsey functions have been determined 
exactly. In fact, Erdos and Szekeres proved that the right-hand side of (2) is 
exactly 1 smaller than the value of a natural Ramsey function. In order to present 
this result, we introduce some terminology. Call a set S c JR2 non-degenerate if 
any two points of it have different x coordinates. A k-cup, or a convex k-set, is a 
non-degenerate set of k points of the form { (x; , h (x; )) : i = 1 ,  . . . .  , k} ,  where h 
is a convex function. Writing s (p, p') = (y - y')j(x - x') for the slope of the 
line through the points p = (x , y) and p' = (x' , y') ,  if K = {p t • . . .  , Pk } with 
Pi = (x; , y; ) ,  x 1 < · · · < Xt . then K is a k-cup iff s (p 1 , P2) :::: s (p2 , p3) :::: · · · :::: 
s (Pk- 1 , Pk) .  An l-eap, or a concave l-set, is defined analogously. 

Here is then the beautiful result of Erdos and Szekeres about k-cups and l-eaps. 
The first part was published in 1935, the second in 1960. 

Theorem 3 Fork, l 2: 2, every non-degenerate set of (k!:_24) + 1 points contains 
a k-cup or an l-eap. Also, for all k, l 2: 2, there is a non-degenerate set Su of 
(k+l-4) . h . . h k l k-2 pomts t at contams nezt er a -cup nor an -cap. 
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Proof Let us write ¢ (k,  l) for the binomial coefficient (
k
!�24

) . 
(i) We shall prove by induction on k + e that every non-degenerate set of 

¢ (k,  l) + 1 points contains a k-cup or an l-eap. Since a non-degenerate set 
of 2 points is both a 2-cup and a 2-cap, this is clear if min{k, l} = 2, since 
¢ (k, 2) = ¢ (2, l) = 1 for all k, e :=:: 2. Suppose then that k, e :=:: 3 and the assertion 
holds for smaller values of k+l .  Let S be a non-degenerate set of ¢ (k,  l) + 1 points 
and suppose that, contrary to the assertion, S contains neither a k-cup nor an l-eap. 
Let L c S be the set of last points of (k - 1 )-cups. Then S\L has neither a (k - I )­
cup nor an l-eap so, by the induction hypothesis, I S\L I :;: ¢ (k - 1 ,  l) .  Therefore 
I L l  :::: ¢ (k ,  l) + 1 - ¢ (k - 1 ,  l) = ¢(k,  e - 1 )  + 1 so, again by the induction 
hypothesis, I,; contains an (l - 1)-cap, say {q1 , . . .  , qt-d. with first point our set 
S contains q1 .  Since q1 E L, a (k - 1)-cup {pJ , . . .  , Pk-d.  whose last point, Pk- I , 
is precisely qJ .  Now, if s (Pk-2 . Pk- I ) :=: s (Pk- I .  q2) then {pJ , . . .  , Pk- I .  q2 } is 
a k-cup. Otherwise, s (pk-2 . q 1 ) > s (q i , q2) ,  so {Pk-2 . q1 ,  . . .  , qe- d is an l-cup. 
This contradiction completes the proof of the induction step, and we are done. 

(ii) We shall construct Sk,l also be induction on k + e . In fact, we shall construct 
Sk,t in the form {(i , y; ) :  1 :;: i :;: ¢(k, l) } .  

If  min{k, l }  = 2 then ¢ (k , l) = 1 and we may take Sk,l = { ( 1 , 0) } .  Suppose 
then that k, e :=:: 3 and we have constructed Sk,l for smaller values of k + e . 
Set Y = Sk- I ,l . Z = Sk,l- I .  m = ¢(k - 1 ,  l) and n = ¢(k,  e - 1 ) ,  so that 
Y = { (i , y; ) : 1 :;: i :;: m}  contains neither a (k - 1 )-cup nor an l-eap, and 
Z = { (i , z;) : 1 :;: i :;: n}  contains neither a k-cup nor an ( e - 1 )-cup. 

For e > 0, set y(e) = { (i , ey; ) : 1 :;: i :;: m}  and zCe) = { (m + i ,  m + ez; ) :  
1 :;: i :;: n} .  Now, i f  e > 0 i s  small enough then every line through two points of 
y (e) goes below the entire set zCe) , and every line through two points of zCe) goes 
above the entire set y(e) . Hence, in this case, every cup meeting zCe) in at least 
two points is entirely in zCe) , and every cup meeting y(e) in at least two points is 
entirely in y(e) . But then y(e) U zCe) will do for Su since it continues neither a 
k-cup nor an l-cup. 0 

As an easy consequence of Theorem 3, we see that every set of e:�i) + 1 
points in the plane in general position contains the vertices of some convex k­
gon. In 1935, Erdos and Szekeres conjectured that, in fact, every set of 2k-2 + 1 
points in general position contains a convex k-gon. It does not seem likely that 
the conjecture will be proved in the near future, but it is known that, if true, the 
conjecture is best possible (see Exercise 23). 

After this brief diversion, let us return to hypergraphs. Theorem 2 implies that 
every red-blue colouring of the r-tuples of the natural numbers contains arbitrarily 
large monochromatic subsets; a subset is monochromatic if its r-tuples have the 
same colour. Ramsey proved that, in fact, we can find an infinite monochromatic 
set. 

Theorem 4 Let 1 :;: r < oo and let c : A (r) -+ [k] = { 1 , 2, . . .  , k} be a k­
colouring of the r-tuples of an infinite set A. Then A contains a monochromatic 
infinite set. 
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TABLE VI. I .  Some values and bounds for two colour Ramsey numbers. 

Proof We apply induction on r. Note that the result is trivial for r = I ,  so we 
may assume that r > I and the theorem holds for smaller values of r .  

Put Ao  = A and pick an element XJ  E Ao .  As  i n  the proof o f  Theorem 2, 
define a a colouring C J  : B}r- I ) -+ [k] of the (r - I )-tuples of B1 = Ao - {xi } 
by putting c 1 (r) = c (r U {xi } ) ,  r E n?- 1) .  By the induction hypothesis B1 
contains an infinite set A 1 all of whose (r - 1 )-tuples have the same colour, say 
d1 , where d1 E { I ,  . . .  , k } . Let now x2 E A 1 , B2 = A 1 - {x2 } and define a 
k-colouring C2 : By- ! ) -+  [k] by putting c2 (r) = c (r U {x2 } ) ,  r E By- 1 ) .  Then 
B2 has an infinite set A2 all of whose (r - I)-tuples have the same colour, say 
d2 . Continuing in this way we obtain an infinite sequence of elements : X J , x2 , . . .  , 
an infinite sequence of colours : d1 , d2 , . . .  , and an infinite nested sequence of 
sets : Ao :::::> A 1 :::::> A2 :::::> · · · , such that x; E A;- J ,  and for i = 0, 1 , . . .  , all r­
tuples whose only element outside A; is x; have the same colour d; . The infinite 
sequence (dn )J" must take at least one of the k values 1 ,  2, . . .  , k infinitely often, 
say d = dn 1  = dn2 = . . . . Then, by the construction, each r-tuple of the infinite 
set {xn 1 , Xn2 , • • •  } has colour d. 0 

In some cases it is more convenient to apply the following version of Theorem 4. 
As usual, the set of natural numbers is denoted by N. 

Theorem 5 For each r E N, colour the set N(r) of r-tuples ofN with kr colours, 
where kr E N. Then there is an infinite set M C N such that for every r any two 
r-tuples of M have the same colour; provided their minimal elements are not less 
than the rth element of M. 

Proof Put Mo = N. Having chosen infinite sets Mo :::::> · · · :::::> Mr- 1 • let Mr be 
an infinite subset of Mr- 1 such that all the r-tuples of Mr have the same colour. 
This way we obtain an infinite nested sequence of infinite sets : Mo :::::> M1 :::::> · · • . 

Pick a1 E MJ , a2 E M2 - { I ,  . . .  , a J } , a3 E M3 - { l ,  . . .  , a2 } , etc . Clearly, 
M = {a! , a2 , . . .  } has the required properties. 0 
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It is interesting to note that Ramsey 's theorem for infinite sets, Theorem 3 , 
easily implies the corresponding result for finite sets, although it  fails to give 
bounds on the numbers R(r) (si ,  s2 ,  . . .  , Sk) .  To see this, all one needs is a simple 
compactness argument, a special case of Tychonov's theorem that the product of 
compact spaces is compact. 

We have already formulated this (see Exercise 111.30) but here we spell it out 
again in a convenient form. 

Theorem 6 Let r and k be natural numbers, and for every n :::: 1, let Cn be 
a non-empty set of k-colourings of [n] (r) such that if n < m and Cm E Cm 
then the restriction cf::) of Cm to [n] (r) belongs to Cn. Then there is a colouring 
c : N(r) -+ [k] such that, for every n, the restriction c<n) of c to [n] (r) belongs to 
Cn. 
Proof. For m > n ,  write Cn,m for the set of colourings [n] (r) -+ [k] that 
are restrictions of colourings in Cm . Then Cn,m+I C Cn,m C Cn and so 
Cn = n�=n+l Cn,m =f:. 0 for every n, since each Cn,m is finite. Let Cr E Cr . 
and pick Cr+ I E Cr+l •  Cr+2 E Cr+2 • and so on, such that each is in the preimage 
of the previous one: Cn = c�� 1 . Finally, define c : N(r) -+ [k] by setting, for 
p E f::l(r) , 

c(p) = Cn (P) = Cn+J (p) = · · · , 

where n = max p. This colouring c is as required. D 
Let us see then that Theorem 5 implies that R(r) (S J ,  s2 ,  . . .  , sk) exists. Indeed, 

otherwise for every n there is a colouring [n] (r) -+ [k] such that, for each i ,  there 
is no s; -set all of whose r-sets have colour i .  Writing Cn for the set of all such 
colourings, we see that Cn =f:. 0 and Cn,m C Cn for all n < m, where Cn,m is as 
in the proof of Theorem 5. But then there is a colouring c : N(r) -+ [k] such 
that every monochromatic set has fewer than s = max s; elements, contradicting 
Theorem 4. 

To conclude this section, we point out a fascinating phenomenon. First, let us 
see an extension of the fact that RY) (s J , . . .  , sk) exists. 

Theorem 7 Let r, k and s :=:: 2. lfn is sufficiently large thenfor every k-colouring 
of [n] (r) there is a monochromatic set S C [n] such that 

l S I :=:: max{s ,  min S} . 
Proof. Suppose that there is  no such n, that is ,  for every n there is  a colouring 
[n] <r) -+ [k] without an appropriate monochromatic set. Let Cn be the set of all 
such colourings. Then Cn =f:. 0 and, in the earlier notation, Cn,m C Cn for all n < m.  
But then there i s  a colouring c : N(r) -+ [k] such that its restriction c<n) to [n] <r) 
belongs to Cn . Now, by Theorem 4, there is an infinite monochromatic set M C N. 
Set m = min M, t = max { m, s}, and let S consist of the first t elements of M. 
Then, with n = max S, the colouring c<n) does have an appropriate monochromatic 
set, namely S, contradicting c<n) E Cn . D 
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This is a beautiful result but it is not too unexpected. What is surprising and 
deep is that, as proved by Paris and Harrington in 1977, although Theorem 7 
is a (fairly simple) assertion concerning finite sets, it cannot be deduced from 
the Peano axioms, that is, it cannot be proved within the theory of finite sets . 
In other words, we actually need the notion of a finite set to prove Theorem 7 .  
This theorem of Paris and Harrington became the starting point of  an active area 
connecting combinatorics and logic. 

As this is a book on graph theory, we cannot digress too far into logic, so let 
us return to graphs. Let R*(s) be the minimal integer n such that for every two­
colouring of [n ] <2l there is a monochromatic set S C [n] with l S I � max{s , l S I } .  
Thus R * (s)  i s  the minimal value of n such that for every graph G with vertex set 
[n] there is a set S C [n] with l S I � max{s , l S I }  such that G[S] is trivial, that is, 
either complete or empty. We know from Theorem 7 that R * (s)  exists . Clearly, 
R*(s) � R (s)  but, not surprisingly, R*(s) is of a greater order of magnitude 
than R (s) :  it turns out that there are positive constants c and d such that 22cs < 
R * (s) < 2zds . 

VI.2 Canonical Ramsey Theorems 

Can anything significant be said about colourings of N(r) with infinitely many 
colours? Can we guarantee that there is an infinite set M C N such that on 
M(r) our colouring is particularly 'nice' ? In 1 950, Erdos and Rado proved that, 
unexpectedly, this is precisely the case. 

In what follows, M, N, M 1 , N 1 ,  . . .  denote countable infinite sets , and r, s, . . .  
are natural numbers . 

We call two colourings Cl : N�r) � cl and Cz : NJ') � Cz equivalent if there 
is a 1-to- 1 map ¢ of N 1 onto Nz such that for p ,  p' E Nf'l we have c1 (p) = c1 (p') 
if and only if cz (¢ (p))  = cz (cp (p') ) . 

In an ideal world, for every colouring of N(r) (with any number of colours) 
there would be an infinite set M C N on which the colouring is equivalent to one 
of finitely many colourings . Surprisingly, even more is true. 

Call a colouring c : N(r) � C irreducible if for every infinite subset N1 of 
N, the restriction of c to Nf'l is equivalent to c. Also, call a set C of colourings 
N(r) � N unavoidable if for every colouring c of N(r) there is an infinite set 
M c N such that the restriction of c to M(r) is equivalent to a member of C. Erdos 
and Rado proved that for every r there is a finite unavoidable family of irreducible 
colourings. 

What are examples of irreducible colourings of N<' l ? Two constructions spring 
to mind: a monochromatic colouring, in which all r-sets get the same colour, 
and an all-distinct colouring, in which no two sets get the same colour. After a 
moment's thought, we can construct more irreducible colourings . Given N c N, 
a =  {a1 , · · · , a, } E N(rl , a l < . . .  < a, , and S C [r] = { 1 ,  . . .  , r } ,  l S I = s , set 
as = {ai : i E S} .  Define the S-canonical colouring cs : N(r) � N(s) , by setting 
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cs (a) = as . Thus we are colouring the elements ofN(r) with s-sets, and two r-sets 
get the same colour iff their i th elements coincide for i E S and are different for 
i ¢. S. lt is easily seen (see Exercise 29) that cs is an irreducible colouring for every 
S C [r] ; also, these colourings include the two irreducible colourings mentioned 
above: Cf.':l is a monochromatic colouring and C[r] is an all-distinct colouring. 

Clearly, for S =f:. S' the colourings cs and cs' of N(r) are not equivalent, so N(r) 
has at least 2r irreducible colourings, namely the 2r canonical colourings. As we 
shall see, there are no other irreducible colourings. At first sight this might be rather 
surprising since a canonical colouring of N(r) depends on the order of elements 
of N. To resolve this 'paradox' ,  note that if {at , a2 , . . .  } and {b t , b2 , . . .  } are 
two enumerations of N then there are subsequences ak1 , ak2 , • • •  and b11 , b12 , • • •  , 
kt < k2 < · · · , I t  < l2 < · · · , such that ak; = b1; for every i .  

Before we tum to the results, let us introduce a concept similar to the equivalence 
of colourings, but taking into account the order on the underlying set. Let c : 
N(r) -+ C and T, U E N(t) for some t ::: r .  Also, let rp : T -+ U be the unique 
order-preserving map from T onto U. The sets T and U are said to have the same 
pattern (with respect to c) if for p , p' E T(r) we have c(p) = c(p') if, and only 
if, c(rp (p)) = c(rp (p')) .  Note that the number of patterns of t-sets is precisely the 

number of partitions of G) distinguishable objects ; clearly, G) G) is a crude upper 
bound for this number. 

After all this preparation, let us prove the Erdos-Rado canonical theorem for 
graphs, that is, for r = 2. Note that for every infinite set N c N there are four 
canonical colourings of N(2) . In the 0-canonical colouring of N(2) , all edges have 
the same colour, in the { 1 ,  2 }-canonical colouring all edges have distinct colours, 
in the { 1 }-canonical colouring two edges have the same colour iff their first vertices 
coincide, and in the {2}-canonical colouring two edges have the same colour iff 
their second vertices coincide. 

Theorem 8 For every colouring c : N(2) -+ N there is an infinite subset M ofN 
such that the restriction of c to M(2) is canonical. 

Proof As there are only finitely many patterns for the colourings of [4] (2) , we 
may apply Ramsey's theorem for infinite sets, obtaining an infinite set M c N 
such that all 4-sets of M have the same pattern 1r .  We claim that this set M will do. 

Let M = {m t , m2 , · · · } , where m t  < m2 < . . . . Since all 4-sets have the same 
pattern, for any two edges m;mJ and mkm/ , the colours c(m;mJ )  and c(mkml) do 
or do not coincide, according to the relative position of the pairs ij and kl in the 
set { i ,  j ,  k, 1 } .  For example, 25 and 57 have the same relative position as 36 and 
67 ; similarly, 38 and 46 have the same position as 29 and 78 .  

After these observations, let us prove that the restriction of cto M(2) i s  canonical. 
With a slight abuse of notation, from now on write c for the restriction of c to M(2) . 
We may assume that c =f:. C( J ,2) , that is, M(2) has two edges of the same colour: 
say c (m;mj ) = c(mkml) , where m; ¢. {mj , mk } .  Note that we do not (and can not) 
assume that i < j or i > j .  But then c(m2;m21 )  = c(m2km21) = c(m2i+ Jffl2J )  
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so  M(Z) has two adjacent edges of  the same colour. Let us  distinguish three cases 
according to the positions of these adjacent edges, and see what we can deduce. 

(i) Suppose first that c(mimj ) = c(mimk) for some i < j < k. Then, by 
considering the 4-set {mi , mj , mk . mk+d, we see that in the pattern 7r the edges 12  
and 1 3  get the same colour. But then any two edges sharing their first vertices have 
the same colour, since ifr < s < t then the restriction of c to {mr . m8 , m1 , m1+d(Z) 
shows that c(mrms) = c(mrmt ) .  This means that there is a colouring d : M -+ N 
such that for r < s we have c(mrms) = d(mr) . 

(ii) Suppose next that c(mimk) = c(mjmk) for some i < j < k. Then, similarly, 
there is a map e : M -+ N such that c(mrms) = e(ms) if r < s .  

(iii) Finally suppose that c(mimj ) = c(mjmk) for some i < j < k. Then 
c(mrms ) = c(m8m1) for all r < s < t. Hence c(m 1m3) = c(m3m5) = 
c(mzm3) = c(m3m4) ,  say, so there are edges of the same colour sharing their 
second vertices. Therefore, there are maps d : M -+ N and e : M -+ N such that 
if i < j then c(mimj ) = d(mi) = e(mj) .  But then any two edges of M(Z) have 
the same colour, so c = q'J .  

What we have seen so  far i s  that i f  (iii) holds then we are done. In  fact, i t  i s  very 
easy to complete the proof in the case when (iii) does not hold. Indeed, if (i) holds 
but (iii) does not then d(mi ) =f. d(mj ) for all i =f. j ,  so c =  C[ J ) ,  and if (ii) holds 
but (iii) does not then e (mi ) =f. e(mj) for i =f. j ,  so c =  C[Z) · 0 

As it happens, the proof of the full Erdos-Rado canonical theorem is hardly 
more complicated than the proof above. 

Theorem 9 Let r be a positive integer and c : N(r) -+ N a colouring. Then there 
is an infinite subset M ofN such that the restriction of c to M(r) is canonical. 

Proof. Let us apply induction on r. For r = 1 there is nothing to prove, so suppose 
that r � 2 and the theorem holds for smaller values of r. Given c : N(r) -+ N, 
colour each T E N(Zr) with the pattern of the restriction of c to r<r) . As there are 
only finitely many patterns, there is an infinite set N c N such that all 2r-subsets 
of N have the same pattern 7r .  In order to simplify the notation, we assume that 
N = N: all this amounts to is an appropriate relabelling. 

If no two r-subsets of N have the same colour then we are done: c = 
C[r] · Therefore we may assume that c(p) = c(a) for some p ,  a e N(r) , 
p =f. a ;  say p = {a J ,  . . .  , ar } and a =  {b J ,  . . .  , br } .  where a1 < · · ·  < ar 
and b 1 < · · · < br . As p =f. a ,  there is an element bi E a\p. Note 
that all the sets Po = {2a l , 2az , . . .  , 2ar }, a1 = {2b J , 2hz, . . .  , 2br } and 
az = {2b J ,  2hz , . . . , 2bi- ! , 2bi - 1 ,  2bi+ ! , . . .  , 2br } get the same colour. Indeed, 
I Po U a1 l = I Po U az l = u, say, so there are sets T1 , Tz E N(Zr) such that Po U a1 
is the set of the first u elements of T1 , and Po U az is the set of the first u elements 
of Tz . As r?l has pattern Jr, we have c(Po) = c(aJ ) ,  and as r;rl has pattern Jr ,  
we have c(Po) = c(az) .  

Now, since a1 and az get the same colour, any two r-subsets of N differing only 
in the i th place also get the same colour: if r, r E N(r) and ![r]-{il = r{r]- {i ) then 
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c( r) = c( r') ,  that is, the colour of r E N(r) depends only on 'l'[r]-{i} .  This enables 
us to define a colouring c' : N(r- 1 ) --+- N U { oo} as follows: for v E N(r- 1 ) set 
c' (v) = c(r) if v = 'l'[r]-{i} for some r E N(r) , and c' (v) = oo otherwise. 

By the induction hypothesis, there is an infinite set M c N such that c' is 
canonical on M(r- 1 ) . Then c' ( v) =f. oo for v E M(r- 1) , and c is a canonical 
colouring of M(r) . D 

As an amusing point, note that Theorem 9 is clearly stronger than Theorem 4 
since for an infinite set M c N the only canonical colouring of M(r) that uses 
finitely many colours is q� , the canonical colouring using only one colour. 

Vl.3 Ramsey Theory For Graphs 

Let H 1 and Hz be arbitrary graphs. Given n, is it true that every red-blue colouring 
of the edges of Kn contains a red H1 or a blue Hz? Since H; is a subgraph of 
Ksp where s; = I H; I ,  the answer is clearly "yes" if n :=:: R (s i ,  sz) .  Let r (HJ , Hz) 
be the smallest value of n that will ensure an affirmative answer, and define 
r (HJ , . . .  , Hk) analogously for k colours. Note that this notation is similar to the 
one introduced earlier: R(si , sz) = r(Ks1 ,  K82 ) . Instead of a red-blue colouring, 
one frequently works with a graph and its complement: clearly, r(Hi , Hz) - 1 is 
the maximal value of n for which there is a graph G of order n such that H 1 ct. G 
and Hz ct. G. 

The numbers r(HI , . . .  , Hk) , called generalized Ramsey numbers or graphical 
Ramsey numbers, have been the subject of much study, and by now there is a large 
body of results about them. Nevertheless, there is a long way to go, which is not 
surprising, since the generalized Ramsey numbers include the classical Ramsey 
numbers R(s ,  t) . Here we shall present some of the basic results about generalized 
Ramsey numbers. 

In order to avoid trivialities, throughout this discussion we shall assume that 
H1 , Hz , . . .  do not have isolated vertices. Let us start with the observation that if 
H 1 is very sparse, say it consists of .e independent edges, then r ( H 1 ,  Hz) is rather 
small. In fact, if H 1 consists of .e independent edges, and Hz is a complete graph, 
then we can determine r(HJ , Hz) exactly. 

Theorem 10 For .e :=:: 1 and p :=:: 2 we have 

r(lKz ,  Kp) = 2.e + p - 2. 

Proof The graph Ku-1 U Ep-Z does not contain l independent edges, and its 
complement, Eu-i + K p-Z ,  does not contain a complete graph of order p .  Hence 
r (lKz ,  Kp) :=:: 2.e + p - 2. 

On the other hand, let G be a graph of order n = 2l+ p-2, containing a maximal 
set ofs � .e - 1  independentedges. Then the set ofn -2s :=:: 2l+ p-2-2(l- 1) = 

p vertices not on these edges spans a complete graph of order at least p . Therefore 
r (lKz ,  Kp) � 2.e + p - 2. D 
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Note that if H is any graph of order h then, by Theorem 10, r (lK2 ,  H) .:::: 
r (iK2 , Kh) ::S 2£ + h - 2. 

The next observation is  a lower bound for r ( H 1 ,  H2) ,  valid for all pairs (H 1 ,  H2) .  
For a graph G, denote by c( G )  the maximal order of a component of G, and by 
u (G) the chromatic surplus of G: the minimal number of vertices in a colour 
class, taken over all proper x (G)-colourings of G. Thus u (G) = min{U c 
V (G) : x (G - U) < x (G) } .  For example, u (C2k) = k and u (C2k+d = 1 .  
Theorem 1 1  For all nonempty graphs H1 and H2 we have 

r(H1 , H2) � (x (H1 ) - l ) (c(H2) - 1 )  + u (H1 ) .  
In particular, if H2 is connected then 

r(H1 , H2) � (x (H1 ) - l ) ( IH2 I - 1 )  + 1 .  
Proof. Set k = x (H1 ) ,  u = u (H1 ) and c = c(H2) . Trivially, r (H1 , H2) > 
r (H1 , K2) = IH1 I  � X (H1 )u (H1 ) = ku . Hence, if c .:::: u then r (H1 , H2) � ku � 
(k - l)c + u .  On the other hand, if c > u then the graph G = (k - l )Kc- 1 U 
Ku - 1 does not contain H2, and its complement does not contain H1 . Therefore, 
r (H1 , H2) � I G I  + 1 = (k - l ) (c - 1 )  + u .  0 

Although the inequalities in Theorem 9 are very simple, in some cases they 
are best possible. Let us see two examples of this: the first is a beautiful result of 
Chvatal. 

Theorem 12 Let s , t � 2. then for every tree T of order t we have r(K8 , T) = 

(s - 1 ) (t - 1 )  + 1 .  
Proof. From Theorem 10 we know that r (K8 , T) � (s - l) (t - 1 )  + 1 .  To prove 
the reverse inequality, let G be a graph of order n = (s - 1 ) (t - 1 )  + 1 whose 
complement does not contain Ks . Then x (G) � f n I (s - 1) l = t so it contains 
a critical subgraph H of minimal degree at least t - 1 (see Theorem V. 1) .  It is 
easily seen that H contains (a copy of) T. Indeed, we may assume that T1 c H,  
where T1 = T - x and x is an endvertex of T, adjacent to a vertex y of  T1 (and 
of H) .  Since y has at least t - 1 neighbours in H, at least one of its neighbours, 
say z, does not belong to T1 . Then the sub graph of H spanned by T1 and z clearly 
contains (a copy of) T .  D 

The second example of equality in Theorem 8 concerns fans. For l � 1 ,  the 
graph He = K 1 +£K2 is called a fan with l blades. Thus F1 = K3, and Fe is made 
up of l triangles with a vertex in common. In 1996, Li and Rousseau demonstrated 
the following result. 

Theorem 13 For l � 2 we have r(F1 , Fe) = r (K3 , Fe ) = 4£ + 1 .  
Proof. We know from Theorem 1 1 that r(K3 , Fe ) � 2( 1 Fe l - 1 )  + 1 = 4£ + 1 .  

To prove the reverse inequality, suppose that the inequality is false; that is, 
there is a triangle-free graph G of order n = 4£ + 1 whose complement does not 
contain Fe . 
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For x E G, let U = f' G (x) .  Then U is a set of independent vertices and since 
G does not contains Fe , we see that dc (x) = l U I  :S 2e . 

On the other hand, how large can the degree of x be in G? Set W = f'c(x) = 
V (G) - (U U {x }) .  Then G[W] does not contain l independent edges, and its 
complement, G[W] ,  has no triangle. Hence, by Theorem 10, da(x) = I W I :::; 2£ . 

This shows that dc (x) = da(x) = 2.e, that is, G is a triangle-free 2£-regular 
graph of order 4£ + 1 .  But from the result in Exercise IV.48 we know that this is 
impossible. D 

If we define a graph H2 to be H 1 -good if equality holds in Theorem 1 1 , then 
the previous two results claim that every tree is Ks-good for s :=:: 2, and the fan Fe 
is K3-good for l :=:: 2. In fact, Li and Rousseau proved also that, for every fixed 
s :=:: 2, if l is large enough then Fe is Krgood. Even more, if H1 and H2 are fixed 
graphs and l is large enough then K1 + lH2 is (K2 + HJ )-good. 

As we know very little about r(K8 , K1) ,  it is only to be expected that r (G J ,  G2) 
has been determined mostly in the cases when at least one of G 1  and G2 is sparse, 
as in Theorems 12 and 13 .  As we shall see now, there are particularly pleasing 
results for r (sHJ , tH2) when H1 and H2 are fixed and s and t are large. The 
following simple lemma shows that for fixed H 1 and H2 the function r (s H J ,  t H2) 
is at most s i HJ I  + t i H2 I  + c, where c depends only on H1 and H2, and not on s 
and t .  

Lemma 14  For all graphs G,  H1  and H2 we have r (G ,  H1  U H2) :S 
max{r(G, HJ ) + I H2 I . r(G, H2)} . In particular, r(sH1 , H2) :S r(HJ , H2) + 
(s - l ) I HJ I . 

Proof. Let n = max{r (G, HJ ) + IH2 I .  r(G, H2)} ,  and suppose that we are given 
a red-blue colouring of Kn without a red G.  Then n :=:: r(G, H2) implies that 
there is a blue H2. Remove it. Since n - IH2 I  :=:: r(G, HJ ) ,  the remainder contains 
a blue HJ . Hence Kn contains a blue H1 U H2. D 

This simple lemma can be used to determine r(s H, t H) when H is K2 or K3 . 

Theorem 15 If s :=:: t 2: 1 then 
r(sK2 ,  tK2) = 2s + t - 1 .  

Proof. The graph G = K2s- J U Er- J does not contain s independent edges and 
G = E2s- J + Kr- J does not contain t independent edges. Hence r(sK2 ,  tK2) :=:: 
2s + t - 1 . 

Trivially (or, by Theorem 10), r (sK2 ,  K2) = 2s , so to complete the proof it 
suffices to show that 

r ((s + l )K2 ,  (t + l )K2) :S r(sK2 ,  tK2) + 3 .  

To see this, let G be a graph of  order n = r(sK2 ,  tK2) + 3 :=:: 2s  + t + 2. If 
G = Kn then G ::::> (s + 1 )K2. and if G = En then G ::::> (t + l )K2 .  Otherwise, 
there are three vertices, say x, y and z. such that xy E G, xz ¢ G. Now, either 
G - {x , y ,  z }  contains s independent edges of G and then xy can be added to 
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them to form s + 1 independent edges of G, or else G - {x , y ,  z}  contains t 
independent edges and then xz can be added to them to form t + 1 independent 
edges of G .  D 
Theorem 16 /fs 2: t 2: 1 and s 2: 2 then r (sK3 , tK3) = 3s + 2t. 

Proof. Let G = K3s- i U (KJ + E2r- J ) .  Then G does not contain s independent 
triangles and G = E3s- i + (K 1 U K2r- 1 )  does not contain t independent triangles .  
Hence r (sK3 , tK3) is at least as large as claimed. 

It is not difficult to show that r (2K3 , K3) = 8 and r (2K3 , 2K3) = 10 
(Exercise 1 5). Hence repeated applications of  Lemma 14 give 

r (sK3 , K3) ::S 3s + 2, 
and to complete the proof it suffices to show that for s 2: 1 , t 2: 1 we have 

To see this, let n = r (sK3 , tK3) + 5 and consider a red-blue colouring of Kn . 
Select a monochromatic (say red) triangle R3 in Kn . If Kn - R3 contains a red 
sK3 then we are home. Otherwise, Kn - R3 contains a blue triangle B3 (it even 
contains a blue t K 3 ) . We may assume that at least five of the nine R3 - B3 edges 
are red. At least two of these edges are incident with a vertex of B3 , and together 
with an edge of R3 they form a red triangle R3 meeting B3 . Since Kn - R3 - B3 
has r (sK3 , tK3) vertices, it contains either a red sK3 or a blue tK3 . These are 
disjoint from both R3 and B3 , so Kn contains either a red (s + 1 )K3 or a blue 
(t + 1 )K3 . D 

By elaborating the idea used in the proofs of the previous two theorems we can 
obtain good bounds on r (sKp . tKq ) . provided that max(s ,  t) is large compared 
to max(p , q) .  Let p, q 2: 2 be fixed and choose to such that 

to min{p, q } 2: 2r(Kp . Kq) .  
Put C = r (toKp . toKq) .  
Theorem 1 7  If s 2: t 2: 1 then 

ps + (q - l ) t - 1 ::S r(sKp , tKq ) ::S ps + (q - l ) t + C. 
Proof. The graph Kps- i U E(q- i )t- i shows the first inequality. As in the proofs 
of the previous theorems, we fix s - t and apply induction on t. By Lemma 14 we 
have 

r (sKp . tKq ) ::S (s - t)p + r (tKp . tKq ) :::: ps + C, 

provided that t :::: to . Assume now that t 2: to and the second inequality of the 
theorem holds for s ,  t .  

Let G be a graph of  order n = p (s + 1 )  + (q - 1) (t + 1 )  + C such that 
G t> (s + l )Kp and G t> (t + 1 )Kq . We claim that some Kp of G and Kq of G 
share a vertex. Indeed, suppose that this is not the case. By altering G, if necessary, 
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we may assume that G :J s K P and G :J t Kq . Denote by Vp the set of vertices of 
G that are in Kp subgraphs and put Vq = V\Vp , np = I Vp l ,  and nq = I Vq l · 

By our assumption, np � sp and nq � tq . In the graph G, a vertex x E Vq is 
joined to at most r(Kp- I .  Kq ) - 1 vertices of Vp , since otherwise there is a Kp 
of G containing x or else a Kq of G consisting of vertices of Vp . Similarly, in the 
graph G every vertex y E Vq is joined to at most r(K p , Kq- I ) - 1 vertices of Vp . 
Hence, counting the Vp - Vq edges in G and G, we find that 

However, this is impossible, since np � sp � top and nq � tq � toq ,  so 
np � 2r(Kp- I .  Kq ) and nq � 2r(Kp , Kq- J ) .  Therefore, we can find a Kp of G 
and a Kq of G with a vertex in common. 

When we omit the p + q - 1 vertices of these two subgraphs, we find that 
the remainder H is such that H 1; sKp and H 1; tKq . However, I H I  = ps + 
(q - 1)t + C, so this is impossible. D 

In all the results above, we have r(HJ , H2) ,:::: C( IHI I + I H2 1 ) ,  where C depends 
only on the maximal degrees of HI and H2. That this is not by chance is a beautiful 
and deep theorem, proved by Chvatal, Rodl, Szemeredi and Trotter in 1983 .  

Theorem 18 For every d � 1 there is a constant c = c(d) such that if ll(H) ,:::: d 
then r(H, H) ,:::: c i H I .  D 

In fact, it is likely that much more is true. Burr and Erdos conjectured in 1975 
that the maximal degree can be replaced by the maximum of the minimal degrees 
of subgraphs, as in Theorem V. 1 :  for every d there is a constant c = c(d) such 
that if every subgraph of H has a vertex of degree at most d then r (H) ,:::: c iH I .  

Additional evidence for the truth of this conjecture was provided by Chen and 
Schelp: they proved that r (H) ,:::: c i H I  for some absolute constant c and every 
planar graph H .  Extending this result, Rodl and Thomas proved in 1995 that for 
every k there is a constant c = c(k) such that if H has no subcontraction to Kk 
then r (H) ,:::: c iH I . 

It would not be unreasonable to think that the various Ramsey theorems hold 
for finite graphs, because the graph whose edges we colour is Kn and not some 
sparse graph with few edges. For example, one might guess that, if G is a graph 
such that whenever the edges of G are k-coloured there is a monochromatic K8 , 
then G has to be rather dense. In fact, this is not the case at all. For every graph 
H with clique number r = w(H) and every k � 1 there is a graph G with clique 
number also r such that every k-colouring of G contains a monochromatic copy of 
H .  This beautiful result was proved by Nesetfil and ROdl in the following stronger 
form, extending earlier results of Graham and Folkman. 

Theorem 19 For every graph H and integer k � 1, there is a graph G 
with w(G) = w(H) such that every k-colouring of the edges of G contains a 
monochromatic induced subgraph isomorphic to H. D 
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FIGURE Vl. l .  The graph C3 + Cs . 

To conclude this section, let us note that occasionally mainstream problems of 
extremal graph theory masquerade as problems of Ramsey theory, as the prqblems 
have very little to do with partitioning the edges. For example, what is r ( H, K 1 , e) ? 
It is the smallest value of n such that every graph G of order n and minimal degree 
at least n - .e contains a copy of H .  As another example, if 

k ex(n ;  H) < (;) .  
then in every k-colouring of the edges of Kn there is a colour class with more than 
ex(n ; H) edges, so that colour class automatically contains a copy of H .  

For example, by Theorem IV. 12, 

ex(n ; C4) � io + J4n - 3) , 

so for n = k2 + k + 2 we have 

k2 + k + 2  
k ex(n ; C4) � k 4 ( 1  + (2k + 1 ) )  

= (k2 + k) (k; + k + 2) 
< 
(;) . 

Therefore, rk (C4) � k2 + k + 2. Chung and Graham showed that this bound is 
close to being best possible: rk (C4) :::: k2 - k + 2 if k - 2 is a prime power (see 
Exercise 17) .  

VI.4 Ramsey Theory for Integers 

It may sound strange that the first results concerning monochromatic substructures 
arose in connection with the integers, rather than graphs; however, as graph theory 
is very young indeed, this is not too surprising. In this section we shall present 
three classical results, together with some substantial recent developments. 

Perhaps the first result of Ramsey theory is a theorem of Hilbert concerning 
'cubes' in the set of natural numbers. Although the result is simple, its proof is 
clearly more than a straightforward application of the pigeon-hole principle. 
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Let us call a set C c N an £-cube in N if there are natural numbers so , S ! , . . .  , S£ ,  
with S ! + . . .  + Si < Si+! for 1 :S: i < l, such that 

l 
C = C(so ; s , ,  . . .  , sl ) = {so + L:Sis! : £i = 0 or 1 } .  

i= l 
Thus an £-cube in N is the affine image of the unit cube {0, l }l C JR., and this 
affine image has 2l vertices. 

In 1 892 Hilbert proved the following result. 

Theorem 20 If N is coloured with finitely many colours then, for every l ;::: 1 ,  
one of the colour classes contains infinitely many translates of the same £-cube. 
Proof It clearly suffices to prove the following finite version of this result. 

There is a function H : N x N --+ N such that if N ;::: H (k, l) then every 
k-colouring of [N] contains a monochromatic £-cube. 

Since a 1 -cube in N is just a pair of integers, H (k, 1) = k + 1 will do in this 
assertion. Therefore, it suffices to show that if we can have H(k, l) :s: n then 
H (k, l + 1 )  = N = knl+! will do. 

To see this, let c : [N] --+ [k] be ak-colouring, and partition [N] into N jn = knl 

intervals, each of length n :  
Nfn 

[N] = U Ij , 
j=l 

where Ij = [(j - l)n + 1 ,  jn] , j = 1 ,  . . .  , N jn . Then each Ij contains a 
monochromatic £-cube. But, up to translation, there are at most (n - l)l < nl 

cubes in these intervals, and each monochromatic cube can get one of k colours. 
Since there are knl intervals, some two of these intervals, say Ij and h ,  contain 
translations of the same £-cube Ct in the same colour. The union of these two 
translations is a monochromatic (£ + I )-cube. 0 

The result above had essentially no influence on the development of Ramsey 
theory, but the following theorem, proved by Schur in 19 16, became the starting 
point of an area that is still very active today. 

Theorem 21 For every k ;::: 1 there is an integer m such that every k-colouring 
of [ m] contains integers x ,  y ,  z of the same colour such that 

X +  y = z .  
Proof We claim that m = Rk (3) - 1 will do, where Rk (3) = Rk (3 , . . .  , 3) i s  the 
graphical Ramsey number for k colours and triangles, i .e. , the minimal integer n 
such that every k-colouring of the edges of Kn contains a monochromatic triangle. 

Let then n = Rk (3) and let c : [m] = [n - 1] --+ [k] be a k-colouring. Induce 
a k-colouring of [n] <2> ,  the edge set of the complete graph with vertex set [n] , as 
follows :  for ij E E(Kn ) = [n] <2> set c' (ij) = c( l i - j l ) .  By the definition of 
n = Rk (3) ,  there is a monochromatic triangle, say with vertex set {h , i, j } ,  so that 
1 :S: h < i < j :S: n and c'(hi )  = c'(ij) = c' (hj ) = l for some l. But then 
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x = i - h ,  y = j - i and z = j - h are such that c(x) = c(y) = c (z) = e and 
X + y = z .  D 

Writing S(k) for the minimal integer m that will do in Theorem 20, we see that 
S(k) ::::: Rk (3) - 1 .  As it is easily shown that Rk (3) ::::: Lek ! J  + 1 (see Exercise 25), 
we find that S(k) ::::: ek ! .  

The third and most important classical result, predating Ramsey's theorem, was 
proved by van der Waerden in 1927. The length of a sequence is the number of its 
terms. 

Theorem 22 Given p and k, ifn is large enough, then every k-colouring of [n] 
contains a monochromatic arithmetic progression of length p. 

In view of Theorem 22, we can define the van der Waerden functions W (p) and 
W(p,  k) .  Here W (p) = W(p, 2) , and W(p, k) is the minimal value of n that will 
do in Theorem 22; thus W(p, k) is the minimal integer n such that if [n]  = U7= l Ni 
then there are a ,  d :::: 1 ,  and 1 ::::: i ::::: k such that a ,  a+d, a+2d ,  . . .  , a + (p - l )d E 
Ni . Not surprisingly, the two-colour function function W (p) has been studied most, 
and by now it is known that W (2) = 3, W(3) = 9, W (4) = 35 and W(5) = 178 .  
However, very little i s  known about the growth of  the functions W (p)  and W (p,  k) . 

Rather than proving van der Waerden's theorem directly, we shall deduce it 
from a remarkable extension of the theorem proved by Hales and Jewett in 1 963. 
In order to state it, we need some definitions. 

For a finite set A and integer n the cube of dimension n :::: 1 over the alphabet 
A is the set An = A[n] = { (a ! , . . . , a

n
) : ai E A for every i } .  A combinatorial 

line, or simply a line, in An is a set L of the form 

L = { (a 1 , . . . , an ) E An : ai = a j for i ,  j E I and ai = a? for i ¢ I } ,  

where I i s  a non-empty subset of [n] and a? i s  a fixed element of A for i E [n] - I .  
Note that every line in A n  has precisely I A I  elements . Taking A = [p],  as we 
often do, the 'points ' a 1 ,  a2 ,  . . .  , aP of a line can be renumbered in such a way 
that aj = (a{ , a� , . . .  , a� ) satisfies 

a{ = [ j 

ao l 

if i E I ,  

if i ¢ I .  

Clearly, every line has p elements, and there are 

IC [n ] J ;l0 JC[n] ,J;i[n] 

lines in An . For example, the cube [p ]2 of dimension 2 has 2 p + l lines : p 'vertical' 
lines, p 'horizontal' lines, and one 'diagonal' line, namely { (a ,  a) : a  e A } . 

Theorem 23 For every p and k, there is an integer n such that if A is an alphabet 
with p letters then every k-colouring c : An --+ [k] contains a monochromatic 
line. 
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The Hales-Jewett function H J (p, k) is defined much like the corresponding 
van der Waerden function: H J(p, k) is the minimal value of n that will do in 
Theorem 23 . 

To see that the Hales-Jewett theorem implies van der Waerden's theorem, all 
we need is a map (} : [p]n -+ [pn] sending every combinatorial line onto an 
arithmetic progression of length p. For example, we could take (} : [p ]n -+ [pn] 
given by (a;)'{ H- a1 + · · · + an or (a; )! H- 1 + :L?=l (a; - l )pi- l . Then, 
every k-colouring c of [pn] induces a k-colouring c of the cube [p]n by setting 
c((a; )! ) = c((J ((a; )! )) . Now, a monochromatic line in the colouring c is mapped 
onto a monochromatic arithmetic progression of length p in the colouring c of 
[pn] .  Hence, W(p, k) :::: pHJ(p,k) . 

The original proofs of Theorems 21  and 22 used double induction (on p and k) 
and not even for W(p) = W(p, 2) did they provide a primitive recursive upper 
bound, so the bound grew remarkably fast. In fact, the upper bound for W (p) grew 
like Ackerman 'sfunction A (p). To define A(p), first define /I ,  /2, . . .  : N -+  N 
by setting /I (m) = 2m and 

fn+! (m) = fn o fn o · · · o fn ( l ) .  
m 

In particular, /2 ( 1 ) = /I ( 1 )  = 2, /2(2) = /I o /I ( 1 )  = !1 (2) = 22, /2(3) = 
/I o /1 o /! (1 )  = /! (22) = 23 , and so on, so that f2(m) = 2m ; then /3 ( 1 ) = 2, 

2 2 22 
/3 (2) = h o /2(2) = /2(22) = 22 , /3 (3) = /2 (22 ) = 22 , and so on. Then 
Ackerman's function is A(p) = /p (p) . For obvious reasons, /3 is known as a 
'tower' function. At the end of Section IV. 5 we already encountered this tower 
function in connection with Szemeredi's regularity lemma. 

The breakthrough in the upper bounds for van der Waerden' s function came over 
60 years after van der Waerden proved his theorem, when Shelah, in a remarkable 
tour de force, gave a primitive recursive upper bound for the Hales-Jewett function 
H J (p ,  k) and so for the van der Waerden function W(p, k) . The main aim of this 
section is to present this beautiful theorem of Shelah. 

Let us start with a technical lemma, known as Shelah's pigeon-hole principle. 

Lemma 24 Given integers n and k, if m is large enough, the following assertion 
holds. Let Cj : [m] 12n- l ]  -+ [k], j = 1 ,  . . .  , n, be k-colourings. Then there are 
integers 1 :::: aj < bj :::: m such that for every j, 1 :::: j :::: n, we have 

Cj (a! , b 1 , . . .  , aj- 1 . bj- 1 . aj , aj+l · bj+l • . . .  , an , bn) 
= Cj (a, , b, ,  . . .  , aj- 1 . bj- 1 . bj , aj+ l • bj+I ·  . . .  , an , bn) .  

Proof Let us apply induction on n. For n = 1 we may take any m � k + 1 .  
Suppose now that mo  will do for n and k ,  and let us prove that any m � km'f: + 1 
will do for n + 1 and k. 

Given colourings Cj : [mo] l2n+l l -+ [k] , j = 1 ,  . . .  , n + 1 ,  induce a colouring 
c : [m] -+ [k] lmol12n1 by setting, for every a E [m] and (a1 ,  b , ,  . . .  , an , bn) E 
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Ca (ai ,  b 1 , . . .  , an . bn) = Cn+I (a! , b1 , . . .  , an , bn , a) .  
By our choice of m, there are 1 � an+ I < bn+I � m such that Can+l = Cbn+ ! ; that 
is, 

Cn+I (a! , b 1 , . . .  , an , bn , an+ I ) = Cn+I (a! , b 1 , . . .  , an , bn , bn+ I ) 
for all (a i , b J ,  . . .  , an , bn) E [mo] [2nl . Now, for j = 1 ,  . . .  , n , define cj 
[mo] [2n- 1 ] , 

c) (X I , . . .  , X2n- I ) = Cj (XI , · · · , X2n- I , an+ I , bn+J ) .  
B y  the induction hypothesis, there are 1 � a; < b; � mo  for i = 1 ,  . . .  , n such 
that 

cj (aJ ,  b 1 , . . .  , aj- 1 . bj- I . aj , aj+I .  bj+I • . . .  , an , bn) 
= cj (ai ,  b 1 , . . .  , aj- 1 . bj- 1 . bj , aj+I .  bj+l ·  . . .  , an , bn) 

for every j .  But then the numbers 1 � a; < b; � m, i = 1 ,  . . .  , n + 1 ,  have the 
required property. 0 

Writing S(n ,  k) for the smallest value of m that will do in Lemma 24, the proof 
above shows that S( 1 , k) = k + 1 and 

S(n + 1 ,  k) � kS(n,k)2n + 1 
for n � 1 .  We call S(n ,  k) Shelah 'sfunction. 

Before we turn to She1ah's theorem, let us reformulate Lemma 24 in a more 
convenient form. Given positive integers n and m, define 

and 

S = { (a J , b 1 , . . .  , an . bn) E [m] (2n) } 

So = { (a J , b 1 , . . .  , an , bn) E [m][2nl : a; � b; for every i } .  
We call S and So the Shelah subsets of [m] [2nl . Also, for s = (a! ,  b 1 , . . .  , an . bn) E 
S and 1 � j � n, set 

. I s1 • = (a J ,  b 1 , . . .  , aj- I . bj- I .  aj . aj , aj+I ·  bj+I •  . . .  , an . bn) 
and 

' 2 s1 • = (a! , b 1 , . . .  , aj- 1 . bj- 1 . bj .  bj , aj+I .  bj+l • . . .  , an , bn) .  
With this notation, the proof of Lemma 24 gives the following assertion. 

Lemma 25 Given n and k, if m � S(n ,  k) then the following assertions hold. 
Let S and So be the Shelah subsets of [m] [2nl and let c : S -+  [k]. Then there is a 
point s E So such that c(sj, I ) = c(sj·2) for every j, 1 � j � n. 0 

After all this preparation, we are ready for Shelah's theorem, greatly 
strengthening the Hales-Jewett theorem. 
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Theorem 26 Given integers p and k, there is a minimal integer n = H J(p , k) 
such that every k-colouring [p ] [n] --+ [k] contains a monochromatic line. 
Furthermore, ifn = H J(p, k) then H J (p + 1 , k) � nS(n ,  k(p+l )n ). 
Proof. Clearly, H 1(1 , k) = 1 . Let us assume that n = H J(p , k) exists and 
m = S(n ,  k(p+l )n ) .  Let 

C : [p + 1 ] [nm] --+ [k] 
be a k-colouring. We have to show that this k-colouring contains a monochromatic 
line. 

Partition [nm] into n intervals, each of length m:  
n 

[nm] = U lj , 
j= l 

lj = [ (j - 1)m+ 1 , jm] . Also, let Sand So be the Shelah subsets of [m] [2nl . For s = 

(a J , b J . . .  , an , bn) E So , x = (X J ,  . . .  , Xn ) E [p+ 1 ] [nl and e = (j - 1)m+i E Ij . 
set { p + 1 if i � aj , 

et = Xj �f �j < i � bj , 
p tf l > bj . 

We call e8 (x) = e(s , x) = (e J ,  . . .  , enm ) E [p + 1 ] [nm] the s-extension of x .  
Clearly, for every s E So, the map e8 : [p  + 1 ] [n] --+ [p + 1 ] [nm] i s  an injection, 
mapping a line of [p + l ] [n] onto a line of [p + 1 ] [nml . 

Let us use c to induce a colouring c : S --+  [k] [p+ l l[nJ , s r+ c8 , where c8 (x) = 

c(e (s ,  x)) for x E [p + 1 ] [nl .  Since m = S(n ,  k(p+W) ,  by Lemma 25 there is an 
s E So such that 

c(e(sj, I , x)) = c(e(sj·2 , x)) 

for all x E [p + l ] [nl .  Let us fix this point s = (a J ,  b 1 , . . .  , an , bn) E So , and 
consider the k-colouring [p] [n] --+ [k] given by x --+ c(e(s ,  x)) . 

Since n = H J(p, k), the cube [p] [nl contains a monochromatic line. This means 
that, by renumbering the points, if necessary, there are points x 1 , . . .  , xP E [p ] [n] 

and an interval / = [h] ,  h � 1 , such that with xj = (x{ , . . .  , x� ) we have 

J - -. I ]. if 1 < i < h . 
xi = x? if h < i � n ,  

where xZ+l ' . . . , x� E [p] . 
Now define xP+l = (xf+I , . . .  , xf+1 ) E [p + 1 ] [n] to continue this sequence: 

xr+l = I xp,o. + 1 if 1 � i � h . 
if h < i � n. 
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Th { I p+ l } · 1 " · [ l ] [n] d { ( I ) ( p+ l ) }  · en x , . . .  , x ts a me m p + , an so es x , . . .  , es x ts a 
line in [p + l ] [nml . To complete the proof, all we have to check is that this line is 
monochromatic, that is, 

c(e(s , xP+i )) = c(e(s , xP)) . (5) 

We prove (5) by a telescoping argument. For 0 :;: j < h, define yi = 

(y{ , . . .  , y� ) E [p + l ] [n] by 

y{ = { p + l if l :;: i :;: j , 

p if j < i ::: h ,  
X� if h < i :;: n , I 

so that y0 = xP and yh = xP+1 . 
Note that, for every j ,  

e (s , yi ) = e(si+1 • 1 , yi+ 1 ) = e (si ·2 , yi ) 
and 

Hence 

c(e(s, y0)) = c(e(s 1 • 1 , y 1 )) = c(e(s 1 •2 , y 1 )) = c(e(s , y 1 ) ) .  
Similarly, c(e(s , y 1 )) = c(e(s , y2)) = · · ·  = c(e(s , yh)) , so c(e(s , xP)) = 

c(e(s ,  xP+ 1 ) ) .  Thus (5) holds, and we are done. 0 
Theorem 26 implies that the Hales-Jewett function does not grow anywhere near 

as fast as Ackerman's function: in fact, for some constant c we have H J (p, k) :;: 
f4 (c(p + k)), where /4 is the fourth function in the Ackerman hierarchy, the next 

2 

function after the tower function 22· · · . 
The bound on the van der Waerden function W(k) implied by Theorem 26 is, 

in fact, the best upper bound on W(k) known at the moment. 
The Hales-Jewett theorem and Shelah's theorem extend van der Waerden's 

theorem in an abstract, combinatorial direction. Van der Waerden's theorem also 
has many beautiful and deep extensions in the ring of integers: the starting point 
of these extensions is Rado's theorem concerning systems of linear equations. 
Let A = (aij ) be an n by m matrix with integer entries. Call A partition regular 
if Ax = 0 has a monochromatic solution in every colouring of N with finitely 
many colours. In other words, A = (aij ) is partition regular if for every partition 
N = u�=l Ne , one of the classes Ne contains integers Xi ' . . .  

'
Xn such that 

n 
I >ijXj = 0 
j= i 

for i = 1 ,  . . . , m .  Note that not every matrix is partition regular: for example a 
matrix with some positive and no negative entries is not partition regular, since 
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0 ¢ N, and neither is A = ( 1 - 2 ) .  On the other hand, Schur's theorem, 
Theorem 21  says that ( 1 1 - 1 ) is partition regular and, as we shall see, van 
der Waerden's theorem is slightly weaker than the assertion that a certain matrix 
is partition regular. In 1933 Rado gave a remarkable characterization of partition 
regular matrices. 

Let us write a1 , . . . , an E zm for the column vectors of A = (aij ). Thus 
aj = (alj , azj , . . .  , amj l.  We say that A satisfies the columns condition if, by 
renumbering the column vectors if necessary, there are indices 1 < n 1 < · · · < 

nt = n such that, with b; = 'Lj�1 aj , the vector b 1  is 0, and for i > 1 the vector 
b; is a rational linear combinatiOn of the vectors a1 , az , . . .  , ani- 1 ' that is, b; is in 
the linear subspace of Q"' spanned by the set {a 1 , az , . . .  , ani- ! } . For example, if 
A = (a 1 · · · am) with a; > 0 for every i ,  then A satisfies the columns condition iff 
some collection of the a; sums to 0. 

Here then is Rado's partition regularity theorem. 

Theorem 27 A matrix with integer entries is partition regular if and only if it 
satisfies the columns condition. D 

This beautiful theorem reduces partition regularity to a property can be checked 
in finite time. It is worth remarking that neither of the two implications is easy. 
Also, as in most Ramsey type results, by the standard compactness argument we 
have encountered several times, the infinite version implies the finite version. Thus 
if A is partition regular then, for each k, there is a natural number R = R (A ,  k) 
such that Ax = 0 has a monochromatic solution in every k-colouring of [R] .  

In order to deduce Schur's theorem from Rado's theorem, all we have to notice 
is that ( 1  1 - 1) is partition regular, since it satisfies the columns condition. 
Furthermore, as a matrix of the type ( 1 - 1  

0 1 

0 0 

0 0 

0 0 

- 1  0 

- 1  

0 1 

0 

0 

0 

- 1  

satisfies the columns condition, Rado's theorem implies that for integers p and k 
there is an integer n such that every k-colouring of [n] contains a monochromatic 
arithmetic progression of length p whose difference is also in the same colour 
class: this is a little more than van der Waerden's theorem (see Exercise 44). 

Yet another immediate consequence of Rado's theorem is that, given integers 
k and n, there exists N = N(k, n) such that if [N] is k-coloured then there is 
a set A of n natural numbers such that LaeA a :::; N and all the sums LbeB b, 
0 :f:. B C A have the same colour. At the end of the next section we shall discuss 
a beautiful extension of this to infinite sets. 

In conclusion, let us say a few words about Szemeredi's theorem. In the 1930s, 
Erdos and Tunin conjectured the far-reaching extension of van der Waerden's 
theorem that the largest colour class will do: it suffices to know that our set 
is 'large' rather than a part of a partition. To be precise, they conjectured that 
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every set of natural numbers with positive upper density contains arbitrarily long 
arithmetic progressions : if A c N is such that lim supA--+oo I A n [N] I /  N > 0, then 
A contains arbitrarily long arithmetic progressions. By the standard compactness 
argument, this means that if 8 > 0 and p 2: 1 then there exists an N such that 
every subset of [N] with at least 8N elements contains an arithmetic progression 
of length p. 

The first evidence for the truth of the Erdos-Tunin conjecture was provided by 
Roth in 1953, when he proved the conjecture in the special case p = 3. The full 
conjecture was proved by Szemeredi in 1 975, by a deep and intricate combinatorial 
argument. It is in this proof that Szemeredi needed his regularity lemma, presented 
in Chapter IV. Section 5. As we saw there, this result revolutionized extremal graph 
theory. 

In fact, Szemeredi 's theorem greatly influenced ergodic-theory as well : in 1 977, 
Furstenberg gave an ergodic theoretic new proof of the theorem, and thereby 
revitalized ergodic theory. But all that is well beyond our brief. 

VI.S Subsequences 

Let <fn ) be a sequence of functions on a space T. Then we can find an infinite 
subsequence (gn) such that one of the following two alternatives holds: 

a if (hn) is any subsequence of (gn) ,  then SUPreT I I::f hn (t) l 2: 1 /  N for every 
N 2: 1 ,  

b i f  (hn) i s  any subsequence of (gn) . then SUPreT I I::f hn (t) l < 1 /  N for every 
N ::: l .  

This rather difficult assertion about sequences of functions is, i n  fact, an 
immediate consequence of a Ramsey-type result about infinite sets. 

As usual, given a set M, we write 2M for the set of subsets of M, M(r) for the 
set of r-tuples of M, and M(w) for the set of countably infinite subsets of M. In 
view of Theorem 4, it is natural to ask whether every red-blue colouring of f::f(w) 

contains an infinite monochromatic set. It does not take long to realize that this is 
not the case (see Exercise 45). Motivated by this observation, call a family :F c 2111 
Ramsey if there exists an M E f::f(w) such that either M (w) c :F or M (w) c 2111 - :F. 
In other words, if a red-blue colouring ofN(w) contains an infinite monochromatic 
set, then we say that the collection :F of red elements of f::f(w) is Ramsey. 

Of course, 2111 can be identified with the Cartesian product nieN Tn . where 
Tn = {0, 1 }  for all n. We give Tn the discrete topology and the product 2111 the 
product topology: in this topology 2N is a compact Hausdorff space. A weak form 
of a theorem due to Galvin and Prikry states that open subsets of 2111 are Ramsey. 
(This is easily seen to imply the above assertion about sequences of functions: 
see Exercise 46.) To prove this result it is convenient to use the notation and 
terminology introduced by Galvin and Prikry. We use M, N, A and B to refer to 
infinite subsets of N, and X and Y for finite subsets of N. We write X < a if x < a 
for every x E X;  X < M means that X < m for every m E M. An M -extension 
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of X is a set of the form X U  N, where X < N and N C M. Let us fix now a 
family :F C 2N . We say that M accepts X if every M -extension of X belongs to 
:F; M rejects X if no N c M accepts X. 

Lemma 28 lfN rejects 0 then there exists an M E N(w) that rejects every X c M. 

Proof Note first that there is an Mo such that every X c Mo is either accepted 
or rejected by Mo. Indeed, put No = N, ao = 1 .  Suppose that we have defined 
No ::> Nt ::> · · · ::> Nk and ai E M - Ni+ 1 , 0 :S i :S k - 1 .  Pick ak E Nk . If 
Nk - {ak } rejects {ao , . . .  , ak } then put Nk+J = Nk - {ak } ;  otherwise, let Nk+l be 
an infinite subset of Nk - {ak } that accepts {ao , . . .  , ak } .  Then Mo = {ao , a1 . . .  } 
will do. 

By assumption Mo rejects 0. Suppose now that we have chosen bo , b t , . . .  , bk- 1 
such that Mo rejects every X c {bo , b t , . . .  , bk-d· Then Mo cannot accept in­
finitely many sets of the form X U { Cj } ,  j = 1 ,  2, . . .  , since otherwise { C J , cz , . . .  } 
accepts X. Hence Mo rejects all but finitely many sets of the form X U {c } .  As 
there are only 2k choices for X, there exists a bk such that Mo rejects every 
X C {bo ,  b t ,  . . .  , bk } .  By construction the set M = {bo , b t ,  . . .  } has the required 
property. 0 

Armed with Lemma 28, it is easy to prove the promised theorem of Galvin and 
Prikry. 

Theorem 29 Every open subset of2N is Ramsey. 

Proof Let :F c 2N be open and assume that A (w) ct. :F for every A E N(w) , i .e. , 
N rejects 0. Let M be the set whose existence is guaranteed by Lemma 28. If 
M(w) ct. 2N - :F, let A e M(w) n :F. Since :F is open, it contains a neighbourhood 
of A ,  so there is an integer a E A such that if B n { 1 ,  2, . . .  , a} = A n  { 1 ,  2, . . .  , a }  
then B E :F. But this implies that M accepts A n  { 1 ,  2, . . .  , a} ,  contrary to the 
choice of M. Hence M(w) c 2N - :F, proving that :F is Ramsey. 0 

Roughly speaking, Theorem 29 tells us that sets 'insensitive to small changes' 
are Ramsey; as Exercise 45 shows, sets ' sensitive to small changes '  need not be 
Ramsey. 

We now set out to show that Theorem 29 leads to an elegant extension of 
Theorem 4. Denote by x< <w) the family of finite subsets of X. A family Q c N< <w) 

is dense if Q n M(<w) =f 0 for every M E N(w) , and it is thin if no member of 
Q is an initial segment of another member (that is, if X < Y implies X ¢ Q or 
X U Y fj Q). For example, for each r = 1 ,  2, . . .  , the family N(r) is thin. 

Corollary 30 Let Q c N< <w) be dense. Then there is an M E N(w) such that 
every A c M has an initial segment belonging to Q. 

Proof Let :F = {F c N : F has an initial segment belonging to Q} .  Then :F is 
open, so there is an M E N(w) such that either M(w) C :F, in which case we are 
done, or else M(w) c 2N - :F. The second alternative cannot hold since it would 
imply M(<w) n Q = 0. 0 
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This corollary enables us to deduce a major extension of the original Ramsey 
theorem for infinite sets (Theorem 3). 

Corollary 31 Let g C N(<w) be a thin family, and let k E N. Then for any k­
colouring of g there is an infinite set A C N such that all members of Q contained 
in A have the same colour. 

Proof. It clearly suffices to prove the result for k = 2. Consider a red and blue 
colouring of g : Q = Fred U Fb!ue · If Fred is dense then let M be the set guaranteed 
by Corollary 30. For every F E g n 2M there is an infinite set N c M with initial 
segment F. Since g is thin, F is the unique initial segment of N that belongs to 
Q. Hence F E Fred. so every member of Q contained in M is red. 

On the other hand, if Fred is not dense, then 2M n Fred = 0 for some infinite 
set M. Hence 2M n Q C Fb!ue · 0 

Let us now tum to the result concerning monochromatic sums we promised at 
the end for the previous section. This beautiful result, conjectured by Graham and 
Rothschild and first proved by Hindman, is not very near to the other results given 
in this section, but the striking proof given by Glazer illustrates the rich methods 
that can be applied in infinite Ramsey theory. 

Theorem 32 For any k-colouring ofN there is an infinite set A C N such that 
all sums LxEX x, 0 =f:. X C A, have the same colour. 
Proof. We shall not give a detailed proof but only sketch one for those who are 
(at least vaguely) familiar with ultrafilters on N and know that the set �N of all 
ultrafilters is a compact topological space (the Stone-Cech compactification of the 
discrete space N). The proof, which is due to Glazer, is at least as beautiful as the 
theorem and is considerably more surprising. Let us recall that a filter F on N is a 
non-empty collection of subsets of N such that (i) if A ,  B E F, then A n B E F, 
(ii) if A E F and A c B then B E F and (iii) FNe2N, that is,0 ¢ F. Zorn's 
lemma implies that every filter is contained in a maximal filter, called an ultrafilter. 
If U is an ultrafilter, then for every A c N either A E U or else N - A E U. This 
implies that every ultrafilter U defines a finitely additive 0-1 measure m on wN :  ! 1 if A e U 

m(A) = 
0 if N - A E U. 

Conversely, clearly every finitely additive 0-1 measure on 2N defines an ultrafilter. 
If there is a finite set of measure 1 ,  then one of the elements, say a , of that set 
also has measure 1 ,  and so U = {A c N : a E A} .  These ultrafilters are called 
principal. Not every ultrafilter is principal: the ultrafilters containing the filter 
F = {A C N : N - A is finite} are not principal. 

That ultrafilters can be useful in proofs of Ramsey theorems can be seen from 
the following very simple proof of the case r = 2 of Theorem 3. Fix a non principal 
ultrafilterU. Let N<2> = P1 UP2U · · ·UPk . Forn E N let A �n) = {m : (n , m) E Pi } .  
Th I f th A(n) A(n) A(n) b 1 U th (n) en exact y one o e sets 1 , 2 , . • . , k e ongs to , say e set Ac(n) · 
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Now, with Bi = {n : c(n) = i }  we have N = B1 U · · · U Bk. so again exactly 
one of these sets, say Bj . belongs to U. Finally, pick a1 e Bj . az e Bj n Aj 1 , 
a3 e Bj n Aj 1 n A}2 , etc. With A =  {a1 , az , . . .  } we have AC2) c Pj . 

Let us tum at last to Glazer's proof of Theorem 32. Let us define an addition on 
fjN by 

U + V = {A C N : {n E N : A - n E U} e V} 
where U, V E fjN and A - n =  {a - n : a e A ,  a > n} .  

With some effort one can check that U + V i s  indeed an ultrafilter and that with 
this addition fjN becomes a semigroup. Furthermore, the semigroup operation is 
right-continuous, i .e. , for a fixed V e fjN the map fjN -+ fjN, given by U -+  V+U, 
is continuous.  By applying a short and standard topological argument we see that 
the properties above imply that fjN has an idempotent element, that is, an element 
P with P + P = P. This P is nonprincipal, since if {p} E P then {2p} E P + P 
so {p } ¢. P + P. 

Let now A e P. Then, by the definition of addition, the set 

A* = {n e N : A - n e P} 
belongs to P. Thus if a e A n  A* then B = (A - a) n (A\{a}) e P. (We could 
replace A by A\ {a} since P is not principal.) Hence for every A e P there exists 
a e A and B C A\ {a} such that B E P and a + B C A .  

Of course, this ultrafilter P has nothing to do with any colouring of N .  However, 
just as any nonprincipal ultrafilter enabled us to find a monochromatic infinite set 
in a direct way, this idempotent P enables us to find an appropriate infinite set. 
Let N = C1 U · · · U Ck be the decomposition of N into colour classes. Exactly 
one of these colour classes, say ci , belongs to p. Put A I = ci . Select A I E A I 
and Az e P, Az c A 1 - {a! } such that a1 + Az c A 1 . Then select Az e Az and 
A3 E P, A3 c Az - {az} such that az + A3 c Az, etc. The set A =  {a1 , az , . . .  } 
clearly has the required property: every infinite sum Lxex x ,  X C A, has colour i .  

0 

Finally, it should be emphasized that the infinite Ramsey results presented in 
this section form only the tip of an iceberg: the Ramsey theory of infinite sets, 
called partition calculus, is an essential and very cultivated branch of set theory, 
and it has a huge literature. 

Vl.6 Exercises 

1 .- Prove that every 2-colouring of the edges of Kn contains a monochromatic 
spanning tree (cf. Exercise 1. 1 ) .  

2 .  Prove that R(3 ,  4) = 9 (see Fig. Vl.2). 

3 .  Extending the construction in Fig. Vl.2, find for each t � 2 a t-regular graph 
that shows that R(3, t + 1)  > 3t - 1 .  
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FIGURE VI.2. A graph showing that R(3,  4) > 8. 

4. By considering the graph with vertex set Z17 (the integers modulo 1 7) in 
which i is joined to j iff i - j = ±1 ,  ±2, ±4 or ±8, show that R(4, 4) = 1 8 . 

5. Prove that R(3 ,  5) = 14 .  

6:+- Let e be an edge of K4 . Show that r(K4 - e ,  K4) = 1 1 . 

7. By considering the 3-colouring of Kt6 with vertex set GF(16) ,  the field of 
order 16, in which the colour of an edge i j depends on the coset of the group 
of the cubic residues to which i - j belongs, show that R3 {3 , 3 ,  3) = 17 .  
(Remember to  check that the graph i s  well defined.) 

8 .  Establish the upper bound for RY) (s t • . . .  , sk) given after Theorem 2. 

9 .  Give a direct proof of the result of Erdos and Szekeres in Exercise 11.54 
that, for all k , l ::: 1 ,  every sequence of kl + 1 real numbers contains an 
increasing subsequence of k + 1 terms or a decreasing subsequence of l + 1 
terms. [Hint. Imitate the proof of Theorem 3 :  consider the last elements of 
increasing subsequences with k terms.] 

10. Show that if X I < x2 < · · · < Xn are n = (kk:_24) + 1 real numbers, then we 
can find either 1 � n 1 < · · · < nk � n with Xn2 - Xn1 � Xn3 - Xn2 � • • • � 
Xnk - nnk- ! or else 1 � m 1 < · · · < mt � n with Xm2 - Xm1 ::: Xm3 - Xm2 ::: 
· · · ::: Xmt - Xmt-! .  Give two proofs: in the first, consider the numbers in 
the two intervals [X J ,  (XI + Xn)/2] and [(x t  + Xn)/2, Xn] .  and in the second 
imitate the proof of Theorem 3 .  

1 1 .  Note that the proof of Theorem 3 gives the following common extension of 
the upper bound in Theorem 3 and the assertion in the previous exercise. Let 

. k , l ::: 2, n = (kk:_24) + 1 ,  and w : [n ] <2) � R Then either w(n t n2) � 
w(n2n3) � · · · � w (nk- tkk) for some 1 � n 1 < n2 < · · · < nk � n, or 
else w(m tm2) ::: w(m2m3) ::: · · · ::: w(mt- tmt) for some 1 � m t  < m2 < 

· · · < mt � n . Note also that this need not hold for smaller values of n .  

12:- Given 2 � k � n ,  denote by q(n) the maximal integer that i s  such that in 
every k-colouring of the edges of Kn we can find a connected monochromatic 
subgraph of order Ck (n) .  Show that c2(n) = n .  (See Exercise 1 .) 
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1 3:- (Exercise 12- contd.) Prove that cn- 1 (n) = 2 if n ::=: 2 is even and Cn- 1 (n) = 

3 if n ::=: 3 is odd. [Hint. Use Theorem 1.9.] 

14:+" (Exercises 1 2- and 1 3- contd.) Prove that { � + 1 if n = 2 (mod 4) , 
c3 (n) = l � J otherwise. 

15 .  Check that r (2KJ ,  K3) = 8 and r (2KJ , 2K3) = 10. 16. Show that r (C4 , C4) = 6. 
17:+" Using two-dimensional vector spaces over finite fields (cf. Theorem IV. 12), 

show that 

1 8 .  By considering H1 = Ps and H2 = K1 , 3 , show that 

need not hold. 

19 .  Let Hp , Hq be graphs of order p and q ,  respectively, and let a(Hp) = i ,  
a(Hq )  = j .  Then there i s  a constant C depending only on p and q such that, 
with m(s, t) = min{si, tj } , we have 

ps + qt - m(s ,  t) - 2 � r(sHp , tHq) � ps + qt - m(s , t) + C. 

[Hint. Find a red Kj (p-i) • say R, a blue Ki(q-i) • say B,  and a set N of ij 
other vertices such that the R - N edges are red and the B - N edges are 
blue. [Cf. the proof of Theorem 17 .] 
In the next four exercises, f (n) is the minimal integer N such that whenever 
X is a set of N points in a plane, no three of which are collinear, X contains 
n points forming a convex n-gon. 

20. Show that f (3) = 3 and f(4) = 5. Deduce that f(n) � R(4) (5 , n) for every 
n ::=: n .  

21:+" Prove that f(5) = 9 .  

22. Deduce from Theorem 3 that f (n) � e:_::-24) + 1 .  

23:+" Prove that f(n) ::=: 2n-2 + 1 ;  i .e. , for every n ::=: 3 there are 2n-2 points in 
the plane in general position, such that no n of them form a convex polygon. 
[Hint. Let Sk,l be as in the proof of Theorem 2. For i = 0, 1 ,  . . .  , n - 2, let Si 
be obtained from Sn+i,2-i by flattening it, shrinking it, and finally translating 
it so that So , S1 , . . .  , Sn-2 are on an increasing circular arc, as in Fig.  VI.3 .  
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FIGURE Vl.3 . The case n = 5: a set of eight points without a convex pentagon. 

Show that if the Si are far enough apart and small enough then U7,;:;-5 Si does 
not contain a convex n-gon.] 

24. Let S be an infinite set of points in the plane. Show that there is an infinite 
set A c S such that either A is contained in a line or no three points of A are 
collinear. 

25. Show that Rk (3, 3 ,  . . .  , 3) < Lek !J + 1 .  [Hint. Note that Lek !J = 1 + 
k le(k - l ) ! J .] 

26. Show that there is an infinite set of natural numbers such that the sum of 
any two elements has an even number of prime factors, counted without 
multiplicity, say. 

27 . Show that there is a sequence n 1 < n2 < · · · of natural numbers such that if 
r :S i 1 < i 2 < · · · < i r , then LJ = 1 n iJ has an even number of prime factors 
iff r has an odd number of prime factors. 

28. Define a graph with vertex set [N] <2> by joining a < b to b < c. Show that this 
graph does not contain a triangle and its chromatic number tends to infinity 
with N. (Cf. Exercise V. l2.) 

29. Check that every S-canonical colouring cs : N(r) -+ N(s) , defined before 
Theorem 8, is irreducible. 

30. Let g 1  (x) ,  g2(x) ,  . . .  , gn (x) be bounded real functions and let f(x) be another 
real function. Let s and 8 be positive constants. Suppose that maxi (gi (x) ­
gi (y)) > 8 whenever f(x) - f(y) > s. Prove that f is bounded. 

3 1 .  Prove that every 2-colouring of the edges of K3n- 1 contains n independent 
edges of the same colour. Show also that the result is best possible: there is a 
2-colouring of the edges of K3n-2 in which no set of n independent edges is 
monochromatic. 

32. Show that for every l there is a natural number n such that if [n] is partitioned 
into two classes then x 1  + · · · + xe = XH1 is solvable in one class. Writing 
n (l) for the smallest natural number that will do here, show that n (2) = 5 
and n (l) :=:: £2 + l - 1 .  Determine n (3) .  
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33 . Show that if [9] = { 1 ,  2, . . .  , 9} is partitioned into two classes then XJ + x2 + 
1 = X3 is solvable in one class. 

34:+ As usual, let P(n) be the collection of all 2n subsets of [n] = { 1, . . .  , n}. Show 
that if P(n) is coloured with n colours then there are sets A ,  B C [n] , A =f:. B ,  
such that A ,  B ,  A U B and A n B all have the same colour. Show that if we 
use n + 1 colours then the sets A ,  B need not exist. 

35:+ Show that every red-blue colouring of the edges of K6n contains n vertex 
disjoint triangles with all 3n edges of the same colour. 

36. Let n = 2P . Show that Kn+ ! is not the union of p bipartite graphs but Kn is. 
Deduce that if there are 2P + 1 points in the plane, then some three of them 
determine an angle of size greater than rr ( 1 - ( 1 I p)) . 

3 7. Let n = 2P, and let K n be the union of the bipartite graphs G 1 , . . .  , G p .  Show 
that 2k - 1 :::: L�=l dGi (x) :::: 2P - 2P-

k for every k, k = 1 ,  . . .  , p. [Hint. 
Note that each G; has 2P-

l vertices in each of its classes. ] 

38 .  For n :;:: 2, let g (n) be the minimal value of N such that any N points in JR.n 

contain three that determine an angle strictly greater than rr 12. Prove that 
(i) g (2) = 5, 
oo++ g(3) = 9, 
(iii) g(n) :;:: 2n + 1 ,  
(iv)+ g (n) is finite for every n .  

39.++ Prove that for every n :;:: 2 and 8 > 0 there i s  an N such that any N points 
in JR.n contain three that determine an angle greater than rr - 8 .  

40.  Prove that for every k :;:: 1 there is a natural number n = n(k) such that if the 
subsets of an n-element set are k-coloured, then there are disjoint sets A ,  B 
such that A ,  B and A U B all have the same colour and I A I =f:. I B 1 . 

4 1  :+ Let (xn) be a sequence of unit vectors in a normed 1ace. Show that (xn) has 
a subsequence (yn) such that if (A; )t E JR.k , with I:: 1 lA; I = 1 ,  then 

k k 
1 1 1 L A; Ymi I I - II L A; Ymi I l l < 1 I k 

I I 
whenever k < m1 < · · · < mk and k < n 1 < · · · < nk . 

42. (i) Show that every red-blue colouring of the edges of a K3, 3 contains a 
monochromatic path of length 3 . 
(ii) Show that every red-blue colouring of the edges of a K 2k- ! , 2k- ! contains 
a monochromatic tree of order 2k - 1 ,  with two vertices of degree k.  

43. Show that the matrix ( 1 - 2 )  is not partition regular by constructing a red­
bluecolouring of N in which, for every x ,  the numbers x and 2x have different 
colours. 
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44. Deduce from van der Waerden's theorem that for all p and k there i s  an integer 
n such that every k-colouring of [n] contains a monochromatic arithmetic 
progression of length p whose difference belongs to the same colour class. 

45 . Deduce from Zorn's  lemma that there is a minimal set M C N(w) such that 
for every N E N(w) there is a unique M E M with the symmetric difference 
M !1N finite. Colour N red if M !1N has an even number of elements, and 
blue otherwise. Show that this red-blue colouring of N(w) does not contain an 
infinite monochromatic set. 

46. Deduce from Theorem 29 the assertion at the beginning of Section 5 ,  
concerning sequences of functions. 
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VII 

Random Graphs 

Although the theory of random graphs is one of the youngest branches of graph 
theory, in importance it is second to none. It began with some sporadic papers of 
Erdos in the 1 940s and 1950s, in which Erdos used random methods to show the 
existence of graphs with seemingly contradictory properties. Among other results, 
Erdos gave an exponential lower bound for the Ramsey number R(s ,  s ) ;  i .e. , he 
showed that there exist graphs of large order such that neither the graph nor its 
complement contains a Ks . He also showed that for all natural numbers k and g 
there are k-chromatic graphs of girth at least g .  As we saw in Chapters V and VI, 
the constructions that seem to be demanded by these assertions are not easy to 
come by. The great discovery of Erdos was that we can use probabilistic methods to 
demonstrate the existence of the desired graphs without actually constructing them. 
This phenomenon is not confined to graph theory and combinatorics :  probabilistic 
methods have been used with great success in the geometry of Banach spaces, 
in Fourier analysis, in number theory, in computer science-especially in the 
theory of algorithms-and in many other areas. However, there is no area where 
probabilistic methods are more natural and lead to more striking results than in 
combinatorics. 

In fact, random graphs are of great interest in their own right as well, not only 
as tools to attack problems that have nothing to do with probability theory or 
randomness. 

We are asking the most basic questions: what do 'most' graphs in various 
families look like? Rather than being interested in the extreme values of our 
parameters, we wish to discover what happens on average. In addition to this, 
what makes the field so attractive and important is that more often than not the 
phenomena we discover are surprising and delicate. 
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The systematic study of random graphs for their own sake was started by Erdos 
and Renyi in 1959: in a series of papers they laid the foundations of a rich theory 
of random graphs, proving many of the fundamental results . Loosely speaking, 
Erdos and Renyi discovered that in the spaces they studied, there was a 'typical' 
random graph: with high probability a random graph had certain sharply delineated 
properties. The other great discovery of Erdos and Renyi was that all the standard 
properties of graphs (being connected, having diameter at most 5, containing a 
complete graph of order 4, being Hamiltonian, etc .)  arise rather suddenly : while a 
random graph with n vertices and a certain number of edges is unlikely to have the 
property at hand, a random graph with a few more edges is very likely to have the 
property. This phenomenon is described by a phrase borrowed from physics: there 
is a phase transition. The most dramatic example of a phase transition discovered 
by Erdos and Renyi concerns the order of the largest component of a random 
graph. 

The contents of this chapter will reflect both aspects of the theory: we shall 
prove a number of basic results concerning the most frequently studied models of 
random graphs, and we shall use probabilistic methods to answer some important 
graph-theoretic questions that have nothing to do with randomness. 

For many a problem one uses specifically tailored random models .  For in­
stance, remarkable successes have been achieved by arguments building on random 
colourings of graphs . Percolation theory is nothing more than the study of random 
sub graphs of various lattices. Also, many algorithms are based on the use of certain 
graphs, whose existence is most easily demonstrated by the use of random tech­
niques. The importance of random graphs and random methods is due precisely 
to applications of this type. 

For the sake of convenience, we state some simple inequalities that will be used 
in our calculations . For approximating factorials, we shall never need more than 
the following version of Stirling 'sformula: 

�(sle)s � s !  � e 1 f l2s �(sle)s . ( 1 )  

In  fact, in  most cases i t  will suffice that s !  :=: 2y'S(s I e Y :=: ( s  I e )s , and so (n) nk 1 ( en )k ( en )k < - < -- - < -
k - k !  - 2,./k k - k 

We shall also use the inequality 1 - x � e-x , so that 

( 1 - xl � e-kx 

for all x < 1 and k :=: 0. 

VII. l The Basic Models-The Use of the Expectation 

(2) 

(3) 

Our first task is to make precise the notion of a 'random graph' .  Rather trivially, 
every probability space whose points are graphs gives us a notion of a random 
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graph. We shall concentrate on  those probability spaces or  models that arise most 
naturally and have been found to be most useful. Three closely related models 
stand out: Q(n , M), Q(n ,  p) and gn . In each case, the probability space consists 
of graphs on a fixed set of n distinguishable vertices: as usual, we take this set to 
be V = [n] = { 1 , 2, . . .  , n } .  Note that the complete graph Kn on [n] has N = (�) 
edges and 2N subgraphs. 

For 0 :::; M :::; N, the space Q(n , M) consists of all (Z) subgraphs of Kn 
with M edges : we tum Q(n , M) into a probability space by taking its elements 
to be equiprobable. Thus, writing G M = Gn,M for a random graph in the space 
Q(n ,  M), the probability that G M is precisely a fixed graph H on [n] with M edges 
is 1 / (Z) : 

The space Q(n , p) , or Q(n ,  IP'(edge) = p), is defined for 0 :::; p :::; 1 .  To get a 
random element of this space, we select the edges independently, with probability 
p. Putting it another way, the ground set of Q(n , p) is the set of all 2N graphs on 
(n] ,  and the probability of a graph H on [n] with m edges is pm ( l - p)N-m : each 
of the m edges of H has to be selected and none of the N - m 'non-edges' of H 
is allowed to be selected. It is customary to write q for 1 - p, the probability that 
an edge of Kn is not selected. Then, writing Gp = Gn,p for a random element of 
Q(n ,  p) ,  

IP'p (Gp = H ) = pe(H)qN-e(H) . 

The space gn is not a space of random graphs but a space of sequences of 
random graphs, one from each Q(n , M). An element of gn is a graph process, a 
nested sequence of graphs Go C Gt C · · · C GN, with G1 having precisely t 
edges. Clearly, there are N !  graph processes G = (G1)� on (n] ,  since every graph 
process G is trivially identified with a permutation (e; )� of the N edges of the 
complete graph Kn on [n] : this identification is given by {e, } = E(Gr) - E(G1- t ) .  
We turn gn , the set of  all N !  graph processes, into a probability space by  taking 
all processes to be equiprobable. 

There is a pleasing interpretation of a random graph process G = ( G1 )� E gn : 
it is a living organism that starts its life as the empty graph Go = En and evolves 
by acquiring more and more edges, namely, at time t it acquires one more edge at 
random from among the N - t possibilities. 

In all these examples, we tend to be interested in what happens as n -+ oo. It is 
worth remarking that both M = M (n) and p = p(n) are functions of n. The space 
Q(n , p) is of great interest for fixed values of p as well ; in particular, Q(n , 1 /2) 
could be viewed as the space of random graphs of order n: it consists of all 2N 

graphs on [n] , and all graphs are equiprobable. Thus Gn, l /2 is obtained by picking 
one of the 2N graphs on [n] at random. However, Q(n ,  M) is not too exciting for 
a fixed value of M as n -+ oo, since then, with probability tending to 1 ,  Gn,M is 
just a set of M independent edges and n - 2M isolated vertices (see Exercise 1 ). 
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The spaces Q(n ,  M) , Q(n ,  p) and gn are closely related to each other. For 
example, the map gn --+ Q(n ,  M), given by G = (G1)� 1-+ GM, is measure-
preserving, so gn 'couples' the spaces Q(n ,  M), M = 0, 1 ,  . . . , N. Also, if in 
Q(n ,  p) we condition on e(Gp) = M, then we obtain Q(n ,  M). To get Q(n ,  p) 
from gn , we pick a random element G = ( G1 )� and take Gr . where t is a binomial 
random variable with parameters N and p, so that JP>(t = M) = (Z)pMqN-M . 
As we shall see later, for M "" pN the spaces Q(n ,  M) and Q(n ,  p) are close to 
each other. 

Now that we have obtained a space of random graphs, every graph invariant 
becomes a random variable; the nature of such a random variable depends crucially 
on the space. For instance, the number Xs (G) of complete graphs of order s in 
G is a random variable on our space of random graphs; whether it be Q(n ,  M), 
Q(n ,  p) or some other space. 

In this section we shall confine ourselves to making use of the expectations 
of some basic random variables : it is surprising that even this minimal use of 
probability theory enables us to prove substantial results about graphs. As a first 
example, let us calculate the expectation of Xs . This will lead us quickly to 
the lower bound of Erdos on the Ramsey numbers. As earlier, we shall use the 
subscripts M and p to identify the space we are working in; thus IEM(X) denotes 
the expectation of the random variable X in the space Q(n ,  M). 

Analogously to Xs (G), let X� (G) be the number of independent sets of order 
s . Let us calculate very carefully the expectations of Xs and X� in Q(n ,  M) and 
Q(n ,  p) .  Let S = [n] (s) be the set of s-subsets of [n] ,  and for a E S let Ya be the 
indicator function of the complete graph Ka with vertex set a :  

Then 

{ 1 if G[a] = Ka , Ya (G) = . 
0 otherwise. 

Xs (G) = L Ya(G) 
aeS 

for every graph G on [n] .  Similarly, writing Y� for the indicator function of Ea . 
the empty graph with vertex set a, we have X� (G) = Laes Y� (G). Hence, no 
matter what probability space we take, by the additivity of the expectation, 

IE(Xs) = L IE(Ya) = LJP>(G[a] = Ka) ,  
aeS aeS 

and a similar assertion holds for IE(X�) .  
Let us  make use of  this formula in  the spaces Q(n ,  M) and Q(n ,  p) .  Starting 

with Q(n ,  M), (N - S) (N) - I 
IEM(Ya) = IPM(GM[a] = Ka) = 

M 
_ S M 

, 
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where S = G), since there are (Z=.�) graphs of  size M on [n] that contain all S 
edges joining vertices of a. Similarly, 

The formulae are even simpler in Q(n ,  p) : 
lEp (Ya) = IP'p (Gp [a] = Ka) = ps 

and 

!Ep (Y�) = IP'p (Gp [a] = Ea) = qs . 
Since lS I  = (;) , we have the following simple result. 

Theorem 1 Let Xs = Xs (G) be the number of complete sub graphs of order s in 
G, and let X� = X� (G) = X8 (G). Then 

and 

(n) (N - s) (N) - 1 
lEM(Xs) = s M - S M , 

1 (n) (N - S) (N)- 1 
lEM (Xs) = s M M , 

Ep (Xs ) = (:) ps , lEp (X�) = (:)qs 
where S = G) and q = 1 - p. 

As a little diversion, let us remark that if instead of complete sub graphs we take 
sub graphs isomorphic to a fixed graph F then the arguments hardly change. Thus, 
writing X F = X F ( G P) for the number of sub graphs of G p isomorphic to F, 

!Ep (XF) = NFPe(F) , (4) 
where N F is the number of subgraphs of Kn isomorphic to F. 

At the danger of belabouring the point, note that ( 4) can be seen as  above by 
taking an enumeration F1 , F2 , . . .  , FNF of the subgraphs of Kn isomorphic to 
F and writing Yi for the indicator function of Fi , that is, setting Yi (Gp) = 1 if 
Fi C Gp and Yi (Gp) = 0 if Fi ct. Gp . Then XF = Z:i::1 Yi , and the summands 
are again identically distributed 0-1 random variables. Hence, by the additivity of 
expectation, 

NF NF 
lEp (XF) = L!Ep(Yi ) = LIP'p(Yi = 1 )  = NFPe(F) , 

as claimed by (4) . 
i=1 i=1 
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The number N F is closely related to the automorphism group of F, that is, to 
the group of permutations of the vertices of F preserving adjacency. Indeed, if 
F has k vertices and its automorphism group has order a, so that Kk has k ! ja 
subgraphs isomorphic to F, then Np = {�) ¥ = 0f, where (n)k is the kthfalling 
factorial: (n)k = n(n - 1 )  · · · (n - k + 1 ) .  Hence, in this case, 

lEp (Xp) = (n)k Pe(F) . (5) 
a 

In particular, if F is a k-cycle Cb then 

(n)k k lEp (Xck) = 2k 
P . (6) 

Similar formulae hold for the number of induced subgraphs:  for example, 
writing Y ck for the number of induced k-cycles, 

lE (Y: ) _ 
(n)k k (�)-k _ 

(n)k k k(k-3)/2 P ck -
2k 

P q -
2k 

P q · 

Let us return to our main thread. The simple Theorem 1 was all Erdos needed 
to get exponential lower bounds for the Ramsey numbers R (s , t) . 
Theorem 2 (i) If3 :::: s :::: n are such that (:) < 2G)- I , 

then R(s ,  s) � n + 1. Also, 
1 

R(s ,  s) > ;;;s2812 . 
ev 2 

(7) 

(ii) Suppose that 3 :::: s :::: t :::: n and 0 < p < 1 are such that (:)pG) + G)q<D < 1 ,  

where q = 1 - p. Then R(s ,  t) � n + 1 .  

Proof (i) Consider Q(n ,  1 /2) . With the notation above, 

lE1;2 (X8 + X� ) =  2(:)TG) < 1 , 

so there is a graph G E Q(n ,  1 /2) with (Xs + X� ) (G) = Xs (G) + X� (G) = 0. 
This means precisely that neither G nor its complement contains a complete graph 
of order s .  Hence R(s ,  s) � n + 1 ,  proving the first assertion. 

Inequality (7) is an immediate consequence of this and inequality ( 1 ) . Indeed, 
with n = L 82·'� J ,  by ( 1 )  we have ev 2 (n) -(s)+I ns 

- (·')+1 (e./i)-s ss2s2 /2 -(s)+l 2 
2 2 < -2 2 < 2 2 = -- < 1 

s s ! ,.,fiiiS ( s j e) s ,.,fiiiS ' 

so R(s , s) � n + l . 
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(ii) This assertion is just a slight variant of the first: by our assumption, we have 
IEp (Xs + x;) < 1 ,  so Xs (G) = x; (G) = 0 for some graph G e Q(n ,  p) . This 
means that G does not contain a complete graph of order s ,  and its complement 
G does not contain a complete graph of order t. Since G has n vertices, R(s ,  t) :=:: 
n + 1 ,  as claimed. 0 

The argument above can be applied to the space Q(n , M) as well, instead of 
Q(n ,  p) : if 

IEM(Xs ) + IEM(X; ) < 1 ,  
then R(s ,  t) :=:: n+ 1 .  In fact, in this way we get a slightly better result. For example, 
assuming that N is even, it is easily seen ( cf. Exercise 1 1 ) that for M = N /2 we 
have 

IEM(Xs ) :::S IE1;2(Xs ) . 
However, the improvement is negligible, and the calculations are considerably 
prettier in Q(n ,  p) than in Q(n ,  M) . 

Having seen the striking simplicity of the proof of Theorem 2 we do not think 
it unreasonable to expect that with more work we could improve on the bound 
cs2sf2 , where c is a constant. In fact, it seems that this is not the case: although 
the constant c = 1 / (e.fi) can be improved by a factor 2 to .fife (by a simple 
application of the Lovasz local lemma, not discussed in this book), it is not even 
known whether the exponent 1 of s can be improved. Thus the Erdos-Szekeres 
upper bound (Theorem Vl. 1 )  and the Erdos lower bound (Theorem 2) tell us that 

2sf2 :::S R(s , s) :::S 22s , 
and at the moment 1 /2 and 2 are the best constants in the inequality above. It 
is very likely that in fact, R(s , s) = 2(c+o( ! ))s for some constant c, probably for 
c = 1 , but a proof of this seems to be far in the future. 

Concerning the off-diagonal Ramsey numbers R (s , t ), it is of particular interest 
to determine the order of Rs (t) = R(s ,  t) as s is kept fixed and t � oo. After 
decades of improvements, it is now known that 

c t2 c t2 -1- < R(3 t) < -2-
log t - ' - log t 

for some positive constants C! and c2 . The upper bound was proved by Shearer 
in 1 983 , making use of a method of Ajtai, Koml6s and Szemeredi, while the lower 
bound was proved by Kim in 1995 by an ingenious and intricate probabilistic 
argument. As one of the first striking applications of the probabilistic method, 
Erdos had shown over 30 years before that Ci t2 1 log2 t is a lower bound for 
R(3, t) . 

Only a slightly more complicated argument is needed to give lower bounds 
in the problem of Zarankiewicz (cf. Theorem 1 1  and inequalities (6) and (7) of 
Chapter IV). We shall use an analogue of the model Q(n ,  M), rather than an 
analogue of Q (n , p), partly for the sake of variety, and also because it makes the 
second part of the argument a little easier. 
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Theorem 3 Let 2 :::: s :::: n 1 , 2 :::: t :::: n2, a = (s - l)j(st - 1 )  and f3 = 
(t - 1 )  I (st - 1 ). Then there is a bipartite graph G2 (n 1 , n2) of size l( 1 _ _  1 ) n l-an i-PJ s !t !  1 2 

that does not contain a K (s , t) (with s vertices in the first class and t vertices in 
the second class). 

Proof Let 

n = n 1 + n2 , 
V1 = { 1 , 2 , . . . , n l } , 
v2 = {n l + 1 , n l + 2, . . .  ' n l + n2} . 
E = {ij : i E V1 , j E V2} ,  
M L 1-a 1-PJ = n l n2 . 

We shall consider the probability space g ( K n 1 ,n2 , M) consisting of the (1!1) graphs 
with vertex set V = V1 U V2 having exactly M edges from E and none outside E. 
(Note that this is not the probability space considered in the previous theorems.) 
The expected number of Ks, t subgraphs contained in a graph G E Q(Kn1 ,n2 ,  M) 
is 

where the first factor is the number of ways the first class of Ks, t can be chosen, 
the second factor is the number of ways the second class can be chosen and the 
third factor is the number of ways the M - st edges outside a Ks, t can be chosen. 
Now, 

( lE I - st) (IE I) - l = 
st- l M - i

. ( M ) st 
M - st M n n1n2 - z <  n 1n2 ' 

1=0 
so 

Thus there is a graph Go E Q(Kn1 ,n2 ,  M) that contains fewer than n �-an�-P js ! t !  
complete bipartite graphs Ks, t · Omit one edge from each Ks, t i n  Go. The obtained 
graph G = G2(n 1 , n2) has at least 

Ln l-an l-P J - l-1-n l-an 1-PJ > l(1 - _1_) n 1 -an 1-PJ 1 2 s ! t ! 1 2 - s !t ! 1 2 

edges and contains no Ks,t · D 
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By similar methods one can construct a graph of order n and size l� ( 1 _ _  1_) n2-(s+t-2)/(st- I )J 2 s !t !  
that does not contain a Ks, t (see Exercise 12) .  

It is very likely that the lower bound in Theorem 3 is also far from the truth: 
for example, for s = t it gives z(n ,  n ;  t ,  t) � cn2-2/(t+ l ) while it is expected 
that the upper bound in Theorem IV. l l , namely cn2- l ft , is the correct order of 
z(n ,  n ;  t, t) . Nevertheless, for a fixed large value of s = t, Theorem 3 is essentially 
the best lower bound at the moment. 

As our third, and final, application of random graphs to central problems of 
graph theory, we present the theorem of Erdos about the existence of graphs of 
large girth and large chromatic number. 

Theorem 4 Given natural numbers g � 3 and k � 2, there is a graph of order 
k3g, girth at least g and chromatic number at least k. 
Proof We may assume that g � 4, and k � 4 since otherwise the assertion 
is trivial. Set n = k3g ,  p = 2k2-3g = 2k2/n, and consider the space Q(n ,  p) . 
Writing Ze = Ze (Gp) for the number of £-cycles in our random graph Gp . we 
know from (6) that 

(n)e e (np)l 2lk2l IE (Z•) - -p < ----P ._ - 2£ 2l 2£
. 

Hence the expected number of cycles of length at most g - 1 is 
g- 1 g- 1 k2l 2g- lk2g-2 
LlEp(Ze) < L 2t- < 3 ' 
l=3 l=3 2i (8) 

where the last inequality is rather crude. Denote by Q 1 the set of graphs in g (n , p) 
that contain at most f = 2g- l k2g-2 cycles of length less than g. Since 

g- 1 
LlEp(Z)e � 1P'p (r2 J )f  = � ( 1 - IP'p (Q I ))f, 
l=3 

where n1 = Q(n ,  p)\Q J , from (8) we see that 

2 
IP'p (Q J )  > 3 '  

Now put s = n /  k = k3g- l , and write n2 for the set of graphs in Q(n ,  p) 
that do not contain a set of s vertices spanning at most f edges. Note that the 
assertion of the theorem follows if we show that n1 n n2 # 0. Indeed, suppose 
that Go E n1 n n2 . In Go, delete an edge from each cycle of length less than g 
to obtain a graph G of girth at least g .  As Go E Q J ,  at most f edges have been 
deleted. Also, Go E n2. so every s-set of vertices spans at least f + 1 edges. 
Hence in G every s-set spans at least one edge; i.e., an independent set has at 
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most s - I vertices: a(G) ::::: s - 1 .  Since by inequality (2) of Chapter V we have 
a(G)x (G) 2: n ,  this gives x (G) > k, and we are done. 

Now f21 n Qz =f:. 0 follows if we show that 1P'p (f2z) 2: 1 /3 .  In fact, we shall 
be more generous and we shall show that lP' p (Qz) is very close to 1 .  In particular, 
IP'p (Qz) > 2/3, so that IP'p (Q J n Qz) 2: IP'p (QJ )  + IP'p (Qz) - 1 > 1 /3 .  

For Gp E Q(n ,  p) and t 2: 0 , write /e (Gp) for the number of  s-sets of  vertices 
spanning precisely t edges. Thus le (Gp) is the number of s-sets of vertices that 
are independent but for e edges. Setting I (Gp) = L-{=0 fe (Gp) . we have 

Hence 

nz = {Gp E Q(n ,  p) : / (Gp) = 0}. 

00 00 
IEp(/) = L IP'p (/ = m)m 2: L IP'p(/ = m) = IP'p(/ 2: 1 ) 

m=O m=l 
= 1 - IP'p (I = 0) = 1 - IP'p (f2z) ; 

so it suffices to prove that IEp (/) < 1 /3 .  
This is only a matter of straightforward estimates. Indeed, with S = G) , 

IEp (/e ) = (:) (�) pe ( l - p)s-e , 

since we have (;) choices for the s-set and (:) choices for the e edges spanned 
by the s-set; choosing these e edges and none other that joins vertices in our s-set 
gives the factor pe ( l - p)s-e . Note that, by (3), ( 1 - p)S-l is at most e-p(S-l) _ 
It is easily checked that IEp (/e )/IEp (/HJ )  < 1 /2 for 0 ::::: l < f. Recalling that 
(�) ::5 (eajb)b, s = njk = k3g- l , S = s2j2 - s/2 ::5 s2j2, p = 2k2jn, ps = 2k, 
ps2 = 2n = 2k3g , f = 2g- lkZg-Z and pf = 2gk-g , we find that 

f 
IEp (/) = LlEp (/e) ::::: 21Ep (/f) 

l=O 

::::: c;r C:) f 
pfe-pS+pf 

< (ek)nfk (e;;z)f 
e-ps2f2+psf2+pf 

< (ek)nfkk(g+2)f e-n 

= (ek)nfk (ekg+Z)f 
e-n+k+Zgk-g . 

2g- 1 

In the last step above, we made use of the fact that f 2: 8k6 , and so 
(ej2g- l )f ek+28fk-g < ek+l-f < 1 .  Hence { 1 + log k (g + 2)2g- 1 log k } loglEp (/) < -n 1 - k - kg+Z < -n/4, 
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so 

IEp (/) < e-n/4 < 1 /3 ,  

as required. D 

Theorem 4 raises a natural question which, at present, is far from being an­
swered. About how large is n 1 (g , k) , the minimal order of a graph of girth at least 
g and chromatic number at least k? Since a graph of chromatic number at least k 
has a sub graph of minimal degree at least k - 1 ,  we have n 1 (g , k) ?:. no (g , k - 1) ,  
where no(g ,  8) i s  the function in  Theorem IV. l .  Hence n 1 (g , k)  i s  roughly between 
kg 12 and k3g . With some more work the upper bound can be reduced a little, but 
it seems to be difficult to determine limg ,k-+oo log���g/) , if the limit exists, which 
is most likely. 

g 

VII.2 Simple Properties of Almost All Graphs 

In the first section we saw how useful it is to know that most graphs in a model 
have a certain property. Now we shall go a step further, namely we shall discuss 
properties shared by almost all graphs. Given a property Q, we shall say that 
almost every (a.e.) graph in a probability space !:2n consisting of graphs of order 
n has property Q if IP'(G E nn : G has Q) -+ 1 as n -+ oo. In this section we 
shall always take nn = Q(n ,  p), where 0 < p < 1 may depend on n .  

Let us  assume first that 0 < p < 1 i s  fixed; that is, p is independent of  n .  
There are many simple properties holding for almost every graph in  Q(n , p) . 

For instance, if H is an arbitrary fixed graph, then almost every Gp E Q(n , p) 
contains H as a spanned subgraph. Indeed, if I H I = h, then the probability that 
the subgraph of G spanned by a given set of h vertices is isomorphic to H is 
positive, say r > 0. Since V (G) contains Ln/ hJ disjoint subsets of h vertices 
each, the probability that no spanned subgraph of G is isomorphic to H is at most 
( 1 - r) ln/hJ , which tends to 0 as n -+ oo. The following result is a strengthened 
version of this observation. 

Theorem 5 Let 1 ::S h ::S k be fixed natural numbers and let 0 < p < 1 be fixed 
also. Then in Q(n ,  p) a. e. graph Gp is such that for every sequence of k vertices 
X t ,  x2 , . . .  , Xk there exists a vertex x such that XXi E E(Gp) if 1 ::S i ::S h and 
XX; ¢ E(Gp) ifh < i ::s k. 

Proof Let x1 , x2 , . . .  , Xk be a sequence of vertices. The probability that a vertex 
x E W = V (G) - {xt , . . .  , Xk } has the required properties is phqk-h . Since for 
x ,  y E W, x =f. y ,  the edges X Xi are chosen independently of the edges y x; , the 
probability that no suitable vertex x can be found for this particular sequence 
is (1 - phl-h)n-k . There are (n)k = n(n - 1) · · · (n - k + 1) choices for the 
sequence x1 , x2 , . . .  , Xt . so the probability that there is a sequence x1 , x2 , . . .  , Xk 
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for which no suitable x can be found is at most 

8 = nk ( l  _ phqk-n)n-k _ 

Clearly, 8 -+  0 as n -+ oo. 0 

By a result of Gaifman concerning first-order sentences, Theorem 5 implies 
that for a fixed 0 < p < 1 every first-order sentence about graphs is either true 
for a. e. graph in G E Q(n ,  p) or is false for a. e. graph. Though this result looks 
rather sophisticated, it is in fact weaker than the shallow Theorem 5, for given any 
first-order sentence, Theorem 5 enables us to deduce without any effort whether 
the sentence holds for a.e. graph or it is false for a.e. graph. In particular, each of 
the following statements concerning the model Q(n ,  p) for a fixed p E (0, 1) is 
an immediate consequence of Theorem 5. 

1 .  For a fixed integer k, a.e. graph Gn ,p has minimal degree at least k .  

2. Almost every graph Gn ,p has diameter 2 .  

3 .  Given a graph H,  a.e. graph Gn ,p i s  such that whenever Fo c Gn ,p i s  iso­
morphic to a sub graph F of H, there exists an Ho isomorphic to H satisfying 
Fo C Ho C Gn ,p · 

Rather naturally, most statements we are interested in are not first-order sen­
tences, since they concern large subsets of vertices. "For a given 8 > 0, a.e. graph 
Gn ,p has at least ! <P - 8)n2 edges and at most ! <P + 8)n2 edges". ''Almost 
no graph Gn ,p can be coloured with n 1 12 colours". "Almost every graph Gn ,p 
contains a complete graph of order log nj log(l  I p )" .  "Given 8 > 0, a.e. Gn ,p is 
! (p - 8 )n-connected". These statements are all true for a fixed p and are easily 
proved (see Exercises 16-20); however, none of them is a first-order sentence. 

Now we shall examine the model Q = Q(n , p) under the assumption that 
0 < p < 1 depends on n , but pn2 -+ oo and ( 1  - p)n2 -+ oo as n -+ oo. In 
this case for every fixed m, a.e. Gp is such that e(Gp) � m and e(Gp) � m. As 
before, we put N = {�) . and for M = 0, 1 ,  . . .  , N, we denote by QM the set of 
graphs in Q(n ,  M). Clearly, Q = UZ.=o QM, and the elements of QM have equal 
probability both in Q(n ,  M) and Q(n ,  p). 

We shall show that the models Q = Q(n , p) and Q(n ,  M) are very close to each 
other, provided that M is about pN, the expected number of edges of a graph in Q. 

Clearly, (N) M N-M IP'p (QM) = IP'p (e(Gp) = M) = 
M 

p q . 

Hence 

(9) 

This shows that IP'p (QM)/IP'p (QM+I ) increases with M, and IP'p (QM) is maximal 
for some M satisfying pN - p � M � pN + q .  Furthermore, if O < 8 < 1 and 
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n is sufficiently large then since pn2 -+ oo as n -+ oo, 

IP'p (QM) 
---''---- < I - £, 
IP'p (QM+I ) 

provided that M < ( 1 - s)pN; also, since ( 1 - p)n2 -+ oo as n -+  oo, 

IP'p (QM+I ) 
< ( l  + £)- 1 

IP'p (QM) 
when M > ( 1  + s)pN. Putting Ne = L ( l + s)pNJ and N_e = 1(1 - s)pNl , 
we see from these inequalities that a.e. graph Gp satisfies N-e � e(Gp) � Ne ; 
that is, 

l'p CQ_, QM) -+ 1 as n -+ oo. ( 10) 

Another consequence of (9) is that there is an T/ > 0 (in fact, any 0 < T/ < � 
would do) such that 

l'p (!2 QM) > 0 ( 1 1 )  

if n i s  sufficiently large. Now ( 10) and ( 1 1 )  imply that if Q* c n is such that 
IP'p (Q*) -+ 1 and n -+ oo, then for any £ > 0 there are M1 and M2, such that 
( 1 - s)pN � M1 � pN � M2 � ( 1  + s)pN and 

( 12) 

We call a set Q* c n convex if G E Q* whenever G 1 c G C G2 and 
G 1 . G2 E Q* ; a convex property of graphs is defined analogously. It is easily seen 
that for a convex set Q* relation ( 12) implies that 

( 12') 

whenever M 1 S M � M2 and, in particular, if M = LPN J .  Let us restate the 
assertions above as a theorem about the connection between the models Q(n ,  p) 
and Q(n , M). 
Theorem 6 Let O < p = p(n) < 1 be such that pn2 -+ oo and ( 1 - p)n2 -+ oo 
as n -+ oo, and let Q be a property of graphs. 

(i) Suppose £ > 0 is fixed and, if ( l - s)N < M < ( 1  + s)pN, then a. e. graph 
in Q(n ,  M) has Q. Then a.e. graph in Q(n , p) has Q. 

(ii) If Q is a convex property and a. e. graph in Q(n , P(edge) = p) has Q, then 
a. e. graph in Q(n ,  LpNJ ) has Q. 

All this is rather simple and could be proved in a much sharper form, but 
even in this weak version it does show that Q(n ,  p) and Q(n , M) are practi­
cally interchangeable in many situations, provided p = MjN, M -+ oo and 
(N - M) -+ oo. 
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VII.3 Almost Determined Variables-The Use of 

the Variance 

If X = X(G) is a non-negative variable on n = Q(n , M) or n = Q(n , p) , and 
the expectation of X is lE(X) = f..L, then, for c > 1 ,  

1 c - 1 IP'(X ?: CJ..L) � - and IP'(X � CJ.L) ?: -- , c c 
since 

f..L = lE(X) ?: IP'(X ?: CJ.L)CJ.L. 
Thus if the expectation of X is very small, then X is small for most graphs. This 
simple fact, Markov's inequality, was used over and over again in the first section. 
However, if we want to show that X is large or non-zero for almost every graph 
in n then the expected value itself can very rarely help us, so we have to try a 
slightly less trivial attack. In the first instance we tum to the variance for help. 
Recall that if J.L = IE( X) , is the expectation of X then 

Var (X) = a2(X) = IE((X - J..L)2) = 1E(X2) - t-t2 

is the variance of X and a = a (X) ?: 0 is the standard deviation. Chebyshev's 
inequality, which is just Markov's inequality applied to (X - t-t)2, states that if 
a > 0, then 

In particular, 

( 1 3) 

In many examples, X = X (G) is the number of sub graphs of G contained in a 
family F = {Ft ,  F2 , . . .  } .  Here F depends on n, and V(F; )  c V(G) = [n] . For 
example, F may be the set of e) complete subgraphs of order s as in Section 1 ,  
the set of Hamilton cycles, or the set of complete matchings. As in Section 1 ,  X 
can be written as L; f; , where f; = Y F; = Y F; (G) is the indicator function of F; : 
it is 1 if F; c G and 0 otherwise. Then, clearly, 

1E(X2) = 1E((L f; )2) = L LlE(Y; Yj ) = L IP'(G contains F; U Fj ) . ( 14) 
i i j (F; , Fj ) 

where the summation is over all ordered pairs (F; ,  Fj)  with F; , Fj E F. 
Let us use these ideas to determine the values of p = p(n) for which Gn,p 

is likely to contain a subgraph F. Following Erdos and Renyi, we call a graph 
balanced if no subgraph of it has strictly larger average degree. Thus if F = 

G(k, l) ,  that is, F has k vertices and l edges, then it is balanced if every subgraph 
with k' vertices has at most k' if k edges. Note that complete graphs, cycles and 
trees are balanced; see Fig. VII. 1 for an illustration of the concept. 
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FIGURE VII. I .  The first two graphs are balanced; the second two are not. 

The following result of Erdos and Renyi shows that, as p(n) increases, balanced 
subgraphs of Gn,p appear rather suddenly. 

Theorem 7 Let k ::: 2, k - 1 :S .e :S {� and let F = G (k, l) be a balanced graph 
(with k vertices and .e edges). If p(n)nkf l --+ 0 then almost no Gn,p contains F, 
and if p(n )nkl 1 --+ oo then almost every Gn,p contains F. 

Proof Let p = yn-kfl , 0 < y < nk/l , and denote by X = X(G) the number of 
copies of F contained in Gn,p · Denote by kp the number of graphs with a fixed 
set of k labelled vertices that are isomorphic to F. Clearly, kp :S k ! . Then 

JL = lEp (X) = (:)kpl(l - p) (�)-l :S nk (ln-k) = ye , 

so lEp (X) --+ 0 as y --+  0, showing the first assertion. 
Now let us estimate the variance of X when y is large. Note that there is a 

constant CJ > 0 such that 

JL ::: CJ yl for every y . ( 1 5) 

According to ( 14), we have to estimate the probability that G contains two fixed 
copies of F, say F' and F". Put 

As = L IP'p(Gn,p ::J F' U F") , 
s 

where Ls means that the summation is over all pairs ( F', F") with s vertices in 
common. Clearly, 

Ao < JL2 • 

Furthermore, in a set of s vertices F' has t :s (.ej k)s edges. Hence, counting first 
the choices for F' and then for F" with s ::: 1 common vertices with F', we find 
that for some constants c2 and c3 , 

As :S L (k) (n - k)k !pl-tq (�)-(D-l+t 
JL t:Sls/k 

s k - S 
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Here in the last step we separated the term with t = 0 from the rest. Consequently, 
making use of ( 14), we find that 

1Ep (X2) L� As < 1 + - I  
2 = --2 - - C4Y 

IL IL 
for some constant c4 . Therefore, by ( 1 3), 

a2 
IP'(X = 0) :5 2 ::: C4Y- l , 

IL 
so IP'(X = 0) � 0 as y � oo. 0 

One of the most striking examples of a graphic invariant being almost deter­
mined in a random graph is that of the clique number, the maximal order of a 
complete sub graph. It turns out that for a fixed p, 0 < p < 1 ,  the clique number of 
almost every graph in g (n , p) takes one of two possible values. In fact, as proved 
by Bollobas and Erdos in 1976, for most values of n (in a well-defined sense) the 
clique number of almost every graph is just a function of p and n. We shall confine 
ourselves to proving a simple result in this direction. As in Theorem 1 ,  denote by 
Xr = Xr (Gn,p) the number of Kr subgraphs, so that 

IE(Xr) = (;) p(;) _ 
Let d = d(n ,  p) be the greatest natural number for which 

IE(Xd) = G)p(�) ::: log n . ( 16) 

As IE( X 1 ) = n and IE(Xn) = p<D < 1 ,  there is such a d, with 1 ::: d ::: n - 1 .  
With the aid of Stirling's formula ( 1 ), it is easily checked that 

_n_ < � < p-
d/2 < n 

Iogb n d ' 

where b = 1 /  p and Iogb n = log nj log b. Also 

d = 2 Iogb n + O (log log n) . 

( 1 7) 

( 1 8) 
Theorem 8 Let 0 < p < 1 be fixed. Then the clique number of almost every 
Gn,p is d or d + 1, where d = d(n) is given by ( 16). 
Proof The assertion is equivalent to the following: 

IP'(Xd+2 > 0) � 0, 
IP'(Xd > 0) � 1 .  

Note that, by the definition of d, lEp (Xd+i )  < log n so, by ( 17) , 

n - d - 1 d d 4 IE(X ) = p +1JE(X ) < p 12 Iog 2 < n- i l � 0 d+2 d + 2  
d+i 

implying the first assertion. 
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Let us tum to the main assertion that IP'(Xd > 0) --+ 1 .  Note first that f.Ld = 
IE(Xd) ;::: log n --+ oo so, by ( 1 3), it suffices to prove that ad//Ld --+ 0, where 
ad = a (XJ) .  

Let u s  use ( 14) to calculate the second moment of Xd, summing separately over 
pairs of Kd subgraphs with exactly l vertices in common: 

2 = f. (n) (d) (n - d) 2(�)-(�) = (n) 2(�) f. (d) (n - d) -(�) IE(Xd) � d l d - l  
p d p � I d - I p . 

�0 �0 
Since 

with ad = a (Xd) we have 

aJ 
= IE(X�) - f,L� 

< f. (d) (n - d) -(�) _ 1 (n) - 1 
2 2 - � I d - l 

(p ) d ILd ILd 1=0 

say. The terms e2 , £3 . . .  , £t are first decreasing and then increasing. In fact, it 
suffices to check that 

for 3 :::: l :::: d - 1 .  Hence 

Now 

and 

2ez :::: d4n-2 p- 1 < n- 1 

2de < 2d1n-3p-3 < n-2 3 - ' 
2ed = 2d !n-d p-(�) :::: 2/f.LJ , 

( 19) 
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Putting these bounds into ( 19), we find that 

as required. 0 

After these specific examples, let us say a few words about the broader picture. 
As before, a property of graphs is a class of graphs closed under isomorphism. In 
particular, a property Qn of graphs of order n can be viewed as a subset of the 
set of graphs with vertex set [n] : all we have to require is that this set is invariant 
under permutations of [n] .  A property Q of graphs is monotone increasing if Q is 
invariant under the addition of edges: if G E Q, G c H and V(G) = V(H) then 
H E Q. (Similarly, a property is monotone decreasing if it is invariant under the 
deletion of edges. Thus being connected or Hamiltonian is a monotone increasing 
property, the property of being at most 3-connected is monotone decreasing, but 
the property of containing an induced 6-cycle is neither increasing nor decreasing. 

Given a property Q, we write IP'p (Q) = IP'p (Gn,p has Q) = IP'p (Gn,p E Q) 
for the probability that Gn,p E Y(n ,  p) has property Q;  the analogous notation is 
used in Q(n ,  M). It sounds like a tautology, but it does need a proof that, for a 
monotone increasing property Q, the probability IP'p(Q) is an increasing function 
of p, and IP'M(Q) is an increasing function of M (see Exercises 2 1 ) . 

Theorems 7 and 8 illustrate the general principle discovered by Erdos and Renyi: 
many a monotone increasing property of graphs arises rather suddenly. To express 
this assertion precisely, it is convenient to introduce threshold functions. A function 
Pt (n) is a lower threshold function (ltf) for a monotone increasing property Q if 
almost no Gn,pt (n) has Q, and Pu (n) is an upper threshold function (utf) for Q 
if almost every Gn,p. (n) has Q .  Threshold functions are defined similarly for the 
space Q(n , M). 

In terms of threshold functions, Theorem 7 says that if w(n) � oo and F is 
a balanced graph of average degree 2l/ k then n-k/l jw is an ltf and wn-k/l is a 
utf for the property of containing F as a sub graph. Although we did not prove it 
here, the converse of these assertions is also true: Pt (n) is an ltf for containing F 
iff pe (n)nk/l � 0 and Pn (n) is a utf iff Pu (n)nk/l � oo. In fact, in many cases 
the lower and upper threshold functions are much closer to each other than in this 
example. To illustrate this, we present a classical result of Erdos and Renyi. 

Theorem 9 Let w(n) � oo and set Pl = (Iog n - w(n))/n and Pu = (Iog n + 
w(n))jn. Then a. e. Gp1 is disconnected and a.e. Gp. is connected. Thus, in the 
model Q(n ,  p), Pl is an ltf and Pu is a utffor the property of being connected. 

Proof In proving the theorem, we may and shall assume that w (n) is not too large, 
say w(n) � log log log n ,  and n is large enough to guarantee that w(n) ;:::: 10. 
For k E N, let Xk = Xk(G) be the number of components of G E Q(n ,  p) having 
exactly k vertices. 
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(i) Let p = Pl and write J.L for the expected number of isolated vertices of Gp . 
Then 

J.L = IE(X J ) = n( 1 - p)n- I  "' ne- Iog n+w(n) = ew(n) -+ 00. (20) 

Furthermore, the expected number of ordered pairs of isolated vertices is 

since there are n(n - 1) ways of choosing an ordered pair of vertices, and two 
given vertices are isolated iff none of the 2n - 3 pairs of vertices incident with at 
least one of them is an edge of Gp . 

Consequently, 

IE(XT) = n(n - 1 ) ( 1  - p)2n-3 + n( l - p)n- I  

and so  the variance a2 = a2 (XJ )  is 
1E(CX1 - J.L)2) = IE(XT) - J.L2 

= n(n _ 1 ) ( 1  _ p)2n-3 + n( l _ p)n- I  _ n2 ( 1  _ p)2n-2 
:::::= n( l _ pt- I  + pn2 ( 1  _ p)2n-3 
:::::= J.L + (w(n) + log n)ne-2 1ogn+2w(n) ( l - p)-3 

(2 1 )  

In the penultimate inequality we made use o f  the fact that p i s  small s o  ( 1 - p) 3 � 
1 /2, with plenty to spare. Therefore, by (20) and (2 1 )  we have 

JP(Gp is connected) :::; IP(X1 = 0) :::; �1E((X1 - J.L)2) :::; J.L � 1 = J.L- 1 + J.L-2 , J.L J.L 
showing that almost every G p is disconnected. 

(ii) Set p = Pu = (log n + w(n))jn . Clearly, 

JP(Gp is disconnected) = IP [ L�J 
Xk � 1] 

k=I [ Ln/2J ] Ln/2J 
:::::: IE {; Xk = {; IE(Xk) 

Ln/2J ( ) 
:::::= L 

n 
( 1 - Pl(n-k) 

k=I k (22) 

since we have �) choices for the vertex set of a component with k vertices and we 
have to guarantee that there are no edges joining this set to the rest of the graph (in 
addition to having some edges to guarantee that the component is connected, but 
we do not make use of this condition). Let us split the sum above into two parts. 
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First we take the case when k is small: 

L (:) o - Pl(n-k) ::: L c;)k e-knpekzp 

l:::;k:::;n314 l:::;k:::;n3/4 

< L e( l-w(n))kk-ke2k2 (1og n)fn 

l:::;k:::;n3/4 
< 3e-w(n) - ' 

if n is sufficiently large. When k is large, we argue slightly differently: 

L (:) o - p)k(n-k) =:: L ( e;t e-knp/2 

n3f4:::;k:::;nf2 n3f4:::;k:::;nj2 
< L (en l f4ln-kf2 

n314:::;k:::;nj2 

(23) 

< L (ejn lf4l =:: n-n3f4;s _ (24) 
n314:::;k:::;nj2 

Putting together (22), (23) and (24), we find that 

IP(Gp is disconnected) =:: 4e-w(n) 

if n is sufficiently large. This shows that a.e. Gp is connected. D 
What about the chromatic number of a random graph Gn,p for a fixed value of 

p? Theorem 8 immediately gives us a lower, bound since x (G) 2: I G J /a(G) for 
every graph G.  Also, the complement of a random graph Gn,p is a random graph 
Gn,q with q = 1 - p, so the distribution of the independence number a(Gn,p )  
i s  precisely the distribution of  the clique number w( Gn,q ) . Since, by  Theorem 8,  
w(Gn,q )  = < i + o(1) )  lognj log( l /q) , we see that 

G 
( 1 

1 ) log n 
x < n,p) 2: 2 + o( ) 

log( l /q)  
(25) 

for almost every Gn,p ·  
How far i s  this trivial lower bound from the truth? A natural way of  getting 

an upper bound for x (Gn,p)  is to analyse the result of a colouring algorithm run 
on Gn,p ·  Now, the easiest colouring algorithm is the greedy colouring algorithm 
discussed in Section V. l .  As shown by Bollobas and Erdos in 1976, this algorithm 
does produce a colouring that, with high probability, uses only about twice as 
many colours as the lower bound in (25). In 1988,  Bollobas used a different, 
non-algorithmic, approach to prove that, in fact, (25) is almost best possible. 

Theorem 10 Let 0 < p < 1 be constant. Then 

(G ) - (� o( 1 )) log n 
X n,p - 2 

+ 
log( 1 /q) 

for a. e. Gn,p. where q = 1 - p. 
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What Theorem 10 claims is that if t > 0 then 

lim 1Pp ( ix (Gn,p ) log( l jq )j logn - � I < e) = 1 .  n-+oo 2 

The optimal threshold functions tell us a considerable amount about a property, 
but in order to obtain an even better insight into the emergence of a property, we 
should look at hitting times. Given a monotone increasing property Q, the time r 
at which Q appears in a graph process {; = (G1)� is the hitting time of Q :  

r = TQ = r (G; Q)  = min{t : G 1  has Q} .  

The threshold functions in  the model Q(n , M) are easily characterized in  terms 
of hitting times. Indeed, mt is a lower threshold function for a property Q if, and 
only if, 

r(G; Q) > mt 

for almost every {;, and an upper threshold function is characterized analogously. 
There are several striking results concerning hitting times stating that two prop­

erties that seem to be far from each other are almost the same in our space of 
random graphs. A beautiful example of this is the property of being connected, 
considered in Theorem 9. 

What is a simple obstruction to being connected? The existence of an iso­
lated vertex. Putting it another way, if Q 1 is the property of being connected 
( Q 1 = "conn") and Qz is the property of having minimal degree at least 1 
(Qz = "8 =::: 1 "), then r(G; Q 1 ) =::: r(G; Qz) for every graph process G. Rather 
surprisingly, equality holds for almost every graph process. 

Theorem 11 For almost every graph process G we have r (G; conn) = r (G; 
8 :::: 1 ) .  

Although the proof is  only a little more complicated than that of Theorem 9, we 
shall not give it here. However, let us expand on the assertion. What Theorem 10  
tells u s  i s  that i f  we start with an empty graph on  a large set of  vertices and keep 
adding to it edges at random until the graph has no isolated vertices then, with 
high probability, the graph we obtain is connected: the very edge that gets rid of 
the last isolated vertex makes the graph connected. At first sight this is a most 
unexpected result indeed. 

Note that it is easy to deduce Theorem 9 from Theorem 1 1 , since Theorem 1 1  
implies that the property of being connected has the same threshold functions 
as the property of having minimal degree at least 1 .  It is easily proved that 
1Pp (8 (Gn,p ) =::: 1 )  � 0 if, and only if, 1Ep (Xn,p) � oo, where Xn,p is the 
number of isolated vertices of Gn,p · Also, 1Pp (8 (Gn,p) =::: 1 )  � 1 if, and only if, 
1Ep (Xn,p) � 0. Similar assertions hold for the properties of being k-connected 
and having minimal degree at least k .  
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Vll.4 Hamilton Cycles-The Use of Graph Theoretic Tools 

In the proofs so far we always adopted a more or less head-on attack. We hardly 
needed more from graph theory than the definitions of the concepts involved, the 
emphasis was on the use of elementary probability theory. This section is devoted 
to a beautiful theorem of P6sa, concerning Hamilton cycles, the proof of which is 
based on an elegant result in graph theory. Of course, the ideal use of probabilistic 
methods in graph theory would have a mixture of all the ideas presented in the four 
sections. Thus we would prepare the ground by using non-trivial graph theoretic 
results and would apply probability theory to get information about graphs in a 
probability space tailor-made for the problem. We could then select an appropriate 
graph which we would afterwards alter with the aid of powerful graph-theoretic 
tools. 

As we saw in Chapter IV, the study of Hamilton cycles has been an important 
part of graph theory for many years, and by now we know a good many sufficient 
conditions for a graph to be Hamiltonian. Here we are interested in a rather 
different aspect of the Hamilton cycle problem: what happens in the average case? 
Given n, for what values of m does a typical graph of order n and size m have a 
Hamilton cycle? 

A Hamiltonian graph of order n has at least n edges, and a non-Hamiltonian 
graph of order n has at most e21) + 1 edges. This leaves a rather large 'uncertainty ' 
window: for 

n � m � (n � 1) + 1 

some graphs G(n ,  m) are Hamiltonian, and some others are non-Hamiltonian. 
Changing the restriction from the size to the minimal degree, we are only slightly 
better off: a Hamiltonian graph has minimal degree at least 2 and, by Dirac's 
theorem (Theorem 111.2), a non-Hamiltonian graph has minimal degree at most 
L(n - 1 ) /2J . 

What is fascinating is that if we do not demand certainty, only high probability, 
then the window above becomes very small indeed. 

Instead of fixing the size, we shall fix the probability: as we know, there is 
very little difference between the two approaches, and it is easier to work with 
Q(n, p) then Q(n , M) . Thus the problem we wish to tackle is the following. For 
what values of p = p(n) is Gn,p likely to be Hamiltonian? From the results in 
the previous section we do know a lower bound, albeit a rather weak one: if p = 
(log n - w(n)) j n , where w(n) -+ oo, then almost every Gn,p is disconnected and 
so, a fortiori, almost no Gn,p is Hamiltonian. In 1976 P6sa achieved a breakthrough 
when he proved that the same order of the probability guarantees that almost every 
Gn,p is Hamiltonian. 

The basis of the proof of this result is Theorem IV. IS .  Let S be a longest xo-path 
in a graph H and write L for the set of endvertices of the transforms of S. Denote 
by N the set of neighbours of vertices of L on S and put R = V (H) - L U N. 
Then Theorem IV. 1 5  states that H has no L-R edge. All we shall need from this 
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is that if I L I = e � I H I /3 then there are disjoint sets of size e and I H I - 3£ + 1 
that are joined by no edge of H. 

We start with a simple lemma i n  the vein of Theorem 4 .  Denote by Dr the 
number of pairs (X, Y) of disjoint subsets of V such that lX I = t, I Y I  = n - 3t, 
and G has no X-Y edge. 

Lemma 12 Let c > 3 and 0 < y < � be constants and let p = (c log n)jn. 
Then in Q(n , p) we have 

IP'p (Dr > 0 for some t, 1 � t � yn) = O(n3-c) . 
Proof Put fJ = (c4c3) . Clearly, 

I: Ep (Dr) = I: (n) ( n � t ) < 1 - p)r (n-3r) 
r= l r= l t n 3t 

� n (n - 1) ( 1 - p)n-3 + I: �n3r ( 1 - p)r (n-3r) 2 r=2 t .  
LynJ 

+ L 22n ( 1  _ p)r (n-3r) . 
r= lftnJ+l 

Now, since ( 1 - p)n < n-c , we have 

n\ 1 _ p)n-3 < ( 1  _ p)-3n3-c ; 

if 2 � t � {Jn, then 

n3r ( l - p)r (n-3r) < nr (3-(c(n-3r)jn)) � n3-c; 
and if {Jn � t � yn, then 

2zn ( 1  _ p)r (n-3r) < n2nf logn-(n-3r)rfn = O(n-P(l -3y)n) . 
Consequently, 

LynJ 
L Ep (Dr) = O(n3-c) , 
r=l 

implying the assertion of the lemma. D 
Theorem 13 Let p = (c log n) In and consider the space Q (n , p ). If c > 3 and 
x and y are arbitrary vertices, then almost every graph contains a Hamilton path 
from x to y. If c > 9 then almost every graph is Hamiltonian connected: every 
pair of distinct vertices is joined by a Hamilton path. 
Proof Choose y < � in such a way that cy > 3 if c > 9 and cy > 1 if c > 3 .  

Let us  introduce the following notation for certain events in  Q(n , p) . 
D = {Dr = 0 for every t, 1 � t � LynJ }, where Dr is as before 

E(W, x) = {Gn ,p [W] has a path of maximal length whose end vertex is 
joined to x }  
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E(W, x l w) = {Gn,p [W] has a w-path of maximal length among the w-paths, 
whose end vertex is joined to x }  

F (x) = {every path of maximal length contains x }  

H(W) = {Gn,p [W] has a Hamilton path} 

H(x ,  y) = {Gn,p has a Hamilton x-y path} 

HC = {Gn,p is Hamiltonian connected} .  

We identify an event with the corresponding subset of  9(n ,  p) , so  that the 
complement of an event A is A = 9(n ,  p)\A. 

Note that by Lemma 12 we have 

lP'p (D) = 1 - lP'p (D) = O(n3-c) .  

Let u s  fix  a vertex x and a set W C V\{x }  with I W I = n - 2 or n - 1 .  Our 
first aim is to show that lP'p (D n E(W, x)) is rather small. Let G E D n E(W, x) 
and consider a path S = xox1 · · · Xk of maximal length in G[W] .  (By introducing 
an ordering in W, we can easily achieve that S is determined by G[W] .) Let 
L = L(G[W]) be the set of endvertices of the transforms of the xo-path S and let 
R be as in Theorem IV. 1 7  (applied to G[W]). Recall that I R I � I W I + 1 - 3 IL I 
and there is no L-R edge, so no L-(R U {x }) edge either. Since G E D and 
I R U {x } l  � n - 3 1L I , we find that I L l � yn . Now, L depends only on the edges 
of G[W], so it is independent of the edges incident with x .  Hence, 

lP'p (D n E(W, x)) :S lP'p ( I L(G[W]) I � yn)lP'p (r(x) n L' = 0) , 

where L' is a fixed set of fynl vertices of W. Therefore, 

lP'p (D n E(W, x)) :S ( 1 - p)Yn < n-cy , 

so the probability in question is indeed small. Exactly the same proof implies that 

lP'p (D n E(W, x lw)) < n-cy , 

provided I W I = n - 2 or n - 1 ,  w E W and x ¢. W. 
Note now that F(x)  c E(V - {x } ,  x), so 

lP'p (H(V)) = lP'p (u F(x)) :s lP'p (v n U F(x)) + lP'p (D) 
xeV xeV  

:s L lP'p (D n F(x)) + Ifl'p (D) 
xeV  

:s nlP'p (D n E(V - {x } ,  x ) )  + lP'p (D) 
:S n l-cy + O(n3-c) .  

This proves that i f  c > 3 then almost every graph has a Hamilton path. 
Now let x and y be distinct vertices and put W = V - {x , y }. By the first part, 

lP'p (H(W)) :S 2n l-cy + O(n3-c) .  
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Since 

we have 

H(x ,  y) :J H(W) n E(W, y) n E(W, x ly) ,  

lP'p (H(x ,  y)) ::;:: lP'p (H(W)) + lP'p (D n E(W, y)) 
+ lP'p (D n E(W, x l y)) + lP'p (D) 

::;:: 2n l-cy + 2n-cy + O(n3-c) .  
Therefore, if c > 3 then almost every graph contains a Hamilton path from x to y .  

Finally, as there are m choices for an unordered pair (x , y ) ,  X =F y ,  

lP'p (HC) ::;:: L lP'p (H(x , y)) ::;:: n3-cy + n2-cy + O(n5-c) .  
x#y 

Thus if c > 9 then almost every graph is Hamiltonian connected. D 
Since every Hamiltonian connected graph is Hamiltonian, by Theorem 1 3  we 

have in particular that if c > 9 and p = c log nln then almost every Gn,p 
is Hamiltonian. Independently of P6sa, Korshunov proved the essentially best 
possible result that this assertion holds for every c > 1 .  More importantly, in 1983 
Koml6s and Szemeredi determined the best threshold functions for the property 
of being Hamiltonian. 

Theorem 14 Let w (n) --+ oo and set Pt = (log n + log log n - w(n))ln and 
Pu = (log n + log log n + w(n)) In. Then Pt is a lower threshold function for the 
property of being Hamiltonian and Pu is an upper threshold function. 

In fact, analogously to Theorem 1 1 , there is a hitting time result connecting the 
property of being Hamiltonian to its obvious obstruction. We remarked that being 
disconnected is an obvious obstruction to being Hamiltonian. In fact, there is an 
even more obvious obstruction, which is easy to detect: having minimal degree 
at most 1 .  As shown by Bollobas in 1983, in a graph process this is the main 
obstruction. 

Theorem 15 Almost every graph process G is such that r(G; Ham) = r (G ; 
8 � 2), where "Ham" is the property of being Hamiltonian and "8  � 2"  is the 
property of having minimal degree at least 2. 

Thus if we stop a random graph process as soon as we get rid of the last vertex 
of degree at most 1 then, with high probability, we have a Hamiltonian graph. 
Theorem 1 5  easily implies Theorem 14 ;  in fact, with only a little additional work 
it implies the following sharper form of Theorem 14 .  

Let c E lR be fixed and set p = (log n + log log n + c) In . Then 

lim lP'p (Gn p is Hamiltonian) = e-e-c . n--+oo ' 

Needless to say, the story does not stop here: there are many further questions 
concerning random graphs and Hamilton cycles. For example, having discovered 
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the 'primary' obstruction, namely the existence of vertices of degree at most 1 ,  
we find it natural to rule them out and ask for the probability that a random 
graph of order n and size m, conditional on having minimal degree at least 2, is 
Hamiltonian. As it happens, the secondary obstruction is a 'spider' : three vertices 
of degree 2 having a common neighbour. However results of this type are better 
suited for a specialist treatise on random graphs, rather than for this book on graph 
theory. 

VII.5 The Phase Transition 

What does a 'typical ' random graph GM look like? Better still, what does a 
'typical ' graph process (G1)� look like? In particular, how does the component 
structure of G1 change as t increases? 

It is fairly easy to see that if t is rather small then G1 tends to have only 
tree-components, with the orders depending on the size of t .  

Theorem 16 Almost every random graph process is such that if k :=: 2 is fixed 
and t = o(n <k- I )fk) then every component of G1 is a tree of order at most t. 
Furthermore, if s is constant and tjn<k-2)/(k- I ) � oo then G, has at least s 
components of order k. 

The proof of this assertion goes along the lines of the proof of Theorem 7 and 
is rather vapid: we do not even need that there are kk-2 trees of order k (see 
Exercise 1.4 1 and Theorem VIII.20). All we have to do is to estimate IE(Xk) and 
IE( X;) , where Xk is the number of trees of order k in Gr. using that there are some 

t (k) , 1 :::: t (k) :::: �<_!}1 ) , trees on k distinguished vertices (see Exercise 34). 
The growth of the maximal order of a component described in Theorem 16 is 

fairly steady and regular, without any unexpected changes. What Erdos and Renyi 
discovered is that around t = n/2 this growth becomes frantic :  taking a bird's-eye 
view of the graph we see a sudden qualitative change in the component structure. 
This qualitative change is the phase transition of a random graph process. Vaguely 
speaking, before time n /2 every component has O(log n) vertices, but after time 
nj2 there is a unique largest component of order n (i.e. , containing a constant 
proportion of the vertices). Even more, all other components are still of order 
log n ;  in fact, as t increases, they are getting smaller. 

In order to formulate a result precisely, for a graph G let us write L ( 1 ) (G) :=: 
L <2) (G) :=: · · · for the orders of the components of G, so that Li L (i) (G) = I G 1 .  
We see from Theorem 1 6  that £0) (G1) = k for almost every G1  = Gn,t if 
tjn<k- 1 )/k � 0 and tjn<k-2)/(k- 1 ) � oo. For t = Lcn/2J , with c constant, the 
following is a sharper version of the celebrated result of Erdos and Renyi about 
phase transition. 

Theorem 17 Let c > 0 and h :=: 1 be fixed and let w(n) � oo. Set ex = 
c - 1 - log e and t = t (n) = Lcnj2J . 
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(i) If c < 1 then, for almost every random graph G1, 

I L (i) (G1) - � { log n - � log log n } I � w(n) 

for every i , 1 � i � h. 
(ii) There are constants 0 < q < c2 such that, for every i, 1 � i � h, 

qn213 < L(i) (G Ln/2J ) < c2n2/3 

for almost every G Ln/2J . 
(iii) If c > 1 then, for almost every random graph G1, 

IL ( l ) (G1) - yn l  � w(n)n 1 12 , 
where 0 < y = y (c) < 1 is the unique solution of 

e-cy = 1 - y .  
Furthermore, I L(i) (G1) - � { log n - � log log n } 1� w(n) 

for every i , 2 � i � h. 
To appreciate the striking nature of Theorem 17 , observe what happens to 

L ( 1 ) ( G1 ) , the maximal order of a component, in a typical random graph process, 
as t increases from Lcn/2J to Lc'n/2J , where c' = 1:c, say. If O < c < c' < 1 or 
1 < c < c' , then L < l ) (G1) increases by a constant factor. However, if c < 1 < c' 
then L < 1 ) ( G 1) grows dramatically, from order log n to order n. Passing through the 
critical point c = 1 ,  the component structure changes completely, and a so-called 
phase transition occurs: before the critical point there are many components of 
about maximal size, and this maximal size is O (log n) ,  but after the critical point 
there is a unique maximal component, which is much larger than the second largest. 
Passing through the critical point, a giant component emerges, with about yn 
vertices for some positive constant y = y (c) , while the second largest component 
still has order O (log n) .  

To see that y = y (c) is well-defined for c > 1 , set fc (Y) = cy and g(y) = 

- log(l - y) = y + y2 /2 + y3 /3 + · · · . Since for y � 0 the function g(y) is 
strictly convex, g' (0) = 1 and g(y) � oo as g � 1 -, there is indeed a unique 
y E (0, 1) such that fc (Y) = g(y ), i.e. e-cy = 1 - y .  In fact, it is easily checked 
that for c = 1 + e > 1 we have y (c) = y ( 1  + e) = 2e - i e2 + 2: e3 + 0 (e4) 
(see Fig. VII.2). 

What happens near the critical point remained a mystery for over 20 years, with 
many natural questions unanswered. In a typical graph process, for what values of 
t is the largest component at least twice as large as the second? How large can the 
second largest component become? Can it grow to nj log n, say? Once we see the 
giant component of a graph process, at what speed does it grow? 

Questions like these were answered by Bollobas in 1984, greatly clarifying the 
phase transition, and much more detailed results were proved by Luczak in 1 990, 
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FIGURE VII.2. The curve y (c) for c > 1 .  
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and by Janson, Knuth, Luczak and Pittel in 1993. For example, if t = � + s ,  
s I n213 � oo and sIn � 0 then 

L(l ) (G1) = 4s + o(s) 
for almost every G1 ; that is ,  on average, the addition of one edge adds 4 new 
vertices to the giant component. Also, L (Z) ( G1) does not grow substantially above 
n213 : for example, in gn we have 

lim IP(L(2) (G1) � n213+s for some t) = 0 n--.oo 
for every e > 0. 

We shall not give a proper proof of Theorem 17, nor shall we do more than 
outline a very elegant approach due to Karp that can lead to a proof of Theorem 17 .  
Karp's idea is to  ignore the structure of  a component and concentrate on the 
correspondence x � I C(x) l , where C(x) is the vertex set of the component of 
the vertex x in our random graph, and to exploit the similarity with a branching 
process. As usual, it is more convenient to work with the model Q(n ,  p) rather 
than Q(n , M) : as in Section 2, it is then easy to pass from one model to another. 

For a graph G and vertex x E V (G), let Cc (x) be the vertex set of the component 
of x in G. To construct C = Cc (x) ,  proceed as follows. Set x1 = x ,  Ao = 0 and 
Bo = {xi } .  Then set A 1 = {xi } ,  and add to Bo all the neighbours of XI in G to get 
BJ . If B1 = A 1 , then C = B1 = A 1 ; otherwise, pick a vertex xz e B1 - A 1 , set 
Az = A 1 U {xz} ,  and add to B1 all the neighbours of xz in G to get Bz . lf Bz = Az 
then C = Bz = Az ; otherwise, pick a vertex x3 e Bz - Az, set A3 = Az U {x3 } 
and add to Bz all the neighbours of X3 in G to get B3 . Proceeding in this way, we 
get a set C = Be = Ae : this is precisely Cc (x) .  Note that this set depends only on 
G, and not on the choices we made during the construction. At 'time' i ,  A; is the 
set of vertices in C that we have tested for neighbours, so that at time e we run out 
of new vertices to be tested, and thus At = Be is precisely the component Cc (x ) . 

Note that in the construction above, I A; I = i and A; c B; for i = 0, 1 ,  . . .  , e , 
and e is the first index with At = Be . Now if G is a random graph Gn,p then, 
A; C B; , A; =f. B; , having constructed the probability that a vertex in V - B; is 
put into Bi+I is precisely p, independently of all other vertices and of all earlier 
choices. Hence we can run the process without any reference to the sets A; (of 
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vertices tested in the first i rounds): having constructed B; , select the vertices 
of V - B; independently of each other, and add the selected vertices of B; to 
obtain Bi+l · This sequence Bo c B1 c · · · can be run ad infinitum. However, 
the connection with C(x) is easy to recover: write l for the smallest index with 
! Bt l =  .l, the set Bt is distributed precisely as C(x) .  In particular, the probability 
that C(x) has exactly k vertices is at most the probability that l Bk l is precisely k. 

The crunch comes now: each I B; I has a very simple distribution. Indeed, what 
is the probability that a vertex y E [n] - {x } is not put into B; ? We make i 
attempts at adding y to B; , with each attempt succeeding with probability p, 
so  JP(y ¢ B; ) = ( 1  - p)i . As all choices are independent, I B; I has binomial 
distribution with parameters n - 1 and 1 - (1 - p )i : 

lP( I B; I = k) = (n � 1) ( 1 - (1 - p) i )k ( l - p)i(n-k- 1 ) . (26) 

As noted above, this probability is an upper bound for 1Pp ( IC(x) l = k) . 
This relation enables us to show that some values are extremely unlikely to 

occur as orders of components of Gn ,p : with very high probability there is a gap 
in the orders of components. 

Theorem 18 Let a ::=:: 2 befixed. lfn is sufficiently large, 8 = 8(n) < 1 /3 and 
p = p(n) = 1!8 then, with probability at least 1 - n-a, Gn ,p has no component 
whose order k satisfies 

Sa 82 
82 log n :::; k :::; 12 n .  

Proof Set ko = rsa8-2 log nl and k1 = r82nj 12l . Writing Pk for the probability 
that the component of Gn ,p containing a fixed vertex has k vertices, the probability 
that Gn ,p has a component of order k is at most npk . Hence, it suffices to prove 
that 

kt 
L Pk ::S n-a- 1 . 
k=ko 

We may assume that ko :::; k1 , so 84 ::=:: 96a (Iogn)/n ::=:: 1 /n , since otherwise 
there is nothing to prove. Now, by (26), 

since 

and 

1 k k . k n - n n 1 n -k2 f2n -- = - ( 1  - - ) < -e k k '  - k '  ' . j=l n . 

( 1  - p)k :::: 1 - kp . 
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Noting that 

for l e i S 1 /3 , and recalling ( 1 ), Stirling's formula, we have 

Pk S exp{-k2 /2n - e2kj3 + k2 ( 1 + e)jn} 
S exp{ -e2k/3 + k2 jn} S e-e2k/4 . 

Therefore, 

as required. 

kt kt 2 2 2 L Pk S L e-e k/4 = e-e ko/4 ( 1 - e-e /4) 
k=ko k=ko 

< �e-e2ko/4 < nn-2a < n-a- I 
- e2 - - ' 

0 

With more work, Theorem 1 8  could be proved in a much stronger version, 
giving us that a steadily growing, much larger gap arises soon after time n /2 
and lasts till the end of the process. Nevertheless, even in this form it tells us a 
great deal about the components in a random graph process. For example, given 
0 < £I < £2 < 1 /3 ,  there are positive constants a, {3 such that almost every graph 
process G = (G1)� is such that for ( 1  + &J )n/2 S 1 S ( 1  + e2)nj2 the graph G1 
has no component whose order is between a log n and {3n . Call a component small 
if it has at most a log n vertices, and large if it has at least {3n vertices. Also, set 
11 = 1( 1  + £ J )n/2l and 12 = L(1 + £2)n/2J . Then a typical graph process (G1)� 
is such that for 11 S 1 S 12 every component of G1 is either small or large. 

Let us observe the changes in the component structure in a typical process 
( G1 )� as 1 grows from 11 to 12 . What is the effect of the addition of an edge to G1 
to produce Gr+ I ? If the new edge is added to a component, there is no change. 
If the new edge joins a large component to another, then the two components are 
replaced by a single component. Most importantly, what happens if the new edge 
joins two small components? The union of these small components is certainly not 
large, as 2a log n < {3n, with plenty to spare, so it has to be small. In particular, 
Gr+I has at most as many large components, as G1 ; even more, if the new edge 
joins two large components then Gr+ I has one fewer large component than G1 • 

Conditioning on G = (G1)� being a typical graph process and G1 containing 
at least two large components, the probability that the (1 + l )st edge joins two 
large components is at least {32n2 / (�) > 2{32. Now, G11 has at most 1 /  {3 large 
components, so if w(n) � oo then with probability 1 - o(l ) ,  after the addition 
of the next w(n) edges all large components have been united. In particular, in a 
typical graph process G12 has a unique large component, the giant component of 
G12 , and all other components have at most CJ log n vertices. This is precisely the 
qualitative version of the most interesting part of Theorem 17 , part (iii) . 
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The value of y in Theorem 17(iii) can be determined by exploiting the similarity 
between a branching process and the growth of a component containing a vertex. 
Let us give a brief heuristic description of the similarity. 

Let p = cjn, c > 1 ,  and suppose we know that almost every Gn,p has a 
unique giant component with (y + o( 1 ))n vertices, where y > 0, and all other 
components are small, with no more than a log n vertices. How can we find y ?  
Clearly, y is the limit of the probability that the component C (x) of a fixed vertex 
x is small : I C(x) l ::: a log n .  To estimate this probability, let us 'grow' C(x) ,  
starting from x ,  as  in  the proof of  Theorem 18 ,  but keeping track of  the neighbours 
we put into C(x) .  To be precise, let Ue be the set of vertices at distance .e from 
x ,  and let Ve = U1=l U; be the set of vertices at distance at most t from x .  We 
stop this process if I Ve l > a log n for some t,  since then C (x) is large, and also if 
Ul+t = 0 and ! Ve l ::: a log n, since then C(x)  = Ve is small. 

Let us take a close look at the way Ul+l arises from (Ul , Vl) .  Letting Ul = 
{u t , u2 , . . .  }, first take all new neighbours of u 1 , then all new neighbours of u2, 
and so on, stopping the process if we ever reach a log n vertices. Suppose then that 
we have reached h ::: a log n vertices from x when we test for the new neighbours 
of u; . What is the distribution of the number of new neighbours of u; ? Clearly, for 
k ::: a log n , we have 

IP'(u; has k new neighbours) = e � h) l ( 1  - p t-h-k 

ck 
= 

k !
e-c ( 1  + O ((log n)2jn)) .  

This means that the distribution of the number of descendents of u; , that is ,  the 
number of vertices we add to C (x) because of u; , is close to the Poisson distribution 
with mean c. Therefore, the distribution of I C(x) l is close to the distribution of 
the total population in a Poisson branching process, provided C(x) is small. 

To define this process, let Zij , i = 0, 1 ,  . . .  , j = 1 ,  2, . . . , be independent 
Poisson random variables, each with mean c: 

ck IP'(z . .  = k) = -e-c I} 
k ! • 

Set Zo = 1 .  Having defined Zn , set Zn+l = Zn t + Zn2 + · · · + Znzn , where the 
empty sum (for Zn = 0) is 0, as always. The interpretation is that Zn is the size of 
the population in the nth generation and Zni is the number of descendents of the 
i th member of the nth generation. 

Theorem 19 Let (ZnYo be as above, with e > 1 , andwrite p00for theprobability 
that Zn > 0 for every n. Then p00 is the unique root of 

e-cpoo = 1 - Poo 

in the interval (0, 1 ). 

Proof Let Pn be the probability that Zn > 0, so that po = 1 and p00 = 
limn-+oo Pn . First we check, by induction on n, that Pn :::: y for every n, where y is 
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the unique root of e-ye = 1 - y in (0, 1 ) .  This holds for n = 0 since po = 1 � y .  
Assume then that n � 0 and Pn � y .  Conditioning o n  Z 1 = k � 1 ,  the process 
is the sum of k independent processes with the same distribution. Since 1 - p1 is 
the probability that the process dies out by time t, 

00 
1 - Pn+l = lP'(Z1 = 0) + L lP'(Z 1 = k) ( l - Pnl 

k=l 
oo ck 

= L - e-c ( 1 - Pn)k 

k=O k !  

= e-cpn f: (c( l - Pn))k 
e-c( l -pn) 

k=O k !  

Hence Pn+ 1 � y ,  as claimed, and so p00 = limn--+oo Pn � y .  
B y  applying the argument above to 1 - p00 rather than 1 - Pn+l and 1 - Pn • 

we see that 
00 

1 - Poo = lP(ZI = 0) + LJP(ZI = k) ( l - Pool = e-CPoo . 
k=l 

Hence p00 is a root of e-cpoo = 1 - p00 satisfying 0 < p00 ::::= 1 ,  and we are 
done. 0 

Returning to the size (y +o(l ))n of the giant component in Theorem 17(iii), we 
know that y is the limit of the probability that our fixed vertex x E [n] belongs to 
the giant component. Therefore, y is the probability that Zn in Theorem 19 does 
not die out, so y = p00 • Hence e-cy = 1 - y ,  as claimed in Theorem 17(iii) . 

To make all this rigorous, we have to do more work, but it is clear that this 
approach can be used to establish the principal features of the phase transition. 
In fact, the method above is only one of several ways of investigating the phase 
transition. In particular, Erdos and Renyi, Bollobas, and Luczak made use of the 
finer structure of the components, and Janson, Knuth, Luczak and Pittel relied on 
generating functions and hard analysis to obtain very detailed results about the 
emergence of the giant component. 

VII.6 Exercises 

1 .- Show that the complement Gp of a random graph Gp is precisely Gq , where 
q = 1 - p. 

2.- Let M � 0 be fixed and for n � 2M let Hn,M consist of M independent 
edges and n - 2M isolated vertices. Show that 

lim lP'n M (Gn M � Hn M) = 1 . n--+oo ' ' ' 
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3 :- Prove that there is a tournament of order n (see Exercise 12  of Chapter I) that 
contains at least n !2-n+ 1 directed Hamiltonian paths. 

4:- Let G = (V, ih be a directed graph with m edges and without loops. Use 
expectation to show that V can be partitioned into sets V1 and V2 such that G 
contains more than ml4 edges from V1 to V2 . 

5:- Show that a graph of size m has a k-partite sub graph with at least (k - 1 )m I k 
edges. [Hint. Consider a random k-colouring of the vertices. What is the 
expected number of edges joining vertices of distinct colours?] 

6:- Show that a graph of order n and size m has a bipartite sub graph with at least 
2 Ln2 14Jmln(n - 1 )  edges. [Hint. Consider random bipartitions into as equal 
classes as possible.] 

7 .  Let G = G(n ,  m) be a graph with chromatic number r .  Show that G has a 
bipartite subgraph with at least 

edges. [Hint. Let V1 , . . .  , V, be the colour classes. Consider partitions of the 
colour classes.] 

8 .  Show that a. e. graph Gn, I /2 has maximal degree at least n 12+ Jil and minimal 
degree at most nl2 - Jil. 

9. Show that a.e. graph Gn, I /2 has at least n 1 13 vertices of degree precisely 
Lni2J . [Hint. Compute the expectation and variance of the number of these 
vertices. ]  

10:- Let G and H be graphs of order n . Show that G has a subgraph with at least 
e(G)e(H)I(�) edges that is isomorphic to a subgraph of H. 

1 1 .  Let F be a fixed graph and let X F = X F (G) be the number of subgraphs of 
G isomorphic to F. Suppose that N = m is even and set M = N 12. Show 
that 

12 .  Show that there is a graph of order n and size 

l � ( 1  - 1 Is !t ! )  n2-(s+t-2)/(st- l) J 
that does not contain a Ks, t ·  

1 3 .  Given 2 ::; s ::; n, let d be the maximal integer for which there i s  a G3 (n , n ,  n )  
without a K3 (s , s ,  s ) ,  i n  which every vertex i s  joined by at least d edges to 
each of the other two classes. Prove a lower bound for d.  
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14:+ Use Theorem 3 to prove that if r > 2, 0 < s < 1 <r - 1 )-2 and 

d* 2 
> - -----=--r log(2(r - 1)2s) ' 

then for every sufficiently large n there is a graph G(n ,  m) not containing a 
Kr (t) , where m 2:':: { (r - 2)/ (2(r - 1))  + s}n2 and t = Ld: log nj . (Note that 
this shows that Theorem IV.20 is essentially the best possible.) 

15. Show that a fixed vertex is isolated in about 1 je2 of the graphs in Q(n ,  n) and 
has degree 1 in about 2je2 of the graphs in Q(n ,  n) .  
In Exercises 16-20 the model Q(n ,  P (edge) = p) is used and 0 < p < 1 is 
assumed to be fixed. 

16 .  Show that for s > 0 a.e. graph has at least ! <P - s)n2 edges and at most 
! <P + s)n2 edges. 

1 7  :+ Prove that a. e. graph G satisfies. 

o (G) = I.. ( G) = K (G) = pn - (2pqn log n) 1 12 + o(n log n) 1 12 , 

where q = 1 - p. 

18:+ Estimate the maximal value of t for which a.e. graph contains a spanned Kt, t · 
Estimate the corresponding value for Kr (t) = Kt, . . .  , t · 

19 .  Let 0 < c < 1 .  Prove that a.e. graph has the property that for every set W of 
k = Lc log2 nJ vertices there is a vertex xz for each subset Z of W such that 
xz is joined to each vertex in Z and to none in W - Z. Check that for c = 1 
it is impossible to find even a set of 2k vertices disjoint from W. [Hint. Refine 
the proof of Theorem 7.] 

20. Let H be a fixed graph. Show that a.e. Gn,p  is such that whenever an induced 
sub graph Fo of Gn,p is isomorphic to an induced sub graph F of H, then Gn,p  
has an induced subgraph Ho � H containing Fo. 

2 1 :- Let Q be a monotone increasing property of graphs of order n .  Show that if 
po < PI and Mo < M1 then 1Pp0 ( Q) ::::: 1Pp1 ( Q) and lPM0 ( Q) ::::: lPM1 ( Q) .  

22:+ Let x E lR be fixed and p = p(n) = (log n)/n +xfn .  Show that lPp (Gn,p  has 
no isolated vertices) --* e-e-x . [Hint. Write X = X ( Gn,p) for the number of 
isolated vertices. Show that, for every fixed k 2:':: 1 ,  the kth factorial moment 
lEp ((Xk)) = lEp (X (X - 1 ) · · · (X - k +  1))  tends to e-kx . Apply the Inclusion 
-Exclusion Formula to prove the result.] 

23:+ Sharpen Theorem 9 to the following result. If p = (log n)/n + xfn 
then the probability that 9n,p  i s  connected i s  e-e-x . [Hint. Show first that 
a.e. 9n,p  consists of a component and isolated vertices. Apply the result from 
Exercise 22] . 
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24. Let p = log njn + w(n)jn, where w(n) � oo arbitrarily slowly. Prove 
that a.e. 9n,p contains a 1 -factor. [Hint. Use Thtte's theorem, Theorem II1, 12 ,  
ignoring the parity of the components.] 

25. Show that 1 /n is a threshold function for F1 in Fig. VII .3 ;  that is, if pn � 0 
then almost no graph contains F1 , and if pn � oo then a. e. graph does. 

26. What is the threshold function for F2 in Fig. VII.3? 

A 
FIGURE VII.3 .  The graphs F1 , F2 , and F3 . 

27� Let e > 0. Prove that if p = n-( 1 /2)-e then almost no Gn,p contains F3 in 
Fig. VII.3 but if p = n-( I f2)+e then a.e. Gn,p does. [Hint. Find a suitable 
graph F3 that has average degree 2 + e.] 

28� Consider the random bipartite graph Gn,n; p with two vertex classes of n 
vertices each, in which vertices in different classes are joined with probability 
p, independently of each other. Show that, for all fixed k � 1 and 0 < p < 1 ,  
almost every Gn,n; p is k-connected, has a k-factor, and has diameter 3 .  

29 � Consider random directed graphs in which all edges are chosen independently 
and with the same probability p. Prove that there is a constant c such that 
if p = c ((Iogn)jn) 1 12 then a.e. directed graph contains a directed Hamilton 

cycle. [Hint. What is the probability that a graph contains both edges -;;!; and 
� ba ? Apply Theorem 14 to the random graph formed by the double edges.] 

30. Note that the suggested solution of Exercise 29 gives two directed Hamilton 
cycles with the same underlying (non-directed) edge set. Show that with 
p = ( 1  - e) ((Iogn)jn) 1 12 almost no directed graph contains such a pair of 
Hamilton cycles. 

3 1 �  Show that there are at least (2N jn !) + o(2N jn ! )  non-isomorphic graphs 
of order n. [Hint. Show that a.e. graph in Q(n ,  P(edge) = i) has trivial 
automorphism group; for the automorphism group see Section VIII .3 . ]  

32� Construct a random interval graph Gn with vertex set [n] = { 1 ,  2,  . . .  , n }  as 
follows: partition [2n] into n pairs, {aJ , b J } ,  . . .  , {an , bn } ,  say, with a; < b; , 
and join i to j if [a; , b; ] n [aj , bj ] =f. 0. What is the expected number of edges 
of Gn ? Show that almost every Gn is connected. 
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33 . Show that every tournament of order 2k contains a transitive subtournament 
of order k + 1 (i.e . ,  there are vertices X J ,  . . .  , Xk + 1 such that Xi dominates 
Xj whenever i < j) . Show also that a tournament on L2k/2 J vertices need not 
contain a transitive subtournament on k + 1 vertices. 

34. Give a detailed proof of Theorem 16  calculating the expectation and variance 
of the number of tree-components of orders k + 1 and k. Concerning the 
number t (k) of trees on k distinguishable vertices, use only the fact that 
t (k) :::; 1 depends only on k. 

35:+" The conjugate of c > 1 is 0 < c' < 1, satisfying 

Show that every c > 1 has a unique conjugate. Show also that y (c) = 1 -c' jc, 
where y (c) is the function in Theorem 17(iii) , so that the giant component of 
a typical Gn,cfn has about y (c)n vertices. 

36. Given the space On of random permutations of [n] , with the permuations 
taken to be equiprobable. Write a permutation rr E On as a sequence 
rr ( l ) ,  rr(2) , . .  · , rr(n) . If 1 ::::: i 1 < . .  · < it ::::: n and rr(i i )  < . . .  < rr (it) , 
then rr(i J ) ,  . . .  , rr (ik) is said to be an increasing subsequence of length k in 
rr .  Show that almost no subsequence rr e On contains an increasing subse­
quence of length at least ey'ii. [Hint. Let ft (rr) be the number of increasing 
subsequences of length k contained in rr. Estimate the expectation of Ik .] 

37:+" (Exercise 36 contd.) Find a constant c < e such that almost no permutation 
rr e On contains an increasing subsequence of length at least ci!f,. [Hint. for 
d < c < e , set k = lcJnl , l  = ldJnl , and note that iE(/t )  :=::: {e)IP'(ft :::; 1 ) . ] 

38:+" (Exercise 36 contd.) Show that almost every permutation rr E On contains 
an increasing subsequence of length at least y'iije. [Hint. Write I (rr) for the 
maximal length of an increasing subsequence of rr, and D(rr) for the maximal 
length of a decreasing subsequence. Recall the result of Erdos and Szekeres 
stated in Exercise 11.54 that I (rr)D(rr) :::; n for every rr E On . The assertion 
is easily deduced from this inequality and the assertion in Exercise 36. In fact, 
I (rr) = (2 + o( l ))y'n for almost every rr E On . but the proof of this is quite 
substantial. ]  

39. Let A be the area of a triangle formed by three points selected at random and 
independently from a convex set D c JR2 of area 1 .  Show that for 0 ::::: a ::::: 1 
we have IP'(A ::::: a) :::; a .  

40:+" (Exercise 39 contd.) Let A be  the area of  a triangle formed by  three points 
selected at random and independently from a unit disc (of area rr ) . Prove that 
for a > 0 we have IP'(A ::::: a) ::::: 4a . Can you prove a sharper inequality? 
[Hint. Let x ,  y and z be the three points. Show first that 

IP'(A ::::: a l  d(x ,  y) = t ) ::::: 4ajtrr. 



Deduce from lP'(d(x , y) � t) � t2 that 

1 1 4a 4a 
lP'(A � a) � 2t- dt + - .  

0 tJr Jr 
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Note that all these inequalities are very crude, and are easily improved.] 

41 :+- (Exercise 40 contd.) Prove that, for every n � 1, there are n points in the unit 
disc such that no three points form a triangle of area less than 1 j6n2 • 
[Hint. Select 2n points at random, and delete a point from every triple whose 
triangle has area less than 1 /6n2 . Use the assertion of Exercise 40 to prove 
the result. In fact, Heilbronn conjectured in the 1930s that the assertion in this 
exercise is essentially best possible: no matter how we arrange n points in the 
unit disc, some three of the points form a triangle of area 0 ( 1 jn2) .  In 198 1 ,  
this conjecture was shown to be false by Koml6s, Pintz and Szemeredi.] 

42. By imitating the proof of Theorem 4, show that for p = !n- 112 almost every 
Gn,p is such that no maximal triangle-free subgraph of it contains more than 
2n 1 12 log n vertices. 

43:+- (Exercise 42 contd.) Let p = !n- 112 . Show that almost every Gn,p is such 
that if H is a maximal triangle-free subgraph of it then 
(i) n312 j6 < e(H) < n312 /3,  
(ii) H does not contain an induced bipartite subgraph with more than 
30n 1 12 (log n)2 edges. 

VII.? Notes 

Perhaps the first non-trivial combinatorial result proved by probabilistic methods 
is the assertion of Exercise 3, proved by T. Szele in Combinatorial investiga­
tions concerning directed complete graphs (in Hungarian), Mat. Fiz. Lapok 50 
( 1 943) 223-256; for a German translation see Kombinatorische Untersuchungen 
tiber gerichtete vollstiindige Graphen, Publ. Math. Debrecen 13 ( 1966) 1 45-1 68 .  
However, the theory of  random graphs really started with a number of  papers 
of P. Erdos, including Some remarks on the theory of graphs, Bull. Amer. Soc. 
53 ( 1947) 292-294, Graph theory and probability, Canad. J. Math. 11 ( 1959) 
34-38, and Graph theory and probability II, Canad. J. Math. 13 ( 196 1 )  346-352. 
These papers contain Theorems 2 and 4, and the bound on R(3, t) mentioned after 
Theorem 2. 

The result about first order sentences that we mentioned after Theorem 7 is due 
to R. Fagin, Probabilities on finite models, J. Symb. Logic 41 ( 1976) 50-58 .  

The sharpest results in  the direction of  Theorem 8 are in  B .  Bollobas and 
P. Erdos, Cliques in random graphs, Math. Proc. Cambridge Phil. Soc. 80 ( 1976) 
4 19-427, and Theorem 10 is from B. Bollobas, The chromatic number of random 
graphs, Combinatorica 8 ( 1988) 49-55. 
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P6sa's theorem (Theorem 1 3) is in L. P6sa, Discrete Math. 14 ( 1976) 359-
364, its sharper form is in A.D. Korshunov, Solution of a problem of Erdos 
and Renyi, on Hamilton cycles in nonoriented graphs, Soviet Mat. Doklady 17 
( 1 976) 760--764. The exact solution of the Hamilton cycle problem for random 
graphs (Theorem 14) is from J. Koml6s and E. Szemeredi, Limit distributions for 
the existence of Hamilton cycles in a random graph, Discrete Math. 43 ( 1 983) 
55-63, and its hitting time version (Theorem 15) is from B.  Bollobas, Almost 
all regular graphs are Hamiltonian, Europ. J. Comb. 4 ( 1 983) 97-106. For the 
result on 'spiders' mentioned at the end of §4, see B. Bollobas, T.l. Fenner and 
A. M. Frieze, Hamilton cycles in random graphs of minimal degree k, in A Tribute 
to Paul Erdos, (A. Baker, B. Bolloblis and A. Hajnal, eds), Cambridge University 
Press, 1990, pp. 59-95. 

The fundamental paper on the growth of random graphs is P. Erdos and A. Renyi, 
On the evolution of random graphs, Publ. Math. Inst. Hun gar. A cad. Sci. 5 ( 1960) 
17-6 1 .  This paper contains a detailed discussion of sparse random graphs, covering 
amongst other phenomena the distribution of their components, the occurrence of 
small subgraphs (Theorem 7), and the phase transition (Theorem 1 8). The real 
nature of the phase transition was revealed in B. Bollobas, The evolution of 
random graphs, Trans. Amer. Math. Soc. 286 ( 1984) 257-274. For more detailed 
results see T. Luczak, Component behaviour near the critical point of the random 
graph process, Random Structures and Algorithms 1 ( 1990) 287-3 10, T. Luczak, 
B. Pittel, and J.C. Wierman, The structure of a random graph at the point of the 
phase transition, Trans. Amer. Math. Soc. 341 ( 1994) 72 1-748, and S. Janson, 
D.E. Knuth, T. Luczak and B. Pittel, The birth of the giant component, Random 
Structures and Algorithms 4 ( 1993) 233-358.  

For Heilbronn's conjecture, mentioned in Exercise 41 ,  see J. Koml6s, J. Pintz 
and E. Szemeredi, On Heilbronn's triangle problem, J. London Math. Soc. (2) 24 
( 1 98 1 )  385-396. 

This chapter was based on B. Bolloblis, Random Graphs, Academic Press, 
London, 1985, xvi+447 pp. 



VIII 

Graphs,  Groups and Matrices 

This chapter provides a brief introduction to algebraic graph theory, which is a 
substantial subject in its own right. We shall deal with only two aspects of this 
subject: the interplay between graphs and groups, and the use of matrix methods. 

Graphs arise naturally in the study of groups, in the form of Cayley and Schreier 
diagrams, and also as objects whose automorphisms help us to understand finite 
simple groups. On an elementary level, a graph is hardly more than a visual 
or computational aid, but it does help to make the presentation clearer and the 
problems more manageable. The methods are useful both in theory and in practice: 
they help us to prove general results about groups and particular results about 
individual groups. The first section, about Cayley and Schreier diagrams, illustrates 
both these aspects. It also contains an informal account of group presentations. 

The second section is about the use of the adjacency matrix of a graph, and 
its close relative, the Laplacian. Elementary linear algebra methods enable one 
to establish close links between eigenvalue distributions and basic combinatorial 
properties of graphs. 

Matrix methods are especially powerful when the graphs to be studied have 
particularly pleasant symmetry properties. The third section is about such classes 
of graphs. Among other results, we shall present the theorem of Hoffman and 
Singleton, stating that a natural class of highly symmetric graphs has only few 
members. 

The last section is about enumeration. As we shall see, some classes of labelled 
graphs are easily enumerated, while other enumeration problems, such as counting 
isomorphism classes of graphs, lead us to the study of orbits of permutation groups. 
The highlight of the section is P6lya's classical theorem, proved in 1937, which is 
the fundamental theorem for enumerating such orbits. 
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Vlll. l Cayley and Schreier Diagrams 

Let A be a group generated by a ,  b, . . .  The graph of A, also called its Cayley 
diagram, with respect to these generators is a directed multigraph whose edges 
are coloured with the generators : there is an edge from x to y coloured with a 
generator g iff xg = y .  To illustrate this concept, in Fig. VIII. l we show the 
Cayley diagrams of three small groups. 

a 

AGURE VIII. I .  The Cayley diagrams of (i) the cyclic group C4 generated by a, (ii) the 
Klein four-group with generators a, b and (iii) the symmetric group S3 with generators 
a = ( 123) and b = ( 12) .  

A Cayley diagram of a group is regular, and so is its colouring, in the following 
sense: for each vertex x and each generator (colour) g there is exactly one edge of 
colour g starting at x and exactly one edge of colour g ending at x .  Furthermore, 
at most one edge goes from x to another vertex y .  If we know the Cayley diagram 
of a group then we can easily answer questions posed in terms of the generators. 
What is the element aba2b in s3 ? It is the end of the directed walk starting at 1 
whose first edge has colour a, the second has colour b, the third a, the fourth a 
and, finally, the fifth b. By following this walk in the third picture in Fig. VIII. l ,  
we find that aba2b = a2 • In general, two elements expressed as products of some 
generators are equal iff the corresponding walks starting at 1 end at the same 
vertex. 

The Schreier diagram is a slight extension of the Cayley diagram. This time we 
have a group A, a set S of elements of A and a subgroup B of A. The Schreier 
diagram of A mod B describes the effect of the elements of S on the right cosets 
of B :  it is a directed multigraph whose vertices are the right cosets of B, in which 
an edge of colour s E S goes from a coset H to a coset K iff H s = K .  (Thus 
a Cayley diagram is a Schreier diagram mod B, where B is the trivial subgroup 
{ 1 } .) In most cases S is chosen to be a set of generators or a set which together 
with B generates A .  Instead of giving a separate illustration, note that if A is 
the symmetric group on { 1 ,  2, 3 ,  4} , B is the subgroup of elements fixing 1 and 
S = {a } with a =  ( 1234) then the Schreier diagram is exactly the first picture in 
Fig. VIII. l ,  that is, the Cayley diagram of C4 . Once again we note that for each 
vertex H and each colour g E S exactly one edge coloured g starts at H and 
exactly one edge coloured g ends at H. However, some of the edges may be loops, 
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that is, they may start and end at the same coset. Furthermore, there may be many 
edges of different colours joining two vertices. 

Group diagrams do not tell us anything about groups that cannot be expressed 
algebraically. However, the disadvantage of the algebraic approach is that many 
lines of print are needed to express what is conveyed almost instantaneously by a 
single diagram. These diagrams are especially helpful when we have a concrete 
problem to be solved by hand, and moreover, the purely mechanical techniques 
involved are ideal for direct use on a computer. Since the advent of fast electronic 
computers, many otherwise hopeless problems have been solved in this way. 

Group diagrams are particularly useful in attacking problems concerning groups 
given by means of their presentations. For the convenience of the reader we recall 
the basic facts about group presentations. We aim throughout for an intuitive 
description, rather than a rigorous treatment; the interested readers may fill in the 
details themselves or tum to some specialist books on the subject. A word W in 
the symbols a ,  b, c, . . .  is a finite sequence such as ba- 1 ccaa- 1b- 1a ;  the empty 
sequence is denoted by 1 .  We call two words equivalent if one can be obtained 
from the other by repeatedly replacing xx- 1 or x- 1x by 1 (the empty word) or 
vice versa. Thus abb- 1a- 1 c- 1 and cc- 1 c- 1dd- 1 are both equivalent to c- 1 • In 
fact, we shall use the same notation for a word and its equivalence class and so we 
write simply abb- Ia- I c- 1 = cc- 1 c- 1dd- 1 = c- 1 . Furthermore, for simplicity 
abbc- 1 c- 1 c- 1 = ab2c-3 , etc. The (equivalence classes of) words form a group if 
multiplication is defined as juxtaposition: (ab- 1 c) (c- 1ba) = ab- 1 cc- 1 ba = a2 . 
Clearly, a- 1 is the inverse of a and (a- 1b- 1 c)- 1 = c- 1 ba . This group is the .free 
group generated by a ,  b, c . . .  and it is denoted by (a , b, c . . .  } .  

Let Rp, . Rv , . . . be words in the symbols a ,  b ,  c , . . .  , let F = (a , b ,  c ,  . . .  } and 
let K be the normal subgroup of F generated by Rp, . Rv • . . . .  Then the quotient 
group A = F I K is said to be the group generated by a, b, c, . . . and the relators 
Rp, . Rv , . . . ; in notation A = (a , b ,  c, . . .  I Rp, . Rv • . . .  } . 

Once again we use a word to denote its equivalence class and write equality 
to express equivalence. More often than not, a group presentation is written with 
defining relations instead of the more pedantic relators. Thus (a , b 1 a2 = b3} 
denotes the group (a , b I a2b-3 } .  A group is finitely presented if in its presentation 
there are finitely many generators and relations. lt is easily seen that two words W1 
and Wz are equivalent in A iff Wz can be obtained from W1 by repeated insertions 
or deletions of aa- I , a- 1a ,  bb- I , . . .  , the relators Rp, . Rv , . . .  and their inverses 
R-;_ 1 , R� 1 , • • • . As an example, note that in A = (a , b I a3b , b3 , a4 } we have 
a = aa3b = a4b = b. Hence 1 = a3b(b3)- 1 = a = b and so A is the trivial 
group of order 1 .  

Even the trivial example above illustrates our difficulties when faced with a 
group given in terms of defining relations. However, groups defined by means of 
a presentation arise naturally in diverse areas of mathematics, especially in knot 
theory, topology and geometry, so we have to try to overcome these difficulties. 
The fundamental problems concerning group presentations were formulated by 
Max Dehn in 1 9 1 1 .  These problems ask for general and effective methods for 
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deciding in a finite number of steps (i) whether two given words represent the 
same group element (the word problem), (ii) whether they represent conjugate 
elements (the conjugacy problem) and (iii) whether two finitely presented groups 
are isomorphic (the isomorphism problem). All these problems have turned out 
to be problems in logic, and cannot be solved in general. Explicit solutions of 
these problems are always based on specific presentations and often make use of 
group diagrams. (Dehn himself was a particularly enthusiastic advocate of group 
diagrams.) 

Let A = (a , b,  . . . I RJ.L , Rv , . . . ) .  We shall attempt to construct the Cayley 
diagram of A with respect to the generators a, b, . . . .  Having got the Cayley 
diagram, we clearly have a solution to the word problem for this presentation. 

The Cayley diagram of a group has the following two properties. 
(a) The (directed) edges have a regular colouring with a, b, . . .  ; that is, for each 

vertex x and generator g there is exactly one edge coloured g starting at x and 
exactly one edge coloured g ending at x .  

(b) Every relation is satisfied at every vertex, that is, if x is a vertex and RJ.L is a 
relator then the walk starting at x corresponding to RJ.L ends at x .  

How shall we g o  about finding the Cayley diagram? We try to satisfy (a) and 
(b) without ever identifying two vertices unless we are forced to do so. Thus at 
each stage we are free to take a new vertex and an edge into it (or from it) . We 
identify two vertices when (a) or (b) forces us to do so. If the process stops, we 
have arrived at the Cayley diagram. Note that until the end we do not know that 
distinct vertices represent distinct group elements. 

As an example, let us see how we can find the Cayley diagram of A = (a , b I 
a3 = b2 = (ab)2 = 1 ) .  We replace each double edge corresponding to b by a 
single undirected edge; this makes the Cayley diagram into a graph, with some 
oriented edges. We start with the identity and with a triangle 1 23 corresponding to 
a3 = 1 ;  for simplicity we use numbers 1 ,  2, . . .  to denote the vertices, reserving 
1 for the identity element. An edge coloured b must start at each of the vertices 
1 ,  2 and 3, giving vertices 4, 5 and 6. Now a3 = 1 must be satisfied at 6, giving 
another triangle, say 678, whose edges are coloured a, as in Fig. VIII.2. At this 
stage we may care to bring in the relation (ab)2 = abab = 1 .  Checking it at 8 ,  
say, we see that the walk 863 14 must end at 8,  so the vertices denoted so far by 8 
and 4 have to coincide. Next we check abab = 1 at 7: the walk 7(8 = 4) 1 25 must 
end at 7 so 5 and 7 are identical. All that remains to check is that the diagram we 

' 
I 
I 
I 

-- a  
- - - - - b 

� - - - - - - }�- - - - - -�' 
FIGURE VIII.2. Construction of a Cayley diagram. 
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FIGURE VIII.3 .  Some Cayley diagrams. The shaded regions correspond to abc = 1 .  

obtained satisfies (a) and (b), s o  it i s  the Cayley diagram of the group i n  question. 
In fact, the diagram is exactly the third picture in Fig. VIII. 1 ,  so the group is S3 . 

For p :=:: q :=:: r :=:: 2 denote by (p, q ,  r) the group (a , b ,  c I aP = bq = cr = 
abc = 1 } .  Given specific values of p, q and r ,  with a little effort the reader can 
find the Cayley diagram of the group (p, q ,  r) with respect to the generators a , b 
and c. Fig. VIII.3 shows some of these diagrams. 

The diagrams above indicate some connection with tessellations. The beauty 
of the use of Cayley diagrams is that one can make good use of this connection. 
Indeed, the reader who is slightly familiar with tessellations of the sphere, the 
Euclidean plane and the hyperbolic plane, can easily prove the following result. 

Theorem 1 /f ( 1 /p) + ( 1 /q) + ( 1 /r) > 1 then the group (p, q ,  r) is finite and 
has order 2s where 1 /s = ( 1 /  p) + ( 1 /q) + ( l jr) - 1 .  The Cayley diagram is a 
tessellation of the sphere (as in the first two pictures in Fig. VII/.3 ). 

If ( 1 /  p) + ( 1 /q) + ( l jr) � 1 then the group (p, q ,  r) is infinite. If equality 
holds, then the Cayley diagram is a tessellation of the Euclidean plane, while 
otherwise it is a tessellation of the hyperbolic plane (as in the last two pictures in 
Fig. VII/.3). 0 

As we remarked earlier, groups given by means of their presentations arise 
frequently in knot theory. In particular, Dehn showed how a presentation of the 
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group of a (tame) knot (that is, the fundamental group of JR.3 after the removal of 
the knot) can be read off from a projection of the knot into a plane. The projection 
of the knot forms the boundary of certain bounded domains of the plane. To 
each of these domains there corresponds a generator (the identity corresponds to 
the unbounded domain) and to each cross-over there corresponds a relator. The 
general form of these relators is easily deduced from the two examples shown in 
Fig. VIII.4. (Indeed, readers familiar with the fundamentals of algebraic topology 
can easily prove the correctness of this presentation.) The group of the trefoil 
(or clover leaf) knot is (a , b, c , d I ad- 1 b ,  cd- 1a ,  cbd- 1 ) and the group of the 
figure of eight knot is (a , b ,  c, d, e I ab- 1c, ad- 1 eb- 1 , ed- 1 cb- 1 , acd- 1 ) .  In 
Section X.5 we shall study knots in a completely different way, namely by means 
of polynomial invariants rather than groups. 

FIGURE VIII.4. The (right-handed) trefoil knot and the figure of eight. 

Of course, before embarking on an investigation of the group, it is sensible to 
attempt to simplify the presentation. For example, cbd-1 = 1 means that d = cb 
or bd- 1 c = 1 .  Thus the group of the trefoil knot is 

(a , b, c, d I ad- 1 b ,  bd- 1 c, cd- 1a } 
or, equivalently, 

(a , b, c I cb = ba = ac} . 
We invite the reader to check that the Cayley diagram of this group is made up of 
replicas of the ladder shown in Fig. VIII.5. (Exercise 4 ). At each edge three ladders 
are glued together in such a way that when looking at these ladders from above, 
we see an infinite cubic tree (Fig. VIII.5). Having obtained the Cayley diagram, 
we can read off the properties we are interested in. In the case of this group the 
method does not happen to be too economical, but this is the way Dehn proved 
in 1 9 10 that the group of the trefoil knot is not the group of a circle, which is the 
infinite cyclic group. 

Schreier diagrams can be constructed analogously to Cayley diagrams. In fact, in 
order to determine the structure of a largish group given by means of a presentation, 
it is often advantageous to determine first the Schreier diagram of a subgroup. In 
order to show this, we work through another example, once again due to Dehn. 
What is the group 

A =  (a , b I a2 = b5 = (ba)3 = 1 } ?  
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FIGURE VIII.5. The ingredients of the Cayley diagram of the trefoil knot. 

Let us construct the Schreier diagram of the cosets of the subgroup B generated 
by b. As before, we take a vertex 1 for B and try to construct as big a diagram as 
conditions (a) and (b) allow us. (Recall that (a) requires the colouring to be regular 
and (b) requires that each defining relation is satisfied at each vertex.) However, 
in this case there is one more condition: the edge coloured b starting at 1 must 
end in 1 (so it is a loop) since Bb = B. Thus after two steps we have the diagram 
shown in Fig. VIII.6. (Once again the edges coloured a will not be directed since 
az = 1 .) 

3 -- a  
- - - - b 

FIGURE VIII.6. The initial part of the Schreier diagram of A mod B .  

Now let u s  check the condition bababa = 1 at vertex 6 .  The walk babab takes 
us from 6 to 3 ,  so there must be an edge coloured a from 3 to 6. In order to have 
edges coloured a starting at 4 and 5, we take up new vertices 7 and 8, together with 
edges 47 and 58 coloured a. Next we check the condition ab- 1ab- 1ab- 1 = 1 ,  
which i s  equivalent to (ba)3 = 1 at 7 ,  and find that there is an edge from 7 to 
8 coloured b. To satisfy b5 = 1 at 7 we take three new vertices, 9, 10, and 1 1 .  
Checking (ba)3 = 1 at 1 1  we find that there is an edge from 9 to 1 1  coloured 
a. At this stage we are almost home, but no edge coloured a begins at 10, so we 
take a new vertex 12 joined to 10 by an edge coloured a. What does the condition 
ab- 1ab- 1ab- 1 = 1 tell us at vertex 12? The walk ab- 1ab- 1a starting at 1 2  ends 
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FIGURE VIII.7. The complete Schreier diagram. 
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at 12 , so there must be an edge coloured b starting at 1 2  and ending at 12 , giving 
us Fig.  VIII.7. This is the Schreier diagram we have been looking for, since the 
colouring is clearly regular and it is a simple matter to check that each defining 
relation is satisfied at each vertex. In fact, a2 = 1 and b5 = 1 are obviously 
satisfied; since (ba)3 = 1 holds at 6 by construction, it also holds at each vertex 
of the walk 621236, etc. 

This detailed and cumbersome description fails to do justice to the method 
which, when performed on a piece of paper or on a blackboard, is quick and 
efficient. The reader is encouraged to find this out for himself. 

What the Schreier diagram certainly tells us is the index of B :  it is simply the 
number of vertices. Indeed, Schreier diagrams are often constructed on computers 
just to determine the index of a subgroup. In some cases, as in the example above, 
it tells us considerably more. The Schreier diagram is essentially a shorthand 
for the representation of A as a group of permutations of the cosets of B .  In this 
case a -+ ( 12) (36) (47) (58)(9 1 1 ) ( 10 12) and b -+ ( 1 ) (2 3 4 5 6) (7 8 9 10 1 1 ) ( 12) .  
Since the permutation corresponding to b has order 5, which i s  exactly the order 
of b in A, we see that A is a group of order 5 · 12 = 60 and is, in fact, isomorphic 
to As ,  the alternating group on 5 symbols. 

If we want our Schreier diagram to carry more information, then we fix certain 
representatives of the cosets and keep track of the effect of the generators on these 
representatives .  We decorate each coset by its representative: if H is decorated by 
[h] then H = Bh . Now, if there is an edge coloured a from H = Bh to K = Bk, 
then we decorate this edge by [a] if ha = ak . Since K = Bk = Ha = Bha, 
we see that a E B,  so the edges are decorated with elements of B. Furthermore, 
if H,  K and L are decorated with h , k and l ,  and there are edges coloured 
a, b, c and decorated [a] , [,B) and [y] joining them, as in Fig. VIII .8,  then 
habc = akbc = a,Blc = a,Byh . In particular, if h = 1 then we have abc = a,By .  
Of course, an analogous assertion holds for arbitrary walks starting and ending at 
B :  the product of the colours equals the product of the decorations. 

One of the simplest ways of decorating the vertices and edges makes use of 
spanning trees. Select a spanning tree of the Schreier diagram. Decorate B, the 
subgroup itself, by 1 (the identity) and decorate the edges of the spanning tree also 
by 1 .  This determines the decoration of every vertex (that is, every coset) and every 
edge. Indeed, for each vertex H the spanning tree contains a unique path from B 
to H; clearly, H has to be decorated with the product abc · · · corresponding to this 
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H[h] · · · · ·  · . . . . . . . ·� . . .  · · · · · ·  . . . . . . . . . . . l. L[l] 

c[y] 

FIGURE VIII.8 . A cycle in a decorated Schreier diagram. 

path. These coset representatives are said to form a Schreier system for B mod A .  
What i s  the decoration o f  a chord H K, an edge not i n  the tree? B y  the remark 
above it is the product of the colours on the B-H path, the edge H K and the K -B 
path, as in Fig. VIII.9. 

b[b] 3 

4 

FIGURE VIII.9. The decorations induced by a spanning tree. 

Since each element of B is the product of the colours on a closed walk from B 
to B in the Schreier diagram, the decorations of the chords generate B .  Thus from 
a Schreier diagram we can read off a set of generators of B,  independently of the 
structure of A. 

Theorem 2 The subgroup B of A is generated by the decorations of the chords. 
D 

In particular, the subgroup B in Fig. VIII.9 is generated by b , ab3a- 1 , 
ab- 1ab- Ia- I and ababa- 1

• 

It is equally simple to find a presentation of B,  provided that we have a pre­
sentation of A. This is obtained by the Reidemeister-Schreier rewriting process; 
we give a quick and loose description of it. The generators of the presentation are 
the chords of the spanning tree; to distinguish chords of the same colour we write 
Ci for the edge coloured c starting at vertex i .  For each vertex i and each relator 
RIL denote by R� the (word of the) walk starting at i given by RIL expressed as 
a product of the CJ , say R� = bi CJ · · · • The reader can easily fill in the missing 
details in the proof of the following beautiful result, due to Reidemeister and 
Schreier. 
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Theorem 3 The subgroup B has a presentation 
(a J , b J ,  . . .  , az , bz , . . .  l R� , R� , . . .  , R; , R� ,  . . .  ) .  0 

Now, if we wish to preserve the connection between this presentation of B and 
the original presentation of A, we simply equate c; with the decoration of the edge 
coloured c starting at vertex i .  

If A is a free group, its presentation contains no relations. Hence the above 
presentation of B contains no relations either, so B is also a free group. This is a 
fundamental result of Nielsen and Schreier. 

Theorem 4 A subgroup of a free group is free. Furthermore, if A is a free group 
of rank k (that is, it has kfree generators) and B is a subgroup of index n, then B 
has rank (k - l )n + 1 .  

Proof The presentation of  B given in  Theorem 3 is  a free presentation on the set 
of chords of the Schreier diagram. Altogether there are kn edges of which n - 1 
are tree edges; hence there are (k - 1 )n + 1 chords. 0 

It is amusing to note that Theorem 4 implies that the rank of a free group is well 
defined. Indeed, suppose that A is freely generated by a, b, . . .  Then every directed 
multigraph with a vertex (corresponding to the subgroup) and a regular colouring 
(by a ,  b, . . .  ) is the Schreier diagram of some subgroup B of A ,  for there are no 
relations to be satisfied. Hence subgroups of index n are in 1 -to- 1 correspondence 
with regularly coloured multigraphs of order n. In particular, if A has k ::=: 2 
generators, it has 2k - 1 subgroups of index 2, for there are 2k multigraphs of 
order 2 regularly coloured with k colours, but one of those is disconnected. The 
number of subgroups of index 2 is clearly independent of the presentation, so k is 
determined by A. 

Vill.2 The Adjacency Matrix and the Laplacian 

Recall from Section Il.3 that the vertex space Co( G) of a graph G is the complex 
vector space of all functions from V (G) into C. Once again we take V (G) = 

{ V J , vz ,  . . .  , Vn } ,  so that dim Co (G) = n, and we write the elements of Co (G) in 
the form x = :L7=1 Xi Vi or x = (xi)'{ ; here Xi is the value of x at Vi ,  also called 
the weight at Vi . The space Co( G) is given the natural inner product associated 
with the basis (vi )! : (x, y) = :L7=1 Xi. h The norm of x is l lx l l  = (x, x) 1 12 . 

As in the paragraph above, bold letters (x, y, . . .  ) will be used for vectors only if 
we wish to emphasize that they are vectors; for example, Vi denotes both a vertex 
and the corresponding basis vector. This slight inconsistency is unlikely to lead to 
confusion. 

First we shall consider the adjacency matrix A = A(G) = (aij) of G, the 
0 - 1 matrix where aij = 1 iff Vi VJ is an edge. As usual, A is identified with 
a linear endomorphism of Co( G). To start with, we recollect some simple facts 
from linear algebra. The matrix A is real and symmetric, so it is hermitian, that is, 
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(Ax, y) = (x, Ay) . Hence its numerical range 
V (A) = { (Ax, x) : l lx l l = 1 }  

is a closed interval of the real line. The distinct eigenvalues of A are real, say J.L 1 > 
J.L2 > · · · > J.L1 , and V (A) is exactly the interval [J.L1 , J.Ld .  (Our notation here is not 
entirely standard: it is customary to write A I ,  .Az, . . . for the eigenvalues rather than 
J.L 1 , J.L2 , . . . .  However, we reserve the Ai for the eigenvalues of the combinatorial 
Laplacian.) For simplicity, an eigenvalue of A is said to be an eigenvalue of 
G. We shall write J.Lmax (G) for the maximal eigenvalue J.L 1 and J.Lmin (G) for 
the minimal eigenvalue J.Lt ·  If G has at least one edge, say VI vz E E(G), then 
(Ax, x) > 0 if x = ( 1 ,  1 ,  0, . . .  ) ,  and (Ax, x) < 0 if x = ( 1 ,  - 1 ,  0, . . .  , 0) . Hence 
J.Lmin < 0 < J.Lmax. unless G is empty. 

The inner product space Co (G) has an orthonormal basis consisting of eigenvec­
tors of A .  In particular, writing m(J.L) for the (geometric or algebraic) multiplicity 
of an eigenvalue J.L, we have L�=l m(J.Li) = n. Since aii = 0 for every i, the trace 
of A is 0: trA = .E7=1 aii = 0. In an orthonormal basis consisting of eigenvectors 
of A, the trace of A is L�= 1 m (J.Li ) J.Li ; as a change of basis does not alter the trace, 
L�= !  m(J.Li )J.Li = 0. 

We collect some further basic properties of the eigenvalues in the following 
theorem. 

Theorem 5 Let G be a connected graph of order n with adjacency matrix A. 
(i) Every eigenvalue J.L ofG satisfies IJ.L I � !l = !l(G). 
( ii) The maximal degree !l is an eigenvalue of G iff G is regular; if !l is an 

eigenvalue then m(!l) = 1. 
(iii) If-!l is an eigenvalue of G then G is regular and bipartite. 
( iv) If G is bipartite and J.L is an eigenvalue of G then so is -J.L, and m (J.L) = 

m( -J.L). 
(v) The maximal eigenvalue satisfies 8 (G) � J.Lmax(G) � !l(G). 
(vi) IfH is an inducedsubgraph ofG then J.Lmin(G) � J.Lmin(H) � J.Lmax(H) � 

J.Lmax(G). 
Proof. (i) Let x = (xi ) be a non-zero eigenvector with eigenvalue J.L. Let Xp be a 
weight with maximum modulus:  lxp l 2: lxi l for every i ;  we may assume without 
loss of generality that Xp = 1 .  Then 

n n 
I J.L I = I J.Lxp l = .L>piXt � .L>pdxe i � lxp id(vp) � lxp i fl = !l ,  

showing I J.L I � fl .  

1= 1  1= 1 

(ii) If J.L = !l is an eigenvalue and x, Xp are chosen as in (i), then 
n 

!l = !lxp = L:apexe 
l=l 

and xe � 1 imply that d ( Vp ) = !l and Xt = x p = 1 whenever ve is adjacent to vp . 
In tum, this implies that d(ve) = !l and Xk = xe = 1 whenever vk is adjacent to 
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ve , and so on; as G is connected, d(v; ) = D. and Xi = 1 for every i .  Hence G is 
D.-regular and x is j, the vector all of whose entries are equal to 1 .  

Conversely, if G is D.-regular, then (Aj)i = Ll=l au = D., so Aj = D.j . 
(iii) If Jl = - D.  is an eigenvalue then, as in (ii), we find that d(vp) = D. and 

xe = -xp = - 1  whenever ve is adjacent to vp . As in (ii), this implies that G is 
D.-regular. Furthermore, at each vertex Vk adjacent to ve the weight is 1 ,  at each 
neighbour of Vk it is - 1 ,  and so on. The weight is 1 at the vertices at an even 
distance from Vp and it is - 1  at the other vertices; also, every edge joins vertices 
of different weights. Thus G is bipartite, say V = V1 U V2, where vp E V1 . 

(iv) Suppose G is bipartite with vertex classes V1 and V2 . Let b be the function 
(vector) that is, 1 on V1 and - 1  on V2 . Then x � bx = (bix; )'J. is an automorphism 
of the vector space Co( G). Now, if Ax = JlX and v; E V1 , say, then 

n 
(A (bx))i = "L, aiJbj XJ = L a;jXJ - L a;jXJ = - L aiJXJ 

}= I  Vj E Vt Vj E V2 Vj E V2 

n 
= - L aiJXJ - L aiJ XJ = - "L, aiJXJ = -JLXi = -JL(bx)i . 

Vj E Vt Vj E V2 }=I 
Hence, writing In for the n by n identity matrix, we find that b gives an isomorphism 
between ker(A - Jlln) and ker(A + Jlln ) .  In particular, m(Jl) = m( -JL) .  

(v) We know already that Jlrnax (G) .:::: D. (  G). Note that for j = ( 1 ,  1 ,  . . .  , 1 )  
we have {j , j}  = n ,  so  V (A) contains 

1 1 n n 1 n 
- (Aj , j} = - L Lakl = - L d(vk) � 8 (G) . 
n n k= l 1= 1  n k=l 

Hence Jlrnax(G) = max V (A) � 8 (G). 
(vi) It  suffices to prove the result for an induced subgraph H of order n - 1 ,  

say with V(H) = {vi , V2 , . . .  , Vn-d · 
Let A' be the adjacency matrix of H.  Then there is a vector y E Co (H ) 

such that (y, y} = 1 and (A'y, y} = Jlrnax(H) . Let x = (y l , y2 , . . .  , Yn- 1 . 0) . 
Then x E Co ( G) , (x, x} = 1 and (Ax, x} = (A'y, y} = Jlrnax (H) E V (A) .  
Consequently, Jlrnax (G) � Jlrnax(H) .  The other inequality is  proved analogously. 

0 

Let us note an immediate consequence of Theorem 5 (v) and (vi), concerning 
the chromatic number. 

Corollary 6 Every graph G satisfies X (G) :S Jlrnax (G) + 1 .  

Proof For every induced subgraph H of G we have 

8 (H) :S Jlrnax (H) :S Jlrnax (G) , 
so we are done by Theorem V. l .  0 

In fact, with a little work one can also give a lower bound on the chromatic 
number in terms of the eigenvalues. 
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Theorem 7 Let G be a non-empty graph. Then 

x (G) � 1 - JLmax(G) . 
JLmin (G) 

Proof As before, we take V = {VI , . . .  , Vn } for the set of vertices, so that 
(vi , . . .  , Vn ) is the canonical basis of Co(G) . Let c :  V (G) -+ [k] be a (proper) 
colouring of G with k = x (G) colours. Then, writing {a , b, . . .  } for the space 
spanned by the vectors a, b, . . .  , the space Co( G) is the orthogonal direct sum of 
the 'colour spaces ' U; = (vj : c(vj ) = i } ,  i = 1 ,  . . .  , k. Since no edge joins ver­
tices of the same colour, the adjacency matrix A = A(G) is such that if u ,  w E U; 
for some i then (Au , w} = 0. In particular, (Au , u )  = 0 for u E U; , i = 1 ,  . . .  , k . 

Let x E Co( G) be an eigenvector of the adjacency matrix A with eigenvalue 
JLmax. and let x = L�=I �; u ; ,  where u; E U; and l l u ;  I I = 1 .  Let U = (u i ,  . . . , Uk ) ,  
s o  that (u i ,  . . . , Uk) is an orthonormal basis of U, and let S : U -+  Co(G) be the 
inclusion map. 

Foru E U, l lu l l = 1 ,  we have I I Sul l  = l lu l l = 1 , so (S* ASu, u) = (ASu, Su) = 
(Au, u) E V (A) .  Hence the numerical range of the hermitian operator S* AS  is 
contained in the numerical range of A :  

V (S* AS) c V (A) = [JLmin . JLmaxl · 
In fact, JLmax is an eigenvalue of S* AS as well, with eigenvector x :  

(S* ASx ,  u ; )  = {Ax , u ; )  = JLmax {X , u; } = JLmax�i . 
so S* ASx = JLmaxX . 

Also, (S* ASu; , u ; )  = (Au; , u ; )  = 0 for every i ,  so tr(S* AS) = 0. Therefore, 
since every eigenvalue of S* AS is at least JLmin. 

JLmax + (k - 1)JLmin :S tr(S* AS) = 0. 
As G is non-empty, JLmin < 0, so the result follows. 0 

The quadratic form (Ax, x) appearing in the definition of the numerical range 
and in the proofs of Theorems 5 and 7 is sometimes called the Lagrangian of G, 
and is denoted by fa(x) : 

n 
fa (x) = (Ax, x} = L a;jXiXj = L x;Xj . 

i, j= l Vj"'Vj 

Note that every edge Vj Vj contributes 2x;Xj to the Lagrangian: XiXj for Vi rv Vj 
and XjXi = XiXj for Vj """ Vi . 

Before we illustrate the use of the Langrangian, let us note some additional 
simple facts from linear algebra. Let W be an n-dimensional complex inner product 
space, and let T : W -+ W be a hermitian operator on W. Let W + be the subspace 
of W spanned by the eigenvectors of T with strictly positive eigenvalues ; define W _ 

similarly, for negative eigenvalues, and set Wo = ker T. Then W is the orthogonal 
direct sum of these three subspaces: W = W+ E11 W_ E11 Wo. Set n+ (T) = dimW+, 
n_ (T) = dimW_ , and no (T) = dimWo,  so that n = n+ + n_ + no . 
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Let q (x) = qr (x) = (Tx , x) be the quadratic form associated with T. Note that 
q is positive definite on W + and negative definite on W _ ,  that is, q (x) > 0 and 
q (y) < 0 for all X E W+, y E W_ , X, y =/: 0. Similarly, q is positive semi-definite 
on w+ E9 Wo and negative semi-definite on w_ E9 Wo : if X E w+ E9 Wo and 
y E W_ E9 Wo with x, y =/: 0 then q (x) :::: 0 and q (y) =::: 0. The subspaces above 
also have maximal dimensions with respect to these properties ; for example, if q 
is positive semi-definite on a subspace U c W then 

dimU =::: n+ + no =  dim(W+ E9 Wo) . ( 1 )  

Indeed, i f  dimU > n+ +no then U n W _ contains a non-zero vector x; as x E W _ ,  
we have q (x) < 0. 

These simple facts imply the following connection between the independence 
number {3(G) and the distribution of the eigenvalues. 

Theorem 8 The adjacency matrix of a graph G has at least f3 (G) non-negative 
and at least f3 (G) non-positive eigenvalues, counted with multiplicity. 

Proof The Lagrangian fc (x) is identically 0 on every subspace spanned by a set of 
independent vertices. In particular, fc is positive semi-definite and negative semi­
definite on a subspace of dimension f3(G). Hence we are done by the analogues 
of ( l ) .  D 

Ideally, one would like to determine the entire spectrum of a graph, that is, all 
the eigenvalues and their multiplicities. Needless to say, in most cases this is out of 
the question, and we have to be satisfied with various bounds. However, in some 
simple cases it is easy to determine the spectrum. For example, it is trivial that the 
empty graph En = K n has one eigenvalue, 0, with multiplicity n. More generally, 
adding an isolated vertex to a graph G just increases by one the multiplicity of 0. It 
is only a little less trivial that the complete graph Kn has eigenvalues J.LI = n - 1 
and J.L = - 1 ,  with multiplicities m (n - 1)  = 1 and m ( - 1 ) = n - 1 .  Indeed, 
I:7=1 x; v; is an eigenvector with eigenvalue - 1  if I:7=1 x; = 0. 

The complete bipartite graph Kk,n-k has three eigenvalues : (k (n - k)) 1 12 and 
- (k (n - k)) 1 12 , each with multiplicity one, and 0, with multiplicity n - 2. If 
U = {v i , . . .  , Vk } and W = {w 1 , . . .  , Wn-k l  are the two classes then L�=I x; v; + 
L:j,:� YJ Wj is an eigenvector with eigenvalue 0 if 

k n-k 
LXi = L YJ = 0. 
i= l J=l 

These simple facts about spectra suffice to give us the following theorem of 
Graham and Pollak. 

Theorem 9 The complete graph Kn is not the edge-disjoint union of n - 2 
complete bipartite graphs. 
Proof Suppose that, contrary to the assertion, Kn is the edge-disjoint union of 
complete bipartite graphs G 1 ,  . . .  , Gn-2 · For each i ,  let H; be obtained from G; 
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by adding to it isolated vertices so that V (H;) = V (Kn) .  Note that the Lagrangians 
of these graphs are such that !K. = "£?;;t /H; . 

We know that each /H; is positive semi-definite on some subspace U; C Co(Kn ) 
of dimension n - 1 .  But then U = n?;;f U; is a subspace of dimension at least 2, 
on which each /H; is positive semi-definite. Hence fK. = "£?;;f !H; is positive 
semi-definite on U, contradicting the fact that fK. is not positive semi-definite on 
any subspace of dimension 2. D 

Clearly, the simple argument above proves the following more general assertion. 
Suppose a graph G of order n is the edge-disjoint union of n - r complete bipartite 
graphs. Then the quadratic form of G is positive semi-definite on some subspace 
of dimension r, and negative semi-definite on some subspace of dimension r .  

In 1965, Motzkin and Straus showed that one can use the Lagrangian to give 
yet another proof of a slightly weaker form of Turan's theorem (Theorem IV. 8); 
this is our final application of the adjacency matrix and the Lagrangian. Consider 
the simplex S = Sn = {x = (x; )'J E !Rn : "£7=1 x; = 1 and x; 2: 0 for every n} ,  
and set 

f(G) = max /G(x) . xes 
It is immediate from the definition of f that it  is an increasing function: if 

H C G then f (H) :::= f (G). Furthermore, if /G (x) attains its supremum at x = y, 
and H = G[W] is the subgraph of G induced by the support of y: 

W = supp y = { v; : y; > 0} , 

then f(G) = f(H). 
As the theorem of Motzkin and Straus below shows, f (G) i s  intimately related 

to the complete subgraphs of G: in fact, it depends only on the clique number 
w(G) of G, the maximal order of a complete subgraph. Note first that if G is a 
complete graph of order n then f (G) = (n - 1 )  In. Indeed, 

f(G) = max 1 2 � XiXj : X  E s ) 
I :SI<J�n 

= max ltx; ( l - x;) : X E s ) 
1= 1 

= max 1 1 -'tx? : x E s ) 
1= 1  

= 1 - n( 1 1n)2 = (n - l )ln . 

Theorem 10 Let G be a graph with clique number ko. Then f (G) = (ko - 1 )  I ko. 
Proof Let y = (y; )'J E S be a point at which fc (x) attains its maximum and 
supp y = { v; : y; > 0} is as small as possible. We claim that the support of y spans 
a complete subgraph of G. Indeed, suppose y1 , Y2 > 0 and v1 f v2 . Assuming, 
as we may, that Lv;�v1 Yi 2: Lv;�v2 y; ,  set y' = (Y I  + Y2 · 0, y3 , y4 , . . . , Yn) E S. 
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Then /G (y') :::: /G (y) and supp y' is strictly smaller than supp y, contradicting our 
choice of y. 

Writing K for the complete subgraph of G spanned by the support of y, we 
have f(G) = f(K) = (k - 1 )/k , where k = I K I = l supp y l . Hence k is as large 
as possible, namely ko, and we are done. 0 

The result above implies the following assertion, which is only slightly weaker 
than Tunin's theorem. 

Corollary ll Let G = G(n ,  m), with m > z(r-=_2I) n2. Then G contains a complete 
graph of order r. 
Proof. Writing ko = w(G) for the clique number of G, we know that f(G) = 

(ko - 1 )/ko . On the other hand, with x = ( l jn , 1 /n ,  . . .  , 1 /n) we see that 

2m r - 2  f(G) :::: /G (X) = -;;f > 
r _ 1 . 

Hence ko :::: r, as claimed. 0 

Recall from Chapter II that, for a graph G with vertex set {v1 , . . .  , Vn } and 
adjacency matrix A, the (combinatorial) Laplacian of G is L = D - A, where 
D = ( D;J ) is the diagonal matrix in which D;; is the degree d ( v; ) of v; . The 
Laplacian is an even more powerful tool than the Lagrangian, although for a 
regular graph they are just two sides of the same coin. 

In our study of the Laplacian, we shall need a simple and useful characterization 
of the spectrum of a hermitian operator T on an n-dimensional complex inner 
product space V .  Let A J  � A2 � . . .  � An be the eigenvalues of T,  enumerated 
with multiplicities, and let q (x) = (Tx, x) be the quadratic form of T.  We know 
that the numerical range of T is [A 1 , An] :  

A 1 = min{q (x) : l l x l l  = 1 } and An = max{q (x) : l l x l l  = 1 } . 

In fact, if q (x 1 ) = A1 and l lx 1 1 i = 1 then x 1 is an eigenvector of T with eigenvalue 
A J , and 

Az = min{q (x) : (x, x 1 ) = 0 and l lx l l  = 1 } .  (2) 
It is easily seen that the other eigenvalues have similar characterizations (see 
Exercises 47-48). As we shall see, the second smallest eigenvalue of the Laplacian 
is especially important. 

The quadratic form q (x) = ( (D - A)x, x) associated with the Laplacian has 
a particularly pleasing form, emphasizing the intimate connection between the 
Laplacian and the structure of the graph: for x = 2::7=1 x; v; we have 

n 
q (x) = �)d(v; )xf - L XiXj } = L (x; - Xj )2 . (3) 

i= 1  Vj�V; Vj Vj EE(G) 

We shall write A1 ::::: Az ::::: . . .  ::::: An for the sequence of eigenvalues of L, so 
that Co(G) has an orthonormal basis (x1 , xz , . . .  , Xn) with Lx; = A;x; . If G is 
r-regular then JL is an eigenvalue of the adjacency matrix A iff A = r - JL is an 
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eigenvalue of the Laplacian L, so the spectrum of L is just the spectrum of A 
'reversed and shifted' .  In particular, if G is also connected then A I = r - f.-LI = 0 
and A2 = r - f.-L2 > 0. In general, the connection between the spectra of A and L 
is a little less straightforward. 

We know from Theorem II. lO that L = B B1 ,  where B is the (signed) incidence 
matrix of G. Consequently, L is positive semi-definite. Furthermore, as L j  = 0 
for the vector j with all l coordinates, A J  = 0. However, Az = Az(G),  the second 
smallest eigenvalue of the Laplacian, is far from trivial: in fact, it is difficult to 
overemphasize its importance. Roughly, the larger A2 (G) is, the more difficult it is 
to cut G into pieces, and the more G 'expands' .  We present two results illustrating 
this assertion. 

Before we tum to these results, let us adapt (2) to the case of the Laplacian. 
Since Lj = (D - A)j = 0, with q (x) = (Lx, x} we have . { q (x) . } Az(G) = mm l lx l l 2 : (x, J } = 0, x =/:. 0 . { ((D - A)x, x} . } = mm : (x, J } = 0, x =/:. 0 . 

(x, x} 

(4) 

If G = Kn then L = (n - 1 ) / - A =  nl - J,  so A I = A2 = . . .  = An- I = n 
and An = 0. In particular, if n � 2 then Az (Kn) = n > K (Kn) = n - 1 .  However, 
if G is incomplete, this inequality cannot hold. 

Theorem 12 The vertex connectivity of an incomplete graph G is at least as 
large as the second smallest eigenvalue Az(G) of the Laplacian of G. 

Proof If G = Kn then Az = n - 1  = K (G).  Suppose then that G is not a complete 
graph, and let V 1 U S U V 11 be a partition of the vertex set { v 1 , . . .  , Vn } of G such 
that l S I = K (G),  V' and V" are non-empty, and G has no V'-V" edge. Thus S is 
a vertex cut with k = K (G) vertices . 

Our aim is to construct a vector x orthogonal to j such that q (x) f ll x ll 2 is small, 
namely at most k. To this end, set a = I V' I ,  b = I V" I ,  and let x = I:7=1 x; v; E 

Co( G) be the vector with 

Then (x, j }  = 0 and l lx l l 2 = ab2 + ba2 . 

if v; E V' , 

if v; E S, 

if v; E V" . 

What are the coordinates of (D - A)x = y = I:7=1 y; v; ? Since (D - A)bj = 0, 
we have y = (D - A)(x - bj) ,  so if v; E V' then y; is precisely b times the number 
of neighbours of v; in S. Hence y; � kb. Similarly, y; � -ka for v; e V".  
Therefore, as  I V' I  = a  and I V" I  = b ,  i t  follows from (2) that 

Az l lx l l 2 :::;: q (x) = ((D - A)x, x} � kab2 + kba2 = k ll x ll 2 , 

completing the proof. 0 
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It is easily seen that for every connectivity there are infinitely many graphs for 
which the bound on A.z in Theorem 12 is sharp (see Exercise 49). 

The next result is the basic reason why A.z(G) is such an important parameter. 
Given a subset U of the vertex set of a graph G, the edge-boundary a U  = ac U is 
the set of edges of G from U to V \ U. 

Theorem 13 Let G be a graph of order n . Then for U C V = V (G) we have 

l a U I � 
A.z(G) I U I I V \ U l

. n 
Proof. We may assume that 0 =/: U =/: V = { VJ , • . •  , Vn } .  Set k = I U I , and define 
x = L:?=I Xi Vi as follows: l n - k if Vi E U, 

Xi = -k if Vi E V \ U.  

Then (x, j) = 0 and l l x ll 2 = kn(n - k) .  By (3), 
((D - A)x, x) = 1 a u 1n2 

and so, by (2), 

as claimed. D 
For another connection between the expansion of a graph G and A.2 (G) , see 

Exercise 50. 

VIII.3 Strongly Regular Graphs 

It is reasonable to expect that a graph with many automorphisms will have partic­
ularly pleasing properties and that these will be reflected in the adjacency matrix. 
The automorphism group of a graph G is the group, AutG, of permutations of the 
vertices preserving adjacency. Every abstract group can be represented as the au­
tomorphism group of some graph. For instance, if F is any finite group, consider 
its Cayley diagram with respect to some set of generators. The automorphism 
group of this coloured and directed multigraph is exactly F. It only remains to 
replace each edge of this diagram by a suitable sub graph that bears the informa­
tion previously given by the direction and colour. This produces a graph G with 
automorphism group isomorphic to F. An example is shown in Fig. VIII. lO. 

Each ;r E AutG induces an endomorphism of Co( G), and this endomorphism 
is given by a permutation matrix P. In fact, an arbitrary permutation matrix 
Q corresponds to an automorphism of G precisely when it commutes with the 
adjacency matrix A, that is, AQ  = QA. The group of these matrices therefore 
faithfully represents AutG. Regarding A as an endomorphism of Co(G) , we find 
that the eigenspaces of A are invariant under P. In particular, if an eigenvalue of A 
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FIGURE VIII. lO.  A graph with automorphism group S3, constructed from the Cayley 
diagram in Fig. VIII. l .  

is simple (that is, it has multiplicity 1 )  then P must map an eigenvector to a multiple 
of itself. Thus if all eigenvalues are simple, we must have P2 = I .  This is a strong 
restriction on those permutations which might correspond to automorphisms of 
G. For example; if G has at least 3 vertices and every eigenvalue is simple, then 
AutG cannot be vertex-transitive, so not every pair of vertices can be interchanged 
by an automorphism. 

These remarks indicate how the methods of representation theory may be used 
to deduce restrictions on the adjacency matrix of graphs which have extensive 
automorphism groups. Lack of space prevents us from exploring this further. 
Instead, we shall use algebraic methods to study graphs which are highly regular, 
although this regularity is not expressed in terms of the automorphism group. 

Algebraic methods are particularly useful if we want to prove that certain regu­
larity conditions cannot be satisfied except perhaps for a small set of parameters. A 
problem of this type arose in Chapter IV: for which values of k is there a k-regular 
graph of order n = k2 + 1 and girth 5? We shall show later that if there is such a 
graph then k is 2, 3 ,  7 or 57. Group theory is particularly rich in problems of this 
type: at the end of this section we shall mention some examples. 

Regularity, that is, the condition that all vertices have the same degree k, is not 
too restrictive, although the adjacency matrix of a connected regular graph does 
satisfy a very pleasant condition. Let J = In be the n by n matrix with all n2 
entries 1 and, as before, let j = jn E en be the vector with all coordinates 1 .  Note 
that J has two eigenvalues : n, with multiplicity 1 and eigenvector j, and 0, with 
multiplicity n - 1 .  Thus J In is the orthogonal projection onto the ! -dimensional 
subspace (j) . 

Theorem 14 Let G be a connected k-regular graph of order n, with adjacency 
matrix A and distinct eigenvalues k, J-LJ ,  f.L2 , . . •  , f.Lr· Then 

Proof Each side is the orthogonal projection onto (j) . 0 
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Theorem 14 readily implies that J is a polynomial of A iff G is connected and 
regular (see Exercise 46). 

The above algebraic characterization of regular graphs is mildly interesting, 
but it does not come close to showing the power of algebraic methods in graph 
theory. This is not surprising since for a fixed k and large n there are simply 
too many k-regular graphs of order n (provided that kn is even), so that we 
cannot even contemplate a meaningful characterization of them. In order to give 
algebraic methods a chance to work their magic, we have to impose more restrictive 
regularity conditions on our graphs. 

Call a connected graph G highly regular with collapsed adjacency matrix 
C = (ciJ ) if for every vertex x E V = V (G) there is a partition of V into 
non-empty sets V1 = {x } ,  Vz , . . .  , Vp such that each vertex y E Vj is adjacent to 
exactly Cij vertices in Vi (see Fig. VIII. l l ) .  It is immediate from the definition 
that G is regular, say every vertex has degree k. In this case each column sum in 
the collapsed matrix is k. The collapsed adjacency matrix C can be obtained from 
the adjacency matrix A as follows: 

Cij = L a81 , where v1 E V; .  
v, E V; 

The point is exactly that the above sum is independent of the representative v1 of 
V; .  We are especially interested in the collapsed adjacency matrix C if it is of a 
much smaller size than A. 

I 

2* 2 
3 3 

3 3 

3 3 ( 0 I 0) 2 0 I 0 I I 

( 0 1 0 )  3 0 I 0 2 2 
FIGURE VIII. I I . The pentagon, the cube and the Petersen graph together with their 
collapsed adjacency matrices. 

At the risk of being too pedantic, in the arguments below we shall be particularly 
careful to identify the various spaces and maps. Let P be the p-dimensional 
complex vector space with basis (WJ , . . . , wp ) , and identify C with the linear 
map P --* P with matrix C in this basis. For v, E V = {V J ,  . . .  , vn } ,  let 
V (r) { } v <r) v <rl b . . b I 

. 
th ("' 'd 1 = v, , 2 , . . .  , P e a partttlon e ongmg to e vertex v, . vve const er 

v, the root of this partition.) Also, let ;r, : Co( G) --* P be the linear map given 
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Theorem 15 Let G, A ,  C, P and 1r r be as above. 
(i) 1TrA = CJTr, that is, the diagram below commutes. 

Co(G) � Co(G) 

p 
c 

� p 

(ii) The adjacency matrix A and the collapsed adjacency matrix C have the 
same minimal polynomial. In particular; IL is an eigenvalue of A iff it is a root of 
the characteristic polynomial of C. 

Proof (i) Let us show that 1Tr (Av1) = C(7rr v1 ) , where v1 is the basis vector 
corresponding to an arbitrary vertex Vt E vr) .  To do this it suffices to check that 
the i th coordinates of the two sides are equal. Clearly, 1r r v1 = w j so 

and 

(C(1rr Vt)) i = (Cwj )i = Cij 

(1Tr (Avr)) i = L ast 
v. e v.<rl I 

and these are equal by definition. 
(ii) Let q be the minimal polynomial of C. In order to prove that q (A) = 0, let 

x E Co(G) and set q (A)x = L7=I Yi Vi . Then for each r, 1 � r � n, we have 

Yr = (q (A)X)r = (1Tr (q (A)x)) I = (q (C) (7rrX)) J = (O) J = 0. 
Conversely, the minimal polynomial of A annihilates C since JrrCo(G) = P. 

0 
This result enables us to restrict rather severely the matrices C that may arise 

as collapsed adjacency matrices. 

Theorem 16 Let G be a connected highly regular graph of order n with col­
lapsed adjacency matrix C. Let /LI , {Lz , . . .  , ILr be the roots of the characteristic 
polynomial of C different from k, the degree of the vertices of G. Then there are 
natural numbers m 1 ,  mz, . . .  , mr such that 

r 
L mi = n - 1  
i= I 
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and 
r 

L ffli/Li = -k. 
i= l 

Proof We know from Theorem 5 that JL 1 ,  f.L2 , . . .  , f.Lr are the eigenvalues of A 
in addition to k, which has multiplicity 1 .  Thus if m(JL; )  is the multiplicity of f.Ll 
then 

r 
1 + L m(JL; )  = n ,  

i= l 
since Co (G) has an orthonormal basis consisting of eigenvectors of A .  Fur­
thermore, since the trace of A is 0 and a change of basis does not alter the 
trace, 

r 
tr A =  k + Lm(JL;)f.Li = 0. D 

i= l 
The condition expressed in Theorem 16 is not easily satisfied, especially if 

f.LI , JLz , . . .  , f.Lr are not rational numbers, so it rules out the possibility of con­
structing highly regular graphs with many seemingly feasible parameters. For the 
so-called strongly regular graphs we shall rewrite the condition in a more attrac­
tive form. A graph G is said to be strongly regular with parameters (k , a ,  b) if it 
is a k-regular incomplete graph such that any two adjacent vertices have exactly 
a ::=: 0 common neighbours and any two non-adjacent vertices have b ::=: 1 common 
neighbours. In other words, G is highly regular with collapsed adjacency matrix ( 0 0 ) 

C =  k a b . 
0 k - a - 1  k - b  

Putting it yet another way: if G is a connected incomplete graph with adjacency 
matrix A then G is strongly regular iff 

A2 E (I ,  J, A) , 

where, as before, J is the matrix with every entry 1 .  More precisely, G has 
parameters (n , k, a, b) iff 

A2 = ki + aA + b(J - I - A) ,  

where A,  I and J are n by n matrices. Indeed, the last equation i s  equivalent to { k if i = j , 

(A2)ij = a if v; Vj E E(G),  
b otherwise. 

As G is neither complete nor empty, b ::=: 1 ,  so this is just the statement that G is 
strongly regular, with parameters (n , k, a ,  b) . From Theorems 14 and 1 5  we can 
read off another simple characterization of strongly regular graphs. 
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Theorem 17 Let G be a connected imcomplete regular graph. Then G is strongly 
regular iff it has precisely three distinct eigenvalues. 
Proof Suppose G is a strongly regular graph with adjacency matrix A .  As its 
collapsed adjacency matrix has order 3, by Theorem 15 it has at most three 
distinct eigenvalues. Furthermore, if G had only two distinct eigenvalues then, by 
Theorem 14 we would have A E (/ , J } ,  which would imply that G is complete or 
empty. 

Conversely, if A has three distinct eigenvalues then, again by Theorem 14, we 
have A2 E (/ , J, A ) .  0 

Theorem 18 If there is a strongly regular graph of order n with parameters 
(k , a ,  b) then 

m 1 , m2 = - n - l ± --------;--::;-1 I (n - l ) (b - a) - 2k l 
2 { (a - b)2 + 4(k - b) } 1 12 

are natural numbers. 
Proof The characteristic polynomial of the collapsed adjacency matrix C is 

x3 + (b - a - k)x2 + ((a - b)k + b - k)x + k(k - b) . 
On dividing by x - k, we find that the roots different from k are 

1 { { 2 } 1 /2 } 
JLI , JL2 = 2 a - b ±  (a - b) + 4(k - b) . 

By Theorem 1 6  there are natural numbers m 1 and m2 satisfying 

m 1 + m2 = n - l  
and 

m 1JL 1  + m2JL2 = -k. 
Solving these for m 1 and m2 we arrive at the assertion of the theorem. 0 

Theorem 1 8  is sometimes called the rationality condition for strongly regular 
graphs. It is also easily proved without invoking Theorem 16 . Indeed, if A is the 
adjacency matrix of a strongly regular graph with parameters (k , a ,  b) then, as we 
know, 

A2 = kl + aA + b(J - I - A) . 
Therefore J i s  a quadratic polynomial in  A, so J and A are simultaneously 
diagonalizable. Noting that J has only two eigenvalues, namely n, with multiplicity 
1 ,  and 0, with multiplicity n - 1 ,  one can easily find that JL 1 and /L2 are as above 
(cf. Exercise 30) . 

From the rationality condition it is but a short step to the beautiful result of 
Hoffman and Singleton, proved in 1960, concerning Moore graphs of diameter 2 
(or girth 5). 
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Theorem 19 Suppose there is a k-regular graph G of order n = k2 + 1 and 
diameter 2. Then k = 2, 3, 7 or 57. 
Proof We know from Theorem IY.1 that G is strongly regular with parameters 
(k, 0, 1 ) .  By the rationality condition at least one of the following two conditions 
has to hold: 

(i) : (n - 1) - 2k = k2 - 2k = 0 and n - 1 = k2 is even, 
(ii) :  1 + 4(k - 1) = 4k - 3 is a square, say 4k - 3 = s2 . 

Now, if (i) holds then k = 2. 
If (ii) holds then k = ! <s2 + 3); on substituting this into the expression for the 

multiplicity m 1 we find that 

that is, 

1 { 1 2 2 [ (s2 + 3)2 / 16] - [ (s2 + 3)/2] } m J  = 2 1 6  (s + 3) + s ' 

s5 + s4 + 6s3 - 2s2 + (9 - 32m J )S - 15 = 0. 
Hence s divides 15 , so s is one of the values 1 , 3 , 5 and 15 , giving k = 1 , 3 ,  7 or 
57. The case k = 1 is clearly unrealizable. D 

It is worth noting that for k = 2, 3 and 7 there are unique k-regular graphs 
of order k2 + 1 and diameter 2 (and so girth 5). In particular, for k = 2 it is a 
pentagon and for k = 3 it is the Petersen graph. However, it is not known whether 
or not k = 57 can be realized. 

Sporadic simple groups are those simple groups that do not belong to one of the 
infinite sequences consisting of cyclic groups of prime order, alternating groups of 
degree at least 5 and simple groups of Lie type. Sporadic simple groups are often 
related to strongly regular graphs. For example, there is a strongly regular graph 
with parameters ( 162, 105, 8 1 ) ,  and the McLaughlin group of order 898 , 1 28,000 
is a subgroup of index 2 of the automorphism group of this graph. Similarly, there 
is a strongly regular graph with parameters (4 16 , 100, 96) and the Suzuki group, 
which is a simple group of order 448,345,497,600, is a subgroup of index 2 of the 
automorphism group of this graph. 

VIII.4 Enumeration and P6lya's Theorem 

We cannot end this chapter without considering perhaps the most basic question 
about graphs, namely, how can we count graphs of various types? We may want to 
count graphs with a given set of vertices or we may be interested in the number of 
isomorphism classes of certain graphs. As we saw in Chapter VII, counting labelled 
graphs is relatively easy; for instance, there are 2(�) = 2N labelled graphs on n 
vertices, of which (�) have m edges. Furthermore, by applying Corollary II. 1 3  
to the complete graph, one can easily show that there are nn-2 labelled trees of 
order n. This result was first obtained by Cayley; we present it here with a proof 
due to Priifer, which is independent of Corollary II. 1 3 .  
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FIGURE VIII. 1 2. The Priifer code of this tree is (3 , 8, 1 1 ,  8, 5, 8, 3, 5 ,  3) .  

Theorem 20 There are nn-2 trees on n labelled vertices. 
Proof As in Chapter VII, let V = { 1 ,  2, . . .  , n} be the set of vertices. Given a tree 
T, associate a code with T as follows. Remove the end vertex with the smallest 
label and write down the label of the adjacent vertex. Repeat the process until only 
two vertices remain. The code obtained is a sequence of length n - 2 consisting of 
some numbers from 1 ,  2, . . .  , n ;  of course, any number may occur several times in 
the code (see Fig. VIII. 1 2) .  As the reader should check, each of the nn-2 possible 
codes corresponds to a unique tree. D 

It is easily seen that the label of a vertex of degree d occurs exactly d - 1 times 
in the Pri.ifer code of the tree. Thus the proof has the following consequence. 

Corollary 21 Let d1 � d2 � · · · � dn be the degree sequence of a tree: d1 :::=: 1 
and L:?=l di = 2n - 2. Then the number of labelled trees of order n with degree 
sequence (d; )'j is given by the multinomial coefficient ( n - 2 ) 

d1 - 1 , d2 - 1 ,  . . .  , dn - 1 
. D 

The difficulties we encounter change entirely if we wish to count certain classes 
of graphs up to isomorphism. Given graphs G 1 and G2 with a common vertex 
set V ,  when are they isomorphic? They are isomorphic if there is a permutation 
Jr of V which maps G 1  onto G2. Of course, strictly speaking Jr does not act on 
graphs, it only induces a permutation a of X = v<2) , the pairs of vertices, and 
it is a that maps an edge of G 1 into an edge of G2 and a non-edge of G 1 into a 
non-edge of G2. Now, G; is naturally identified with a subset of X or, equivalently, 
with a function fi : X ---+ {0, 1 } .  Therefore G 1  is isomorphic to G2 iff there is 
a permutation a of X = v <2) (coming from a permutation Jr of V) such that 
a* ft = /2, where a* is the permutation of the set of functions {0, 1 }X induced 
by a. Thus counting graphs up to isomorphism is a special case of the following 
problem. Given sets X and Y, and a group r acting on X, let r act on the set of 
functions Y x in the natural way. How many orbits are there in Y X ? The main aim 
of this section is to present a beautiful theorem of P6lya, proved in 1937, which 
answers this question. 

Let r be a group of permutations acting on a (finite) set X. For x , y E X put 
x � y if y = ax for some a E r. Then � is an equivalence relation on X; if 
x � y we say that x is equivalent to y under r. The equivalence class of x is 
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called the r-orbit (or simply orbit) of x ,  and is denoted by [x] .  For x ,  y E X  put 

f(x ,  y) = {a E f :  ax = y } .  
O f  course, f(x ,  y) i s  non-empty i ff  [x] = [y ] ,  that is, x and y belong to the same 
orbit. The set f(x) = f(x ,  x) is the stabilizer of x ;  it is a subgroup of r .  Note 
that if y = {Jx then 

f (x ,  y) = {a :  ax = y }  = {a :  ax = {Jx }  = {a :  {J- 1a E f(x) }  = {Jf(x) ,  
so  f (x ,  y) i s  a coset of  f(x) .  We see that l f (x) l depends on  the equivalence class 
of x ,  so we may put s ([x]) = lf (x) l .  Clearly 

r = U f(x , y) ,  
ye[x] 

and this gives us 

l f l  = l [x ] l i l f (x) l = l [x] ls ([x] ) .  
P6lya's enumeration theorem is  based on a version of a lemma due to Cauchy and 

Frobenius, extensively used by Burnside, concerning the sum of the "weights" of 
orbits. (For many years, it was called Burnside's lemma.) Let o, , . . .  , Oe be the r­
orbits, let A be an arbitrary Abelian group (written additively) and let w : X � A 
be a function that is constant on orbits. We call w a weight function and define 
the weight of 0; by w(O; )  = w(x) , x E 0; . For a permutation a E r we denote 
by F(a) the set of elements fixed by a, that is, F(a) = {x E X : ax = x }. Thus 
x E F(a) iff a E f (x) . After this preparation, here is then the Cauchy-Frobenius 
lemma. 

Lemma 22 I f I 'Lf=l w(O; )  = Laer LxeF(a) w(x). 
Proof 

e 
I: I: w(x) = I: I: w(x) = I: I: I: w(x) 
aer xeF(a) xeX aer (x) i= l xeO; aer (x) 

e e 
= I: w(O; )  L L 1 = I: w(O; ) I O; Is (O; )  

i=l xeO; aer (x) i= l 
l 

= l f l l:: wco; ) .  
i= l 

The original form of this lemma is obtained on choosing A = Z and w = 1 :  

N(r) = _1 L L 1 = _1 L j F(a) l .  
I f  I aer xeF(a) I f  I aer 

where N (f) is the number of orbits. 

0 

We shall illustrate by three very simple examples that even the Cauchy­
Frobenius lemma can be used to calculate the number of equivalence classes 
of certain objects. 
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EXAMPLE 1 .  Let X = { 1 ,  2, 3 ,  4} and r = { 1 ,  ( 12) ,  (34) , ( 12) (34) } .  What is 
N(r)? Clearly, F(l )  = { 1 ,  2, 3 ,  4} , F((12)) = {3 , 4} , F((34)) = { 1 ,  2} and 
F((12) (34)) = 0. Thus N(r) = i {4 + 2 + 2 + 0} = 2. 
EXAMPLE 2. Consider all bracelets made up of 5 beads. The beads can be red, 
blue and green, and two bracelets are considered to be identical if one can be 
obtained from the other by rotation. (Reflections are not allowed! )  How many 
distinct bracelets are there? 

In this case we choose X to be the set of all 35 = 243 bracelets and let r be Cs , 
the cyclic group of order 5, acting on X .  Then the question is: how many orbits 
does r have? For the identity 1 E r clearly, F(l ) = X. For every non-trivial 
rotation a E r only the 3 monochromatic bracelets are invariant under a, so 
N(r) = ! {243 + 3 + 3 + 3 + 3} = 5 1 .  
EXAMPLE 3 .  In how many essentially different ways can we colour the six faces 
of a cube with at most three colours, say red, white and green? Here two colourings 
are essentially the same if some rotation can take one into the other. 

In this example r is the group of rotations of the cube, so I r I = 24. Let us 
catalogue the rotations and the numbers of colourings fixed by them. The identity 
rotation fixes all 36 colourings. There are 8 rotations through pairs of opposite 
vertices, each fixing 32 colourings. Each of the 6 rotations through mid-points of 
opposite edges fixes 33 colourings. There are 9 further rotations, through centres 
of opposite faces. Those through angle rr fix 34 colourings each, and those through 
angle rr /2 fix 33 colourings each. Hence there are 

;4 {36 + 8 .32 + 6.33 + 3 .34 + 6.33 } = 57 

essentially different colourings of the faces of a cube with red, white and green. 

The second and third examples resemble a little the problem we really want 
to tackle. Let r be a group of permutations of a (finite) set D. Let R be another 
(finite) set and let us consider the set RD of all functions from D into R. Each 
a E r can be made to act on RD ; namely define a* : RD � RD by 

(a* f) (d) = f(ad) , f E RD , d E D. 
Then 

r* = {a* : a E r} 
i s  a group of  permutations of  RD ; as  an abstract group, i t  i s  isomorphic to r and 
we distinguish it from r only to emphasize that it acts on RD while r acts on D. 

As i s  customary in  connection with P6lya's enumeration theorem, we adopt 
an intuitive terminology. The set D is called the domain and its elements are 
places; R is the range and its elements are figures; the functions in RD are called 
configurations; finally a pattern is an equivalence class of configurations under 
r* , that is, a r* -orbit. Our main aim is to calculate the number of distinct patterns. 

The origin of this terminology is that a function f E RD is an arrangement of 
some figures into the places in such a way that for each place there is exactly one 
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figure in that place, but each figure can be put into as many places as we like. Two 
configurations mapped into each other by an element of r* have the same pattern 
and are not distinguished. Thus in the second example the places are, say, 1 ,  2, 3 , 
4 and 5, the figures are r ,  b and g (for red, blue and green) and a configuration is  
a sequence of the type g ,  b, b, r, b, that is ,  a bracelet. The group r is generated by 
( 12345) and distinct patterns correspond to distinguishable bracelets. 

In addition to counting the number of distinct patterns, we may wish to count 
the number of patterns of a certain type. It turns out that all these problems can be 
solved at once, provided.we learn enough about the cycle structure of permutations 
in r acting on D, and are willing to store a large amount of information about the 
patterns. 

Each element a E r is an essentially unique product of disjoint cycles (cyclic 
permutations) acting on D. If a = � 1�2 · · · �m is such a product, we say that 
�1 , . . .  , �m are the cycles of a. In the product we include cycles of length 1 as well 
so that every a E D appears in exactly one cycle; if I� I denotes the number of 
elements in � then L::�=1 lh l = d, where d = I D I  is the number of elements in 
D. Denote by jk (a) the number of cycles of a having length k; by the previous 
equality L::Z:.,1 kjk (a) = d. Note that I F(a) l , appearing in the Cauchy-Frobenius 
lemma, is exactly jr (a) ,  the number of elements of D fixed by a. We define the 
cycle sum of r to be 

d 
Z(r ;  a1 , . . .  ' ad) =  L n aik(a) _ 

aer k=1 

The reader should bear in mind that Z depends on the action of r on D, 
not only on the abstract group r.  Note also that the cycle sum is a polyno­
mial in a1 , az , . . .  , ad with integer coefficients; it tells us the distribution of 
cycles in the elements of r. When writing down a cycle sum, it is useful to 
remember that L::t=1 kjk(a) _= d for every a. The customary cycle index of r is 
Z(r ; a 1 , . . .  , ad) = ( 1 / l f i )Z(r; a 1 , . . .  , ad) .  As we shall consider general rings 
instead of the more usual polynomial ring with rational coefficients, we have to 
use the cycle sum since we cannot divide by I r 1 .  

Let A be an arbitrary commutative ring and let w : R � A be a function. We 
call w(r) the weight of the figure f, and for k = 1 , 2, . . .  define the k1h figure sum 
as 

Furthermore, the weight of a configuration f E RD is 

w(f) = n w(f(a)) . 
aeD 

Clearly, any two configurations equivalent under r* have the same weight, so we 
may define the weight of a pattern 0; by 

w(O; )  = w(f) , f E 0; . 
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Our aim is to learn about the pattern sum 
e 

S = L w(Oi ) . 
i= 1  

where 01 ' 02 ' . . .  ' 0 e are the r* -orbits, that is, the distinct patterns. 
Note that w(r) , w(f), Sk and S are all elements of our commutative ring A .  If 

we have a way of determining the pattern sum S, it is up to us to choose A and the 
weight function w : R -+ A in such a way that S can be "decoded" to tell us all we 
want to know about various sets of patterns. In practice one always chooses A to be 
a polynomial ring (Z[x ] ,  Q[x ,  y ], etc.), and usually w(r) is a monic polynomial ;  
the information we look for is then given by certain coefficients of the polynomial 
S. We shall give several examples after the proof of our main result, P6lya 's 
enumeration theorem. 
Theorem 23 With the notation above, 

l f iS = zcr ;  s 1 , s2 , . . .  , sd) .  
Proof By Lemma 22, 

e 
lf iS = l f l  L w(Oi ) = L L w(f) . 

i= 1  aer  feF(a*) 

Now, clearly F(a*) = {f E RD : f is constant on cycles of a} ,  so if 
�1 .  �2 • . . . , �m are the cycles of a, and a E �i means that a is an element of 
the cycle �i , then 

F(a*) = {f E RD : ri E R and f(a) = ri if a E �i .  i = 1 ,  2 , . . .  , m } .  
Hence 

m d ( )A(a) d 
:L w<n = L n w(ri ) l�; l = n L w<r)k = n sik (a) . 

feF(a*) (r; )CR i= 1 k= 1 reR k= 1 
giving 

d 
l f i S = L n sik (a) 

= Z(f ;  S1 , S2 , . . .  ' Sd) .  
a e r  k=1 

0 

If l f l has an inverse in the ring A, say if A is a polynomial ring over the rationals, 
then Theorem 23 can also be written in its more usual form: 

s = Z(r ; s1 , s2 , . . .  , sd) .  
Let u s  illustrate now how the theorem can be  applied. 

EXAMPLE 4. Let us consider again the bracelets made up of five beads, which 
can be red, blue and green. Then D = { 1 ,  2 , 3 ,  4, 5} is the set of places of the 
beads, R = {r, b, g} is the set of colours (figures) and r is C5 , the cyclic group of 
order 5 generated by the permutations ( 12345) . The cycle sum is Z = ai + 4as . 
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On choosing A = Z and w(r) = w(b) = w(g) = 1 ,  we find that Sk = 3 for 
every k, so SS = 35 + 4 .3 . Since each pattern (bracelet) has weight 1 ,  there are 
� {35 + 12} = 5 1 distinct patterns (bracelets). 

On choosing A = Z[x , y] and w (r) = 1 ,  w(b) = x ,  w(g) = y, we find that 
S = � { ( 1  + x + y )5 + 4(1 + x5 + y5) } .  Now it is easy to extract information from 
this form of S. For example, a bracelet has weight xy2 iff it has 2 red, 1 blue and 
2 green beads. Thus the number of such bracelets is the coefficient of xy2 in the 
polynomial S; that is, ( 1 /5) (5 ! / (2 !2 ! ) )  = 6. 

EXAMPLE 5.  What happens if in the previous example we allow reflections? 
Then r is the dihedral group D5 , the group of symmetries of the regular pen­
tagon, whose cycle sum is ai + 4a5 + Sa1ai . Thus if we take, as before, 
A = Z[x , y] ,  w(r) = 1 ,  w(b) = x and w(g) = y ,  we find that the num­
ber of bracelets containing 2 red, 1 blue and 2 green beads is the coefficient of 
xy2 in 1� { 0 + x  + y)5 + 4(1 + x5 + y5) + 5( 1  + x  + y)( l + x2 + y2)2 } ,  that 
is, 3 + 1 = 4. 

EXAMPLE 6. This is the example P6lya used to illustrate his theorem. Place 3 
red, 2 blue and 1 yellow ball in the 6 vertices of an octahedron. In how many 
distinct ways can this be done? The group of rotations of the octahedron has order 
24 and cycle sum a� + 6afa4 + 3afai + 6a� + Sa� : a� comes from the identity, 
6afa4 from the rotations through 1C /2 about axes through opposite vertices, 3afai 
from the rotations through 1r about axes through opposite vertices, 6a� from the 
rotations through 1C about axes through midpoints of edges, and, finally, aj is the 
summand corresponding to a rotation through 21r /3 about an axis going through 
the centre of a face. On taking A =  Z[x , y] ,  w(r) = 1 ,  w(b) = x and w(y) = y ,  
we see that the required number i s  the coefficient of x2y in 

1 
24 { ( 1  + X + y)6 + 6(1 + X + y)2 ( 1  + X4 + i) 

+ 3( 1  + x + y)2 ( 1  + x2 + i)2 + 6(1 + x2 + y2)3 + 8( 1  + x3 + y3)2} ,  

that is, 3 .  

It should be clear by now that the theorem loses nothing from its generality if 
instead of a general commutative ring A we take Z[x, : r E R] , the polynomial 
ring over the integers in variables indexed by the elements of R, and we define the 
weight function as w (r) = x, . Then the pattern sum S contains all the information 
the theorem can ever give us. In particular, if w : R -+ A is an arbitrary weight 
function then the corresponding pattern sum is obtained by replacing x, by w(r) 
in S. However, if R is large, the calculations my get out of hand if we do not 
choose a "smaller" ring than Z[x, : r E R] , which is tailor-made for the problem 
at hand. The choice of a smaller ring is, of course, equivalent to a substitution 
into S. 
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EXAMPLE 7. Place red, blue, green and yellow balls into the vertices of an 
octahedron. Denote by P; the set of patterns in which the total number of red and 
blue balls is congruent to i modulo 4. What is I Po I - I P2 l ?  

The cycle sum of the rotation group of the octahedron was calculated in 
Example 6 and was found to be ar + 6afa4 + 3arai + 6a� + Sa� . 

Let A =  C, the field of complex numbers, and put w(r) = w(b) = i ,  w(g) = 
w(y) = 1 .  Then for a pattern f we have Re w (f) = 1 if f E Po, Re w (f) = - 1  
if f E P2 and Re w (f) = 0 if f E Pt U P3 . Thus I Po l - I P2 I is exactly the real 
part of the pattern sum. As S t  = 2(1  + i ) ,  s2 = 0, s3 = 2(1 - i )  and S4 = 4, we see 
immediately that after substitution the real part of each term is 0, so I Po I = I P2 1 · 

We were first led to our study of the orbits of a permutation group by our desire 
to count the number of graphs up to isomorphism. We realized that this amounted 
to counting the orbits of the group r� acting on {0, l }x , where X = v C2) and 
r n is the permutation group acting on X that is induced by the symmetric group 
acting on V .  So according to P6lya's theorem our problem is solved when we 
know the cycle sum of the permutation group r n .  It is now a routine matter to 
write down an explicit expression for this cycle sum, though we don't  display it 
here since its form is not very inspiring. Furthermore, except for small values of 
n, this expression is too unwieldy for practical calculations, and it is much easier 
to use asymptotic formulae derived by random graph techniques (see Exercises 22 
and 23 of Chapter VII). 

We remark finally that an extension of P6lya's theorem covers the case when 
there is also a group acting on the range of the functions. For instance, if we let S2 
act on {0, 1 }  in the example above, we do not distinguish between a graph and its 
complement, and may thereby compute the number of graphs that are isomorphic 
to their complements. 

Vill.5 Exercises 

1 .- Draw the Cayley diagram of the quaternion group (a , b 1 a2 = b2 = (ab)2} .  
2 .  Find the orders of (a , b I a 3  = b 3  = 1 ,  ab  = ba} ,  (a , b I a4 = b 3  = 1 ,  

ab  = ba} and (a , b I a 3  = b4 = (ab)2 = 1 } .  

3 .  Use Euler's formula and information about the Cayley diagram to deduce that 
in the group (a , b ,  c I a5 = b3 = c2 = (abc)- 1 } we have a610 = 1 .  

4 .  Verify that the Cayley diagram associated with the trefoil knot is the diagram 
described in Fig. VIII.5.  

5 .  Write down presentations of the knots shown in Fig. VIII. 1 3 .  Show that the 
group of the quinquefoil is isomorphic to (f, g 1 j5 = g2 } and the group of 
the tweeny is (a , b I ababa- 1b- 1a- 1babab-1a- 1b- l ) .  

6 .  Prove that n o  two of the groups of the knots shown i n  Figs VIII.4 and VIII. 1 3  
are isomorphic. 
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FIGURE VIII. l3 .  The quinquefoil and the tweeny: the two knots whose minimal diagrams 
have five crossings. 

7. A closed orientable surface of genus 2 is obtained by identifying pairs of 
non-adjacent sides of an octagon, say as in Fig. VIII. 14. The fundamental 
group has a presentation 

( I - 1 - 1 - 1 - 1 } a1 , a2 , a3 , a4 a 1a2 a4a1 a3a2a4 a3 . 
Show that the Cayley diagram is a tessellation of the hyperbolic plane. Deduce 
that any non-empty reduced word W equal to 1 must contain a subword of 
length at least 5 that is part of the cyclically written relator or its inverse. (A 
reduced word is one in which no generator occurs next to its inverse.) [Hint. 
Consider the part of the walk W furthest from 1 .] 

FIGURE VIII. l4. An orientable surface of genus 2. 

8 .  Show that the dihedral group Dn , the group of symmetries of a regular n-gon, 
has a presentation of the form (a , b I an = b2 = (ab)2 = 1 } .  What is its 
Cayley diagram? 

9. Give a group whose Cayley diagram is the truncated cube having 8 triangular 
and 6 octagonal faces. 

10. Draw the Cayley diagram of 
(i) (a , b I ab = ba} in the Euclidean plane, 

(ii) (a , b I bn , ab = ba} on an infinite cylinder, 
(iii) (a , b I am = bn = 1 ,  ab = ba} on a torus, 
(iv) (a , b, c I a4 = b4 = c4 = abc = 1 }  in the hyperbolic plane. 
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1 1 . Check the examples of Cayley diagrams illustrated in Fig. VIII.3  and prove 
Theorem 1 .  

12 .  Let A = (a , b I a3 = (ba)2 = 1 )  and B = (b) . What is the Schreier diagram 
of A mod B?  

1 3 .  A group A i s  generated by a, b and c; the Schreier diagram of  A modulo a 
subgroup B is shown in Fig. VIII. 15 .  Read off a set of generators of B .  

B 

...... ..... . . · · ....... . . · 

0 
-- a  
- - - b 

· · · · · · · · · C 

FIGURE VIII. IS .  The Schreier diagram of A mod B.  

14 .  Let A be  the free group on a, b and c, and let B be  the subgroup consisting 
of all squares. What is the Schreier diagram of A mod B ?  Find a set of free 
generators for B .  

1 5 .  How many subgroups o f  index 2 are there i n  a free group of rank k ?  

1 6 .  How many subgroups of index n are there in a free group o n  2 generators? 

17 :+- Show that a subgroup B of a finitely generated free group F is of finite index 
in F iff B is finitely generated and there is a natural number n for which 
wn E B for every word W. 

1 8 .  What is the automorphism group of the Petersen graph (shown in 
Fig. VIII. 1 1 )?  Find the automorphism group of the Kneser graph KY) , where 
s 2: 2r + 1 (see Exercise V. 10) .  Deduce that the automorphism group of 
Ki;�1 is 3-arc-transitive, that is, any path of length 3 can be mapped into any 
other path of length 3 by an automorphism. 

19 .  The Tutte 8-cage has vertices n , ,  n3 , ns for n = 1 ,  2, . . .  , 10, with edges 
joining ns to n ,  and n3 , and n; to m; iff In - m l = ±i (mod 10) .  Show that 
the automorphism group of the Tutte 8-cage is 5-arc-transitive. 

20. Find the automorphism group of the Grotzsch graph (see Fig.  V. 1 1 ) .  

2 1 .  A vertex x E V (G) is a centre of a connected graph G if max { d (x , y) : y E 
V (G)}  = minu max{d(u , v) : v E V (G)} .  Show that every tree has either one 
or two centres, and in the latter case, they are adjacent. 
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22. Show that every automorphism of a tree either fixes some vertex or swaps 
some two adjacent vertices. 

23. Does every tree have an Abelian automorphism group? 

24. Construct a non-trivial tree with trivial automorphism group. 

25:+- Let f(n) be the minimal size of a graph of order n with trivial automorphism 
group. Prove that f(n) < n for every n ::=: 7 and f(n)/n -+ 1 as n -+ oo. 

26. Show that if rr E Aut G has k odd cycles and l even cycles then G has at 
most k + 2l simple eigenvalues. 

27. Show that a connected graph G of odd order whose automorphism group is 
vertex transitive has exactly one simple eigenvalue. 

28.- Let A be the adjacency matrix of a graph G. Show that the i j entry of A e is 
the number of v;-VJ walks of length e .  

29.  Given k ::=: 2, let po(x) ,  p r (x ) ,  . . .  be polynomials defined by po(x) = 1 ,  
PI (x) = x ,  P2 (x ) = x2 - k and 

pe (x) = xpe- r (x) - (k - 1 )pe-2(x) ,  
Show that if A i s  the adjacency matrix of a k-regular graph then (pe (A))iJ is 
the number of v; - VJ walks of length e in which any two consecutive edges 
are distinct. 

30. Complete the details of the second proof of Theorem 1 8, as suggested there. 

3 1 .  Check that for n ::=: 2 the adjacency matrix of the complete graph Kn has two 
distinct eigenvalues: n - 1 and - 1 ,  with m (n - 1 )  = 1 and m (  - 1 )  = n - 1 .  
Also, the n by n matrix ln . with all entries 1 ,  has eigenvalues n and 0, with 
m (n) = 1 and m (O) = n - 1 . 

32. Check that, for n 1 ,  n2 ::=: 1 ,  n 1 + n2 ::=: 3, the complete bipartite graph Kn1 ,n2 
has three distinct eigenvalues: ..jiilili., -..jiilil2 and 0, with m (..jiilili.> = 
m (  -..jiilili.> = 1 and m (O) = n - 2. 

33. Check that for r ::=: 3 and n ::=: 1 the complete r-partite graph Kr (n) has three 
distinct eigenvalues: (r - 1 )n, -n and O, with m ((r - l )n) = 1 ,  m (  -n) = r - 1  
and m (O) = r (n - 1) .  

34. Let G be a regular graph of  order n ,  and let G* be obtained from G by 
substituting r independent vertices for each vertex of G, as in Theorem 19 .  
(Thus G* has rn vertices, and each edge of G corresponds to a Kr,r ·) Show that 
the eigenvalues of the adjacency matrix of G* are precisely the eigenvalues 
of G, together with 0, which has (additional) multiplicity (r - 1)n .  

35:+- Show that the eigenvalues of  Cn are 2, 2 cos 2rrjn, 2 cos 4rrjn ,  . . .  , 
2 cos 2(n - l )rrjn. Thus if n is odd, 2 has multiplicity one and each other 
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eigenvalue has multiplicity two; if n is even, each of 2 and -2 has multiplic­
ity one, and every other eigenvalue has multiplicity two. [Hint. Assuming, 
as we may, that V (Cn) = Zn and E(Cn) = {ij : i - j = ± 1 } , note that 
( 1 ,  w, w2 , . . .  , wn- l ) is an eigenvector for each nth root of unity w.] 

36:+" Let G be the rth power, C� , of an n-cycle: V (G) = Z� , say, and xy is 
an edge of G if for some 1 � j � r ,  we have x; = y; for all i # j ,  
and Xj - Yj = ± 1 .  Show that the eigenvalues of G are 2 LJ=I cos lj2rr: jn ,  
0 � lj < n,  j = 1 ,  . . . , r ,  with appropriate multiplicities. [Hint. If WI , . . • , w, 
are nth roots of unity, then f : V (G) -+ C, (k1 , . . .  , k,) 1-+ w�1 • • • w�' ,  is an 
eigenvector.] 

37. Let A be the adjacency matrix of a regular graph G of order n, and let A 
be the adjacency matrix of G .  Note that A + A = ln - In . Deduce that if 
f.L I ::=: · · · ::=: f.Ln are the eigenvalues of A ,  enumerated with multiplicities, then 
n - 1 - f.L 1 ,  - 1  - f.L2 , . . .  , - 1  - f.Ln are the eigenvalues of A. 

38 . For a graph G with vertex set {v 1 ,  v2 , . . .  , Vn } ,  set 
n n 

gc (x) = I>? + L x;xj = L: xl + 2 L x;xj . 
i= l v;�vj i= l v; Vj EE(G) 

Prove that minxes gc (x) = 1 /l , where S is the simplex 

{X E !Rn : Xi ::=: 0, L Xi = 1 } 
and e = f3 (G) .  

39. Show that if  the Lagrangian fc(x) attains its maximum in the interior of S 
then G is a complete k-partite graph, where k = w(G).  

40. Let Qn be the graph of the n-dimensional cube. Thus Qn has the vertex set 
{0, l }n , and two sequences (a; )} , (b; )} E {0, l }n are adjacent if they differ in 
precisely one term. For 1 � d � n, let Qn,d be obtained from Qn by joining 
vertices at distance d. Let An be the adjacency matrix of Qn and Bn,d the 
adjacency matrix of Qn,d . Show that An and B�.d commute and Bn,d is a 
polynomial of An . 

4 1 .  (Exercise 40 contd.) Prove that the eigenvalues of An are n - 2k, k = 
0, 1 ,  . . .  , n ,  with n - 2k having multiplicity (�) . [Hint. Note that 

An = 
( An- I 

I L )  
Also for e = (e; )i , e; = ± 1 ,  define Vs = (vh )�

n- l as follows: if h = 
2::7,:-d a;i , with a; = 0, 1 ', then Vh = n £�i-l . Check that if k of the £j are 
- 1  then v8 is an eigenvector of An with eigenvalue n - 2k.] 



288 VIII. Graphs, Groups and Matrices 

42:+- Let G 1 ,  . . .  , G l be (not necessarily distinct) complete sub graphs of Kn , each 
of order at most n - 1 ,  such that every edge of Kn belongs to the same 
number f.L ::: 1 of G; s. Prove Fischer's inequality that e ::: n ,  provided n ::: 2. 
[Hint. Set V (Kn) = { VJ , . . .  , Vn } ,  and let B be the n by e incidence matrix 
of the cover Kn = uf=1 G; . Thus (B)ij is 1 if v; E Gj and 0 otherwise. By 
considering its quadratic form, show that B B1 has rank n.] 

43 . Let G be a connected graph with V (G) = {v J , . . .  , vn } ,  n ::: 2, 
adjacency matrix A and degree sequence d(vJ ) ,  . . .  , d(vn ) .  Let D = 

Diag(d(vJ ) ,  . . .  , d(vn)) .  Let L = D - A be the combinatorial Laplacian, 
and define the analytic Laplacian C of G as C = v-112 LD- 112 • For ).. e C, 
let Ev-IL ()..) = (D- I L - Al)- 1 (0) and Ec()..) = (C - Al)- 1 (0) , so that 
mv-I L ()..) = dim Ev-IL ()..) and m.c()..) = dim Ec()..) are the (geometric) 
multiplicities of an eigenvalue A. Show that all eigenvalues of v-I L and C 
are real. 
Show also that D112 maps Ev-IL ()..) onto E.c(A) for every ).. and so 
mv-IL ()..) = m.c(A). 

44. (Exercise 43 contd.) Show that every eigenvalue of the analytic Laplacian C is 
nonnegative and mc (O) = 1 .  What are the eigenvectors of C with eigenvalue 
0? 

45. (Exercise 44 contd.) Prove that the following four properties are equivalent: 
(a) G is bipartite, 
(b) me ()..) = mc(2 - )..) for every ).., 
(c) m.c(2) = 1 ,  
(d) mc(2) 2: 1 .  

46. Prove that the matrix J (all of whose entries are 1 )  is a polynomial in the 
adjacency matrix A if G is regular and connected. 

4 7. Let T be a hermitian operator on a complex inner product space V ,  with 
eigenvalues A J  :S A2 :S · · · :S An , and associated quadratic form q (x) = 

(Tx, x} . Let S be the unit sphere of V :  

S = { x  E V :  l lx l l  = 1 } .  

Define vectors X J , x2 , . . .  , Xn E S as follows. Let x E S be such that q (xi )  = 

min{q (x) : x E S} .  Suppose 1 :S k < n and we have defined X J ,  . . .  , Xk . 
Let Xk+I E S n (X I , . . .  , Xk ).L be a vector at which q attains its minimum on 
S n (X I , . . .  , Xk ).L : 

q (xk+ I ) = min{q (x) : x E S  and (x, x; ) = 0 for i = 1 ,  . . .  , k } .  

Show that for each i ,  1 :S i :S n, x;  i s  an eigenvector of T with eigenvalue Ai . 

48. (Exercise 47 contd.) Show that 

Ak+ I = max{min{q (x) : x E S  n Un-d :  Un-k C V, dimUn-k = n - k} .  
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49. Show that for every k 2: 0 there are infinitely many k-connected graphs G 
with vertex connectivity K (G) = k = Az(G) . [Hint. Consider (K, U K,) + Kk 
for r > k.] 

50:t Let G be a graph of order n and maximal degree D. ,  and set c = 2Az(G)/(l::!.. + 
2J..2 (G)) . Show that for every set U of at most n/2 vertices there are at least 
c 1 U 1 vertices not in U that are joined to vertices in U. (Such a graph is said 
to be an (n , D. ,  c)-expander.) 

5 1 . Let Po (x) = Lk=O ckxn-
k be the characteristic polynomial of (the adjacency 

matrix of) a graph G. Show that co = 1 ,  C! = 0, cz = -e(G) and -c3 is 
twice the number of triangles in G .  

52:t Let Po (x) be  the characteristic polynomial of G ,  as i n  Exercise 5 1 .  Show 
that if e = xy is a bridge of G then 

Po (x) = Po-e (x) - Po-{x ,yj (X) .  

Now, let F be a forest with 2n vertices and denote by dk the number of 
k-element sets of independent edges. [Thus dn is the number of ! -factors.] 
Prove that 

What are the possible values for dn ? 

53 . Let G be a connected k-regular graph containing an odd cycle. At time 0 put 
a counter on a vertex. For each counter that is, on a vertex x at time t ,  place a 
counter on every vertex adjacent to x at time t + 1 and remove the counters 
from t. Show that n1 (x) I e tends to a limit as t � oo, where n1 (x) is the 
number of counters on x at time t. What is the corresponding assertion if the 
counters are not removed from the vertices? [Hint. There is an orthonormal 
basis consisting of the eigenvectors of the adjacency matrix.] 

54. A k-regular graph G of order n is such that any two non-adjacent vertices can 
be mapped into any other such two by some automorphism of G .  Show that 
G is strongly regular. What are the eigenvalues of G? What is the condition 
that k and n have to satisfy if there is such a graph? 

55. Let C be the collapsed adjacency matrix of a highly regular graph. Show that 
( Ce) 1 1  is the number of walks of length l from a vertex to itself. Interpret the 
other entries of ce . 

56. Why must the collapsed adjacency matrix of the Petersen graph, as shown in 
Fig. VIII. 1 1 , have rational eigenvalues? 

57:t In the graph G every two adjacent vertices have exactly one common 
neighbour and every two non-adjacent vertices have exactly two common 
neighbours. Show that G is regular of degree 2k and has order 2k2 + 1 ,  for 
some k in { 1 ,  2, 7 , 1 1 , 56, 497} .  
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58:+" Let G be a strongly regular graph of order 100 with parameters (k , 0, b) . 
What are the possible values of k? Find the eigenvalues when k = 22. 

59:+" Make use of the result of Exercise 19 to calculate the eigenvalues of the Tutte 
8-cage. 

60. Give detailed proofs of Theorem 10 and Corollary 1 1 . 

6 1 .  Prove that the number of trees with n - 1 � 2 labelled edges is nn-3 . 

62. Show that a given vertex has degree 1 in about 1 I e of all labelled trees, where 
e = 2.7 1 828 . . .  (Cf. Exercise VII. 15).  

63.  Denote by T(n ,  k) the number of trees with n labelled vertices of which 
exactly k have degree 1 .  Prove that 

k -T(n ,  k) = (n - k)T(n - 1 ,  k - 1)  + kT(n - 1 ,  k) . n 
64. Prove that there are 

1 � 1 . (m) ( n - 1 ) . 
I L..t(- - )1 . . nn-m-J (m + j ) !  m . J=O 2 1 m + 1 - 1 

acyclic graphs on n labelled vertices having n - m edges. Deduce that there 
are ! <n - l ) (n + 6)nn-4 forests with two components. 

65:+" Show that the cycle sum of the symmetric group Sn acting on the usual n 
letters is 

� n ! )I )2 Jn 
L..t nn . . a ! a2 . . .  an , 

k= l klk 1k l 

where the summation is over all partitions h + 2h + · · · + njn = n. 
What is the cycle sum of Ss acting on the unordered pairs of 5 elements? How 
many non-isomorphic graphs are there on 5 vertices? How many of them have 
5 edges? 

66:+" Let Z(r ; a 1 , a2 , . . .  , ad) be the cycle index of a permutation group r acting 
on a set D. Consider the action of r on the set of all k-subsets of D. How 
many orbits are there? 

67. Determine the cycle index of the rotations of the cube acting on (i) the vertices, 
(ii) the edges, (iii) the faces, (iv) the faces and vertices. In how many distinct 
ways can you colour the vertices using some of n colours? The edges? The 
faces? The vertices and faces? 

68. Show that the cycle sum of Cn . the cyclic group of order n, is 
- � njk Z(Cn ; a 1 , . . .  , an ) = L..t ifJ (k)ak 

k/n 
where ifJ (k) is the Euler function. 
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69:+ Prove that the cycle index of the dihedral group Dn (cf. Exercise 8) is 

1 Z(Dn ; a , ,  . . .  , a2n) = lZ(Cn ; a, , . . .  , an ) +  f(a !a2) ,  

f (a , ,  a2) + 
1 1 (n- 1 )/2 
2a,a2 if n is odd, 

1 (an12 + a2a(n-2)12) if n is even. 4 2 I 2 
How many bracelets are there with 20 beads coloured red, blue and green? 

70. How many distinct ways are there of colouring the faces of a dodecahedron 
with red, blue and green, using each colour at least once? 

7 1 .  + Let Sn be the symmetric group of all permutations of [n] = { 1 ,  2, . . .  , n } .  A 
transposition basis is a minimal set B C Sn of transpositions generating Sn . 
Prove that there are precisely nn-2 transposition bases. 

72. A graph is vertex-transitive if any two vertices can be mapped into each other 
by an automorphism, and it is edge-transitive if any two edges (unordered 
pairs of adjacent vertices) can be mapped into each other by an automorphism. 
Also, a graph is ! -transitive if any two ordered pairs of adjacent vertices can 
be mapped into each other. Find a graph which is edge-transitive but not 
vertex-transitive, and a graph that is edge-transitive but not ! -transitive. 

73.+ Construct a graph that is vertex-transitive and edge-transitive but not ! ­
transitive. [Hint. First find an infinite graph, and then 'project' i t  on  a finite 
graph.] 

In Exercises 74-76, G is a graph of order n, size m and maximal degree !::J., 
with eigenvalues A! 2: A2 2: . . .  2: An . 

74. Show that>.. , 2: ../7i 
75. Show that 2mjn :;:: >.. , :;:: J2m(n - l )jn . 
76 . Show that if G is k-regular and has diameter D then k- >..2 = >.. , - >..2 > 1 /  D. 
77:+ Show that if  G is a bipartite graph without 0 as a n  eigenvalue then G has a 

complete matching. 

Notes 

There is a vast literature concerned with group presentations, including the use of 
Cayley and Schreier diagrams. The basic book is perhaps W. Magnus, A. Karrass 
and D. Solitar, Combinatorial Group Theory, 2nd ed. ,  Dover, New York, 1 976; the 
connections with geometry are emphasized in H.S.M. Coxeter, Regular Complex 
Polytopes, Cambridge University Press, New York, 1974. Numerous articles deal 
with the computational aspect, in particular J.A. Todd and H.S.M. Coxeter, A 
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practical method for enumeraiing cosets of a finite abstract group, Proc. Edinburgh 
Math. Soc. (2) 5 ( 1936) 26-34, which was the first paper in this line and J. Leech, 
Computer proof of relations in groups, in Topics in Group Theory and Computation 
(M.P.J. Curran, ed.), Academic Press, New York, 1977, in which some more recent 
developments are described. 

Max Dehn posed the word problem in tiber unendliche diskontinuierliche Grup­
pen, Math. Ann. 71 ( 19 1 1 )  1 1 6-144, and gave the above discussed presentation 
of the group of the trefoil in tiber die Topologie des dreidimensionalen Raumes, 
Math. Ann. 69 ( 19 10) 1 37-168 . The word problem was shown to be intrinsically 
connected to logic by P.S .  Novikov, On the algorithmic unsolvability of the word 
problem, Amer. Math. Soc. Trans/. (2) 9 ( 1958) 1-22 and G. Higman, Subgroups 
of finitely presented groups, Proc. Royal Soc. A, 262 ( 1961) 455-475. For the 
properties of knots and their groups the reader is referred to R.H. Crowell and 
R.H. Fox, Introduction to Knot Theory, Graduate Texts in Mathematics, Vol. 57, 
Springer-Verlag, New York, 1977, and G. Burde and H. Zieschang, Knots, de 
Gruyter Series in Mathematics 5 , Walter de Gruyter, Berlin-New York, 1985. 

An exposition of general matrix methods in graph theory can be found in 
N. Biggs, Algebraic Graph Theory, Cambridge University Press, 2nd ed. ,  Cam­
bridge, 1993. For a grounding in basic functional analysis, including the use 
of numerical ranges, see B. Bollobas, Linear Analysis, Cambridge Univ. Press, 
1 990. The first striking result obtained by matrix methods, Theorem 19 , is due to 
A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and 3 ,  IBM 
J. Res. Dev. 4 ( 1 960) 497-504. Theorem 10 and its corollary are from T.S.  Motzkin 
and E.G. Straus, Maxima for graphs and a new proof of a theorem of Tunin, Cana­
dian Journal of Mathematics 17 ( 1965) 535-540. Alon and Milman were the first 
to make good use of the Laplacian in graph theory: for the first results, see N. Alon 
and V. Milman, )... 1 ,  isoperimetric inequalities for graphs, and superconcentrators, 
J. Combin. Theory (B) 38 ( 1985) 73-88, and N. Alon, Eigenvalues and expanders, 
Combinatorica 6 ( 1986) 83-96. We should remark here that our use of A2 for the 
second smallest eigenvalue of the Laplacian is somewhat non-standard: it is more 
usual to write AO � )... 1 � · · • � An- I for the eigenvalues. In particular, the )... 1 in 
the title of the Alon-Milman paper above is our A2 . For a detailed study of the 
spectrum of the Laplacian see F.R.K. Chung, Spectral Graph Theory, CBMS Re­
gional Conference Series in Mathematics, vol. 92, Amer. Math. Soc. ,  Providence, 
1997. 

The Cauchy-Frobenius lemma used to be called Burnside's lemma, as it ap­
peared without attribution in the book of W. Burnside, Theory of Groups of Finite 
Order, 2nd ed. ,  Cambridge University Press, Cambridge, 19 1 1 .  For a fascinating 
account of this lemma, see P. Neumann, A lemma that is not Burnside's, Math. 
Scientist 4 ( 1 979) 1 33-14 1 .  

The fundamental enumeration theorem of G .  P6lya appeared i n  Kombina­
torische Anzahlbestimmungen fiir Gruppen und chemische Verbindungen, Acta 
Math. 68 ( 1937) 145-254. Many enumeration techniques were anticipated by 
J .H. Redfield, The theory of group-reduced distributions, A mer. J. Math. 49 ( 1927) 
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433-455.  The standard reference book for P6lya-type enumeration is F. Harary 
and E.M. Palmer, Graphical Enumeration, Academic Press, New York, 1973. 

The recent two-volume treatise Handbook of Combinatorics (R.L. Graham, 
M. Grotschel and L. Lovasz, eds), North-Holland, Amsterdam, 1995, contains 
several articles going much deeper into various aspects of algebraic combinatorics 
than we could in this chapter: see, in particular, the review articles by N. Alon 
(Tools from higher algebra), L. Babai (Automorphism groups, isomorphism, re­
construction), P.J. Cameron (Permutation groups), I.M. Gessel and R.P. Stanley 
(Algebraic enumeration), and C.D. Godsil (Tools from linear algebra). 





IX 

Random Walks on Graphs 

Random walks on graphs and Markov chains with a finite number of states have 
been investigated for over 90 years, but their study really took off only in the 
last two decades or so. The main reasons for this heightened activity are the 
systematic exploitation of the surprising and extremely useful connection with 
electrical networks, the emergence of intricate combinatorial arguments, the use 
of the spectral properties of relevant matrices, and applications of harmonic anal­
ysis. In this chapter we shall dip into the theory of random walks on graphs, 
emphasizing combinatorial arguments, the connection with electrical networks, 
and eigenvalues. 

A random walk on a graph is precisely what its name says: a walk X oX 1 · · · 
obtained in a certain random fashion. In its simplest form, it depends only on the 
graph and nothing else. Starting a simple walk at Xo, its next vertex, X 1 , is chosen 
at random from among the neighbours of Xo, then X2 is a random neighbour of 
X 1 , and so on. In fact, this simple random walk on a graph is only a little less 
general than a reversible finite Markov chain: attaching weights to the edges and 
allowing loops, every reversible finite Markov chain can be obtained in this way. 
Following the usual notation for Markov chains, instead of XoX1 · · · , we write 
Xo , X 1 , . . . for a random walk. At the first sight, random walks on graphs seem to 
be rather special finite Markov chains, but this is not the case: finite Markov chains 
are just random walks on weighted directed graphs, with loops allowed. In view 
of this ,  it is not surprising that random walks on graphs are of great importance. 

In Chapter II we introduced electrical networks and studied their basic proper­
ties, culminating in Kirchhoff's theorem. In Section 1 we shall go a little deeper 
into their theory: rather than taking a static view whereby currents are solutions 
of systems of linear equations or ratios of quantities described in terms of graphs, 
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we describe currents as variables minimizing certain quadratic energy functions. 
This implies that the current distribution is rather stable: small changes in the 
resistances of the wires do not lead to a radically different current distribution. 
More importantly, it also implies that cutting a wire does not decrease the total 
resistance and shorting vertices does not increase the resistance. 

The connection between random walks and electrical networks is established in 
Section 2. This intimate connection greatly benefits both areas: we can use random 
walks to prove results about electrical networks, and conversely, we can use our 
theory of electrical networks to prove beautiful results about random walks. A 
highlight of Section 2 is a stunning proof of P6lya's classical theorem on random 
walks on lattices, based on the connection with electrical networks. 

In Section 3 we shall study the standard parameters of random walks such 
as hitting times, commute times and return times. In addition to combinatorial 
arguments, we shall continue exploiting the connection with electrical networks. 

The last section concerns a central question of random walks: how fast is 
the convergence to the stationary distribution? As we shall see, the speed of 
convergence is governed by the expansion properties of the graph. 

IX. l Electrical Networks Revisited 

Let us recapitulate briefly the concepts encountered in Chapter II. An electrical 
network N = (V,  E, r) = (G, r) is a multigraph G = (V,  E), together with a 
function r : E -+ JR+, where re = r (e) is the resistance of the edge e. It is 
frequently convenient to give our network in the form N = (G, c) , where c is the 
conductance function, so that Ce = l fre is the conductance of the edge e. 

If there is a potential difference Pe = Pab in an edge e from a to b, then an 
electrical current We will flow in e from a to b according to Ohm 's law (OL) : 
We = Pelre .  The distribution of currents is governed by Kirchhoff's laws. 

Kirchhoff's potentia/ law (KPL) postulates that the sum of potential differences 
around any cycle is 0, and Kirchhoff's current law (KCL) states that the total 
current into a vertex is 0. In calculating the total current into a vertex, we have to 
take into account the amount of current both entering and leaving the network at 
that vertex. 

Kirchhoff's theorem (Theorems II. l )  gives a combinatorial interpretation of 
the currents in the edges of an electrical network resulting in a current of size 
I from a source s to a sink t. This easily implies the corresponding result for 
several sources and sinks: if SJ ,  . . .  , Sk are vertices of a (connected) electrical 
network N = (V,  E, r) and the real numbers WI ,  • . .  , Wk sum to 0, then there is 
a unique distribution of currents and potential differences in the edges such that, 
for i = 1 ,  . . . , k, a current of size w; enters ( -w; leaves) the network at Si , and at 
no other vertex does any current enter (or leave) the network. 

Somewhat surprisingly, from Kirchhoff's theorem it is not easy to show that if 
a wire is cut then the total resistance of the network between two vertices does 
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not decrease. Of course, if you believe that the three laws of electric currents 
describe a physical system with some properties we consider "natural", then this 
mono tonicity principle is self-evident. However, we know that, having postulated 
the three laws, we have had our say :  there is a unique distribution of currents 
and there is a well defined total resistance, so we cannot appeal to our physical 
intuition. This difficulty in proving the above monotonicity principle demonstrates 
the shortcomings of the static approach based on using at once the full force of 
Kirchhoff's laws and Ohm's law: although Kirchhoff's theorem tells us that there 
is a solution, this solution seems to be an unpredictable and unstable function of 
the equations. 

As we shall see in this section, it is much better to use only some of the 
conditions given by our laws and define certain functions that attain their minima 
at places satisfying the remaining equations. Unlike the solutions of the full system 
of equations, these optimization problems behave in an easily predictable fashion, 
enabling us to get a much better insight into the distribution of currents and 
potentials. In particular, we shall give several explicit optimization methods for 
constructing the currents and potentials. As a result of these methods, we can give 
several proofs of the monotonicity principle. 

If we do not wish to take into account all three laws at once, then there are two 
natural ways open to us in our search for the proper electric currents and potentials. 
We may consider currents satisfying Kirchhoff's current law, use Ohm's law to 
define potential differences and then use a function to select currents that satisfy 
Kirchhoff's potential law, or we may consider a distribution of potential differences 
satisfying KPL, define currents by OL and then use a function to select the currents 
that satisfy KCL. As we shall see, we do not have to try hard: it will actually be 
very easy. 

Note that our aim is to prove the existence of a proper distribution of currents : 
as we know from Section 11. 1 ,  uniqueness is immediate from the superposition 
principle. 

Let us recall first that KPL is equivalent to the possibility of defining an absolute 
potential Vx for every vertex x such that Pxy = Vx - Vy for each edge xy . Indeed, 
if (Pxy) is a distribution of potential differences satisfying KPL and ux 1 xz · · · Xk v 
and UYIY2 • · • YL V are u-v paths then 

To define absolute potentials, pick a vertex v, and set Vv = 0, say. For each vertex 
u ,  pick a u-v path ux1x2 · · · XkV and set 

By ( 1 ), Vu is well-defined, i .e. ,  independent of the u-v path ux1x2 · · · Xk v. It is 
immediate that Pxy = Vx - Vy for every edge xy . The converse is even more trivial: 
if ( Vx) is an assignment of absolute potentials to the vertices then Pxy = Vx - Vy 
gives a distribution of potential differences satisfying KPL. 
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Let us write out explicitly the two natural ways of getting proper electric currents 
in a network, with no current leaving or entering the network at vertices other than 
SJ , • . •  , Sk . 

The approach assuming KCL and OL. Consider a flow (uxy ) with outlets 
(sources and sinks) s J ,  . . .  , Sk , i.e., with Lyer (x) Uxy = O for every x =f. SJ , • • •  , Sk . 
In order to tum the flow into a proper electric current with outlets (sources and 
sinks) S J , • . •  , Sk . all we have to make sure is that KPL holds, i.e., that 

k 
L Ux;xi+l rx;xi+ l = 0 
i= l 

for every cycle X JX2 • · · Xk . with Xk+J = XJ .  

(2) 

The approach assuming KPL and OL. Consider a distribution ( Vx) of absolute 
potentials on the vertices. This distribution gives a proper electric current with 
outlets S J , • • •  , sk iff KCL holds, i .e. , 

L 
Vx - Vy 

= O 
yer(x) rxy (3) 

for every vertex x =f. SJ , . • .  , sk . (Note that every assignment (Vx) of absolute 
potentials gives a distribution of currents, but there may be some current leaving 
or entering the network at vertices other than S J , • • •  , sk .) Let us rewrite (3) in 
terms of the conductances Cxy = l frxy . with Cx = Lyer(x) Cxy · A distribution 
( Vx) of absolute potentials results in a distribution of electric currents with outlets 
S J , . • •  , Sk if, and only if, for every vertex x =f. SJ , . . .  , Sk we have 

Cx Vx = L Cxy Vy . (4) 
yef(x) 

In both methods above, we shall use the same function to find the currents. 
Given an edge xy with resistance rxy . potential difference Pxy = Vx - Vy , and so 
a current of size Wxy = Pxy/rxy = (Vx - Vy)/rxy . the energy in xy is defined to 
be 

The total energy in a network N = (G, r) = (V(G), E(G), r) is 

(Vx - Vy)2 L w;yrxy = L = L CVx - Vy)Wxy ·  (5) 
xyeE(G) xyeE(G) rxy xyeE(G) 

In the formulae above and in subsequent summations the edges are taken to be 
oriented in an arbitrary fashion. This is simply to avoid double summation; if 
the edges are not taken to be oriented, then the total energy is defined to be 
! Lx,y w;yrxy • with the convention 0 · oo = 0, in case xy is not an edge, so 
rxy = oo and Wxy = 0. In particular, the last part of formula (5) is clearly ill­
defined if the edges are not oriented. Furthermore, the formulae above are, strictly 
speaking, incorrect even with oriented edges: as our network may have several 
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edges from x to y ,  in (3), (4) and (5) the sums stand for summations over all edges 
from x to y ,  and rxy . Cxy and Wxy are functions of the particular edge from x to y ,  
rather than of  the pair (x , y) . However, i t  i s  unlikely that this shorthand will lead 
to confusion. 

Let us pause for a moment to remark that we lose nothing from the generality if 
we restrict our attention to simple electrical networks, that is, to networks in which 
each edge has resistance 1 ,  since every electrical network can be approximated 
by an electrical network (with more edges) in which all edges have the same 
resistance. In many calculations it is convenient to have general resistances, while 
occasionally, as in (5), the concepts are clearer for simple networks. Indeed, for 
a simple network N = ( G, 1 ) ,  the total energy in N is the value of the quadratic 
form given by the Laplacian L = D - A on the vector (Vx) of absolute potentials. 
Of course, in the general case we are hardly worse off: all we have to take is the 
Laplacian of the weighted graph with the conductance Ce = 1 Ire for the weight 
of an edge e . 

Let us  return to our task of  showing the existence of  currents satisfying all three 
laws. Thomson 's principle says that currents and potentials are distributed in such 
a way as to minimize the total energy in the network. There are two forms of this 
result: in Theorem l we choose potentials and in Theorem 2 currents. Theorem 1 
is also called Dirichlet's principle. 

Theorem 1 Let N = ( G, r) be an electrical network, S! , . . .  , Sk E V (G), and 
V81 ,  • • •  , Vsk E R Then there are absolute potentials Vx. x E V(G) \ {s, , . . .  , Sk } 
such that 

xyeE(G) rxy 

is minimal. This distribution (Vx) of absolute potentials gives a proper electric 
current with no outlet other than S! , . . .  , sk . The minimum of E is precisely the 
total energy of the electric current. 

Proof Since the energy function E is a  continuous function of the absolute poten­
tials (Vx) E JR. V(G) , and E --+ oo as max I Vx I --+ oo, the infimum of E is indeed 
attained at some (Vx) .  Furthermore, at this point (Vx) E JR. V(G) we have 

for every x =ft S ! , . . .  , sk , so 

L _2(-'-V_x_-_V--'y-'-) = 2 L Wxy = 0. 
yer (x) rxy yer (x) 

Hence the absolute potentials do define a distribution of currents (via Ohm's Law) 
satisfying KCL. 0 
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Theorem 2 Let N = (G, r) be an electrical network, SJ . . .  , Sk E V (G), and let 
Us1 , • • •  , Usk E R with L�=l Us; = 0. Consider the energy function 

E = E(u) = L u;yrxy 
xyeE(G) 

for flows u = (uxy) in which a current of size Us; enters the network at Si (i. e. , a 
current of size -Us; leaves the network at Si ), i = 1 ,  . . .  , k, and at no other vertex 
does any current enter or leave the network. There is such a flow minimizing E (u ), 
and this flow satisfies KPL, so it is a proper electric current. The minimum of E(u) 
is precisely the total energy in the current. 

Proof Once again, compactness implies that the infimum of E(u) is attained at 
some flow u = (uxy) .  Given a cycle XJX2 · • · Xe , X£+1 = XJ , let u (s) be the flow 
obtained from u by increasing each Ux;xi+ 1 by s for i = 1 ,  . . .  , l. Then 

at s = 0, so 

l 

_d E_(
...,...
u_(s_)) = 0 de 

2 L Ux;xi+ l  rx;Xi+ ! = 0. 
i= l 

Thus KPL holds, as claimed. 0 

The effective conductance Ceff = Ceff(S , t) of an electrical network from s to t 
is the value of the current from s to t if s and t are set at potential difference 1 .  The 
effective resistance is Reff = Reff(S , t) = 1 /Ceff(S , t) , the potential difference 
between s and t ensuring a current of size 1 from s to t . 

The next result, Rayleigh 's principle or the conservation of energy principle, , 
implies that if we replace a network with a source s and a sink t with a single wire 
whose resistance is the effective resistance of the network, then the total energy 
in the system does not change. 

Theorem 3 Let u = (uxy) be a flow from s to t with value 

Us = L Usy = - L Utz = -u, , 
yer (s) zer (t) 

i. e., let u be a flow satisfying KCL at each vertex other than s and t, and let <Vx) 

be any function on the vertices. Then 

<Vs - Vr )Us = L (Vx - Vy)Uxy · 
xyeE(G) 

Proof The right-hand side is 

L vx ( L Uxy - L Uzx) = VsUs + V,u, = (Vs - V,)us . 0 
xeV(G) yer+ (x) zer- (x) 
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Corollary 4 The total energy in an electric current from s to t is (V8 - V1)w8, 
where w8 = Lxer (s) Wsx is the value of the current. lfVs - V1 = 1 then the total 
energy is equal to the size of the current; i. e. , the total energy, the total current 
and the effective conductance are the same. If Ws = 1 then the total energy is the 
potential difference between s and t; i. e., the total energy, the potential difference 
and the effective resistance are the same. 
Proof This is immediate from Theorem 3 .  D 

Theorem 1 and Corollary 4 imply an expression for the effective conductance. 

Corollary 5 The effective conductance Cerr(s ,  t) of a network between s and t is . { "" (Vx - Vy )2 } Cerr(s , t) = mf � : Vs = 1 ,  Vr = 0 . 
xyEE(G) rxy (6) 

Similarly, Theorem 2 and Corollary 4 give a rather useful expression for the 
effective resistance Rerr(s ,  t) . 
Corollary 6 The effective resistance Rerr(s , t) of a network between s and t is 

Rerr (s , t) = inf
{ L u;yrxy : (uxy) is an s-tfiow ofsize 1 } . (7) 
xyEE(G) 

Either of Corollaries 5 and 6 implies the Holy Grail of this section, the 
monotonicity principle. 
Corollary 7 If the resistance of a wire is increased then the effective resistance 
(between two vertices) does not decrease. In particular, if a wire is cut, the effective 
resistance does not decrease, and if two vertices are shorted, the effective resistance 
does not increase. 
Proof If rx0y0 is increased then the expression for Cerr(s , t) in Corollary 5 does 
not increase. Equivalently, the expression for Rerr(s , t) in Corollary 6 does not 
decrease. D 

Our next aim is to establish a connection between random walks and electrical 
networks; the results above will then be very useful in attacking questions on 
random walks. 

IX.2 Electrical Networks and Random Walks 

Given a pair (G, S), where G is a simple graph and S c V(G) , a function 
f : V (G) -+ lR is said to be harmonic on G with boundary S if 

1 f(x) = d(x) L f(y) (8) 
yef (x) 

whenever x E V (G) \ S and d(x) � 1 .  Harmonic functions are of central im­
portance in the theory of electrical networks, and we did encounter them in the 
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previous section, without calling them by their name. Indeed, given a graph G, turn 
it into a simple electrical network by giving each edge xy conductance Cxy = 1 ,  
and take S = {s 1 , . . .  , Sk } .  Then (4) states precisely that if no current leaves or 
enters G at vertices other than the Si then the function of absolute potentials, Vx , 
is harmonic on G with boundary S: 

1 
Vx = d L Vy , (x) yer (x) 

whenever x e V (G) \ S and d(x) ::: 1 .  

(9) 

Another natural source of harmonic functions on a graph is a random walk on 
the graph. Given a connected graph G with a non-empty set S c V (G),  let g be a 
real-valued function on S. For each x e V (G), play the following game. Starting 
at x ,  move about in G at random, stopping as soon as you reach a vertex s of S: 
if this happens, x wins g(s) . To be precise, set Xo = x .  Having defined X1 = y, 
if y E S, stop the sequence; otherwise, pick a neighbour z of y at random, and set 
Xt+ l  = z. If this random walk Xo , X 1 , . . .  terminates in s E S, then x wins g(s) .  
Now, let Ex be the expected gain of  x .  Thus, i f  x e S then Ex = g (x) ;  otherwise, 
the expected gain of x is the average of the expectations after one step i.e. , 

1 
Ex = d L Ey .  (x) yer (x) 

( 10) 

This shows that Ex is a harmonic function on G with boundary S. Also, if 
S = {s 1 , . . .  , sk } and g(si ) = Vsp then equations (9) and ( 10) imply that (Ex )  
i s  precisely the distribution of  absolute potentials if each Si i s  set at Vsi and no 
current leaves or enters the network at vertices other than the Si . 

The importance of harmonic functions in the study of both electrical currents 
and random walks on graphs establishes an intimate connection between the two 
areas. This alone would suffice to make the study of random walks on graphs 
worthwhile, but there is another, even more compelling reason: random walks on 
weighted graphs, to be introduced next, are precisely the reversible finite Markov 
chains. For an easy justification of this statement see Exercise 1 1 . 

The aim of this section is to introduce random walks on graphs and to present 
the intimate connection between random walks and electrical networks. We shall 
show that this connection greatly benefits both theories by giving two more proofs 
of the monotonicity principle, and by making use of electrical networks in the 
study of random walks. 

A (discrete-time) Markov chain on a finite or countable set V of states is a 
sequence of random variables Xo , X 1 , . . .  taking values in V such that for all 
xo , . . . , Xt+ l E V, the probability of Xt+l = Xt+l , conditional on Xo = xo , . . .  , 
X1 = Xt . depends only on x1 and Xt+ l · As most of our Markov chains will be 
defined by graphs, we shall tend to call them random walks. 

Let G be a graph of order n without multiple edges but with a loop allowed at 
each vertex. To each edge and loop xy, we assign a positive weight [avoirdupois 
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weight?] axy > 0. In particular, axx is the weight of the loop xx at x. Writing a 
for the function xy 1-+ axy . we have obtained the weighted graph (G, a) .  

Now, given a weighted graph (G, a) , for every vertex x e V (G) , let Ax = 
Lyef(x) axy . and for x ,  y E V(G), define 

I axy /Ax if x is joined to y by an edge or loop, 
Pxy = 0 otherwise. 

Thus P = (Pxy) is an n x n matrix with non-negative entries in which each 
row-sum is 1 .  

A random walk defined by a weighted graph is a Markov chain on V = V (G) 
with transition probability matrix (Pxy)x ,yev .  so that Pxy is the probability of 
going from x to y .  By a random walk (RW) on a weighted graph we shall mean 
a random walk with this particular transition matrix. Thus an RW is a sequence 
of random variables Xo , x, , . . .  , each taking values in the set V of vertices, such 
that 

for every walk ( ! )  xox1 · · · Xr in the graph G. If G does not contain the walk 
xox1 · · · Xt then IP'(Xo = xo , . . .  , Xr = Xt) = 0. If Xr = y then we say that at time 
t the walk is at y .  

Strictly speaking, we tend to  consider the entire class of  RWs with the same 
transition probability matrix P = (Pxy) .  so that (Xr )0 stands for any of the RWs 
with this transition matrix. To select one of these RWs, we usually fix the initial 
distribution, i .e. , the distribution of Xo. In fact, much of the time we start our 
random walk (Xi )o at a given vertex, so that Xo = xo for some xo e V(G) . It 
will be convenient to identify ourselves with the random walk; thus we may say 
that "starting at x ,  we get to y before we get to z". 

It is only slightly less natural to define a random walk on a weighted multigraph, 
with multiple edges and loops allowed. Let ( G, a) be a multigraph with weight 
function a : E(G) -+ JR., e 1-+ ae > 0. For x e V(G), let Ax be the sum of 
the weights ae of all the edges and loops e incident with x ,  and for x ,  y e V (G) 
let axy be the sum of the weights of all the edges or loops joining x to y .  Then 
P = (Pxy) .  given by Pxy = axy/Ax . is the transition probability matrix of an RW 
on the weighted graph ( G, a) . 

Intuitively, in an RW on a weighted multigraph, if  we are at a vertex x ,  then we 
choose at random one of the edges and loops incident with x (rather than one of 
the neighbouring vertices) according to their weights and traverse that edge to the 
other end vertex. 

Now, the weighted multigraphs we are especially interested in are the electrical 
networks (G, c) , with conductance function c: the weight of an edge e is taken to 
be its conductance Ce .  An RW on an electrical network will always be taken to be 
an RW with this weight function. 
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To simplify the notation, we shall assume that our electrical network does not 
have multiple edges and loops, so that we can write Cxy for the conductance of 
the edge from x to y .  In fact, it will be convenient to have no loops, although the 
existence of loops would not affect our formulae: the only difference is that if we 
have no loops then our RW is not allowed to linger at a vertex. Thus, from now 
on an electrical network N = ( G, c) will be assumed to be on a simple graph G ,  
so  that an RW on  N will have transition probability matrix P = ( Pxy) . given by ! Cxy / Cx if xy E E(G) ,  

Pxy = 0 otherwise, 

where Cx = LyE f(x) Cxy · 
After all this preamble, let us get down to a little mathematics. First we return to 

the example of absolute potentials given by random walks, but state the result in a 
slightly different way. We shall again consider only networks with one source and 
one sink, but we shall prove a little more than in our earlier remarks. To describe 
the currents, we introduce the probability Pesc = Pesc (s � t) of escaping from s 
to t ,  or simply the escape probability: the probability that, starting at s ,  we get to 
t before we return to s .  

Theorem 8 Let N = (G,  c) be a connected electrical network, and let s, t E 

V (G ), s f.  t. For x E V (G) define 

Vx = !Jl'(starting at x ,  we get to s before we get to t ) ,  

so that Vs = 1 and V1 = 0 . Then ( Vx hE V(G) i s  the distribution of absolute 
potentials when s is set at 1 and t at 0. The total current from s to t is 

Ceff (S , t) = Cs Pesc (S � t) . (11) 

Also, 

Pesc (S � t) Ct 
= (12) 

Pesc (t � s) Cs 

Proof By considering the very first step of the RW started at x f. s ,  t ,  we see that 

so (4) follows: 

"" "" Cxy 
Vx = � Pxy Vy = � C Vy , 

Y yEf (x) X 

Cx Vx = L Cxy Vy .  
yEf (x) 

Hence C Vx )xE V (G) is indeed the claimed distribution of absolute potentials .  
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Note that 

Pesc (S -+ t) = 1 - L Psy Vy , 
yEr (s) 

since our first step takes us, with probability Psy , to a neighbour y of s ,  and from 
there with probability Vy we get to s before we get to t .  Hence the total current is 

"" "" CsyCs Ceff(S , t) = � (Vs - Vy)Csy = � (Vs - Vy)c-yEr (s) yEr (s) s 

giving us ( 1 1 ) .  

= Cs L (�y - Vy �y ) = Cs ( l - L PsyVy) 
yEr (s) s s yEr (s) 

= Cs Pesc(S -+ t) , 

Finally, ( 12) follows easily : 

Pesc(s -+ t) Ceff(S ,  t)/Cs Cr 
= = - , Pesc(t -+ s) Ceff(t, s)/Cr Cs 

since Ceff(S , t) = Ceff(t , s) . D 

At the risk of being too formal, let us express Vx and Pesc(s -+ t) in terms of 
hitting times. For a set S of states, we define two hitting times: 

r:s = min{t ::::: 0 :  X1 E S} and r:t = min{t ::::: 1 : X1 E S} .  

As we frequently start our RW at a state x in S, i t  is  important to distinguish between 
the two hitting times. The same definitions can be used for general Markov chains, 
so that the hitting time defined for random graph processes is precisely r:s . Also, 
for x E V, let us write lP' x and lEx for the probability and expectation conditional 
on our RW starting from x ;  if we start from a distribution p, then we write IP'p and 
lEp . With this notation, 

and 

Vx = IP'x (X,ts.tl = s) 

Pesc (s -+ t) = IP's (X,+ = t). {s,l} 
Analogously to Theorem 8, there is a simple description of absolute potentials 

and currents in the edges, when a total current of size 1 flows from s to t. The 
description is in terms of our RW started at s and stopped when we first get to t .  
For a vertex x of our network, let Sx = Sx (s -+ t) be the expected sojourn time 
at x :  the expected number of times we are at x before we reach t, if we start at s .  
In  terms of  hitting times and conditional expectations, 

Sx (s -+ t) = lEs ( l {i < T(t} : Xi = x } l ) .  
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Thus if our network is the simplest nontrivial network with two vertices, s and t , 
joined by an edge of resistance 1 ,  then S8 (s � t) = 1 ,  since if  we start at  s then 
t"(t} = 1 and Xo = s .  Also, S1 (s � t) = 0 for every network. 

Theorem 9 Let N = ( G, c) be a connected electrical network with s, t E V (G), 
s =/: t. For x E V(G), set Vx = Sx (s � t)/Cx . Furthermore, for xy E E(G), 
denote by Exy the expected difference between the number of times we traverse 
the edge xy from x to y and the number of times we traverse it from y to x, if we 
start at s and stop when we get to t. 

Then, setting s at absolute potential Reff(S , t) and t at absolute potential 0, so 
that there is a current of size 1 from s to t through N, the distribution of absolute 
potentials is precisely CVx). In particular, 

Ss (s � t) Reff(S , t) = . (13) Cs 
Furthermore, the current in an edge xy is Exy· 
Proof. We know that S1 = 0, so V1 = 0. Let us check that CVx) satisfies (4) for 
every x =/: s ,  t. Indeed, we get to x from one of its neighbours, so 

Sx = L SyPyx = L Sy �y , 
yer(x) yef(x) Y 

which is nothing else but (4) : 
Cx Vx = L Cxy Vy . 

yef (x) 
Hence the distribution CVx) of absolute potentials does satisfy KCL at every 
vertex other than s and t. Therefore, with this distribution of absolute potentials, 
no current enters or leaves the network anywhere other than s and t .  

All that remains to check is  that we have the claimed current in  each edge and 
that the size of the total current from s to t is 1 .  

What is the current Wxy in the edge xy  induced by the potentials (Vx)? By 
Ohm's law it is 

Wxy = (Vx - Vy)Cxy = ( Sx - Sy ) cxy Cx Cy 
SxCxy SyCyx = -- - -- = Sx Pxy - SyPyx . Cx Cy 

and the last quantity is precisely Exy · 
Finally, the total current through the network from s to t is indeed 1 :  

Ws = L Wsy = L Esy = 1 ,  
yef(s) yef (s) 

since every walk from s to t takes 1 more step from s (through an edge leaving s) 
than to s (through an edge into s). But since t is at absolute potential 0 and the 
total current from s to t is 1 ,  the vertex s is at absolute potential Reff(S � t) , so 
Vs = Reff(S � t) , as claimed by ( 1 3). D 
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Theorems 8 and 9 give two alternative expressions for Reff(S , y) .  Equating 
them, we find that the escape probability is the reciprocal of the expected sojourn 
time at s :  

1 
Pesc(s -4 t) = . S8 (s -4 t) 

This identity is easily proved directly (see Exercise 1 8) . 

( 14) 

Now let us tum to connected and locally finite infinite networks. Thus let 
N = (G, c) , where G = (V (G) , E(G)) is a connected infinite graph in which 
every vertex has finite degree, and c : E (G) -4 JR+ = (0, oo) is the conduc­
tance function. As before, we define an RW on V (G) by defining the transition 
probability Pxy to be Cxyl Cx if xy is an edge and 0 otherwise. 

Pick a vertex s E V(G), and let Pe��) = Pesc(s , oo) be the probability that, 
when starting at s ,  we never return to s .  Our RW is said to be transient if Pe��) > 0, 
and it is recurrent if Pe��) = 0. It is easily seen that this definition is independent 
of our choice of s .  Analogously to Theorem 8, we have the following result. 

Theorem 10 The RW on a connected, locally finite, infinite electrical network is 
transient iff the effective resistance between a vertex s and oo is finite, and it is 
recurrent iff the effective resistance is infinite. 0 

Although it is intuitively clear what Theorem 10 means and how it follows from 
Theorem 8 , let us be a little more pedantic. 

Let us fix a vertex s and, for l E N, let Nz be the network obtained from N by 
shorting all the vertices at distance at least l from s to form a new vertex tz . Let R�� 
be the effective resistance of the network Nz between s and tz , and let C�� = 1 I R�� 
be its effective conductance. We know from the monotonicity principle that the 
sequence (R��) is increasing and the sequence (C��) is decreasing, so we may 
define the effective resistance of N between s and oo as R�';) = limz_..00 R��. 
and the effective conductance as C�';) = limz_..00 C�� (see also Exercise 5). 

Let Pe�� be the probability that, starting at s ,  we get to at least distance l from s ,  
before we return to s .  I t  i s  easily seen that Pe��) = limz_..00 Pe�� (see Exercise 6). 

It is immediate that Pe�� is also the probability of escaping to tz in Nz , when 
starting at s in Nz . By Theorem 8, Pe�� = C��IC8 •  Hence Pesc > 0 iff C�� is 
bounded. away from 0, i .e. ,  iff R;� = 1 I c;� is at most some real r for every l .  
But this holds iff R;c;) :::;: r , proving the result. 

In view of Theorem 10, we are interested in 'practical' ways of showing that 
R;c;) and c;c;) are bounded by certain quantities. We start with R;c;) . 

Theorem 11 The effective resistance R;c;) of N between s and infinity is at most 
r iff there is a current (uxy) in the network N such that a flow of size 1 enters the 
network at s, at no other vertex does any current enter or leave the network, and 
the total energy in the system, LxyeE(G) u�yrxy. is at most r. 
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Proof. Suppose that R�� ::::: r for every I. Corollary 6 guarantees a flow u (l) of size 
1 from s to tt in Nt , with total energy at most r. By compactness, a subsequence 
of (u <l) ) converges to a flow u with the required properties. By Corollary 6, the 
converse implication is trivial. 0 

The analogous result for c�;:) is even easier; it follows at once from Corollary 
5 d th d fi 

. . c<oo) 1 · c<t) an e e muon eff = Imt--.oo eff · 

Theorem 12 We have c�;:) ::::: C iff for every C' > C there is a function (Vx) on 
the vertex set V(G) such that Vs = 1, Vx = Ofor all but finitely many vertices x, 
and LxyeE(G) (Vx - Vy)2cxy < C'. D 

Theorems 1 1  and 12 give us the following more explicit version of Theorem 10. 

Theorem 13 Consider the RW on a connected, locally finite infinite electrical 
network N = (G, c) = (G, 1 / r), where c = 1 /r is the conductance and r 
is the resistance. This RW is transient iff there is a flow (uxy) of finite energy 
LxyeE(G) u;yrxy in which no current leaves at any vertex, but some positive 
current enters at some vertex. Also, this RW is recurrent iff for every £ > 0 there 
is a function (Vx )  on the vertex set such that Vs � 1 for some vertex s, Vx = Ofor 
all but finitely many vertices x, and LxyeE(G) (Vx - Vy)2cxy < £. D 

Theorem 1 3  implies the random walk variant of the monotonicity principle: 
in proving transience, we may cut edges, in proving recurrence, we may short 
vertices. 

As a striking application of Theorem 13 ,  let us prove P6lya's beautiful theorem 
on random walks on the lattices zd . 

Theorem 14 The simple random walk on the d-dimensional lattice zd is recurrent 
for d  = 1 ,  2 and transient for d  � 3. 

Proof. The simple random walk (SRW) in question is the RW on the electrical 
network with graph zd, where each edge has resistance 1 .  By the monotonicity 
principle, all we have to show is that the SRW on Z2 is recurrent and on Z3 it is 
transient. 

To prove the first, for n � 1 short all 8n vertices x = (x 1 , x2) with l lx II 00 = 
max( lx 1 1 . lx2D = n to a new vertex an , and set ao = 0. The new network is a 

. fi . th 'th I s · "oo I one-way m mte pa aoa1a2 · · · , WI ranan+ l = Bn+4 ' mce L-n=O Bn+4 = oo, 
the effective resistance between ao and oo is oo, so the SRW is indeed recurrent. 

Let us give another argument, this time based on Theorem 13 .  Set Sm = 
L�I 1 /  i and for X = (X I ' X2) E Z2 define 1 1 - Sk/ Sn if max( lx i i , lx2D = k < n, 

Vx = 
0 otherwise. 
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Then 

" 2 f-. 2 8 
� (Vx - Vy) � � 8k(kSn)- = S ' xyeE(Z2) k=I n 

and the right-hand side tends to 0 as n --* oo. 
To see that the SRW on Z3 is transient, define a flow u = (uxy ) in the positive 

octant as follows. Given a vertex x = (X I ,  x2, x3) with x; � O and x i +x2+x3 = n ,  
send a current of size 2(x; + 1 )/(n + l ) (n + 2) (n + 3) to the vertex x + e; ,  where 
(ei ,  e2 , e3) is the standard basis of !R3 . Then a current of size } + } + } = 1 enters 
the network at 0, and KCL is satisfied at every other vertex, since the total current 
entering at a vertex x = (X I , X2 , X3) , X I , X2 , X3 � O, X I + x2 + x3 = n � l , is 
2(X I + x2 + x3)/n(n + l ) (n + 2) = 2/(n + 1 ) (n + 2), and the total current leaving 
it is 2(xi + 1 + x2 + 1 + X3 + 1 )/(n + 1 ) (n + 2) (n + 3) = 2/(n + l ) (n + 2) . The 
total energy of this current is 

oo 3 4(x; + 1)2 

?;XJ ,X2 ,x3�0�+x2+x3=n t; (n + 1 )2 (n + 2)2 (n + 3)2 

00 (n + 2) 4(n + 1 ) (n + 3) � ?; 2 (n + 1 )2 (n + 2)2 (n + 3)2 ' 

since there are (n!2) points (XI , x2 , x3) in 'l} with XI + i2 + X3 = n ,  and if x; � 0 
and X I + x2 + X3 = n then 

(X I + 1 )2 + (X2 + 1 )2 + (X3 + 1 )2 � (n + 1)2 + 1 + 1 � (n + l ) (n + 3) .  
Consequently, the total energy i s  at most 

00 2 ?; (n + 2) (n + 3) = 1 . 

Hence, by Theorem 1 3 , the SRW on Z3 is transient. 0 

Clearly, this proof of P6lya's theorem did not really test the power of Theo­
rem 1 3 ,  which can be used to prove the transience or recurrence of random walks 
on much more general infinite graphs than lattices. 

IX.3 Hitting Times and Commute Times 

The results in the previous section were obtained by appealing to only the most 
rudimentary facts concerning random walks. As we wish to keep our presentation 
essentially self-contained, we shall continue in this vein; nevertheless, we shall 
find it convenient to use some basic properties of random walks. 

Our aim in this section is to study the important parameters of random walks 
on graphs, like the expected hitting times, commuting times and sojourn times. In 
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addition to combinatorial arguments, we shall make use of the connection between 
random walks and electrical networks, to the benefit of both theories. Among other 
results, we shall prove Foster's theorem that the sum of effective resistances across 
edges in a simple graph depends only on the order of the graph. 

An attractive feature of this theory is that there are a great many interconnections : 
the order of the results in our presentation is just one of many possibilities. 

In order to emphasize the combinatorial nature of the results and to keep the 
notation simple, we shall consider the simple random walk on a fixed graph G 
with n vertices and m edges, so that the transition probability matrix is P = (Pxy) .  
where Pxy = l jd(x) i f  xy E E(G). In fact, by doing this, we lose n o  generality : 
all the results can be translated instantly to the case of general conductances. 

Given an initial probability distribution p = (px)xeV(G) • the probability dis­
tribution after one step is pP = (Lx PxPxy)yeV(G) • since y gets a 'mass' 
or 'probability' Px Pxy from each vertex x. If G is a multigraph then Pxy = 
m(xy)jd(x) ,  where m(xy) is the number of edges from x to y .  In this case in 
one step each edge e from x to y carries 1 I d (x) proportion of the probability Px 
at x to y ,  and 1 /  d (y) proportion of the probability Py at y to x .  For notational 
simplicity, we shall restrict our attention to simple graphs without loops, although 
it is clear that all the results carry over to multigraphs and, a little more generally, 
to weighted multigraphs, as in §2. 

Write 1C = (1Cx)xev for the probability distribution on V = V (G) with 1Cx = 
d (x) j2m . If 1C is our initial probability distribution, then each edge xy transmits 
l jd(x) of the probability 1Cx = d(x)j2m at x to y ,  i.e., each edge transmits the 
same probability 1 /2m in either direction. In particular, the matrix P and the 
vector 1C satisfy the detailed balance equations 

for all x ,  y E V. From this it is clear that 1C is a stationary distribution for P: 

Indeed, 

1C p = Tl. 

(1CP)y = L TlxPxy = L TlyPyx = 1Cy L Pyx = Tly · 
X . X X 

What happens if our SRW starts from a probability distribution p = (Px>xe v? 
If G is bipartite then pPk , the distribution after k steps, need not tend to 1C as 
k � oo, but if G is not bipartite then it is easily seen that pk = pPk does tend to 
1C (see Exercises 14-17). In particular, for every fixed i ,  x and y,  

d(x) P(Xj = X  I Xi = y) � Tlx = --2m 
as j � oo. This implies that if e > 0 and l j - i I is sufficiently large then 

( 1 5) 

IIP'(Xi = x ,  Xj = y) - IP'(Xi = x)IP'(Xj = y) l < £.  ( 16) 
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In what follows, we shall start our SRW from a probability distribution p = 
(Px)xE V , so that IP'(Xo = x) = Px . and write pk = (p�k) )xE V • so that 

p�k) = IP'(Xk = x) = (pPk )x . 

Let Sk (x) be the number of times we visit x during the first k steps, that is, the 
number of times x occurs in the sequence X 1 , . . . , Xk . 

Theorem 15 We have Iimk-+oo IE(Sk (X)/ k) = d(x)f2m , and (Sk (X)/ k)xE V tends 
to 1C in probability as k -+ oo. 

Proof. Note first that 

so 

k 
IE(Sk (x)) = L IP'(Xi = x) , 

i= l 

. IE I " 1 � (i) d (x) 
hm (Sk (X)/k) = 1m - � Px = - .  

k-+oo k-+oo k i= ! 2m ( 17) 

In order to estimate the variance of Sk (x)f k, note that, very crudely, if ( 1 6) 
holds for I J  - i I ::;: ko then 

cr2 (Sk (x)) = IE(Sk (x))2 - (IESk (x))2 
k k = L L(lP(Xi = x ,  Xj = x) - IP'(Xi = x)JP(Xj = x)) 

i=l j=l = L (IP'(Xi = x ,  Xj = x) - IP'(Xi = x)IP'(Xj = x)) 
/ i-j / <ko i,j:'Ok 

+ L (lP'(Xi = x , Xj = x) - P(Xi = x)lP(Xj = x)) 
/ i-j /::::ko i,j:'Ok 

:=:: 2k0k + k2e. 

Hence if k ::;: 2ko/£ then this gives 

Therefore 

2 (S ( )/k) 
IE(Sk (x))2 - (IESk (x))2 2ko 

0" k X = 
k2 ::: T + £ ::: 2£ . 

IP' (I sk�x) _ JE<s; <x)
) l :::: 

17) -+ 0 

for every 11 > o so, by ( 17) , sk (x) 1 k -+ d (x) /2m in probability. 

( 1 8) 

D 
Denote by H (x , y) the mean hitting time of y from x , namely the expected time 

it takes to go from x to y :  H(x , y) = IEx ("r{�} ) .  Clearly, 

00 

H (x , y) = L kiP'(Xk = y ,  Xi =I= y for 1 :S i < k I Xo = x) . 
k=! 
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Putting x = y in this formula, we see that H (x , x) = lEx (r1�1 ) is the mean return 
time to x .  Starting at x , with probability Pxy = 1 I d (x) the first step takes us to y ,  
so 

1 H(x ,  x) = 1 + L PxzH(z ,  x) = 1 + d L H(z ,  x) .  ( 19) 
zeV (x) zer (x) 

Occasionally, H (x , y) is also called the hitting time of y from x or the access time 
of yfrom x .  

The function H'(x , y) = lEx (T(yJ ) is almost as natural as H(x ,  y ) .  Clearly, 
H'(x , y) = H(x ,  y) forx =f. y ,  but ifx = y then H' tells us nothing: H'(x , x) = 0. 
In fact, H' (x , y) is a rather useful tool in calculating H (x , y) since, arguing as 
in ( 19), 

for all x ,  y .  

1 "' I H(x ,  y) = 1 + d(x) L...J H (z , y) 
zer (x) 

(20) 

There is no reason to expect H (x , y) to be symmetric and, indeed, it is not. For 
example, if G is a path xyz then H (x , y) = 1 and H (y , x) = 3 .  However, the 
next result, about H (x , x ), holds no surprises. 

Theorem 16 The mean return time to a vertex x in a connected graph is 
H(x ,  x) = 2mld(x). 
Proof Set Yo = 0 and let Yt be the time our random walk (Xi )g" returns to x for 
the eth time when started at Xo = x .  Then f1 = Y1 - Yo , f2 - Y1 , f3 - f2 , . . .  
are i.i .d. random variables, so lE(fe ) = eJE(fJ ) = eH (x ,  x) .  Also, Ye � k if and 
only if Sk (x) � e. Hence, for a > 0, 

Ytfe � a if and only if SLlaJ � e . 
In particular, IP'(SLeaJ iea � 1 1a) = IP'(Yefe � a) so, by Theorem 15 ,  (Ye ) (Sll J 1 ) 1 1 if a > 2mld(x) ,  

lim !P' - < a =  lim !P' _
a
_ > - = 

l-+oo e - l-+00 ea - a 0 if a < 2mld(x) . 
Hence Yd e tends to 2m I d (x) in probability, so H (x ' X) = 2m I d (x) .  0 

In fact, more is true: not only is the mean return time to x exactly 2mld(x) ,  but 
we expect to return to x through each edge yx in 2m steps. 

Theorem 17 Let xy be a fixed edge of our graph G. The expected time it takes 
for the simple random walk on G, started at x, to return to x through yx is 2m. 
Thus if Xo , X 1 ,  X2 ,  . . .  is our SRW, with Xo = x, and Z = min{k � 2 : Xk- 1 = 
y ,  Xk = x }, theiJ lE(Z) = 2m .  
Proof The probability that we pass through yx  at time k + 1 is 

IP'(Xk = y) 
IP'(Xk = y, Xk+I  = x) = d . (y) 
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Therefore, writing Sk (yx) for the number of times we pass through yx  up to time 
k +  1 ,  

IE.Sk (yx) IE.Sk (Y) 1 
--'-- = --- -+ - .  k kd(y) 2m 

The proof can be completed as in Theorem 1 6: writing Zt for the time k our random 
walk (X; )go, started at Xo = x ,  returns to x for the lth time, i.e. Xk- 1 = y and 
xk = X  for the lth time, IE.(Zt) = llE.(Z1 ) . and Sk (xy) � e if and only if Zt � k. 

D 

As a slight variant of Theorem 17 , it is easily seen that, no matter where we start 
our SRW and what oriented edge uv we take, Sk (uv)/ k -+ 1 /2m in probability. 
Loosely speaking, this means that our SRW spends equal amounts of time in 
each edge, going in either direction. This is far from surprising: in the long run, 
7fu = d(u)j2m of the time we are at u ,  no matter where we start, and from u with 
probability 1 /d(u) we traverse the edge uv .  

Since d(x)j2m i s  just the x coordinate of  the stationary distribution Jf ,  by 
Theorem 1 6  we have 

1 H (x , x) = - . 
1fx 

(2 1 )  

I n  fact, (2 1 )  holds i n  a considerably more general form, for any ergodic finite 
Markov chain (Xk)go. Let 1r = (1fx)xeV  be a stationary distribution, so that if 
Xo has distribution 1r then each Xk has distribution 1r. For S C V, define Irs by 
Jrs(x) = 1fx/7f (S) ; let JfS be essentially the conditional probability on S, so that 
Jrs(x) = Jr(x)/Jr(S) for x E S; and for y E V \ S set Jrs(y) = 0. In other words, 
Irs is 1r conditioned on the Markov chain being in S. Then we have Kac 'sformula: 

(22) 

where Errs denotes the expectation when our chain is started from the initial 
distribution Irs . It is easy to check that the proof of Theorem 1 6  can be repeated 
to give this more general assertion. Here is another way of proving (22). Note that 

IP'1C(rt = k) = IP'1C(X1 ¢ S, . . . , Xk- 1 ¢ S, Xk E S) 

= IP'1C(X1 ¢ S, . . . , Xk- I ¢ S) - IP'7C(XI ¢ S, . . . , Xk ¢ S) = IP'1C(XI ¢ S, . . .  , Xk:- 1 ¢ S) - IP'1C(Xo ¢ S, . . .  , Xk- 1 ¢ S) 
= IP'1C(Xo E S, X1 ¢ S, . . .  , Xk- 1 ¢ S) 

= Jr(S)IP'rr5 (rt � k) . 

Summing over k, we get 

00 00 
1 = LIP'rr (rt = k) = Jr(S) L IP'1ls <•t � k) = Jr(S)IE.1[5 (rt) . 

k=I k=I 
as claimed by (22). 
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For a regular graph G of degree d, combining (21 )  and Theorem 1 6, we find 
that for a fixed vertex x the average of H (x , y) over y E r (x) is precisely n - I :  

1 � 2m - L.., H(y , x) = H(x , x) - 1  = -- = n - 1 . d yer (x) d - 1 

A similar result holds without assuming regularity, but we have to take the average 
of the hitting times H (x , y) over all 2m ordered pairs of adjacent vertices. Putting 
it another way, starting from the stationary distribution, we expect to return to the 
original position in n steps. 

Theorem 18 Let G be a connected graph of order n and size m. The mean hitting 
times H (x , y) of the SRW on G satisfy 

1 
2m L L H (x , y) = n - 1 .  

xeV(G) yer (x) 
(23) 

Proof Let 1r = (1rx) be the stationary distribution for the transition matrix P = 
(Pxy) .  so that 1r P = 1r and 1rxPxy = 1 /2m for xy E E(G) . Then 

1 
2m L L H(x , y) = L 1CxPxyH(y , x) 

x yer (x) x ,y 

= L 1rx (L PxyH(y , x)) = L 1rx (H (x , x ) - 1) 
X y X 

= L 1rx (_!__ - 1) = n - 1 .  0 
x 1rx 

Theorem 1 8  has an attractive reformulation in terms of another invariant of 
random walks, the mean commute time. For vertices x =f. y, the mean commute 
time between x and y ,  denoted by C(x ,  y) , is the expected number of steps in a 
round-trip, in a walk from x to y and then back to x .  Thus 

C(x , y) = H(x , y) + H(y , x) .  
Then (23) i s  equivalent to the following: 

1 
2m L C(x , y) = n - 1 . 

xyeE(G) 
(24) 

Thus the average of the commute times between the m pairs of adjacent vertices 
in a connected graph of order n is 2(n - 1 ) .  
Theorem 1 9  With the notation above, 

Furthermore, 

Ceff(S , t) H (s ,  s) 2m Pesc (s � t) = = --- = (25) d(s) C(s, t) d(s)C(s , t) 

C(s, t) = 2mReff(S , t) . (26) 
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Proof The first equality in (25) follows from relation ( 1 3) i n  Theorem 8 .  To see 
the other equalities in (25), let R be the first time the random walk returns to s, and 
let A be the first time it returns to s after having visited t. Then lE( R) = H (s , s) = 
2mjd(s) and, by definition, lE(A) = C(s ,  t) . We always have R ::=: A and 

say. Also, 

so 

lP'(R = A) =  Pesc (s --+ t) = q ,  

lE(A - R )  = (1 - q)lE(A) ,  

lE(R) 2m C(s, t) = lE(A) = - = -d -. q (s)q 
Thus Pesc(s --+ t) = 2mjd(s)C(s, t) , as claimed. As H(s ,  s) = 2mjd(s) , equal­
ity (25) is proved. Finally, (26) is immediate from (25). 0 

The results of Section 2 also have attractive formulations for our simple random 
walks. For example, the expected number of times we traverse a fixed edge sx 
from s to x if we start our random walk at s and stop it when we get to t is just 
1 /d(s) times the expected sojourn time at s, Ss (s --+ t) . But by ( 14) and ( 1 1 )  
(or (25)) this i s  exactly 

Ss (s --+ t) 1 
--- = = Reff(S , t) . d(s) d(s )Pesc (s --+ t) (27) 

Let us illustrate these results on the simple graph Go on three vertices shown 
in Fig. IX. 1 .  First let us calculate the data for the simple electrical network Go. 
The effective resistance of Go between s and t is Reff(S , t) = i + i = ¥f, so 
setting s at absolute potential Vs = 1 , and t at V1 = 0, we get a current of size 
kl I (k + l) . In an edge incident with s, there is a current of size l 1 (k + l) , and in 
an edge incident with t there is a current of size k/(k + l) . Also, u is at absolute 
potential Vu = k/(k + l) . 

k I 

s t 

FIGURE IX. I .  The graph Go has three vertices, s, t and x ,  and k + l edges: k from s to 
X, and f from X tO t .  

And now for the simple random walk on the graph Go .  The probability that 
starting at u we get to s before t is simply that the first step from u is to s :  this has 
probability kj(k + l), which is just Vu . The escape probability Pesc (s --+ t) is just 
the probability that after the first step, which takes us to u, we go to t rather than 
s :  this has probability lj(k + l). Hence Cs Pesc(s --+  t) = kl/(k + l) , which is 
indeed the total current. Also, 1/ (d(s )Pesc(s --+ t)) = (k + l)/ kl, which is just 
the effective resistance between s and t , as claimed by (27). 
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In the SRW on Go, the expected sojourn time at s on our way from s to t is 

so the expected number of times we cross an edge incident with s is (k + l)/ kl, 
which is precisely Reff(S , t), as we know that it has to be. 

What is the expected number of times our SRW crosses a fixed edge from u to 
t? If we start at s and stop at t then this expectation is 1 /l, as we know, and if we 
start at t and stop at s then it is 

k 00 jlj 1 
l (k + l) [; (k + l)j = k .  

Hence Reff(S, t) is the sum of these two expectations. In fact, this holds in general, 
not only for our simple example Go in Fig. IX. 1 .  

To show this, we first set the scene. Let s ,  t ,  x be vertices of a connected graph 
G, with s =f. t. Write Sx (s +* t) for the expected sojourn time at x in a random 
round-trip from s to t. In other words, Sx (s +* t) is the expected number of times 
the SRW on G is at x if we start at s, continue till we get to t, and then stop when 
we are next at s .  Also, for an edge xy, let Sxy (s +* t) be the expected number of 
times we traverse the edge xy from x to y during a round-trip from s to t. Clearly, 

1 Sxy (s +* t) = --Sx (s +* t) . d(x) 
Theorem 20 For a connected graph G, vertices s =f. t , and edge xy E E(G) we 
have 

Sx (S � t) Sx (t � s) Reff(S , t) = Sxy (s +* t) = 
d(x) 

+ d(x) . 

Proof With the notation in Theorem 9, Sx (s +* t) is 

Sx (s � t) + Sx (t � s) = Vx (s � t)d(x) + Vx (t � s)d(x) .  

But 

Vz (S � t) + Vz (t � s) = Reff(S , t) = Reff(t , s) (28) 

for all z .  Indeed, Vz (s , t) is the potential of z if s is set at Reff(S , t) and t at 0, and 
Vz (t ,  s) is the potential of z if t is set at Reff(s , t) and s is set at 0. Hence, (28) 
holds by the principle of superposition discussed in Section II. 1 .  0 

Theorem 20 can be used to give another proof of Theorem 19 .  Let us restate 
Theorem 19  as follows : 

2m H(s , s) C(s , t) = 2mReff(S , t) = = (29) d(s )Pesc(s � t) Pesc (s � t) 
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Now, at a round-trip from s to t and back to s ,  in each step we traverse an edge 
until we stop the walk at t, so 

C(s, t) = L L Sxy (s � t) . 
xeV(G) yef (x) 

By Theorem 10, each of the 2m summands on the right-hand side is Reff(S , t) , so 
the first equality of (29) follows. The second and third equalities are immediate 
from ( 1 1 )  and (25). 

There is another variant of the escape probability that is interest to us. Given 
vertices s and u ,  denote by Pesc (s -+ t < u) the probability that if we start at s 
then we get to t before either s or u .  The following result is a mild extension of 
Theorem 8. To prove it, add a vertex t' to the graph and join t' to t and u by many 
edges. Apply Theorems 8 and 9 to measure the current from s to t' . 
Theorem 21 Let s, t and u be distinct vertices of a graph. Set s at potential I ,  
and t and u at potential 0. Then a current of size 

d(s)Pesc (s -+ t < u) 

leaves G at t . 
The following reciprocity law is obvious if we believe in physical intuition. As 

we shall see, it also follows easily from the reversibility of the random walk on a 
graph. 

Theorem 22 Let s, t and u be distinct vertices of a graph G. Then 
d(s )Pesc (s -+ t < u) = d(t)Pesc (t -+ s < u) .  

Proof. Let Ws, t ; u  be the set of  walks W = xox 1 · · · Xt in  G - u such that x; = s 
iff i = 0 and x; = t iff i = l. Then, writing (X; )g'" for our random walk, 

Pesc(s -+ t < u) = L lP(X; = x; , 1 :S i :S l i Xo = s) 
WEWs,t ;u 

and 

Pesc(t -+ s < u) = L lP(X; = Xt-i . 1 :S i :S l i Xo = t) . 
WeWs,t;u 

But for W E Ws, t ; u  we have 

(- ! 

lP(X; = X; ,  1 ::::: i ::::: l iXo = s) = n d(x; )- I 
i=O 

and 
( 

JP(X; = X(-i ' 1 ::::: i ::::: l iXo = t) = n d(x;)- 1 • 
i= I 

The ratio of these two qualities is d(t)/d(s) , so the assertion follows. D 
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Theorem 22 is precisely the result needed to prove the fundamental result in 
the theory of electrical networks that every network with attachment set U is 
equivalent to a network with vertex set U (see Exercises 10-12 in Chapter II) . 

A slight variant of the proof of Theorem 22 gives an important property of mean 
hitting times: although H (s , t) need not equal H (t, s ) , 'taking them in triples ' ,  we 
do get equality. 

Theorem 23 Let s, t and u be vertices of a graph G. Then 
H(s , t) + H(t , u) + H(u ,  s) = H(s, u) + H(u ,  t) + H (t ,  s) .  

Proof The left-hand side is  the expected time i t  takes to go from s to t , then 
on to u and, finally, back to s ,  and the right-hand side is the expected length 
of a tour in the opposite direction. Thus, writing r for the first time a walk 
starting at s completes a tour s � t ---+ u ---+ s, and defining r' analogously for 
s ---+ u ---+ t ---+ s ,  the theorem claims exactly that lEs (r) = lEs (r') . Consider 
a closed walk W = xox 1 · · · xe starting and ending at s, so that xo = xe = s .  
Clearly, 

lP'(Xi = Xi , 1 :::: i :::: l iXo = s) = lP'(Xi = Xt-i . 1 :::: i :::: l iXo = s) 
l- 1 

= n d(xi )- 1 , 
i=O 

that is, the probability of going round this walk one way is precisely the probability 
of tracing it the other way. 

Fix N, and let S =  xox1 · · · be an infinite walk with xo = s .  Set .e = l(S, N) = 
max{i :::; N : Xi = s } ,  and let S' be the walk XtXl- 1 · · · xoX£+1X£+2 · · ·. By the 
observation above, the map S 1-+ S' is a measure preserving transformation of 
the space of random walks started at s .  Since r (S) :::; N iff r' (S') :::; N, we have 
lP's (r :::; N) = lP's (r' :::; N) . Hence lEs (r) = lEs (r') , as required. D 

Theorem 22 implies another form of the reciprocity law. 

Theorem 24 The expected sojourn times satisfy 
d(s)Sx (s ---+ t) = d(x)Ss (X ---+ t) . (30) 

Proof Let us define a random walk on the set {s , t ,  x }  with transition probabilities 
Pst = Pesc (S ---+ t < x) , Psx = Pesc (S ---+ X < t) , Pss = 1 - Pst - Psx .  and so on. 
Theorem 22 implies that this new RW is, in fact, also reversible; that is, it can be 
defined on the weighted triangle on {s , t , x } ,  with loops at the vertices. Hence it 
suffices to check (30) for this RW: we leave this as an exercise (Exercise 20) . D 

The last theorem we prove is a classical result in the theory of electrical net­
works : Foster's theorem. If our graph is a tree of order n then the effective 
resistance across every edge is 1 ,  and the sum of effective resistances across edges 
is n - 1 .  Also, we know from Kirchhoff's theorem in Section 11. 1 (see Exer­
cise 11.4) that if every edge of a connected graph with n vertices and m edges is in 
the same number of spanning trees then the effective resistance across any edge 
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is precisely (n - 1)/m, so the sum of effective resistances across edges is again 
n - 1 .  The surprising result that this sum is n - 1 for every connected graph of 
order n was proved by Foster in 1949. The two beautiful proofs below, found by 
Tetali in 199 1  and 1994, illustrate the power of the intricate edifice of relations we 
have constructed. 

Theorem 25 Let G be a connected graph of order n. Then 

L Reff(S , t) = n - 1 .  
steE(G) 

First Proof By Theorem 24, for any two vertices t and x we have 

L Sx (s --+ t) = L Ss (X --+ t)
' 

ser (r) d(x) ser (t) d(s) 

since the two sums are equal term by term. Now, if x =f:. t then the right-hand side 
is 1 ,  since it is precisely the expected number of times we reach t from one of 
its neighbours in a random walk from x to t. On the other hand, for x = t the 
right-hand side is 0. Hence, summing over V = V (G) , we find that 

But the left-hand side is 

L L Sx� --+ t) = n - 1 .  
reV  ser (r) (x) 

" { Sx (s --+ t) Sx (t --+ s) } " 
� ----'----'- + = � Reff(S , t) , 

steE(G) d(x ) d(x) steE(G) 

with the equality following from Theorem 20. 
Second Proof By Theorems 1 8  and 19 (or by relations (23) and (25)), 

0 

1 1 n - 1 = -
" 

C(s, t) = -
" 

2mReff(S , t) = 
" 

Reff(S , t) . 0 2m � 2m � � 
steE(G) steE(G) steE(G) 

Numerous other results concerning random walks on graphs are given among 
the exercises. 

IX.4 Conductance and Rapid Mixing 

We know that a simple random walk on a non-bipartite connected (multi)-graph 
converges to the unique stationary distribution, no matter what our initial probabil­
ity distribution is. Our aim in this section is to study the speed of this convergence: 
in particular, we shall connect the speed of convergence with a down-to-earth 
expansion property of the graph. 

In order to avoid unnecessary clutter, we shall restrict our attention to regular 
graphs. We shall adopt the convention that is natural when considering random 
walks on graphs that a loop contributes one (rather than the usual two) to the 
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degree of a vertex. Let us fix a connected, non-bipartite, d-regular (multi)graph 
G: we shall study random walks 011 this graph. For notational simplicity, we take 
V (G) = [n] = { 1 ,  . . .  , n} ,  so that the transition probability matrix P is of the 
form P = (Pij )i,j= J · 

As in Section 3 ,  for a simple random walk X = (X1)0 on G, set p�t) = 
IP'(X1 = i ) .  Thus X is the SRW with initial distribution Po = (p�0) )7=l , and 
p1 = (p�t) )7= 1  = poP1 is the distribution of X1 • Then Pt tends to the stationary 
distribution 1r = ( * ,  . . .  , * ) . In measuring the speed of convergence p1 � 1r, it 
does not matter much which norm we take on Co( G), although it is customary to 
work with the £2-norm l lx l l 2  = <:L?=1 lxd2) 1 12 or the £ 1 -norm l lx l l 1 = :L7=1 lxd . 
In particular, the mixing rate of the random walks on G is 

J.l, = sup lim sup I IPt - 1r 1 1 �/t , 
Po t-+oo 

where the supremum is taken over all initial distributions po. In fact, it is easily 
seen that the supremum is attained on a great many distributions, and in this 
definition we may take any norm on Co(G) instead of the £2-norm. As we shall 
see shortly, the mixing rate JL is easily described in terms of the eigenvalues of P .  

By  definition, P = Ajd, where A =  (aij )i,j= ! i s  the adjacency matrix of G,  
i .e. , for i -=/: j ,  aij i s  the number of edges from i to j ,  and aii i s  the number of 
loops at i .  Let AJ 2: A2 2: · · · 2: An be the eigenvalues of the hermitian matrix 
P, enumerated with multiplicities. We know from Theorem VIII.5 that A J  = 
1 > A2 2: · · · 2: An > - 1 .  The space Co(G) has an orthogonal basis WJ = 1r, 
w2 , . . . , Wn consisting of eigenvectors of P, so that Wi P = AiWi ,  i = 1, · · · , n. In 
particular, the subspace 1r.L of Co( G), orthogonal to 1r = (* ,  . . .  , *) is invariant 
under P ,  and the restriction of P to 1r.L is a hermitian operator with eigenvalues 
A2 2: . . .  2: An and norm A =  max{A2 , I An 1 } .  
Theorem 2 6  The mixing rate JL is precisely A = max{A2 , I An 1 }. 
Proof Given a distribution po, set 

where 
PO = a1r + p� , 

(p� , 1l) = 0. 

Then 1 = (po , n1r) = a (1r, n1r) = a, so 

Hence 
Po = 1l + p� . 

I IPr - 1r ll 2 = l lpoP1 - 1l pt l l 2 = II (po - 1l)P1 l l 2  
= l lp�P1 1 1 2 ::S A1 l iP� II :::; A1 . 

Therefore, J.l, = supp0 lim supHoo I IPt - Jr l lt ::S A. 
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The converse inequality is just as simple. Assuming that j }  .. J I = A, pick a 
probability distribution po such that 

n 
PO = L �iWj , 

i= l 
with �J =f. 0. In fact, we can find such a po = (p}0) ) ,  even among the distributions 
such that Pho) = 1 for some h and p}0) = 0 for i =f. h .  But if for our po we have 
�J =f. 0 then 

I I Pr - 1t l l 2  = li (po - Jr)P1 I I 2 ::: A1 ii �JWJ I I 
implies that J.L ::: A, as claimed. D 

More often than not, it is not easy to determine or estimate A = max{A2 , iAn 1 } .  
I n  fact, the crucial quantity here i s  A2 , rather than iAn 1 .  This can be  made sure by 
"slowing down" our RW, as we shall do below. Let then G = (V, E) be a fixed 
d-regular graph. The lazy random walk (LRW) on G with initial random variable 
Xo is a Markov chain X = (Xi )i} such that the random variables X1 take values 
in V = V (G) = [n] , and for i ,  j E V we have 

P(Xr+t = j iXr = i )  = 

1 
-

2 if i = j ,  

1 if i rv j , 2d 
0 otherwise. 

Putting it slightly differently, we attach d loops to each vertex and run the simple 
random walk on this multigraph. 

Note that if Ps is the transition matrix of the SRW on G then the LRW has 
transition matrix PL = (Ps + /)/2. In particular, if Ps has eigenvalues AI = 1 ::: 
A2 :':: · · · :':: An then PL has eigenvalues i <A t + 1 ) = 1 ::: i <A2 + 1 ) ::: · · · :':: 
1 (An + 1 )  :':: 0. Hence the mixing rate of the LRW is 1 (A2 + 1 ) ,  the second-largest 
eigenvalue of PL . In particular, if A2 is close to 1 then the SRW converges at most 
about twice as fast as the LRW. 

In fact, rather than giving an upper bound for i (A2 + 1 ) , we shall estimate the 
speed of convergence to the stationary distribution in terms of the conductance 
<I> a of the graph G, defined as 

"' . e(U, U) 
'*'G = m1n , 

ucv d min{ I U I , l U I } 
where U = V \ U and e(U, U) is the number of edges from U to U .  Note that if 
l U I ::: n/2, as we may assume, then d i U  I = Lueu d(u) is the maximal number 
of edges that may leave U ,  so e(U, U)fd i U I is the proportion of "half-edges" 
leaving U that go to U .  

Clearly, 0 ::: <l>a ::: 1 ,  but i f  n i s  large then <l>a can hardly be bigger than 1 /2 
(see Exercises 26-28). Clearly, <l>a = 0 if and only if G is disconnected. More 
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generally, when is <I>c small? If for some set U c V there are relatively few 
U - U edges; that is, if there is a "bottleneck" in the graph. It is precisely the 
existence of such a bottleneck that slows down the convergence p1 � Tl. 

Given an RW X = (X1 )Z0 on a graph G = (V, E) with V = [n] as before, 

we write p}') = IP'(X1 = i ) .  Define the excess probability at venex i at time t as 

ei, t = pjt) - ljn and set 

n 
dz(t) = I IPr - Tl li � = I>f., . 

i=l  

Note that the excess probabilities satisfy 

We are ready to state the main result of this section, establishing a close rela­
tionship between the conductance of a graph and the speed of convergence of lazy 
random walks. 

Theorem 27 Let G be a non-trivial regular graph with conductance <I>c. Then 
every LRW on G is such that 

We shall deduce Theorem 27 from two lemmas that are of interest in their own 
right. 

Lemma 28 Let G be a d-regular graph with d � 1. Then, with the notation as 
above, 

Proof. By relation (3 1 ) , 

dz(t + 1 )  = � t l L (ei, t + ej, r ) ] 2 4d i=l  j er (i) 
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Since l f (i ) l  = d for every i, applying the Cauchy-Schwarz inequality to the inner 
sum, we find that 

d2 (t + 1 ) :S 
4�2 t I L (ei, t + ej, 1 )2 } d 

i= l j er (i) 
= 2� .?:: (ei, t + ej ,r)2 = 2� .L { 2 ( el,1 + eJ. 1) - (e;, 1 - ej, t )2 } u eE ueE 

as claimed. 

1 "" 2 = d2(t) - 2d .� (ei, t - ej, r ) , 
I] EE 

The second lemma needs a little more work. 

0 

Lemma 29 Let G = (Y, E) be a d-regular graph with conductance <l>a, and let 
x : V -+ R i 1-+ x;, be such that L7=I x; = 0. Then 

"" 2 d 2 � 2 
L_. (Xi - Xj )  ::::: -<I>G L_. Xi . . . E 2 . 1 IJ E I= 

(32) 

Proof Set m = f n/21 . We shall prove that if YI ::::: Y2 ::::: · · · ::::: Yn • with Ym = 0, 
then 

"" 2 d 2 � 2 
L_. (y; - yj ) :::=:: 2 <t>G L,.. Yi · 
ij eE i=l 

(33) 

It is easily seen that this inequality is stronger than (32). Indeed, in (32) we may 
assume that X I  :::=:: x2 2: · · · 2: Xn . Setting y; = x; - Xm ,  inequality (33) gives 

since L::7= 1 x; = 0. 
Now, in order to prove (33), set 

l y · Uj = 
0

1 

Vj = 10 

Yi 

if i :=: m ,  

if i > m ,  

if i :=: m ,  

if i > m . 

Thus y; = u; + v; for every i .  Also, if u; =1= 0 then u; > 0 and i < m ,  and 
if v; =I= 0 then v; < 0 and i > m .  Since (y; - Yj )2 = (u; - Uj + v; - Vj )2 :::=:: 
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(u; - Uj )2 + (v; - Vj )2 for every edge ij , it suffices to prove that 

and 

d 
m 

L (Ui - Uj )2 ::: -<t>b L UT 
. .  E 2 . I y e  1= 

"" 2 
d 2 f-- 2 � (Vi - Vj ) ;:: -<l>G � V; . 

. .  E 2 . IJ E l=m 

(34) 

(35) 

Furthermore, as m ::: n - m, it suffices to prove (34). In our proof of (34) we may 
assume that u 1 > 0. By the Cauchy-Schwarz inequality, 

! -� (ur - uJ) j 2 = ! .� (u; - uj ) (u; + uj ) ) 2 
y eE y eE 

::::: L (u; - uj )2 L (uk + ue)2 
ij eE kleE 

:::=: L (u; - uj )2 L 2 (ui + u�) 
ij eE kleE 

n 
= 2d L ui L (u; - Uj )2 . 

k=l ij eE 

(36) 

In what follows, our summations are over all edges i j E E with i < j. Clearly, 

where Ue = [£] and Ue = V-Ue = [n] - [l] .  Since urn = Urn+ I = · · · = Un = 0, 
this gives 

m-1  m- 1  

L ( uf - uJ) = L (u� - u�+l) e(Ue , U e) ::: L (u� - u�+l) d<l>Gl 
ij eE l=l l=l  

m-1  n 
= d<l>G L u� = d<l>G L u� . 

l=l  l=l 

Inequalities (36) and (37) give 

.� (u; - uj )2 ::: ld<l>G t, ur ) 2 j ! 2d t ur ) = �<t>b t, u; , 
I] EE 1= 1  1= 1  1= 1  

as desired. 

Armed with these two lemmas, it is easy to prove Theorem 27. 

(37) 

0 
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Proof of Theorem 27. By Lemma 28, 

1 "" 2 d2(t) - d2(t + 1 )  ?: 
2d .� (ei, t - ej, t ) . 

I] EE 

Applying Lemma 29 with Xi = ei, r . we find that 

1 2 � 2 1 2 d2(t) - d2(t + 1 ) ?: -<I>G � ei, t = - <1>Gd2(t) , 4 i= ! 4 

completing the proof. 0 

The distance of the distribution Pt at time t from the stationary distribution 
1r is usually measured by the t 1 -norm of the difference, which is twice the so­
called total variation distance: d1 (t) = 2dTv (p1 , 1r) = I IPt - 1ri! I .  If we wish to 
emphasize the dependence of d1 (t) on the RW X = (X1)gc> then we write d1 (X , t) 
instead of d1 (t) . By the Cauchy-Schwarz inequality, 

d1 (I) = � le;, , I :S (� e1, , f' (� 12 f' = (nd,(t)) 1 12 . 

Also, trivially, d2 (0) :::; 2 for every distribution. Hence Theorem 27 has the 
following important consequence. 

Corollary 30 Every LRW on a regular graph G of order n and conductance <I>G 
is such that 

Furthermore, the mixing rate 11 satisfies ( 1 ) 1 /2 1 
1L :::; 1 - 4<I>b :::: 1 - 2<1>b . 0 

We know that if A.2 is the second-largest eigenvalue of the SRW on a regu­
lar graph then the second-largest eigenvalue of the LRW is 1 <>..2 + 1 ) .  Hence 
Corollary 30 has the following consequence. 

Corollary 31 The second eigenvalue of the SRW on a regular graph with 
conductance <I>G is at most 1 - <I>b. 
Proof. With the notation as above, 1 <>..2 + 1 ) :::; I - 1<t>b ,  so A.2 ::=: 1 - <I>b . 0 

Corollaries 30 and 3 1  can frequently be used to prove that certain random walks 
converge very fast to the stationary distribution. Given a sequence G 1 , G2 , . . .  
of graphs, with ! Gi l  = n i -+ oo, we say that the lazy random walks on this 
sequence are rapidly mixing random walks if there is a polynomial f, depending 
only on the sequence ( G i ) ,  such that if 0 < E < 1 and t ?: f (log ni ) log(l  IE) 
then d1 (Xi , t) :::; E whenever Xi is a lazy random walk on Gi . Thus, if our random 
walks are rapidly mixing then we are within E of the stationary distribution after 
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polynomially many steps in the logarithm of the order! This is fast indeed: it 
suffices to take far fewer steps than the order of the graph. 

The larger the conductance, the faster convergence is guaranteed but, in fact, 
fairly small conductance suffices to ensure rapid mixing. Indeed, if G is connected 
and has order n � 2, so that <I> a > 0, and 

t � 8<1>a2 { log( l je) + � log(2n) } 
for some 0 < E < 1 ,  then 

d1 (t) � (2n) 1 12 (1 - �<t>b ) '12 
< exp { � log(2n) - �<t>bt } � e. 

In particular, if n � 3 and t � 8<1>a2 log n log( l je) then d1 (t) < e. This gives us 
the following sufficient condition for rapid mixing. 

Theorem 32 Let (Gdl be a sequence of regular graphs with I G; I = n; � oo. 
If there is a k E N such that 

(38) 
for every sufficiently large i, then the lazy random walks on (G; )f are rapidly 
mixing. 
Proof. We have just seen that if t � 8 (log n; )2k+1 log( l /E) then d1 (t) < E , 
provided n; is large enough. 0 

There are many families of regular graphs for which we can give a good lower 
bound for the conductance. As a trivial example, take the complete graph Kn . It is 
immediate that <I>Kn > i for n � 2 so the lazy random walks on (Kn) are rapidly 
mixing. Of course, this is very simple from first principles as well. 

As a less trivial example, we take the hypercubes or simply cubes Q 1 , Q2 , . . .  
Here Qd = {0, 1 }d is the d-dimensional cube: its vertex set is the set of all 2d 
sequences x = (x; )7 , x; = 0 or 1 ,  with two sequences joined by an edge if they 
differ in only one term. Clearly, Qd is d-regular, and it is rather easy to prove that 
<I>Qd = 1 jd. The worst bottlenecks arise between the "top" and "bottom" of Qn : 
for U = { (x; ) E Qd : X ! = 1 }  and U = { (x; ) E Qd : X ! = 0}, say. Clearly, 
e (U, U) = l U I = 2d- l , so that <I>Qn (U) = 1 /d. 

As <I>Qd = 1 jd = 1 / log n , where n = 2d = I Qd l , the lazy random walks on 
( Qd)f are rapidly mixing. 

The cube Qd is just K1 = K2 x · · · x K2 , that is, the product of d paths 
of lengths 1 .  Taking the product of d cycles, each of length l, we get the torus 
Tl This graph has ld vertices, and it is 2d-regular. Also, one can show that for 
G = T,ft_ we have <I> a = l� . (Note that Tl is just the cube Q2d .) Hence, for a 
fixed value of l, the lazy random walks on (T,ft_)d=l are rapidly mixing. 

It is easy to extend Theorem 27 to reversible random walks or, what amounts 
to the same, to simple random walks on general multigraphs. Given a multigraph 
G = (V, E) define the volume of a set U C V(G) to be volU = Lueu d(u) . As 
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before, in the degree d ( u) of u we count 1 for each loop at u .  Then the conductance 
of G is 

. e(U, U) 
<l>c = mm , ucv min{vol U, vol U} 

where again U = V \ U . With this definition of the conductance, i t  i s  easy to 
prove the analogue of Theorem 27. 

In conclusion, we remark that rapidly mixing random walks have numerous 
algorithmic applications. In particular, rapidly mixing random walks are frequently 
used to generate approximately random elements in large sets that are not easily 
described, such as the set of perfect matchings or spanning trees in a graph, 
or the set of lattice points in a convex body. The generation of approximately 
random elements enables one to enumerate the elements asymptotically. A striking 
application of rapidly mixing random walks concerns randomized polynomial­
time algorithms giving precise estimates for the volume of a convex body in !Rn . 

IX.5 Exercises 

1 .  Let Tk be the rooted infinite tree with every vertex having k descendents. For 
what values of k is the SRW on Tk recurrent? 
Is there a subtree of Z3 on which the SRW is transient? 

2. Show that the SRW is recurrent on the hexagonal lattice and on the triangular 
lattice. 
Show also that if G is a graph whose vertex set is contained in the plane JR2, 
with any two vertices at distance at least 1 and no edge joining vertices at 
distance greater than 1010, then the SRW on G is recurrent. 

3. Given a real number r > 0, construct a locally finite infinite graph G contain­
ing a vertex s such that in the network obtained from G by giving each edge 
resistance 1 ,  we have Reff(S , oo) = r.  

4. Let N = ( G, c) be an electrical network on a locally finite infinite graph G. 
Let s E V(G) and let T be the set of subsets T of V (G) with s ¢ T and 
V (G) \ T finite. For T E T, let NIT  be the network obtained from N by 
fusing all the vertices of T to a single vertex oo. Write R��) (s , oo) for the 
resistance of NIT between s and oo. Finally, let T1 , T2 , . . . E T be such that 
d(s , Te) = min{dc (s , t) : t E Te } -+ oo. Show that lime-+oo R��) (s , oo) = 
infreT R��) (s , oo) . 

5. Let N = (G, c) be an electrical network on a locally finite infinite graph G,  
and let s ,  N(l) and te be as after Theorem 10. Show that for every l � 1 there 
is an fe > 0 such that if d(s , x) S l then ll\(1{s} S £) � €£ . Deduce from 
this that Pe��) = lime-+oo Pesc (s -+ tt) = limt-+oo Pe�J . 
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6:+- Consider the simple electrical network of the hypercube Qn with vertex set 
{0, l }n . Show that Reff(S , t) is a monotone increasing function of the distance 
d(s , t) . 

7. Formalize the remarks at the beginning of Section 2 as follows. Let (G, a) 
be a connected weighted graph, with weight function xy t-+ axy . and let 
S C V(G).  A function f : V (G) -+ lR is said to be harmonic on (G, a), with 
boundary S, if 

1 f(x) = A L axyf(y) x y�x 
for every x E V(G) \ S, where Ax = Lrx axy · 

(i) Prove the maximum modulus principle that the maximum of a non­
constant harmonic function is attained on S; also, if G - S is connected then 
the maximum is attained at some point of V (G) \ S if, and only if, the function 
is constant. 
(ii) Prove the superposition principle that if /J and h are harmonic on 

(G, a) with boundary S then so is cJ /1 + czh for any C J , cz E JR. 
(iii) Show that for every g : S -+ lR there is a unique function f : V (G) -+ lR 
which is harmonic on (G, a), with boundary S, such that f(x) = g(x) for all 
x E S. [Hint. Consider the RW (X1 )0 on (G, a) and, for x E V(G), define 
f(x) = lEx (g (Xrs)) ,  where rs is the hitting time of the set S of states.] 

In the next four exercises, we consider a Markov chain or a random walk 
X = (X1 )0 on a finite state space V with transition probability matrix 
P = (Pxy)x ,yeV· Thus P is a stochastic matrix: Ly Pxy = I for every x. 

8 .  A Markov chain is ergodic if for any two states x and y ,  there is a positive 
probability of going from x to y in some number of steps. Show that a finite 
MC is ergodic iff for some t :::: 1 ,  every entry of L::=I pi is positive. Show 
also that a weighted graph defines an ergodic RW iff the graph is connected. 

9. A probability distribution 1C = (1Cx)xeV on V is stationary if JCP = JC, i.e. if 
X =  (X1 )0 is started with initial distribution 1r then each X1 has distribution 
JC. Write Sx (s -+ s) for the expected sojourn time in x E V during a tour 
from s to s : 

Sx (S -+ s) = lEs ( l {i < ·{�} : xi = x } l ) , 
so that Ss (s -+ s) = 1 .  Show that, for y =f. x , 

Sy (s -+ s) = L PxySx (s -+ s) , 
xeV 

and deduce that (Sx (s -+ s ))xe v i s  a positive multiple of a stationary dis­
tribution. Show also that if X is ergodic then the stationary distribution is 
unique. 
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10. An ergodic MC is reversible if there is a probability distribution 1r = (Irxhev 
on V such that the detailed balance equations are satisfied: Irx Pxy = :Try Pyx 
for all x ,  y E V .  Show that this distribution 1r is stationary. 

1 1 . Check that an RW on a weighted connected graph ( G, a) is reversible, with 
the stationary distribution given by 1rx = Ax/ LyeV Ay . 
Show also that every reversible ergodic MC on V is  an RW on an appropriate 
weighted graph (with loops). [Hint. Define G with V (G) = V by joining x 
to y if Pxy > 0. For an edge (or loop) xy of G, set axy = 1rx Pxy = 1ryPyx ·] 

12 .  Show that an ergodic MC is reversible if, and only if, Pxy > 0 implies 
Pyx > 0 and, for every sequence XI , . . .  , Xn , Xn+I = XI of states, pc = 
n7=I PXjXi+ l > 0 implies that n7=I Pxi PXi-1 = PC · 

1 3 .  Let P = (Pxy) be the transition matrix of a finite Markov chain, and let 
t be a state such that, for every state x =/= t, P��) > 0 for some k =::: 1 ,  
where pk = ( P ;�> ) .  Let Q be the matrix obtained from P by deleting the 
row and column corresponding to t. Prove that I - Q is invertible, and 
(/ - Q)- 1 = (Nxy) . where Nxy = Sy (x --+ t), i.e. Nxy is the expected 
sojourn time in y in a chain started in state x and ending in t .  

14 .  Show that the distribution of an SRW on a bipartite graph need not converge. 

15 .  Let G be a connected non-bipartite graph of order n. Show that for any two 
vertices x ,  y E V (G), there is a walk of length 2n - 4 from x to y .  Show also 
that for f. < 2n - 4 there need not exist a walk of length f. from X to y .  

16 .  Let P be  the transition matrix of an SRW on  a connected non-bipartite graph 
G of order n and size m. Show that every entry of P2n-4 is strictly positive. 
Deduce that for every probability distribution p on V (G), pP1 tends to the 
stationary distribution 1r = (d(x)f2m)xeV(G) · 

17 .  Let G and P be as in the previous exercise, and let q = (q (x))xeV(G) be 
such that LxeV(G) q (x) = 0 and l l q l l l = LxeV(G) lq (x) l = 1 .  Show that 
i iqPk 

I I I < 1 for k = n - 2. Show also that k need not exist with k � n - 3 .  
Deduce again the result i n  Exercise 16 ,  and give a bound for the speed of 
convergence. 

1 8 .  Prove directly that Pesc(s --+ t) = 1 /Ss (s --+ t) . 

19 .  Let P be the transition probability matrix of the RW on a connected electrical 
network N = ( G, c) with n vertices. Show that the stationary distribution 
1r = (rr x) and the expected hitting times H (x , y) satisfy 

L :Trx PxyH (y , x) = n - 1 . 
x ,yeV(G) 

20:+- Let G be a weighted triangle with vertex set {s, t, x} ,  having weighted 
loops at the vertices. Show that the RW on G satisfies d(s)Sx (s --+ t) = 
d(x)Ss (X --+ t) . 
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2 I  ;++ In a game of patience, played on a finite set of counters on Z, there are two 
legal moves: 
(a) if there are two counters on the same integer k, we may move one to k - I 
and the other to k + I ,  
(b) if there is a counter on k and another on m > k then we may move them 
to k + I and m - 1 .  
Starting with n counters, all on 0, what is the maximal distance between two 
counters that can be achieved by a sequence of legal moves? 

22. Let G be a graph with m edges, and let s , t be distinct vertices at distance 
d(s , t) . Show that C(s , t) ::: 2md(s, t) . 

23. Let N = (G, r) be a connected electrical network with n vertices and 
resistance function rxy · Give two proofs of Foster's theorem that 

xyeE(G) 

Reff(X , y) = n _ I . 
rxy 

24. Deduce from Theorem 23 that for every graph G there is an order on V (G) 
such that if s precedes t in the order then H (s , t) ::;: H (t , s ). 

25. Deduce from the result in the previous exercise that if the automorphism group 
of a graph G is vertex-transitive then H(s, t) = H(t , s) for any two vertices 
s and t . 

26:- Show that the only non-trivial graphs of  conductance I are K2 and K3 . 

27.- Let G be a regular graph of order n . Show that 

<l>c ::: Ln2 /4J I G) ::: � + 
2(n � I ) . 

28:- Show that if G is an incomplete regular graph of order n then <l>c ::: ! · 
29. Let p be a probability distribution on [n] , and let rr = ( I jn , . . .  , I jn) . Show 

that 

l i P - Jr l l� :S I - I jn . 
30. Let G be a connected regular graph of  order n, with stationary distribution 

1r = ( l jn , . . .  , I /n) . Let X = (X1 )go be the SRW on G with Xr having 
d. "b . 

( (t) (t) ) Sh th tstn utwn Pt = p1 , • • •  , Pn . ow at 

lim sup m�x I P�t) - � I I /t t-+oo ' n 
is the modulus of an eigenvalue of the transition matrix. Which one? 

3 I .  Let G be a k-edge-connected d-regular of order n. Show that <l>c :::: kfd ln/2J .  

32:t The lollipop graph Lk is a clique of order 2k to which a path of length k has 
been attached (see Fig. IX.2). Show that if s and t are vertices of Lk such that 
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s i s  the end vertex of  the path furthest from the clique and t i s  not on  the path 
(and so t is one of 2k - 1 vertices of the clique), then 

H(s, t) = 4k3 + o(k3) . 
[In fact, for any two vertices s , t of a connected graph of  order n , H (s , t ) ::S 
4n3 /27 + o(n3) , so the graph above is essentially worst possible for hitting 
times.] 

• • 

FIGURE IX.2. The lollipop graph L3 .  

33:+" Let s be a vertex of a connected graph G with n vertices and m edges. The 
mean cover time, or simply cover time, C(s) is the expected number of steps 
taken by the SRW on G started at s to visit all vertices of G. Let T be a 
spanning tree of G, and set 

R(T) = L Reff (X ,  y) .  
xyeE(T) 

Show that C(s) ::S 2mR (T) . Deduce that C(s) ::S n(n - 1 )2 . [Hint. Show that 
there is an enumeration Xi , x2 , . . .  , Xn of the vertices, such that X i  = s and 
dr (x; , Xi+ 1 ) ::S 2, for i = 1 ,  . . . , n, where dr denotes the distance on T and 
Xn+i is taken to be X J .] 

34. Show that the mixing rate of the SRW on a regular graph of order n 2: 3 is at 
least 1 / (n - 1 ) ,  with equality only for the complete graph Kn . 

35.  Show that for n 2: 2 the mixing rate of the lazy random walk on the complete 
graph Kn is 1 /2. 

36. Compute the eigenvalues of the adjacency matrix of the (r - l)n-regular 
graph K, (n) , and deduce that for r 2: 2 the mixing rate of the SRW on G is 
1 /(r - 1 ) .  

37 .  Let G be obtained from K2n by deleting a 1 -factor, with n 2: 2. Compute 
the eigenvalues of the adjacency matrix of G and note that the mixing rate 
of the SRW on G is 1 / (n - 1) ,  over twice the mixing rate of K2n · [Hint. 
Let V(G) = [2n] ,  and for x = (x; )'l set x' = (XJ , . . .  , Xn , X J ,  • . .  , Xn ) , 
x" = (X J ,  . . .  , Xn , -X i ,  . • .  , -xn ) E Co(G) . Note that if 'L7 Xi = 0 then x' is 
an eigenvector with eigenvalue -2 and x" is an eigenvector with eigenvalue 
0.] 

38:+" Let G be a connected regular graph of order n 2: 5 without loops. Show that 
<I> a 2: n(n�4) . Show also that if equality is attained then n = 4k + 2 for some 
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k � 2; also, for every n = 2k + 2 there is a unique graph for which equality 
holds (cf. Fig. IX.3) . 

FIGURE IX.3. A cubic graph of order 1 0  and conductance 1 / 15 .  

39. Consider the SRW on the path on length n ,  with vertex set {0 ,  1 ,  . . .  , n } .  
(i) Note that H (O, 0 )  = H(n ,  n) = 2n . 
(ii) Deduce that H (s , s + 1 )  = 2s + 1 .  
(iii) Show that for 0 � s < t � n we have H (s , t) = t2 - s2 . 

40:+ Given a graph G and a vertex s E V (G), the mean cover time starting from 
s , C(s) , is the expected number of steps to visit every vertex if our SRW on 
G starts at s. Let G be the path of length n on {0, 1 ,  . . .  , n }, as in the previous 
exercise, and let C(s) be the mean cover time from s, as in Exercise 33 .  
(i) Show that C(O) = C(n) = n2 • 
(ii) Check that C*(s) = C(s) - s (n - s) is harmonic on G and deduce that 
C(s) = n2 + sn - s2 = 5n2 /4 - (n/2 - s)2 . 

4 1 .  Let G be the cycle of length 2n , and write H(d) for the mean hitting time 
H (s , t) , where s and t are vertices at distance d. Show that H (n) = H (n -
1 )+ 1 , H (n- 1 ) = H(n-2)+3, and so on, and deduce that H (d) = d(2n -d) 
for 0 � d � n .  Show also that if G is a cycle of length 2n + 1 and H (d) is as 
before, then H (n) = H(n - 1 )  + 2, H(n - 1 )  = H(n - 2) + 4, and so on, 
implying H (d) = d(2n + 1 - d). 

42:+ Prove that the mean cover time of a cycle of length n (starting from any 
vertex) is n (n - 1 )/2. [Hint. The expected number of steps to reach all but one 
of the vertices is precisely the mean cover time of the cycle of length n - 1 .  
To cover the rest, we just have to hit a neighbouring vertex. Make use of the 
result in the previous exercise.] 

43 . Let s and t be distinct vertices of a complete graph of order n .  Determine 
H(s , t) . [Hint. Note that H(s, t) = 1 + �=t H(s, t) . ] 

44. Prove that the mean cover time of a complete graph of order n (from any 
vertex) is (n - 1 ) L�:; f l jk . [Hint. This isjust the classical coupon collector's 
problem. Having covered k vertices, what is the expected number of steps it 
takes to get to a new vertex?] 

45 . Let P = (Pij )ZJ=I be a stochastic matrix, i .e. , the transition probability 
matrix of a MC on [n] .  Set E (P) = min;,} P;j . Show that if q = (q; )7 is such 
that L7 q; = O then l lqP I I I � ( 1 - nE) I Iq ii J . 
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46:t Let T be a finite set of states of an RW, and let s be a state not in T . For 
0 :;::: a < 1 ,  let f(T ;a} be the first time we have visited more than a i T I of the 
states in T , when starting from s , and let H (s ; T, a) be the mean hitting time: 
H(s ; T, a) = IEs (f(T;aj ) .  Prove that 

1 H(s ; T, a) :;::: -- max H (s ,  t) . 
1 - a teT 

[Hint. Note that, at every point of our probability space, there are at least 
( 1  - a) I T I states t E T such that f(t} � f(T ;a} · Deduce that IEs (f(T ;a} ) :;::: 
( 1 -�) IT \ LteT H(s, t) . ] 

4 7.  Deduce from the result in Exercise 46 that the main cover time of an RW with 
n states, started from any state is at most 2 log2 n maxs , t H (s , t) . 

48.  Let G be the n-dimensional cube Qn, as in Exercises 40 and 4 1  in Chapter VIII. 
By induction on n,  show that if U C V(Qn) ,  l U I  :;::: 2n- J , then e(U, U) � l U I .  
Deduce that <I>Qn = 1/n .  

49. Recall from Exercise 41  of  Chapter VIII that the second largest eigenvalue of 
the adjacency matrix of Qd is 1 - 2/ d. Deduce that the mixing rate of the LRW 
on Qd is 1 - 1 /d, considerably better than the rate given by Corollary 30. 

50:t Redefine the LRW on the cube Qd as follows: in each step chose a coordinate 
(direction) at random, then change that coordinate or stay still, each with 
probability 1 /2. By considering the event that all directions have been picked, 
show that drv (p1 , rr) :;::: e-c for t � d(logd + c) for every LRW on Qd , no 
matter what the initial distribution is. 

IX.6 Notes 

The connection between random walks and electrical networks was recognized 
over fifty years ago by S. Kakutani, Markov processes and the Dirichlet problem, 
Proc. Jap. Acad. 21 ( 1945), 227-233 ; it seems that C.St.J.A. Nash-Williams was 
the first to use it with great success, in Random walks and electric currents in 
networks, Proc. Cambridge Phil. Soc. 55 ( 1959), 1 8 1-194. Nevertheless, the sub­
ject really took off only in the last two decades, especially after the publication 
of a beautiful little book by P.G. Doyle and J.L. Snell, Random Walks and Elec­
trical Networks, Carus Math. Monogr. , vol. 22, Mathematical Assoc. of America, 
Washington, 1984, xiii+ 159 pp. 

For the dawn of the theory of electrical networks, see J.W.S.  Rayleigh, On 
the theory of resonance, in Collected Scientific Papers, vol. 1, Cambridge, 1 899, 
pp. 33-75 .  P6lya's theorem on random walks on lattices is from G. P6lya, Ober 
eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die lrrfahrt im Strassen­
netz, Mathematische Annalen 84 ( 192 1 ), 149-160, and Foster's theorem is from 
R.M. Foster, The average impedance of an electric network, in Contributions to 
Applied Mechanics (Reisser Anniv. Vol.), Edwards Bros. ,  Ann Arbor, pp. 333-340. 
The two beautiful proofs of Foster's theorem are from P. Tetali, Random walks 
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and effective resistance of networks, J. Theoretical Probab. 4 ( 199 1) ,  101-109, 
and An extension of Foster's network theorem, Combinatorics, Probability and 
Computing 3 ( 1994), 421-427. 

The reader is encouraged to consult some of the beautiful papers on random 
walks on graphs, including R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and 
C. Rackoff, Random walks, universal traversal sequences, and the complexity of 
maze problems, in 20th Annual Symposium on Foundations of Computer Science, 
San Juan, Puerto Rico, October 1979, pp. 2 1 8-223, A.K. Chandra, P. Ragha­
van, W.L. Ruzzo, R. Smolensky and P. Tiwari, The electrical resistance of a 
graph captures its commute and cover times, in Proceedings of the 21st Annual 
ACM symposium on Theory of Computing, Seattle, WA, May 1989, pp. 574-
586, G. Brightwell and P. Winkler, Maximum hitting times for random walks on 
graphs, Random Structures and Algorithms 1 ( 1990), 263-276, and D. Copper­
smith, P. Tetali, and P. Winkler, Collisions among random walks on a graph, SIAM 
J. Disc. Math. 6 ( 1993), 363-374. For numerous results presented as exercises, 
see L. Lovasz, Combinatorial Problems and Exercises, Elsevier Science, 1993, 
635 pp. 

Many results connecting the expansion properties of a graph to the speed of 
convergence of random walks can be found in N. Alon and V.D. Milman, A J ,  
isoperimetric inequalities for graphs and superconcentrators, J. Combinatorial 
Theory, Series B 38 ( 1985), 73-88, N. Alon, Eigenvalues and expanders, Combi­
natorica (2)6 ( 1986), 86-96, D. Aldous, On the Markov chain simulation method 
for uniform combinatorial distributions and simulated annealing, Prob. in Eng. 
and lnf Sci. 1 ( 1987), 33-46, M.R. Jerrum and A.J. Sinclair, Conductance and 
the rapidly mixing property for Markov chains : The approximation of the per­
manent resolved, Proceedings of the 20th Annual Symposium on the Theory of 
Computing, 1988,  pp. 235-244, Approximate counting, uniform generation and 
rapidly mixing Markov chains, Information and Computation 82 ( 1989), 93-133 ,  
Approximating the permanent, SIAM J. Computing 18 ( 1989), 1 149-1 178, and 
M. Mihail, Conductance and convergence of Markov chains-A combinatorial 
treatment of expanders, Proceedings of the 30th Annual Symposium on Founda­
tions of Computer Science, 1989. In particular, the notion of conductance was 
introduced by Jerrum and Sinclair. The presentation in Section 4 is based on 
B. Bollobas, Volume estimates and rapid mixing, in Flavors of Geometry (S. 
Levy, ed.), Cambridge University Press, 1997, pp. 1 5 1 - 1 80. For the problem of 
estimating the volume of a convex body in !Rn , see M.E. Dyer, A.M. Frieze and 
R. Kannan, A random polynomial-time algorithm for approximating the volume 
of convex bodies, J. Assoc. Comput. Mach. 38 ( 199 1 ), 1-17, M.E. Dyer and 
A.M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM 
J. Computing 17 ( 1988), 967-974, and Computing the volume of convex bod­
ies : A case where randomness provably helps, in Probabilistic Combinatorics 
and Its Applications, (B . Bollobas, ed.), Proc. Symp. Applied Math. 44 ( 199 1 ), 
pp. 1 23-169, and L. Lovasz and M. Simonovits, Mixing rate of Markov chains, 
an isoperimetric inequality, and computing the volume, Proc. 31st Annual Symp. 
on Found. of Computer Science, IEEE Computer Soc. ,  1990, pp. 346-355. 



X 

The Tutte Polynomial 

So far we have encountered several polynomials associated with a graph, including 
the chromatic polynomial, the characteristic polynomial and the minimal polyno­
mial. Our aim in this chapter is to study a polynomial that gives us much more 
information about our. graph than any of these. 

This polynomial, a considerable generalization of the chromatic polynomial, 
was constructed by Tutte in 1954, building on his work seven years earlier. Al­
though Tutte called this two-variable polynomial Ta (x , y) = T(G; x ,  y) the 
dichromate of the graph G, by now it has come to be called the Tutte polynomial 
of G. 

Similarly to the chromatic polynomial, the Tutte polynomial can be  defined 
recursively by the cut and fuse operations introduced in Section V. l .  The main 
virtue of the Tutte polynomial is that during the process much less information is 
lost about the graph than in the case of the chromatic polynomial. 

The first section is devoted to the introduction and simplest properties of the 
Tutte polynomial, and in the second section we shall show that a certain universal 
polynomial can easily be obtained from this polynomial. In order to illustrate the 
ubiquitous nature of the Tutte polynomial, in Section 3 we shall introduce several 
models of disordered systems used in statistical mechanics, and show that their so­
called partition functions are easy transforms of the Tutte polynomial. In Section 4 
we shall show that the values of the Tutte polynomial at various places enumerate 
certain natural structures associated with our graph. A fundamental property of 
the Tutte polynomial is that it has a spanning tree expansion: we present this 
in Section 5 .  

I t  would take very little additional effort to define the Tutte polynomial on more 
general structures, namely on matroids, but we do not wish to burden the reader 
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with more definitions. Anybody even only vaguely familiar with matroids will 
find the extension to matroids child's play. 

The last section of the chapter concerns polynomials associated with (equiv­
alence classes of) knots, especially the Jones and Kauffman polynomials. These 
polynomials, defined in terms of so-called diagrams of knots, were discovered 
only in the mid- 1980s. This is rather surprising since these polynomials greatly 
resemble the Tutte polynomial, which had been constructed over thirty years ear­
lier: in particular, they are naturally defined in terms of the obvious analogues of 
the cut and fuse operations. In fact, the resemblance is not only skin deep: on some 
classes of knots they are simple functions of the Tutte polynomial. 

The knot polynomials related to the Tutte polynomial made it possible to prove 
several deep results about knots : we shall sketch a proof of one of these theorems. 
Needless to say, our brief excursion into the theory of knot polynomials hardly 
scratches the surface. 

The natural setting for the polynomials to be studied in this chapter is the 
class of finite multigraphs; accordingly, all graphs occurring in this chapter are 
multigraphs with loops. 

X. l Basic Properties of the Tutte Polynomial 

The Tutte polynomial is the best known member of a small family of equivalent 
polynomials. There are several natural ways of introducing these polynomials : 
here we choose to start with the rank-generating polynomial. 

To prepare the ground, let Q be the class of all finite multigraphs with loops. 
Strictly speaking, Q is the set of all isomorphism classes of finite multigraphs, but 
it will be more convenient to consider the elements of Q to be graphs rather than 
isomorphism classes of graphs. Also, we shall frequently refer to the elements of 
g as graphs. 

For simplicity, we write G = (V, E) for a multigraph with vertex set V, in 
which E is the set of multiple edges and loops. With a slight abuse of notation, we 
call E = E (G) the set of edges of G, although in fact an edge of G is an element 
of E that is not a loop. 

Let us define the cut and fuse operations, also called deletion and contraction, 
for the class Q. The cut operation is as before: given G = (V, E) and e E E, let 
G - e = (V, E - {e}) . Thus G - e is obtained from G by cutting (deleting) the 
edge e. Also, let G I e be the multigraph obtained from G by fusing (contracting) 
the edge e. Thus if e E E is incident with u and v (with u = v if e is a loop) then 
in Gle the vertices u and v are replaced by a single vertex w = (uv), and each 
element f E E - { e} that is incident with either u or v is replaced by an edge or 
loop incident with w (see Fig. X. l) .  

Note that the edge e itself corresponds to no edge of Gle ; in particular, if  e is 
a loop then G 1 e = G - e. It is important to observe that both G - e and G 1 e 
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e 

G G - e  G/e 

FIGURE X. l .  A graph G together with G - e and Gfe for an edge e = uv .  

have precisely one fewer multiple edge and loop than G: every element of E - { e} 
corresponds to a unique element of  E ( G I e) . 

Given a multigraph G = (V, E), we write k(G) for the number of components 
of G. The rank r (G) and nullity n (G) of G are defined as for graphs: r (G) = 
l V I - k(G) = I G I - k(G) and n(G) = l E I - l V I + k(G) . 

We shall work with spanning sub graphs of G. These sub graphs are naturally 
identified with their edge sets: for F c E we write (F) for the graph (V, F), and 
r (F) , n (F) , k (F) for the rank, nullity and number of components of this graph. 
In particular, r (E) = r (G), n (E) = n (G) and k(E) = k(G) . 

We are now ready to define the rank-generating polynomial S(G; x ,  y) of a 
graph G = (V, E) : 

S(G; x ,  y) = L xr (E)-r (F) yn (F) = L xk(F)-k(E) yn (F) . 
FcE(G) FcE(G) 

Our convention is that S(G) = S(G; x ,  y) is a polynomial in x and y and 
this polynomial is a function of G. As for each G we have integer coefficients, 
S ( G; x ,  y) E Z[x , y] for every G E Q. We shall use the same convention for other 
polynomials depending on a graph G, although we frequently prefer to write G as 
a subscript rather than an argument of the function. 

The basic properties of the rank-generating polynomial are given in our first 
result. Although the proof is rather pedestrian, being only a sequence of formal 
manipulations, because of the importance of the result we spell it out in great 
detail. 

Theorem 1 Let G = (V , E) be a graph with e E E. Then { (x + l )S(G - e; x ,  y) 
S(G; x ,  y) = (y + l )S(G - e ; x ,  y) 

S(G - e; x, y) + S(Gje; x, y) 

if e is a bridge, 
if e is a loop, 
if e is neither a bridge 
nor a loop. 

Furthermore, S(En ; x , y) = I for the empty n-graph En. n ;:: 1 .  
Proof Set G' = G - e, G" = Gje , and write r' and n' for the rank and nullity 
functions in G', and r" and n" for those in G". 

Let us collect the simple properties of these functions we shall use below. If 
e E E and F c E - e then r (F) = r' (F) ,  n (F) = n' (F) , r (E) - r (F U e) = 
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r" (E - e) - r" (F} = r(G") - r" (F} , 

and 

l r1 (E - e) + 1 r (E} -- r1 (E - e} 
if e is a bridge, 

otherwise, 

ln" (F) + 1 if e is a loop, 
n ( F  U e ) = 1 n 1 (F)  otherwise. 

Here, as in the future, F U e and E - e stand for F U {e } and E - {e}. 
Let us split S(G; x ,  y) as follows:  

S(G; x, y) = So(G; x, y) + S1 (G; x ,  y) ,  

where 

s, (G ) "" xr(E)-r(F) yn (F) o ; x , y = L., 
FcE,ef/F 

and 

S (G ) "" Xr(E)-r (F) Yn (F) _ 1 ; x , y = L., 
FcE,eeF 

Recall that the sets E - e, E(G1) = E(G - e) and E(G") = E(Gje) are 
naturally identified. Hence, by the formulae above, 

and 

So(G; X , y) = L xr(E)-r (F) yn (F) 
FcE-e { L xr' (E-e)+I-r' (F) yn' (F) 

FcE(G') 

L xr' (E-e)-r' (F) yn' (F) 
FcE(G') 

if e is a bridge, 

otherwise, 

= lxS(G - e ; x ,  y) if e is a bridge, 

S(G - e; x ,  y) otherwise, 

SI (G ; x , y) = L Xr(E)-r(FUe) Yn (FUe) 
FcE-e { "" Xr(G")-r" (F) yn"(F)+I L., if e is a loop, 

FcE(G") 
"" r(G")-r" (F) n" (F) L., x y otherwise, 

FcE(G") 

= l yS(Gje; x ,  y) if e is a loop, 

S(Gje; x ,  y) otherwise. 
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The result follows by adding together the expressions for So and St . and noting 
that if e is a bridge or a loop then S(G je; x ,  y) = S(G - e; x ,  y) .  This is obvious 
if e is a loop since then Gje � G - e; if e is a bridge, the assertion holds since 
r" (E - e) - r" (F) = r' (E - e) - r' (F) and n" (F) = n' (F) for all F C E - e. 

Finally, the last part of  the theorem is  immediate from the definition of  S. D 

The Tutte polynomial Tc = T(G) = T(G; x ,  y) = Tc (x , y) is a simple 
function of the rank-generating polynomial: 

Tc(x , y) = S(G; x - l , y - 1) =  'L: <x - 1t(E)-r (F) (y - 1 )n (F) . ( 1 )  
FeE 

Most of the time we use TG for the Tutte polynomial and write TG (X , y) if 
we wish to draw attention to the arguments; however, the notation T (G) better 
expresses the fact that T is a map from the set of (equivalence classes of) finite 
multigraphs into Z[x , y ] .  Tutte himself used T(G ;  x ,  y) for the 'dichromate' . Note 
that TEn (x , y) = 1 and {XTG-e if e is a bridge, 

TG = yTG-e if e is a loop, 

TG-e + TGJe if e is neither a bridge nor a loop. 

The recursion above will be used over and over again to show that a good many 
functions of graphs can be obtained by evaluating the Tutte polynomial at certain 
places. 

When applying the reduction formulae above, it is worth noting that if e E E (G) 
is a bridge or a loop then TG-e = TGfe • since the analogous relation holds for S. 

The functions S and T are multiplicative in the sense that if G = G 1 U G2 
with the graphs G t  and G2 sharing at most one vertex, then the value on G is 
the product of the values on G t  and G2 (see Exercise 4). In fact, these functions 
are determined by this multiplicativity condition, together with the recursion for 
an edge e that is neither a loop nor a bridge, and the values of the functions on 
K2 and L, where L is the 'loop graph' ,  that is, the graph with one vertex and one 
loop. By multiplicativity, S(K t )  = T(K t )  = 1 ;  also, S(K2) = x + 1 ,  T(K2) = x ,  
S(L) = y + 1 and T(L) = y .  

There are numerous other variants o f  the last observation. For example, T is 
also the unique function on graphs such that: 

(i) if G has b bridges, / loops and no other edges then T G = xb y1 , 
(ii) if G is obtained from a graph H by adding b bridges and l loops then 

TG = xhy1TH , 
(iii) if G has no bridges or loops then the third recursion formula holds for some 

edge e, that is, there is an edge e E E (G) such that 

TG = TG-e + TGJe · 

The reader is encouraged to check this simple assertion. 
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X.2 The Universal Form of the Tutte Polynomial 

Our next aim is to show that the Tutte polynomial is easily lifted to a seemingly 
more general polynomial. In carrying out this task, we shall need that the maximum 
degrees of x and y in T G (x , y) can be read out of the definition of the Tutte 
polynomial: as 

we have 

and 

T G (x ' y) = L (x - or(£)-r (F) (y - on (F) ' 
FeE 

degxTa (x ,  y) = max{r (G) - r (F) : F C E(G)} = r (G) , 

degy Ta (x ,  y) = max{n (F) : F C E(G)} = n (G) . 
The following simple assertion is  a slight extension of a result of Oxley and 

Welsh. 

Theorem 2 There is a unique map U :  g ---* Z[x , y, ct, a, r] such that 
U(En) = U(En ; X ,  y ,  ct, a, r) = ctn 

for every n � 1, and for every e E E (G) we have {xU(G - e) ife is a bridge, 
U(G) = yU(G - e) ife is a loop, 

Furthermore, 
aU(G - e) + rU(Gje) ife is neither a bridge nor a loop. 

(2) 

Proof The uniqueness is immediate since if e E E (G) then U (G) is determined 
by U ( G - e) and U ( G I e) . Hence all we have to prove is that the function U given 
by (2) has the required properties : i.e., U(G) is a polynomial for every graph 
G, these polynomials satisfy the reduction formulae, and U (En) = an for every 
n � I . 

The fact that U(G) E Z[x , y , a, a, r] follows from degxTa (x ,  y) = r (G) and 
degyTa (x ,  y) = n(G) . Also, as k(En) = n and r(En) = n (En) = 0, we have 

U(En) = ctnTEn (ctxjr, yja) = ctn . 

Most importantly, U satisfies the reduction formulae since the Tutte polynomial 
satisfies them with a = r = 1 .  To spell it out, if e E E (G) is a bridge then 
k(G - e) = k(G) + 1 ,  n (G - e) = n(G) and r(G - e) = r (G) - 1 ,  so 

U(G) = ctk(G)an(G) rr(G) Ta (axjr, yja) 
= ctk(G-e)- ! an(G-e) rr(G-e)+! (ctxjr)Ta-e (ctxjr, yja) = xU(G - e) . 
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If e is a loop of G then k(G - e) = k(G), n (G - e) = n (G) - 1 and 
r (G - e) = r (G) , so 

U(G) = ak(G)an(G) -cr (G) Tc (axj-c, yja) 
= ak(G-e) an(G-e)+! "Cr(G-e) (yja)Tc-e (axj-c, yja) = yU(G - e) . 

Finally, if e E E(G) is neither a bridge nor a loop of G then k(G - e) = 
k(Gje) = k(G), n (G - e) = n (G) - 1 ,  n (Gje) = n(G), r (G - e) = r (G) and 
r (Gje) = r (G) - 1 ,  so 

U(G) = ak(G)an(G) -cr(G) Tc (axj-c, yja) 
= ak(G)an(G) -cr(G) {Tc-e (axj-c, yja) + Tc;e (axj-c, yja) }  
= ak(G-e)an(G-e)+! "Cr(G-e) TG-e (axj-c, yja) 

+ ak(Gfe)an(Gfe) "Cr(Gfe)+ l Tc;e (ax j-c ,  y fa) 
= aU(G - e) + -cU(Gje) , 

completing the proof. 0 

We call the polynomial U in Theorem 2 the universal polynomial of graphs. 
Theorem 2 implies that if R is a commutative ring and x, y, a, a, -c E R then there 
is a unique map g � R satisfying the conditions of the theorem: that map is 
obtained by evaluating the polynomial U at the required place. In particular, there 
is a map for R = Z[x , y] and every choice of a, a, -c E Z. For example, the Tutte 
polynomial itself is just U evaluated at a = a = -c = 1 .  

The polynomial U is also multiplicative, but in a somewhat weaker sense than 
S and T :  if G1 and G2 are vertex disjoint graphs then 

U(G 1 U G2) = U(G I )U(G2) , 
and i f  G 1 and G2 share one vertex then 

U( G ) U(G I )U (G2) G 1 U 2 = . a 
(In particular, for a = 1 the function U is multiplicative in the stronger sense of 
S and T.) It is easily seen that U is determined by this multiplicativity property, 
together with the conditions U(L) = ay and U(K2) = a2x . Once again, U(KI) = 
a follows from multiplicativity. 

A word of caution: unless a and -c are both non-zero, we have to evaluate the 
expanded polynomial in (2) rather than the factors one by one. In fact, a little work 
shows that if a = 0 or -c = 0 then U takes a particularly pleasant form. Writing 
f. (  G) for the number of loops of G, b( G) for the number of bridges and, as always, 
I G I for the number of vertices, 

and 

U(G; x , y, a, a, 0) = a 1G ian(G)-t(G)xr(G)l(G) (3) 
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if E (G) consists of loops and bridges, 

otherwise. 
(5) 

In §4 we shall show that a good many values of the Tutte polynomial have 
considerably more interesting interpretations. 

Let us mention two more members of the family of polynomials related to 
the Tutte polynomial. The first, Qc = Qc (t , z) E Z[t , z ] .  we shall call the 
Whitney-Tutte polynomial. It is defined as 

so that 

and 

Qc (t , z) = L tk(F) zn (F) , 
FcE(G) 

Qc (t , z) = tk(G) S(G; t, z) 

Tc (x , y) = (x - 1 )-k(G) Qc (x - 1, y - 1 ) .  

We shall call the second, Zc = Zc (q , v) E Z[q , v] , the dichromatic polynomial. 
It is the unique polynomial such that ZEn = qn for every n ::: I ,  and 

Zc = Zc-e + vZc;e (6) 

for every edge e E E(G) , whether e is a bridge, a loop or neither. It is easily 
checked (see Exercise 6) that Z is just U evaluated at a = q ,  a = 1 ,  r = v, 
x = (q + v)fq and y = 1 + v, that is, 

Zc (q , v) = l(G) vr(G)Tc ((q + v)fv , 1 + v) .  

As we shall see in  the next section, i t  i s  precisely the incarnation Zc of  the 
Tutte polynomial that appears in statistical physics. 

X.3 The Tutte Polynomial in Statistical Mechanics 

In statistical mechanics we wish to study random disordered systems, especially 
in the neighbourhood of their phase transitions. In many instances, even before we 
start our investigations, we have to overcome the somewhat unexpected difficulty 
that although it is easy to give a measure proportional to the probability measure 
we wish to study, it is not easy to normalize it so that it becomes a probability 
measure. The total measure of the space (and so our normalizing factor) is the 
partition function. As we shall see now, in several important cases the partition 
functions are simple variants of the Tutte polynomial. 

Let us start with the q-state Potts model, where q ::: 1 is an integer. To introduce 
this model, let G = (V, E) be a multigraph. We call a function w : V --+ [q] ,  
a H- Wa , a state o f  the q-state Potts ferromagnetic model on G. The value Wa is 
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the state of a or the spin at a. To define a measure on the set n = [q ] v of all 
states, we need the Hamiltonian H (w) of a state w: 

H(w) = L ( 1 - o (wa . Wb)) .  
a beE 

Here and in what follows, we consider the set E of edges to be a multiset, so that in 
a sum LxyeE f (x , y) the multiplicity off (x , y) is  precisely the number of edges 
or loops with end vertices x and y.  The Potts measure on n = [q] v is defined by 

J.L�fJ (w) = e-H(w)/knT = e-f3H (w) , 
where kB is the Boltzmann constant ( 1 .38  x 10-23 joules/Kelvin), T is the tem­
perature of the system, and f3 is the inverse temperature. The partition function 
of the q-state Potts model on G is 

Pa (q , /3) = J.L�13 (n) = L J.L�13 (w) , 
wen 

and the probability of a state w is J..L�/3 (w)/ Pa (q , /3). Note that at high tem­
peratures all states have about the same probability, while at low temperatures a 
small change in the Hamiltonian changes the probability a great deal. Much of 
our interest in the system is due to the fact that the structure of a 'typical ' system 
changes suddenly as the temperature passes through a certain critical value. This 
phase transition is reminiscent of the phenomenon in the evolution of random 
graphs we discussed in Section VII.5. 

Theorem 3 Let G = (V, E) be a multi graph, q � 1 an integer and f3 E R Then 
the partition function of the q-state Potts model on G, with inverse temperature f3, 
is 

Pa (q , /3) = e-fJ IE i za (q ,  v) , 
where Za is the dichromatic polynomial and v = ef3 - 1.  

Proof Set 

Pa (q , /3) = ef3 IE i pa (q , /3) ,  

so that we have to show that Pa (q , /3) = Za (q , v) . If  G = En then H (w) = 0 for 
every state w, so PE. = PE. = qn . In order to prove that Pa (q , /3) = Za (q , v), 
all we have to check is that Pa (q , /3) satisfies the reduction formula (6). Note that 

Pa(q , /3) = ef3 1E I L efJ LabeE (o (wa ,Wb)- 1 ) 
wen 

= L n ef38(wa ,Wb) 
wen abeE 

= L n ( 1  + vo (wa . Wb)) .  
wen abeE 

To prove the reduction formula, let e be an edge from c to d. Let us split the 
sum above: first let us sum over the states w with We =f:. Wd, and then over the 
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states with We = Wd . Thus 

Pa (q , {3) = I: n ( 1  + vo (wa . Wb)) 
Wcf.Wd abeE-e 
+ ( 1  + V) I: n ( 1  + VO(Wa , Wb)) 

Wc=Wd abeE-e = I: n ( 1  + VO (Wa , Wb)) + V I: n ( 1  + VO (Wa , Wb)) 
weQ abeE-e Wc=Wd abeE-e = Pa-e (q , {3) + vPa;e (q , {3) . 

Hence (6) i s  satisfied, and we are done. D 

The Potts model is a generalization of the Ising model, which is just the case 
q = 2. In fact, Fortuin and Kasteleyn constructed an extension of the Potts model 
itself: our next aim is to introduce this extension, the so-called random cluster 
model. Let G = (V, E) be a multigraph, and let 0 < p < 1 and q > 0 be fixed. 
Most importantly, we do not take q to be an integer. The random cluster model 
on G, with parameters q and p, is a probability space on all spanning sub graphs 
of G.  As before, such a sub graph will be identified with its edge set F C E. The 
measure of a subgraph (F) is 

vj/ (F) = p iF I ( l - p) IE I- IF il (F) ' 
and so the partition function of the random cluster model is 

Ra (q , p) = L PIF I ( l _ p) IE I- IF iqk(F) .  
FeE 

To turn v�·P into a probability measure, we have to divide it by Ra (q ,  p) . 
The random cluster model is not too far from the standard random graph model 

g(G, p), in which we obtain a random subgraph of G by selecting the edges 
of G (and only those !)  with probability p, independently of each other. (Thus, 
g (n , p) = g(Kn , p).) To get a random graph in a random cluster model, we 
bias the standard probability of a graph with k components by a factor of l. 
So, i f  q = 1 ,  we  get precisely g(G,  p) , but i f  q i s  large then we  heavily favour 
graphs with many components. Nevertheless, the similarity to the standard model 
g ( G, p) occasionally allows one to use the methods and results of the theory of 
random graphs to study random cluster models. 

Theorem 4 The partition function of the random cluster model is 
Ra (q , p) = ( 1 - p) 1E 1za (q , v) , 

where v = p/( 1 - p). 
Proof. Set Ra (q , p) = ( 1 - p)- IE IRa (q , p), so that 

Ra (q , p) = L v iF il (F) , 
FeE 

(7) 
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and we have to show that Ra (q , p) = Za (q , v) . Clearly, RE. = qn , so all we 
have to check is that the reduction formula holds. To this end, let e E E. Let us 
partition the subsets of E into pairs, 

{F : F c E} = U {F, F U {e } } , 
FcE-e 

and let us split (7) accordingly: 

Ra (q ,  p) = L { v iF il(F) + v iF I+ Il(FUe) } 
FcE-e = L v iF i qk(F) + v L v iF il(FUe) . 
FcE-e FcE-e 

The first sum is precisely Ra-e (q , p) . As (F U {e} } has precisely as many compo­
nents in G as (F) has in Gfe, the second sum is RGfe (q , p), and we are finished. 

D 

Needless to say, these partition functions are easily expressed in terms of the 
Tutte polynomial (see Exercise 42) , but the expressions are not too edifying. How­
ever, formula (7) gives yet another very simple way of defining the dichromatic 
polynomial Za ,  and so the Tutte polynomial (see Exercise 44) . 

X.4 Special Values of the Tutte Polynomial 

As we remarked earlier, the Tutte polynomial of a graph carries much more 
information about the graph than the chromatic polynomial. In particular, as we 
shall soon see, the chromatic polynomial is simply the Tutte polynomial with 
y = 0, suitably normalized. But first let us note that if x, y E { 1 ,  2} then Ta (x , y) 
is the number of certain simple sub graphs of G. 
Theorem 5 Let G be a connected graph. Then T G ( 1 ,  1 )  is the number of spanning 
trees of G, Ta (2, 1 )  is the number of (edge sets forming) forests in G, Ta ( l ,  2) 

is the number of connected spanning subgraphs, and Ta (2, 2) is the number of 
spanning sub graphs. 
Proof Each of these assertions is immediate from the definition ( 1 )  of T .  Thus, 

Ta (l .  1 )  = L or(G)-r (F)on(F) 
FcE(G) = I {F :  F C E(G), r (F} = r (G) and n (F} = 0} 1 ,  

and F c E(G) is the edge set of a spanning tree iff r (F} = r (G) and n (F} = 0. 
Similarly, 

Ta (2, 1 )  = L 1 '(G)-r (F)on <F) = I {F : F c E(G) and n (F} = 0} 1 
FcE(G) 
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is the number of edge sets F forming forests, and 

Ta ( l ,  2) = L or(G)-r(F) In (F) = i {F : F c E(G) and r (F) = r(G) } I  
FcE(G) 

is the number of connected spanning sub graphs of G. 
Finally, 

Ta (2, 2) = L I r(G)-r (F) In (F) = I {F : F C E(G) } I  = 21E(G) I , 
FcE(G) 

as claimed. 0 
Let us tum to families of values of the Tutte polynomial. As our first general 

result, we shall show that the chromatic polynomial is just the Thtte polynomial 
with y = 0, suitably normalized. 

In keeping with our earlier notation, given a multigraph G with loops and a 
positive integer x ,  let us write PG (x) for the number of proper vertex-colourings 
of G, that is for the number of maps c : V (G) --+ { 1 ,  2 , . . .  , x }  such that if u and v 
are adjacent vertices then c(u) ::j:. c(v) . Clearly PEn (x) = xn and as in Chapter V, 
for every edge e E E (G) we have 

PG (X) = PG-e(X) - PGfe (X) .  
I n  particular, PG (x) i s  a polynomial i n  x ,  the chromatic polynomial o f  G. Let us 
note two more simple properties of the chromatic polynomial. First, if there is a 
loop at a vertex then the vertex is adjacent to itself, so PG (x) = 0 if G contains 
a loop. Clearly, if H is the graph obtained from G by replacing the multiple 
edges by simple edges then pa (x) = PH(x) .  Secondly, recall from Exercise 48 
of Chapter V that if e is a bridge of G then 

x - I  
PG (X) = --pa-e (x) .  X 

Theorem 6 The chromatic polynomial PG (x) of a graph G is 
PG (X) = (- l )'(G)Xk(G) Ta ( l - X ,  0) . 

Proof. The result is immediate from Theorem 2 and the properties of the chromatic 
polynomial mentioned above. Indeed, pEn (x) = xn , and for every edge e E E (G), 

I x � 1 PG-e (x) if e is a bridge, 

Pa (x) = 0 if e is a loop, 

PG-e (x) - PGfe(x) if e is neither a bridge nor a loop. 

Hence, by Theorem 2, pa (x) = U(G; x; 1 , 0, x , l , - 1 ) = xk(G) (- l )'(G) x 
Ta ( l  - x ,  0) , as claimed. 0 

Setting x = 0 in the Tutte polynomial, the polynomial in y we obtain also has 
a natural interpretation: it is the so-called flow polynomial of the graph, suitably 
normalized. 



X.4 Special Values of the Tutte Polynomial 347 

To define the flow polynomial, we shall consider flows in our graphs (multi­
graphs with loops) with values in a finite additively written Abelian group A .  We 
call such a flow an A-flow if it satisfies Kirchhoff's current law at each vertex. 
Thus an A-flow is really a circulation (see Exercise 7 in Chapter III), but it would 
be wrong not to use the accepted terminology. 

As in our study of flows in graphs in Chapters II and III, one may pick an 
orientation of the edges, giving a set E of directed edges and loops, and then an 
A-flow is a map f : E � A such that the total flow out of a vertex is equal to the 
total flow into the vertex. Equivalently, each edge e = xy has a certain flow fxy in 
it from x to y , with the convention that it is the same as a flow -/yx in the same 
edge from y to x .  

An A-flow is said to be nowhere-zero if it has a non-zero value in every edge. 
Let us write qG (A) for the number of nowhere-zero A-flows in G. As we shall see 
shortly, qG (A) is a polynomial in the order of the group A, so we are justified in 
calling it the flow polynomial. 

Occasionally, qG (A) is easily determined. For example, qEn (A) = 1 for every 
n ::: 1 since there is only one A-flow in En . the unique map from the empty set 
into A ,  and that A-flow is nowhere-zero. If G = Cn is an n-cycle X IX2 . . .  Xn with 
n :;: 1 then qG (A) = I A I - 1 ,  since an A-flow assigns the same current to each of 
XJX2 , X2X3 , . • •  , XnX J .  

Let us see what we can say about qG (A), qG-e (A) and qG;e (A) for an edge 
e E E. First, if e is a bridge then qG (A) = 0. Indeed, suppose that e is the only 
edge from VI to V2 = V(G) - VI . In an A-flow the total current from VI to V2 is 
0, so there is no current in the bridge e. Hence qG (A) = 0. 

Secondly, if e is a loop then every A-flow on G is obtained from an A-flow 
on G - e by sending an arbitrary current through the loop e. In order to obtain 
a nowhere-zero A-flow on G, we have to start with a nowhere-zero A-flow on 
G - e and then choose one of I A I  - 1 non-zero values for the current in the loop 
e. Consequently, 

qG (A) = ( I A I - 1)qG-e(A) . 

Finally, suppose that e is neither a loop nor a bridge, and joins u to v. Consider 
a nowhere-zero A-flow f on Gje. As the edge sets E(Gje) and E(G - e) are 
naturally identified, f can be viewed as a flow f' on G - e. Clearly, either f' 
is a nowhere-zero A-flow on G - e, or else f' fails Kirchhoff's current law at u 
and v, and nowhere else. In the latter case, there is a unique extension of this flow 
to a nowhere-zero A-flow !" on G: the current in e has to be chosen to make 
Kirchhoff's current law hold at u (and then it holds at v as well). Furthermore, 
every nowhere-zero A-flow f' on G - e is obtained in this way and so is every 
nowhere-zero A-flow !" on G. Consequently, 

qG;e (A) = qG-e (A) + qG (A) . 

A priori, qG (A) seems to depend on the structure of A ;  as the next result implies, 
rather surprisingly, this is not the case: qG (A) depends only on the order of A .  
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Theorem 7 Let A be a finite Abelian group and G a multigraph. Then 
qa (A) = (- l )n(G) Ta (O, 1 - IA I ) .  

Proof The result is, once again, immediate from Theorem 2 and the properties 
of the flow polynomial noted above. Indeed, we have shown that q En (A) = 1 for 
every n � 1 ,  and if e E E(G) then 

qa (A) = { �I A I - 1 )qa-e (A) 
-qa-e (A) + qa;e(A) 

Hence, by Theorem 2, 

if e is a bridge, 

if e is a loop, 

if e is neither a bridge nor a loop. 

qa (A) = U(G; 0, I A I - 1 ,  1 ,  - 1 ,  1) = (- l )n(G) Ta (O, 1 - I A I ) ,  
as required. 0 

As an easy consequence of Theorem 7, we see that qa (A) depends only on the 
order of A and not on its structure. In view of this, we denote qa (A) by qa ( IA I ) .  
Furthermore, this function qa (k) i s  a polynomial in k E N,  so  i t  gives a polynomial 
qa (x) E Z[x ] .  We call qa (x) the .flow polynomial of G. As qa (A) depends only 
on I A I ,  it is customary to talk of a k-ftow, meaning an A-flow with l A  I = k or 
simply a Zk-flow. 

It is natural to consider the flow polynomial as the dual of the chromatic 
polynomial (see Exercise 16) .  In particular, the four colour theorem is equivalent to 
the fact that every bridgeless planar graph has a nowhere-zero 4-flow. Furthermore, 
corresponding to Hadwiger's conjecture concerning colourings, Tutte conjectured 
in 1 954 that every bridgeless graph has a nowhere-zero 5-flow. In fact, it is far 
from obvious that one can even guarantee a nowhere-zero k-flow for some k.  This 
was proved by Jaeger in 1979 when he showed that one can guarantee a nowhere­
zero 8-flow. A little later, Seymour proved that, in fact, every bridgeless graph has 
a nowhere-zero 6-flow. This remarkable result is still rather far from a proof of 
Tutte's 5-flow conjecture. 

Our penultimate example resembles the last result: as a byproduct of the 
evaluation of a function, we shall obtain its independence from one of its variables. 

We know from Exercise 52 of Chapter V that the number a (G) of acyclic 
orientations of a graph G is given by the chromatic polynomial at x = - 1 :  
a (G) = I Pa (- 1 ) 1  = (- l ) IG i pa(-1 ) .  Hence, by Theorem 6, a(G) = Ta (2, 0) . 
As we are about to see, T G ( 1 , 0) counts certain acyclic orientations of connected 
graphs. Given a connected graph G and a vertex u of G, write au (G) for the 
number of acyclic orientations of G in which there is only one source, and that 
source is u .  
Theorem 8 For every connected graph G and every vertex u E V (G) we have 

au (G) = Ta ( l ,  0) . 

Proof We shall deduce the assertion from the following four properties of the 
function au (G). 
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(i) If G = E1 then au (G) = 1 .  
(ii) If G contains a loop e then G has no acyclic orientation so au (G) = 0. 

(iii) Suppose that e = uv is a bridge of G, and consider an acyclic orientation 
of G, with u the only source. Then in the component of G - e containing v, the 
only source has to be v, so the acyclic orientations of G with u the only source are 
in 1-to-1 correspondence with the acyclic orientations of G le, with u (which in 
Gle is the same as v or (uv)) the only source. Hence 

au (G) = au (Gie) . 
(iv) Finally, suppose that e = uv E E(G) is  neither a loop nor a bridge. 

Consider an acyclic orientation of G, with u the only source. Let us ask the 
question: is u v  the only edge directed into v? If it is, then our orientation gives 
an acyclic orientation of G I e in which u is the only source; otherwise, it gives an 
orientation of G-e in which u is the only source. Also, all appropriate orientations 
of G I e and G - e arise in this way. Consequently, in this case we have 

au (G) = au (G - e) + au (Gie) . 
Note now that if u is a vertex of a connected graph G with e (  G) > 0 then there 

is an edge e E E (G) incident with u .  But then au (G) is determined by the 'nature' 
of this edge (loop, bridge or neither) and the values au (G - e) and au (Gie) . Hence 
there is a unique function au (G) on the set of (equivalence classes of) connected 
graphs G with a distinguished vertex u that has properties (i) - (iv). Recalling that 
Te-e = Tc;e whenever e is a bridge or a loop, we see that Tc ( l ,  0) is such a 
function, so au (G) = Tc ( l ,  0), as claimed. D 

As our final example, we shall show that the Tutte polynomial can be used to 
determine the probability of connectedness of a random subgraph of a connected 
graph. In fact, a slightly more general assertion will be an immediate consequence 
of Theorem 2. 

Let G = (V ,  E) be a graph, and let 0 < p < 1 .  With a slight abuse of 
notation, we shall write Ep for a random subset of E obtained by retaining the 
edges with probability p, independently of each other (and so deleting them with 
probability q = 1 - p). Thus if G = Kn then (Ep ) is precisely an element of 
Q(n ,  IP'(edge) = p), studied in Chapter VII; in general, (Ep ) is a random subgraph 
of G. We write lP' for the probability on these random subgraphs (Ep ) .  
Theorem 9 Let G = (V, E), 0 < p < 1 ,  q = 1 - p and Ep be as above. Then 

IP'(r (Ep ) = r (G)) = pr(G)qn(G) Tc ( l ,  1 1q) .  
Proof In  view of  Theorem 2, i t  suffices to check that the function C(G) = 

IP'(r (Ep ) = r (G)) satisfies the conditions of Theorem 2 with x = p, y = 1 ,  
a = 1 ,  a = q and r = p. 

Although this is very easily seen, we shall spell i t  out. 
If G is the empty graph En then r (Ep ) = r (G) = 0, so C(En) = 1 .  
If e E E is a  bridge of G then r (Ep ) = r (E) implies that e E Ep . Consequently, 

C(G) = pC(G - e) . 
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If e E E is not a bridge of G then r (G) = r(G - e), so C(G) = pC(Gje) + 
q C(G - e) . Also, if e is a loop then Gje = G - e, so C(G) = C(G - e) , a fact 
obvious from first principles as well. D 

Among the exercises we give two other beautiful instances of enumeration by 
the Tutte polynomial (see Exercises 10--1 1 ) .  

X.5 A Spanning Tree Expansion of the Tutte Polynomial 

In this section we shall give Tutte's original definition of his polynomial, and we 
shall show that it agrees with our definition. As we know the basic properties of 
the Tutte polynomial, our task will be much easier than it would be if we started 
from first principles. 

Although one tends to talk of writing the Tutte polynomial as a sum over all 
spanning trees, this is possible only if our graph is connected. (Surprise, surprise ! )  
As  the Tutte polynomial of  a graph i s  the product of  the Thtte polynomials of  its 
components, we are led to an expansion in terms of forests whose components are 
spanning trees of the components of the graph. With a slight (but definite) abuse 
of terminology, we call such a forest a spanning forest. 

Thus a graph F = (V' , E') is a spanning forest of a graph G = (V, E) if 
V' = V,  E' c E, and each component of F is a spanning tree of a component of 
G .  Equivalently, V' = V,  E' c E, r(F) = r (G) and n(F) = 0. Putting it slightly 
differently, a spanning forest of a graph is a subforest with the same number of 
vertices and the same number of components as the original graph. 

Let G be a graph and let us consider an order on its edge set: say, E (G) = 
{ e 1 ,  ez , . . .  , em } ,  with ei preceding ei if i < j .  Also, let F be a spanning forest of 
G. Following the terminology in Section II. 1 ,  for ei E E(F) we call UF(ei ) = 
{ej e E(G) : (F -ei ) +ei is a spanning forest} the cut defined by ei . Furthermore, 
for ei e E(G) - E(F),  the cycle defined by ei is the unique cycle of F +  ei ; we 
write Z F ( ei ) for the edge set of this cycle. 

Call an edge ei e E(F) an internally active edge (of F, with respect to the 
ordering of the edges of G) if ei is the smallest edge of the cut it defines. Thus 
ei e E(F) is internally active if i :::: j whenever ei E UF(ei ) ,  that is, if ei E 

ZF (ej ) implies i :::: j .  Similarly, call ei E E(G) - E(F) externally active if ei is 
the smallest edge of the cycle it defines, that is, if i � j whenever ei E ZF(ej ) .  
For an illustration, see Fig. X.2. 

We say that a spanning forest has internal activity i and external activity j 
if there are precisely i internally active edges and precisely j externally active 
edges. Also, as a shorthand, by an (i , j)-forest we mean a spanning forest of 
internal activity i and external activity j (with respect to some given ordering of 
the edges.) If we know that our forest is, in fact, a spanning tree, then we shall talk 
of an (i , j )-tree. 

Note that, upholding the ancient tradition of pure mathematicians, we use the 
same generic indices in two different contexts: we have edges ei on a forest, edges 
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FIGURE X.2. The subgraph in bold is a spanning tree with internally active edges 
e1 ,  e7 , eg and externally active edges ez , e3 . 

ej not on a forest, and we also have (i , } )-forests, that is, spanning forests with 
i special edges of one kind (denoted by ei ) and j special edges of another kind 
(denoted by ej ). Hopefully, this does not lead to any confusion. 

Theorem 10 Let G be a graph with an ordering of its edges. Write tij for the 
number of spanning forests with internal activity i and external activity j .  Then 
Li, j tijx iyj is precisely the Tutte polynomial Ta (x , y) of G. 

In particular; tij = tij (G) is independent of the ordering of the edges and 
depends only on the graph G. 

Proof We shall prove the assertion by induction on the number of edges of G .  
For G = En we have too = 1 and tij = 0 if i + j > 0 ,  so  Li, j tijxiyj = 1 = 
TEn (x , y) .  

Let G = ( V, E), e = { e t ,  . . .  , em } ,  m ::: 1 ,  and assume that the assertion holds 
for graphs with at most m - 1 edges. Set G' = G - em and G" = G/em ,  so 
that E (G') = E(G") = {e 1 , . . .  , em-d · This is the order we shall take on the 
edge sets of G' and G" which, as usual, we take to be identical. Let t[j be the 
number of (i , })-forests in G', and let tf: j be the number in G". By the induction 
hypothesis, Li, j r;jxiyj = TG-em (x , y) and Li, j t:Jxiyj = TGfem (x , y) .  We 
shall distinguish the three usual cases according to the nature of em . The arguments 
in (i) , when em is a bridge, and (ii), when em is a loop, agree almost verbatim, 
and so do the arguments in (iii) for G - em and Gfem ; nevertheless, due to the 
importance of the result, we give all the details of this practically trivial proof. 

(i) Suppose that em is a bridge. Then em is in every spanning forest of G, and 
a subgraph F of G is a spanning forest iff em E E(F) and F - em is a spanning 
forest of G - em . Also, em is internally active in every spanning forest F of G,  
since i t  i s  in  no cycle Z F ( ej ) .  

Clearly, for 1 � i � m - 1 the edge ei i s  internally (externally) active in  G 
with respect to F iff it is internally (externally) active in G - em with respect 
to F - em , since in checking the activity of ei exactly the same set of edges is 
involved in each case. Hence F is an (i , j)-forest of G iff em E E(F) and F - em 
is an (i - 1 ,  } )-forest of G - em,  and so, a fortiori tij = t;_ , ,  j · Therefore, by the 
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induction hypothesis and a basic property of the Tutte polynomial, 

" i j " I i j " I i- 1 j " I i j 
L . . /ij X Y = L../i- l , j  x y = x � ti- l , j  x y = x � tijx y 
i, j i, j i, j i, j 

= xTc-em (x , y) = Tc (x , y) ,  
as  required. 

(ii) Suppose that em is a loop. Then em is in no spanning forest of G, and a 
sub graph F of G is a spanning forest of G iff it is a spanning forest of G-em .  Also, 
em is externally active in every spanning forest F of G since it is the only edge 
of ZF(em) .  In addition, for 1 :::; i :::; m - 1 the edge e; is internally (externally) 
active in G with respect to F iff it is internally (externally) active in G - em with 
respect to the same spanning forest F. Hence F is an (i , j )-forest of G iff it is an 
(i , j - 1 )-forest of G - em . Consequently, t;j = t[, j- l , so 

" i j  " I i j  " I i j  � tijX y = � ti, j- lx y = y � tijx y 
i, j i, j i, j 

= yTG-em (x , y) = Tc (x , y) .  
(iii) Suppose that em is neither a bridge nor a loop. Trivially, F i s  a spanning 

forest of G - em iff it is a spanning forest of G and em ¢ E(F) .  Also, if F is 
an (i , j)-forest of G - em .  then it is an (i , i)-forest of G, since every other edge 
precedes em and, as em is not a loop, ZF(em) has other edges in addition to em . 

Similarly, F is a spanning forest of Gfem iff em ¢ E(F) and F + em is a 
spanning forest of G. Also, if F is an (i , i)-forest of G/em then F + em is an 
(i , j)-forest of G, since every other edge precedes em and, as em is not a bridge, 
U F+em (em) has other edges in addition to em . 

From these it follows that tij = t;j + t;j and so, by the induction hypothesis and 
a basic property of the Tutte polynomial, 

as claimed. 

L tijxiyj = L:t;jx iyj + L: t;jxi yj 
i, j i, j i, j 

= TG-em (x , y) + TGfem (x , y) = Tc (x , y) ,  

This completes the proof of  the induction step. 0 
The theorem above can be taken to be another definition of the Tutte polynomial. 

As we have already mentioned, precisely this was Tutte's original definition: for 
a connected graph G with an order on the edges, 

Tc (x , y) = L: tijxiyj , 
i, j 

where tij = tij (G) is the number of spanning trees of G with internal activity i 
and external activity j .  It is trivial that for every order -< on the edges there is a 
polynomial T-< , but it is remarkable that this polynomial T-< is independent of the 
order on the edges we take. In proving Theorem 10, we were greatly helped by 
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the earlier definition of the polynomial, that is, by the knowledge that there is a 
polynomial with appropriate properties. 

To gain more insight into the nature of internal and external activities, let us see 
how Theorem 10 can be proved from first principles, without appealing to any of 
the earlier results. 

Second proof of Theorem 10. Let us start with the independence of T-< from the 
order -< on the edges. To simplify the notation, we shall assume that our graph is 
connected, as the extension to the general case is trivial. 

Let -< be the order e 1  -< e2 -< · · · -< em .  where E(G) = {e 1 , e2 , . . .  , em } ,  and let 
-<' be the order obtained from -< by interchanging eh and eh+ ! · Thus in the order -<1 
we have e 1 -<1 e2 -<' · · · -<1 eh- ! -<' eh+! -<1 eh -<1 eh+2 -< 1 • • • -<1 em- ! -<1 em .  

Let us define weights w and w '  on the set T of spanning trees of G :  for T E T 
set w (T) = xi yi if T is an (i , })-tree with respect to -< ,  and w' (T) = xi yi if 
T is an (i , })-tree with respect to -<1 •  Then T-< (G) and T-<' (G) are the sums of 
the w-weights and w'-weights: T-< (G) = LT w(T) and T-<' (G) = LT w' (T) .  
We shall partition T into small sets (into sets of sizes one and two) and show that 
for each set the total w-weight of the set is precisely its total w' -weight. Then, a 

fortiori, T-< (G) = T-<' (G) . 
The small sets in question are precisely the orbits of an involution T --+ T' , 

T �--* T', given as follows. For T E T, if one of eh and eh+! is in the cycle set of 
the other (that is, eh E Zr (eh+I ) or eh+ ! E Zr (eh )) , then let T' be obtained from 
T by interchanging eh and eh+! ;  otherwise, set T' = T . It is immediate that the 
map T --+ T' given by T �--* T' is indeed an involution, that is, (T')' = T.  

An edge e different from eh and eh+ 1 has the same activity for T in  -< as in  -<',  
so w (T) = w' (T) unless at least one of eh and eh+! has different activities for T 
in -< and -<', which can happen only if T =f=. T'.  Consequently, in order to prove 
that T-< (G) = T-<' (G),  it suffices to show that 

w(T) + w(T') = w' (T) + w' (T') (8) 

when T E T, T =f=. T'. 
Suppose that every edge e =f=. eh , eh+ ! has the same activity for T as for T' .  

Note that it is irrelevant whether we take -< or -<1 ,  as e -< f if and only if e -< 1 f. 
Since the cuts and cycles are the same, the activities of  eh for T and T'  in  -< are the 
same as the activities of eh+! for T' and T in -<', so in this case w(T) = w'(T') 
and w (T') = w'(T).  Therefore, we may assume that some edge e =f=. eh , eh+! is 
active for T and inactive for T'. By interchanging the labels of eh and eh+ ! •  and 
swapping -< with -<', we may also assume that eh E E(T),  eh+! E E(T') . 

Suppose then that e E E (T),  e =f=. eh , is active for T but not for T' . Thus e is the 
minimal element of Ur (e) ,  but the minimal element f of UT' (e) is smaller than 
e .  Thus Ur (e) =f=. UT' (e) , so eh+! E Ur (e) , and as e is active for T ,  e -< eh+ ! · 
Now, as f is in one of Ur (e) , UT' (e) but not the other, f E Ur (eh ) = Ur, (eh+I ) ,  
while eh+l E Ur (e) i s  equivalent to e E Zr (eh+l ) = zr, (eh ) .  But then eh , eh+! 
are inactive for T, T' in either order, as e , f precede eh ,  eh+ ! in either order, and 
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e lies in the relevant cycles and f in the relevant cuts. Thus w(T) = w' (T) and 
w(T') = w' (T') .  

Finally, suppose that e ¢ E (T) ,  e =f. eh+ 1 ,  i s  active for T but not for T' . Thus e 
is the minimal element of Zr (e) , but the minimal element f of ZT' (e) is smaller 
than e .  Then eh E Zr (e) ,  i.e., e E Ur (eh) = Ur, (eh+t ) ,  and f E Zr (eh+t )  = 
ZT' (eh ) .  Therefore, as before, eh , eh+l are inactive in all cases, so w(T) = w' (T) 
and w(T') = w' (T') ,  proving (8). This completes the proof of T..., (G) = L.' (G). 

Having proved the independence of t;j of the order, so that t;j = t;j (G) 
is only a function of the graph G, let us see that the graph polynomial 
f (G) = Li, j fij ( G)xi yj satisfies the appropriate recurrence relations and 
boundary conditions, so f (G) is indeed the Tutte polynomial T G . 

As too(En) = 1 and fij (En) =  0 if i + j > 0, we do have T(En) = 1 .  
Now let us tum to the recurrence relations. Let us pick an element of E(G), 

and let us distinguish three cases according to the nature of this element. We 
shall greatly benefit from the order independence of fij (G): given e E E (G), 
we may and shall assume that e is the very last element in the order, that is 
E(G) = {et , e2 , . . .  , em } and the edge we are interested in is precisely e = em . 

(i) Suppose that em is a bridge. Then em is in every spanning forest of G, and it 
is an active edge in every spanning forest. Hence the spanning forests of G - em 
are in 1-to-1 correspondence with the spanning forests of G, with an (i , j)-forest 
of G - em corresponding to an (i + 1 ,  j)-forest of G. But then 

f(G) = 'L:>+t , j (G)xi+l yj = x L)ij (G - em)xiyj = xf(G - em) .  
(ii) Suppose that em i s  a loop. Then em i s  an externally active edge with respect 

to every spanning forest of G, so the spanning forests of G - em are in 1-to-1 
correspondence with the spanning forests of G, with an (i , j)-forest of G - em 
corresponding to an (i , j + I )-forest of G. But then 

f(G) = 'L:>. j+t (G)xiyj+l = y L.>j (G - em)xiyj = yT(G - em) .  
(iii) Suppose that em i s  neither a bridge nor a loop. Then partition the set 

Fij of (i , j)-forests as F[j U F[j,  with F[j = { F  E F;j : em E E(F) } .  Then 
{ F - em : F E F[) corresponds to the set of (i , j)-forests of G /em , since em is 
not internally active in any forest F E F[j . Also, em is not externally active with 
respect to any forest F E F[j,  so F[j corresponds to the set of (i, j)-forests of 
G - em . Consequently, 

so we are done. D 
The new definition, the spanning forest expansion, has several advantages over 

the old one, namely 

Tc (x , y) = S(G; x - 1 , y - 1) = L (x - l)r(E}-r (F} (y - l )n(F) . 

FeE 

First, the new sum has (usually) many fewer terms than the old one. Secondly, 
and more importantly, in the new expansion the coefficient of xi yj , rather than 
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the coefficient of (x - l )i (y - I )i , is defined explicitly, and turns out to be non­
negative. (We do know this from the recursive definition, but that does not give us 
an explicit expression for the coefficients.) Thirdly, a judicious choice of the order 
on the edges is frequently advantageous in proving results about the coefficients 
tij = t;j (G) . 

As a simple application of Theorem IO, let us see what we can say about the 
coefficients of the lowest terms, namely too. tw and toJ . First of all, as TEn (x , y) = 
I ,  let us assume that E(G) = {q , . . .  , em } with m ::: I ,  this being also the order 
on E(G). Note that whatever our spanning forest F is, e 1 is certainly an active 
edge: internally active if e 1 E E(F), and externally active otherwise. In particular, 
too = 0. As, trivially, tw(K2) = I and to1 (K2) = 0, let us assume that m ::: 2. If 
G has at least two blocks containing at least one edge each then we can choose an 
order on E(G) such that e 1 and e2 belong to distinct blocks of G. Then both e 1 
and e2 are active with respect to every spanning forest, so tw = to 1 = 0. 

Suppose then that G consists of a 2-connected graph and isolated vertices. Since 
the addition of isolated vertices does not alter the Tutte polynomial, in our study of 
tw and to1 we may assume that G itself is 2-connected. This is only so that we can 
call a spade a spade: tij is the number of (i , })-trees of G rather than the number 
of (i , })-forests. However, as far as the argument is concerned, this is irrelevant. 

As noted earlier, e 1 is active with respect to every spanning tree. Furthermore, 
the edge e2 is also active unless its cut or cycle (whichever is appropriate) contains 
e 1 . Hence if T is a ( 1 ,  0)-tree then e 1 E E(F) and e2 E UT (e J ) .  Let T* be obtained 
from T by interchanging e 1 and e2 : as e2 E UT(ei )  (that is, e 1 E ZT (e2)) , T* is 
also a spanning tree. Clearly, T* is a (0, I )-tree: its only active edge is e 1 . and 
that edge is externally active. 

It is immediate that the process above can be reversed: a (0, 1 )-tree T does 
not contain e 1 but contains e2 , and interchanging e 1 and e2 we get a ( 1 ,  0)-tree 
T* .  Hence the map T r+ T* gives a 1-to-1 correspondence between the set of 
( I ,  0)-trees and the set of (0, I )-trees. In particular, this gives the following result. 

Theorem 11 Let L;, 1 tij xi yi be the Tutte polynomial of a graph G with at least 
two edges. Then tw = toJ .  D 

The identity tw = to I is one of an infinite family of identities holding for the 
coefficients tij of the Tutte polynomial. Brylawski proved that if e(G) > h then 

h h-i (h ") 
L L<- I>j --:- �  tij = o. 
i=O }=0 ] 

Thus if e(G) > 0 then too = 0; if e(G) > I then tw = to 1 ; if e(G) > 2 then 
t2o - tu + to2 = tw; and so on (see Exercise 8). 

In fact, tw = tw( G) is a significant graph invariant in its own right: it is usually 
called the chromatic invariant of G and is denoted by O (G) . The terminology 
is justified by the following simple theorem. The first part shows the connection 
with the chromatic polynomial, and the second shows that e is invariant under 
subdivisions of graphs with at least two edges. 
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Theorem 12 (i) For every graph G the derivative p(;( l )  of the chromatic 
polynomial PG (x) satisfies 

p(; ( l )  = (- l )r(G)+ IO (G) . 
(ii) Let G and H be homeomorphic graphs, each with at least two edges. Then 

O (G) = O (H). 
Proof (i) This is immediate from 

n- 1 
pa (x) = (-1r(G)xkCG> ra ( 1 - x ,  0) = (- l )r(G)xk(G) L);o ( l - x)i . 

i=O 
(ii) We know that G and H have isomorphic subdivisions. Hence it suffices to 

show that if H is obtained from G by subdividing an edge e E E(G) into two 
edges, e 1 and e2, say, then O (H) = O (G) . 

If e is a bridge of G then O (G) = O (H) = 0 since the chromatic invariant of a 
graph with at least two non-trivial blocks is 0. If e is not a bridge of H then e 1  is 
neither a bridge nor a loop of H so, from the recursion of the Thtte polynomial, 

O (H) = O (H - e i )  + O (H fe i ) .  
Clearly, e2 i s  a block o f  H - e 1 , s o  this graph has at least two non-trivial blocks, 
implying O (H - e1 ) = 0. Also, H fei � G, so we are done. 0 

The spanning tree expansion also gives some information about the sizes of the 
coefficients of the chromatic polynomial. 

Theorem 13 Let G be a connected graph of order n, with chromatic polynomial 
"n-1 j · 

pa (x) = �j=0 (- 1 ) ajxn-J . Then ao = 1 :S a1 :S · · · :S azfor l = Ln/2J . 
Proof We know that 

so 

that is, 

n- 1 
pa (x) = (-1 )n- lx L t;o (-x + 1 )i , 

i=O 

n- 1 ( ) "" t;o 
i
. . � n - J - 1  i=n-j- 1 

Hence if 1 :S j :S n /2 then 

aj - aj- 1 = tn-j- l , o + � t;o { ( i
. ) - ( i .) } � tn-j- 1 , 0 ,  

. � . n - J - 1 n - J  l=n-J 

since n - j - 1 � n /2- 1 � (i - 1 ) /2 for all i :S n - 1 ,  so Cz_ � _ 1) � (n� J 0 
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The relations degx Ta (x , y) = r (G) and degy Ta (x , y) = n (G) that we en­
countered earlier are also immediate from the fact that tij (G) is the number of 
spanning forests of internal activity i and external activity j. Furthermore, if G is 
loopless and F is a spanning forest of G then with respect to an order in which 
every edge of F comes before every other edge, F has internal activity r (G) 
and external activity 0. Similarly, if G is bridgeless and F is a spanning forest 
of G then with respect to an order in which every edge of F comes after every 
other edge, F has internal activity 0 and external activity n(G) . In particular, 
tr (G) ,O ::: 1 and to,n (G) (G) ::: 1 .  Consequently, max{i - j : tij (G) =f. 0} = r (G) 
and max{j - i : tij (G) =f. 0} = n(G). By considering less obvious orders on the 
edges, one can show that several other coefficients are non-zero. We shall give 
two examples of this. 

Theorem 14 Let G be a 2-connected loop less graph with n vertices and m edges, 
and let Ta (x ,  y) = '£ tijXi yi . Then tiO > Ofor each i , 1 :::: i :::: n - 1 , and toj > 0 
for each j, 1 :::: j :::: m - n + 1 .  

Proof Given a spanning tree T ,  for Eo c E(G) let YT(Eo) be the set of  chords 
whose cycles meet Eo, together with the set of tree-edges whose cuts meet Eo: 

YT (Eo) = {e E E(G) : ZT (e) n Eo =f. 0} U {e E E(G) : UT (e) n Eo =f. 0} . 

Note that YT(Eo) ::) Eo . Let YT (Eo) be the closure of Eo with respect to this 
y -operation: 

YT (Eo) = Eo u Et u · · · ,  
where Ek+l = YT(Ek) .  As G is 2-connected, YT (Eo) = E(G) whenever Eo is a 
non-empty set of edges (see Exercise 1 8), so that Eo C Et C . . .  C E1 = E(G) 
for some l. 

(i) For 1 :::: i :::: n - 1, let Eo be a set of i edges of T ,  and let Et = YT(Eo) , 
Ez = YT(Et) ,  and so on. We know that E1 = E(G) for some l .  Let -< be an order 
compatible with the sequence Eo c Et c · · · c E1 = E(G) , that is, an order 
in which the edges of Eo come first, followed by the edges of E 1 \ Eo, the edges 
of Ez \ E 1 , and so on, ending with the edges of E1 \ EL- l ·  Then each edge of Eo 
is active, and no other edge is active. Hence T is an (i , 0)-tree in the order -< ,  so 
tiO > 0. 

(ii) For 1 :::: j :::: m - n + 1 we start with a set Eo of j chords of T ,  that is with 
a set Eo C E(G) \ E(T) , and proceed as in (i). Once again, the active edges are 
precisely the edges of Eo, so T is a (0, j )-tree, proving toj > 0. 

To see the last assertion, recall that degx T G (x , y) = r( G) = n - 1 and 
degy Ta (x , y) = n(G) = m - n + 1 .  D 

What about the coefficient tu ? By Exercise 1 ,  for a cycle Cn we have Ten = 
y+x+x2+ · +xn- I , so tu (Cn) = O. Also, for the thick edge h consisting of two 
vertices joined by k ::: 2 edges, by Exercise 2 we have Th = x + y + y2 + . . . yk- l , 
so t1 1  (h) = 0 as well. As we shall show now, for every other 2-connected loop less 
graph G we have tu ::: 1 .  
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Theorem 15 Let G be a 2-connected loop less graph that is neither a cycle nor 
a thick edge. Then t1 1  (G) > 0. 

Proof It is easily seen that G contains a cycle C and an edge e 1 joining a vertex 
of C to a vertex not on C. Let T be a spanning tree that contains e 1 and all edges of 
C except for an edge ez , and set Eo = {e J , ez } . Let Eo c E 1 c . . .  C Ez = E (G) 
be as in the proof of Theorem 14, with Ek+I = YT (Ek) ,  and let -< be an order 
compatible with this nested sequence. It is immediate that, with respect to this 
order, T has precisely one internally active edge, namely e 1 , and precisely one 
externally active edge, namely ez. Hence t1 1  (G) > 0, as claimed. D 

Read conjectured in 1968 that the sequence of moduli of the coefficients of 
the chromatic polynomial is unimodal, i.e., with the notation of Theorem 13 ,  
ao � a1 � · · · � am 2:: am+! 2:: • · · 2:: an - I for some m. This conjecture i s  still 
open, although Theorem 13 goes some way towards proving it. A related conjecture 
of Thtte, stating that the t;j form unimodal sequences in i and j separately, and 
the analogous conjecture of Seymour and Welsh for matroids, were disproved by 
Schwiirzler in 1993. 

X.6 Polynomials of Knots and Links 

Knots and links as mathematical objects were introduced by Listing in 1 847 and, 
independently, by Thomson in 1 869. In his paper on vortex motion, Thomson 
suggested that in order to understand space properly, we have to investigate knots 
and links (see Fig. X.3). The challenge was taken up by Thomson's collaborator, 
Tait, in a lecture delivered in 1 876, and in a subsequent series of papers. In 
the 1 880s, Tait, Kirkman and Little attempted to give a census of knots with 
at most ten crossings. However, knot theory proper was really started only in 
the 1920s, with the work of Dehn, Alexander and Reidemeister, who introduced a 
variety of knot invariants. These knot invariants enabled Alexander and Briggs to 
complete the rigorous classification of knots with up to nine crossings. Curiously, 
a mistake in Little's table was corrected by Perko, an amateur mathematician, only 
in 1974, when he showed that two knots with ten crossings claimed to be different 

FIGURE X.3. Knots and links from Thomson's 1 869 paper; the first knot is the (right­
handed) trefoil knot, the two links are the Hopf link and the Borromean rings. 
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by Little were, in fact, equivalent. The most commonly used notation for knots is 
still the one introduced by Alexander and Briggs. 

All this belongs to the classical period of knot theory, and we shall say very little 
about it. Our interest in knot theory stems from the fact that in the 1980s Jones 
started a revolution in knot theory by introducing a new polynomial invariant, 
which later was shown to be closely related to the Tutte polynomial. Our aim in 
this section is to introduce this polynomial together with some related polynomials 
and to indicate their connection to the Tutte polynomial. 

Although in Section VIII. I we fleetingly touched upon knots, when we discussed 
their fundamental groups, for this section we have to set the scene with a little more 
care. A link L of n components is a subset of JR.3 c JR.3 U { oo} = S3 , consisting 
of n disjoint piecewise linear simple closed curves. A knot is a connected link. 
The 3-dimensional sphere S3 is always oriented; occasionally the components of 
L are also oriented, in which case we have an oriented link. We demand that our 
links are piecewise linear only to avoid infinite sequences of twists; it would be 
equally good to assume that our links are smooth submanifolds of S3 - in fact, in 
our drawings we shall always follow this convention (see Fig. X.4). 

8 
FIGURE X.4. The knots L 1 and Lz are equivalent; L3 is not a (tame) link. 

Two links L 1 and L2 are equivalent if there exists an orientation-preserving 
homeomorphism h : JR.3 -+ JR.3 such that h (L t )  = L2 . If L t  and L2 are oriented 
then h (L t )  must be oriented the same way as L2 . Equivalence can also be defined 
in terms of homotopy: two links are said to be equivalent or ambient isotopic if 
they can be deformed into each other. For example, if L t  and L2 are knots given 
by piecewise-linear maps hi : [0, 1 ]  -+ JR.3 with hi (O) = hi ( l ) ,  i = 0, 1 ,  then 
L t  and L2 are equivalent iff there is a piecewise-linear map h : [0, If -+ JR.3 
such that ho(x) = h (O, x) , h t (x) = h ( l , x) , and h1 (x) = h (t , x) gives a knot for 
every t, that is h(t ,  0) = h(t , 1 )  for every t . 

In fact, no topological subtlety need enter knot theory, as it  is very easy to 
view links as purely combinatorial objects. What we do is consider link diagrams: 
projections of links into JR.2. We may assume that the projection is a 4-regular 
plane multigraph with loops, with a loop adding 2 to the degree of its vertex. At 
each vertex the edges form strictly positive angles so that the projections of the 
two parts of the link 'cross cleanly ' ,  rather than touch. Thus a link diagram is a 
(finite) 4-regular plane graph with some extra structure, namely at each vertex the 
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FIGURE X.5. Diagrams arising from the universe U of a triangle with double edges; there 
are four more that arise from the last two by rotation. The first is the standard diagram of 
the right-handed trefoil knot, and the second is the standard diagram of the left-handed 
trefoil knot. 

two pairs of edges cross in one of two ways: one goes either under or over the 
other (see L 1 in Fig. X.4). Note that a 4-regular plane graph of order n gives rise 
to 2n link diagrams; the 4-regular graph is the universe of the link diagrams that 
arise from it (see Fig. X.5). 

Throughout our study of link diagrams, we do not distinguish between planar 
isotopic link diagrams; thus two link diagrams are considered to be the same if 
they come from isomorphic plane graphs with the same extra structure. For the 
sake of convenience, the same letter is used for a link and its diagram. 

Reidemeister proved in the 1920s that two links are ambient isotopic iff their 
diagrams can be transformed into each other by planar isotopy and the three 
Reidemeister moves illustrated in Fig. X.6. The Reidemeister moves are used also 
to define a finer equivalence of link diagrams: two link diagrams are said to be 
regularly isotopic if they can be transformed into each other by planar isotopy and 
moves of Types II and III. 

I. 

II. 

� - ) (  
'" v_v )I _V 

1\ !�- -A- 1\ 
FIGURE X.6. The three Reidemeister moves. A move of Type I adds or removes a curl, 
a move of Type II removes or adds two consecutive undercrossings or overcrossings, 
and a move of Type III, a triangle move, changes the position of two undercrossings or 
overcrossings. 
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Ideally, one would like to  find a simple and complete classification of  knots and 
links. In theory, knots were classified by Haken in 1962, but that classification is 
in terms of a very elaborate algorithm which is too unwieldy to use in practice. 

Lowering our sights a little, instead of trying to come up with a simple complete 
classification, we may try to introduce link invariants that are fairly simple to 
calculate and yet are fine enough to distinguish 'many' knots and links. This is the 
approach we shall adopt here. In particular, we would like our invariants to help 
us to answer the following basic questions. Is a link of several components really 
linked or is it (equivalent to) a link with a diagram having at least two components? 
Is a knot really 'knotted' or is it (equivalent to) the unknot, the trivial knot whose 
diagram has no crossings? More generally, does a link have a diagram with no 
crossings? Is a link equivalent to its mirror image? 

A trivial invariant of links is the number of components: it is easily read out of a 
diagram of a link. The non-trivial invariants we shall find are defined as invariants 
of link diagrams, and they are all based on examining and possibly changing a 
crossing in a link diagram, while keeping the diagram unchanged outside a small 
neighbourhood of this crossing. 

Some beautiful combinatorial invariants of links are based on colouring their 
'strands' , the arcs from one undercrossing to another. Although this approach is 
outside the main thrust of this section, let us describe briefly the simplest of these 
invariants. Call a 3-colouring of the strands of a diagram proper if at no crossing 
do we find precisely two colours. A 3-colouring is non-trivial if at least two 
colours are used (see Fig. X.7). Now it is easily seen that if a Reidemeister move 
transforms a diagram L into L', and L has a non-trivial proper 3-colouring, then 
so does L'. Hence the existence of a non-trivial proper 3-colouring is an ambient 
isotopy invariant. The unknot does not have a non-trivial proper 3-colouring, 
and therefore a knot whose diagram has a non-trivial proper 3-colouring is not 
equivalent to the unknot. In particular, the knot in X.7 is knotted, and so is the 
(right-handed) trefoil knot in Fig.X.3 (and also in Fig. VIII.4). For extensions of 
these ideas, see Exercises 25-33.  

But let us tum to the main thread of this section. 

3 

FIGURE X.7. A non-trivial proper 3-colouring of a knot diagram (namely, of a diagram 
of the knot 815 in the Alexander-Briggs notation). 
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FIGURE X.8. The A and B regions in a diagram of the knot 8 t9 ·  

The Tutte polynomial was defined by 'resolving' an edge in two different ways: 
deleting it and contracting it. There are also two ways of resolving a crossing 
in an (unoriented) link diagram, as we shall see now. Every unoriented crossing 
distinguishes two out of the four regions incident at its vertex. Rotate the over­
crossing arc counterclockwise until the under-crossing arc is reached, and call the 
two regions swept out the A regions and the other two the B regions (see Fig.  X.8) .  
Sometimes instead of regions one talks about channels. 

What are the two ways of resolving a crossing? We may slice it open at the A 
regions, so that the two A regions unite, or we may slice it open at the B regions, 
so that the two B regions unite. Briefly, at every crossing we may have an A-slice 
or a B-slice. 

As a self-explanatory shorthand, let us write X for a link diagram, with empha­
sis on a particular crossing in it. After an A -slice we get ::;:::::: , after a B -slice we get 
) ( . If we wish to be a little more rigorous (and avoid typographical difficulties), 
given a link diagram L with a crossing at v, we write L� for the link diagram 
obtained from L by an A-slice at v, and L� for the link diagram obtained by a 
B-slice at v (see Fig. X.9). 

L 

FIGURE X.9. A diagram L (of the knot 63 ) with a crossing at v, and the diagrams L� 
and L�.  
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Imitating the Tutte polynomial and its variants, we shall define a polynomial, the 
Kauffman bracket, or just bracket, whose value on a link diagram L is a fixed linear 
combination of its values on L� and L� . The polynomial is uniquely determined 
by this and some natural boundary conditions but, just like the Tutte polynomial, 
it can also be given explicitly. In order to give this explicit expression, we need 
some more definitions. 

A state S of a link diagram is a choice of slicing for each crossing of the 
diagram; thus a diagram with n crossings has 2n states. The S-splitting of a link 
diagram L is the result of slicing all crossings according to the state S; clearly 
a splitting is a collection of unlinked trivial knots, that is a link without any 
crossings (see Fig. X. l 0) . Writing V for the set of crossings, a state S is a function 
S : V -+ { A ,  B} , with S(v) = A meaning that at v we take an A-slice. Thus the 
set of all states is {A ,  B} V . 

B 

FIGURE X.lO. A state S of the standard diagram, K ,  of the figure of eight, and the 
splitting it gives; aK (S) = 3, bK (S) = 1 and CK (S) = 2. 

Given a link diagram L, and a state S of L, write aL (S) for the number of 
A-slices in S, and h (S) for the number of B-slices. Also, let cL (S) be the number 
of components of the S-splitting of L. 

After all this preparation, the Kauffman square bracket [L] of a link diagram L, 
with value in  Z[A , B ,  d] , i s  easily defined: 

[L] = L AaL (S) BhL (S)dcL (S)- 1 , 
s 

where the summation is over all states of the diagram L .  
The basic properties of the Kauffman square bracket are given in  the theorem 

below, reminiscent of Theorem 2. Let us write O for a connected link diagram 
without crossings, and L 1 U L2 for a diagram which is a disjoint union of L 1 and 
L2 . Let C be the set of link diagrams. 

Theorem 16 There is a unique map cp :  C -+  Z[A , B, d] such that 
(i) if L and L' are planar homotopic link diagrams then cp(L) = cp(L'), 
(ii) cp (0) = 1, 
(iii) cp (L U 0) = dcp(L)for every link diagram L, 
(iv) cp(L) = Acp (L�}  + Bcp (L�} for every link diagram L with a crossing at 

v. Furthermore, cp (L) = [L] . 
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Proof It is clear that conditions (i) - (iv) determine a unique map, if there is such 
a map. Hence all we have to check is that the Kauffman square bracket [ . ]  has 
properties (i)-(iv). The first three are immediate from the definition. 

Property (iv) is also almost immediate. Indeed, let v be a crossing of L. Then, 
writing L' = L� and L" = L� ,  

[L] = L AaL (S) sh(S)dcL (S)- 1 
s 

= L AaL (S) sh(S)dcL (S)- 1 + L AaL (S) sh(S)dcL (S)- 1 
S, S(v)=A S, S(v)=B 

I II 

= A  L AaL' (S') BbL' (S')dcL' (S')- 1 + B L AaL" (S") BbL" (S")dcL" (S")- 1 
S' S" 

= A [ L� ] + B [ L:] , 
where L�' denotes summation over all states S' of L' and L�" denotes summation 
over all states S" of L". 0 

An equivalent form of Theorem 16 is that if R is a commutative ring and 
A ,  B ,  d E R then the Kauffman square bracket with parameters A ,  B and d 
satisfies conditions (i)-(iv). In general, the square bracket is far from being invariant 
under ambient isotopy or even regular isotopy, but if A ,  B and d satisfy certain 
conditions then it is a regular isotopy invariant. To be precise, define the Kauffman 
angle bracket or simply Kauffman bracket (L) E Z[A , A - 1 ] of a link L by setting 

(L) (A) = [L] (A , A- 1 , -A2 - A-2) .  
Thus (L) i s  a Laurent polynomial in  A ,  and i t  i s  simply the evaluation of  [L ]  at 
A ,  B and d satisfying the conditions AB = 1 and d = -A2 - A-2 . 

Lemma 17 The Kauffman bracket is invariant under regular isotopy. 
Proof Let B and d be as above, so that AB = 1 and d = -A 2 - A -2 and, under 
these conditions, (L ) (A) = [L ] (A ,  B ,  d) . First, let us evaluate the effect of a Type 
II move on the angle bracket by resolving crossings by (iv) and applying (iii): 

(]1) = A(Q )  + s (X) 
= A {A(::::) + s (9:) } + B {A() () + s (::::) }  
= { A2 + ABd + B2 } (:::::) + AB() () . 

As AB  = 1 and A2 + ABd + B2 = 0, the right-hand side is ( ) ( ) ,  so the bracket 
is invariant under Type II moves. 

To complete the proof, we shall show that Type II invariance implies Type III 
invariance. Indeed, by (iv), 
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and the two right-hand sides are equal by Type II invariance. Invariance under the 
other Type III move is checked similarly. 0 

As it happens, it is easy to alter slightly the Kauffman (angle) bracket (L) to 
tum it into an ambient isotopy invariant of links. In order to do this, we make use 
of a simple invariant of oriented link diagrams. Oriented crossings can be assigned 
values of ± 1 ,  usually called signs, according to the rules in Fig. X. l l .  The sum 
of the signs of all the crossings in an oriented link diagram L is the twist number 
or writhe w(L) of L. The writhe is not an ambient isotopy invariant, but it is a 
regular isotopy invariant, as can be seen instantly by inspecting the effect of the 
Reidemeister moves of Types II and III. 

X X 
e = +l e = -1 

w(K) = -2 

FIGURE X. l l . The convention of signs and the writhe of a diagram (of the knot 61 ). 

In fact, as we are mainly interested in unoriented links rather than oriented ones, 
we shall use the self-writhe rather than the writhe. Given an oriented link diagram L 
with components L 1 , . . . , Lt . the self-writhe of L is s (L) = w(L I )+  . . .  + w(Lk) .  
Since the sign of  a crossing does not change if we change the orientations of both 
arcs at the crossing, the self-writhe is independent of the orientation. Therefore we 
may define the self-writhe s (L) of an unoriented link diagram as the self-writhe 
of any orientation of L .  As the next result shows, if we multiply (L) by a simple 
function of the self-writhe then we obtain an ambient isotopy invariant. 

Theorem 18 The Laurent polynomial f [L] = ( -A)-3s (L) (L) E Z[A , A - 1 ] is 
an invariant of ambient isotopy for unoriented links. 

Proof Since s (L) and (L) are invariants of regular isotopy, so is f [L] . Thus all 
we have to check is that f [L] is invariant under Type I Reidemeister moves. 

Note first that 

(o ) = A  Co ) +  B ('---" ) 

= (Ad + B) ('---") = (-A3 - A- 1 + A- 1 ) {'---") 

= (-A 3) ('---") .  
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A similar expansion gives 

(o } = <-A-3) (-.....--} .  
Since s ({) ) = s (-.....--) + 1  and s (o ) = s (-.....--) - 1 , independently ofthe orientation, 

the Laurent polynomial f[L] is invariant under Type I moves as well : 

/[ol = (-A)-3s <o> (o } = (-A)-3fs ('-'HI J (-A3) (-.....--} 
= (-A)-3s ('-') (-.....--} = /[-.....--] 

and, analogously, /[o] = /[-.....--] .  0 

Similar functions can be defined for oriented links. Thus, the Kauffman bracket 
(L} of an oriented link L is simply the Kauffman bracket of the link without its 
orientation. This is again a regular isotopy invariant of oriented links: to turn it into 
an ambient isotopy invariant f[L] , we usually multiply it by ( -A)-3w(L) rather 
than by (-A)-3s (L) . 

The Laurent polynomial f[L] , which we shall call the one-variable Kauffman 
polynomial of a link or an oriented link, is perhaps the nicest of many closely 
related link polynomials. The first member of this family, the Jones polynomial 
VL (t) ,  constructed by Vaughn Jones in 1985, is an ambient isotopy invariant of 
oriented links defined by the identities V 0 = 1 and 

t- 1 vx - tVX = ( ./i - �) V::=! . (9) 

It is easily seen that there is at most one Laurentpolynomial VL E Z[t 1 12 , t- 1 12] 
satisfying the relations above: the problem is to show that there is such a 
polynomial. In fact, a simple change of variable turns f[L] into the Jones 
polynomial. 

Theorem 19 The Jones polynomial VL (t) of an oriented link L is given by 
VL (t) = f[L] (t- 1 14), where f[L] = (-A)-3w(L) (L} (A). 

Proof Since f[0l = 1 ,  all we have to check is that f[L] (t- 1 14) satisfies (9). 
By property (iv) of the bracket polynomial, as B = A - I we have 

(X} = A (;:::::: } + A- I ( ) ( }  
and 

Hence 

and so 

A4/[Xl - A-4/[Xl = A\-A)-3(w(�)+l) (X }  
_ A-4 (-A)-3(w(�)- l) (X } 
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= (-A)-3w(::;":) { -A(X} + A  - 1 (X } } 
= (A-2 - A2) f[�] .  

O n  substituting A = t- 1 14 , we find that 

t- 1 f[Xl - tf[Xl = ( Jt - �) f[�l 

as required. 0 

The Jones polynomial, especially in its form as the one-variable Kauffman 
polynomial, can be used to show the inequivalence of many knots and links. For 
example, the bracket of the right-handed trefoil knot is A-? - A -3 - A 5 , and as 
its writhe is +3, its Kauffman polynomial is -A - 16 + A  - 12 + A  -4 .  In particular, 
the right-handed trefoil knot is not (equivalent to) the unknot (the trivial knot) : it is 
knotted. As it happens, this particular assertion is easier proved by other means, for 
example, by the colouring argument mentioned above (see Exercise 26). However, 
as we shall see in a moment, the Kauffman polynomial of the right-handed trefoil 
knot can also be used to show that the right-handed trefoil knot is not amphicheiral 
(also said to be chiral) : it is not equivalent to its mirror image, the left-handed 
trefoil knot. 

Given a link diagram L, let us write L * for its reflection or mirror image 
obtained by reversing all the crossings (and keeping the orientation the same if L 
is oriented). 

Theorem 20 The bracket and one-variable Kauffman polynomial of the mirror 
image L * of a link diagram L are 

(L* } (A) = (L) (A- 1 ) 
and 

The same holds for oriented link diagrams. 
Proof Note that reversing all the crossings results in swapping A and B,  that is 
A and A - 1 , in the expansion of the bracket. Hence (L * ) (A) = (L) (A - 1 ) . Also, 
s (L *) = -s(L) and w(L *) = -w(L), so the second assertion follows. 0 

As the one-variable Kauffman polynomial of the trefoil knot does not remain 
invariant if A is replaced by A - 1 , the trefoil knot is not amphicheiral, as claimed. 
(It is for this reason that we have to distinguish between a right-handed trefoil 
knot and a left-handed trefoil knot.) 

The pronounced similarity between 'resolving' an edge of a graph in defining 
the Tutte polynomial and 'resolving' a crossing of a link diagram in defining the 
Kauffman bracket is far from superficial: the link polynomials described above can 
easily be obtained from the Tutte polynomials of certain coloured graphs associated 
with the diagrams. As we shall see, this connection is especially striking in the 
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case of the so-called alternating link diagrams since then we need only the Tutte 
polynomials of uncoloured graphs. 

To conclude this chapter, we discuss the correspondence between link diagrams 
and signed plane graphs, introduce alternating diagrams and show that for an 
alternating diagram the Kauffman bracket is easily expressed in terms of the Tutte 
polynomial of the associated graph. 

Recall that the map of the universe of a link is two-colourable (see Exer­
cise V.24). It is customary to take a black and white colouring of the faces, call 
those coloured black shaded. A shaded link diagram is a link diagram with such a 
proper two-colouring of the faces, i .e. ,  with alternate regions shaded. Note that ev­
ery plane diagram has precisely two shadings. Also, in the neighbourhood of every 
crossing there are two shaded regions and two unshaded regions, although these 
regions are not necessarily different (see Fig. X. 12). To each connected shaded 
plane diagram D we associate an edge-coloured multigraph G(D) as follows. For 
each shaded face F, take a vertex v F in F, and for each crossing at which F, and 
F2 meet, take an edge v Ft v F2 • Thus, if F, = F2 = F then the crossing contributes 
a loop at v F .  Furthermore, colour each edge + or - according to the type of the 
crossing, as shown in Fig. X. l2 .  We call the graph obtained a signed plane graph. 

® + 

FIGURE X. l2.  A shading of the first diagram in Fig. X.4, the two types of crossings, and 
the signed graph associated to the shaded diagram. 

Conversely, every connected shaded plane diagram can be reconstructed from 
G(D) . To see this, we just construct the medial graph of G(D), and assign 
crossing information to it according to the colouring of G(D). The medial graph 
is particularly easily defined for a plane graph in which every face is a polygon 
with at least three sides. For such a plane graph G, the medial graph M (G) of G 
is obtained by inserting a vertex on every edge of G, and joining two new vertices 
by an edge lying in a face of G if the vertices are on adjacent edges of the face. 
Thus M(G) is a 4-regular plane graph whose alternate faces contain vertices of 
G. The construction of M(G) is similar for any plane multigraph, as illustrated in 
Fig. X. l 3 .  

Now, given a signed plane graph G with medial graph M(G), shade those faces 
of M(G) that contain vertices of G. To turn M(G) into a link diagram D = D(G), 
define the crossings to be over or under according to the colour of the edge at that 
crossing (see Fig. X. l4) .  For disconnected diagrams, the correspondence is a little 
more complicated, and we shall not go into it. 
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FIGURE X. l 3. A multigraph and its medial graph. 

FIGURE X. 14. A signed plane graph, and its link diagram, a diagram of 820 · 

Call two signed plane graphs equivalent if they are the signed graphs of equiv­
alent link diagrams. By Reidemeister's Theorem, two signed plane graphs are 
equivalent if they can be obtained from each other by a sequence of transforma­
tions corresponding to Reidemeister moves; as our graphs are signed, there are, in 
fact, six so-called graph Reidemeister moves. 

Having reduced the study of (equivalence classes of) link diagrams to the study 
of (equivalence classes of) signed plane graphs, we are interested in invariants 
of signed plane graphs which are constant on equivalence classes. The simplest 
ways of assigning signs to the edges of a plane graph are making them all + or 
making them all -. The diagrams corresponding to these assignments are said to 
be alternating. Equivalently, a link diagram is alternating if its crossings alternate 
as one travels along the arcs of the link: over, under, over, under, . . . .  Thus the 
diagrams of the trefoil and the figure of eight in Fig. VIII.4 are both alternating, 
and so are the diagrams of the Hopf link and the Borromean rings in Fig. X.3 . 
However, the diagrams of the two knots in Fig. X.4 are not alternating. 

It is easily seen that every 4-regular plane multigraph is the universe of an 
alternating link diagram (see Exercise V.24). Also, if L is a diagram of a k­
component link then the universe of L is the universe of at least 2 and at most 2k 

alternating diagrams. 
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FIGURE X. l5 .  The shaded diagrams of the Whitehead link and of the knot 7 4 · 

Clearly, a connected link diagram is alternating if, and only if, each of its regions 
has only A-channels or only B-channels. Calling a region an A-region if all its 
channels .are A-channels, and a B-region if all its channels are B channels, there 
are two ways of shading a connected alternating link diagram L :  we may shade 
all the A-regions, or we may shade all the B-regions. Let us write G+(L) for the 
graph obtained from the first shading, and G- (L) for the second. As a signed 
graph, G+(L) will be taken with + signs, and G- (L) with - signs. 

Conversely, given a connected plane graph G, let v+ (G) be the alternating link 
diagram obtained from G by taking each edge with +. and let v- (G) be obtained 
by taking each edge with -. By construction, for every connected alternating link 
diagram L we have v+(G+(L)) = v- (G- (L)) = L. 

By a careful examination of  the effect of  the resolution of  a crossing on  the 
associated signed graph, from Theorem 16 one can show that for an alternating 
diagram the Kauffman polynomial and so the Jones polynomial are determined 
by the Tutte polynomial of the associated graph. In particular, one can prove the 
following result. 

Theorem 21 Let L be a connected alternating oriented link diagram with a 
A -regions, b B -regions, and writhe w. Then the Jones polynomial of L is given by 
the Tutte polynomial ojG+(L): 

VL (t) = (- l )wt (b-a+3w)f4yG+ (L) (-t, - 1 /t) . 0 

A crossing is said to be an isthmus or a nugatory crossing if some two of the 
local regions appearing at the crossing are parts of the same region in the whole 
diagram, as in Fig. X. 16. A nugatory crossing appears as a loop or bridge in 
G+(L) and G-(L); for example, in the diagram in Fig. X. l6, the crossing at 
v gives a bridge of G+(L) and a loop of G- (L). As nugatory crossings make 
no contribution to 'knottedness ' ,  it is preferable to study diagrams without any 

FIGURE X. I 6. A diagram with a nugatory crossing at v. 
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of these crossings. The following result was conjectured by Tait, and proved by 
Murasugi and Thistlethwaite independently about one hundred years later. 

Theorem 22 The number of crossings of a connected alternating link diagram 
without nugatory crossings is an ambient isotopy invariant. 
Proof Let L be a connected alternating link diagram with m crossings, none of 
which is nugatory. We claim that m is precisely the breadth of the Laurent poly­
nomial VL (t) , i.e. the difference between the maximum degree and the minimum 
degree. As the Jones polynomial is ambient isotopy invariant, this is, in fact, more 
than our theorem claims. 

To prove our claim, denote by a = a(L) the number of A-regions. Then 
G = G+(L) has a vertices and m edges; also, there are no loops or bridges since 
L has no nugatory crossings. By Theorem 2 1 ,  the breadth of VL (t) is 

breadth VL (t) = max deg VL (t) - min deg VL (t) 
= max{i - j :  tij (G) =f:. 0} - min{i - j :  tij (G) =f:. 0} 
= (a - 1 ) - ( -m + a - 1) = m, 

as claimed. The penultimate equality followed from Theorem 14.  0 

In fact, it is clear from the proof that if a connected alternating diagram L has 
m crossings, m' of which are nugatory, then m - m' is the breadth of the Jones 
polynemial VL (t) , so m - m' is an ambient isotopy invariant. 

In fact, using similar methods, Murasugi and Thistlethwaite proved another 
classical conjecture of Tait: every alternating link has an alternating link diagram 
with the minimal number of crossings. 

To conclude this section, let us remark that, in over a century, knot theory has 
come full circle. It started out with Thomson's hope of applying it to the study of 
space, and now it is of great importance in the study of the knots formed by DNA 
molecules, in the synthesis of various knotted molecules, and, through the Tutte 
polynomial, in statistical mechanics and topological quantum field theory. 

X.7 Exercises 

1. Use the contraction-deletion formula to compute the Tutte polynomial of the 
n-cycle: Ten (x , y) = y + x + x2 + · · · + xn- 1 . Note that this holds for n = 1 
and 2 as well, with the appropriate interpretation of C1 and C2 . 

2. Use the contraction-deletion formula to show that T�t = x+y+y2+ . +yk- 1 , 
where h is the thick edge consisting of two vertices joined by k edges. 

3 .  Let n1 • k2 , k3 be the 'thick triangle' consisting of three vertices and k1 +k2 +k3 
edges, with k1 , k2 and k3 edges joining the three pairs of vertices. Show that 
if k1 , k2 , k3 :=: 1 then the Tutte polynomial of Tk1 ,  k2 , k3 is 

x2 - 2x + x {ll + /2 + l3 - 3}/(y - 1 )  
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+ {l1+kz+k3 - l1+l - lz+l - l3+l + y2 + y }j(y _ 1 )2 . 

4. Show that if B1 , Bz , . . .  , Bt are the blocks of a graph G with e(G) > 0 then 

l 

Ta (x , y) = n TB; (X , y) .  
i= l 

5. Check that the universal polynomial U satisfies formulae (3)-(5) when at least 
one of a and r is zero. 

6. Check that the dichromatic polynomial Za (q ,  v) introduced after Theorem 2 
can be obtained from U and T, as claimed there. 

7. Show that for each enumeration of the edges of G there are spanning trees T1 
and Tz such that every edge of T1 is internally active in T1 , and every edge of 
G not in Tz is externally active in Tz . 

8. Show that if G is a graph with at least three edges then its tree-numbers tij (G) 
satisfy tzo - t1 1  + toz = tw. 

9. Let x and y be distinct vertices of a graph Go, and let u and v be distinct 
vertices of a graph G 1 which is vertex-disjoint from Go. Let G' be obtained 
from Go U G 1 by identifying x with u and y with v, and let G" be obtained 
from Go U G 1 by identifying x with v and y with u .  Prove that Ta' = TG" ·  

10. An orientation o f  a graph i s  totally cyclic if every edge i s  contained in some ori­
ented cycle. Prove that the number of totally cyclic orientations of a bridgeless 
graph is Ta (O, 2). 

1 1 .  Let G be a graph with vertex set {V J , vz , . . .  , Vn } .  Given an orientation of G, 
let Si be the score of Vi : the number of edges incident with Vi that are directed 
away from Vi , and let s = (si )i be the score vector of the orientation. Show 
that the total number s (G) of score vectors is Ta (2, 1 ) ,  the number of forests 
in G. 
[Hint. Show first that the set S(G) of  score vectors i s  "convex" in  the following 
sense: if (SJ , sz , s3 , . . .  , sn ) and (s; , s2, , s3 , . . .  , sn ) are score vectors with 
s; > s 1 and so sz < sz , then (s1 + 1 ,  sz - 1 ,  s3 , . . . , sn ) is a score vector as 
well. Use this to prove that if e E E(G) is neither a loop nor a bridge then 
s (G) = s (G - e) + e(Gje) .] 

12. Let G be a graph on which there is a nowhere-zero Zk-flow. Show that there 
is also a nowhere-zero Z-flow such that in each edge the value of the flow is 
at most k - 1 in modulus. Deduce that if G has a nowhere-zero k-flow then it 
also has a nowhere-zero (k + 1 )-flow. 

1 3 .  Show that the Petersen graph does not have a nowhere-zero 4-flow. [Hint. The 
edge-chromatic number of the Petersen graph is 4.] 

14. Let G be a connected plane graph (with multiple edges and loops), with 
edges e 1 , ez ,  . . .  , em and faces F1 , Fz , . . .  , Fq . The dual G* of G has vertices 
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V I , v2 ,  . . . , Vq and edges !I ,  /2, . . .  , fm , with /; joining Vj to Vk if Fj and Fk 
have e; in their boundaries (see Fig. X. l7). Check that the dual of the cycle 
Cn is the thick edge In . What can you say about (the graphs of) the Platonic 
solids? 

/ ,.. - - ...... , ,. .... --....... , 
I \ 

I \ 
I I 
I I 
I I 
I I 
I I 
\ I 
\ I I 

\ I I 
', o a / 

' ..... _ _ _ _  .... ,. ...... ..... _ _ _ _  .... / 

c 

FIGURE X. l7. A plane graph and its dual. 

d 

a 

15 .  Let G be a connected plane graph with dual G* .  Prove that 

Ta• (x , y) = Ta (y , x) .  

e 

1 6. Show that the chromatic polynomial and the flow polynomial are related by 
duality: 

whenever G is a connected plane graph with dual G* .  

17 .  Show that the four colour theorem i s  equivalent to  the assertion that every 
bridgeless planar graph has a nowhere-zero 4-ftow. 

1 8 .  Let T be a spanning tree of a 2-connected loop less graph G = (V ,  E) , and let 
Eo be a non-empty subset of E. Show that the closure YT (Eo) of Eo defined 
in the proof of Theorem 14 is the whole of E.  

19 .  Determine the class of graphs G such that T1 1 (G) > 0. 

20.  Let G be a 2-connected loop less graph of order n and girth g .  Show that 
ti l (G) > 0 for 0 :::= i :::= n - g . 

2 1 .  Use Reidemeister moves and planar isotopy to show that the knots of the 
diagrams L 1 and L2 in Fig. X.4 are ambient isotopic. 

22. Let K be the knot given by a continuous function h : [0, n] -+ JR3, h (t) = 

(x (t) , y (t) , z(t)) , which is linear on each interval [k, k+ 1 ] ,  such that h (O) = 

h (n) = (0, 0, 0) , h (t) = (0, 0, t) for 0 :::= t :::= 1 and z (t) > z(t1) if 
1 :::= t < t' ::;: n. Show that K is (equivalent to) the trivial knot, that is to the 
unknotted circle. 
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23. Let L be a knot diagram obtained in the simplest way we could draw it on a 
piece of paper: we start at a point P and lift our pencil only when we have to 
in order to get across a previously drawn line. Thus, starting at P in a certain 
direction, at every crossing first we go over (so that at a later stage we go 
under at that crossing). Show that L is equivalent to the trivial (unknotted 
circle) diagram. 

24. A link i is said to be split if it has a diagram whose universe is a disconnected 
graph. The components of a link i with at least two components are said to 
be linked if i is not split. 
Given an oriented link diagram with two sets of components C1 and Cz , let 
C1 n Cz be the set of crossings of C1 and Cz . The linking number lk(Ct , Cz) 
of Ct and Cz is 

Check that the linking number is an ambient isotopy invariant. Deduce that 
the Hopf link is indeed linked, and it has two orientations that are not ambient 
isotopic. 

25 . For a link diagram L, denote by q (L) the number of non-trivial proper 
colourings of L with colours 1 ,  2 and 3. Thus c3 (L) is the number of ways of 
colouring the strands with colours 1 ,  2 and 3 such that (i) at no crossing do 
we have precisely two colours, and (ii) at least two colours are used. Show 
that c3 (L) is an ambient isotopy invariant. 

26. Check that the diagram of the trefoil knot in Fig. X.5 has a non-trivial proper 
3-colouring. Deduce that the trefoil is knotted: it is a non-trivial knot. 

27. Give a non-trivial proper 3-colouring of the diagram of the knot 7 4 in Fig. X. 15 ,  
and deduce that 74  i s  a non-trivial knot. 

28.  Show that neither the Hopflink in Fig. X.3, nor the Whitehead link in Fig. X. 15  
has a non-trivial proper 3-colouring, and deduce that the components are 
indeed linked in each. 

29. Show that the diagram of the Borromean rings in Fig. X.3 does not have a 
non-trivial proper 3-colouring, so the rings are indeed linked, although no two 
of them are linked. 

30. Show that the link of D+ (C4) ,  the alternating link diagram obtained from the 
4-cycle, has two linked components. 

3 1 .  Use the invariant q (L) of Exercise 25 to prove that the connected sum of two 
trefoil knots in Fig. X. 1 8  is knotted and it is not equivalent to a trefoil knot. 
Show also that there are infinitely many pairwise inequivalent knots. 

32. For a prime p � 3, a mod p labelling of a link diagram L is a labelling of the 
strands of L by the elements of Zp such that (i) if at a crossing the over-pass 
is labelled x and the other two labels are y and z, then 2x = y + z, and (ii) at 
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FIGURE X. l8 .  The connected sum of two trefoil knots. 

least two labels are used. Denote by cp (L) the number of mod p labellings of 
L. Show that for p = 3 this definition coincides with the definition of c3 (L) 
above, and that cp (L) is an ambient isotopy invariant. 

33 .  Let L be the quinquefoil in Fig. VIII . 1 3 .  Show that c3 (L) = 0, c5 (L) = 20 
and cp (L) = 0 for every prime p :=:: 7. 

34. Show that the figure of eight knot in Fig. VIII.4 is amphicheiral, that is it is 
ambient isotopic to its mirror image. 

35 .  Prove that if we redraw a link diagram by turning one of its regions into the 
outside region then we obtain an ambient isotopic link diagram. 

36. Show that we need not have B = A -I and d = -A 2 - A -2 to make the 
Kauffman square bracket [L] a regular isotopy invariant. 

37.  Calculate the Jones polynomial of the Hopf link and deduce that the two 
circles are indeed linked. 

38 .  Calculate the Jones polynomial of the Whitehead link and deduce that the two 
components are indeed linked. 

39. Calculate the Jones polynomial of the Borromean rings and deduce that the 
rings are indeed linked although no two of them are linked. 

40. Calculate the Jones polynomials of the right-handed trefoil knot and of the 
figure of eight knot and check that your answers tally with the ones obtained 
from the result of Exercise 3 .  

41 .  The knots 8s and I0129 in  Fig. X. 19  are not equivalent. Calculate their Jones 
polynomials and note that they are equal. 

42. Show that the partition function Ro (q , p) of the random cluster model is 

43.  

Ro (q ,  p) = l(G)pr(G) ( l - p)n(G) yG (p + q - pq , _I_) . p 1 - p 
Consider the random cluster model on G,  with parameters q and p. Show that 
for q > 1 new edges joining vertices in the same component are more likely 
than those uniting two old components. To be precise, given Fo c E(G) and 
ab = f E E\Fo, 

'P(f E F I F\{f} = Fo) = { P p 
p + q - pq 

if k(F U f) = k (F) , 

otherwise. 
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8g 1 0129 

FIGURE X. l9. Diagrams of the knots 8s and l0129 . 

44. Note that the proof of Theorem 4 shows that 

L v iF iqk(F) 

FeE 

is precisely the dichromatic polynomial Zc (q ,  v),  and so give another proof 
that the Tutte polynomial is well defined. 

45. Prove the theorem of Conway and Gordon that every embedding of K6 into 
JR3 is intrinsically linked: there are two triangles forming a non-trivial link. 
[Hint. Note first that any embedding of K6 can be changed to any other 
embedding by changing some crossings from 'over' to 'under' and vice versa. 
Let <Ti ,  T() ,  i = 1 ,  . . .  , 10, be the ten pairs of disjoint triangles in K6, and 
orient each triangle in an arbitrary way. With a slight abuse of notation, for 
a given embedding of K6 , set lkK6 = L l lk( T; ,  T() I , where lk(Ti ,  Tj') is the 
linking number of T; and Tj', as in Exercise 24. Prove that the parity of lkK6 
is independent of the particular embedding. Deduce from the embedding in 
Fig. X.20 that lk(T; , T() =I= 0 for some i .] 

FIGURE X.20. An embedding of K6 with lkK6 = 3 .  

46.  Construct an embedding of K6 into JR3 in which there is  only one pair of 
linked triangles. 

47. Prove that every embedding of the Petersen graph into JR3 contains two linked 
pentagons. 
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W.T. Thtte constructed the dichromate of a graph, the polynomial we know as 
the Tutte polynomial, in A contribution to the theory of chromatic polynomials, 
Canad. J. Math. 6 ( 1954) 8�9 1 .  This paper contains the spanning tree expan­
sion of the polynomial as well . In fact, Tutte constructed and studied similar 
polynomials in A ring in graph theory, Proc. Cambridge Phil. Soc. 43 ( 1947}, 
26-40, building on H. Whitney, The coloring of graphs, Ann. Math. 33 ( 1932) 
688-7 1 8 . Theorem 2 is essentially from J.G. Oxley and D.J.A. Welsh, The Thtte 
polynomial and percolation, in Graph Theory and Related Topics (J.A. Bondy and 
U.S.R. Murty, eds}, Academic Press, London, 1979, pp. 329-339. 

The Whitney-Tutte polynomial Q G should really be called the dichromatic 
polynomial. However, in many papers on statistical mechanics, the polynomial 
ZG goes under that name, and we followed this unfortunate convention. In a way, 
it does not matter much, as one always has to give defining properties of these 
polynomials. 

For various models in statistical mechanics, especially the Ising model, the Potts 
model and the random-cluster model, see C.M. Fortuin and P.W. Kasteleyn, On 
the random cluster model, I, Introduction and relation to other models, Physica 51 
( 1972) 536-564, and B. Bollobas, G. Grimmett and S. Janson, The random-cluster 
process on the complete graph, Probab. Theory and Related Fields 104 ( 1996) 
283-3 17 .  

The partial solutions to  Tutte's 5-flow Conjecture are in  Flows and generalized 
colouring theorems in graphs, J. Combinatorial Theory (B) 26 ( 1979) 205-216, 
and P.D. Seymour, Nowhere zero 6-flows, J. Combinatorial Theory (B) 30 ( 198 1 )  
1 3�135 .  

For the unimodality conjectures mentioned at the end of Section 5,  see 
R.R. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 
( 1968) 52-7 1 ,  W.T. Thtte, Graph Theory, Encyclopaedia of Maths and Its Appl. ,  
vol. 21, Cambridge University Press, 1984, and P.D. Seymour and D.J.A. Welsh, 
Combinatorial applications of an inequality of statistical mechanics, Math. Proc. 
Cambridge Phil. Soc. 77 ( 1975) 485-495. For the refutation of the above con­
jectures, see W. Schwarzler, The coefficients of the Tutte polynomial are not 
unimodal, J. Combinatorial Theory (B) 58 ( 1993) 24�242. 

There are many interesting papers one should consult for the dawn of knot the­
ory, including J.B. Listing, Vorstudien zur Topologie, Gottingen Studien 1 ( 1 847) 
8 1 1-875; Sir William Thomson, On vortex motion, Trans. Roy. Soc. Edinburgh 
25 ( 1 869}, 2 17-260; P.O. Tait, On knots, Trans. Roy. Soc. Edinburg 28 ( 1 879) 
145-190, with two additional parts of that paper in the same journal: 32 ( 1 887) 
327-339 and 493-506; C.N. Little, On knots, with a census for order ten, Trans. 
Connecticut Acad. 7 ( 1 885}, 1-17;  and Rev. T.P. Kirkman, The 364 unifilar knots 
of ten crossings, enumerated and described, Trans. Roy. Soc. Edinburgh 32 ( 1 887) 
483-49 1 .  

A more sophisticated approach to knot theory was taken by M .  Dehn, Uber 
die Topologie des dreidimensionalen Raumes, Math. Ann. 69 ( 19 10) 1 37-168, 
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and J.W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. 
Soc. 30 ( 1928) 275-306. Perhaps the most influential work about the early theory 
is K. Reidemeister, Knotentheorie, Ergebn. Math. Grenzgeb. ,  vol. 1, Springer­
Verlag, Berlin, 1932; for an English translation, see Knot Theory, BSC Associates, 
Moscow, Idaho, 1983. A comprehensive account of knot theory is G. Burde and 
H. Zieschang, Knots, Walter de Gruyter, Berlin, 1985, xi+ 399 pp; for an elementary 
introduction, see C. Livingston, Knot Theory, Carus Math. Mon. ,  vol. 24, Math. 
Assoc. Amer. , Washington, 1993, xviii+240 pp. 

V.F.R. Jones constructed his powerful new knot polynomial in the summer 
of 1 984, upon a careful examination of a surprising result about von Neumann 
algebras. The construction was published in two papers: A polynomial invariant 
for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 ( 1985) 103-1 1 1 , 
and A new knot polynomial and von Neumann algebras, Notices of AMS 33 ( 1 986), 
2 19-225. The Kauffman brackets were introduced in L.H. Kauffman, State models 
and the Jones polynomial, Topology 26 ( 1987) 395-407. 

The classical conjectures of Tait mentioned at the end of §6 were proved by 
K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 
26 ( 1987) 1 87-194, and M.B. Thistlethwaite, A spanning tree expansion of the 
Jones polynomial, Topology 26 ( 1987) 297-309. 

For applications of knot invariants to physics, see E. Witten, Quantum field 
theory and the Jones polynomial, Commun. Math. Phys. 121 ( 1989) 351-399, and 
the entire volume The Interface of Knots and Physics (L.H. Kauffman, ed.) Proc. 
Symp. Appl. Math. 51, Amer. Math. Soc. ,  Providence, 1 993, x+208 pp. 

The beautiful theorem of Conway and Gordon in Exercise 45 is from J .H. Con­
way and C.McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 
( 1983) 445-453.  The result was greatly extended by N. Robertson, P.D. Seymour 
and R. Thomas, Linkless embeddings of graphs in 3-space, Bull. Amer. Math. Soc. 
28 ( 1 993) 84-89. 

Finally, for a wealth of information on the material in this chapter, see T.H. Bry­
lawski and J.G. Oxley, The Thtte polynomial and its applications, in Matroid 
Applications (N. White, ed.), Cambridge Univ. Press, 1992, pp. 123-225, and 
D.J.A. Welsh, Complexity: Knots, Colourings and Counting, London Math. Soc. 
Lect. Note Ser. , vol. 186, Cambridge Univ. Press, 1993, viii+ 163 pp. For gener­
alizations of the Tutte polynomial as far a possible, including conditions under 
which it gives rise to link polynomials, see B .  Bollobas and 0. Riordan, A Tutte 
polynomial for coloured graphs, Combinatorics, Probability and Computing 7 
( 1998). 
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n (G) :  nullity of G, 53, 337 
PH (x) :  chromatic polynomial of H, 

1 5 1  
Pe = Pxy : potential difference in 

e = xy, 40 
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