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Prologue

This book arose out of lecture notes developed by us while teaching courses on
additive combinatorics at the University of California, Los Angeles and the Uni-
versity of California, San Diego. Additive combinatorics is currently a highly
active area of research for several reasons, for example its many applications to
additive number theory. One remarkable feature of the field is the use of tools
from many diverse fields of mathematics, including elementary combinatorics,
harmonic analysis, convex geometry, incidence geometry, graph theory, proba-
bility, algebraic geometry, and ergodic theory; this wealth of perspectives makes
additive combinatorics a rich, fascinating, and multi-faceted subject. There are still
many major problems left in the field, and it seems likely that many of these will
require a combination of tools from several of the areas mentioned above in order
to solve them.

The main purpose of this book is to gather all these diverse tools in one location,
present them in a self-contained and introductory manner, and illustrate their appli-
cation to problems in additive combinatorics. Many aspects of this material have
already been covered in other papers and texts (and in particular several earlier
books [168], [257], [116] have focused on some of the aspects of additive combi-
natorics), but this book attempts to present as many perspectives and techniques
as possible in a unified setting.

Additive combinatorics is largely concerned with the additive structure' of sets.
To clarify what we mean by “additive structure”, let us introduce the following
definitions.

Definition 0.1 An additive group is any abelian group Z with group operation +.
Note that we can define a multiplication operation nx € Z whenever n € Z and

! We will also occasionally consider the multiplicative structure of sets as well; we will refer to the
combined study of such structures as arithmetic combinatorics.

Xi
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x € Zintheusual manner: thus3x = x + x + x, —2x = —x — x, etc. An additive
setisapair (A, Z), where Z is an additive group, and A is a finite non-empty subset
of Z. We often abbreviate an additive set (A, Z) simply as A, and refer to Z as the
ambient group of the additive set. If A, B are additive sets in Z, we define the sum
set

A+B:={a+b:ac A, be B}
and difference set
A—B:={a—b:a€cA, be B}.
Also, we define the iterated sumset kA for k € Z* by
kA:={a1+ - -4+a:ay,...,a, € A}.

We caution that the sumset kA is usually distinct from the dilation k - A of A,
defined by

k-A:={ka:aeA).

For us, typical examples of additive groups Z will be the integers Z, a cyclic
group Zy, a Euclidean space R", or a finite field geometry F7). As the notation
suggests, we will eventually be viewing additive sets as “intrinsic” objects, which
can be embedded inside any number of different ambient groups; this is some-
what similar to how a manifold can be thought of intrinsically, or alternatively
can be embedded into an ambient space. To make these ideas rigorous we will
need to develop the theory of Freiman homomorphisms, but we will defer this to
Section 5.3.

Additive sets may have a large or small amount of additive structure. A good
example of a set with little additive structure would be a randomly chosen subset
A of a finite additive group Z with some fixed cardinality. At the other extreme,
examples of sets with very strong additive structure would include arithmetic
progressions

a+[0,N)-r:={a,a+r,...,a+ (N —Dr}
wherea, r € Zand N € Z"; or d-dimensional generalized arithmetic progressions
a+[0,N)-vi={a+nvi+ - +nqvg:0<n; <N;foralll < j <d}

where a € Z, v=(v,...,v3) € Z% and N =(Ny,...,Ny) € (ZH)?; or d-
dimensional cubes

a4+ {0, 1) v={a+ev 4+ +eug:er,....eq €{0,1});
or the subset sums FS(A) :={)_,.za: B C A} of a finite set A.
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A fundamental task in this subject is to give some quantitative measures of
additive structure in a set, and then investigate to what extent these measures are
equivalent to each other. For example, one could try to quantify each of the fol-
lowing informal statements as being some version of the assertion “A has additive
structure”:

e A+ Aissmall;

e A — Aissmall;

* A — A can be covered by a small number of translates of A;

* kA is small for any fixed k;

e there are many quadruples (a;, a2, asz, as) € A X A X A x A such that
ay+a = az + aq;

e there are many quadruples (a;, a, asz, as) € A x A X A x A such that
a) —day = dasz — aq,

e the convolution 1,4 * 14 is highly concentrated;

* the subset sums FS(A) := {)_,.za : B € A} have high multiplicity;

e the Fourier transform 1: is highly concentrated;

o the Fourier transform 1, is highly concentrated in a cube;

* A has a large intersection with a generalized arithmetic progression, of size
comparable to A;

* A is contained in a generalized arithmetic progression, of size comparable to A;

* A (or perhaps A — A, or 2A — 2A) contains a large generalized arithmetic
progression.

The reader is invited to investigate to what extent these informal statements are
true for sets such as progressions and cubes, and false for sets such as random sets.
As it turns out, once one makes the above assertions more quantitative, there are
a number of deep and important equivalences between them; indeed, to oversim-
plify tremendously, all of the above criteria for additive structure are “essentially”
equivalent. There is also a similar heuristic to quantify what it would mean for two
additive sets A, B of comparable size to have a large amount of “shared additive
structure” (e.g. A and B are progressions with the same step size v); we invite the
reader to devise analogs of the above criteria to capture this concept.

Making the above heuristics precise and rigorous will require some work, and
in fact will occupy large parts of Chapters 2, 3, 4, 5, 6. In deriving these basic tools
of the field, we shall need to develop and combine techniques from elementary
combinatorics, additive geometry, harmonic analysis, and graph theory; many of
these methods are of independent interest in their own right, and so we have devoted
some space to treating them in detail.

Of course, a “typical” additive set will most likely behave like a random additive
set, which one expects to have very little additive structure. Nevertheless, it is a
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deep and surprising fact that as long as an additive set is dense enough in its ambi-
ent group, it will always have some level of additive structure. The most famous
example of this principle is Szemerédi’s theorem, which asserts that every subset
of the integers of positive upper density will contain arbitrarily long arithmetic
progressions; we shall devote all of Chapter 11 to this beautiful and important the-
orem. A variant of this fact is the very recent Green—Tao theorem, which asserts
that every subset of the prime numbers of positive upper relative density also con-
tains arbitrarily long arithmetic progressions; in particular, the primes themselves
have this property. If one starts with an even sparser set A than the primes, then it
is not yet known whether A will necessarily contain long progressions; however,
if one forms sum sets suchas A+ A, A+ A+ A, 2A — 2A, FS(A) then these
sets contain extraordinarily long arithmetic progressions (see in particular Section
4.7 and Chapter 12). This basic principle — that sumsets have much more addi-
tive structure than general sets — is closely connected to the equivalences between
the various types of additive structure mentioned previously; indeed results of the
former type can be used to deduce results of the latter type, and conversely.

We now describe some other topics covered in this text. In Chapter 1 we recall
the simple yet powerful probabilistic method, which is very useful in additive
combinatorics for constructing sets with certain desirable properties (e.g. thin
additive bases of the integers), and provides an important conceptual framework
that complements more classical deterministic approaches to such constructions.
In Chapter 6 we present some ways in which graph theory interacts with additive
combinatorics, for instance in the theory of sum-free sets, or via Ramsey theory.
Graph theory is also decisive in establishing two important results in the theory
of sum sets, the Balog—Szemerédi—Gowers theorem and the Pliinnecke inequal-
ities. Two other important tools from graph theory, namely the crossing number
inequality and the Szemerédi regularity lemma, will also be covered in Chapter
8 and Sections 10.6, 11.6 respectively. In Chapter 7 we view sum sets from the
perspective of random walks, and give some classical and recent results concerning
the distribution of these sum sets, and in particular recent applications to random
matrices. Last, but not least, in Chapter 9 we describe some algebraic methods,
notably the combinatorial Nullstellensatz and Chevalley—Waring type methods,
which have led to several deep arithmetical results (often with very sharp bounds)
not obtainable by other means.
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General notation

The following general notational conventions will be used throughout the book.

Sets and functions
For any set A, we use
A =Ax---xA={a,...,aq):a,...,aq € A}

to denote the Cartesian product of d copies of A: thus for instance Z¢ is the d-
dimensional integer lattice. We shall occasionally denote A? by A®“, in order to
distinguish this Cartesian product from the d-fold productset AY = A ..... A of
A, or the d-fold powers A"d := {a? : a € A} of A.

If A, B are sets, we use A\B := {a € A : a &€ B} to denote the set-theoretic
difference of A and B; and B* to denote the space of functions f : A — B from
A'to B. We also use 24 := {B : B C A} to denote the power set of A. We use |A|
to denote the cardinality of A. (We shall also use |x| to denote the magnitude of a
real or complex number x, and |v| =,/ U12 + -+ vﬁ to denote the magnitude of
a vector v = (vy, ..., vy) in a Euclidean space R¢. The meaning of the absolute
value signs should be clear from context in all cases.)

If AC Z,weuse 14 : Z — {0, 1} to denote the indicator function of A: thus
la(x) =1 when x € A and 14(x) = 0 otherwise. Similarly if P is a property,
we let I(P) denote the quantity 1 if P holds and O otherwise; thus for instance
L4(x) =I(x € A).

We use (Z) = #lk), to denote the number of k-element subsets of an n-element
set. In particular we have the natural convention that (Z) =0ifk>nork <O.

Number systems

We shall rely frequently on the integers Z, the positive integers Z* := {1, 2, ...},
the natural numbers N :=Z-o = {0, 1, ...}, the reals R, the positive reals
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R* := {x € R: x > 0}, the non-negative reals R> := {x € R: x > 0}, and the
complex numbers C, as well as the circle group R/Z := {x +Z : x € R}.

For any natural number N € N, we use Zy := Z/NZ to denote the cyclic group
of order N, and use n — n mod N to denote the canonical projection from Z to
Zy. If g is a prime power, we use F, to denote the finite field of order g (see
Section 9.4). In particular if p is a prime then F), is identifiable with Z,,.

If x is a real number, we use | x | to denote the greatest integer less than or equal
to x.

Landau asymptotic notation

Let n be a positive variable (usually taking values on N, Z+, R-, or R, and often
assumed to be large) and let f(n) and g(n) be real-valued functions of .

* g(n) = O(f(n)) means that f is non-negative, and there is a positive constant
C such that |g(n)| < Cf(n) for all n.

* g(n) = Q(f(n)) means that f, g are non-negative, and there is a positive
constant ¢ such that g(n) > cf(n) for all sufficiently large n.

* g(n) = O(f(n)) means that f, g are non-negative and both g(n) = O(f(n))
and g(n) = Q(f(n)) hold; that is, there are positive constants ¢ and C such that
cf(n) > gn) > Cf(n) for all n.

* g(n) = 0y 0(f(n)) means that f is non-negative and g(n) = O(a(n) f (n)) for
some a(n) which tends to zero as n — oo; if f is strictly positive, this is
equivalent to lim,,_, o, g(n)/f(n) = 0.

* g(n) = wy—o00o(f(n)) means that f, g are non-negative and f(n) = 0, (g(n)).

In most cases the asymptotic variable n will be clear from context, and we shall
simply write 0, o (f (n)) as o( f (n)), and similarly write w,_, - (f (7)) as w( f (n)).
In some cases the constants ¢,C and the decaying function a(n) will depend on
some other parameters, in which case we indicate this by subscripts. Thus for
instance g(n) = Oy(f(n)) would mean that g(n) < Cj f(n) for all n, where Cy
depends on the parameter k; similarly, g(n) = 0,00 (f(n)) would mean that
g(n) = O(ax(n) f(n)) for some ax(n) which tends to zero as n — oo for each
fixed k.

The notation g(n) = O(f(n)) has been used widely in the combinatorics and
theoretical computer science community in recent years; g(n) = O(f(n)) means
that there is a constant ¢ such that g(n) < f(n)log n for all sufficiently large n.
We can define, in a similar manner, € and 0, though this notation will only be
used occasionally here. Here and throughout the rest of the book, log shall denote

the natural logarithm unless specified by subscripts, thus log, y = }gi )’C .
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Progressions

We have already encountered the concept of a generalized arithmetic progression.
We now make this concept more precise.

Definition 0.2 (Progressions) For any integers a < b, we let [a, b] denote the
discrete closed interval [a, b] := {n € Z : a < n < b}; similarly define the half-

open discrete interval [a, b), etc. More generally, if a = (a;,...,ay) and b =
by, ..., by) are elements of Z¢ such that a j < bj, we define the discrete box
[a, b] :={(ny, ..., ng) eZd:aj <nj<bjforall < j<dj},

and similarly
[a, b) = {(nl,...,nd)eZd:aj <nj<bjforalll <j<dj,

etc. If Z is an additive group, we define a generalized arithmetic progression (or
just progression for short) in Z to be any set! of the form P = a + [0, N] - v,
where a € Z, N = (N, ..., Ny) is a tuple, [0, N] C 77 is a discrete box, v =
(i, ...,vg) € 74 the map - : 79 x 79 — Z is the dot product

(1, ...,ng)-(v1,...,09) :=n1v; + -+ + ngvg,
and [0, N]-v:={n-v:n € [0, N]}. In other words,
P={a+nwv+ - +nqug:0<n; <Njforalll <j<d}.

We call a the base point of P,v = (vy, ..., vg) the basis vectors of P, N the dimen-
sion of P, d the dimension or rank of P, and vol(P) := |[0, N]| = H?:1(Nj + 1)
the volume of P. We say that the progression P is proper if the mapn +— n - v is
injective on [0, N], or equivalently if the cardinality of P is equal to its volume
(as opposed to being strictly smaller than the volume, which can occur if the basis
vectors are linearly dependent over Z). We say that P is symmetric if —P = P;
for instance [-N, N]-v = —N - v + [0, 2N] - v is a symmetric progression.

Other notation

There are a number of other definitions that we shall introduce at appropriate junc-
tures and which will be used in more than one chapter of the book. These include
the probabilistic notation (such as E(), P(), I(), Var(), Cov()) that we introduce

! Strictly speaking, this is an abuse of notation; the arithmetic progression should really be the
sextuple (P,d, N, a, v, Z), because the set P alone does not always uniquely determine the base
point, step, ambient space or even length (if the progression is improper) of the progression P.
However, as it would be cumbersome continually to use this sextuple, we shall usually just P to
denote the progression.
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at the start of Chapter 1, and measures of additive structure such as the doubling
constant o[A] (Definition 2.4), the Ruzsa distance d(A, B) (Definition 2.5), and
the additive energy E(A, B) (Definition 2.8). We also introduce the concept of a

partial sum set A —?— B in Definition 2.28. The Fourier transform and the averaging
notation E,cz f(x), Pz A is defined in Section 4.1, Fourier bias ||A]|, is defined
in Definition 4.12, Bohr sets Bohr(S, p) are defined in Definition 4.17, and A(p)
constants are defined in Definition 4.26. The important notion of a Freiman homo-
morphism is defined in Definition 5.21. The notation for group theory (e.g. ord(x)
and (x)) is summarized in Section 3.1, while the notation for finite fields is sum-
marized in Section 9.4.
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The probabilistic method

In additive number theory, one frequently faces the problem of showing that a
set A contains a subset B with a certain property P. A very powerful tool for
such a problem is Erdés’ probabilistic method. In order to show that such a subset
B exists, it suffices to prove that a properly defined random subset of A satis-
fies P with positive probability. The power of the probabilistic method has been
justified by the fact that in most problems solved using this approach, it seems
impossible to come up with a deterministically constructive proof of comparable
simplicity.

In this chapter we are going to present several basic probabilistic tools together
with some representative applications of the probabilistic method, particularly
with regard to additive bases and the primes. We shall require several standard
facts about the distribution of primes P = {2, 3, 5, ...}; so as not to disrupt the
flow of the chapter we have placed these facts in an appendix (Section 1.10).

Notation. We assume the existence of some sample space (usually this will be
finite). If E is an event in this sample space, we use P(E) to denote the probability
of E, and I(E) to denote the indicator function (thus I(E) = 1 if E occurs and 0
otherwise). If E, F are events, we use E A F to denote the event that £, F both
hold, E Vv F to denote the event that at least one of E, F hold, and E to denote the
event that £ does not hold. In this chapter all random variables will be assumed to
be real-valued (and usually denoted by X or Y') or set-valued (and usually denoted
by B). If X is a real-valued random variable with discrete support, we use

E(X) := ZxP(X =x)

to denote the expectation of X, and

Var(X) := E(|X — E(X)*) = E(IX|*) — E(IX|)?
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to denote the variance. Thus for instance
E((E)) = P(E); Var(I(E)) = P(E) — P(E)>. (1.1)

If F is an event of non-zero probability, we define the conditional probability of
another event £ with respect to F by:

P(EANF
P(E|F) := MEAF)
P(F)
and similarly the conditional expectation of a random variable X by
E(XI(F))
EX|F) = ———— = xP(X = x|F).
EI(F)) Z

X

A random variable is boolean if it takes values in {0, 1}, or equivalently if it is an
indicator function I(E) for some event E.

1.1 The first moment method

The simplest instance of the probabilistic method is the first moment method, which
seeks to control the distribution of a random variable X in terms of its expectation
(or first moment) E(X). Firstly, we make the trivial observation (essentially the
pigeonhole principle) that X < E(X) with positive probability, and X > E(X) with
positive probability. A more quantitative variant of this is

Theorem 1.1 (Markov’s inequality) Let X be a non-negative random variable.
Then for any positive real A > 0

E(X
P(X > < —(/\ ). (1.2)
Proof Start with the trivial inequality X > AI(X > X) and take expectations of
both sides. O

Informally, this inequality asserts that X = O (E(X)) with high probability; for
instance, X < 10E(X) with probability at least 0.9. Note that this is only an upper
tail estimate; it gives an upper bound for how likely X is to be much larger than
E(X), but does not control how likely X is to be much smaller than E(X). Indeed,
if all one knows is the expectation E(X), it is easy to see that X could be as small
as zero with probability arbitrarily close to 1, so the first moment method cannot
give any non-trivial lower tail estimate. Later on we shall introduce more refined
methods, such as the second moment method, that give further upper and lower
tail estimates.
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To apply the first moment method, we of course need to compute the expecta-
tions of random variables. A fundamental tool in doing so is linearity of expectation,
which asserts that

E(CIXI +-- 4+ chn) = ClE(Xl) +--- CnE(Xn) (13)

whenever X, ..., X, are random variables and cy, ..., ¢, are real numbers. The
power of this principle comes from there being no restriction on the independence
or dependence between the X;s. A very typical application of (1.3) is in estimating
the size | B| of a subset B of a given set A, where B is generated in some random
manner. From the obvious identity

|m=Z)mem
acA
and (1.3), (1.1) we see that
E(B))=) P(a € B). (1.4)
acA

Again, we emphasize that the events @ € B do not need to be independent in order
for (1.4) to apply.
A weaker version of the linearity of expectation principle is the union bound

P(E\Vv.--VE,) <PE)+- - +P(E,) (1.5)
for arbitrary events E, ..., E, (compare this with (1.3) with X; :=I(E;) and
¢; = 1). This trivial bound is still useful, especially in the case when the events
E., ..., E, are rare and not too strongly correlated (see Exercise 1.1.3). A related

estimate is as follows.

Lemma 1.2 (Borel-Cantelli lemma) Let E,, E,,...be a sequence of events
(possibly infinite or dependent), such that ), P(E,) < co. Then for any integer
M, we have

2 P(En)
==

In particular, with probability 1 at most finitely many of the events E1, E,, . . . hold.

P(Fewer than M of the events E1, E,, ... hold) > 1 —

Another useful way of phrasing the Borel-Cantelli lemma is that if Fy, F,, ...
are events such that >~ (1 — P(F},)) < oo, then, with probability #, all but finitely
many of the events F, hold.

Proof By monotone convergence it suffices to prove the claim when there are
only finitely many events. From (1.3) we have E(}_, I(E,)) = ), P(E,). If one
now applies Markov’s inequality with A = M, the claim follows. O
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1.1.1 Sum-free sets

We now apply the first moment method to the theory of sum-free sets. An additive
set A is called sum-free iff it does not contain three elements x, y, z such that
X 4+ y = z; equivalently, A is sum-free iff AN2A = @.

Theorem 1.3 Let A be an additive set of non-zero integers. Then A contains a
sum-free subset B of size |B| > |A|/3.

Proof Choose a prime number p = 3k + 2, where £ is sufficiently large so that
A C [—p/3, p/31\{0}. We can thus view A as a subset of the cyclic group Z,
rather than the integers Z, and observe that a subset B of A will be sum-free in Z,
if and only if! it is sum-free in Z.

Now choose a random number x € Z,\ {0} uniformly, and form the random set

B:=ANx-lk+1,2k+1)=facA:xlaec{k+1,...,2k+1}}.

Since [k + 1,2k + 1] is sum-free in Z,, we see that x - [k + 1,2k + 1] is too,
and thus B is a sum-free subset of A. We would like to show that |B| > |A|/3
with positive probability; by the first moment method it suffices to show that
E(|B]) > |A|/3. From (1.4) we have

E(|B|) = ZP(a €B)= ZP(x*la € [k+ 1,2k + 1)).
acA acA

If a € A, then a is an invertible element of Z,, and thus xlais uniformly dis-

tributed in Z,\{0}. Since |[k + 1,2k + 1]| > pr1, we conclude that P(x~'a €
[k +1,2k+1]) > % for all @ € A. Thus we have E(|B|) > |3ﬁ as desired. O

Theorem 1.3 was proved by Erdds in 1965 [86]. Several years later, Bour-
gain [37] used harmonic analysis arguments to improve the bound slightly. It is
surprising that the following question is open.

Question 1.4 Can one replace n/3 by (n/3) + 10?

Alon and Kleiman [10] considered the case of more general additive sets (not
necessarily in Z). They showed that in this case A always contains a sum-free
subset of 2|A|/7 elements and the constant 2/7 is best possible.

Another classical problem concerning sum-free sets is the Erdés—Moser prob-
lem. Consider a finite additive set A. A subset B of A is sum-free with respect to
Aif2*B N A =@, where 2*B = {by + by|b;, b, € B, by # b,}. Erd6s and Moser
asked for an estimate of the size of the largest sum-free subset of any given set A
of cardinality n. We will discuss this problem in Section 6.2.1.

! This trick can be placed in a more systematic context using the theory of Freiman homomorphisms:
see Section 5.3.
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Exercises

1.1.1

1.1.2
1.1.3

If X is a non-negative random variable, establish the identity

o0
E(X) :/ P(X > 1) dx (1.6)
0
and more generally for any 0 < p < oo
oo
E(X?) = p/ APTIP(X > A) da. (1.7)
0

Thus the probability distribution function P(X > A) controls all the
moments E(X?) of X.

When does equality hold in Markov’s inequality?

IfE,, ..., E, are arbitrary probabilistic events, establish the lower bound

P(E; V- VE)=Y PE)— Y PEANE):
i=1 I<i<j<n
this bound should be compared with (1.5), and can be thought of as a vari-
ant of the second moment method which we discuss in the next section.
(Hint: consider the random variable } 7/_, I(E;) — 3, _ ;. (EHI(E).)
More generally, establish the Bonferroni inequalities

P(E,V---VE,)> Z (=P (/\E)

AC[Ln):1<|A|<k icA

when k is even, and

PE\V---VE)< Y (=D'P (/\ E,-)

AC[l,n]:1<|Al<k i€A

when £ is odd.

Let X be a non-negative random variable. Establish the popularity princi-
ple E(XI(X > 1E(X))) > 1E(X). In particular, if X is bounded by some
constant M, then P(X > JE(X)) > 517 E(X). Thus while there is in gen-
eral no lower tail estimate on the event X < %E(X ), we can say that the
majority of the expectation of X is generated outside of this tail event,
which does lead to a lower tail estimate if X is bounded.

Let A, B be non-empty subsets of a finite additive group Z. Show that
there exists an x € Z such that

| ANB Aol (1_@> (1_@)’
1Z] 1Z] 1Z]
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and a y € Z such that

l_wz(l_@)(l_@)
H 1Z] 1Z]

1.1.6 Consider a set A as above. Show that there exists a subset {v{, ..., vy} of
Z withd = O(log %) such that

[A+10, 119 (v, ..., v0)] > 1Z]/2.

1.1.7  Consider a set A as above. Show that there exists a subset {vy, ..., vy} of
Z with d := O(log % + loglog(10 4 | Z|)) such that

A+10, 117 (vy,...,v) = Z.

1.2 The second moment method

The first moment method allows one to control the order of magnitude of a random
variable X by its expectation E(X). In many cases, this control is insufficient, and
one also needs to establish that X usually does not deviate too greatly from its
expected value. These types of estimates are known as large deviation inequali-
ties, and are a fundamental set of tools in the subject. They can be significantly
more powerful than the first moment method, but often require some assumptions
concerning independence or approximate independence.

The simplest such large deviation inequality is Chebyshev’s inequality, which
controls the deviation in terms of the variance Var(X):

Theorem 1.5 (Chebyshev’s inequality) Let X be a random variable. Then for
any positive A

P(IX — E(X)| > AVar(X)'?) < % (1.8)

Proof We may assume Var(X) > 0 as the case Var(X) =0 is trivial. From
Markov’s inequality we have
E(X — E(X)|? 1
P(X — E(X)> > A*Var(X)) < EQX —EXON _ 1
AZVar(X) A2

and the claim follows. O

Thus Chebyshev’s inequality asserts that X = E(X) + O(Var(X )72y with high
probability, while in the converse direction it is clear that | X — E(X)| > Var(X )12
with positive probability. The application of these facts is referred to as the second
moment method. Note that Chebyshev’s inequality provides both upper tail and
lower tail bounds on X, with the tail decaying like 1/A? rather than 1/A. Thus
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the second moment method tends to give better distributional control than the
first moment method. The downside is that the second moment method requires
computing the variance, which is often trickier than computing the expectation.

Assume that X = X| + - - - + X,,, where X;s are random variables. In view of
(1.3), one might wonder whether

Var(X) = Var(X) + - -- + Var(X,). (1.9)

This equality holds in the special case when the X;s are pairwise independent (and
in particular when they are jointly independent), but does not hold in general. For
arbitrary X;s, we instead have

Var(X) =) Var(X;))+ Y = Cov(X;, X)), (1.10)
i=1

i,jell,nl:i#]j
where the covariance Cov(X;, X ;) is defined as

Cov(X;, X ) := E((X; — E(X))(X; — E(X)) = E(X; X ;) — E(X;))E(X ).

Applying (1.9) to the special case when X = |B|, where B is some randomly
generated subset of a set A, we see from (1.1) that if the events a € B are pairwise
independent for all a € A, then

Var(|B|) =) P(a € B) - P(a € BY (1.11)

acA

and in particular we see from (1.4) that
Var(|B|) < E(|B)). (1.12)

In the case when the events @ € B are not pairwise independent, we must replace
(1.11) by the more complicated identity

Var(B)=Y PlaecB)-PaecB?+ Y  CovllacB).ld € B)).
acA a,a’'eA:a#a’

(1.13)

1.2.1 The number of prime divisors

Now we present a nice application of the second moment method to classical
number theory. To this end, let!

v(n) =) L(pln)

p=n

! We shall adopt the convention that whenever a summation is over the index p, then p is understood
to be prime.
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denote the number of prime divisors of n. This function is among the most studied
objects in classical number theory. Hardy and Ramanujan in the 1920s showed that
“almost” all n have about log log n prime divisors. We give a very simple proof of
this result, found by Turdn in 1934 [369].

Theorem 1.6 Let w(n) tend to infinity arbitrarily slowly. Then

{x € [1, n] : [v(x) — loglog x| > w(n){/loglogn}| = o(n). (1.14)
Informally speaking, this result asserts that for a “generic” integer x, we have
v(x) = loglog x + O(y/loglog x) with high probability.

Proof Let x be chosen uniformly at random from the interval {1, 2, ..., n}. Our
task is now to show that

P(jv(x) — loglog x| > w(n)/loglogn) = o(1).

Due to a technical reason, instead of v(x) we shall consider the related quantity
|B|, where

1/10

B = {pprime:pgn ,p|x}.

Since x cannot have 10 different prime divisors larger than n'/19, it follows that
|B| — 10 < v(x) < |B|. Thus, to prove (1.14), it suffices to show

P(||B| — loglogn| > w(n)y/Inlogn) = o(1).

Note that loglogx = loglogn + O(1) with probability 1 — o(1). In light of
Chebyshev’s inequality, this will follow from the following expectation and vari-
ance estimates:

E(|B|), Var(|B|) = loglogn + O(1).

It remains to verify the expectation and variance estimate. From linearity of expec-
tation (1.4) we have

E(B)= Y P(plv)

p<n!/10

while from the variance identity (1.13) we have

Var((B) = ) (®(plx)—P(plx)+ Y Covl(plx), I(g|x)).

p=n'/10 p.q=n'/"%:pztq

Observe that I(p|x)I(¢|x) = I(pg|x). Since P(d|x) = 1 + O(}) for any d > 1,

we conclude that
1 1
P(plx)=—4+0 <—)
p n
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1 1 1 1 1 1 1
Cov(I(plx),I(g|x)) = — + O (*) — (f + 0 <*)> <f + 0 (7)) =0 <7> .
pq n p n q n n

We thus conclude that

and

E(Bh= 3 140

p=<n!/10

Var(lB))= ) (% — i) +0(n781°).

2
p<n!/10 p

The expectation and variance estimates now follow from Mertens’ theorem (see

Proposition 1.51) and the convergence of the sum ), k% O

Exercises

1.2.1  When does equality hold in Chebyshev’s inequality?

1.22 If X and Y are two random variables, verify the Cauchy—-Schwarz
inequality |Cov(X, Y)| < Var(X)'/?Var(Y)'/? and the triangle inequal-
ity Var(X + Y)'/? < Var(X)'/? 4+ Var(Y)'/2. When does equality occur?

1.2.3  Prove (1.10).

124 If ¢ : R — Ris a convex function and X is a random variable, verify
Jensen’s inequality E(¢(X)) < ¢(E(X)). If ¢ is strictly convex, when
does equality occur?

1.2.5  Generalize Chebyshev’s inequality using higher moments E(|X —
E(X)|?) instead of the variance.

1.2.6 By obtaining an upper bound on the fourth moment, improve Theorem 1.6

to
1
Nl{x € [1,N]:|v(x) —loglog N| > K/loglog N}| = O(K™).

Can you generalize this to obtain abound of O,,(K ") for any even integer
m > 2, where the constant in the O() notation is allowed to depend on
m?

1.3 The exponential moment method

Chebyshev’s inequality shows that if one has control of the second moment
Var(X) = E(|X — E(X)|?), then a random variable X takes the value E(X) +
O(AVar(X)'/?) with probability 1 — O(A~2). If one uses higher moments, one
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can obtain better decay of the tail probability than O (A~2). In particular, if one can
control exponential moments' such as E(e'X) for some real parameter ¢, then one
can obtain exponential decay in upper and lower tail probabilities, since Markov’s
inequality yields

E tX
P(X > ) = P('X > o) < % (1.15)
fort > 0 and A € R, and similarly
E —tX
P(X < -1 =P =) < % (1.16)

for the same range of ¢, A. The quantity E(e'*) is known as an exponential moment
of X, and the function ¢ — E(e'X) is known as the moment generating function,
thanks to the Taylor expansion

12 3
E(e'®) =1+ E(X) + 5E(X2) + gE(X3) T

The application of (1.15) or (1.16) is known as the exponential moment method.
Of course, to use it effectively one needs to be able to compute the exponential
moments E(e’*). A preliminary tool for doing so is

Lemma 1.7 Let X be a random variable with |X| < 1 and E(X) = 0. Then for
any —1 <t < 1 we have E(e'X) < exp(t>Var(X)).

Proof Since [tX| < 1, a simple comparison of Taylor series gives the inequality
X <1+1X +2X2

Taking expectations of both sides and using linearity of expectation and the hypoth-
esis E(X) = 0 we obtain

E(e'*) < 1+ t*Var(X) < exp(*Var(X))
as desired. O

This lemma by itself is not terribly effective as it requires both X and ¢ to be
bounded. However the power of this lemma can be amplified considerably when
applied to random variables X which are sums of bounded random variables,
X =X+ ---+ X, provided that we have the very strong assumption of joint
independence between the X1, ..., X,,. More precisely, we have

! To avoid questions of integrability or measurability, let us assume for sake of discussion that the
random variable X here only takes finitely many values; this is the case of importance in
combinatorial applications.
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Theorem 1.8 (Chernoff’s inequality) Assume that X1, ..., X, are jointly inde-
pendent random variables where | X; — E(X;)| < lforalli.Set X == X1+ ---+
X, and let 0 := /Var(X) be the standard deviation of X . Then for any A > 0

P(IX — E(X)| > A0) < 2max (e /4, ¢749/2). (1.17)

Informally speaking, (1.17) asserts that X = E(X) 4+ O(Var(X )72y with high
probability, and X = E(X) 4+ O(In'/? nVar(X)!/?) with extremely high probabil-
ity (1 — O0(n=C) for some large C). The bound in Chernoff’s theorem provides
a huge improvement over Chebyshev’s inequality when A is large. However the
joint independence of the X is essential (Exercise 1.3.8). Later on we shall develop
several variants of Chernoff’s inequality in which there is some limited interaction
between the X;.

Proof By subtracting a constant from each of the X; we may normalize E(X;) = 0
for each i. Observe that P(|X| > Ao) = P(X > Xo) + P(X < —A0). By symme-
try, it thus suffices to prove that

P(X > ro) < e~ */? (1.18)

where ¢ := min(A/20, 1).
Applying (1.15) we have

P(X > Ao) < e_”\"E(ele --~e’X”).

Since the X; are jointly independent, so are the ¢'*/. Using this and Lemma 1.7
we obtain

E(e - e™) = E(e'*) .- - E(e'*") < exp(t*Var(X1)) - - - exp(¢*Var(X,)).
On the other hand, from (1.9) we have
Var(X;) + - -- + Var(X,) = o°.
Putting all this together, we obtain
P(X > ho) < e e,
Since t < A/20, the claim follows. O

Now let us consider a special, but important case when X;s are independent
boolean (or Bernoulli) variables.

Corollary 1.9 Let X = t| + - - - + t, wherethet; are independent boolean random
variables. Then for any € > 0

P(1X — E(X)| > €E(X)) < 2¢~ min(€*/4.¢/2EX) (1.19)
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Applying this with € = 1/2 (for instance), we conclude in particular that
P(X = O(E(X))) > 1 — 2¢ BX/16, (1.20)

Proof From (1.1) we have that |t; — E(¢;)| < 1 and Var(#;) < E(¢;). Summing
this using (1.3), (1.9), we conclude that Var(X) < E(X) (cf. (1.12)). The claim
now follows from Theorem 1.8 with A := €E(X)/o. |

As an immediate consequence of Corollary 1.9 and (1.4) we obtain the following
concentration of measure property for the distribution of certain types of random
sets.

Corollary 1.10 Let A be a set (possibly infinite), and let B C A be a random
subset of A with the property that the events a € B are independent for every
a € A. Then for any € > 0 and any finite A’ C A we have

P <||B NA|l— Z Pal > € Z Pa) < Do~ Min(€/4.6/2) Yocn Pa

acA’ acA’

where p, := P(a € B). In particular

1 / 3 — > gen’ Pal16
P(EZpasmesEZpa)zl—ze wet Po/16,

acA’ acA’

1.3.1 Sidon’s problem on thin bases

We now apply Chernoff’s inequality to the study of thin bases in additive combi-
natorics.

Definition 1.11 (Bases) Let B C N be an (infinite) set of natural numbers, and
let k € Z . We define the counting function ry g(n) for any n € N as

rep() = {(b1,....by) € B : by + - 4+ by =n)|.

We say that B is a basis of order k if every sufficiently large positive integer can be
represented as sum of k (not necessarily distinct) elements of B, or equivalently if
r¢.p(n) > 1 for all sufficiently large n. Alternatively, B is a basis of order « if and
only if N\kB is finite.

Examples 1.12 The squares N*2 = {0, 1,4, 9, ...} are known to be a basis of
order 4 (Legendre’s theorem), while the primes P = {2,3,5,7,...} are con-
jectured to be a basis of order 3 (Goldbach’s conjecture) and are known to
be a basis of order 4 (Vinogradov’s theorem). Furthermore, for any & > 1, the
kth powers Nk = {0%, 1¥, 2%, ...} are known to be a basis of order C (k) for
some finite C (k) (Waring’s conjecture, first proven by Hilbert). Indeed in this
case, the powerful Hardy—Littlewood circle method yields the stronger result that
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FmNek(R) = @mﬁk(n%_l) for all large n, if m is sufficiently large depending on
k (see for instance [379] for a discussion). On the other hand, the powers of k
k"N = {k°, k', k2, ...} and the infinite progression k - N = {0, k, 2k, ...} are not
bases of any order when k > 1.

The function r; g is closely related to the density of the set B. Indeed, we have
the easy inequalities

Y e < [BOO,NIE < Y ripn) (1.21)
n<N n<kN
forany N > 1;thisreflects the obvious factthatifn = by + - - - 4+ by is adecompo-
sition of a natural number 7 into k natural numbers by, . .., by, then n < N implies
that by, ..., by € [0, N], and conversely by, ..., b € [0, N] implies n < kN. In
particular if B is a basis of order £ then

IBN[0,N]| = QUNV5). (1.22)

Let us say that a basis B of order k is thin if ry p(n) = O(logn) for all large
n. This would mean that [B N[0, N]| = N'/%*to(_ thus the basis B would be
nearly as “thin” as possible given (1.22). In the 1930s, Sidon asked the question
of whether thin bases actually exist (or more generally, any basis which is “high
quality” in the sense that r¢_g(n) = n° for all n). As Erds recalled in one of his
memoirs, he thought he could provide an answer within a few days. It took a little
bit longer. In 1956, Erdés [92] positively answered Sidon’s question.

Theorem 1.13 There exists a basis B C Z of order 2 so that . g(n) = ©(log n)
for every sufficiently large n. In particular, there exists a thin basis of order 2.

Remark 1.14 A very old, but still unsolved conjecture of Erdés and Turan [98]
states that if B C N is a basis of order 2, then limsup,,_, . 72, 5(n) = co. In fact,
Erdé6s later conjectured that lim sup,,_, . 72,5(1)/ logn > 0 (so that the thin basis
constructed above is essentially as thin as possible). Nothing is known concerning
these conjectures (though see Exercise 1.3.10 for a much weaker result).

Proof Define! aset B C Z* randomly by requiring theeventsn € B (forn € Z)
to be jointly independent with probability

I
P(n € B) = min (c,/ OB% 1)
n

! Strictly speaking, to make this argument rigorous one needs an infinite probability space such as
Wiener space, which in turn requires a certain amount of measure theory to construct. One can
avoid this by proving a “finitary” version of Theorem 1.13 to provide a thin basis for an interval
[1, N] for all sufficiently large N, and then gluing those bases together; we leave the details to the
interested reader. A similar remark applies to other random subsets of Z* which we shall construct
later in this chapter.
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where C > 0 is a large constant to be chosen later. We now show that r, g(n) =
®(log n) for all sufficiently large n with positive probability (indeed, it is true with
probability 1). Writing

rap(n) = Z IieB)I(jeB) =0 < Z IG € B)I(n—i ¢ B)) +0(1)

i+j=n 1<i<n/2

we see that it suffices to show that the probability

P ( Z I(G € B)I(n —i € B) = ©(logn) for all but finitely many n)

1<i<n/2

is positive (if the constants in the ®() notation are chosen appropriately). By
the Borel-Cantelli lemma (Lemma 1.2) and the convergence of ZZ‘;I ”Lz, it thus
suffices to show that

P( Y lieBln-ieB)= @(logn)) —1-0 <%)
1<i<n/2

for all large n.
By linearity of expectation (1.3), we have for n > 1

E( > I(ieB)I(n—ieB)): > CZ\/IOTg"\/k’gn("f_ii)Jroc(l)

1<i<n/2 1<i<n/2

In'2n In'/?§
@ 2
_o(c 7 § i + Oc(1)

1<i<n/2

= O(C*logn) + 0¢(1).

In particular, by choosing C large enough, we may take

32logn <E ( Z I eB)In—ic B)) <« logn
1<i<n/2
for all n > 1 and some « > 32.
Observe that the restriction i < n/2 ensures that the boolean random variables
I(i € B)I(n —i € B) are jointly independent. If we now apply Corollary 1.9 with
€ := 1/2, we conclude that

P( Y Wi eBln—ieB) < glogn> <2/n2,

1<i<n/2
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and

P( Z IG € B)I(n—i€B)< %Clogn) <2/n’.

1<i<n/2

The claim follows. 0

It is quite natural to ask whether Theorem 1.13 can be generalized to arbitrary k.
Using the above approach, in order to obtain a basis B such thatr; g (n) = O(log n),
we should set P(n € B) = cn'/*~!In'/*  for all sufficiently large n. As before,
we have

re.g(n) = Z I(x; € B)---I(x € B). (1.23)
Xi+eetxg=n
Although ry p(n) does have the right expectation ®(logn), we face a major
problem: the variables I(x; € B), ..., I(x; € B) with k > 2 are no longer inde-
pendent. In fact, a typical number x appears in quite many (2(n*~2)) solutions of
X1 4+ - -+ + x; = n. This dashes the hope that one can use Theorem 1.8 to conclude
the argument.
It took a long time to overcome this problem of dependency. In 1990, Erdds
and Tetali [97] successfully generalized Theorem 1.13 for arbitrary k:

Theorem 1.15 For any fixed k, there is a subset B C N such that ry g(n) =

O(log n) for all sufficiently large n. In particular, there exists a thin basis of order
k for any k.

We shall discuss this theorem later in a later section. Let us now turn instead to
another application.

1.3.2 Complementary bases

Given aset A C N and an integer k > 1, aset B C N is a complementary basis of
order k of A if every sufficiently large natural number can be written as a sum of
an element in A and & elements in B (not necessarily distinct), or equivalently if
N\(A + kB) is finite.

As in the theory of bases, it is convenient to introduce the counting function

FasBet8() = {(@.by,....b) € Ax B  in=a+bi+- + b}
and observe (analogously to (1.21)) that

> rarpiesn) S IANONIBOIONI S D rapsrin().
n<N n<(k+1)N
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Now considerthe set P = {2, 3, 5, ...} of primes, and let B be a complementary
basis for P of order 1. Recall that |P N[0, N]| = ©(n/logn) (Exercise 1.10.4
from the Appendix (Section 1.10)). From the preceding inequality we thus have
the lower bound

|B N[0, n]| = QUogn)

for all large . It is not known whether this bound can actually be attained. However,
Erdds showed that P has a complementary base of size 0(log2 n) [92, 170]:

Theorem 1.16 P has a complementary base B C L* of order 1 such that |B N
[0, n]| = O(log® n) for all sufficiently large n.

Proof Again B is created in a random manner, setting the events n € B to be
jointly independent with probability

. logn
P(n € B)=min | C , 1
n
for some large constant C. From Corollary 1.10 we have

1
P(|B N[0, n]| > 10C log’ n) = O (—2>
n
(say) for each n, and hence by the Borel-Cantelli lemma (Lemma 1.2) we have
with probability 1 that |B N [0, n]| = O(log® n) for all sufficiently large n. Thus
it suffices to show that with probability 1, rpg(n) > 0 for all sufficiently large n.
By the Borel-Cantelli lemma again, it will suffice to show that
1
Prpip(n)>0=1-0 (ﬁ)

for all large n. To show this, we write rpg(n) = |B N (n — P)|. From linearity of
expectation (1.4) we have

log(n — p)

E(BN(n—P))=C Y ——+0c().
n—p
pePN[1,n)
We now use the estimate
1 _

pePrity TP

for all sufficiently large n (see Proposition 1.54 in the Appendix); if we choose C
large enough, we thus conclude that

E(IBN(n — P)|) > 8logn
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for all sufficiently large n. From Corollary 1.10 (or Corollary 1.8), the desired

claim follows. O
Exercises
1.3.1 Let ¢ be the uniform distribution on {—1, +1}, and let &,..., &, be

independent trials of ¢. For any A > 0, prove the reflection principle

J n
P max g >A]|=2P & >M].
(15]5” i= ) (; )

Hint: Let A C {—1, 1}" be the set of n-tuples (¢y, ..., &,) such that
Yoi,& >, and let B C {—1, 1}" be the set of n-tuples (1, ..., &,)
such that >/, & < A but Z‘lle g; > A for some 1 < j < n. Create a
“reflection map” which exhibits a bijection between A and B.

1.3.2  With the same notation as the previous exercise, show that

J n
Lol > < (e >
P (1T?§n . a;s; > k) <2P <Z a;s; > k)

i=1 i=1
for all non-negative real numbers ay, ..., a,.

1.3.3 By considering the case when Xy, ..., X, € {—1, 1} are independent
variables taking values +1 and —1 with equal probability 1/2, show that
Theorem 1.8 cannot be improved except for the constant in the exponent.

1.3.4  Let the hypotheses be as in Theorem 1.8, but with the X; complex-valued
instead of real-valued. Show that

E(IX — E(X)| > ho) < 4max (¢ /3, ¢/2¥2)

forall A > 0. (Hint: if |z| > Ao, then either |Re(z)| > %)\0 or |Im(z)| >
%z)uo.) The constants here can be improved slightly.

1.3.5 (Hoeffding’s inequality) Let Xy, ..., X,, be jointly independent random
variables, taking finitely many values, with a; < X; < b; for all i and
some real numbers a; < b;. Let X := X; 4+ --- + X,,. Using the expo-
nential moment method, show that

" 1/2
P|IX-EX)| =1 (Z b — a,-|2> <2¢7,

i=1

1.3.6  (Azuma’s inequality) Let X1, ..., X, be random variables taking finitely
many values with |X;| < 1 for all ;. We do not assume that the X; are
jointly independent, however we do require that the X; form a martingale
difference sequence, by which we mean that E(X;|X; = x1, ..., X, =
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1.3.7

1.3.8

1.3.9

1.3.10

1.3.11
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xi—1)=0forall 1 <i <nand all xq, ..., x;_;. Using the exponential
moment method, establish the large deviation inequality

P(X| 4+ X,| > av/n) < 267774, (1.24)

Let n be a sufficiently large integer, and color each of the elementsin [1, n]
red or blue, uniformly and independently at random (so each element is
red with probability 1/2 and blue with probability 1/2). Show that the
following statements hold with probability at least 0.9:
(a) there is a red arithmetic progression of length at least 101%;
(b) there is no monochromatic arithmetic progression of length
exceeding 10logn;
(c) the number of red elements and the number of blue elements in
[1, n] differ by O(n'/?);
(d) in every arithmetic progression in [1, n], the numbers of red and
blue elements differ by O(n'/?1og!'/? n).
Let us color the elements of [1, n] red or blue as in the preceding exer-
cise. For each A C [1, n], let t4 denote the parity of the red elements
in A; thus t4 = 1 if there are an odd number of red elements in A, and
ta = 0 otherwise. Let X = Y, ,;7a. Show that the 7, are pairwise
(but not necessarily jointly) independent, that E(X) = 2", and that
Var(X) = 2"2. Furthermore, show that P(X = 0) = 27". This shows
that Chernoff’s inequality can fail dramatically if one only assumes pair-
wise independence instead of joint independence (though Chebyshev’s
inequality is of course still valid in this case).
For any k > 1, find a basis B C N of order £ such that |[B N[0, n]| =
O (n'/%)for all large n. (This can be done constructively, without recourse
to the probabilistic method, for instance by taking advantage of the base
k representation of the integers.)
Prove that there do not exist positive integers k, m > 1,andaset B C N
such that r; g(n) = m for all sufficiently large n; thus a base of order &
cannot be perfectly regular. (Hint: consider the complex-analytic func-
tion Zne g Z", defined for |z| < 1, and compute the kth power of this
function. It is rather challenging to find an elementary proof of this fact
that does not use complex analysis, or the closely related tools of Fourier
analysis.)
With the hypotheses of Theorem 1.8, establish the moment estimates

E(X|")"" = 0(/po + p)

forall p > 1.
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1.3.12  With the hypotheses of Corollary 1.9, establish the inequality

(1)) <A

for all » € N. (Hint: expand (ff) as Zi1<---<f,, t, -+ t;,). Use this (and
Stirling’s formula (1.52)) to derive an inequality similar to that in Corol-
lary 1.9 in the case € > 1. For a generalization of this inequality, see

Lemma 1.40 below.

1.4 Correlation inequalities

Chernoff’s inequality is useful for controlling quantities of the form#; +--- 4+ ¢,
where ¢, ..., ¢, are independent variables. In many applications, however, one
needs to instead control more complicated polynomial expressions of ¢, ..., t,,
such as monotone quantities.

Definition 1.17 (Monotone increasing variables) Let f,...,7, be jointly
independent boolean random variables. A random variable X = X (¢, ...,¢,) is
monotone increasing if we have

X(t1y ... ty) > X, ..., 1)) whenever t; >/ forall 1 <i <n

—

or equivalently if X is monotone increasing in each of the variables #; separately.
We call X monotone decreasing if —X is monotone increasing. We say that an
event A is monotone increasing (resp. decreasing) if the indicator I(A) is monotone
increasing (resp. decreasing).

Example 1.18 If P(ty, ..., t,) is any polynomial of 7, ..., t, with non-negative
coefficients, then P is monotone increasing and — P is monotone decreasing, and
the event P(ty, ..., t,) > k is monotone increasing for any fixed k.

It is reasonable to think that any two increasing (resp. decreasing) variables
or events are, in some way, positively correlated; intuitively, if both X and Y are
monotone increasing (resp. decreasing), then the event that X is large (resp. small)
should boost up the chance that Y is also large (resp. small). This intuition was
materialized by Fortuin, Kasteleyn and Ginibre [104], motivated by problems in
statistical mechanics:

Theorem 1.19 (FKG inequality) Let n > 0, and let X and Y be two monotone
increasing variables. Then

E(XY) > E(X)E(Y)
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or equivalently
Cov(X,Y) > 0.
The same inequality holds for the case both X andY are monotone decreasing.

Proof By replacing X, Y with —X, —Y if necessary, we may assume that X and
Y are both monotone increasing.

We use induction on n. The base case n = 0 is trivial since in this case X
and Y are deterministic. Now assume inductively that » > 1 and the claim has
already been proven for n — 1. We may assume that P(z, = 0) and P(z, = 1)
are non-zero since otherwise the claim follows immediately from the induction
hypothesis. Observe that the covariance Cov(X, Y) is unaffected if we shift X and
Y by constants. Thus we may normalize

E(X|t, =0) = E(Y|t, = 0) = 0 (1.25)

where E(X |¢, = 0) denotes the conditional expectation of X relative to the event
t, = 0. By monotonicity of X, Y in the #, variable and the joint independence of
the #; we then have

E(X|t, = 1),E(Y|t, = 1) > 0. (1.26)

Observe that, conditioning on the event ¢, = 0, the random variables X, Y are
monotone increasing functions of 71, . .., #,_1. Thus by the induction hypothesis

E(XY|t, =0) > EX|t, =0E{|t,=0)=0
and similarly
EXY|t, =1) > EX]|t, = DEY|t, = 1).
By Bayes’ formula we thus have

E(XY)=EXY|t, = 0P, =0)+EXY|t, = DP@E, =1)
> E(X|t, = DE(Y [t, = DP(z, = 1).

On the other hand, from (1.25) and another application of the total probability
formula we have

EX)EY) = E(X|t, = DP(, = DE(Y |t, = DP(@, = 1).
Since P(t, = 1) < 1, the claim now follows from (1.26). O

From (1.1) and an easy induction we have an immediate corollary to Theo-
rem 1.19:

Corollary 1.20 Let A and B be two increasing events, then

P(A A B) > P(A)P(B).
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More generally, if Ay, ..., Ay are increasing events, then

P(Aj A - ANAY) = P(AD) - P(Ap).

1.4.1 Asymptotic complementary bases

Now we are going to use the FKG inequality to prove a result of Ruzsa [293]
concerning asymptotic complementary bases.

Definition 1.21 (Asymptotic complementary bases) Let A C N be a set of nat-
ural numbers and k > 1. We define the lower density o (A) and upper density o (A)
of A to be the numbers

. JAN0, )] . |ANT0, n)|
o(A) :=liminf ——— ;0 (A) := limsup ————.

n—oo n 00
If e >0 and X CN, we say that X is a (1 — &)-complementary base of A if
o(A+kX) > 1— ¢, and that X is an asymptotic complementary base of order k

of Aifac(A+kX)=1.

Theorem 1.22 [293] Let P = {2,3,5, ...} be the primes. For any 0 <€ < 1,
there is an (1 — €)-complementary base X C Z*+ of order 1 of P with |X N
[1, n]| = O.(logn) for all large n.

It follows that (the proof is left as an exercise)

Corollary 1.23 For any function w(n) tending to infinity with n, there is an asymp-
totic complementary base X € 1" of order 1 of P with | X N[1, n]| < w(n)logn
for all large n.

Corollary 1.23 improves an earlier result of Kolountzakis [214], and should also
be compared with Theorem 1.16 (note that every complementary basis is automat-
ically an asymptotic complementary basis). Since P has density ®(n/ logn), it is
clear that an asymptotic complementary base of P should have density 2(log n).
Thus, Corollary 1.23 is nearly best possible.

Proof of Theorem 1.22  The theorem follows from the following finite statement.

Lemma 1.24 For every ¢ > 0, and all natural numbers n which are sufficiently
large depending on ¢, there exists a set B C [n*/3,2n*3] with |B| = O.(logn)
such that

[[1, x]\(P + B)| < ex, 1.27)

for all n* < x <n.
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The deduction of Theorem 1.22 from Lemma 1.24 is straightforward and is left
as an exercise. To prove Lemma 1.24, we use the probabilistic method. We choose
B C [n?/3, 2n?/3] randomly, by letting the events [ € B with [ € [n*/3,2n%3] be
jointly independent with probability

Klogn
n2/3

P(/ € B) =

where K = K, is a large constant to be chosen later. From Corollary 1.10 we have

1
P(|B| > 100K logn) < — (1.28)
n
(say).
Now let J := L% log, n]. If j € [0, J], we say that j is good if
2023 )2 \(P + B)| < £ L.
(222, n/2T]\(P + B)| < 5

It is easy to verify that if all the elements of [0, J] are good, then (1.27) holds
(recall that we assume n large depending on ¢). In view of (1.28), it thus suffices
to show that

1
P(j is good for all j € [0, J]) > —. (1.29)
n

Let us first estimate the probability that a single j € [0, J] is good. Fixing
j € [0, J], we observe for each m € [2rn%/3, n/2/] that

P(m & P+ B)=P(m — p & Bforall p e m — [n*?,2n*?])
= [I Pm-pe¢n

pem—([n?/3,2n2/3)

Klogn)

< 123
pem—[n?/3,2n2/3]

< exp <—|P Nm — [n*?, 2n2/3]|%)

where we have used the independence of the events [ € B. By Lemma 1.53, we
conclude

P(m & P + B) < exp(—Q(K)).

Summing this over m € [2n*/3, n/2/] and using linearity of expectation (1.4), we
conclude

E(|[2073, /2 |\(P + B)|) < eXp(—SZ(K))%.
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If we choose K sufficiently large depending on ¢, we thus see from Markov’s
inequality that

1
P(j is good) > 7

Now we come to the final and most important observation: For any fixed j, the
event that x; is good is a monotone increasing random variable, with respect to
indicator variables #; := I(/ € B). Thus, by Corollary 1.20,

P(j is good forall j € [0, /1) = [ P(j is good)
j€l0,J]

> 2—]—1'

Since J = % In, n 4+ O(1) and # is assumed to be large, the claim (1.29) follows.
O

Exercises

14.1 Deduce Theorem 1.22, from Lemma 1.24. (Hint: the convergence of the
geometric series 1 + ¢ + g% + - - - for|g| < 1 may be useful at one point.)

1.4.2 Deduce Corollary 1.23, from Theorem 1.22.

1.4.3  Let the notation and assumptions be as in Theorem 1.19. Suppose that
each of the independent variables 74, . . ., ¢, attain the values 0 and 1 with
positive probability. Show that equality holds in Theorem 1.19 if and only
if X and Y depend on disjoint subsets of the random variables ¢, .. ., t,.

1.5 The Lovasz local lemma

Let (A;);cy be afinite collection of events in a probabilistic space; we will later view
the index set V as the vertex set of a graph. In many situations, it is desirable to show
that there is a chance that the complementary events (A})iey hold simultaneously,
i.e. that P(/\,,, A;) > 0. This is particularly useful when the A; are bad events
that we would like to avoid.

If the A; are mutually independent, then the problem is trivial, as we have

P (/\ A,~> =[[P@An =[Ta P, (1.30)

ieV ieV veV

which is positive if P(A;) are all strictly less than one. On the other hand, mutual
independence is a very strong assumption which rarely holds.

One may expect that something similar to (1.30) is still true if we allow a
sufficiently “local” dependence among the A;s, so that we still have good control
on P(A;) even after conditioning on most of the events A ;. This is indeed possible,
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as shown by Lovasz in 1975 in a joint paper with Erdds [93]. We present a modern
version of this lemma as follows.

Lemma 1.25 (Lovasz local lemma) Let V be a finite set, and for eachi € V let
A; be a probabilistic event. Assume that there is a directed graph G(V, E) (without
loops) on the vertex set V (which is known as the dependency graph of the A;);
and a sequence of numbers 0 < x; < 1 for eachi € V such that the estimate

P(A,«|/\A_,»> <x []ad-x) (1.31)

jes (i,)eE

holds whenever i € V; and S € V\{i} is such that )\ ;g A has non-zero proba-
bility and (i, j) ¢ E for all j € S. Then for any disjoint S, S’ C 'V we have

P (/\ AN A,») > ]—[(1 —x;)>0. (1.32)

ieS ieS ieS

In particular we have

P(/\Ai) >[Ja-x)>o.
ieV ieV

The graph G is usually referred to as the dependency graph of the A;. Note
that (1.31) will hold if we have

P(A) <x [] d=x)
(i.))eE

and each A; is mutually independent to all of the A ; with (i, j) ¢ E and j # i. This
was in fact the hypothesis stated in the original formulation of the lemma. However,
there are situations where these rather strong mutual independence hypotheses are
not available and one needs the full strength of Lemma 1.25. Alon and Spencer’s
book [12] Chapter 5 contains many interesting applications.

Proof of Lemma 1.25 We shall induce on the total cardinality |S|+ |S'|. If
|S| 4 |S’| = 0 then S, S’ are empty, and the claim (1.32) is trivial. Now assume
inductively that |S| 4+ |S’| > 1, and the claim has already been proven for smaller
values of |S| + |S’|. Note that the case | S| = 0 is trivial. To establish the claim for
|S] > 1,itsuffices to do so for the case || = 1.Indeed, if | S| > 1, then we can split
S ={j}U(S\{j}) for some j € S. From the definition of conditional probability
we have

P(/\A,-|/\A,-> =P(A,»| /\ A,-)P( /\ A,w/\A,-)
ieS ies ieS'US\{j} ieS\{j} ies

and the claim (1.32) then follows by applying the induction hypothesis to estimate
the second factor.
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Thus it remains to verify the | S| = 1 case of (1.32). Writing § = {i}, we reduce
to showing that

P <A,| /\ Aj) > Xi.
jes’

We split S = S; U S, where S| := {j € S|(i, j) € E} are those indices j which

are adjacent to i in the dependency graph, and S, := S\ S;. From the definition of

conditional probability again we have

_ P (Aia /\jeSl A/' /\jES'; AI)
P(A,-|/\Aj>= - —.
Jjes’ p </\jeS| Aj' /\jeSz Aj)
Note that by induction hypothesis, /\ jes A occurs with positive probability. From
(1.31) we have

P(A,-, N Al /\Aj) 5P<Ai| /\Aj) <w [[ a-xp

JjeS JESY JESY JjeV:(i,j)eE
On the other hand, from the induction hypothesis (since |S;| + |S2| < 1+ |S'|) we

have
P(/\A,-I/\Aj)z]_[(l—x,-)z [T a-xp.
JESI JE€S2 JESI JEV:(i, ))eE
Combining the two, we obtain the claim. O

In practice, the following corollary of Lemma 1.25 is sometimes easier to apply.

Corollary 1.26 Letd > 1 and 0 < p < 1 be numbers such that
1
ed+1)
where e = 2.718 ... is the base of the natural logarithm. Let V be a finite set, and

for eachi € V let A; be a probabilistic event with P(A;) < p. Assume also that
each A; is mutually independent of all but at most d of the other events A ;. Then

i 1\
P(AA)>(1- — .
(Q )‘( d+1) >0

If d = 0, then Corollary 1.26 follows from (1.30). For d > 1, the corollary

follows from Lemma 1.25 by setting x; = -+ and using the fact that (1 — 717)* >

%. The constant e is best possible as shown by Shearer.

D=

1.5.1 Colorings of the real line

We now give an application of Corollary 1.26. This is the original result from the
paper [93] of Erd6s and Lovasz, which motivated the development of the local
lemma.
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Let us use k colors [1, k] to color the real numbers. (Thus, a coloring is a map
from R to [1, k].) A subset T of R is called colorful if it contains all k£ colors.

Theorem 1.27 Let m and k be two positive integers satisfying

e(m(m — 1)+ Dk (1 - %) <1 (1.33)

Then for any set S of real numbers with |S| = m, and any set X C R (possibly
infinite), there is a k-coloring of R such that the translates x + S of S are colorful
foreveryx € X.

Proof We first prove this theorem in the special case when X is finite, and then
use a compactness argument to handle the general case (of course, the theorem is
strongest when X = R). The point is that the bound (1.33) does not depend on the
cardinality of X.

Fix X to be finite; thus X + § is also finite. Note that we only need to color
the real numbers in X + S, since the real numbers outside of X + § are irrelevant.
For each element y in X 4 S, we color it randomly and independently: y receives
each of the colors in [1, k] with the same probability 1/k. Let A, be the event that
the translate x 4 S is not colorful. We need to show that

P < /\ /_\x> > 0.
xeX

In order to apply Corollary 1.26, we first estimate P(A,). If xg is not colorful,
then at least one color is missing. The probability that a particular color (say 1) is
missing is (1 — %)'”S‘ =(1- %)’”. As there are k colors, we conclude

1 m
P(A,) <k (1 - %) .

(In fact we have a strict inequality as there is a positive chance that more than one
color is missing.) Next, observe that if two translates x + S and x" + S are disjoint,
then the events A, and A, are independent. On the other hand, x + S and x’ € §
intersect if and only if there are two elements 51, s, € S suchthatx 4+ s; = x" + s5.
It follows that x” = x + (s; — §7). Since that number of (ordered) pairs (sy, s) with
51 # sy and 51, 55 € S ism(m — 1), we conclude that each A, is independent from
all but at most m(m — 1) events A, . Set p = k(1 — %)m and d = m(m — 1). The
condition (1.33) guarantees that the condition of Corollary 1.26 is met and this
corollary implies that P(A\ ..y A.) > 0, as desired.

A routine way of passing from a finite statement to an infinite one is to use a
compactness argument and that is what we do next. The space of colorings of R
can be identified with the product space [1, k]R, which is compact in the product
topology by Tychonoff’s theorem. In this product space, for each x € R we set
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K to be the set of all k-colorings such that x + S is colorful. It is easy to see
that each K, is closed. The finite statement proved above asserts that any finite
collection of the K, has a non-empty intersection. It follows, by compactness, that
all K, x € R, have a non-empty intersection. Any element in this intersection is
a coloring desired by the theorem. O

Exercise

1.5.1  Show that there exists a positive constant ¢ such that the following holds.
For every sufficiently large #, there is a graph on » points which does not
contain the following two objects: a triangle and an independent set of
size c/n log n. (An independent set is a set of vertices, no two of which
are connected by an edge.)

1.6 Janson’s inequality

Let tq, ..., t, be jointly independent boolean random variables. In Corollary 1.9
we established a large deviation inequality for the polynomial #; + - -- 4 ¢,. In
many applications, it is also of interest to obtain large deviation inequalities for
more general polynomials P(tq, ..., t,) of the boolean variables #;, ..., t,. One
particularly important case is that of a boolean polynomial

X = Z 1_[ t,

AcA jeA
where A is some collection of non-empty subsets of [1, n]. Observe that boolean
polynomials are automatically positive and monotone increasing, and hence
any two boolean polynomials are positively correlated via the FKG inequality
(Theorem 1.19). More generally, if X and Y are boolean polynomials, then f(X)
and f(Y) will be positively correlated whenever f is a monotone increasing or
decreasing function. In particular, we see that

E(e7¥ ) > E(e™¥)E(e™") (1.34)

for any real number s. Using this fact, the exponential moment method, and some
additional convexity arguments, Janson [190] derived a powerful bound for the
lower tail probability P(X < E(X) —T):

Theorem 1.28 (Janson’s inequality) Let ¢, ..., t,, A, X be as above. Then for
any 0 < T < E(X) we have the lower tail estimate

T2
P(X <E(X)—T) <exp <_ﬂ)
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where

NS E< I tj).
A,Be A:ANB#f) JjEAUB

E(X)’
)

In particular, we have

P(X =0) <exp (—

Remark 1.29 Informally, Janson’s inequality asserts that if A = O(E(X)?), then
X = Q(E(X)) with large probability. In the case where A is just the collection of
singletons {1}, ..., {n},then X =, +--- +¢,, A = E(X), and the above claim
is then essentially (the lower half of) Corollary 1.9.

The quantity A is somewhat inconvenient to work with directly. Using the
independence of the ¢;, one can rewrite it as

A:ZE<n,j) 3 E(H tj>.
AacA  \jeA /] BedanB#£s \jeB\A

Since E(X) = >4 4 E(I[;c4 7)), we thus have

A<EX)sup > E( I t,-). (1.35)

A€A Be A:ANB D jeB\A

We record a particular consequence of this estimate concerning quadratic boolean
polynomials that we shall use shortly.

Corollary 1.30 Let ty, ..., t, be as above, and let X =3 _;_;_,;; litj, where
i ~ j is some symmetric relation on [1, n]. Then we have

P(X =0) <exp|— E(X)
=P\ Ty  daup, YL B )

Ji~

Proof Wetake A :={{i, j}:i ~ j}. Forany A € A, it is easy to verify that

> E( I1 t‘,-) <1+2sup ) E())
Be A:ANB#£()

JEB\A i ji~j
and so the claim follows from (1.35) and Theorem 1.28. O

Before presenting the proof of Theorem 1.28, let us give an application. This
application again concerns complementary bases of primes, but this time of order 2
rather than 1. The following result (which should be compared with Theorems 1.16
and 1.22) in the case k = 2 was recently proved by Vu [376].
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Theorem 1.31 For any k > 2, P has a complementary base B € " of order k
with |B N [1, n]| = O(logn) for all large n.

Proof It suffices to establish the claim when k = 2. To construct B we shall again
use the probabilistic method. More precisely, we let B C Z™ be a random set with
the events n € B being independent with probability

P(n € B) = min (% 1)

forall n € Z*, where ¢ is a positive constant to be determined. As before, we will
not discuss the measure-theoretic issues associated with requiring infinitely-many
independent random variables, as they can be dealt with by a suitable finitiza-
tion of this argument. Let 7, be the boolean random variable ¢, := I(n € B). By
Corollary 1.10 we have

1
P(|BN[1,m]| <10clogm)=1—- 0 (—2>
m

for all large m, and hence by the Borel-Cantelli lemma (Lemma 1.2) we have with
probability 1 that

|B N[1, m]| = O.(logm) for all sufficiently large m > 1. (1.36)
Now for each n € Z*, consider the counting function

respes() = [{(p.i, )€ P X BxBin=p+i+ ]l
XY W
p<ni+j=n—p

This is of course a random variable for each n. In view of (1.36), it will suffice to
show that with probability 1, we have rp g, p(n) # O for all but finitely many ».
From the Borel-Cantelli lemma, it thus suffices to show that

1
P(rpypip(n) =0)=0 (ﬁ)

for all large n, if ¢ is chosen large enough.
Fix n to be large. It will be convenient to work with a reduced version of
rp+p+p(n), namely the boolean polynomial

Y, = Z titj.

i>j>n?3:i+jen—P

Clearly we have Y,, < rpp.p(n), and so it suffices to show that

P(Y,=0)= 0 (%)
n
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We now apply Corollary 1.30 (using the relationi ~ jifi # jandi 4+ j € n — P)

to give
P, = 0) < E(Y,)
n = =exXp|\— '
2+4 SUp; > ,2/3 Z_jz;12/3:i+jen—P E(tj)

By construction of the #;, and Proposition 1.54 from the Appendix, we have for

any i > n/3
c
E@) = min{ ——, 1
. a/zZ (/) Z-2 (n—i—p )
Jj=n?*3:i+jen—P p<n—i—n?3
= 0(c).
On the other hand, from linearity of expectation (1.3) and independence, we have
Ev,)= > E@)
i>j>n?3:i+jen—P
2

> ;
i>j>n?3:i+jen—P 1

¢y 0y 4

p<n—2n23i>j>n23:i+j=n—p Lt
log(n — p)
—¢ Y @ (—
p<n—2n2/3 n—=p

= Q(c2 logn),

where in the last line we again used Proposition 1.54 from the Appendix. Putting
all of these estimates together we obtain

P(Y, = 0) < exp(—2(clogn))
and the claim follows by choosing c¢ to be suitably large. O
Now we are going to prove Theorem 1.28.

Proof of Theorem 1.28  We shall use the exponential moment method. By a
limiting argument we may assume that P(¢; = 0), P(t; = 1) > O for all j. We
introduce the moment generating function F(t) := E(e~"*) for any ¢ > 0. By
(1.16) we have

F(1)

PO < BX) =) = 75
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Taking logarithms, we see that we only need to establish the inequality

2

log (1) + t(E(X) — T) < —2T—A

for some ¢ > 0. Unlike the situation in Theorem 1.8, the summands in X are not
necessarily independent, so we cannot factorize F(t) = E(e~'¥) easily. Janson
found a beautiful argument to get around this difficulty. Since F(0) = 1, we see
from the fundamental theorem of calculus that

t /
log F(t) = / F) ds.
o F(s)

Direct calculation shows that

F'(s) = —E(Xe™*%)

AeA JEA
==Y E( X |EHP(E,).
AeA

where E 4 is the event that 1; = 1 for all j € A. Thus it suffices to show that

t E(est |EA) T2
Y PE) | ———ds—tEX)-T) > ——
0 F(s) 2A
for some ¢t > 0.
We now exploit the fact that some of the factors of e™*# are independent of E 4.
For each A € A, we split X as Y4 + Z 4, which are the boolean polynomials

Yar= > s za= > J]u-

BeA:ANB#( jeB BeA:ANB= jeB

—sX

By (1.34) (conditioning on the variables in E 4), we conclude
E(e™X|Ex) = (e |E)E(e ™| E ).

On the other hand, Z 4 is independent from E 4 and is bounded from above by X;
thus

E(e—SZA|EA) — E(e—SZA) > E(e—SX) = F(S)

Combining all these estimates, we have reduced to showing that

t 2
SoRED [ B ED ds - B0 - T) = 5
AeA 0 2A

for some ¢t > 0.
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Next, we exploit the convexity of the function x + e¢~** via Jensen’s inequality
(Exercise 1.2.4), concluding that

E(eﬂ‘YAlEA) > eﬂ‘E(YA\EA)_

From linearity of expectation we have ), , P(E4) = E(X), and so another appli-
cation of Jensen’s inequality gives

Z P(E 4 )e SETAIED > F(X)e™* Laca o ECAlEn)
AecA

On the other hand, from the definition of conditional probability we have

Z P(EDEYAEs) = Z Z E (I(EA) 1_[ t_,~> =A.

AeA AeA BeA:ANB#Y JjEB
We thus have
t
> P(EA)/ E(e ™" |Ex) ds — t(E(X) —T) (1.37)
0

AeA
t
> E(X)/ e A gy — t(B(X) = T)
0

E(X)?
= %(1 — e TAED) _y(E(X) - T). (1.38)
Ifwesett :=T/A,thentA/E(X)=T/E(X) < 1, and we have

1— e*l‘A/E(X) =1— efT/E(X)

> T/E(X) — T?/2E(X)?

and hence
t
Z P(EA)/ E(e " |E ) ds —t(E(X)—T)
AeA 0
TEX) T* T
> — - —EX)-T)
A 2A A
TZ
T 2A
as desired. O

Remark 1.32 Choosing t = T /A might be convenient, but may not be optimal.
One can have a slightly better bound by optimizing the right hand side of (1.38)
over t.

Remark 1.33 The proof of Janson’s inequality is not symmetric. In other words,
it cannot be extended to give a bound for the upper tail probability P(X > n + T).
This probability will be addressed in the next section.
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Exercises

1.6.1 By refining the argument, show that the complementary base B con-
structed in the proof of Theorem 1.31 has (with high probability) the
property that rp g p(n) = Q(log n) for all sufficiently large n.

1.6.2  Define arandom graph G (n, p) onthe vertex set[1, n] as follows. For each
pairi, j (1 <i < j < n) draw an edge between i and j with probability
D, independently.

(a) Prove that if p = o(n™"), then with probability 1 — o(1), G(n, p)
does not contain a triangle.

(b) Assume that p = n~'*¢ for some small positive constant €. Bound
the probability that G does not contain a triangle.

1.6.3  Prove that for any k£ > 2 there is a basis B of order k with with |B N
[1,n]] = on'’? logl/" n) for all large n.

1.7 Concentration of polynomials

In previous sections, we often considered a polynomial ¥ =Y (#,...,¢,) of n
independent random variables 71, . . . , t,, and wished to control the tail distribution
of Y. For instance Chernoff’s inequality shows that the polynomial #; + --- + ¢,
is concentrated around its mean, while Janson’s inequality shows that the val-
ues of certain polynomials (especially those of low degree) could very rarely be
significantly less than the mean.

In this section, we present some further results of this type, that assert that
certain polynomials with small degrees are strongly concentrated. These results
can be seen as generalizing Chernoff’s bound, and also provide (in certain cases)
the missing half (upper tail bound) of Janson’s inequality.

To motivate the results, let us first give a classical result which works for any
function Y (not just a polynomial) provided that the Lipschitz constant of Y is small.

Lemma 1.34 (Lipschitz concentration inequality) Let Y : {0, 1} — R be a
function such that |Y (t) — Y(¢')| < K whenever t,t" € {0, 1}" differ in only one
coordinate. Then if t1, . . ., t, are independent boolean variables, we have

P(Y(t1,....10)) —E(Y (11, ..., 1)) = LK /n) < 2/
forall » > 0.

Remark 1.35 This inequality asserts that if each # can only influence the random
variable Y (¢, ..., t,) by at most O(K), then Y (z{, ..., t,) itself is concentrated
in an interval of length O (K /n) around its mean. It should be compared with
Hoeffding’s inequality, which deals with the case Y (¢, ...,t,) =t + - -+ t,,
and also with Corollary 1.30.
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Proof By dividing Y by K we may renormalize K = 1. Introduce the partially-
conditioned random variables Yo, Yi(#1), ..., Y, (t1,...,t,) =Y (t,...,t,) by
Yi(t1,...,t;)) :=EX|t;,...,t;); thus Y, is the conditional expectation of Y
with the first j boolean variables ¢; fixed. In particular Yo = E(Y) and Y, =
Y(t,...,t,). We can thus write

Y(ti,....t,)) - EX(@,....t, ) =X1+---+ X,

where X ; :=Y; —Y,_;. One then easily verifies (using the Lipschitz property)
that |[X;| < 1 and X1, ..., X, form a martingale difference sequence in the sense
of Exercise 1.3.6. The claim then follows from Azuma’s inequality (1.24). O

The above lemma is very useful when one has uniform Lipschitz control on Y,
for instance if Y = Y (¢, ..., t,) is a polynomial for which the partial derivatives
% are small for all ¢, ...,t, in the unit cube. However in many applications
(especially to thin bases), these partial derivatives will only be small on the average.
Fortunately there are analogs of the above lemma which apply in this case, though
they also require some average control on higher derivatives of Y. To state the
results we need some notation. Let Y =Y (¢, ..., t,) be a polynomial of n real
variables. We say that Y is fotally positive if all of its coefficients are non-negative,
and furthermore thatY is regular if all the coefficients are between zero and one. We
also say thatY is simplified if all of its monomials are square-free (i.e. do not contain
any factor of tl-z), and homogeneous if all the monomials have the same degree. Thus
for instance a boolean polynomial is automatically regular and simplified, though
not necessarily homogeneous. Given any multi-index a = (e, ..., a,) € Z}, we
define the partial derivative 0“Y as

%Y = o\" o\" Y ty)
= afl at,, 1s+++5tn)s

and denote the order of « as || := «; + - - - + «,,. For any order d > 0, we denote

E;(Y) := maxyqj=¢ E(3*Y); thus for instance Eo(Y) = E(Y), and E;(Y) = 0 if

d exceeds the degree of Y. These quantities are vaguely reminiscent of Sobolev

norms for the random variable Y. We also define E-;(Y) := maxg>q4 Ex(Y).
The following result is due to Kim and Vu [203].

Theorem 1.36 Letk > 1,and letY =Y (¢, ...,1t,) be a totally positive polyno-
mial of n independent boolean variables t,, ..., t,. Then there exists a constant
Cr > 0depending only on k such that

P(IY —EX)| = CA* 2 /Eoo(VE= (Y)) = Oy (e /4 EDloen)
forall » > 0.

Informally Theorem 1.36 asserts that when the derivatives of ¥ are smaller on
average than Y itself, and the degree of Y is small, then Y is concentrated around
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its mean, and in fact we have ¥ = (1 + O ( % log*~"? n)E(Y) with high
probability.

In applications in additive number theory, we frequently deal with the case
when Y is roughly of size logn. In this case, the error term e*—11°2” renders
Theorem 1.36 ineffective. We, however, have a variant which is designed to handle
this case:

Theorem 1.37 [378] Letk,n > 1and B,y,e > 0.IfY =Y (t1,...,1t,) is a reg-
ular polynomial (not necessarily simplified) of n independent boolean variables
t, ..., 1, which is homogeneous of degree k and obeys the expectation bounds

Qlogn <E(Y) =n/Q; E),....E(¥Y) =n™”
for some sufficiently large O = Q(k, €, B, v) (independent of n), then
P(Y —E(Y)| > €E(Y)) <n”".

In the next section, we will use this theorem to prove Theorem 1.15.

The next theorem deals with the case when the expectation of Y is less than one.
In this case it is convenient to remove the constant term from any derivative of Y
which appears. More precisely, introduce the renormalized derivative 0YY (¢) :=
%Y (t) — 3“Y (0).

Theorem 1.38 LetY =Y (11, ..., t,) be asimplified regular polynomial of n inde-
pendent boolean variables (not necessarily homogeneous) such that E(3YY) <
n~? for some y >0 and all o. Then, for any B > 0, we have the bound
P(Y > Kg,) < n=* for some K, which is independent of n and Y .

Notice that the assumption implies that ¥ has small expectation. Taking « to
be all zero, we have E(Y) < n77.

The proof of Theorem 1.36 relies on the so-called “divide and conquer
martingale” technique, together with the exponential moment method. It is not
too technical but requires lots of introduction. We thus skip it and refer the reader
to [203]. The proof of Theorem 1.37 is more complicated. Besides the above-
mentioned martingale technique, it also requires some non-trivial combinatorial
considerations. Theorem 1.38 is a by-product of this proof (for details see [378]).
These theorems have a wide range of applications in several areas and we refer the
reader to [377] for a survey.

1.7.1 Bjlg] sets

Let us conclude this section by an application of Theorem 1.38. A set A C N is
called a Bj[g] set or a Bj[g] sequence if for any positive integer m, the equation
m=xy+---+x,x <x3<---<xp,x €A, has at most g solutions; up to a
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factor of &!, this is equivalent to requiring that rj,_4(m) be bounded by g for all m.
B [g] sets were studied by Erdds and Turan in [98]. From (1.21) we see that if A
is a By[g] set, then |A N[0, n]| = Oy ((n"/") for all n. In the converse direction,
Erdds and Turan proved

Theorem 1.39 For any h > 1 and € > 0, there exists a set A C LT with |AN
[0, n]| = Qh(nl/”’e)for all large n, which is a By [g] set for some g = gj.¢ (orin
other words, r,_a(n) is uniformly bounded in n).

Proof By using Theorem 1.38 we can give a short proof of this theorem. As
before, we construct A randomly, letting the events n € A be independent with
probability P(n € A) = n'/"~1=¢_ A simple application of Corollary 1.9 and the
Borel-Cantelli lemma also gives |A N [0, n]| = ,.(n'/"~) for all but finitely
many n with probability 1. Thus it will suffice to show that A is a Bj[g] set with
probability 1 (perhaps after removing finitely many elements), for some suitably
large ¢ = g5, depending only on /.

Let 7, denote the indicator variables ¢, := I(n € A). For each m, we observe
that the random variable

Ym:Ym(tls~-~atm): E tnl'"tnh
ny < <npinyeetnp=m

will become a regular polynomial of degree % in the 74, ..., #, once we use the
identity ¢t/ = t; fora = 2, 3, ... to make the monomials square-free. To show that
A is a B[ g] set after removing finitely many elements, it will suffice to show that
Y,, < g for all but finitely many m; by the Borel-Cantelli lemma, it is enough to
establish the upper tail estimate

P, > g) < I’}’l72

for all large m. From linearity of expectation and independence we have

1/h—1— 1/h—1—
E(Y,) = 3 A i

NS Snpingtetnp=m

- 1/h—1— 1/h—1-
< 0, [ mV/h1-< nl/h fné €
1 h—1
ny

----- Rp—1=m
h—1
< ml/h717€0h § :nl/hflfe
n<m
—he
< Oh(n )

This already gives some non-trivial bound on P(Y,, > g) from Markov’s inequality,
but does not give the required decay in m. However, a similar computation to the
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above (which we leave as an exercise) establishes that E(9)Y,,) = Oy (m~=Y") for
all non-zero «. The claim now follows from Theorem 1.38. O

The study of By, [g] sets is a popular topic in additive combinatorics. A detailed
discussion of this topic is beyond the scope of our book. Let us, however, mention
one new result of Cilleruelo, Ruzsa and Trujillo from [62]. Many other recent
results can be found in [62, 191, 213, 61, 145, 272].

Let A C [1, N] be a B,[g] set. A simple counting argument (related to (1.21))
gives ('A‘tf“l) < ghN, which in turn yields the trivial bound |A| < (ghh!N)/".
Cilleruelo, Ruzsa and Trujillo gave the first non-trivial bounds for the case g > 2.
They prove that |A| < 1.864(gN)'/? + 1 when i = 2, and that

Fi(g, N) < (1 +cos"(/h)) "/ (hh1gN)'"

when h > 2. The proofs made use of harmonic analysis methods via the con-

sideration of the trigonometric polynomials f (1) = Y, y €"“’. The authors also

constructed sets to establish for any g, the existence of a B,[g] set A C [1, N]
with

2

Al > ( g +1g/2]

—_— 1)) N2,
Jer e o )>

Exercises

1.7.1 Consider the random graph G(n, p) defined in Exercise 1.6.2, and set
p :=n"17¢ Let Y be the number of triangles in G(n, p). Give an upper
bound and a lower bound for

3
P <Y > 5E(Y)) .

1.7.2  Verify the bound E(3Y,,) = Oy (n~'/") claimed in the Proof of Theorem
1.39.

1.8 Thin bases of higher order

We now return to the study of thin bases B and their associated counting functions
r,p(n), initiated in Section 1.3. However, in this section we can use Theorem 1.37
to present a proof of Theorem 1.15, which asserted for each £ > 1 the existence
of a base B of order k with ry _g(n) = Oy(logn) for all large n. This was proven
in the k = 2 case (see Theorem 1.13) using Chernoff’s inequality, but that method
does not directly apply for higher k because r; g(n) cannot be easily expressed as
the sum of independent random variables.
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We begin with a simple lemma on boolean polynomials that shows that if E(X)
is not too large, then at most points (¢, . . ., #,) of the sample space, the polynomial
X does not contain too many independent terms (cf. Exercise 1.3.12).

Lemma 1.40 Let X =Y, 4 [];c4tj be a boolean polynomial of n independent
boolean variables ty, ..., t,, let B C [1, n] be the random set B := {j € [1,n] :
t; =1}, and let D € N be the random variable, defined as the largest number of
disjoint sets in A which are contained in B. Then for any integer K > 1 we have
E(X)X
P(D >K) < .
K!

Proof Observe that for Ay, ..., A, disjoint,

I(DzK)f% > [Tt 114

" Ay.....,Ax €A disjoint jEA, jeA

Taking expectations of both sides and using linearity of expectation (1.3) followed
by independence, we conclude

1
PO > K) < - > E(Hz,)E(Hz,)
J€AI JEAL
But by linearity of expectation again, the left-hand side is just E(X)X /K !, and the

claim follows. O

This lemma is particularly useful when combined with the sunflower lemma
of Erdés and Rado [95]. A collection of sets Ay, ..., A; forms a sunflower if the
pairwise intersections A; N A; for i # j are all the same (the A; are called the
petals of the flower). We allow this common pairwise intersection to be empty.

Lemma 1.41 (Sunflower lemma) If A is a collection of sets, each of size at most
k,and |A| > (I — 1)*k!, then A contains | sets forming a sunflower.

This lemma can be proven by elementary combinatorics and is left as an exer-
cise. It has the following consequence for the counting function r g(n).

Corollary 1.42 Let B C Z" andk > 2,andforeachn € Z7 let Dy, be the largest
number of disjoint multisets* {x1, ..., x} of elements of B which sum to n. Then

k
re.p(n) < klk* max (Dk,n, (sup ri-1.5(m) — 1) ) )

m<n

Proof Fix n, and consider the collection A of sets which arise from taking the
multisets {xy, ..., x;} of elements of B which sum to » and then removing repeated

2 A multiset is a set which is allowed to have repeated elements



1.8 Thin bases of higher order 39

elements. Clearly 7 p(n) < k*|.A|. Also observe that any sunflower in A has car-
dinality at most Dy , (if the petals are disjoint) or sup,,_, 7x—1,s(m) (if the petals
are not disjoint); the latter follows by taking one of the elements in the common
intersection of the sunflower and removing it once from each of the associated
multisets. The claim then follows from the sunflower lemma. O

Using the above methods, we can now give a preliminary result towards proving
Theorem 1.15.

Proposition 1.43 Let k > 2, and let B C Z* be a random subset of ", defined
by letting x € B be independent with probability

P(x € B) = min (Cx]/]‘_] logl/kx, l)

for some positive constant C > 1. Then with probability 1, we have sup,, ry p(n) =
Ociws(D)foralll <k' <k.

Proof We induce on k. The case k = 1 is obvious. Now suppose that 1 < k' < k
and the claim has already been proven for k" — 1. Applying Corollary 1.42, we
conclude that, with probability 1,

v

s = Ocpios (Dea +1)"). (1.39)
On the other hand, if we apply Lemma 1.40 with ¢, :=I(x € B) for | <x <n,
and A = A, equal to all the sets which arise from the multisets {xy, ..., x;} that

sum to n, then we observe that
K
E(Xacy, [Tjca tj)
K!

for any K € Z". However, from linearity of expectation (1.3) and independence
we have

E(Z l_[tj) = Z Hmin(le/k_llog]/kj,l)

AeA, jeA AeA, jeA

< Ociwx ( Z FAREES jkl/k_1> logn

NS Sty =n

A/k=1 1)k -
< Ocw ( Z J XA Vi )nl/k "logn
J1

10 i —1€L1,0]

P(Dk’,n > K) =<

k-1
= Ocknx (Z jl/k1> n'/*ogn

Jell,n]

= OC,k,k’ (nk//k_l IOg I’l)
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Since k' < k, we thus see that, by choosing K depending on & sufficiently large
(e.g. K =2k + 1), we have

1
P(Dyp = K) = Oc ki .k (ﬁ) .

Applying the Borel-Cantelli lemma (Lemma 1.2) we see that with probability 1,
we have Dy, < K for all but finitely many n. Combining this with (1.39) we
obtain the claim. O

Now we prove Theorem 1.15. It will suffice to show that

Proposition 1.44 Let k > 2, and let B C L™ be a random subset of ', defined
by letting x € B be independent with probability

P(x € B) = min(Cx/*log"* x, 1)

for some positive constant C > 1. If C is sufficiently large depending on k, then
with probability 1, we have ry g(n) = O¢ y(logn) for all but finitely many n. In
particular, B is a thin basis of order k with probability 1.

Proof We shall estimate r g (n) in terms of two related expressions:

R(n)::{(x],...,xk)eB:)(1—i—-~~—i—xk=1ft;no‘1 <X <Xp < ee <X}
(1.40)

En) :={(x1,....x0) €EB :x1+ -+ xp=nx; = x20orx; <n’'}. (1.41)
It is clear (using the symmetry of x| + - - - 4+ x; under permutations) that
kK'R(n) < r p(n) < k'R(n) + k*E(n).

We view R (n) as the main term and E (n) as the error term; this reflects the intuitive
fact that for most representations n = x; + - - - 4+ xy, the x; will be distinct and
comparable in magnitude to n. It will suffice to show that with probability 1 we
have

E(n) = Oc p(1); R(n) = Oc 4 p(logn)

for all but finitely many #.

Let us deal first with the error term E (7). We argue as in the proof of Proposition
1.43. Let A,, denote those sets which arise from the multisets {x;, - - - , x;} with
X1+ -+ + x; = nandeitherx; = xporx; < nO‘l.By arguing as in Corollary 1.42,
we have

k
E(n) < k!k* max (Dn, <sup reo1.5(m) — 1) )

m<n
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where D,, is the largest number of disjoint sets that one can find in A4,,. Applying
Proposition 1.43, we conclude that

E(n) = Ocxs(Dn+ 1)
with probability 1. On the other hand, from Lemma 1.40, we have for any K that
EQ aca, [1jea 1)x

K!
By arguing as in Proposition 1.43, one can establish

E <Z l_[ tj> < Op(n=Vkp=09/k log n)

AeA, jeA

P(D, = K) <

and thus, for a suitably large constant K depending only on £,
P(D, = K) = Ox(1/n?).
From the Borel-Cantelli lemma we conclude that, with probability 1,
E(n) = Oc k(1)

for all but finitely many #, and so the contribution of E(n) is negligible.
Now we estimate the main term R(n). Observe that we can write R(n) as a
homogeneous boolean polynomial Y = Y (¢, .. ., t,) of degree k; more explicitly,

Y(tl,...,tn)zz Htj

AcA, jeA

we have

where A/, is the collection of all sets {xy, ..., x;} where x; +--- 4+ x; = n and

n%! < x; < x; <--- < x;. Repeating the computations in Proposition 1.43 we

see that
E(Y) = 0(C logn)

when n is sufficiently large depending on C, k. To conclude the proof it would thus
suffice by the Borel-Cantelli lemma to establish the large deviation inequality

1 1
P (|Y —EY)| > EE(Y)) = Oc (E)

for all large n. Applying Theorem 1.37 (and choosing C sufficiently large), we see
that it suffices to show the derivative estimates

E\),...,E(Y)<n™”

for all large n and some y > 0. In other words, we need to establish

2(() (&) o) =
81‘1 atn | P <n
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whenever n islargeand 1 <y + -+ + @, < k — 1. From the definition of A/, we
see that we may take o; = O forall j < n%1, and all the other jequaltoOorl1,
since the above partial derivative vanishes otherwise. One can then compute the
partial derivative and reduce our problem to showing that

e > q] o)
AeA:AD Ay jeA\ Ay
whenever A is any subset of (7%, n] of cardinality 1 < |Ag| < k — 1 (this is the

set of indices where «; = 1). Applying linearity of expectation and independence,
and noting that j € 1%, n] for all Jj € A\ Ay, we conclude that

AcAlADAg JEA\Ag AcAl:AD A,

< Ok(l’lk_lel_])OC,k(l/ll/k_] 1Og1/k n)k—IAU\

< Oc,k(nfl/k log n)
and the claim follows for large n. O

Remark 1.45 The proof above is from [378] and is based on the proof of The-
orem 1.48 in [379]. The original proof in [98] was different and did not use
Theorem 1.37.

Exercises

1.8.1  Let A € Z™" be aset of n different integers. Prove that A contains a subset
B of cardinality Q2(log n) with the following property. No two elements
of B add up to an element of A (thus r, g(m) vanishes for all m € A, or
equivalently A N 2B = ).

1.8.2  Prove Lemma 1.41. (Hint: first use the pigeonhole principle to show that
if |A] > (I — 1)k, then either A contains / disjoint sets, or that there exist
atleast | A|/(I — 1)k sets in A which all have a common element x(. Then
use induction on £.)

1.9 Thin Waring bases

Recall that a thin basis of order & is a set B C N such that r4 p(n) = O(logn) for
all large n. Theorem 1.15, proved above, asserts that N contains a thin basis of any
order. Given the abundance of classical bases such as the squares and primes, it is
then natural to pose the following question:
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Question 1.46 Let A be any fixed basis of order k. Does A contain a thin subbasis
B?

Note that Sidon’s original question can be viewed as the k = 2, A = N case of
this question. From (1.21) we know that a thin basis B enjoys the bounds

IBN[0, N1 = (N'*); |B N[0, N]| = Or(N"*log"* N)

for all large N. Thus we can consider the following weaker version of Question
1.46:

Question 1.47 Let A be any fixed basis of order k. Does A contain a subbasis B
with |B N[0, N]| = Ox(N'*log"* N) for all large N ?

Question 1.47 has been investigated intensively for the Waring bases N*r =
{07, 17,2, ...}, especially when r =2 [90, 56, 387, 388, 384, 331]. For these
bases it is known that if k is sufficiently large depending on r, then N”r is a basis
of order k, and furthermore that

reser () = O, (n7 1) (1.42)

note that this is consistent with (1.21).

Choi, Erdés and Nathanson proved in [56] that N2, the set of squares, contains
a subbasis B of order 4, with [B N[0, N]| = O,(N'/3 +¢) forall N > 1 and all
& > 0. This was generalized by Zollner [387, 388], who showed that for any k£ > 4
there was a subbasis B C N2 of order k with |[B N[0, N]| = Oy (N /¥+¢) for
any ¢ > 0 and N > 1. This bound was then sharpened further to |B N[0, N]| =
Ox(N'*1og!/* N); from (1.21) we know that this is sharp except for the loga-
rithmic factor. A short proof of Wirsing’s result for the case k = 4 was given by
Spencer in [331]. For r > 3, much less was known. In 1980, Nathanson [259]
proved that N”r contains a subbasis of some order with density o(N'/"). In the
same paper, he posed a special case of Question 1.47, when A = N”"r.

In [379], Vu positively answered Question 1.46 (and hence Question 1.47) for
the case A = N*r for any r > 1:

Theorem 1.48 For any fixed r there is an integer ko such that the following holds.
For any k > kg, the set N"r of all rth powers contains a thin basis B of order k. In
particular, from (1.21) we have |B N [0, n)] = Ox(N/* logl/k N) for all large N.

Remark 1.49 The sharp concentration result in Theorem 1.37 was first developed
in order to prove Theorem 1.48.

Just as Theorem 1.15 followed from Proposition 1.44, Theorem 1.48 is an
immediate consequence of
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Proposition 1.50 Let k,r > 2, and let B be a random subset of (Z7)"r, defined
by letting x" € B be independent with probability

P(x" € B) = min (Cx* ' log"* x, 1)

for some positive constant C > 1. If k is sufficiently large depending onr, and C
is sufficiently large depending on k, r, then with probability 1 we have ry g(n) =
Oc «.r.g(logn) for all but finitely many n. In particular, B is a thin basis of order
k with probability 1.

Proof (Sketch) As in the proof of Proposition 1.44, it suffices to show that with
probability 1 we have
E(n) = Oc kr8(1); R(n) = Ocp(logn)

for all but finitely many »n, where R(n) and E(n) were defined in (1.40), (1.41).
The contribution of E(n) can be dealt with by similar arguments to the previous
section and is left as an exercise, so we focus on R(n). As before we can write R (n)

as a boolean polynomial Y, = Y, (¢, ..., t,), where m = [n'7%],t, = I(x" € B),
and
=3 [«
AeA, xeA
where A, is the collection of sets {xi,...,x;} of positive integers with x| +

-+ x; =nandn®' < x} <-.. < x;.Given the framework presented in the last
section, the substantial difficulty remaining is to estimate the expectations of Y,
and its partial derivatives. In the following, we shall focus on the expectation of
Y., establishing in particular that

E(Y,) = O,(C*logn).

This is the main estimate, and the remainder of the argument proceeds as in Propo-
sition 1.44. Notice that

k
k Pl 1k
EY,) =C Z ij‘ log!/ Xj;
xXp<--<xp:{xp,.oxpted, j=1
since all the x; range between n'/1%" and n'/”, it thus suffices to show that
r_1 r_q
Z Xl = 0. (1.43)
X1 <o <X XD, Xk JEA,

This bound implies, but is a little bit stronger than, the standard bound (1.42), as the
estimate also asserts some improved bound on the counting function r N~ (1) when
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one or more of the summands are restricted to be small (so that the corresponding
weight x 7! is large).

The proof of (1.43) is a standard but lengthy application of the Hardy—
Littlewood circle method, and is beyond the scope of this book. The reader may
consult [379] for the full proof. O

Wooley [382] shown that one can set kp = O (r logr). This is (up to a constant
factor) also the best current bound for & in (1.42). His proof also relies on Theorem
1.37, but the number-theoretic part is different.

Exercise

1.9.1  In the proof of Proposition 1.50, verify that with probability 1 one has
En) = Oc k(1) for all but finitely many ».

1.10 Appendix: the distribution of the primes

Several results in this chapter relied on facts concerning the distribution of the
primes

P=123,5,..1)

The distribution of this set is of course a very well-studied subject in analytic num-
ber theory, with one of the fundamental results being the prime number theorem

POl = +0(1))$. (1.44)

An equivalent formulation is that if p; denotes the kth prime, then p; =
(1 4+ o(1))klogk. The famous Riemann hypothesis, which is still unsolved, is
equivalent to the stronger statement that

" odx 1/2+¢

|Pﬂ[1,n]|:/ + 0, (n'/**%) (1.45)
, logx

for any & > 0, or equivalently that p; = klogk + O (k'/**®) for any & > 0.

The prime number theorem is rather deep and will not be proven here. In this
Appendix we present some related results, most of which have surprisingly elemen-
tary and beautiful proofs. As they are number-theoretical rather than probabilistic
in nature we have chosen to place these results in an appendix to this chapter.

We begin with some classical estimates of Chebyshev and Mertens). As is
customary, when summing over a variable p, p is understood to denote a prime.
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Proposition 1.51 (Elementary prime number estimates) Letn > 1 be an inte-
ger. Then we have the estimates

> logp = 0(n) (1.46)
p=n

1
S 222 _logn+0(1) (1.47)
p=<n

1
> = =loglogn + O(1). (1.48)
p=<n

Remark 1.52 With the prime number theorem, we can improve (1.46) to
prn log p = (1 4+ o(1))n, but it is not necessary to do so for our applications
here.

Proof We first prove (1.46). Without loss of generality we may take n to be a
power of two. Consider the binomial (2:) From Pascal’s formula we know that

(2,1") < 4", On the other hand, it is clear that every prime between n and 2n will

divide (*). Thus

[T r=4-
n<p<2n
Taking logarithms we conclude
Z log p = O(n).
n<p<2n

Applying this bound to n/2, n/4, and so forth, and then summing the geometric
series, the claim (1.46) follows.

Now we prove (1.47). This is a similar argument but based around the factorial
n! instead of (Zn"). Observe that the only primes dividing n! are those less than or
equal to n. For each prime p < n, there are |n/p| numbers (between 1 and n)
divisible by p, |n/p?*] numbers (between 1 and n) divisible by p? and so on. Thus

nt = [ pl/ritinmiee, (1.49)
p=<n

Taking the logarithm of both sides and applying Stirling’s formula (Exercise 1.10.1)
we obtain

nlogn+ O(n) =Y (In/p]+ n/p*] +--)log p.
p=n
Since

ln/p)+n/p*] +--- ="+ 0+ 0 (%)
p P
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we conclude, after some rearranging, that

lo lo
Zn gp:nlogn+0(n)+ZO(lng)+ZO(n p§p>'

p=n p=n p=n

Since ), l%k is convergent, the last term is O(#n). The claim now follows from
(1.46).

We shall deduce (1.48) from (1.47) using Abel’s summation technique, rewriting
one partial sum over primes as an average of others. Observe from the fundamental
theorem of calculus that

1 logp 1

P p logp
1 o0
= ng/ It > p)
P 1

tlog’t

and hence

1 & dt
R e I e
1 tlog”t

1_
p=n P p=n P

Swapping the sum and integral, we obtain

Zl_/oo Zlogp dt
—p Lo \&Z p ) ileg’t

Applying (1.47), we obtain

1 e dt
Z— = (logr + O(1)———.
o P 1 tlog”t

. 13
Since log ¢ o7

the claim follows. O

is the antiderivative of log log ¢, and @ is absolutely convergent,

We now turn to a deeper fact concerning the distribution of primes in intervals.

Theorem 1.53 For all sufficiently large n, we have |P N [n — x, n)| = ®(10;n)

foralln?? < x < n.

Results of this type first appeared by Hoheisel [183]; the result as claimed is due
to Ingham [188]. Note that this theorem follows immediately from the Riemann
hypothesis (1.45). However, this theorem can be proven without using the Riemann
hypothesis, rather some weaker (but still very non-trivial) facts on the distribution
of zeroes of the Riemann zeta function: see [170]. We remark that if one only
seeks the upper bound on |P N [n — x, n)| then one can use relatively elementary
sieve theory methods to establish the claim. The constant 2/3 has been lowered
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(the current record is 7/12, see [187], [178]). However, for the applications here,
any exponent less than 1 will suffice.

We now combine this theorem with the Abel summation method to establish
some further estimates on sums involving primes.

Proposition 1.54 Let n be a large integer. Then we have the estimates

1
. —e (1.50)
pePN[1,n—n?/3) n—p
1 —
108 = 1) _ g 10gn). (1.51)
n—p

pePN[1,n—n?/3)

Proof We begin by proving (1.50). From the fundamental theorem of calculus

we have
1 o 1
n—p = ! lpe[n—x,n—nz/3)x_2 dx

forallpe PN[l,n— n?/3), and hence
1

o.¢]
—:/ |Pﬂ[n—x,n—n2/3)|
1

pePlla—n T TP

dx
x2’
The integrand vanishes when x < n%3. When n?? < x < 210?73, Theorem 1.53

shows that the integrand is 0(’12/3 og —), while for x > n?/3

Theorem 1.53 shows that the integrand is @(Xlogn) when x < n and O(;; logn)
when x > n. Putting all these estimates together we obtain (1.50). The estimate
(1.51) then follows immediately from (1.50) since log(n — p) = ®(logn) when
pe[l,n—n2/3]. |

another application of

Exercises

1.10.1 By approximating the sum ) _, logm by the integral fln log x dx, prove
Stirling’s formula

logn! =nlogn —n+ O(logn) (1.52)

foralln > 1.

1.10.2  Using Proposition 1.51, show that there is a constant ¢ so that there is
always a prime between n and cn for every positive integer 7.

1.10.3 By being more careful in the proof of (1.46), show that

Zlogp <2nlog2 + O(nl/z)

p<n
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1.10.5

1.10.6

1.10.7

1.10.8
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and

Z log p + Z log p > 2nlog2 — O(n'?),
n<p<2n p=<2n/3

and conclude Bertrand’s postulate, namely that for every sufficiently large

integer n there exists a prime between n and 2n. (This argument is due

to Ramanujan. Bertrand’s postulate in fact holds for all integers #n, as the

case of small n can be verified directly.)

Without using the prime number theorem, prove that |P N[1, n]| =

O( 10’; —); this is known as Chebyshev’s theorem. This theorem is of course
Zn , but has

superseded by the prime number theorem 7 (n) = (1 + o(1))
the advantage of having a short elementary proof.

Prove that p; = O(k log k), where p; denotes the kth prime. Again, this
is superseded by the prime number theorem p; = (1 4+ o(1))k log k.
Define the von Mangoldt function A : Z+ — R by setting A(n) := log p
if n > 1 is a power of a prime p, and A(n) = 0 otherwise. Show that

Z A(d) = logn (1.53)

d|n

for all integers n > 1. Use this to prove that

(i An(?)) (i ni) _ ilo}in

n=1 n=1 n=1

for all real numbers s > 1. Also, use (1.53) to give an alternative proof
of (1.49).
Using the preceding exercise, show that

o0

lo 1
e T RALL
= P s—1

for all s > 1; integrate this to conclude
21 1
E — =log 4+ 0(1) (1.54)
§ s —1

n=1

for all s > 1. Show that these estimates can also be deduced from Propo-
sition 1.51 via Abel’s method. Conversely, use (1.54) and (1.46) to give
an alternative proof of (1.48).

Using Abel’s summation method, show that the prime number theo-
rem 1 (x) = (1 4+ o(1)) 1o;x is equivalent to the estimate > __ A(n) =
(14 o(1))x.

n<x
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1.10.9 By being more careful in the proof of (1.48), show that

1 1
Z—:loglogn—i—C—i-O( )
=P logn

for some absolute constant C. Use this to deduce Merten’s theorem
1 C’
I1 (1 - —) = (14 o(1)) (1.55)
pon p logn

for some other absolute constant C’ and all n > 1. (In fact one has C’ =
e~ 7, where y = 0.577... is Euler’s constant.)




2

Sum set estimates

Many classical problems in additive number theory revolve around the study of
sum sets for specific sets A, B (though one typically works with infinite sets rather
than finite ones). For instance, if N*2 := {0, 1,4, 9, 16, ...} is the set of square
numbers, then it is a famous theorem of Lagrange that 4N"2 = N, i.e. every natural
number is the sum of four squares; if P := {2,3,5,7, 11, ...} is the set of prime
numbers, then it is a famous theorem of Vinogradov that (2 - N + 1)\3P is finite
(i.e. every sufficiently large odd number is the sum of three primes); in fact it is
conjectured that this exceptional set consists only of 1, 3, and 5. The corresponding
result for (2 - N)\2 P remains open; the infamous Goldbach conjecture asserts that
2P contains every even integer greater than 2, but this conjecture remains far from
resolution.

In this text, we shall not focus on these types of problems, which rely heavily on
the specific number-theoretic structure of the sets involved. Instead, we shall focus
instead on the analysis of sum sets A 4+ B and related objects for more general
sets A, B. To simplify the discussion we shall focus primarily on additive sets
A, B, which are finite and non-empty subsets of an additive group such as Z; thus
our theory will not cover infinite sets such as the squares N2 or the primes P
directly, although one can certainly use this theory to analyze those sets simply by
considering finite truncations, say to an interval [0, N1].

A fundamental problem in this field is the inverse sum set problem: if A 4+ B or
A — B is small, what can one say about A and B? A more specific question is as
follows: if A is a finite non-empty subset of integers such that |A + A| = K| A| for
some small number K, what can one say about A? Here and in the rest of the text we
use |A| to denote the cardinality of a finite set A. The number K := |A + A|/|A]is
referred to as the doubling constant of A and will be denoted in this text by o [A]. It
is easy to see that this constant is at least 1, but it can be much larger; for instance,
if A is a geometric progression such as A =2"[0, N) = {1, 2, 22 ..., 2Ny

51
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then one can easily verify that o[A] = (N + 1)/2, so the doubling constant
can be arbitrarily large; indeed for “generic” sparse sets A we will have o[A] =
(1Al + /2.

At the other extreme, if A is an arithmetic progression A :=a + [0, N) -r =
{a,a+r,a+2r,...,a+ (N — 1)r} of length N then one can check that A has
doubling constant 6[A] =2 — % Thus arithmetic progressions are examples of
sets with small doubling constant. One can perturb this example to produce a
number of other examples of sets with small doubling constant; for instance if A is
the above arithmetic progression, and we let A’ be a subset of A of cardinality N /2
(say), then one can easily check that A" has doubling constant at most 4. Another
example comes from adding an arbitrary integer n to A; then the set A U {n} also
has doubling constant at most 4.

One can generalize the concept of an arithmetic progression, to create more
sets with small doubling constant. Consider the set

A:=a+[0,(Ni, N2)) - (vi,v)={a+nvi+nv : 0 <n; <N;;0 <ny<N»},

where a, vy, v, are integers, N, N, are positive integers and n, n, are understood
to lie in the integers; this is an example of a generalized arithmetic progression of
rank 2. One can verify that such sets have a doubling constant of at most 4. Note
that such sets can look quite different from an ordinary arithmetic progression if
Ny, N; are large and vy, v, are very widely separated.

We have just remarked that generalized arithmetic progressions have small
doubling constant. One of the fundamental theorems in this subject is Freiman’s
theorem, which asserts a partial converse to this claim. Freiman’s theorem shows
that any finite subset of the integers with small doubling constant can be efficiently
contained in a generalized arithmetic progression (of bounded rank). This theorem
is very useful, but is rather deep, and we will defer its proof to Section 5.4. It also
has the drawback that some of the constants in this theorem depend exponentially
on the doubling constant o[ A]. As such, it tends to only be useful in contexts where
the doubling constant o [A] is of the order of log |A| or smaller.

Roughly speaking, one can classify results in inverse sum set theory by the range
of o[A] for which the results are non-trivial. The case o0 [A] = 1 is group theory
(see Proposition 2.7). When o[A] is very small, e.g. 0[A] < 2 or o[A] < 3, we
have a complete characterization of the inverse problem, characterizing A in terms
of groups and arithmetic progressions (see Corollary 5.6, Theorem 5.11). When
o[A] = O(log |Al), the best result is Freiman’s theorem, which characterizes A
in terms of generalized arithmetic progressions. When o [A] = O(|A[?) for some
small e, we have Proposition 2.26 (as well as many of the other results in this
chapter), which characterizes A in terms of approximate groups. In the remaining
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cases |A|® < o[A] < |A|, some of the estimates here are still useful, but our
understanding is still quite poor.

We will not prove Freiman’s theorem in this chapter. However, we will develop
the more elementary theory of sum set estimates, which can be used as sub-
stitutes for Freiman’s theorem in some cases and are also of interest in their
own right; this theory will also be needed in the proof of Freiman’s theorem
later on. These estimates are obtained by very simple combinatorial considera-
tions, and rely on simple arithmetic facts such asa — ¢ = (a — b) + (b — ¢) and
a+b=d+b < a—b =a —b. Because of the simplicity of the tech-
niques used here, the results in this section are quite general, being applica-
ble to any additive group and even to a large extent to non-abelian groups (see
Section 2.7); we will wait until Chapter 5 until developing sum set estimates which
exploit the specific structure of the ambient group (though see also Section 3.4).
Also, the bounds obtained here are fairly reasonable, for instance the dependence
of constants on the doubling constant o [A] is only polynomial in all the results
in this section (in contrast to the exponential dependence on o[A] in Freiman’s
theorem). In some cases, though, the results in this section will be superseded by
more precise results proven using advanced techniques, which we will address in
later sections; for instance, in Section 6.5 we shall develop the theory of Pliinnecke
inequalities, which give more precise control on iterated sum sets and also han-
dle the case when A and B have very different sizes, a case which is not treated
efficiently by the tools in this section.

There are a large number of results in this chapter, but we point out a couple
of specific results proven here which have a very large number of applications.
The first is Ruzsa’s triangle inequality, Lemma 2.6, which allows us to define a
“metric” on the space of additive sets and which measures how small their sum
sets are. Then there is Corollary 2.12, which links the size of |A + B| and |A — B|
for arbitrary additive sets A, B. This generalizes to the iterated sum set estimates
in Corollary 2.23 and Corollary 2.24. Another very useful class of tools are the
covering lemmas — Ruzsa’s covering lemma (Lemma 2.14), Green—Ruzsa’s cov-
ering lemma (Lemma 2.17), and Chang’s covering lemma (Lemma 5.31), which
gives conditions under which one set A can be efficiently covered by translates
of another set B. These results are collected together in Proposition 2.26 and
Proposition 2.27, which characterize sets with small sum set in terms of approx-
imate groups. Last, but certainly not least, there is the Balog—Szemerédi—Gowers
theorem, which generalizes the previous results to the setting when one has only
partial information on a sum set (or equivalently, one only controls the “additive
energy”’ between two sets); see Theorem 2.29 and Theorem 2.31. We also develop
an asymmetric version of this theorem in Section 2.6.
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2.1 Sum sets

We now systematically study the sum sets A 4+ B and difference sets A — B of
two additive sets A, B in an ambient group Z as defined in Definition 0.1, as well
as the iterated sum sets nA. We should caution the reader that the iterated sum
set nA is in general not the same as the dilate n - A := {n - a : a € A} though we
do have the inclusion n - A € nA. Similarly the difference set A — B should not
be confused with the set-theoretic difference A\B := {x € A : x & B}. We also
write A + x = A 4 {x} for the translate of A by an element x € Z.

Since addition of group elements is associative and commutative, one can easily
verify the same is true for addition of sets. We should caution however that the sum
set operation is not invertible: for instance, A + B — B contains A but is generally
not equal to A. Similarly, when n > m, then nA — m A will contain (n — m)A but
will generally be larger.

A very fundamental question in this topic is the following: under what conditions
is A 4+ B “small”, and under what conditions is it “large”? More precisely, we will
be interested in the cardinality |A 4+ B| of the sum set A + B. We have the following
trivial estimates:

Lemma 2.1 (Trivial sum set estimates) Ler A, B be additive sets with common

ambient group Z, and let x € Z. Then we have the identities |A + x| = | — A| =
|A|, the inequalities
max(|Al, |B]) < |A+ B|,|A — B| < |A[|B] 2.1
and the inequalities
Al(JA| + 1
[Al <A+ Al < % (2.2)
More generally, for any integer n > 1, we have |(n + 1)A| > |nA| and
Al+n—-1 Al(JAI+ 1D - (A +n —1
|nA|§(| | ):l (Al + 1) '(I | ). (2.3)
n n!

We remark that the lower bound in (2.1) can be improved for specific groups
Z, or when A and B have large “dimension”; see Theorem 3.16, Lemma 5.3,
Theorem 5.17, Corollary 5.13, Theorem 5.4.

Proof We shall just prove (2.3), as all the other inequalities either follow from
this inequality or are trivial. We argue by induction on |A|. If |[A| = 1 then both
sides of (2.3) are equal to 1. If |A| > 1, then we can write A = B U {x} where B
is a non-empty set with |B| = |A| — 1. Then

nd=JUB+@m—j)-x)
j=0
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and hence by the induction hypothesis and Pascal’s triangle identity

" A =1+ —1 Al +n—1
|nA|sZ|JB|sZ< . = i

=0 =0 J
as claimed. (We adopt the convention that 0B = {0}.) O

Observe from the above facts that the magnitude of sum sets such as A + B,
A — B, kA are unaffected if one translates A or B by an arbitrary amount. This
gives much of the theory of sum sets a “translation-invariant” or “affine” flavor.
We will sometimes take advantage of this translation invariance to normalize one
of the sets, for instance to contain the origin 0.

For “generic” additive sets A and B, the cardinalities of the sum sets considered
in Lemma 2.1 are much more likely to be closer to the upper bounds listed above
than the lower bounds; see for instance Exercise 2.1.1. This suggests that the lower
bounds are only attainable, or close to being attainable, when the sets A and B have
a considerable amount of structure; we shall develop this theme in the remainder
of this chapter, by introducing tools such as doubling and difference constants,
Ruzsa distance, additive energy, and K -approximate groups to quantify some of
these notions of “structure”. For now, we at least settle the question of when the
lower bound in (2.1) is attained.

Proposition 2.2 (Exact inverse sum set theorem) Suppose that A, B are addi-
tive sets with common ambient group Z. Then the following are equivalent:

* |A+ B| = Al

* |[A-B|=]Al

* |A+nB —mB| = |A| for at least one pair of integers (n, m) # (0, 0);

* |A+nB —mB| = |A| for all integers n, m;

® there exists a finite subgroup G of Z such that B is contained in a coset of G,
and A is a union of cosets of G.

Proof We shall just show that the first claim implies the fifth; the remaining
claims are either similar or easy and are left to the exercises. By translating B
if necessary we may assume that B contains 0. Then A + B D {0} + A = A, but
since |A + B| = |A| we have A + B = A. In particular A + b = A forall b € B.
Thus if we define the symmetry group Sym,(A) (also known as the period of
A) to be the set Sym,(A) :={h € Z : A+ h = A}, then we have B C Sym,(A).
We leave as an exercise for the reader the verification that Sym;(A) is a finite
group, and A is the union of cosets of Sym, (A); the claim then follows by setting
G = Sym,(A). O
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We shall study the symmetry group Sym,;(A), as well as the more general
symmetry sets Sym,(A), more systematically in Section 2.6.

As to when the upper bound is attained, we do not have as explicit a description,
but we can give a number of equivalent formulations of the condition.

Proposition 2.3 Suppose that A, B are additive sets with common ambient group
Z. Then the following are equivalent:

* |A+ B| =|A||B|;

* |A—B|=|AllB|;

e {(a,a',b,b))e Ax AxBxB:a+b=ad +0b'}|=|A|B|;
e {(a,a',b,b))e Ax AXxBxB:a—b=ad —b'}| =|A|B|;
* |[AN(x —B)|=1forallx € A+ B;

* JANB+y)| =1forally e A— B;

e (A—A)N(B - B)={0}.

We leave the easy proof of this proposition to the exercises. For a partial gen-
eralization of it, see Corollary 2.10 below.

In Proposition 2.2 and Proposition 2.3, the sets A + B and A — B have the
same size (see also Exercise 2.1.6). However, this is not true in general. A basic
example is the set A = {0, 1,3} C Z; then A + A = {0, 1, 2, 3, 4, 6} has six ele-
mentsand A — A = {—3, -2, —1, 0, 1, 2, 3} has seven elements. More generally,
ifA=1{0,1,3})¢ c Z% then A + Ahas6%elementsand A — Ahas7¢.Thus A — A
can be larger than A 4 A by an arbitrarily large amount. In the converse direction,
the set A := {(0, 0), (1,0), (2, 0), (3, 1), (4,0), (5, 1), (6, 1), (7,0), (8, 1), (9, 1)}
€79 xZyissuchthat A+ A = Z9 x Z, has 20 elements, but A — A = Zy X
Z,\{(0, 1)} has only 19 elements; one can amplify this example as before by raising
to the power d. Despite these examples, however, there are still several relation-
ships between the size of |A + A| and |[A — A[; see in particular (2.11) below.

Exercises

2.1.1 Let N, M > 1 be integers, and let A and B be sets of cardinality N and
M respectively chosen uniformly at random from the real interval {x €
R : 0 < x < 1}. Show that with probability 1 we have |A + B| = |A||B|
and [nA| = (""" forall n > 1.

2.1.2  Prove the remaining claims in Proposition 2.2.

2.1.3  Let A be an additive set. Show that A is a group if and only if 2A = A.

2.1.4  Prove Proposition 2.3.

2.1.5 [289] Find an additive set A of integers such that |[A — A| < |A + A].
(Hint: there are several ways to proceed. One way is to tile the lattice Z?
with the Zy x Z, example given above, and somehow truncate and then
project this back to Z.)
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2.1.6  Let A, B be additive sets in a finite additive group Z, suchthat |A| + |B| >
|Z|. Prove that A + B = A — B = Z. Give an example to show that the
condition |A| + |B| > |Z] cannot be improved.

2.1.7  Show that for any additive set A, the symmetry group Sym;(A) of A
as defined in the proof of Proposition 2.2 is a finite group contained in
A — A, obeys the identity A = A 4+ Sym,(A), and that A is a union of
cosets of Sym;(A). (We shall define a more general notion of symmetry
sets Sym,,(A) of an additive set in Section 2.6.)

2.1.8 Letd > 1. Give an example of an additive set A of integers such that
|A+ Al =6 and |[A — A| = 7%. (see also Lemma 5.25.)

2.2 Doubling constants

The traditional way to measure the additive structure inside an additive set A is
via doubling constants o[A], which we now define. We will shortly develop two
other measures of additive structure, namely the additive energy E(A, A), and the
concept of a K -approximate group, which are also useful, and are closely related
to the doubling constant.

Definition 2.4 (Doubling constant) For an additive set A, the doubling constant
o [A] is defined to be the quantity
2A A+ A
ola] = AL _ A EA
|Al |A]
Similarly we define the difference constant §[A] as
|A — Al
Y

S[A] ==

From (2.2) we thus have the bounds

|A] + 1 Al—1 1

1 <o[A] < d1l <§[A] < —.
<o[A] = and 1 < §[A] < 2 +|A|

The upper bound here is quite easy to attain; for instance if A =2"[0, N) =
{1,2,22,...,2N"1} c Z, then |A|=N, |A+ A| = w, and |A — A| =
w + 1, hence o[A] = % and §[A] = % + ﬁ In the converse direction,
Proposition 2.2 shows that 0 [A] = 1 (or §[A] = 1) if and only if A is a coset of a
group; we shall elaborate upon this in Proposition 2.7 below.

An additive set A with the maximal value of doubling constant o[A] =
(JA] + 1)/2 (or equivalently, with maximal difference constant §[A] = % +
‘—/1”) is known as a Sidon set or a B, set. Informally, this means that all the pairwise
sums of A are distinct, excluding the trivial equalities coming from the identity
a+b=>b+a; see Exercise 2.2.1. We will revisit Sidon sets in Section 4.5.
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There are various senses in which this behavior is “generic”; for instance, if A
is a set of N real numbers chosen uniformly at random from the unit interval
{x e R:0 < x < 1}, then we see from Exercise 2.1.1 that A is a Sidon set with
probability 1, and so |A + A| = YD the point is that if {a, b} # {c, d} then
a + b and ¢ + d will “generically” be distinct. A more interesting question is to
understand the conditions under which the doubling constant o [A] (or difference
constant 5[ A]) can be small.

As mentioned earlier, o[ A] = 1 if and only if A is the coset of a finite subgroup
G of Z. We thus expect that if A has a doubling constant which is small, but not
actually equal to 1, then it should behave “approximately” like a group (up to
translations); we shall see several manifestations of this heuristic throughout this
book, when we develop more tools with which to analyze the doubling constant.
Indeed, the study of sets of small doubling constant can be thought of as a kind of
“approximate group theory”, with the inverse sum set theorems of Chapter 5 then
being analogous to a classification theorem for groups.

The study of sets with close to maximal doubling appears to be hopeless at
present. A probabilistic construction of Ruzsa [291] shows that there exist large
additive sets A with |A — A| very close to the maximal value of |A|?,but |A + A| <
|A]?>~¢ for some explicit absolute constant ¢ > 0; and similarly with the roles of
A — A and A + A reversed.

Exercises

2.2.1  Let A be an additive set. Show that A is a Sidon set if and only if, for any
a,b,c,d € A,wehave a + b # ¢ + d unless {a, b} = {c, d}.

2.2.2  Let Z be an additive group, let a,r € Z, and let N > 1 be an integer.
LetP ={a,a+r,...,a+ (N — 1)r}bean arithmetic progressionin Z.
Show that o[P] <2 — Ni, with equality if and only if ord(r) > 2N — 1,
where ord(r) is the order of the group element » in Z.

223 If ¢:Z' — Z is a surjective group homomorphism whose kernel
ker(¢)) := ¢~'({0}) is finite, and A is an additive set in Z, show that
alp~'(A)] = a[Al

224 If A, A’ are additive sets in Z, Z’ respectively, show that c[A x A'] =
o[A]o[A']. In particular o[A®?] = o[A]? foralld > 1.

2.2.5 Let A be any additive set. Show that a non-empty subset of A can have
doubling constant at most /o [A]|A]/2. Give examples that show that
this bound cannot be improved except by an absolute constant. What is
the analogous statement for the difference constant?

2.2.6 [100] Let A be any additive set. Show that a Sidon set contained in A
can have cardinality at most /20 [A][A]. (Thus sets with small doubling
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constant cannot contain very large Sidon sets.) What is the analogous
statement for the difference constant?

[294] Let p be a prime, let 8 € Z,\0 be a multiplicative generator
of Z,, and let Z:=7Z,_y xZ,. Let A C Z be the set A :={(t,0"):
t=1,...,p—1}. Show that A is a Sidon set, and compare this to
Exercise 2.2.6. Modify this construction to give an example of a Sidon
set A C [0, N] for a large integer N such that |A| is comparable to
N2, A similar example can be given by using the discrete parabola
{(t, %)t € Z,}inZ, x Z,.For asurvey of other constructions of Sidon
sets, see [264].

Let N be a large integer. Give examples of finite non-empty sets A, B of
integers such that |A| = |B| = N and o[A], o[B] < 2,buto[A U B] >
%. This example shows that doubling constants can behave very badly
under set union (see however Exercise 2.3.17). On the other hand, estab-
lish the inequality 0 [A U B] < o[A] + |B|; thus adding a small set to A
will not significantly affect the doubling constant.

Let N be a large integer. Give examples of finite non-empty sets A, B of
integers such that |A| = |[B| = N and o[A], o[B] < 10,butc[A N B] >
%N 172 (Hint: concatenate a Sidon set with an arithmetic progression.)
Compare this result against Exercise 2.2.6. This example shows that
doubling constants can behave badly under set intersection (but see
Exercise 2.4.7).

Let A be an additive set in Z, and let 7 : Z — Z' be a group homo-
morphism. Show by example that o[ (A)] is not necessarily less than
or equal to o[A]. (Hint: this is surprisingly delicate. One way is to start
with an additive set C in some additive group Z, with ¢ [C] > §[C], and
consider the additive set A := ((—C)" x {0} x G) U(C" x X x {0}) in
Zy x Z x G, where n > 1is large, G is a very large finite group, and X
is a Sidon set of medium size in a group Z.) See however Exercise 2.3.8
and Exercise 6.5.17.

Let A be an additive set in Z, and let G be a finite subgroup of Z. Show
by example that o[ A + (] is not necessarily less than or equal to o [A].
(Hint: use the previous exercise.)

2.3 Ruzsa distance and additive energy

The doubling constant measures the amount of internal additive structure of a
single additive set A. We now introduce two useful quantities measuring the amount
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of common additive structure between two additive sets A, B —the Ruzsa distance
and the additive energy.

Definition 2.5 (Ruzsa distance) Let A and B be two additive sets with acommon
ambient group Z. We define the Ruzsa distance d(A, B) between these two sets
to be the quantity

_ |A — B|

Thus for instance d(A, A) = log §[A].
We now justify the terminology “Ruzsa distance”.

Lemma 2.6 (Ruzsa triangle inequality) [297] The Ruzsa distance d(A, B) is
non-negative, symmetric, and obeys the triangle inequality

d(A,C)<d(A,B)+d(B,C)
for all additive sets A, B, C with common ambient group Z.

Proof The non-negativity follows from (2.1). The symmetry follows since B —
A = —(A — B). Now we prove the triangle inequality, which we can rewrite as

|A—B||B —C|

A—C| <
B]

From the identity
a—c=(@—b)+ (b -—c)

we see that every element @ — ¢ in A — C has at least | B| distinct representations
of the form x + y with (x, y) € (A — B) x (B — C). The claim then follows. O

For an approximate version of this inequality in which one replaces complete
difference sets with nearly complete difference sets (using at least 75% of the
differences), see Exercise 2.5.4.

The Ruzsa distance thus satisfies all the axioms of a metric except one; we do not
have thatd(A, A) = Oforall sets A (also, we have d(G + x, G + y) = 0 whenever
G + x, G + y are cosets of a group G). Indeed we have a precise characterization
on when this Ruzsa distance vanishes:

Proposition 2.7 Suppose that (A, Z) is an additive set. Then the following are
equivalent:

e o[A]l = 1(ie. |A+ Al = |A]);

e S[Al=1(i.e. |A— A| = |A|,ord(A, A) =0);
* d(A, B) = 0 for at least one additive set B;
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* [nA — mA| = |A| for at least one pair of non-negative integers n, m with
n+m=>2;
* [nA — mA| = |A| for all non-negative integers n, m,

* Ais a coset of a finite subgroup G of Z.
Proof Apply Proposition 2.2 and the Ruzsa triangle inequality. O

Later on in this chapter we shall generalize this proposition to the case when
the Ruzsa distance, difference constant, or doubling constant are a little larger than
0, 0, or 1 respectively, but still fairly small; see Proposition 2.26.

Despite the non-vanishing of the distance d(A, A) in general, it is still a useful
heuristic to view the Ruzsa distance as behaving like a metric'. Now we relate the
difference constant to the doubling constant. From the definition of Ruzsa distance
and doubling constant we have the identity

d(A, —A) =logo[A] 24)
In particular, from Lemma 2.6 we have
logd[A] =d(A, A) <2logo[A]

and hence we obtain the estimate

3[A] < o[A) 2.5)
orinother words that [A — A| < %. A similar argument gives the more general
estimate

|A + B|?
|B—B| =< T (2.6)

for any two additive sets A, B with common ambient group Z.

It turns out that we can conversely bound the doubling constant of a set by its
difference constant; see (2.11) below.

Having introduced the Ruzsa distance, we now turn to the closely related notion
of additive energy E(A, B) between two additive sets.

Definition 2.8 (Additive energy) If A and B are two additive sets with ambient
group Z, we define the additive energy E(A, B)between A and B to be the quantity

E(A,B):=|{(a,a',b,b)e Ax AxBxB:a+b=d +b}|

! One could artificially convert the Ruzsa distance into a genuine metric by identifying A with A + x
for all x, and redefining d(A, A) to be zero, or alternatively by introducing the metric space
X ={Ax{j}:ACZ;0 <|A| <o0;j € {l,2}} —consisting of two copies of each finite
non-empty subset of Z (again identifying A with its translations) — with the metric
dx (A x {j}, B x {k}) defined to equal d(A, B) if A x {j} # B x {k} and equal to O otherwise.
However there appears to be no significant advantage in working in such an artificial setting.
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We observe the trivial bounds
|Al|B| < E(A, B) < |A||B|min(|Al|B]). 2.7

The lower bound follows since a + b = a’ + b’ whenever (a, b) = (a’, b’). To
see the upper bound, observe that if one fixes a,a’, b, then ¥’ =a+a' — b is
completely determined, and hence E(A, B) < |A|?|B|. A similar argument gives
E(A, B) < |A||B|?. Note that Proposition 2.3 addresses the case when E(A, B) =
|A[|B].

We will analyze the additive energy more comprehensively in Section 4.2,
when we have developed the machinery of Fourier transforms, and in Section 2.5,
when we have developed the Balog—Szemerédi—Gowers theorem. For now we
concentrate on the elementary properties of this energy. We first observe the
symmetry property E(A, B) = E(B, A) and the translation invariance property
E(A+x,B+y)=E(A, B)forall x, y € Z. From the trivial observation

a+b=ad+b & a-b=a—-b

we also see that E(A, B) = E(A, —B), and similarly if we reflect A to —A.
The additive energy reflects the extent to which A intersects with translates of
B or —B, as the following simple identities show:

Lemma 2.9 Ler A, B be additive sets with ambient group Z. Then we have the
identities
|AlBl= )" [ANG=B)l= Y  |AN(B+)
xeA+B yeA—-B

and

E(A.B)y= ) |AN(x - B)

xeA+B

= Y 1ANB+yP

yeA—B

= Z |AN(z 4 A)||BN(z+ B)|.
ze(A—A)N(B—B)

In particular, if we let r o, g(n) denote the number of representations of n as a + b
for some a € A and b € B, and define r s_g(n) similarly, then we have

|AIIBI = rars(n) =Y ra_pm); E(A,B)=Y rais()’ =Y ra_pny.

Proof A simple counting argument yields

AlBl= Y H@byeAxB:a+b=x}l= Y |AN(x—B)
x€A+B xeA+B
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By replacing B with —B we similarly obtain |A||B| = ZyeA_B |[AN(B + y)|.
This gives the first set of identities. For the second set we compute

> 1ANG = B)P

xeA+B

= Y l@.byeAxB:a+b=x)]

xeA+B

> W@.d.bb)eAxAxBxB:a+b=d +b =xj
XeA+B

H(a,a',b,b))e AxAxBxB:a+b=a +b}
{(a,d',b,b)e Ax AxBxB:a—b =d — b}

> l@.b)eAxB:a—b =d - b}

yeA—B

= Y 1ANB+yP

yeA—B

and

Y. ANG+AIBNE+ B
ze(A—A)N(B—B)
= > Ha,d',b,bYe AxAxBxB:z=a—d =b — b}
ze(A—A)N(B—B)
={(a,a',b,bYe AxAXxBxB:a—a =b —b}

={(a,d,b,b)e Ax AxBxB:a+b=d +b]}

and the claims follow from the definition of E(A, B). The last identity follows
since rqayp(n) = |[ANm — B)|landra_g(n) = |[AN(B + n)|. O

As a consequence of this Lemma we have the following inequalities, which
assert that pairs of sets with small Ruzsa distance have large additive energy,
and pairs with large additive energy have large intersection (after translating and
possibly reflecting one of the sets).

Corollary 2.10 Let A, B be additive sets. Then there exists x € A+ B and y €
A — B such that

E(A,B) _ |AllB]

[ANx —B),|[ANB +y)| > >
|Al|B| |AF B

(2.8)

for either choice of sign . In particular all of the above quantities are bounded
by (A — A) N (B — B)|. Finally we have the Cauchy—Schwarz inequality

E(A,B) < E(A, A'?E(B, B)'/?. (2.9)
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Proof From Lemma 2.9 and Cauchy—Schwarz we have
E(A,B) _ |AllB]
|Al|B| — |A+£B|
Also, from the last part of Lemma 2.9 we have

E(A, B) < |A[|B| max rsip(x), |A||B| max ra_p(y)
xeA+B yeA—B

which establishes (2.8). Tobound |[A N (x — B)|and |A N (B + y)|, observe that if
ze AN —B),thenAN(x—-—B)Cz+((A—A)N(B — B)),hence|AN(x —
B)| < |(A—A)N(B — B)|, and similarly |[AN(B +y)| <|[(A—A)N(B —
B)|. Finally, (2.9) follows from the formula E(A, B) = Z:e(A—A)ﬂ(B—B) [AN
(z 4+ A)||B N (z + B)| from Lemma 2.9 and the Cauchy—Schwarz inequality. O

Another connection in a similar spirit is
Lemma 2.11 Let A, B be additive sets. Then for any x € A+ B we have |AN

|A-B|?

Proof (Lev Vsevolod, private communication) We can rewrite the inequality as
{a,b,c) e AxBx(A+B):a+b=x}| <|(A—-B)x(A—-B)|.

Now for each (a, b, ¢) in the set on the left-hand side, we can write ¢ = a. + b,
for some a,. € A, b. € B, and then form the pair (¢ — b.,a. —b) € (A — B) x
(A — B). Using the identity ¢ = x — (a — b.) + (a. — b) we can verify that this
map is injective. The claim follows. O

Corollary 2.12 Let A, B be additive sets with ambient group Z. Then there exists
x € A+ B such that

|A — B|? <|1‘1—19|2|A||B|<IA—BI3

|AN(x—B)| = E(A,B) ~ |AlIB|

Furthermore we have

(2.10)

d(A,—B) <3d(A, B).

Proof The inequalities in (2.10) follow from (2.8), and the final inequality
d(A, —B) < 3d(A, B) then follows from Lemma 2.11 and the definition of Ruzsa
distance. O

From (2.10) and and (2.5) we obtain the inequalities
S[A]'? < o[A] < 8[AT 2.11)

which were first observed in [289]. Thus an additive set has small doubling constant
if and only if its difference constant is small. It is not known whether the lower
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bound is best possible. However, the upper bound can be improved to o [A] < §[A]?
using Pliinnecke inequalities; see Exercise 6.5.15.

We now show how the Ruzsa distance can be used to control iterated sum sets.
We begin with a lemma which controls iterated sum sets of “most” of A + B.

Lemma 2.13 Let A and B be additive sets in a common ambient group. Then
there exists S C A + B such that

{(a,b) e Ax B:a+be S} > |Al|B|/2 (2.12)
and such that
|A+ B+ S|<2n|A+B|2n+1 (2.13)
n _— .
- |AMBI"

for all integers n > 0.

Note that (2.12) gives a lower bound on |S]|, namely

|S| > max(|Al, |B|)/2. (2.14)
Proof 1f we define S to be the set of all x € A + B such that
by e Ax B atb=x) = 2080
~ 2|A + B|
then we have
{(a.b) e Ax B:a+be(A+B)\S}| < |A+B|M
2|A + B|

which gives (2.12).
Now we prove (2.13). A typical element of A + B 4 nS can be written as

ap+s1+ 524+ Sy + buy

where ag € A, b,41 € B, and 51, ..., s, € S. By definition of §, we can expand
this in at least (2‘|1:|LBB‘\ )" different ways as

ap+ (by +a) + by +az) + -+ (b, +ay) + byy

where b; € B,a; € A,and b; + a; = s; for all 1 <i < n. We regroup this as the
sum of n + 1 elements from A + B,

(@ + b))+ (@ +b)+ -+ (a, + byg1)

and observe that for fixed ag,si,..., Sy, byt1, the quantities ag + by, a; +
by, ..., a, + b,y completely determine all the variables ay, . .., a,, by, ..., byt1.
Thus we have shown that every element of A + B + nS has at least (zl&l_'fg‘)”
representations of the form ¢y + - - - + #, where each ; € A + B. The claim then

follows. O
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This result can then be used, together with the Ruzsa triangle inequality, to
deduce control on iterated sum sets of A and B; see Exercise 2.3.10. However we
will pursue an approach that gives slightly better bounds in the next section (and
an even better result will be developed in Section 6.5).

Exercises
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23.6

2.3.7

If ¢:7Z'— Z is a surjective group homomorphism whose kernel
ker(¢) := ¢~'({0}) is finite, and A, B are additive sets in Z, show
that d(¢p~'(A), ¢~ '(B)) = d(A, B). Also show that d(A +x, B +y) =
d(A,B)forany x,y € Z.

If A, B, C, D are additive sets in Z, show that

d(A,B) — %10g|C||D| <d(A+C,B+D)<d(A,B)+log|C — D|
and
d(A,BUC) <max(d(A, B),d(A,C))+ %log 2.
If A’, B’ are additive sets in Z’, show that
d(Ax A,B xB)=d(A,B)+d(A", B').

Let A, B be additive sets with common ambient group. Show
that d(A, B) < 1log|A| + 1log|B|, and that d(A, B) = 1log|A| +
1log|B| if and only if d(A, —B) = 1 log|A| + 1 log|B].
Let A, B, C be additive sets in Z. Show that

d(A,C) §d(A,B)+%log% (2.15)
whenever C C B; this shows that the Ruzsa distance d(A, B) is stable
under refinement of one or both of the sets A, B. By combining this
inequality with the triangle inequality d(A, —B) < d(A,(x — A)N B) +
d((x — A) N B, —B), give another proof of Lemma 2.11.
Show that for any n > 1, there exists an additive set A such that |A| = 4",
|A+ Al = 10", and |2A — A| = 28". Thus it is not possible to obtain an
estimate of the form |24 — A| = O(c?[A]|A)).
Let A, B be additive sets with common ambient group. Show that
e~ 2AB)| A| < |B| < ¢?¥A-B)| A|. Thus sets which are close in the Ruzsa
distance are necessarily close in cardinality also. Of course the converse
is far from true.
Let A, B be additive sets with common ambient group Z. Show that
d(A, B) = 0if and only if A, B are cosets of the same finite subgroup G
of Z. (We shall generalize this result later; see Proposition 2.27.)
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Let A be an additive set in an additive group Z, and let G be a finite
subgroup of Z. Show that 6[A + G] < %. (Hint: apply the Ruzsa tri-
angle inequality to 2A, —A, and G.) Conclude that if 7 : Z — Z’ is
a group homomorphism then o[7(A)] < %. One cannot replace the
tripling constant ||3TA‘| with the doubling constant; see Exercise 2.2.10. See
however Exercise 6.5.17.

Let K be a large integer, and let A = B = {ey, ..., ex} be the standard

basis of ZX. Show that if S is any subset of A + B obeying (2.12) then

|A + B|2n+l>

|A+ B +nS| =sz,l(
|A"|B]"

where we are using the Landau notation €2(). This shows that
Lemma 2.13 cannot be significantly improved (except possibly by
improving the bound (2.14)).

Let A, B be additive sets with common ambient group such that |A +
B| < K|A|'?|B|'/?forsome K > 1. Using Lemma 2.13 and many appli-
cations of the Ruzsa triangle inequality, establish the estimate

A = n2A+n3B — naBl = Oy iy, (K Oz VA2 B112)
for all integers ny, ny, n3, nq. In particular, establish the bounds

d(niA — npA+ n3B —nyB,nsA — ngA + n7B — ngB)
< Op,,..is(1 +d(A, B))

.....

for all integers ny,...,ng. We shall improve this bound slightly in
Corollary 2.23 and Corollary 2.24; see also Corollary 2.19 for the “tensor
power trick” that can eliminate lower order terms such as the implicit
constant preceding the K n.2.4(D factor.
Let G and H be subgroups of Z. Show that

|G|l/2|H|1/2
|G NH|

Conclude that d(G,H)=d(G,G+ H)+d(G+ H,H)=d(G,GN
H)+d(G N H, H). Also, if K is another subgroup of Z, prove the con-
tractivity properties d(G + K, H + K) <d(G,H) and d(GNK,HN
K) <d(G, H). Note that the Ruzsa distance, when restricted to sub-
groups of Z, is indeed a genuine metric, thanks to Proposition 2.7. See
also Exercises 2.4.7 and 2.4.8 below.

Let A be an additive set. Show that

d(G, H) =log

o[AU(—=A)] < 20[A] + o[A]%.
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Thus a set with small doubling can be embedded in a symmetric set (i.e.
a set B such that —B = B) with small doubling which has at most twice
the cardinality.
[289] Let A be an additive set. Prove the inequalities |A — A|
<|A+ A]P’? and |A + A| < |A — A]>2. (Hint: use (2.11), Corollary
2.12 and (2.1).)
[26] Let A be an additive set. Show that there exists anelementx € A — A
suchthattheset F := A N (x + A)hassize |F| > |A|/o[A] and doubling
constant o[F] < o[A]?. Thus every additive set A of small doubling
contains a large symmetric subset F of small doubling, though the set F
may be symmetric around a non-zero origin x /2.
Let A, B be additive sets with common ambient group Z. Show that
S[A] < 2A-B) and o [A] < ¢%A-B)_ Thus only sets with small doubling
constant can be close to other sets in the Ruzsa metric. (The 6 can be
lowered to a 4, see Exercise 6.5.15.)
Let A, B be additive sets with common ambient group Z. Show that
0[A U B] < ¢¥A:B) 4 204(A.B) Thyg a pair of sets which are close in
the Ruzsa metric can be embedded in a slightly larger set with small
doubling. In the converse direction, establish the estimate

1 [AUB| 1 |AU B]|

+ =1 .

d(A,B) <1 AUB]+ =1
(A, B) <logo| ]+20g A 5 log B

Let A, B be additive sets with common ambient group Z, such that
o[A],o[B] < K for some K > 1, and such that A N B is non-empty.
Show that

smin(|Al, [B])

AUB] <2K + K
ol I=2K+ AN B

Thus the union of sets with small doubling remains small doubling pro-
vided that those two sets had substantial intersection.

[40], [41] Let K > 1, and let A;, A,, A3 be additive sets with common
ambient group Z, such that

1
47N A3| = 1A and |A; + A;] < K|A}]

forall j = 1,2, 3. Prove that |A; + A,| < K°|A3|. Hint: use the triangle
inequality
d(A1, —Az) < d(Ay, —(A1 N A3)) + d(—(A1 N A3), Ay N A3)
+d(A2 N A3, —A))
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Suppose that A and B are subgroups of Z, and let x = y = 0. Show that
all the inequalities in (2.8) are in fact equalities.
Let A, B, C be additive sets in an ambient group Z. Show that

max(E(A, B), E(A,C))<E(A,BUC)?<E(A, B)'> + E(A, C)">.

(Hint: use Lemma 2.9 and the triangle inequality for the /> norm.)

Let A, B, C be additive sets in an ambient group Z with |A| = |B| =
|C| = N. Give examples of such sets where E(A, B) and E(A, C) are
comparable to N 2and E(B,C) is comparable to N 3 or where E(A, B)
and E(A, C) are comparable to N 3 and E(B,C) are comparable to
N?Z. These examples show that there is no hope of any useful “triangle
inequality” connecting E(A, B), E(B,C), and E(A, C).

Suppose A, B are additive sets in an ambient group Z. Show that
E(A, B) = |A|?|B] holds if and only if |A + B| = |B|. One can thus
use Proposition 2.2 to determine when the upper bound in (2.7) is
obtained. Conclude in particular that E(A, B) = |A|*/?|B|*? if and only
if d(A, B) = 0, which in turn occurs if and only if A and B are cosets of
the same finite group G.

Give an example of an additive set A C Z of cardinality |A| = N such
that E(A, A) > 15N> butd(A, A) > 135 log N. Compare this with (2.8)
(and with Corollary 2.31 below).

Let A be an additive set. Show that there exists a subset A" of A of
cardinality |A'| > #[M"‘” and an element ¢y € A’ such that [(a + A) N
(ap + A)| > #[A]lA| for alla € A’. (Hint: first obtain a lower bound for
E(A, A))

2.4 Covering lemmas

We now describe some covering lemmas, which roughly speaking have the follow-
ing flavor: if A and B have similar additive structure (for instance, if their Ruzsa
distance is small) then one can cover A by a small number translates of B (or some
modification of B).

Lemma 2.14 (Ruzsa’s covering lemma) [300] For any additive sets A, B with
common ambient group Z, there exists an additive set X . C B with

|A+ B|

BCA-A+Xu Xyl < LA+ X4 = [AlIX]

|A]
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and similarly there exists an additive set X _ C B with

|A—B|

BCA—A+X_; |X_|< ;
|A]

|A = X_| = [A[IX_].

In particular, B can be covered by min( |A|X|3| , 'Alel) translates of A — A.

Remark 2.15 One useful side benefit of this covering lemma is that there exist at
least ‘ A'flAl disjoint translates A + b of A with b € B, as can be seen by restricting

bto X+.

Proof Itsuffices to prove the claim concerning A + B, since the claim concerning
A — B follows by replacing B with —B and X, with —X_ (note that A — A is
symmetric around the origin). Consider the family {A + b : b € B} of translates
of A by elements of B. All of these translates have volume |A| and are contained
inside A + B. Thus if we take a maximal disjoint sub-family of these translates, i.e.
{A+x:x e X;} forsome X C B, then X, can have cardinality at most ‘Ang‘B‘ .
Also we have |A + X .| = |A||X | by construction. Now for any element b € B,
we see that A + b cannot be disjoint from every member of {A 4+ x : x € X} as
this would contradict the maximality of X ;. Thus A 4+ b must intersect A + X .,
which implies that b is in A — A 4+ X . Since b € B was arbitrary, we thus have
B € A— A+ X, and the claim follows. O

Covering lemmas such as the one above are convenient for a number of reasons.
Firstly, they allow for easy computation of iterated sum sets. For instance, if one
knows that

A+BCA+X
then one can immediately deduce that
A+nB C A+ nX foralln > 0.

This is advantageous if X is substantially smaller than B. Also, a covering property
such as A+ B € A + X is preserved under Freiman homomorphisms, whereas
bounds such as |A + A| < K|A| are only preserved by Freiman isomorphisms
(see Chapter 5, in particular Exercise 5.3.13).

Remark 2.16 Observe that we are covering B by A — A rather than by A. This
reflects the fact that A — A is a “smoother” set than A, and tends to contain fewer
“holes” that would render it unsuitable for covering other sets. Later on we shall
see that higher-order sum-difference sets such as 2A — 2A are even smoother, in
that they tend to contain very large arithmetic progressions; see Section 4.7 and
Chapter 12 for further discussion.
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One can modify Ruzsa’s covering lemma in a number of ways. For instance,
one can ensure the covering of B by translates of A — A has very high multiplicity
(at the cost of increasing the number of covers by a factor of 2).

Lemma 2.17 (Green—Ruzsa covering lemma) [/54] Let A and B be additive
sets with common ambient group. Then there exists an additive set X C B with
1 X| < 2|A‘:|B| — 1 such that for every y € B there are at least |A|/2 triplets
(x,a,a’) € X x A x Awithx +a —a’ = y. More informally, A — A + X covers

B with multiplicity at least |A|/2. Furthermore, we have

B-BCA-A+X-X.

|[A—B]
[A]°

Similar claims hold if ‘Al"f‘ is replaced by

Proof Again it suffices to prove the claim for ‘A‘LB L. We perform the following

algorithm. Initialize X to be the empty set, so that X + A — A is also the empty
set. We now run the following loop. If we cannot find any element y in B which is
“sufficiently disjoint from X + A — A” in the sense that [(y + A) N (X + A)| <
|A|/2, we terminate the algorithm. Otherwise, if there is such an element y, we
add it to X, and then repeat the algorithm.

Every time we add an element to X, the size of |X + A| increases by at least
|A|/2, by construction, and at the first stage it increases by |A|. However, X + A
must always lie within the set B + A. Thus this algorithm terminates after at most
AALBl steps.

[A|

Now let y be any element of B. By construction, we have |[(y + A)N
(X + A)| > |A|/2, and hence y has at least |A|/2 representations of the form
X +a — a' forsome (x,a,a’) € X x A x A’, as desired.

Finally, if y and y’ are two elements of B, then we have

HaeA:y+aeX+A=|0+A)NKX+A)|>|Al/2

and similarly we have |[{a € A:y +a € X + A}| > |A|/2. Thus by the
pigeonhole principle there exists a € A such that y+a€ X+ A and y' +
aeX+A thus y—y=@p+a)—(/+a)eX+A-X+A)=A—A+
X — X. Since y,y € B is arbitrary, we have B— B CA— A+ X — X as
claimed. O

In Section 5.4 we develop yet another covering lemma (Lemma 5.31), in which
the covering set X is not arbitrary, but is in fact a cube.

We now give an application of the Green—Ruzsa covering lemma, namely a
variant of (2.6) which controls quadruple sums rather than double sums.
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Proposition 2.18 Let A, B be additive sets in an ambient group Z. Then

|A+B|*Y|A— A
|A*

Proof Applying the Green—Ruzsa covering lemma, we may find a set X of car-
dinality |X| < 2% such that A — A + X covers B with multiplicity at least
|Al/2.

Now let z be any element of B — B. By definition, we have z = b; — b, for some
by, b, € B. By construction of X, we can find at least |A|/2 triplets (x, a;, @) €
X x A x A such that b, = x 4+ a; — a,, and thus

2B —2B| < 16

Hx,a1,a) e X x AXA:z=b —a +a, —x}| > |A|/2.
Making the change of variables ¢ := b; + a, € A + B, we conclude that
Hx,c,a1) e X x(A+B)x A:z=c—a; —x}| > |A|/2.
Similarly, if z’ is another element of B — B, we have
H(x',c'sa)) e X x (A+B)x A:z = —a) —x'}| > |A]/2,
and hence
{(x,x" e, c'sar,a) e X x X x (A+B)x(A+B)x Ax A:
z=c—a—x, 7z =c—aj—x'}>|A*/4
Now write d :=a; —aj € A — A, and observe that if z=c —a; —x and 7/ =
¢’ —aj — x’ then
z—Z=c—c —d—x+x".
Also,ifonefixesz, z’, ¢, ¢/, d, x, x’, then a; and a| are determined by the equations
ay=c—x —z,ay =c —x’" — 7. Thus we have
Hx,x',e,c/,d) € X x X x(A+B)x (A+B) x (A— A):
z—zZ =c—c —d—x+x'}| > |A/4.
Note that z — z’ is an arbitrary element of (B — B) — (B — B) = 2B — 2B. Thus
we have shown that an arbitrary element of 2B — 2B has at least |A|?/4 rep-

resentations of the form ¢ — ¢’ —d — x +x’ where (x,x’,c,c’,d) € X x X x

m+3qu+mxm—AymmmmmmmmMgmﬂmgfﬁﬂ 0

We can eliminate the factor of 16 by the following elegant “tensor power trick”
of Ruzsa [297]:

Corollary 2.19 Let A, B be additive sets in an ambient group Z. Then

|[A+BI*lA—A

2B —2B| <
| = AT
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Proof Fix A, B, and let M be a large integer parameter. We consider the M -fold
Cartesian product A®Y := A x ... x A, which is a subset of the additive group
ZM .= 7 @ ... @ Z; similarly consider B®Y . Then one easily verifies
2B®M _2B®M — (2B — 2B)®M,;

A®M 4 BV — (A 4 B)®M;

AGBM _ AGBM — (A _ A)EBM
Thus by applying Lemma 2.18 with A, B replaced by A®M, B®M we obtain
|A+ BI*M|A — AM

2B —2B|M < 16

|A |4M
Taking Mth roots of both sides and letting M — oo, we obtain the result. O
Specializing Corollary 2.19 to the case B := —A, we obtain

Corollary 2.20 Let A be an additive set. Then
A— AP
[2A —2A| < 1A= AP
|AJ*
or, in other words,
d(A— A, A—A) <4d(A, A).

Remark 2.21 One can improve these estimates slightly by using the machinery
of Pliinnecke inequalities; see Corollary 6.28.

Combining Corollary 2.20 with the Ruzsa covering lemma (Lemma 2.14 with
B =2A — A) we obtain

Corollary 2.22 Forany additive set A,2A — A can be covered by §[ A}’ translates
of A— A.

This then shows that 3A — A is covered by §[A]® translates of 2A — A, and
hence by [ A]'? translates of A — A. Continuing in this fashion, an easy induction
then shows

mA — nA can be covered by 8[A]" "2 translates of A — A (2.16)
for all m, n > 1. In particular we have
ImA — nA| < S[AP" " V|A| forall m, n > 1. (2.17)
From this (and the trivial estimates |[kA| > |A| for any k£ > 1) we obtain

Corollary 2.23 (Symmetric sum set estimates, preliminary version) Ler A be
an additive set. Then we have the estimates

d(niA —nyA, n3A —ngA) < 5(n1 +ny +n3 +na)d(A, A)
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for any non-negative integers ni, nn, n3, nq. (The constant 5 is not best possible;
we will improve it later.)

Thus if A has small difference constant, then in fact all iterated sum sets of A
are close to each other in the Ruzsa metric. Another consequence of the corollary
is that

olniA — nyA] < o[A]'00+72)

for all non-negative integers n1, n,. The factor of 10 is not best possible; we shall
obtain improvements to this constant later when we develop the machinery of
Pliinnecke inequalities in Section 6.5. However, the linear growth in n; and n; is
necessary; see Exercise 2.4.9.

By combining the above corollary with the Ruzsa triangle inequality one can
obtain similar estimates for pairs of sets:

Corollary 2.24 (Asymmetric sum set estimates, preliminary version) Let A,
B be additive sets with common ambient group Z. Then we have the estimates

d(niA —nyA+n3B —nyB,nsA — ngA +n7B — ngB)
= O0((n1 +---+ng)d(A, B))

forany ny, ...,ng € N.

The proof is left as an exercise.
We can use the above machinery to place additive sets with small difference or
doubling constant inside a more structured set, namely an “approximate group”.

Definition 2.25 (Approximate groups) Let K > 1. An additive set H is said to
be a K -approximate group if it is symmetric (so H = —H), contains the origin,
and H + H can be covered by at most K translates of H.

Observe that a 1-approximate group is necessarily a finite group, and conversely
every finite group is a 1-approximate group.

We can summarize many of the preceding results by giving the following partial
generalization of Proposition 2.7.

Proposition 2.26 Let A be an additive set and let K > 1. Then the following
statements are equivalent up to constants, in the sense that if the jth property
holds for some absolute constant C j, then the kth property will also hold for some
absolute constant Cy, depending on C:

(i) o[A] < K€ (ie. |A+ A| < KC'|A]);

(ii) 8[A] < K2 (equivalently, d(A, A) < CylogK or |A — A| < K©2|A|);
(iii) d(A, B) < C3log K for at least one additive set B;
(iv) [nA —mA| < K€U\ A| for all non-negative integers n, m;
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(v) there exists a K ©5-approximate group H such that A C x + H for all
x € A, and furthermore |A] > K~ |H|.

Proof Theequivalence of the first three properties follows from the Ruzsa triangle
inequality and (2.11). The equivalence of the fourth property with (say) the second
follows from Corollary 2.24. To see that the fifth property implies (say) the first,
observe that if the former holds, then

A+ Al < |H+H|<K%|H| < K*|A|.

To deduce the fifth from the fourth, take H = A — A and apply the Ruzsa covering
lemma. U

Thus, in a qualitative sense, we have reduced the study of additive sets with
small difference or doubling constant to the study of approximate groups, or pre-
cisely to the study of dense subsets of translates of approximate groups. This is a
fairly satisfactory state of affairs, except for the fact that we do not have a good
characterization of which sets are approximate groups. The well known structure
theorem for finite groups (see Corollary 3.8 below) asserts that every finite group is
the product of finite cyclic groups; we shall eventually be able to obtain a somewhat
similar characterization of approximate groups, showing that they are efficiently
contained in a generalized arithmetic progression. For some other properties of
approximate groups, see the exercises below.

There is an asymmetric counterpart to Proposition 2.26, whose proof we leave
as an exercise.

Proposition 2.27 Let A, B be additive sets in an ambient group Z,and let K > 1.
Then the following statements are equivalent up to constants, in the sense that if
the jth property holds for some absolute constant C ;, then the kth property will
also hold for some absolute constant Cy depending on C:

(i) d(A,B) < CylogK;
(ii) d(A, —B) < C,logK;
(ii) |A+ B| < K min(|A|, |B|),
(iv) |A — B| < K% min(|A], |B|),
(v) A —nyA 4+ n3B — nyB| < KCtn+mtmtnd| A| for all non-negative
integers ny, ny, n3, N4,
(vi) o[A], o[B] < K, and there exists x € Z such that
|AN(B + x)| > K~C|A|'/2|B|'/?;
(vii) o[A),oc[B] < K, and E(A, B) > K~C|A]>?|B3/*;
(viii) there exists a K ©s-approximate group H such that A € H + a and
B C H+bforallae A, b e B, and furthermore |A|, |B| > K¢ |H|.

Observe that Exercise 2.3.7 is essentially the K = 1 case of this Proposition.
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Proposition 2.27 gives a satisfactory characterization of pairs of sets with small
Ruzsa distance, in terms of approximate groups, provided that one is ready to lose
some absolute constants in the exponents. Note however that it is restricted to
treating those sets A, B which are comparable in magnitude up to powers of K
(cf. Exercise 2.3.6). A partial analogue of this proposition exists in the case when
A and B are very different in magnitude, but the theory here is not as satisfactory;
see Section 2.6.

Exercises

241

242

243

244

245

Let Z be a finite additive group, and let A be a random subset of Z such
that the events a € A are independent with probability 3/4 foralla € Z.
Show that with probability 1 — 0,7|—.c0(1), |A| > |Z|/2 (so in particular
A+ A=A—-A=Z, by Exercise 2.1.6), but that it is not possible to
cover Z using fewer than % log |Z| translates of A. (Hint: if X is an
additive set with | X| < % log |Z|, use Lemma 2.14 to find an additive set
Y with |[Y| = (| Z|/ log2 |Z]) such that the translates y — X are disjoint
forall y € Y. Compute the probability that A is disjoint from at least one
of the sets y — X, and conclude an upper bound for the probability that
A + X = Z.Now take the union bound over all choices of X .) This shows
that we cannot replace A — A by A in Lemma 2.14 without admitting
some sort of logarithmic loss.

Let A be an additive set in a group Z, and let ¢ : Z — Z' be a group
homomorphism. Establish the inequalities

|A] < [¢(A)] sup AN¢~ ()] < 24.

(Hint: use the Ruzsa covering lemma to cover A by translates of a subset
of ¢~1(0).) In particular equality is attained in both inequalities when A
is the coset of a group.

Prove Corollary 2.24. What value of the implicit constant in the O()
notation do you get?

Let A be an additive set suchthat |2A — 2A| < 2|A|.Concludethat A — A
is a group. (Hint: use Lemma 2.14.) From this and Corollary 2.19 we see
that if |A — A| < 2'/3|A|, then A — A is a group. The constant 2!/> can
be improved to %; see Exercise 2.6.5 below.

Let G be a K-approximate group for some integer K > 1. Show that
lnG| < (K+:71)|G| for all integers n > 1. Conclude in particular the
bounds

InG| < min(K", n®~1)|G| forall n > 1;
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thus the numbers |nG | grow exponentially in n for n < K but settle down
to become polynomial growth forn > K. In fact for any additive set, |n A|
is a polynomial in n for sufficiently large n; see [261] for a proof of this
fact and some further discussion.

Let A be an additive set with doubling constant 6[A] = K for some
K > 1. Show that

InA| < min(KS", n¥=1)|A|

for all n > 1 and some absolute constant C > 0. (Note that if K is very
close to 1, then one can use Exercise 2.4.4 to obtain a much stronger
bound.)

Let G be a K -approximate group in an ambient group Z,andlet H bea K-
approximate group in Z. Show that G + H is a K K’-approximate group.
Show that 2G N2H is a (K K')3-approximate group. (Hint: first show
that QG N2H) - (2GN2H) C (G+ X)N(H +Y) for some X, Y of
cardinality at most K3 and (K')? respectively, and then show that each set
of the form (G + x) N (H + y) is contained in a translate of 2G N 2H.)
Modify Exercise 2.2.9 to show that this type of statement fails quite badly
if the set 2G N 2H is replaced by G N H. Also, establish the cardinality
bounds

IGl|H| 1 |GlIH]|

— < |2GN2H| < —_—
|G+ H| (KK} |G+ H|

(Hint: use (2.8) for the lower bound, and the Ruzsa triangle inequality for
the upper bound.) Conclude the estimates

dG,H)<dG,G+H)+dG+H,H)<d(G,H)+logKK'
and
d(G,H)<d(G,2GN2H)+dR2GN2H,H) <d(G,H)+3logKK',

and compare this with Exercise 2.3.11.
For each j =1,2,3, let G; be a K ;-approximate group in an ambient
group Z. Using the Ruzsa triangle inequality, show that

|G1+ G2l|G2 + G3]
|G

IGi+ G2+ G3| £ K,

Conclude that

dGi+ Gy, G+ Gy +G3) <d(Gr, Gy + G3) +log K 1 K>.
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2.4.10

24.11

2.4.12

24.13

24.14
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Similarly for permutations. Conclude from this and the preceding exercise
that

d(G1,Gr) =d(G1+ G3,G2+ G3) +2log K1 K> K3

and compare this with Exercise 2.3.11. (A corresponding statement exists
for intersections but is somewhat tricky to establish.)

For any integers K, n1, np > 1, give an example of an additive set A with
o[A]l = K and o[n1 A — np A] = Qp, p, (K™ T72).

Let A, B be additive sets in a common ambient group Z. Show that
o[A + B] < (6[Alo[B])¢ where C > 1 is an absolute constant. (Hint:
use Proposition 2.26 to place A and B inside translates of approximate
groups. To obtain lower bounds on |A + B|, use the inequality

Bl JAlIB]
~ A= A)NB-B)

from (2.8).)

Prove Proposition 2.4.11. (Hint: to construct the approximate group H,
one possible choiceis H = A— A+ B — B.)

Try to improve upon the constant 5 in (2.17), by using the Ruzsa triangle
inequality instead of the Ruzsa covering lemma. This exercise demon-
strates that the triangle inequality is slightly sharper than the covering
lemma when one wants cardinality bounds, but the covering lemmas of
course give much more information than just cardinality.

[209] Let A, B be additive sets in an ambient group Z, and let G be the
group generated by A. Show that there exists an additive set B’ € B such
that B’ is contained in a coset of G, and such that |A 4+ B’| < % |A + B].
Let A, B, A’, B’ be additive sets with common ambient group Z. Estab-
lish the inequality d(A + A", B + B’) = O(d(A, B) + d(A’, B)). (Hint:
argue as in Exercise 2.4.10.) Conclude that if ¢ : Z — Z’ is a group
homomorphism, then d(¢(A), ¢(B)) = O(d(A, B)). Thus group homo-
morphisms are “Lipschitz” with respect to the Ruzsa distance.

2.5 The Balog-Szemerédi—-Gowers theorem

In the previous sections we have only considered complete sum sets A + B and
complete difference sets A — B. In many applications one only controls a partial
collection of sums and differences. Fortunately, there is a very useful tool, the
Balog—Szemerédi—-Gowers theorem, which allows one to pass from control of
partial sum and difference sets to control of complete sum and difference sets
(after refining the sets slightly). We begin with some notation.
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Definition 2.28 (Partial sum sets) If A, B are additive sets with common ambi-
ent group Z, and G is a subset of A x B, we define the partial sum set

G
A+ B:={a+b:(a,b) e G}

and the partial difference set

ASB=(a—b:(a.beG)

One may like to think of G as a bipartite graph connecting A and B. Note
that when G = A x B is complete, then the notion of partial sum set and partial
difference set collapse to just the complete sum set and difference set.

Partial sum sets and partial difference sets are not as nice to work with alge-
braically as complete sum sets. In particular, the above machinery of sum set
estimates do not directly yield any conclusion if one only assumes that the cardi-

G
nality |A 4 B]| of a partial sum set is small. Note that even when G is very large,

it is possible for |A —?— B| to be small while |A + B] is large; see exercises. For-
tunately, the Balog—Szemerédi—-Gowers theorem, which we will present shortly,
does allow us to conclude information on complete sum sets from information on
partial sum sets, if we are willing to refine A and B by a small factor (i.e. replace
A and B by subsets A" and B’ which are only slightly smaller than A and B).

The first result in this direction was by Balog and Szemerédi [16], using the
regularity lemma. A different, more effective proof, was found by Gowers [137]
(with a slight refinement by Bourgain [38]), in particular with dependence of
constants that are only polynomial in nature. Here we present a modern formulation
of the theorem, following [340].

Theorem 2.29 (Balog—Szemerédi—-Gowers theorem) Let A, B be additive sets
in an ambient group Z, and let G C A x B be such that

G
|G| = |Al|BI/K and |A + B| < K'|A|'?|B|'/?

for some K > 1 and K' > 0. Then there exists subsets A’ C A, B’ C B such that

A
|A"] > 4\|f2|1< (2.18)

. IB]
|B'| > 1K (2.19)
A"+ B'| <22 K*(K")}|A|'?|B|"2. (2.20)

In particular we have

d(A', —B") <5logK +3logK' + O(1).



80 2 Sum set estimates

The proof of this theorem is graph-theoretical. It is elementary, but a little
lengthy and so we postpone it to Section 6.4. One can of course combine this
theorem with Corollary 2.24 and Proposition 2.26 to gain more information on
the iterated sum and difference sets of A” and B”. It is likely that the factor of
212K*(K’)? in (2.20) can be improved. However, the bounds (2.18), (2.19) cannot
be significantly improved; see exercises.

To apply the Balog—Szemerédi—-Gowers theorem, it is convenient to introduce
the following lemma connecting large additive energy to small partial sum sets or
small partial difference sets.

Lemma 2.30 Let A, B be additive sets in an ambient group Z, and let G be a
non-empty subset of A x B. Then
G|? G|?
Ea.By= G0 160
G G
|A+ B| |A— B|

Conversely, if E(A, B) > |A|?|B|*?/K for some K > 1, then there exists
G C A x B such that

G
|G| > |A||B|/2K;  |A + B| < 2K|A|'*|B|'%

and similarly there exists H C A x B such that

H
|H| = |Al|B|/2K; |A — B| <2K|A|'?|B|'>.
Proof QObserve that
> Wa.b)eG:a+b=x} =G|
XEAiB
and hence by Cauchy—Schwarz
. — 2 2
2 i, M@b)eGatb=x}]" =[G

G
|A + B
But the left-hand side is equal to

a,d,b,p)e AxAxBxB:a+b=d +b;@,b),d,b)eG)

G
which was less than E(A, B). This proves that E(A, B) > |G|?/|A + B|;using the

G
symmetry E(A, B) = E(A, —B) we thus also obtain E(A, B) > |G|*/|A — B|.
Now assume E(A, B) > |A|3/2|B|3/2/K. Then by Lemma 2.9 we have

|A|3/2|B|3/2

_ 2
Y ANG =Bz

xeA+B
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IfwesetS :={x € A+ B :|AN(x — B)| > |A|'?|B|'/? /2K }, we then have (by
Lemma 2.9 again)

S AN -BE > |APZIBI? |AIIBIIAI"2BI'? |AP2IBP?
- K 2K 2K '

xes§

Now observe from Lemma 2.9 again that
|SI1AJ'/2|B]'2

e <Y IANG& - B)| < |AlB|

xes

and hence

S| < 2K |A]'/?|B|'/>.
G
Now let G :={(a,b) € A x B :a+ b € S}, then clearly A + B C § and hence
G
|A + B| < 2K|A|'?|B|'/%.

Furthermore we have

IGl=> Ha.b)e AxB:a+b=x}

xeS
=) 1AN@& - B)|
xes
< |A'2|x — B|'2
|A|3/2|B|3/2/2K
- |A|1/2|B|1/2
= |A||B|/2K.

This gives the desired set G. The construction of H follows by using the symmetry
E(A,B) = E(A, —B). O

Combining this Lemma with the Balog—Szemerédi—Gowers theorem, we can
obtain a characterization of pairs of sets with large additive energy.

Theorem 2.31 (Balog-Szemerédi—-Gowers theorem, alternative version) Ler
A, B be additive sets in an ambient group Z, and let K > 1. Then the following
statements are equivalent up to constants, in the sense that if the jth property
holds for some absolute constant C ;, then the kth property will also hold for some
absolute constant Cy, depending on C;:

(i) E(A, B) = K~C'|AP/?|B|Y/%;
(ii) there exists G C A x B such that |G| > K~C2|A||B| and
G
|A + B| < K©|A|'2|B|'/2;
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(iii) there exists G C A x B such that |G| > K ~C3|A||B| and
4 2 Bl < K& 4|2 |B|'2;

(iv) there exists subsets A’ C A, B’ C B with |A'| > K~C*|A|, |B'| > K~*|B|,
and d(A’, B") < C4logK;

(v) there exists a K ©5-approximate group H and x, y € Z such that
JAN(H 4+ )|, |1BN(H 4+ y)| = K~|H| and |A|, |B| < K|H|.

We leave the proof of this theorem to the exercises. Theorem 2.31 should be
compared with Exercise 2.3.22, which is the K = 1 case of this Theorem. As
with Proposition 2.27, this Theorem is restricted to sets A, B which are close in
cardinality (see exercises). We shall address the question of sets A, B of widely
differing cardinalities in the next section.

Exercises

2.5.1

252

253

254

Let A, B be additive sets with common ambient group Z such that
E(A, B) > K~'|A]2|B]>/?. Show that K2|A| < |B| < K?|A|, and
show by means of an example that these bounds cannot be improved.

Give an example of an additive set A C Z of cardinality N, and a set

G C A x A of cardinality N?/4, such that | A El}— Al < Nbut|A+ Al >
N?Z/8. (Hint: concatenate a Sidon set with an arithmetic progression.)

Let N > K > 1 be large integers, with N a multiple of K. Give an
example of sets A, B C Z of cardinality |A| = |B| = N andasubsetG C

A x B of cardinality |G| = |A||B|/K with the property that |A fl;— B| <
2N, but such that |A” + B”| > N?/K? whenever A” C A and B” C B
is such that |[A”| > 2| A|/K . (Hint: take B to be a long progression, and
take A to be a short progression concatenated with some generic integers.)
This shows that the conditions (2.18), (2.19) in Theorem 2.29 cannot be
significantly improved.

Let A, B, C be additive sets in an ambient group Z, let 0 < ¢ < 1/4,
andlet G C A x B, H C B x C be such that |G| > (1 — ¢)|A||B| and
|H| > (1 — &)|B]|C|. Show that there exists subsets A’ C Aand C' C C
with |A’| > (1 — &¢'/?)|A] and |C'| > (1 — &!/?)|C| such that |A’ — C’| <

G H
|A—B||B—-Cl/(1— 2¢!/2)|B|. (Hint: show that at most £'/?|B]| ele-
ments of B have a G-degree of less than (1 — e'/2)|Al, and similarly at
most ¢'/2| B| elements have a H -degree of less than (1 — €/2)|C|.) This
result is can be used as a substitute for the Balog—Szemerédi—-Gowers
theorem in the case when the graph G is extremely dense; it has the
advantage that it does not require A, B, C to be comparable in size and
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it does not lose any constants in the limit ¢ — 0; indeed it collapses to
Ruzsa’s triangle inequality in that limit.

255 Prove Theorem 2.31. (Hint: for K large, e.g. K > 1.1, one can use the
Balog—Szemerédi—-Gowers theorem and Proposition 2.27. For K small,
e.g.1 < K < 1.1,one canuse Exercise 2.5.4 as a substitute for the Balog—
Szemerédi—Gowers theorem.)

2.5.6  [80] Let A, B be additive sets with common ambient group such that

|A] = |B| = N and |A + A| < KN. Suppose also that |A fl;— B| < KN,
where G C A x B is a bipartite graph such that every element of B is
connected to at least K ' N elements of A. Show that |A + B| < KON
and |B + B| < K°WN. (Hint: write the elements of A + B in the form

G
x—y+zwherexe A+ A, ye A+ A,andz e A+ B))

2.5.7 [80] Let A be an additive set such that |A —Ci;— A| < K|A|, where G C
A x A is such that every element of A is connected via G to at least
K~'|A| elements of A. Show that one can partition A into O(K°()
subsets Aj, ..., A, such that |A; + A;| = O(K°D|A|) for each 1 <
i < m. (Hint: use the Balog—Szemerédi—Gowers theorem and an iteration
argument to obtain most of the subsets, and then Exercise 2.5.6 to deal
with the remainder.)

2.6 Symmetry sets and imbalanced partial sum sets

The Balog—Szemerédi-Gowers theorem is a very powerful tool when studying
two additive sets A, B with additive energy E(A, B) close to |A|3/?|B|3/?; however
from (2.7) we see that this situation only occurs when | A| and | B| are comparable in
size. This leaves open the question of what happens in the case |A| > | B| (say) and
E(A, B) is close to the upper bound of |A||B|* given by (2.7). A special sub-case
of this (thanks to (2.8)) is the case when |A + B| or |A — B| is comparable to |A|.
Note that Proposition 2.2 already gives an answer to this question in the extreme
case when |A+ B|=|A| or |A — B|=|A| (or equivalently if E(A, B) =
|A||B|?; see Exercise 2.3.22). However, an example of Ruzsa [297] shows
that things become bad when |A| and |B| are very widely separated; see the
exercises.

If however we are prepared to endure logarithmic-type losses in the ratio | A| /| B|
(or more precisely losses of the form (]A|/|B|)° where ¢ can be chosen to be
small), then one can recover a reasonable theory. In analogy with Proposition 2.2,
one expects that if |A + B| is comparable to |A|, or if E(A, B) is close to |A||B|?,
then there should be an approximate group H such that A is approximately the
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union of translates of H, and B is approximately contained in a single translate of
H . To achieve this will be the main objective of this section.

In the extreme case when |A + B| = |A| or E(A, B) = |A||B|?, the approxi-
mate group H was in fact an exact group and in the proof of Proposition 2.2 it was
constructed as the symmetry group Sym;(A) of the larger additive set A. In the
general case this symmetry group is likely to be trivial. However, a more general
notion is still useful.

Definition 2.32 (Symmetry sets) Let (A, Z) be an additive set. For any non-
negative real number o > 0, define the symmetry set Sym,(A) € Z at threshold
o to be the set

Sym,(A):={h € Z : |AN(A+h)| > a|Al}.

Note that Sym;(A)={he€Z: A+ h = A} is the same symmetry group
applied in the proof of Proposition 2.2. The other symmetry sets are not groups
in general, but nevertheless they are still symmetric (so —Sym,(A) = Sym,(A))
and contain the origin, and they obey the nesting property Sym,(A) S Symg(A)
for « > B. It is also clear that Sym,(A) € A — A for all 0 < o < 1. Note that
as Sym, (A) is empty for & > 1 and equal to all of Z for « < 0, we shall mostly
restrict ourselves to the non-trivial region where 0 < o < 1.

We now relate the size of these symmetry sets to the additive energy. From
Lemma 2.9 we have

E(A, A= Y [ANA+h
heA—A

and hence for any 0 < o < 1 and the crude bounds |A N (A + k)| < |A| when
h € Sym,(A)and |[AN(A+h)| < a|A| when h € Sym,(A), we have

o?| A2 [Sym, (A)| < E(A, A) < o?|A]*|A — Al + |A]*|Sym, (A)],

which indicates that Sym,(A) should be large whenever the energy is large. In
particular, from (2.7) we have

ISym,, (A)| < |A]/?. 2.21)

Now let A, B be additive sets in an additive group Z. From Lemma 2.9 again, we
have

E(A,B)= Y |AN(A+b—Db)
b,b'eB

and hence for any 0 < o < 1 we have

E(A, B) < |B|*a|A| + |A||{(b. b)) € B : b — b € Sym,(A)}].
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In particular, if E(A, B) > 2a|A||B|?, then we conclude that there is a set G C
B x B of cardinality |G| > «|B|? such that

G
B < B C Sym,(A). (2.22)

At first glance it seems that one may now be able to apply the symmetric Balog—
Szemerédi—Gowers theorem. However, the fact that A is much larger than B means

that B E B may be much larger than B (compare (2.22) to (2.21)). To get around
this difficulty we need to iterate this construction, and exploit the fact that Sym,, (A)
behaves like a group. This is already clear when o = 1, when Sym, (A) is indeed
a genuine group; the following lemma shows that this behavior persists in an
approximate sense for « less than 1.

Lemma 2.33 Let A be an additive set. Then we have
Sym,_,(A) + Sym,_,.(A) € Sym,_,_,.(A) (2.23)

whenever ¢, ¢’ > 0. Furthermore, if 0 < o < 1 and S € Sym,,(A) is a non-empty
set, then there exists a set G C |S|* with

|G| > ?|S|?/2 (2.24)
such that
G
S§—-ScC Symaz/z(A). (2.25)

Proof To verify the first claim, observe that if x € Sym;_,(A) and y €
Sym,_,.(A) then

I(A+\A[ = |A] = [AN(A +x)| < e|A]
and
I(A+ONA +x + )| =[A] — [AN(A+y)| < €'lAl
and hence
[ANA4+x+ P =[(A+x)NANA+x+y)| >0 —e—¢)A|

which proves (2.23).

Now we prove the second claim. By definition of S, we see that foreach x € §
there exist at least «|A| elements a € A such that a + x € A. Summing this over
all x we see that

Y HxeS:a+xeA)=alAllS].

acA
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Applying Cauchy—Schwarz we conclude that
Z HaeA:a+x,a+yeAl =Z|{x €S:a+xeAl? > a?A|S]
x,yeSxS acA

If weset G € S x S to be all the pairs (x, y) such that
faeA:a+x,a+ye A} >a?A|/2

then we have
2 2 a?’|Al
AIIGI = > HaeA:a+x,a+yeA)=a?lAlS] -
(x,y)eG

N§

which gives (2.24). Also, if (x, y) € G then |A N (A + x — y)| > a?|A|/2 by def-

inition of G, which gives (2.25). O
Before we proceed with the main theorem, we need a technical lemma that

uniformizes the size of the fibers {(a,a’) € G :a —a’ = x}of A ¢ A.

Lemma 2.34 (Dyadic pigeonhole principle) Let A be an additive set, and let

G
G C A x A be such that |G| > a|A|? and |A — A| < L|A| for some 0 < a < 1
and L > 1. Then there exists a subset G’ of G with

Gl =@ —————— 4P
1 +log_ +logL

G|

’

2]A = A

and

{(a,d)eG :a—ad =x}| >

G
forallx e A — A.

It is important to note that the dependence on L only enters in a logarithmic
manner.

Proof Let D be the set of all x such that

wAP o

2LIA| 2L

{a,d)eG:a—ad =x}| >

(thus D is the set of “popular differences”) and set G to be the pairs (a, d’) in
~ G

G such that a — @’ € D. Then we have [G\G| < 57 |A[|A — A| < a|Al*/2, and

hence |G| > a|A[? /2. On the other hand, we have the crude upper bound

f@.d)eG:a—d =x}| <) [aeA:a=x+a}| <Al

a'eA
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Thus if we let M be the least integer such that 2=¥ < 1 » We can partition G=

G U---UGy where G,, :=={(a,a’) € G :a —a’ € D,,} and

G ~
Dypi={xeA—A:27"A| < {(a,d)e G :a—a =x}| <27 A]}.

By the pigeonhole principle, there exists | < m < M such that

o

1
Gl = —IG| = 1 A%,
M C(1+1logs +1logL)
By the definition of D,,, we have
Gm Gm
Ol _1p,, < L9
2—m+l|A| 2—m|A|
G/H
since D,, = A — A, we thus see that
I ’ I —m |G/|
{a,a)eG a—a =x}| >27"|A| > ———
2|A — A
Gn
forall x € A — A. The claim then follows by setting G’ := G . O

Now we give the main theorem of this section.

Theorem 2.35 (Asymmetric Balog-Szemerédi-Gowers theorem) Let A, B
be additive sets in an additive group Z such that E(A, B) > 2a|A||B|* and
|A| < L|B| for some L >1 and 0 <o < 1. Let ¢ > 0. Then there exists a
O, (a= %D L#)-approximate group H in Z, an additive set X in Z of cardinality
IX| = O (a=%DLE|A|/|H|) such that |AN (X + H)| = Qe(a?DL=¢|A|), and
an x € Z such that |B N (x + H)| = Qu(%VL?|B)).

Observe in the converse direction that if the conclusions of this theorem are
true, then E(A, B) = Qu(a% VL= |A||B|?) (Exercise 2.6.3 at the end of this
section). Thus this theorem is sharp up to polynomial losses in & and L, where ¢
can be made arbitrary small; the example in Exercise 2.6.1 can be adapted to show
that this loss is necessary (Exercise 2.6.2).

Proof A direct application of Theorem 2.31 will lose far too many powers of L.
The trick is to embed B in a long increasing sequence of sets By, By, B>, ..., with
each B; being (roughly speaking) a partial difference set of the previous one, and
use the pigeonhole principle to show that at some stage the ratio | B4 |/|B;]| is
bounded by a small power of L. One can then apply Theorem 2.31 with acceptable
losses and conclude the theorem. (This method of proof is inspired by a similar
argument in [40].)
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We turn to the details. It will be convenient to use a variant of the Landau O ()
and 2() notation which can absorb factors of & and log L (which we think of as
being relatively close to 1). If X, ¥ are non-negative quantities and j is a parameter,
let us say that X = O;(Y) or Y = Q;(X) if one has an estimate of the form

X <C(j)a VY logcV L

for some C(j) > 0 depending only on j.

Let J = J(¢) > 1 be a large integer to be chosen later. Let | > o) > -+ >
a1 > 0 be the sequence defined recursively by «; := o and o4 = a% /2 for
all 1 < j < J.Frominduction we see thata; = €2;(1).We claim that we can find a
sequence By, By, ..., By, By, of additive sets in Z with the following properties.

* Bp=B,andforall 1 < j <J + 1 we have

B; C Syma/(A). (2.26)
e Forall0 < j <J + 1, we have
o« ’LIB| = |B;| = Q;(|B)). (2.27)
® Forall 0 < j < J, there exists G; € B; x B; such that
IG ;1 = (1B, (2.28)
and
Bjy1 =B, — B,. (2.29)
Furthermore, for all x € B we have
, , / s
Hb,bYeG;:b—=b =x}|=Q; | —|. (2.30)
|Bjt1l

We construct the B; as follows. We set By := B. From (2.22) followed by
G
Lemma 2.34 we can construct Gy € By X Bg and By := By z By obeying (2.26),

G
(2.28), (2.29), (2.30). Since each element in By z By can be represented as a
difference of a pair in G in at most | By| ways, we have

Go ~
|B1l = [Bo — Bol = |Gol/|Bo| = $2;(|B]),

which is the lower bound in (2.27); the upper bound follows from (2.26) and (2.21).

Next, suppose inductively that B; C Syma/_(A) has already been chosen for
some 1 < j < J.Applying Lemma2.33 (with § := B;) followed by Lemma 2.34,
and using the cardinality bounds already obtained in (2.27) and the construction

G,
@i, = aj/2 of the a;, we can thus find G; € B; x B; and By, := B; — B
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obeying (2.26), (2.28), (2.29), (2.30). This closes the induction and so we can
construct the B; for all 0 < j < J + 1, and similarly obtain the G; for all 1 <
j=J.

Now for the crucial step (which explains why we iterated the above procedure
so many times). From (2.27) and the pigeonhole principle, there exists 1 < j < J
such that

|Bjs1l = 0, (LOV71B)1);

the point is that we have managed to replace L by the substantially smaller quantity
LOWD Tf we now apply (2.29), (2.28), and Theorem 2.31, we can thus find a
0 (L°1/))-approximate group H of cardinality

|H| = 0,(L°Y)By)) (231
and an x; € Z such that
|B; N (H +x,)| = Q,; (L™ |B;]) (2.32)

for some absolute constant Cy. It remains to relate H to B and to A. We begin with
B. From (2.32) and (2.30) (with j replaced by j — 1) we have

(b, b)Y e Gy :b—b € B;N(H +x)} = (L~ |B;_1]%),
so in particular
{(b, by e Bj_y x Bj_y : b€ H+x;+b}| =, (L~ |B;_i ).
Thus by the pigeonhole principle, there exists a b" such that
{beBj_1:b—b eH+x;+b} =L “|B;_1l).
Thus if we set x;_ := x; 4+ b’ then we have
1Bj1 N (H +x;-)| = Qs (L™ |B;j-1]). (2.33)

We now repeat this argument with j replaced by j — 1 and (2.32) replaced by
(2.33). Iterating this at most J times, we eventually locate an x = xo € Z such
that

|BN(H+x)| =Q,; (L |B]),

which gives the desired control on B if J is sufficiently large depending on ¢.
It remains to control A. From (2.32), (2.31) and (2.26) we have

[y € H+x;:y € Sym, (A} = @, (L~°V"|H])
and thus by definition of Sym,, (A) and «;

Ha,y)e Ax (H+x)):a+ye A} =Q, (L Y H|A]).
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We rewrite this as

Y IANH +x)| = Qu (L7 H | A)).

xex;+A

We can therefore find a subset Xq of x; + A with
|Xol = €y (L7 A]) (2.34)
such that
JANH +x)| = Q; (L~ °YP|H]) forall x € X,.

Now we use an argument similar to that used to prove Ruzsa’s covering lemma
(Lemma 2.14). Let X be a subset of X, such that the sets {H + x : x € X} are all
disjoint, and which is maximal with respect to set inclusion. Then we have

ANH +X)| =Y |ANH +x)| = Q, (LD |H||X)). (2.35)
xeX

On the other hand, if y € X, then by maximality of X there exists x € X such
that x + H intersects y + H. In other words, X is covered by X + H — H, and

hence (since H is a O(L?/"))-approximate group)
|Xol < IX||H — H| = O(IX|L?VD|H]). (2.36)
Combining (2.34), (2.35), (2.36) we see that X obeys all the desired properties, if
J is chosen sufficiently small depending on €. O

The above theorem can also be put in a form resembling Theorem 2.29:

Corollary 2.36 Let A, B be additive sets with common ambient group such that
E(A, B) > 2u|A||B|? and |A| < L|B| for some L > 1and0 < a < 1.Lete > 0.
Then there exists subsets A’ € A and B’ € B such that
A" = Q. («” VL7 A))
1B = Qe («” VLB
|A/ —‘rl’lB/ _mB/| — OE(G_OE(I)LS)H+”1|A|
for all integers n,m > 0.

Proof Apply Theorem 2.35 and set A':=ANX+ H) and B :=BnN
(x+ H). O

Because of (2.8), the above results give some partial results concerning the
situation when |A + B| < K|A| and |A| is much larger than |B|, but these results
will be rather weak. We will give a better result concerning this problem in
Section 6.5, once we develop the Pliinnecke inequalities.
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Exercises

2.6.1

2.6.2

2.6.3

264

2.6.5

2.6.6

2.6.7

[297] Let n be a large integer, and let Z := Z>". Let A be the additive set
A= {1, X2, .. x2) €LY Xy 4+ Xy = 13X, L Xy > 0}

and let B := {ey, ..., e2,}. Show that |B| = 2n, that |A| = (27/4)"+°1,
that |[A + B| = O(|A|),butthat|A — B| > n|A|. (You may find Stirling’s
formula (1.52) to be useful.)

Modify Exercise 2.6.1 to show that one cannot take ¢ =0 in
Theorem 2.35.

Let A, B be additive setsandlete > 0,0 < o < 1,and L > 1 be such that
the conclusions of Theorem 2.35 are satisfied. Conclude that E(A, B) =
Qe (DL A|[B]?).

Let A be an additive set. By modifying the proof of Lemma 2.13, establish
the inequality

S[A]n+1

aVl

|A — A4 nSym,(A)| <

|A]

for all integers n > 0and all 0 < o < 1.

[220] Let A be an additive set such that A — A is not a group. Show
that there exists 7 € A — Asuchthat 1 <|AN(A+ h)| < |A|/2. (Hint:
argue by contradiction, and analyze Sym,, (A) for some « slightly greater
than 1/2.) Conclude in particular that if |A — A| < %|A|, then A — A is
a group. Note that the example A = {0, 1} C Z shows that the constant %
cannot be improved; one can also make this example larger, for instance
by taking the Cartesian product of {0, 1} with a finite group. For a more
refined estimate on A — A, see Theorem 5.5 and Corollary 5.6.

Let A, B be additive sets with common ambient group such that
|A+ B| < K|A| and |A| < L|B| for some K, L > 1. Let ¢ > 0. Show
that there exists a O.(K %WL?)-approximate group H such that B
is contained in a translate of H, and that A is contained in at most
O0.(K%WL?|A|/|H]|) translates of H; compare this with Proposi-
tion 2.2. (Hint: Apply Theorem 2.35 and the Ruzsa covering lemma
(Lemma 2.14).)

Let A be an additive set, and let B be a subset of A such that |B| >
(1 —¢)|A| for some 0 < ¢ < 1. Prove that

Sym,, ;_(B) C Sym,(A) € Sym,_,,)/1_s)(B)

for every @ € R.
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2.6.8  Let A be an additive set. Refine (2.21) slightly to

|[Al(JA] — 1)
[Sym,(A)| <1+ ——= foralle > 0.
o

2.6.9 [350] Let A, B be additive sets in Z, such that B consists entirely of
positive numbers. Show that there exists » € B such that

Al = 1]A]
B 2

[AN(A+b)| <

(Hint: use Exercise 2.6.8, and exploit the fact that only half of the elements
of Sym, (A)\{0} are positive.)

2.6.10 [44] Let A be an additive set such that |[A + A| < K|A| for some K > 1.
Let G be the group generated by Sym 2 (A). Show that there exists a
coset x + G of G such that |[A N (x + G)| > |A|/3. (Hint: suppose for
contradiction that |A N (x + G)| < |A|/3 for all x. Use the greedy algo-
rithm to partition A = A’ U A” where |A|/3 < |A’|,|A”| < 2]A|/3 and
such that A’ — A” is disjoint from G (and thus disjoint from Sym 2 (A)).
Use this to obtain an upper bound on E(A’, A”) and use (2.8) to obtain a
contradiction.)

2.7 Non-commutative analogues

Many of the above arguments carry over to the non-commutative setting, though
one of course now needs to take care with the ordering of multiplication. We sketch
some of the main points here and leave the details as exercises. For further details
see [362].

Definition 2.37 A multiplicative group is any group G (not necessarily abelian)
with group operation -, with inversion operation x > x~!, and identity element
1. An multiplicative set is a pair (A, G), where G is a multiplicative group, and A
is a finite non-empty subset of G. We often abbreviate a multiplicative set (A, G)
simply as A, and refer to G as the ambient group.

If A and B are multiplicative sets with common ambient group G, we define
their product set

A-B:={ab:ae€ A,be B}
and the inverse set

AV i={a"" 1a € A).
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We also define right translates A - x and left translates x - A for x € G in the
usual manner. Note that x - A # A-x and A- B # B - A in general, although
we do have |A| = |x - A] = |A - x| = |A™!|. We also define iterated product sets
A" :=A..... A for n > 1, with the conventions that A := {1} and A" :=
(A" = (A",

We remark that A - B and B - A may have widely different cardinalities; for
instance if H is a finite subgroup of G and x is an element of G that does not lie in the
normalizer N(H) :={x € G : xH = Hx}of H,then H - (x - H)and (x - H) - H
can have very different cardinalities. However, we still have the analogue of (2.1):

max(|Al, |B|) < |A- B|, |B - A| < |Al|B];

see exercises.
We define the (left-invariant) Ruzsa distance d(A, B) between two multiplica-
tive sets:

|A-B7|

d(A, B) = log W

This distance still obeys the Ruzsa triangle inequality, mainly thanks to the iden-
tity (ab~")(bc™') = ac™!. It is left-invariant in each variable, thus d(x - A, B) =
d(A,x - B)=d(A, B), and is jointly right-invariant, d(A - x, B - x) = d(A, B),
but is not separately right-invariant in each variable. Also it is not reflection invari-
ant; the metric d*(A, B) := d(A~", B™1) is the right-invariant Ruzsa distance,
which we will not use here.

Define a multiplicative K -approximate group to be any multiplicative set H
which is symmetric (so H = H —1, contains the identity, and is such that there
exists a set X of cardinality |X| < K such that we have the inclusions

H-HCX-HCH-X-X, H-HCH-XCX-X-H.
We can characterize when d(A, B) is zero:

Proposition 2.38 Let A, B be multiplicative sets in an ambient group G. Then
d(A, B) = 0ifand only if A and B are both left cosets of the same finite subgroup
H,thus A=x-Hand B =y - H for somex,y € G.

We leave the proof as an exercise. Observe thatd(A, B) = 0 does notnecessarily
imply that A or B has small doubling; if x or y lie outside the normalizer of H then
A? or B? can be significantly larger than A or B. Similarly we see that d(A, B) = 0
does not imply that d(A, B~') = 0. So there does not appear to be an analogue of
Corollary 2.12. However, with some care and a few new arguments, we can still
obtain the analogues of the results from Sections 2.4 and 2.5. Let us start by the
analogue of Ruzsa’s covering lemma, which can be proved by the same argument.
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Lemma 2.39 Let A, B be multiplicative sets in an ambient group G such that
|A - B| < K|A|. Then there exists a finite set X in B of cardinality at most K such
thatB C A= - A-X.

From Section 2.4, we know that if A is a subset of a commutative group G and
|A+ A| < K|A|,then|nA — mA| < O(K°™*M|A)) for any n, m. This no longer
holds in a non-commutative setting. Consider for instance A := H U {x} where
H is a subgroup of G and x lies outside the normalizer N(H) of H. Then A -
A=HU(K-H)UH -x)U{x?},s0|A-A| <3|A| —2;but A- A - A contains
H - x - H which can be as large as |[H|*> = (JA| — 1). Interestingly, it turns out
that if we assume that |[A - A - A| is small, then the problem disappears and we can
otain the following analogue of Proposition 2.26.

Proposition 2.40 Let A be a multiplicative set in a group G, and let K > 1. Then
the following statements are equivalent up to constants, in the sense that if the jth
property holds for some positive absolute constant C ;, then the kth property will
also hold for some absolute constant Cy depending on C;:

(i) |A-A- Al < KNA[;
(ii) We have |A€' - - A% | < KC"|A| for all n > 1 and all signs
€,...,6, € {—1,1};
(iii) there exists a K ©*-approximate group H containing A where |H| < KA.

Proof First we show that (i) implies (ii). Assuming (i), we have |A - A| <
|A-A-A| <K |A| It follows that d(A, A~!) (which equals d(A~!, A)) and
d(A- A, A~ are O(log K). By the triangle inequality d(A - A, A) = O(log K),
which implies [A-A- A7 < K°W|A| and d(A, A- A~") = O(log K). Again
by the triangle inequality, we have d(A - A~!, A~!) = O(log K), which implies
|A- A7 A] < K°M|A|. By asimilar argument, we can show that [A~! - A - A| <
K%M A|. With these bounds (and taking inverse) we obtain the statment of (ii)
for n = 3. From here, it is easy to finish the proof by induction on n, with n = 3
being the base case. (For n = 2, the statement in (ii) is trivial.)

Next, we prove that (ii) implies (iii). Set ' = AU{1}UA ' and H = H' -
H’ - H'.Clearly H is symmetric and contains A. By (ii), |H| < K °(|A|. It thus
remains to show that H is a K V- approximate group. Notice that |H' - H - H| <
K 9| A|. By the covering lemma, we have a set Y of cardinality K °V in H - H
such that

H-HcH™'.H.Y.

Notice that the right-hand side is a subset of H - Y. Now set X =Y UY !
Since both H and X are symmetric H - H is contained in both H# - X and X - H.
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Moreover,as X C H - H,
H- XCH-H HCcX-H-HCcX-X-H

completing the proof.
The remaining implications are straightforward and left as an exercise. O

Now we are going to prove we can still obtain (iii) under the assumption
that d(A, B) = O(log K) for some set B. We will need the following variant of
Lemma 2.13, whose proof we leave as an exercise.

Lemma 2.41 Let A be a multiplicative set. Then there exists a symmetric set
S C A7V A such that |S| > |A|/2 and

457 < ZIAATIT AT AP
- |A|2n

for all integers n > 0.
As d(A, A) < 2d(A, B), this implies

Corollary 2.42 Let A be a multiplicative set such that d(A, B) < log K for some
K > 1. Then there exists a symmetric set S such that |S| > QK °W|A|) and

|A-S"- A7 < 0(K)PUH|A
for all integers n > 0.

Proposition 2.43 Let A, B be multiplicative sets in a group G, and let K > 1.
Then the following statements are equivalent up to constants, in the sense that if
the jth property holds for some absolute constant C ;, then the kth property will
also hold for some absolute constant Cy depending on C;:

(i) d(A,B) < Ci(1 +logK);

(ii) there exists a C, K ©>-approximate group H such that |H| < C,K©2|A|,
ACX-HandB CY - H for some multiplicative sets X, Y of cardinality
at most C,K©2.

Proof We only need to prove that (i) implies (ii), as the reverse implication is
trivial. Notice that (i) implies d(A, A) = O(log K). Thus, we have a symmetric
set S of cardinality K (V| A| such that

|A-S3 A7 < KOW|A]

This implies that |A - S| < K9°M|A] and thus d(A, S) = O (log K). Furthermore,
|S3] < K9W|S| so we can find a O (K °V)-approximate group H of size K °(V|A|
containing S. This, in particular, implies that d(S, H~!) = O(log K ). By the trian-
gle inequality, d(A, H™') = O(log K), which yields |A - H| < K°(|A|. By the
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covering lemma, there is a set ¥ of cardinality K% suchthat A CY - H - H™'.
But as H is an approximate group, H ' = H and H - H C Z - H for some set
Z of size K. Thus, AC (Y -Z)- H, where |Y - Z| < |Y||Z| = K°D. The
conclusion for B can be proved similarly. O

Let us now consider the non-commutative verstion of Balog—Szemerédi—
Gowers theorem. Theorem 2.29 still holds when the ambient group Z is
non-commutative. The proof of this theorem is purely graph-theoretical (see
Section 6.4) and has little to do with the commutativity of the group.

Theorem 2.44 (Balog-Szemerédi-Gowers theorem, non-commutative ver-
sion) Let A, B be multiplicative sets in an ambient group Z, and let G C A x B
be such that

|G| = |AI|BI/K and |A ° B| < K'|A]'|B]|'?

for some K > 1 and K' > 0. Then there exists subsets A' C A, B’ C B such that

A
|A"| > 4«|/_—2|1< (2.37)

,_ IB]
|B’| > 1K (2.38)
|A”- B'| <22 K*(K")}|A|'/?|B|V?. (2.39)

In particular we have
d(A', B < 5logK +3logK' 4+ O(1).

Define the multiplicative energy E(A, B) between two multiplicative sets A, B
with common ambient group to be

E(A,B):=|{(a,a’,b,b)e Ax Ax B xB:ab=ab'}. (2.40)

A significant difficulty here is that E(A, B) obeys far fewer symmetries in the
non-commutative case than in the commutative case; indeed, the only symmetry
available is that E(A, B) = E(B~!, A™"). However in the case when B = A~! we
have a crucial additional identity E(A, A=) = E(A~', A) (see exercises), which
can be thought of as a very weak, restricted form of commutativity.

The following variant of Lemma 2.30 holds, with basically the same proof.

Lemma 2.45 Let A, B be multiplicative sets in an ambient group Z, and let G be
a non-empty subset of A x B. Then

2
E(A,B) > 1G]

14 B
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Conversely, if E(A, B) > |A|3/2|B|3/2/K for some K > 1, then there exists
G C A x B such that

Gl = |AIIBI/2K; A7 Bl < 2K|A'2|B|'2.
Finally, notice that by the triangle inequality
d(A’, A"y <d(A',B™")+d(B"™", A"y = 2d(A", B,

which means that if d(A’, B’~!) is small, then d(A’, A’) is also small. From here,
we can use the same arguments for the commutative case to deduce

Corollary 2.46 Let A, B be multiplicative sets in an ambient group Z such that
E(A, B) > |AP*?|B]3/? /K for some K > 1. Then there exists a subset A’ C A
suchthat|A'| = QUK DA and|A’ - (A)7'| = O(K°D|A|) for some absolute
constant C.

Combining this with the identity E(A, A™!) = E(A~!, A) we obtain the fol-
lowing weak commutativity property between A and A~!:

Corollary 2.47 Let A be a multiplicative set such that |A - A| < K|A| for some
K > 1. Then there exists a subset A' C A such that |A'| = QUK %W |A|) and
|A”- (A)7' = O(KPM|Al).

It is now not too hard to obtain the following theorem.

Theorem 2.48 Let A, B be multiplicative sets in a group G, and let K > 1. Then
the following statements are equivalent up to constants, in the sense that if the jth
property holds for some absolute constant C ;, then the kth property will also hold
for some absolute constant Cy depending on C:

(i) E(A,B) = C['K~C1|AP/|BPP?,
(ii) there exists a subset G C A - B with |G| > Cz_lK’C2|A||B| such that
1A B < CoK|A|Y2|B|'2;
(iii) there exists a C3K C3-approximate group H and x,y € G such that
|H| < C3K|A|'?|B|'* and

AN (- H)|, [BN(H -y)| > Cy'K|H]|.

We leave the proofs of these statements to the exercises. Despite these char-
acterizations, there is much left to be done in the study of product sets in non-
commutative groups. For instance we do not currently have a satisfactory version
of Freiman’s theorem in general. However there has been some progress in the case
of very small doubling [172] and also in certain special groups such as SL,(Z) or
free groups; see for instance [78], [182].
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Exercises

2.7.1 Prove a multiplicative version of Lemma 2.1.

2.7.2  Prove a multiplicative version of Lemma 2.6.

2.7.3  Prove Proposition 2.38.

2.7.4  Let (A, G)be a multiplicative set. Prove that |A - A| = |A] if and only if
A is anormal coset of H,i.e. A=x-H = H - x forsome x € N(H).

2.7.5 Let A be a symmetric multiplicative set, so A = A~!, and let 0,[A]
denote the n-fold doubling numbers |A”|/|A|. Using the Ruzsa triangle
inequality, show that 6,,,+,»2[A] < 0,,[Alo,[A] for all m, n > 2.

27.6 Let A and B be multiplicative sets. Establish the identities
EA,B)=EB ', A Hand E(A, A~™") = E(A~', A), and the inequal-
ity E(A, B) > 412,

2777 Let A, B, C be additive sets in an ambient group Z,let0 < ¢ < 1/4, and
let G CAxB™',H CB xC~"besuch that |G| > (1 — ¢)|A||B| and
|H| > (1 — ¢)|B||C|. By modifying the solution of Exercise 2.5.4, show
that there exists subsets A’ € A and C’ C C with |A'] > (1 — &'/?)|A]

Gyl Ay
and |C’| > (1 — €'/%)|C| such that |A" - (C")"!| < %

2.7.8  Let A be amultiplicative set such that [A - A~!| < K|A|and |[A~! - A| <
K|A|. Show that there exists a subset A of A such that |A| > |A|/2K
and

|A- A7 L ACDT < 22k 4
for all n > 2, where the product consists of n factors alternating between
Aand A1,

279 If A and B are multiplicative sets in a group G, show that there exist sets
X1, X» € A such that |X;| < % 1X,| < % andACX,-B-B!
and A € B~'- B - X,, by modifying the proof of Lemma 2.14.

2.7.10 Prove Lemma 2.41.

2.7.11 Show that the direct analogue of Proposition 2.18 fails in the non-
commutative case, even when A = B = A~!.

2.7.12 Let A, B be multiplicative sets in an ambient group G, and let A be the

set

P (! / el |Al|BI?
A=JaceA:|{d@,b,b)e AXxBxB:a=adbb '} > .

2|A - B
Establish the bounds

Al > |A]?
= 2|A - B|
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and

|A-BIY|AT"- A

|A-A1 A AT <4
| A4

Compare this against Exercise 2.7.11. Hint: if x := a az_la_ga;l be a typ-
icalelementof A- A~!. A. A~!, obtain at least(lﬁfB’T
of the form

)? representations

x = [ar1b2)(By) ' [(ay) " d51b[asba] ™!

where aiby, asb, € A - B, by, by € B, and (a})"'ay € A7 - A.
2.7.13 Prove Theorem 2.48.

2.8 Elementary sum-product estimates

We now discuss some results concerning the sum set and product set of a subset
A of a commutative ring Z, thus combining both the additive and multiplicative
theory of the preceding sections (but keeping the multiplication commutative,
for simplicity). The question here is to analyze the extent to which a set A can
be approximately closed under addition and multiplication simultaneously. Of
course, one way that this can happen is if A is a subring of Z; it appears that up to
trivial changes (such as removing some elements, adding a small number of new
elements, or dilating the set), this is essentially the only such example, although
we currently only have a satisfactory and complete formalization of this principle
when Z is a field (Theorem 2.55). In some ways the theory here is in fact easier than
the sum set theory, because one can exploit two rather different structures arising
from the smallness of A + A and the smallness of A - A to obtain a conclusion.
As in the rest of this chapter, our discussion is for general fields, with a particular
emphasis on the finite field Z,. We remark that for the field R much better results
are known, see Sections 8.3, 8.5.

In this section Z will always denote a commutative ring, and Z* will denote the
elements of Z which are not zero-divisors; these form a multiplicative cancella-
tive commutative monoid in Z. The situation is significantly better understood in
the case that Z is a field (see in particular Theorem 2.55 below); in such cases
we shall emphasize this by writing the field as F instead of Z, and F'* instead of
F* = F\{0} to emphasize that F* is now a multiplicative group. A fundamen-
tal concept in the field setting is that of a quotient set, which is the arithmetic
equivalent of the concept of a quotient field of a division ring.
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Definition 2.49 (Quotient set) Let A be a finite subset of a field F such that
|A| > 2. Then the quotient set Q[A] of A is defined to be

Al A—A  [a-b
ol ]'_(A—A)\O'_{c—d

We also set Q[A]* := Q[A]\O to be the invertible elements in Q[A].

:a,b,c,deA;c;ﬁd}.

Observe that Q[ A] contains both 0 and 1, and is symmetric under both additive
and multiplicative inversion, thus Q[A] = —Q[A] and Q[A]* = (Q[AT)~. It
is also invariant under translations and dilations of A, thus Q[A] = Q[A + x] =
Q[ - Alforall x € F and A € F*. Geometrically, Q[ A] can be viewed as the set
of slopes of lines connecting points in A x A.

The relevance of the quotient set to sum-product estimates lies in the trivial but
fundamental observation:

Lemma 2.50 Let A be a finite subset of a field F such that |A| > 2,and letx € F.
Then |A + x - A| = |A|?> if and only if x & Q[A].

Proof We have |A 4 x - A| = |A|? if and only if the map (a, b) — a + xb is
injective on A x A, which is true if and only if @ + xb # ¢ + xd for all distinct
(a,b),(c,d) € A x A, which after some algebra is equivalent to asserting that

x & Q[A] O
This has an immediate corollary:

Corollary 2.51 If A is a subset of a finite field F such that |A| > |F|'/?, then
O[A]=F.

Note that the condition |A| > |F|!/? is absolutely sharp, as can be seen by
considering the case when A is a subfield of F of index 2.

Lemma 2.50 has another important consequence: it gives a criterion under
which Q[A] is a subfield of F.

Corollary 2.52 Let A be a finite subfield of a field F such that |A| > 2 and
| A+ Q[A]- Q[A]- A, |A + (Q[A] + Q[A]) - A| < |A[%.
Then Q[A] is a subfield of F .
This corollary may be compared with Exercise 2.6.5.

Proof From Lemma 2.50 and the hypotheses we see that Q[A] - Q[A] € Q[A]
and Q[A] + Q[A] C Q[A]. In particular Q[A]* - Q[A]* = Q[A]*. Since Q[A]
is finite and contains 0, 1, we see from Proposition 2.7 that Q[A] is an additive
group, and similarly from the multiplicative version of this Proposition we see that
Q[A]* is a multiplicative group. The claim follows. O
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In order to use this corollary, one needs to control rational expressions of A such
as A 4+ Q[A] - Q[A] - A.Inanalogy with sum set estimates such as Corollary 2.23,
one might first expect that once |A + A| < K|A| and |A - A| < K|A], then all
polynomial or rational expressions of A are controlled in cardinality by CK©|A].
This however is not the case, even if one normalizes A to contain 0 and 1. To
see this, consider A = G U {x} where G is a subfield of F and x ¢ G. Then
one easily verifies |A + A|, |A - A| < 2|A|but|A- A+ A- A| > (JA| — 1)?,since
A-A+ A A contains G + x - G, which has size |G|> by Lemma 2.50. This
example is similar to one appearing in the preceding section, and it is resolved in
a similar way, namely by passing from A to a subset of A.

Lemma 2.53 (Katz-Tao lemma) [/99], [4]] Let Z be a commutative ring,
and let A C Z* be a finite non-empty subset such that |A + A| < K|A| and
|A - Al < K|A| for some K > 1. Then there exists a subset A’ of A such that
|A'| > |A|/2K —1and |A'- A" — A" - A'| = O(KOW|A')).

Note that this lemma works in arbitrary commutative rings, not just in fields.
The requirement that none of the elements of A be zero-divisors is not serious in
the case of a field, since one can simply remove the origin 0 from A if necessary,
but is a non-trivial requirement in other commutative rings.

Proof We use an argument from [41]. We may assume that A > 10K (for
instance) since the claim is trivial otherwise. Consider the dilates {a - A : a € A}
of A. Since a € Z*, a - A has the same cardinality as A. In particular we have

DD laato) = AP

xeA-AacA

Since |A - A| < K|A|, we may apply Cauchy—Schwarz and conclude

2
> (Z 1a.A(x>> > |AP/K.

xeA-A \acA

We rearrange this as

Do l@-An®-A)l = |AP/K.

a,beA

By the pigeonhole principle we can thus find a b € A such that

D la-Anp-A) = |AP/K.

acA

Fix this b. Setting A’ to be the set of all @ € A such that

l(a-A)ND- Al = |Al/2K
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we conclude that

Y la-An - A) = |AP/2K

acA’

and hence |A’| > |A|/2K . By shrinking A’ by one if necessary we may assume

b ¢ A’. Now recall the Ruzsa distance d(A, B) := log %, and observe

that d(a - A,a - B) = d(A, B) whenever «a is not a zero-divisor. Then d(A, A) <
2d(A, —A) = 2log K, and hence

dla-A,a-A)=db-A,b-A)=d(A, A) <2logK foralla € A'.
Since (a - A) N (b - A) is alarge subset of @ - A and b - A, one can compute
dla-A,a-ANb-A),db-A,a-ANb-A)=0(1+1logK)
and hence by the Ruzsa triangle inequality
dla-A,b-A) =0 +1logK)foralla € A'. 241
Dilating this, we obtain
d(ajay - A, bay - A),d(bay - A, b* - A) =0 +1logK)foralla;,a, € A’
and hence by the Ruzsa triangle inequality
d(ayar - A, b* - A) = O0(1 + logK)foralla;,ar € A'. 2.42)

To proceed further we need to “invert” elements in A. For any a € A let @ :=
[Toeaya @ € Z* By dilating (2.41) (with a replaced by a3) by @102 [ [ c a1\ (ay 1) @'
for ay, ap, a3 € A’, we obtain

d(ajash - A, ayaras - A) = O(1 +1ogK) forall ay, ar, a3 € A'.
Meanwhile, from dilating (2.42) we have
dayazh - A, b*b- Ay = O(1 +logK) forall a;, az, a3 € A’.
Applying the Ruzsa triangle inequality, we thus have
d(arazas - A, ajayayy - A) = O(1 +log K) for all ay, az, az, ay, a5, a5 € A’
and hence
laiards - A — ajaydy - Al = O(K9W)| Al
Therefore we have

S x-A—y-Al= OKOMAIA A AP

x,yeA’-A“A’
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where A’ :={a@ :a € A’}. But since |A - A| < K|A| and |A'| > |A|/2K — 1, we
see from the multiplicative version of sum set estimates (working in the formal
multiplicative group generated by the cancellative commutative monoid Z*) that
A" - A - A’ = O(K°D|Al). We thus have
Yo - A—y- Al OKODIATP).
.\‘,yeA/~A/<A/

We rewrite the left-hand side as

> Hx.y):3a.be A suchthat z = xa — yb}|.

zeZ
Write w := ]_[ae 4 @, and observe that whenever ay, ay, as, as € A’, the number

w(aja, — azay) has at least |A’|> representations of the form xa — yb with x, y €
A"~ A - A anda,b € A, with (x, y) distinct, thanks to the identity

w(ajar — azas) = (a1axa)a — (aga4i3)b.
Thus
lw- (A" A" — A"~ AN = 0(K°DV|A)
and the claim follows since w € Z*. O

A modification of the above argument also gives the following statement, which
can be viewed as a variant of Corollary 2.23 for the sum-product setting; we leave
the proof to Exercise 2.8.1.

Lemma 2.54 [43] Let Z be a commutative ring, and let A C Z* be a finite non-
empty set such that |A - A — A - A| < K|A|. Then we have |A* — AF| < K9®)|A]
forallk > 1, where AK = A - ... Ais the k-fold product set of A.

We can now classify those finite subsets of fields with small additive doubling
and multiplicative doubling constant, up to polynomial losses:

Theorem 2.55 (Freiman theorem for sum-products) Let A be a finite non-
empty subset of a field F, and let K > 1. Then the following statements are equiv-
alent up to constants, in the sense that if the jth property holds for some absolute
constant C, then the kth property will also hold for some absolute constant Cy,
depending on C;:

(i) |JA+ Al <CKC|Aland |A - Al < CiKC|A|;

(ii) either |A| < C2K 2, or else there exists a subfield G of F, a non-zero
element x € F,and a set X in F such that |G| < C,K©|A|, |X| < C,K©,
and ACx-GUX.

This is a slight strengthening of a result in [43], [44].
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Proof We shall only show the forward implication, leaving the easy backward
implication to Exercise 2.8.2. By relabeling C; K Cras K, we may thus assume
that [A + A| < K|A|and |A - A| < K|A|. We may assume that |A| > CoK € for
some large absolute constant Cy, since the claim is trivial otherwise. We may also
remove 0 from A without any difficulty, thus we may assume A C F*. Applying
Lemma 2.53 and Lemma 2.54, we may find a subset A" of A with |A'| =
QK 9D) A and [(A)* — (A = O(K)PP| A’ forallk > 1. By Corollary 2.23
this implies that

(AN — m(AH| < O(K)Pk»D|A'| for all n, k, m > 1. (2.43)

Dilating A with a non-zero factor if necessary, we may assume 1 € A’ (noting that
the hypothesis and conclusion of the theorem are invariant under such dilations).
We may now add 0 back to A’ and A without affecting (2.43).

Now we apply Corollary 2.52. Let D := (A" — A)\{0} and G := Q[A'] =
(A" — A")/D. Using lowest common denominators, we observe that
(A'-D-D— (A —A)- (A —=A)-A) _ 4A) —4A))

D2 < D2 '
on the other hand, from (2.43) we have

A+G-G-A C

(4(A"Y — 4(A)) - D*| = O(K V| A')),
so by the multiplicative version of Corollary 2.12 we see that
A +G-G-A|=0KVIA) < |A)?

if Cp is sufficiently large. A similar argument gives |A'+ (G +G)- A'| =
O(K9M|A'|) < |A’|?. Applying Corollary 2.52 we see that G is in fact a field.

Now let x be a non-zero element of A’, and let y be an element of A’. Then
(a—y)/x € Q[A'] =G forall a € A’, thus

ACx-G+y.
Thus
x-G+y=A'4+x-GC A+ A -Q[A]
and hence
(-G +y) S (A + A QA

But an argument using (2.43) and Corollary 2.12 as before gives [(A"+ A’ -
Q[A'])?| = O(K°D|A'|) < O(K°DV|G|). Direct computation shows that |(x -
G +y)*| > |G|?> unless y € x - G. Thus (if Cy is sufficiently large) we can take
y € x - G. Because A’ contains 1, we thus have A’ C G.
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Since |A+ A'| < K|A] = O(K°D|A’]), we may apply Ruzsa’s covering
lemma (Lemma 2.14) and cover A by O(K Oy translates of A’ — A’, and hence
by O(K°W) translates of G. A similar argument using the multiplicative ver-
sion of this lemma (and temporarily removing the non-invertible O element from
A if necessary) covers A by O(K €y dilates of G. On the other hand, we have
I(G - x)N (G + y)| < 1 whenever x # 1. Thus we have |[A\G| = O(K°("), and
the claim follows. O

This theorem implies that at least one of A 4+ A or A - A is large if A does not
intersect with a subfield of F:

Corollary 2.56 (Sum-product estimate) [43],/44] Let A be a finite non-empty
subset of a field F, and suppose that K > 1 is such that there is no finite subfield G
of F of cardinality |G| < K|A| and no x € F suchthat |A\(x - G)| < K. Then we
have either |A] = O(K%D)or |A + A| + |A - A| = Q(KC|A|) for some absolute
constant ¢ > 0.

Remark 2.57 In the particular case when F has no finite subfields we thus obtain
|[A+ A|+|A - A| = Q(A|'®) for some absolute constant & > 0; this result was
first obtained (when F = R) by Erdds and Szemerédi [91]. In the setting of the
real line it is was in fact conjectured in [91] that one can take ¢ arbitrarily close to
1 in the above estimate. For the most recent value of ¢, see Theorem 8.15.

In the particular case of the field /' = F, of prime order, which has no subfields
other than {1} and F,, one obtains

Corollary 2.58 (Sum-product estimate for F,) [43],[44] Let A be anon-empty
subset of Fp,. Then

A+ Al +|A - Al = Q(min(|A|, [F,|/|AD|A])
for some absolute constant ¢ > 0.

If H is any non-empty subset of F,,, then we have kH* + kH*, kH* - kH* C
k2H* for all k > 2. Thus we have

K2H* | = Q(min(kH* |, p/|kH¥ ) |kH))

for some absolute constant ¢ > 0. We can iterate this estimate (starting with k = 2
and squaring repeatedly) to establish

Corollary 2.59 Let H be any non-empty subset of F,, and let A, 5 > 0. Then
there exists an integer k = k(A, 8) > 1 such that

lkHY| = Qa s(min(|H|*, p'~?)).
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We leave the proof of this corollary as an exercise. By using Lemma 4.10 from
Chapter 4 one can in fact set § = 0 here, though we will not need this fact here.

In the special case when H is amultiplicative subgroup of F,, we have H* = H,
and hence Corollary 2.59 gives

lkH| = Q2 s(min(|H |4, p'~%)).

Thus multiplicative subgroups have rather rapid additive expansion. It turns out
that one can do something similar for approximate groups:

Theorem 2.60 [40] Let H be a non-empty subset of F,, such that |H?| < K|H|,
and let A, § > 0. Then there exists an integer k = k(A, §) > 1 such that

lkH| = Qa5(K %D min(|H [, p'~?)).

This result can be deduced from Corollary 2.59 and the following proposition;
we leave the precise deduction as an exercise.

Proposition 2.61 Let F be an arbitrary field, and let H C F* be a finite
non-empty subset of invertible field elements such that |H?*| < K|H| for some
K >1.Let k>1and L > 1 be such that kH obeys the following “additive
non-expansion” property: we have |2kH| < L|kH"| for any subset H" of H
of cardinality |H"| > ﬁlH |. Then there exists a subset H' of H of cardinality
|H'| > 5 |H| such that

|j(H'Y | = 0,((1 +log |H|)" KU LOUI |k H )
forall j > 1.

Proof From the multiplicative version of Exercise 2.3.24 we can find H' ¢ H
with |H'| > 52 |H| and ho € H' such that |(h - H) N (ho - H)| = 5% |H| for all
h € H'. By dilation we may normalize 4y = 1. From the additive non-expansion
property we conclude that

|2kH| < Llk((h- HYNH)| < L|Ay| forallh € H’,
where A, :=k(h - H)N kH. Since
|kH + Ayl < [2kH |5 |k(h - H) + Ap| < 12k(h - H)| = [2kH |
we thus obtain the Ruzsa distance estimates
dkH, —Ap),d(k(h - H), —A;) <logL
and hence by the triangle inequality

d(kH, k(h - H)) <2logL. (2.44)
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Now we turn to controlling j(H’)’ for some j. We first observe that
(H')| < |H?| < K|H| < 2K*|H/|
and thus by the multiplicative analog of Exercise 2.3.10 we have
((H)? - (H)™! = 0(KOVIH).

We can then apply the multiplicative version of Exercise 1.1.8 to obtain a set
X C (H')? - (H")~! of cardinality | X| = O(K °V(1 + log |H|)) such that (H')> C
X - H’, and thus (H')) ¢ X/~!'. H'. Thus by the pigeonhole principle we can
bound

JCHY | < 1JOTTHD) < IXPY P H 4 |
for some xy, ..., x; € X/~ it thus suffices to show that
i - H' 44 x; - H' = 0;(L°YIkH)).

Since xH' is contained in a translate of k(xH’), we have the somewhat crude
estimate

Ix)-H +---4+x;-H'| <|jB]

where B := k(x; - H)U---Uk(x; - H). But the x; are all products of O(j) ele-
ments from H' and (H')~'. From repeated application of (2.44) and the triangle
inequality we conclude that

dk(x; - H), k(xpy - H)) < O(jlogL) forall1 <i,i’ <j
and hence
d(B, B) < O(jlogL)+ O(log j).

From Exercise 2.3.10 we conclude that [jB| = O;(L°U”|B|), and the claim
follows. d

By combining Corollary 2.60 with the asymmetric Balog—Szemerédi—-Gowers
theorem, we can show that multiplicative subgroups of F',, cannot have high addi-
tive energy:

Corollary 2.62 Let H be a multiplicative subgroup of F,, such that |H| > p? for
some 0 < § < 1.Then there exists ane = £(8) > 0, depending only on §, such that
E(A,H) < p~®|A||H|? for all A C F, with 1 < ]A| < p' 78 if p is sufficiently
large and depending on §.
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Proof Let ¢ = ¢&'(8) > 0 be a small number to be chosen later, and let ¢ =
e(e’,8’) > 0 be an even smaller number to be chosen later. Suppose for con-
tradiction that there existed a set A such that E(A, H) > p¢|A||H|?. Applying
Corollary 2.36 (with L := p and ¢ replaced by &’) we can find (if ¢ is sufficiently
small and depending on ¢’) a subset H' of H with cardinality

|H'| = Qu(p~*?|H])
such that
[kH'| < |A+kH'| = Ou x(p""*|Al)
for all k. Since H is a multiplicative subgroup, we see that
IH'-H'| < |H?| = |H| = 0o (p*|H')).

Since |H| > p?, we also see (if &' is sufficiently small depending on 6) that | H |4 >
p'=9/2 for some A depending only on §. We can thus apply Corollary 2.60 (with
8 replaced by §/2) and conclude that for a sufficiently large £ depending on § we
have

KH'| = Qg5 (p! 2~ 05)),

This gives a contradiction if &’ is sufficiently small and depending on 8, and p is
sufficiently large. O

We shall apply this to exponential sums over multiplicative subgroups; see
Theorem 4.41. For a variant of this estimate, see Lemma 9.44.

It seems of interest to obtain estimates of this type for more general commutative
rings, and possibly even to non-commutative rings by combining these arguments
with those in the preceding section. In this direction, Bourgain has established

Theorem 2.63 [41] Let p be a large prime, and let A be a subset of the commuta-
tivering F\, x F, (endowedwiththe product structure (a, b) - (¢, d) = (ac, bd)) be
such that |A| > p® and |A + A|, |A - A| < p®|A]| for some 8, & > 0. Then there
exists a set G of F, x F), such that |G| < pP%®|A| and |ANG| > p~%|A],
where G is one of the following objects:

* the whole space G = F, x Fp;

* a horizontal line G = F), x {a} for some a € F),;
* avertical line G = {a} x F, for somea € F);

* alineG ={(x,ax):x € F,} for some a FPX.

We sketch a proof of this proposition in the exercises. This is not as complete
a characterization of sets with small sum-product as Theorem 2.55 — in particular,
it does not address the case of very small A — but is already sufficient to control
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a number of exponential sums of importance in number theory and cryptography.
See [41], [40].

The problem of obtaining good sum-product estimates when the ambient com-
mutative ring is the integers Z = Z has attracted a lot of interest. In this case it has
been conjectured by Erdds and Szemerédi [91] that

kA| + |AF] = @ (JAIF) (2.45)

for all ¢ > 0, all k£ > 2 and all additive sets A C Z. Even the k = 2 case is open
(and considered very difficult); this k = 2 case has currently been verified for all
& > %, see Theorem 8.15. In another direction towards (2.45), a recent result of
Bourgain and Chang [42] has shown that for every m > 1 there exists an integer
k = k(m) > 1 such that

lkA] + |AF] = Q,(1A™) (2.46)

for all additive sets A C Z. This last result is rather deep, in particular using an
intricate “induction on scales’ argument, coupled with some quantitative Freiman-
type theorems.

Exercises

2.8.1  [41] Modify the proof of Lemma 2.53 to prove Lemma 2.54. (Hint: first
use multiple applications of the triangle inequality to obtain control on
Ix-A—y-A|forallx,y e AF. A)

2.8.2  Prove the remaining implication in Theorem 2.55.

2.8.3  Deduce Corollary 2.56 and Corollary 2.58 from Theorem 2.55.

2.8.4 [44],[43] Let A, A’, B be non-empty subsets of a field F' such that 0 & B.
Using the first moment method, show that there exists & € B such that

W |APIAP ,
E(A,E'A)STHAIIAI
and conclude from (2.8) that
e s JAIATBI
~ |A||A| +|B|

2.8.5  [44]Let A be a subset of a finite field F such that |A| > |F|'/2. Show that
[((A—A)-A+(A—-A) - Al>sup,p|A+x-Al > @ and then con-
clude that

F=(A—-A)-A+(A—A)-A+(A—A)-A+(A—A)-A.

(Hints: the first inequality follows easily from Corollary 2.51. For the
second inequality, use Exercise 2.8.4.)
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2.8.6

2.8.7

2.8.8

2.8.9

2.8.10

2.8.11

2.8.12

2.8.13
2.8.14

2 Sum set estimates

(Croot, personal communication) Let A be a subset of a finite field ' such
that |A| > |F|'/* for some integer k > 2. Show that |Q[A]| > |F|'/*~D;
this clearly generalizes Corollary 2.51. (Hint: exploit the fact that the
maps (ay, ..., ar) — xja; + - - - + xpa; fail to be injective for arbitrary
X1y ooy Xk EF.)

[43] Let A be a subset of a field F such that |A| > |F|° for some ¢ > 0.
Show that there exists an integer k = k(¢) > 1 depending only on ¢ such
that k(A*) — k(A¥) = G for some subfield G of F. (Use Exercise 2.8.5
or Lemma 4.10.)

[41] Let F, be a field of prime order p and Z = F, x F,. Let A C Z
be such that |[A N ({a} x F),)| > p?and |A N ({b} x Fy)l > p? for some
0<d<1anda,bcF, Show that for some k = k(§) > 0 we have
k(A%) — k(A% = Z. (Hint: use Exercise 2.8.7.)

[41] Let F,, Z, be as in Exercise 2.8.8, and let m; : Z — Fp, m> :
Z — F, be the coordinate projections. Suppose that A C Z is such that
|1(A)], [m2(A)] > p® for some 0 < § < 1 and such that at least one
of my, m, is not injective. Show that for some k = k(§) > 0 we have
k(A*) — k(A*) = Z. (Hint: by Exercise 2.8.8 it suffices to find some k’
such that k'(A*) — k’(A*") contains a large intersection with either a hor-
izontal line or a vertical line.)

[41]Let F),, Z, 7y, w5 be as in Exercises 2.8.8,2.8.9. Suppose that A C Z
is such that |71 (A)], |m2(A)| > p® for some 0 < § < 1. Show that either
A is contained in a line {(x, ax) : x € F,} for some a € FPX, or else
k(A*) — k(A*) = Z for some k = k() > 0. (Hint: by Exercise 2.8.7 one
can reduce to the case where 7(A) = m2(A) = F,. Now divide into two
cases depending on whether m; or 7, is injective on 2A — 2A or not.)
[41] Use Exercise 2.8.10 and Lemmas 2.53, 2.54 to deduce Theorem 2.63.
(You will have to take a small amount of care concerning the zero-divisors
{0} x Fp, UF, x {0}.)

Let Z be a commutative ring, and Aj, A, A3, A4 be subsets of Z*
such that |A1| = |A2| = |A3| = |A4| = N and |A1 . A2 — A3 . A4| <
KN.Showthat|A; - A; — A;- A;| < KODN forall j = 1,2,3, 4. This
lemma allows one to extend several of the above results to the setting
where the single set A is replaced by a number of sets of comparable
cardinality.

Prove Corollary 2.59.

Use Corollary 2.59 and Proposition 2.61 to prove Theorem 2.60. (Hint:
start with k£ equal to a large power of 2, and set L equal to a small
power of |H|. If the hypotheses of Proposition 2.61 are satisfied, then
one can lower bound |kH | by |j(H’)/|, which can be controlled using
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2.8.16
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Corollary 2.59. If not, we can lower bound |2kH | by L|kH’| for some
large subset H' of H; now replace k by k/2 and H by H’ and argue
as before. Continuing this process, one eventually obtains a good lower
bound on |kH| or |2kH|, either by combining Proposition 2.61 with
Corollary 2.59, or by accumulating enough powers of L.)

[40] Prove the following variant of Corollary 2.62: for any & > 0
there exists & > 0 such that whenever H, A are subsets of F, with
|H| > p?, |H-H|<p°|H|, and 1 < |A| < p'~?, then E(A, H) =
Os(p~¢|A||H|?). In particular we have |A + H| = Qs(p°|H]).

[18] Let A be an additive set in F, such that |A| < p'=? for some
8 > 0. Show that there exists an ¢ > 0 depending on § such that
l{(a,b,c,d,e, f) € AS :ab+c =de + f}| = O.5(|AP~). (Hint: use
the Balog—Szemerédi—Gowers theorem in both the additive and multi-
plicative forms, together with Corollary 2.58.) This estimate is used in
[18] to show that iterations of the map X — X - X, 4+ X3 on random
variables in F', (where X, X», X3 are independent trials of X) converge
in a certain sense to the uniform distribution, which has applications to
random number generation.
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Additive geometry

In Chapter 2 we studied the elementary theory of sum sets A + B for general
subsets A, B of an arbitrary additive group Z. In order to progress further with
this theory, it is important first to understand an important subclass of such sets,
namely those with a strong geometric and additive structure. Examples include
(generalized) arithmetic progressions, convex sets, lattices, and finite subgroups.
We will term the study of such sets (for want of a better name) additive geome-
try; this includes in particular the classical convex geometry of Minkowski (also
known as geometry of numbers). Our aim here is to classify these sets and to
understand the relationship between their geometrical structure, their dimension
(or rank), their size (or volume, or measure), and their behavior under addition or
subtraction. Despite looking rather different at first glance, it will transpire that
progressions, lattices, groups, and convex bodies are all related to each other, both
in a rigorous sense and also on the level of heuristic analogy. For instance, pro-
gressions and lattices play a similar role in arithmetic combinatorics that balls
and subspaces play in the theory of normed vector spaces. In later sections, by
combining methods of additive geometry, sum set estimates, Fourier analysis, and
Freiman homomorphisms, we will be able to prove Freiman’s theorem, which
shows that all sets with small doubling constant can be efficiently approximated
by progressions and similarly structured sets.

Closely related to all of these additive geometric sets are Bohr sets, which are in
many ways the dual object to progressions, but we shall postpone the discussion of
these sets (and their relationship with progressions) in Section 4.4, once we have
introduced the Fourier transform.

112
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3.1 Additive groups

We first review the theory of additive groups, which we introduced in Definition 0.1,
obtaining in particular the classification theorem for finitely generated additive
groups (Corollary 3.9). This is a fundamental result in additive group theory, but it
will also motivate similar results concerning other additively structured sets such
as progressions, Bohr sets, and the intersection of convex sets and lattices.

Typical examples of additive groups include the integers Z, the reals R, the
lattices Z“, the Euclidean spaces R?, the torus groups R?/Z¢, and the cyclic
groups Zy := Z/N - Z. Note that the direct sum Z @ Z’ of two additive groups is
again an additive group. We now make an important distinction between torsion
groups and torsion-free groups.

Definition 3.1 (Torsion) If Z is an additive group and x € Z, we let ord(x) be the
least integer n > 1 such that n - x = 0, or ord(x) = +o00 if no such integer exists.
We say that Z is a torsion group if ord(x) is finite for all x € Z, and we say that it
is an r-torsion group for some r > 1 if ord(x) divides r for all x € Z. We say that
Z is torsion-free if ord(x) = +oo forall x € Z.

Examples 3.2 The groups Z, R, Z¢, R? are torsion-free, whereas any finite group
such as Zy is a torsion group.

A group homomorphism ¢ : Z — Z' between two additive groups Z, Z' is any
map which preserves addition, negation, and zero (thus ¢(x + y) = ¢(x) + ¢(y),
¢(—x) = —¢(x), and ¢(0) = 0 for all x, y € Z). If ¢ is also invertible, then the
inverse ¢! is automatically a group homomorphism, and we say that ¢ is an group
isomorphism, and Z and Z’ are group isomorphic. Since all of our notions here
shall be defined in terms of the addition, negation, and zero operations, they will
all be preserved by group isomorphism, and so we will treat group isomorphic
groups to be essentially equivalent. Later on we shall develop a weaker notion of
Freiman homomorphism and Freiman isomorphism which is more suitable for the
study of “approximate groups” (sets that are “almost” closed under addition); see
Section 5.3.

If G is a subgroup of an additive group Z, then we can form the quotient group

Z/G:={x+G:xeZ}

formed by taking all the cosets of G; this is easily verified to be a group (though
it is no longer a subgroup of Z). For instance, the cyclic group Zy = Z/(N - Z)
is the quotient of the integers Z by the subgroup N - Z. Observe that the map
7w :Z — Z/G defined by m(x) := x + G is a surjective homomorphism.
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The sumset G + H and intersection G N H of two subgroups are still sub-
groups. Indeed, the arbitrary intersection of a family of subgroups is still a
subgroup. Hence, given any subset X of Z, we can define the span (X) of Z
to be the smallest subgroup of Z which contains X; equivalently, (X) is the space
of all finite Z-linear combinations of elements of X. Thus for instance if x € Z,
then (x) is a group with cardinality ord(x). We say that an additive group Z is
finitely generated if it can be written as the span Z = (X) of some finite set X.
Clearly, every additive set X is contained in at least one finitely generated group,
namely (X). Thus in the theory of additive sets one can usually reduce to the case
when the ambient group Z is finitely generated (though it is sometimes convenient
to work in some selected non-finitely generated additive groups, such as Q, R, or
R?). In Corollary 3.9, we shall completely classify all finitely generated additive
groups up to isomorphism.

Letv = (vy, ..., vg) € Z%denotead -tuple of elements in Z. We can rewrite the
span (v) := ({vy, ..., vg}) of this d-tuple in the following manner. For any element
n=n,...,ng) € Z% we define the dot product n - v in the usual manner as

n-v:=nv+---+nqug.

The map n +> n - v is then a homomorphism from Z¢ to Z, and its image Z¢ - v
is precisely the span of v:

() =172 v.

The notion of a progression, introduced in Definition 0.2, is a truncated version of
the concept of a span, in which the infinite lattice Z¢ is replaced instead by a box.
Alternatively, one can think of lattices as infinite progressions.

3.1.1 Lattices

We now study a special type of additive group, namely the lattices in Euclidean
space.

Definition 3.3 (Lattices) A lattice T' in RY is any additive subgroup of the
Euclidean space R which is discrete (i.e. every point in I' is isolated). We define
the rank k of " to be the dimension of the linear space spanned by the elements
of I', thus 0 < k < d.If k = d, we say that I has full rank. If T/ is another lattice
in R? which is contained in T, we say that I'" is a sub-lattice of T.

Thus for instance Z is a lattice of full rank in R?. More generally, a typical
example of a lattice of rank k is the set ZF - v, where v = (v, ..., v;)is acollection
of linearly independent vectors in R? for some 0 < k < d. In fact, this is the
only possible type of lattice, as we shall see in Lemma 3.4. We observe that if
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T : R? — RY is an invertible linear transformation on R?, and T is a lattice, then
T(I') is also a lattice with the same rank as I".

If T is a lattice, then the quotient space R?/T" is a smooth manifold with a
natural Lebesgue (or Haar) measure induced from R?. If " has full rank, it is easy
to see that RY / I is also compact, and thus has a volume mes(Rd /'), which we
refer to as the covolume of .

Next, we classify all lattices in R¢. Call a vector v in I irreducible if v/n & T
for any integer n > 2.

Lemma 3.4 (Fundamental theorem of lattices) IfT is a lattice in RY of rank k,
then there exist linearly independent vectors vy, . . ., v in RY such thatT = ZF - v.
In particular every lattice of rank k is finitely generated and is isomorphic (via an
invertible linear transformation from the linear span of I' to RY) to the standard
lattice ZF. Furthermore, if w is an irreducible vector in ', we may choose the
above representation T = ZF - v so that vi = w.

Proof We first observe that we may assume that the vectors in I' span R, else
we could pass from R? to a smaller vector space and continue the argument. In
other words, we may assume that the rank k of I' is equal to d. We may also clearly
assume that d > 1, since the d = 0 case is vacuously true.

Observe that I" contains at least one irreducible vector w, since one can start
with any non-zero vector v in I" and take w to be the smallest vector of the form v/n
(such a vector must exist since I' is discrete). Now let w be an irreducible vector.

By the full rank assumption, we can find d linearly independent vectors vy, .. ., vy
in I" with v; = w, so in particular the volume |v; A - - - A v,]| of the parallelepiped
spanned by vy, ..., vy is strictly positive. Since I contains Z4 - (vy, ..., v9), we

obtain an upper bound for the covolume:
[vp A -+ A vg| > mes(RY/T).

We now use the method of descent. If Z¢ - (vy, ..., vg) is equal to I then we are
done. Otherwise, the half-open parallelepiped {Zle tiv; : 0 < t; < 1} generated
by the vectors vy, ..., vy, being a fundamental domain of Z¢ - (vy, ..., vy), must
contain a non-zero lattice point x in I'. Write x = Z?zl t;v;; note that at least
one of 1, ...,t; must be non-zero otherwise we would have tw € I" for some
0 <t < 1, which (by the Euclidean algorithm) contradicts the irreducibility of w.
By permuting the indices 1, ..., d if necessary we may assume that ; > 0. We
may also assume that f; < 1/2 since we could replace w by vy +--- 4+ vy — x
otherwise. Then the volume |v; A --- A vy_1 A x| is at most half that of |v; A
.-+ A vy, but is still non-zero. We thus replace v; by x and repeat the above
argument. Because of our absolute lower bound on the volume of parallelepipeds,
this argument must eventually terminate, at which point we have found the desired
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presentation for I'. Note that this procedure will never alter v; and hence v; is
equal to w as desired. O

Corollary 3.5 (Splitting lemma) Let " be a lattice of rank k, and let v be an
irreducible vector in T. Then there exists a sub-lattice " of T of rank k — 1 such
that T is the direct sum of Z -vand T, ie. T =Z -v+T"and Z -vNT’' = {0}.

Proof Apply Lemma 3.4 with vy := v, and set [V := /i (va, ..., v); the
claim then follows from the linear independence of vy, ..., vg. O

Corollary 3.6 (Fundamental theorem of finitely-generated torsion-free
additive groups) Let Z be a finitely generated torsion-free additive group. Then
Z is isomorphic to Z2 for some d > 0.

Proof We shall use the homomorphism theorems (Exercise 3.1.1). Since
Z is finitely generated, we may find elements v;,...,v, in Z such that
7" (vy,...,v,)=Z.NowletI"betheset{n € Z" :n- (vy,...,v,) =0}; then
I' is a sub-lattice of Z" and Z is isomorphic to Z"/I". In particular, Z"/I" is
torsion-free. We shall show that this implies that Z" / T is isomorphic to some Z¢,
as desired. We induce on n, the case n = 0 being trivial. If I' = {0} we are done, so
suppose I' contains a non-zero vector v € I', which we may assume without loss
of generality to be irreducible in I'. It is also irreducible in Z", forif v = m - w for
some w € Z¢ and m > 1, then w + I'" would be a non-zero element of Z"/T"
such that m - (w +T') = 0+ I, contradicting the torsion-free assumption. By
Lemma 3.4 or Corollary 3.5, this implies that Z" /(Z - w) is isomorphic to Z"~'.
Since Z"/T" is isomorphic to (Z"/(Z - w))/(I'/(Z - w)), the claim then follows
from the induction hypothesis. O

3.1.2 Quotients of lattices

Let G be a finitely generated additive group generated by d elements vy, ..., vy €
G. If we write v := (vi, ..., vy), and let I' € Z4 be the lattice I' := {n € Z% :
n - v = 0}, it is easy to see that G is isomorphic to the quotient Z¢/ I". Thus it is
of interest to understand the quotient of two lattices. A basic tool for doing so is

Theorem 3.7 (Smith normal form) Let I" and T be two lattices of full rank in
R such that T is a sub-lattice of T'. Then there exist linearly independent vectors
Vi, ...,Vq in T such that

F:Zd-(vl,...,vd)
and

I''=Z4- (N, ..., Nava),
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where 1 < N < --- < Ny are positive integers such that N; divides N for all
j=1,...,d -1

Note that by applying an invertible linear transformation one canset (vy, . . ., vg)
equal to the standard basis (ey, . . ., e7), so that I becomes just the standard lattice
74, while T is the sub-lattice of Z¢ of vectors whose jth coordinate is a multiple
of Njforj=1,...,d.

Proof We induce on d. For d = 0O the statement is vacuously true, so suppose
d > 1 and the claim has already been proven for d — 1. Given any non-zero vector
v € T, define the index of v to be the largest positive integer n such that v/n € T;
note that the index is finite since I' is discrete. Note that the index of v is n if and
only if v = nw for some irreducible vector w in I'.

Since I'” has full rank, it contains non-zero vectors, each of which has an
index. Let Ny denote the minimum index of all such vectors. By the well-ordering
principle, this index is attained, and thus there exists an irreducible vector v; € T’
such that Njv; € T

Using Lemma 3.4, we may apply an invertible linear transformation to map I'
to Z¢, in such a way that v; is now equal to the standard basis vector e;. Now let
(ny, ..., ng)beany vectorinI'". Observe thatny, . . ., ny are integers; furthermore,
n1 must be a multiple of Ny, otherwise by subtracting a multiple of Nye; we could
ensure that |n| < Ny, which contradicts the definition of N; as the minimal index
of I'". Thus we may factorize I'' = N|Z - e; + I'”, where I is some sub-lattice
of Z?~! (which we think of as the span of es, ..., e;). Note that if x € I'”, then
(N1, x) € TV, and hence (since (N1, x) must have index at least N;), x must be a
multiple of N;. Thus I'” actually lies in N, - Z¢~!, and we may therefore write
I = Ni(Z - e; + I'"”) for some sub-lattice I’ of Z¢~'. Note that I'"” must have
rank d — 1 since I'’ has rank d.

We now invoke the inductive hypothesis, and, by applying an invertible linear
transformation to Z~! if necessary, we may assume that

r” = {(}’lez, ey nde) ‘np,..., N4 € Z}

forsomel < M, < --- < My suchthat M; divides M forall j =2,...,d — 1.
The claim follows by setting N; := NyM; for j =2,...,d. O

We can now obtain the well-known classification of finite and finitely generated
additive groups:

Corollary 3.8 (Fundamental theorem of finite additive groups) Every finite
additive group G is isomorphic to the direct sum of a finite number of cyclic
groups Ly = Z1./(N - Z).
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Proof Letg, ..., g,beafinite setof generators for G. Thenthemap ¢ : Z¢ — G
defined by ¢(n) :=n - (g1, ..., g4) is a surjection, and thus G is isomorphic to
Z¢/$~1(0), which is a subgroup of R?/¢~1(0). The kernel ¢~'(0) is clearly a
lattice of some rank 0 < k < d, and hence by Lemma 3.4 is generated by k linearly
independent vectors vy, .. ., U in 77 . Observe that we must have full rank k = d,
otherwise Z¢/¢~'(0) (and hence G) will be infinite. Using the Smith normal
form, we can after applying an isomorphism write ¢~!(0) as the lattice generated

by Niey, ..., Nge, for some integers Ny, ..., Ny > 1; this makes G isomorphic
toG=Z/N\Z & --- D 7ZL/N,yZ, as desired (indeed we even obtain a normal form
in which N; divides N;  for j =1,...,d —1). O

Corollary 3.9 (Fundamental theorem of finitely generated additive groups)
Every finitely generated additive group G is isomorphic to the direct sum of a
finite number of cyclic groups Z/(N - Z), and a lattice Z? for some d > 0.

Proof Let G :={x € G : nx = 0 for some n > 0} be the torsion group of G;
then by Corollary 3.8, G is the direct sum of cyclic groups. The quotient group
G /G is torsion-free and is thus isomorphic to Z¢ for some d > 0 by Corollary 3.6.

Ifweletéy, ..., é; bearbitrary representatives in G of the standard basis ey, . .., e4
of Z4, we thus see that G is the direct sum of G and Z - &y, ..., Z - &,, and the
claim follows. O
Exercises

3.1.1  (Homomorphism theorems) If ¢ : Z — Z’ is a homomorphism between
groups, show that the range ¢(Z’) is a group which is isomorphic to
the quotient group Z/¢~'(0). If G, H are subgroups of Z, show that
(G + H)/G is isomorphic to H/(G N H). If furthermore G C H, show
that H/G is a subgroup of Z/G and that (Z/G)/(H/G) is isomorphic
to Z/H. If G’ is a subgroup of Z’, show that (Z & Z')/(G & G’) is
isomorphic to (Z/G) & (Z'/G").

3.1.2  (Cauchy’s theorem) Show that if G is a subgroup of a finite additive
group Z, then |Z/G| = |Z]|/|G| (and in particular |G| must divide |Z}).
By considering the groups (x) for various x € Z, conclude thatevery finite
additive group Z is an | Z|-torsion group; in particular, ord(x) divides | Z|

forallx € Z.
3.1.3  Show that if x is any element of a additive group Z, then the group (x) =
Z - x has cardinality ord(x). More generally, if v = (v, ..., vy) € Z%,

show that the group Z¢ - v has cardinality at most ord(v;) - - - ord(vy), but
at least as large as the least common multiple of ord(v;).

3.14  Let Z be an additive group. Show that Z is an N-torsion group if and
only if for every x € Z, the torsion of x is a divisor of N. Show that Z is
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torsion-free if and only if Z contains no finite subgroups other than the
trivial subgroup {0}.

3.1.5 LetZ = Z| & Z, beadirect sum of additive groups and » > 1. Show that
Z is torsion-free (resp. r-torsion) if and only if Z; and Z, are torsion-free
(resp. r-torsion).

3.1.6  Prove that Q and R are not finitely generated.

3.1.7  If x, y are elements of an additive group Z with finite order, show that
x + y also has finite order, and that ord(x + y) divides the least common
multiple of ord(x) and ord(y). Conclude that the set tor(Z) :={x € Z :
ord(x) < oo} is a torsion group; we refer to it as the forsion subgroup of
Z. It is clearly the largest subgroup of Z which is a torsion group. Show
that the quotient group Z /tor(Z) is torsion-free, and is in fact the largest
quotient which is torsion-free (in the sense that all other torsion-free
quotients are quotients of Z /tor(Z)).

3.1.8  Show that Corollary 3.5 fails whenever v is not irreducible.

3.2 Progressions

We now study a basic example of an additive set, namely that of a generalized
arithmetic progression (or progression for short), as defined in Definition 0.2.
These will be model examples of additive sets with large amounts of additive
structure; they can be viewed as a hybrid between a lattice and a convex set. (For
a more quantitative realization of this heuristic, see Lemma 3.36 below.)

Note that progressions with the same set of basis vectors add very easily

(@+[0,Nl-v)+@ +[0,N]-v)=@+a)+[0,N+NT-v (3.1

(so in particular the rank and basis vectors do not change), whereas progressions
with different basis vectors add via the formula

(@a+[0,Nl-v)+ (@ +[0,N]-vV)=(@+d)+[0,N®ENT-(vdv). (B2

Note the progression on the right-hand side of (3.2) is likely to be highly improper
if v and v’ share some basis vectors in common. Also one can replace the box
[0, N] by another one and also obtain a progression:

a+[N,M]-v=(@+N - -v)+[0,M— N]-v.

Similarly if one uses boxes such as [N, M), etc. In particular, the negation of a
progression is also a progression:

—(@+[0,N]-v)=(—a)+[0,N]-(—v) =(—a—N-v)+ [0, N]-v. (3.3)
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From this and (3.2) we see that the sum or difference of two progressions is again
a progression. Finally, we make the easy observation that the Cartesian product of
two progressions is again a progression.

We now show that, up to errors of O(1)?, that progressions of rank d are
essentially closed under addition.

Lemma 3.10 Let P = a + [0, N] - v be a progression of rank d in an additive
group Z; we do not require that P be proper (see Definition 0.2). Then for any inte-
gersn < mandanyb € Z, we cancoverb + [nN, mN] - v by (m — n)? translates
of P. In particular for any n, m > 0 with (n, m) # (0, 0), we can covernP — m P
by (n + m)? translates of P, and in particular

nP —mP| < (n+m)¢|P|.

Furthermore, nP — mP is also a progression of rank d and volume at most
vol(nP — mP) < (n + m)?vol(P).

Proof The first claim is clear since
[n-N,m-N]-v=[0,N]-v+[(n,...,n),(m,...,m)]-(Nivy,..., Ngvg).
From (3.1) we have
nP—mP = ma—ma—mN -v)+[0,(n+m)N]-v
from which the remaining claims follow. O

From this lemma we see in particular that if P is a symmetric progression of rank
d and contains the origin (e.g. if P = [N, N] - v), then P is a 2¢-approximate
group in the sense of Definition 2.25. Indeed one can think of (symmetric) pro-
gressions of small rank as substitutes for subgroups in torsion-free settings (since
torsion-free groups cannot contain finite subgroups). They also are the arithmetic
analogue of boxes (or more generally, parallelepipeds) in Euclidean space, and
in fact many of the results from real-variable harmonic analysis regarding cover-
ing by boxes (in physical space, Fourier space, or both) will have analogues for
progressions.

In the special case when the rank d is equal to 1, a generalized arithmetic
progression is the same as an ordinary arithmetic progression (or arithmetic
progression for short)

P=a+[0,N]-v={a+nv:0<n <N}

with base point a € Z, basis vector or step v € Z, and length N + 1. Note again
that the cardinality of P may be less than N + 1 if P is not proper, though in a
torsion-free group this is only possible if the step v is zero.
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We record a trivial lemma that asserts that the sum set of a progression and a
small set can be contained (somewhat inefficiently) in another progression.

Lemma 3.11 If P is aprogression of rankd, and P + wy, ..., P + wg are trans-
lates of P, then all the translates P + wy, ..., P + wg can be contained inside a
single progression of rank d + K — 1 and volume 2X ~'vol(P).

Proof Write P = a + [0, N] - v. By translation invariance we may set wgx =
0. Then the claim follows by using the progression a + [0, N]-v + [0, 1]¥!.
(Wi, ..o, wg—1). O

Thus if one adds a small number of elements to an progression, one can still place
the combined set inside a progression of slightly larger rank and volume, although
the volume can grow exponentially in |A|. This is unavoidable: see Exercise 3.2.2.
Because of this exponential loss, it is sometimes better not to invoke this lemma,
and deal with multiple shifts of a single progression rather than trying to contain
everything inside a single progression. Note that we have not guaranteed that the
progressions in Lemma 3.11 are proper; we will return to this point in Section 3.6.

Exercises

3.2.1 LetN = (Ny,..., N;y)beacollection of non-negative integers. Show that
every proper ordinary arithmetic progression of length (Ny + 1) - - - (Ng +
1) is equal (as a set) to a proper generalized arithmetic progression of
dimension N. (This example shows that the rank of a progression cannot
be uniquely determined from the set of its elements, even if we restrict
the progression to be proper.)

3.2.2 Let K > 1 andd > Obeintegers,and P = a + [0, N] - v be arank d pro-

gression in an additive group Z for some basis vectors v = (vy, . .., Vg),
and let X = {e;, ..., ex} be a set of K elements in Z. Suppose that the
elements vy, ..., vy, €y, ..., ex are linearly independent over Z. Show

that any progression which contains P + X must necessarily have rank
at least d + K — 1 and volume at least 2X~'vol(P), which shows that
Lemma 3.11 is sharp.

3.2.3  Show thatin atorsion-free additive group, the intersection of two ordinary
arithmetic progressions is again an ordinary arithmetic progression. What
happens if the torsion-free hypothesis is removed? What happens if one
or both of the progressions is allowed to have rank greater than one?

3.24  Show that every finite additive group is also a proper progression.

3.2.5 Let P be a progression of rank d. Show that P contains an arithmetic
progression Q with |Q| > |P|'/?, and furthermore that Q is proper if P
is, and Q can be chosen to be symmetric around the origin if P is.
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3.2.6  Let P be a proper progression of rank d, and let A be a subset of P such
that |A| < €| P| for some 0 < ¢ < 1. Show that P\ A contains a proper
progression Q of rank d with |Q| > C~? /e for some absolute constant
C.

3.277 Let A be an additive set in an ambient group Z, and let v € Z. Show
that |(A 4+ v)\A| <1 if and only if A is equal to a proper arithmetic
progression of step v, union a finite (possibly zero) number of translates
of the group (v). In particular, if | A| < ord(v), then |(A 4+ v)\A| > 0, and
[(A 4+ v)\A| =1 if and only if A is a proper arithmetic progression of
step v.

3.3 Convex bodies

We now review some of the theory of convex bodies in RY, which are in some
sense the continuous analogue of generalized arithmetic progressions. This is of
course a vast field, and we shall restrict ourselves with just a small sample of
results, relating to the additive theory of such sets, to covering lemmas, and the
relationship between addition and volume.

We shall use mes(A) to denote the volume of a set A in R?; to avoid issues
with measurability we shall mostly concern ourselves with bounded open sets A.
If AcRYand A € R, we use A - A to denote the dilation A - A := {Ax : x € A}.
Observe that mes(AA) = |A|“mes(A).

Recall that a set A in R? is convex if we have (1 — 0)x 4+ 0y € A whenever
x,y € Aand 0 < 60 < 1; equivalently, a set is convex if and only if

a-A+b-A=(a+b) A

for all real a, b > 0 (Exercise 3.3.3). In particular we have nA = |n| - A for any
integer A. We call A a convex body if it is convex, open, non-empty, and bounded.
In particular we see that if A is a convex body, then

mes(A + A) = mes(2 - A) = 2%mes(A), (3.4)
so convex bodies have small doubling constant. As for A — A, we can use

Lemma 3.12 [297] For any bounded open subsets A, B, C of R? (not necessarily
convex), we have

mes(A — C)mes(B) < mes(A — B)mes(B — C).
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This is proven by modifying the proof of Lemma 2.6 appropriately and is left
as an exercise. From this Lemma (with A = C and B = —A) and (3.4) we obtain

mes(A — A) < 4%mes(A); (3.5)

compare these bounds with Lemma 3.10. For a slight refinement of (3.5),
see Exercise 3.4.6. In the converse direction, the Brunn—Minkowski inequality
(Theorem 3.16 below) will give mes(A — A) > 29mes(A).

Call a convex body A symmetric if A = — A; thus for us symmetry will always
be with respect to the origin. The following theorem of John essentially classifies
all convex bodies (symmetric and non-symmetric) up to a (dimension-dependent)
constant factor.

Theorem 3.13 (John’s theorem) [194] Let A be a convex body in R%. Then there
exists an invertible linear transformation T : R? — R? on R? and a point xy € A
such that

B; CT(A—x0) Sd- By,

where By is the unit ball {(x, ..., x7) € R? : xl2 + -4 xd2 < 1}. If A is symmet-
ric, then we can improve these inclusions to

By C T(A) C Vd- By
The constants d and ﬁ are sharp; see the exercises.

Proof We will use a variational argument. Define an ellipsoid to be any set E of
the form E = L(B;) + xo, where By is the unit ball, xo € R?, and L is a (possibly
degenerate) linear transformation in R; we allow the ellipsoid to be degenerate for
compactness reasons. Since A is open and bounded, it is easy to see that the set of
all ellipsoids E contained in A is a compact set (with respect to the usual topology
on L and x(). Also the volume of the ellipsoid E is mes(E) = | det(L)|, whch is
clearly a continuous function of E. Thus there exists an ellipsoid E = L(By;) + x¢
in A which maximizes the volume mes(E); since A is open, this volume is non-
zero, and hence L is invertible. By applying L~! if necessary (observing that
the conclusion of the lemma is invariant under invertible linear transformations)
we may thus assume that E is a translate £ = B, + y of the unit ball, where
yo = L™ (x0).

Let us now restrict to the case where A is symmetric. Observe that if A contains
B, + yo then it also contains B; — y by symmetry, and hence contains B, which
is in the convex hull of B; + yo and B; — yo. To conclude the proof of the lemma in
this case we need to show that A is contained in «/d - B,. Suppose for contradiction
that A was not contained in ~/d - By; without loss of generality (and using the
hypothesis that A is open) we may then suppose that re; € A for some r > +/d,
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where e is the first basis vector. Observe now from elementary geometry that if
w is any point on the boundary of B, making an angle Z(w, e;) < arctan(r> — 1),
then the line segment connecting w to re; is disjoint from (and not tangent to) By,
and, since B, and re; both lie in the convex set A, we thus see that w also lies in
the open set A. By symmetry, the same is true if Z(w, —e;) < arctan(+/r2 — 1).

We now perturb the ball B; by an epsilon. Now let § > 0 be a small number,
let ¢ > 0 be an even smaller one, and consider the ellipsoid L, s(B,), where

Les(xi,...,xq): =1+ («/E —14+8)e)x, (1 —e)xa, ..., (1 —&)xy)).

When ¢ =0, L, 5(By) is just B;. Now consider how L, s(B;) evolves in ¢. The
determinant of this transformation is (1 4+ (v/d — 1 + 8)e)(1 — &)?~!, which has
a positive e-derivative at ¢ = 0. Thus L, s(B,) has larger volume than B for suf-
ficiently small ¢ (depending on §). Now we check which points on the surface of
L, s(B;) expand away from the origin, and which ones contract. A simple compu-
tation shows that for any w = (wy, .. ., w;) on the boundary of By, the derivative

DiLos@l?|
de” ~ £=0
where ||(y1, ..., ya)lI? := y? + - - - + y3, is negative unless
d—-14+8w) —ws—-—a’ >0,
or in other words that
Llw, xe) < arctan(«/W).

But if § is small enough depending on r, this region is contained entirely within
the interior of A by the previous discussion. Thus for & small enough L, s(By) is
completely contained inside A but has larger volume, contradicting the maximality
of B;, and we are done.

Now suppose that A is not symmetric. In this case we may translate so that
yo = 0. Thus again we have B; C A, and the task is to show that A C n - By.
Suppose again for contradiction that re; € A for some r > d; again this means
that every point w in the boundary of B; with Z(w, e1) < arctan(r> — 1) will lie
in the interior of A. Now let §, ¢ > 0 and consider the ellipsoid

Lg’g(xl, ...,Xd)+(d— 1 +8)8€1;

again, this ellipsoid has larger volume than B, if ¢ is sufficiently small. Also, we
see that

d
— | Les(@) + (d — 14 8)eey |2
d8 =0
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is negative unless
d—=14+8wr+d—1+8w —w} — - —w’ >0,
which can be rewritten (using ||| = 1) as
((d + w1 — (w1 + 1) = 0,

or equivalently

Z(w, ey) < arctan(+/(d + 8)? — 1).

We now argue as in the symmetric case to obtain again the desired contradiction,
if § is chosen so that d + 8§ < r. O

As a corollary of Theorem 3.13 we see that if A is a convex body, we can cover
A + A or A — A by arelatively small number of copies of A:

A £ A can be covered by O(d)d translates of A. 3.6)

This follows immediately from the geometric observation thatd - By +d - By =
2d - B, can be covered by O(d)? translates of By. If A is symmetric, we can
improve this somewhat. In the special case when A is a cube or a box, it is clear
that A & A can be covered by 2¢ translates of A (cf. Lemma 3.10), but one cannot
hope for this in general; for instance if A is a disk in R? then one needs six copies
of A to cover A + A. In the general case, we will need the following continuous
version of

Lemma 3.14 (Ruzsa’s covering lemma) [300], [250] For any bounded subsets
A, B of RY with positive measure (not necessarily convex), we can cover B by at

. A+B A-B
most mln(%, mzféS(A) )y translates of A — A.

The proof of this lemma is nearly identical to that of Lemma 2.14 and is left as
an exercise. As a consequence we can improve (3.6) for symmetric convex bodies:

Corollary 3.15 Let A C R? be a convex body, and let A, ;. > O be real. Then ) - A
can be covered by at most (A + 1)? translates of A — A, and . - A — v - A can be
covered by (2max(k, ) + 1)? translates of A — A. If A is symmetric, then ) - A
can be also covered by (21 + 1) translates of A.

Proof The first claim follows from Lemma 3.14 since mes(A-A 4+ A) =
(A + ?mes(A). To prove the second claim, we may take A > p. The first claim
implies that 2 - A can be covered by (2A + 1) translates of A — A =2 - A, and
the third claim follows by rescaling by 1/2. Finally, the second claim follows by
applying the third claim to A — A. O
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Observe that all the bounds obtained here tend to be exponential in d or worse.
Thus when using the theory of convex bodies to obtain explicit estimates, it is often
important to keep the dimension d as low as possible, even at the cost of making
some other parameters larger than would otherwise be necessary. See [250] for
further discussion of sum set and covering estimates for convex bodies.

We have not yet seen what happens to the sum or difference of two unrelated
convex bodies A and B. The relationship here is given by the Brunn—Minkowski
inequality, which we turn to next.

Exercises

3.3.1 Prove Lemma 3.12.

3.3.2  Prove Lemma 3.14.

3.3.3  Verify that the two definitions of convexity given are indeed equivalent.

3.34  Let A be an open bounded subset of R?. Show that A is convex if and
only if 2A =2 - A, and that A is convex and symmetric if and only if
2A =-2-A.

335 Foranys > 0let I'(s) := 0°° e*x*~! dx denote the Gamma function.
Show that I'(s + 1) = sI'(s) for all s > 0, that I'(d) = (d — 1)! for all
d > 1, that I'(1/2) = /7, and we have the Stirling formula

logI'(s) = slogs — s + O(log s) 3.7

for all large s. (Hint: use (1.52) and the monotonicity of the I" function.)

3.3.6  Let B, be the unit ball in R?. By evaluating the integral fRd e dx in
both Cartesian and polar coordinates, and using the preceding exercise,
establish the volume formula

dnd
mqud)zz%%5%;%35»=(2ne+—oﬂ)ﬁﬂd*dﬂ. (3.8)

3.3.7 Let O, be the octahedron given by the convex hull of +ey, ..., *e;
in RY. Show that mes(0y) = 27/d! = (2e + o(1))?d~“. Thus in large
dimension the octahedron becomes considerably smaller than the cir-
cumscribing ball B; which contains it, which in turn is considerably
smaller than the circumscribing cube.

3.3.8  Show that the constants d and ~/d in Theorem 3.13 cannot be improved.
(For the non-symmetric case, take A to be a d-simplex (the convex hull
of d points in R%); for the symmetric case, take A to be a cube.)

3.3.9 If A and A’ are two symmetric convex bodies in R?, show that there exists
an invertible linear transformation 7' : R — R¢ such that

ACTA)Cd-A.
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State and prove a similar result in the case when A and A’ are not neces-
sarily symmetric.
3.3.10 Let A, B be open bounded sets. Show that

mes(A)mes(B)
mes(A £+ B)

for either choice of sign &, by developing a continuous analogue of the
arguments used to prove (2.8). (Alternatively, one can try to discretize A
and B to replace them with finite sets, and then use (2.8) directly.)

3.3.11 [26] Let A be a symmetric convex body in R?, which contains the ball
p - B of radius p > 0 centered at the origin. Let V be any r-dimensional
subspace of R?. Show that mes,(A N V) < Wmesd(fx), where mes,
denotes r-dimensional measure. (Hint: first show that if » < d, then there
exists an r + 1-dimensional space V) containing V such that mes,
ANV > r%mes,(A N V). Then continue inductively.)

mes((A — A)N(B — B)) >

3.4 The Brunn-Minkowski inequality

The purpose of this section is to prove the following lower bound for the volume
mes(A + B) of a sum set.

Theorem 3.16 (Brunn-Minkowski inequality) If A and B are non-empty
bounded open subsets of R, then

mes(A + B)l/d > mes(A)l/d + mes(B)l/d.

This inequality is sharp (Exercise 3.4.2). The theorem also applies if A and B
are merely measurable (as opposed to being bounded and open), though one must
then also assume that A + B is measurable; we will not prove this here. In general,
there is no upper bound for mes(A + B); consider for instance the case when A is
the x-axis and B is the y-axis in RZ, then A, B both have measure zero but A + B
is all of R%. One can easily modify this example to show that there is no upper
bound for mes(A + B) in terms of mes(A) and mes(B) when A, B are bounded
open sets. See [128] for a thorough survey of the Brunn—Minkowski inequality
and related topics.

To prove this theorem, it suffices to prove the following dimension-independent
version:

Theorem 3.17 If A and B are non-empty bounded open subsets of R?, and 0 <
0 < 1, then

mes((1 —60)- A +6 - B) > mes(A)' “mes(B)°’.
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To see why Theorem 3.17 implies the Brunn—Minkowski inequality, apply The-
orem 3.17 with A and B replaced by mes(A)~"/¢ . A and mes(B)~'/¢ - B to obtain

1-6 0
-A -B)>1
fnes (mes(A)l/d + mes(B)!/4 ) -
forany 0 < 6 < 1. Setting
. mes(B)'/4
" mes(A)/4 4+ mes(B)!/4

we obtain the result. Conversely, one can easily deduce Theorem 3.17 from the
Brunn—Minkowski inequality (Exercise 3.4.1).
It remains to prove Theorem 3.17. We begin by first proving

Lemma 3.18 (One-dimensional Brunn—Minkowski inequality) If A and B
are non-empty bounded open subsets of R, then mes(A 4+ B) > mes(A) 4+ mes(B).

Proof The hypotheses and conclusion of this lemma are invariant under indepen-
dent translations of A and B, so we can assume that sup(A) = 0 and inf(B) = 0,
hence in particular A and B are disjoint. But then we see that A + B contains both
A and B separately, and we are done. ]

Using this Lemma, we deduce

Proposition 3.19 (One-dimensional Prékopa-Leindler inequality) Ler 0 <
0 <1, and let f,g,h: R — [0, 00) be lower semi-continuous, compactly sup-
ported non-negative functions on R such that

h((1 = 0)x +0y) > f(x)'?g(y)

forall x,y € R. Then we have

fe=(h) ()

Proof Bymultiplying f, g, h by appropriate positive constants we may normalize
sup, f(x) =sup, f(y)= 1.
Let 1 > A > 0 be arbitrary. Observe that if f(x) > A and g(y) > A, then by
hypothesis A((1 — 0)x + 6y) > A. Thus we have
{zeR:h(z)>ACA—-0)-{xeR: f(x)>A}+0-{yeR:g(y) > AL

Since f, g, h are lower semi-continuous and compactly supported, all the sets
above are open and bounded, hence by Lemma 3.18

mes({z € R: h(z) > A}) > (1 —O)mes({x € R: f(x) > A})
+6mes({y € R: g(y) > A}).
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Integrating this for A € [0, 0co) and using Fubini’s theorem (cf. (1.6)), the claim
follows from the arithmetic mean—geometric mean inequality. O

Now we iterate this to higher dimensions.

Proposition 3.20 (Higher-dimensional Prékopa-Leindler inequality) Let
0<60<1, d=1, and let f, g, h: RY = [0, 00) be lower semi-continuous,
compactly supported non-negative functions on R¢ such that

h((1 = 0)x + 0y) > f(x)' " g(y)’

forall x,y € RY. Then we have

fe=(h) Ue)

Proof We induce on d. When d = 1 this is just Proposition 3.19. Now assume
inductively thatd > 1 and the claim has already been proven for all smaller dimen-
sions d. Define the one-dimensional function /#, : R — [0, 00) by

ha(xa) :=[ BGer, e xa) doxy - dxg 1,
Rd—l

and similarly define f;, g;. One can easily check that (using Fatou’s lemma)
that these functions are lower semi-continuous and compactly supported. Also,
applying the inductive hypothesis at dimension d — 1 we see that

ha((1 = 0)xq + 0y0) > fa(va)' ™ ga(ya)’

forall x4, y; € R.If we then apply the one-dimensional Prékopa—Leindler inequal-
ity, we obtain the desired result. O

If we apply Proposition 3.20 with f := 14, g 1= 1p, and h := 1(1_g)a+9B WE
obtain Theorem 3.17, and the Brunn—Minkowski inequality follows.

Exercises

34.1  Show that Theorem 3.16 implies Theorem 3.17.

3.4.2  Show that equality in Theorem 3.17 can occur when A is convex, and
B =A- A+ xo for some A, xg € R". Conversely, if A and B are non-
empty bounded open subsets of R¢, show that the preceding situation is
in fact the only case in which equality can be attained. (The case when A
and B are merely measurable is a bit trickier, and is of course only true
up to sets of measure zero; see [128] for further discussion).

343 Let A be a convex body in RY. Using Theorem 3.17, show that
the cross-sectional areas f(x4) := mes({x’ € R~ : (x', x;) € A} are a
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log-concave function of x4, i.e. f((1 —Mxg + Ays) = fx)' ™ fF(ya)
forall 0 < A < 1 and x4, y; € R; this is known as Brunn’s inequality.
Let A be a bounded open set with smooth boundary dA, and let B be
a ball with the same volume as A. Prove the isoperimetric inequal-
ity mes(dA) > mes(dB). (Hint: Use the Brunn—Minkowski inequality
to estimate w for ¢ > 0 small, and then let ¢ — 0.)

Let A, B be symmetric convex bodies in R?. Show by examples that there
is no upper bound for mes(A + B) in terms of mes(A), mes(B), amd d
alone, except in the d = 1 case. However, by using Lemma 3.12, show
that mes(A + B) < 4d%.

[282] Let A be a convex body. Use the Brunn’s inequality to show
that mes(A N (x + A)) > (1 — r)"mes(A) whenever 0 <r <1 and x €

r - (A — A). Conclude that

mes(A)? = mes(A N (x + A)) dx
A—A

1
> / n(1 — r)" 'mes(A)mes(r - (A — A)) dr
0

= %mes(A)mes(A —A)
whence one obtains the Rogers—Shepard inequality mes(A — A) <
(?)mes(A). Show that this inequality is sharp when A is a simplex. Use
Stirling’s formula to compare this inequality with (3.5).
[162] Let A, B be additive sets in Z¢. Use the Brunn—Minkowski inequal-
ity to show that |A + B + {0, 1}¢| > 2 min(|A|, | B]). (Hint: consider
A +10, 1]1% and B + [0, 1]¢)
[162] Let A, B be additive sets in R?. Show that |A + B + {0, 1}¢] >
2¢min(|A|, |B]). (Hint: partition R? into cosets of Z¢, locate the coset
with the largest intersection with A or B, and apply the preceding
exercise.)
Let A be an open bounded set in R?. Show that mes(A + A) > 29mes(A),
with equality if and only if A is convex. (Hint: A 4+ A contains 2 - A.)

3.5 Intersecting a convex set with a lattice

In previous sections we have studied lattices, which are discrete but unbounded, and

convex sets, which are bounded but continuous. We now study the intersection B N

I" of a convex set B and alattice I' in a Euclidean space R?, which is then necessarily
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a finite set. A model example of such set is the discrete box [0, N) for some
N = (Ny, ..., Ny), which is the intersection of the convex body {(x1,...,xs) :
—1 < x; < N; forall 1 <i < d} with the Euclidean lattice 7. One of the main
objectives of this section shall to show a “discrete John’s lemma” which shows
that all intersections B N I" can be approximated in a certain sense by a discrete
box.

We begin with some elementary estimates.

Lemma 3.21 Let T be a lattice in R?. If A C R? is an arbitrary bounded set and
P C RY is a finite non-empty set, then

[ANT+P)<|(A-—A)NT + P — P)|. (3.9
If B is a symmetric convex body, then
(k - BYNT can be covered by (4k + 1)¢ translates of BN T (3.10)

for all k > 1. If furthermore ' is a sub-lattice of T" of finite index |I"/ T"’|, then we
have

IBNT'| < |BNT| <9%I/T||BNT]. @3.11)

Proof Wefirstprove (3.9). We may of course assume that A N (I' + P) contains at
least one element a. Butthen AN(T"+ P) C ((A—A)N(IT 4+ P — P))+a,and
the claim follows. Now we prove (3.10). The lower bound is trivial, so it suffices to
prove the upper bound. By the preceding argument we can cover |(% -B4+x)NT]
by a translate of B N T for any x € R¢. But by Corollary 3.15 we can cover k - B
by (4k + 1)¢ translates of % - B, and the claim (3.10) follows.

Finally, we prove (3.11). The lower bound is trivial. For the upper bound,
observe that T is the union of |I'/ I'’| translates of T, so it suffices to show that
[BN (I +x)| <9 BNT|forall x € R?. But by (3.9) and (3.10) we have

IBNM' +x)|<|2-B)NT'| <9BNT|
as desired. O

Next, we recall a result of Gauss concerning the intersection of a large convex
body with a lattice of full rank.

Lemma 3.22 Let T' C RY be a lattice of full rank, let vy, ..., vy € T be a set of
generators for T', and let B be a convex body in R?. Then for large R > 0, we have
_ mes(B)

I(R-B)NT| = (R + Or,p.a(R" ).
lvp A= A vyl

Here |vi A--- Avy| denotes the volume of the parallelepiped with edges
V1y ..., Uq.
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Proof We use a “volume-packing argument”. Since I" has full rank, vy, ..., vy
are linearly independent. By applying an invertible linear transformation we may
assume that vy, ..., vy is just the standard basis ey, ..., e4, so that I' = Z7. Now
let Q be the unit cube centered at the origin. Observe that the sets {x + Q : x €
(R - B) N Z4} are disjoint up to sets of measure zero, and their union differs from
R - B only in the +/d-neighborhood of the surface of R - B, which has volume
Or.p.4(R?~1). The claim follows. O

Remark 3.23 The task of improving the error term Or, B,d(R"“) for various
lattices and convex bodies (e.g. Gauss’ circle problem) is a deep and important
problem in number theory and harmonic analysis, but we will not discuss this issue
in this book; our only concern is that the error term is strictly lower order than the
main term.

If T is a lattice, we define a fundamental parallelepiped for " to be any
parallelepiped whose edges vy, ..., vy generate I'. From the above lemma we
conclude that all fundamental parallelepipeds have the same volume; indeed this
volume is nothing more than the covolume mes(R?/TI") of I'. Thus for instance
mes(R?/Z%) = 1.

By another volume-packing argument we can establish

mes(RY/T)|T'/T’| = mes(RY/ T) (3.12)

whenever I’ € T' C R? are two lattices of full rank; see the exercises. In particular
we see that the quotient group |I'/ I''| is finite.

Yet another volume-packing argument gives the following continuous and
periodic analogue of (2.8).

Lemma 3.24 (Volume-packing lemma) Let " C R be a lattice of full rank, let
V be a bounded open subset of R?, and let P be a finite non-empty set in RY.
Then

V= V)N + P — py = DSV
~ mes(RY/T)’
In particular, we have
mes(V)
(V-V)NT|> ———.
mes(R4/T)

Proof Let B be the unit ball on R?, andlet R > O be a large number. Consider
the integral of the function

fE =) Y vy

yel'N(R-B) peP
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On the one hand we can compute this integral using Lemma 3.22 as

f(x)dx = Z Zmes(V +)
R¢ yel'N(R-B) peP
= | N (R - B)||P|lmes(V)|
= (R + Or,5,4(R))|P| mes(R7/ T

On the other hand, from (3.9) we have
fO=lx=V)NnT+P—-P)<[(V-V)N(T+P—P)|.

Furthermore, f(x) is only non-zero when x lies in R-B+V + P C (R+
Oy p(1)) - B, which has volume R + OV,p,d(Rd’l). Thus

f)ydx < |[(V=V)NT + P — P)R + Oy pa(R*™).
):

Combining these inequalities, dividing by R?, and taking limits as R — 00, we
obtain the result. O

To see the utility of this lemma, let us pause to establish the following classical
result in number theory, which we will need later in this book. Let || x||r/z denote
the distance from x to the nearest integer.

Corollary 3.25 (Kronecker approximation theorem) Let o1, ...,y be real
numbers, and let 0 < 6y, ...,60; < 1/2. Then for any N > 0, we have

[{n € (=N, N):|najllr/z <8 forall j=1,...,d}| = NO;---6,.
In particular, if NO; - - -0, < 1, then there exists an integer 0 < n < N such that
lnojllrz <6 forallj=1,...,d.
Proof Apply Lemma 3.24 with " := Z¢,
V.= {(tl,...,td)+Zd:O<tj <@ foralll <j<dj,
and P equal to the arithmetic progression P = [0, N) - («y, ..., ay) in R4, O

Even when B is symmetric, it is possible for | B N I'| to be extremely large com-

pared with #;3)/1“); consider forinstance I' := Z>and B := {(x, y) : —=1/N? <
x < 1/N?,—N < y < N}.However, if B N T has full rank, then we can comple-

ment the lower bound (3.14) with an upper bound:

Lemma 3.26 Let T be a lattice of full rank in RY, and let B be a symmetric convex
body in R? such that the vectors in B N T linearly span RY. Then
39d\mes(B)

BNIN< ——. 3.13
| = 24mes(R4/ ) (3-13)
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This bound is with a factor of 3¢/(2d + 1) of being sharp, as can be seen by
the example where I' = Z¢ and B is (a slight enlargement of) the octahedron
with vertices *ey, ..., Ze,. Indeed this example motivates the volume-packing
argument used in the proof.

Proof By hypothesis, B N I" contains a d-tuple (vy, ..., vy) of linearly indepen-
dent vectors. Since BN T is finite, we can choose vy, ..., vy in order to min-
imize the volume mes(OQ) = 5—T|v1 A -+ Avy| of the octahedron with vertices
+vy,..., v, Since B is symmetric and convex, we see that O C B. Also O
does not contain any elements of I other than vy, ..., vs, since otherwise one
could replace one of vy, ..., vy with this element and reduce the volume of O, a
contradiction. Thus we see that the sets {x + % -0 :x € BNTY} are all disjoint
and are contained in B + % -0 C % - B. Thus

mes(% . B) 3441
[BNT| < : == mes(B).
mes(§~0) 2¢lv; A - A vyl
Since [v; A - -+ A vg] = mes(R?/T), the claim follows. O

A special case of the volume-packing lemma gives

Lemma 3.27 (Blichtfeld’s lemma) Let ' C R? be a lattice of full rank, and let
V be an open set in RY such that mes(V) > mes(R?/ T"). Then there exists distinct
x,y € Vsuchthatx —y eT.

Now let us apply Lemma 3.24 to the case V = % - B and P = {0}, where B is
a symmetric convex body; we obtain the lower bound

mes(B)

BNTIl > —+F+—, 3.14
| 'z 2¢mes(RY/T) .19

which is the classical Minkowski’s first theorem. The assumption of symmetry
is essential. Consider for instance I" := Z? and a convex set of the form B :=
{(x,y):1/3 <x <2/3; =N < y < N} for arbitrarily large N.

Theorem 3.28 (MinkowskKi’s first theorem) Ler I be a lattice of full rank, and
let B be a symmetric convex body such that mes(B) > 2?mes(R?/T"). Then the
closure of B must contain at least one non-zero element of T (in fact it contains
at least two, by symmetry). If we have strict inequality, mes(B) > 2?mes(R?/T),
then we can replace the closure of B with the interior of B in the above statement.

Proof Apply (3.14) to (1 + €)B and let € go to zero. O

The constant in Minkowski’s first theorem is sharp. We may apply an invertible
linear transformation to set I' := Z¢, and then the example of the cube A :=
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{(t1,...,ta): =1 <tj < lforall j =1,...,d}showsthatthe constant 2¢ cannot
be improved. Nevertheless, it is possible to improve Minkowski’s first theorem by
generalizing it to a “multiparameter” version as follows.

Definition 3.29 (Successive minima) Let " be a lattice in R? of rank k, and let
B be a convex body in R?. We define the successive minima X i =A;(B,T) for
1 < j <k of B withrespectto I" as

Aj :=1inf{A > 0 : A - B contains k linearly independent elements of I'}.
Notethat 0 < A} < --- < Ap < 00.
Thus, for instance, if [ = Z¢ and B is the box
B:={t,....tg): |tjl <ajforalj=1,...,d}

forsomea; > ar > --- > aq > 0,theni; = 1/a; for j =1, ..., d. Note that the
assumption that I' has rank k ensures that the A; are both finite and non-zero.

Theorem 3.30 (Minkowski’s second theorem) Let I" be a lattice of full rank in
RY, and let B be an symmetric convex body in RY, with successive minima 0 <
M < -+ < Ag. Then there exists d linearly independent vectors vy, ...,vg € T’
with the following properties:

* foreach 1 < j <d, v; lies in the boundary of A; - B, but A; - B itself does not
contain any vectors in I' outside of the span of vy, ..., vj_1;

* the octahedron with vertices Lv; contains no elements of T in its interior,
other than the origin;

* we have
d d . .« ..
29T /(Z° - (v, .. ., V)] < Ay -+ Agmes(B) <ol (3.15)
d! mes(R?/T)
in particular, the sub-lattice Z¢ - (vy, ..., ) of T has bounded index:
|F/(Zd~(v1,...,v,1))| <d!. (3.16)

One can state (3.15) rather crudely as
Ar - Agmes(B) = d°@mes(R?/T)

thus relating the successive minima to the volume of the body B and the covolume
of the lattice I'.

Note that if B contains no non-zero elements of I then A; > 1 for all j, so
Minkowski’s second theorem implies Minkowski’s first theorem. Conversely, we
shall see from the proof that Minkowski’s second theorem can be obtained from
Minkowski’s first theorem by a non-isotropic dilation. The basis vy, ..., vy is
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sometimes referred to as a directional basis for A with respect to I', although one
should caution that this basis does not quite generate I" (the index in (3.16) is
bounded but not necessarily equal to 1).

Proof By definition of A{, we may find a vector v; € I' such that v; lies in the
closure of A - B, butthat A - B contains no non-zero elements of I for any A < A;.
By definition of X,, we can then find a vector v, € I', linearly independent from
v1, such that v, lies in the closure of A, B, but that A - B contains no elements of I"
outside of the span of v; for any A < X,. Continuing inductively we can eventually
find a linearly independent set vy, ..., vz in I" such that v; lies in the boundary of
Aj - B, but A; - A itself does not contain any vectors in I' outside of the span of
vi,...,vj_g,foralll < j <n.

The set vy, . .., vy is a basis of R; by applying an invertible linear transforma-
tion we may assume it is the standard basis e, . . ., ;4 (this changes both B and I,
but one may easily verify that the conclusion of the theorem remains unchanged).
In particular this forces I" to contain Z¢, hence by (3.12)

mes(R?/ ") = mes(R?/29)/|T/Z¢| = 1/|T/Z%| < 1. (3.17)

Let O¢ be the open octahedron whose vertices are ey, . .., +e;. We need to
verify that O¢ contains no lattice points from I'" other than the origin. Suppose
for contradiction that 09 N T contained w = tye; + - - - + tjej where 1 < j <d
and ¢; # 0. Then (1 + &)w would be a linear combination of +ej, ..., +e; for
some ¢ > 0. All of these points lie in the closure of A; - B, hence w lies in the
interior of A ; - B, but does not lie in the span of ey, ..., ¢;_;. But this contradicts
the construction of v; = e;. Hence 0‘Nr = {0}.

Next, observe that +v; = =%e; lies on the boundary of A - B foreach1 < j <
d. Thus B contains the open octahedron whose vertices are e /A1, ..., £es/Aq4.
ﬁ; indeed one can rescale to
the case when all the A ; are equal to 1, and then one can decompose the octahedron
into 2¢ simplices, each of which has volume 1/d!. This establishes the lower bound
in (3.15).

Now we establish the upper bound in (3.15). We need the following lemma.

This octahedron is easily verified to have volume

Lemma 3.31 (Squeezing lemma) Let K be a symmetric convex body in RY, let
A be an open subset of K, let V be a k-dimensional subspace of R, and let
0 < 0 < 1. Then there exists an open subset A’ of K such thatmes(A") = 0¥ mes(A)
and (A'—A)YNV COH-(A—A)NV.

Note that we do not assume any convexity on A or A’. Indeed the squeezing
operation we define in the proof below does not preserve the convexity of A.
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Proof Without loss of generality we may take V = R*, and write RY = RF x
R Let 7 : RY — R?* be the orthogonal projection map, which restricts to a
map 7 : K — w(K). Let f : m(K) — K be any continuous right-inverse of r;
thus for instance f(y) could be the center of mass of 7 ~!(y).

A point w € K can be written as w = (x, y), using the decomposition RY =
R* x R?*_Consider the map ® which maps w = (x, y)tofw + (1 — 8) f(y) and
set A = ®(A). Since both w and f(y) belong to K and K is convex, it follows
that A’ is an open subset of K. Furthermore, the second coordinate of ®(w) is y as
is that of f(y). By applying Cavalieri’s principle (or Fubini’s theorem) we see that
mes(A’) = 6¥mes(A) (the map contracts A by a factor  with respect to V = R¥).

Consider a point v = ®(w) — ®(w’), where w = (x, y), w = (x’, y") are
points from A. If v € V, then the second coordinate of v is zero, which means
y = y'. Then by the definition of ®, v = 6(w — w’). Thus v € 6 - (A — A), con-
cluding the proof of Lemma 3.31. O

. . . . . A
We apply the squeezing lemma iteratively, starting with Ag := ' - B, to create
opensets Ay, ..., Ay—1 € Ag such that

()
mes(A;) = | —— | mes(4A;_)

Ajt1
and
: )\j :
(A —A)NR/ € — - (A1 —A;j_)NR/
' ' Aj+1
forall 1 < j <d — 1, where R/ is the span of ey, ..., e ;. In every application of

the squeezing lemma, A plays the role of the mother set K.
Using the definition of Ay, it is easy to check that

mes(Ag_1) = A; - - - Az2 %mes(B). (3.18)
Furthermore, by induction one can show
. kj ;
(Ag—1 — Ag-)NR/ C v (Ajo1—A;_)NR.
d
On the other hand, A;_; C Ay = (A4/2) - B. Since B is symmetric, %d -B —
% - B = A4 - B. It follows that
(Ag-1 —Ag-)NR/ C A - BNR/

forall 1 <j <d.
By the definition of the successive minima, A; - B N R/ does not contain any
lattice point in T, except for those in R/ —1. This implies that A;_; — Ay—; does
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not contain any point in I other than the origin. Applying Blichtfeld’s lemma, we
conclude that

mes(Ag-1) < mes(RY/ ),
which when combined with (3.18) gives the upper bound in (3.15). O

We now give several applications of this theorem. First we “factorize” a convex
body B as the finitely overlapping sum of a subset of I" and and a dilate of a small
convex body B’, up to some scaling factors of O (d)?":

Lemma 3.32 Let B be a symmetric convex body in R¢, and let T be a lattice in RY.
Then there exists a symmetric convex body B’ C B such that B’ contains no non-
zero elements of I', and such that B € O(d*?) - B’ + ((0(d*?) - B)NT. In par-
ticular; the projection of B in R?/ T is contained in the projection of O(d*/?) - B’.
Furthermore, we have the bounds

mes(B) , 4 mes(B)
-7 < B) < 0(1 .
o@ BT = mesB) = O

(3.19)

Proof By using John’s theorem and an invertible linear transformation we may
assume that B; € B C \/3 - B4, where By is the unit ball. We may assume that
the vectors in B N I" generate I, since otherwise we could replace I" by the lattice
generated by BN T.

Let us temporarily assume that I" has full rank, and thus that the linear span of
BNT is R?. Thus if we let A; < --- < A, be the successive minima of B, then
we have A; < 1 forall j.

Now we take a directional basis vy, ..., vy of ', and let B’ be the open octa-
hedron with vertices £v;; this octahedron then contains no non-zero elements of
I', and is also contained in B (since £v;/A; already lies on the boundary of B).
Observe that d - B’ contains a parallelepiped with edges vy, ..., vg, and hence
d-B +T =R’ Thus

BCd-B+(B—d-BYNnTh)Cd-B +((d+1)-B)NI)
as desired (with about d'/? room to spare). In particular we have
mes(B) < mes(d - B)|(d +1)- BNT| < (d(4d + 5))*mes(B)|BNT|

thanks to (3.10); this proves the lower bound in (3.19) (with a factor of d? to
spare). Conversely, the sets {x + % - B’ : x € BN T}aredisjoint (since B’ contains
no non-zero elements of I') and contained in 2 - B, hence

1
|B N T'|mes (5 . B’) <mes(2- B)
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which gives the upper bound in (3.19). This concludes the proof when I" has full
rank.

Now suppose that I has rank r < d, then after a rotation we may assume
that I is contained in R” x {0} C R” x R¢™". The point is that the behavior in
the d — r dimensions orthogonal to R is rather trivial and can be easily dealt
with as follows. Let B C R” be the intersection of B with R” x {0}, identify-
ing R” x {0} with R" in the usual manner. Then by John’s theorem we have the
inclusions

1 - -
5-<Bde_,)ngJE-<Bde_r>.

Applying the previous arguments to B to obtain a set B’ C B, and then defining
B = % - (B’ x By_,), we can verify the claim in this case (losing some additional
factors of d'/? and d?/?); we omit the details. O

In this theorem, we did not use the full strength of Minkowski’s second theorem
(in particular we did not need the upper bound). The notion of a directional vector
is, however, useful.

As another consequence of Minkowski’s second theorem, we show how to find
large proper progressions inside sets of the form BN T.

Lemma 3.33 Let B be a convex symmetric body in R?, and let T be a lattice in
RY. Then there exists a proper progression P in B N\ T of rank at most d such that
|P| = O(d)"*?|BNT|.

Proof Applying John’s theorem (Theorem 3.13) and (3.10) followed by a linear
transformation, we may reduce to the case where B is the unit ball B = B in R,
provided that we also reduce the 7d /2 exponent to 3d. We may assume that B N I"
spans R, since otherwise we may restrict B to the linear span of B N ", which is
then isomorphic to a Euclidean space of some lower dimension. In particular this
means I" has full rank, and that the successive minima 0 < A; <--- <X ; of B
with respect to I' cannot exceed 1. Let vy, ..., vy € I' N B be the corresponding
directional basis. Let O denote the parallelepiped

Q:={thv +---+1t40:0<t; <1/2forall j €[l,d]}.

By (3.16), Since each translate of Q — Q is a fundamental domain for Z¢ -

(v1, ..., vg), it contains at most d! elements of I'. By Lemma 2.14, we can cover
B by at most % translates of Q — Q, and thus
mes(B +
|B| < d!(iQ).

mes(Q)
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Since the vy, ..., vy lie in the unit ball B, we see that Q C % - B and hence
B+ QC (% + 1) - B. Crudely bounding d! = O(d?), we thus conclude that

|IBNT| < 0(@d)* /mes(Q).

From (3.15) we have
Aceedg < O(1)'mes(Z?/T) < O(1)mes(Q)

and thus

IBOT| < 0@ /a1 -+ ha.
The claim now follows by setting P :=[—N, N]- (vy, ..., vg), where N; :=
1/2d X for j € [1, d]; note that one can easily verify that P is containedin B N T".

d

We now give an alternative approach that gives results similar to Lemma 3.33.
We first need a lemma to modify the directional basis given by Minkowski’s second
theorem (which only spans a sub-lattice of I, see (3.16)) into a genuine basis.

Theorem 3.34 (Mahler’s theorem) Let I be a lattice of full rank in R, and let
B be an symmetric convex body in RY, with successive minima0 < A; < -+ < Ag.
Let vy, ..., vqg be adirectional basis for I'. Then there exists a basis wy, . .., Wy of
I such that w lies in the closure of A\ - B, and w; lies in the closure of % - B for
all2 <i < d. Furthermore, if V; is the linear span of vy, . .., v;, then wy, ..., w;
forms a basis for ' N V;.

The basis wy, ..., wy is sometimes known as a Mahler basis for I'.

Proof We choose w; := vy; clearly w; forms a basis for I' N V;. Now suppose
inductively that 2 <i <d and wy, ..., w;_; have already been chosen with the
desired properties. The lattice I' N V; has one higher rank than I' N V;_; and hence
there exists a vector w; in I' N (V;\ V;_;) which, together with I' N V;_;, generates
I' N V;; in particular, wy, ..., w; will generate I N V;. Since vy, ..., v; linearly
span V;, we may write w; = tjv; + - - - + t;,_1v;—1 + t;v; for some real numbers
t,...,t; witht; # 0. Since v; liesin I’ N V;_; + W, we must have t;, = £1/n for
some integer n. If |t;| = 1, then ' N V; is generated by I' N V;_; and v;, and we
can take w; := v;. Thus we may assume |t;| < 1/2. Also, by subtracting integer
multiples of vy, ..., v;_; from w; if necessary (which will not affect the fact that
' N V; is generated by I' N V;_; and w;) we may assume that |¢;| < 1/2 for all
1 < j <. But since each v; lies in the closure of A; - B and hence A; - B, we
conclude by convexity that w; lies in the closure of % - B, and so we can continue
the iterative construction. Setting i = d we obtain the remaining claims in the
theorem. |

As an application we give
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Corollary 3.35 Let T be a lattice of full rank in R?. Then there exists linearly
independent vectors wy, ..., wy € I' which generate I', and such that

mes(RY/T) = |wi A -+ Awg| > Qd ) wy] -+ |wal. (3.20)
Proof Let wy, ..., w,; be a Mahler basis for I with respect to the unit ball B,

and let A, ..., A4 be the successive minima. Then by Theorem 3.34 we have

ding

1

wil - wal < 4 [
i=2

Applying (3.15) we obtain

d
meS(B)mes(R /).

|wi] - -+ Jwa| <

On the other hand, from (3.8) we have

_ r@/2t /2 g—d)2

Crudely bounding d! = O(d?), the claim follows. O

As a consequence, we can give a “discrete John’s theorem” to characterize the
intersection of a convex symmetric body with a lattice.

Lemma 3.36 (Discrete John’s theorem) Let B be a convex symmetric body
in RY, and let T be a lattice in RY of rank r. Then there exists a r-tuple
w = (wy,...,w,) € I'" of linearly independent vectors in I and and a r-tuple
N = (Ny, ..., N,) of positive integers such that

(r~ -B)NT C(=N,N)-wC BNT C(=r”N,r” N) - w.

Notice that the fact (—N, N)-w € BNT is similar to the conclusion of
Lemma 3.33. However, the generalized arithmetic progression in Lemma 3.33
has higher density.

Proof We first observe, using John’s theorem and an invertible linear transforma-
tion, that we may assume without loss of generality that B; € B C d - B;, where
By is the unit ball in RY. We may assume that I" has full rank r = d, forifr < d
then we may simply restrict B to the linear span of I', which can then be identified
with R". We may assume d > 2 since the claim is easy otherwise.

Now let w = (wy, ..., wy) be as in Lemma 3.35. For each j, let L; be the
least integer greater than 1/d|w;|. Then from the triangle inequality we see that
[liwy + -+ 4+ lqwg| < 1 whenever |[;| < L;, and so (—L, L) - w is contained in
B, and hence in B.
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Now let x € BN T. Since w generates I', we have x = [w; + - - - + [w, for

some integers Iy, ..., l;; since B C d - B;, we have |x| < d. Applying Cramer’s
rule to solve for [y, ..., l; and (3.20), we have
| = X Awp---wjg Awjgr A wyl - [x|wq] - Jwy]
! lwi A= A wyl T wjllwr A A wy|
|x| mes(R?/ T) - 2d - d!
|w;| T Jwyl

which is certainly at most dZdLj. It follows that x € (—d*?L, d*?L) - w, which is
what we wanted to prove. A more-or-less identical argument gives the inclusion
d*.B)yNT C (=L, L) w. O

It would be of interest to see if the constant 7?" could be significantly improved
here, for instance to ¢ or even r?1. Progress on this issue may well have
applications to improvements for Freiman’s theorem (see Chapter 5), which can
be viewed as a variant of the above theorem in which the set B N I" is replaced by
a more general set of small doubling.

Exercises

3.5.1  Prove (3.12).

3.5.2  Leta be an irrational number, and let / be any open interval in R. Show
that Z - « and [ + Z have non-empty intersection. (In other words, the
integer multiples of « are dense in R/Z.)

3.5.3  LetI'bealattice in R?, and let A be a convex body (possibly asymmetric).
Show that 6[A NT] < O(1)%.

354 Letwvy,..., vy be any vectors in a lattice I' C R of full rank. Show that
[v; A -+« A vyl is an integer multiple of the covolume mes(R?/T).

3.5.5 Let " be a lattice of full rank in R?, let B be a symmetric convex body,
and let vy, ..., vy be a directional basis with successive minima A; <
-++ < Aq. Let O be the open octahedron with vertices £v; /A ;. Show that
O C B C O(d)* - 0. Thus Minkowski’s second theorem can be used to
give a rather weak version of John’s theorem.

3.5.6  LetI bealattice of full rank in R?, let B be a symmetric convex body, and
let A < --- < A4 be the successive minima of B. Establish the bounds

oW 1 1
—0(d) 0
(d) ||maX<1,;i>.<|Br\I|<0(d) ||max<l,k—i).

1<i=d 1<i<d
(3.21)
3.5.7  Generalize Lemma 3.32 and Lemma 3.36 to the case when B is an asym-
metric convex body.
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3.5.8  Let A be a bounded open subset of R?, and let B, C be open subsets of
A. Prove that
mes(B)mes(C)mes(A)

mes((B — B)N(C —C) = mes(A — B)mes(A — C)’

(Hint: use the volume-packing argument to locate a large set of the form
x+B)N(y+C)wherexe A—Bandye A—C.)

3.5.9  Let B the the unit ball in R®, and let I" be the lattice generated by the five
basis vectors ey, ..., es and by %(61 + --- 4 e5). Show that in this case
the directional basis for I does not actually generate I".

3.6 Progressions and proper progressions

In this section we work in a fixed additive group Z, which may or may not be
torsion-free.

Recall from Definition 0.2 that a progression P = a + [0, N] - v is proper if the
map n — n - v is injective on [0, N]. Not all progressions are proper; however it
turns out that, just as John’s theorem (Theorem 3.13) shows that all convex sets are
in some sense comparable to ellipsoids, all progressions are comparable to proper
progressions. This is most obvious in the rank 1 case, in which every arithmetic
progression is equal (as a set) to a proper arithmetic progression:

Lemma 3.37 Leta + [0, N - v be an arithmetic progression in an additive group
Z. Then there exists an n > 0 such that a + [0, n) - v is a proper arithmetic pro-
gressionanda +[0,n)-v=a+ [0, N] - v.

Proof 1If a+ [0, N]- v is already proper, then we are done. Otherwise, there
exist distinctny, np € [0, N]suchthata 4+ n; - v = a + n; - v. In particular, there
exists n € [1, N] such that n - v = 0. Let n be the least integer in [1, N] with this
property. Then a + [0, n) - v is necessarily proper, and by the Euclidean algorithm
itis clear thata + [0, n) - v = a + [0, N] - v. O

We now consider the higher rank case; as with John’s theorem, the constants
will deteriorate worse than exponentially in d. We first show the easier of the two
containments, namely that every progression contains a large proper progression
of equal or lesser rank.

Theorem 3.38 Let P be a progression of rank d in an additive group Z.
Then P contains a proper progression of rank at most d and volume at least

o(d)~>|P]|.
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Remark 3.39 For a result of similar flavor (but proven by completely different
methods), see Theorem 4.42 below. Note that the d = 1 case already follows from
Lemma 3.37 (with a constant of 1 instead of O(d)™%).

Proof Theideais to pass to aconvex body, apply Lemma 3.32 to obtain a “proper”
subset of this body, and then use Lemma 3.33 to pass back to a progression.

By translating and enlarging P slightly we may assume P =[—N, N]-v.
We may assume that none of the components N; of N are equal to O or 1, since
otherwise we could refine P by at worst a factor of 3¢ to eliminate those dimensions.
Now consider the set ' := {n € Z¢ : n - v = 0}, which is clearly a sub-lattice of
Z4, and let A be the symmetric convex box

A={(x1,...,xs) €R!: —N; <x; < N, forall | <j <d}.

By Lemma 3.32, we may find a symmetric convex subset A’ of A suchthat A’ — A’
is disjoint from I" — {0}, and such that A C O(d)*/? - A’ + T for some x € R?.
From Corollary 3.15, we thus see that A can be covered by O(d)*?/? translates
of 1. A’+T.Since [-N,N]=ANZ* and T € Z?, we conclude that [N, N]
can be covered by O(d)*!/? sets of the form [(§ - A’ + x) N Z¢] + T'. Taking inner
products with v, we conclude that P = [N, N] - v can be covered by O(d)**/?
sets of the form [(% - A"+ x)NZ%] - v. By the pigeonhole principle, there must

thus exist an x such that
1\ 34/2
> Q <3> |P]

! A +x|nZz!
2 X

1\ 32
IA'NZY > Q- |P|.
d

We now apply Lemma 3.33 to find a proper progression P € A’ N Z< C [0, N of
rank at most d such that

and hence by (3.9)

B 1\
1P| > 0@ A NZ >~ |PI
d

The set P - v is then clearly a progression of rank at most d contained in P; it is
proper since A’ — A’ is disjoint from I' — {0}, so in particular | P - v| = | P|). The
claim follows. U

Now we show the more difficult containment, that every progression can be
contained inside a proper progression of equal or lesser rank, but somewhat larger
volume.
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Theorem 3.40 Let P be a progression of rank d in an additive group Z. Then
P is contained in a proper progression Q of rank at most d and volume at most
dCod’ | P| for some absolute constant Cy > 0. Also, Q is contained in a translate of
d6d’ p, If d = 2 and P is not proper, then Q can be chosen to have rank at most
d — 1. Finally, if Z is torsion-free and P is symmetric, then one can ensure that

Q is symmetric also.

Remark 3.41 Theorems of this type first appeared in the literature in [26], and
later in some unpublished work of Gowers—Walters and Ruzsa. The version we
give here is taken from [365].

Comparison with Theorem 3.38 suggests that the factor d Cod” jg probably not
best possible, but we do not know what the correct constant here should be. This
theorem can be thought of as the analogue of Corollary 3.8 or Corollary 3.9, but
for progressions rather than finitely generated additive groups.

Proof This claim is analogous to the basic linear algebra statement that every
linear space spanned by d vectors is equal to a linear space with a basis of at most d
vectors. Recall that the proof of that fact proceeds by a descent argument, showing
that if the d spanning vectors were linearly dependent, then one could exploit that
dependence to “drop rank” and span the same linear space with d — 1 vectors. Our
proof of Theorem 3.40 shall be based on a similar strategy.

We shall work only in the case when Z is torsion-free; the general case is proven
similarly but contains a few additional technicalities, and we leave it as an exercise
(Exercise 3.6.3).

We induce on d. When d = 1 the claim follows from Lemma 3.37. Now sup-
pose inductively that d > 2, and the claim has already been proven for d — 1 (for
arbitrary groups Z and arbitrary progressions P). Let P =a + [0, N]-v be a
progression in Z of rank d, where N = (Ny, ..., Ny) and v = (vy, ..., vg); wWe
may translate P so that the base point a equals 0. If P is proper, then we are
done. Similarly, if one of the N; is equal to zero, then we are done by induction
hypothesis. Suppose instead that P is not proper and all the N; are at least 1; then
there exist distinct n, n’ € [0, N] such that n - v = n’ - v. If we then let [y € Z¢
denote the lattice {m € Z¢ : m - v = 0}, then we see that I'y N [~ N, N] contains
at least one non-zero element, namely n’ — n.

Letm = (my, ..., my) be a non-zero element of 'y N [—N, N], thus

m1'U1+"'+md'Ud=0~ (322)

We may assume without loss of generality that m is irreducible in T'y. Since Z is
torsion-free, this also implies that m is irreducible in Z¢ (i.e.thatthe my, ..., my
have no common divisor) unless Z is torsion-free. The strategy shall be to contain
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P inside a progression Q of rank d — 1 and size
0] <d®@|P], (3.23)

such that Q is contained in a translate of d°@ P. If we can achieve this, then by
the induction hypothesis we can contain Q inside a proper progression R of rank
at most d — 1 and cardinality

IR < (d = DOV (0@)” P

and which is contained in a translate of d€0@=1°g0@ p _1f C, is sufficiently large,
we will have completed the induction.

It remains to cover P by a progression of rank at most d — 1 with the bound
(3.23) and contained in a translate of d°@ P. Observe that m lies in [-N, N], so
the rational numbers m /Ny, ..., mg/ Ny lie between —1 and 1. Without loss of
generality we may assume that m, /N, has the largest magnitude, thus

lmy|/Ng = |m;|/N; (3.24)

forall 1 < j < d. By replacing v; with —v, if necessary, we may also assume that
mg is positive.
To exploit the cancellation in (3.22) we introduce the rational vector g €

L. 7Z4-1 by the formula
mg
(. m Mg
: PR —)

Since m is irreducible in Z¢, we see, for any integer 7, that n - ¢ lies in Z¢~! if and
only if n is a multiple of m,, because (m, ..., my) is irreducible in 74,

Next, let ' ¢ R¢~! denote the lattice T' := Z4~ ' + Z - q. Since ¢ is rational,
this is indeed a lattice; since it contains Z4~1, it is certainly full rank. We define
the homomorphism f : I' — Z by the formula

f((nla ~~-and—1)+”dQ) = (nlv --~7nd)' v;

the condition (3.22) ensures that this homomorphism is indeed well defined, in the
sense that different representations v = (ny, ..., ng—1) + ngq of the same vector
v e I give the same value of f(v). We also let B € R?~! denote the convex
symmetric body

B:={(t,....ts1) €R": —3N; <t; <3N, forall 1 <j<d—1}.
We now claim the inclusions

PC f(BNI')S5P —5P.
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To see the first inclusion, let n-v € P for some n € [0, N], then we have
n-v= f((ny,...,ng_1)+ nqq); from (3.24) we see that the jth coefficient of
(n1,...,nq-1) + ngq has magnitude at most 3N, and thus n - v lies in f(BNT)
as claimed. To see the second inclusion, let (n, ..., n4s—1) + ngyq be an element
of B N I'. By subtracting if necessary an integer multiple of m, from n, (and thus
adding integer multiples of m, ..., my_; to ny, ..., ny—1) we may assume that
|ng| < |mg|/2. By (3.24) and the definition of B, this forces |n;| < 5N; for all
1 < j <d, and hence

flny,...,ng—1) +naq)=ny,...,ng)-v S [-5N,5N]-v=5P —5P.
Next, we apply Theorem 3.36 to find vectors wy, ..., wg—; € Fand My, ..., My_;
such that

(=M, M)-w < BNT C(=d°M,d° M) - w.
Applying the homomorphism f, we obtain
(=M, M)- f(w) € f(BNT) S (=d?"M,d""M) - f(w)

where f(w) := (f(wy), ..., f(wg_1). Observe that (—d° DM, d° M) - f(w)
is a progression of rank d — 1 which contains f(B N I") and hence contains P.
Furthermore, by two applications of Lemma 3.10 we have

(=d%PM,d% M) - fw)] < (0@)°“If(BNT)
<(0@)°*|5P - 5P|
< (0@)°“ oy |P|
which proves (3.23). Also, since (—M, M) - f(w) is contained in f(BNT),
which is contained in 5P — 5P, which is a translate of 10P, we see that
(—=d% DM, dODM) - f(w) is contained in a translate of d°“) P. This completes
the induction and proves the theorem. When P is symmetric, one can easily modify

the above argument to ensure that all progressions in the above construction are
also symmetric; we leave this modification to the interested reader. O

Exercises

3.6.1 LetP =a+ [0, N]-vbeaprogression of rank d in some additive group
Z,and let T := {n € Z¢ : n - v = 0} be the associated sub-lattice of Z.
Prove the inequalities
[0, N1|

0, N
NI _ N, M) < 3¢ 10N
1P| ]

Thus the ratio between the volume and cardinality of a progression P is
essentially controlled by the quantity |[— N, N] N I'|. (Hints: for the lower
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3.6.2

3.6.3

3.64

3.6.5

3.6.6

3 Additive geometry

bound, first use Cauchy—Schwarz to obtain a lower bound for {(r, n’) €
[0, N]:n-v=n"-v}.For the upper bound, consider the multiplicity of
themap f : [-N,2N] — Z defined by f(n) :=n-v.)

Let [0, N] be a box in Z¢, and let T be a sub-lattice of Z¢. Show that
[[=kN,kN]1NT| < (2k)*|[-N, N]NT| for all integers k > 1.

Prove Theorem 3.40 in the case when Z is not necessarily torsion-free.
(The main new difficulty is that the vector m is not always irreducible in
Z4; in such a case one will have to “quotient out” a finite cyclic group
from P before proceeding with the rest of the argument. However, this
will only introduce additional factors of C? into the inductive bound
(3.23), which is acceptable.) Note that the second part of the Theorem
does not extend to the torsion case, as can already be seen by considering
P=Z=17.

Prove an extension of Theorem 3.40 in the torsion-free case in which
one requires that kQ is also proper for some fixed constant k > 1 (of
course, the bounds on Q will depend on k). Note that the torsion-free
hypothesis is now essential, as can be seen by considering the case when
P=[1,N]-1inZy.

[349] Let Ni, N», a;, a be positive integers such that 0 < a, < Ny/5
and 0 < a; < N,/5, and ay, a; are coprime. Use the Chinese remainder
theorem to show the inclusion

1 4
|:§(01N1 + ayN,), 5(6111\71 + azNz)} C [0, (N1, N2)] - (a1, a2).

Conclude that if P is any progression of rank 2 in the integers
of dimensions N;, N, and steps vy, v, with 0 < vy < N;/5 and 0 <
v; < N»/5, then P contains a proper arithmetic progression of length
3(Niv; + Novy)/5ged(vy, v2) and spacing ged(vy, v2).

[349] Let A be an additive set in an ambient group Z. Show that there exists
d = O(log|A|) and distinct elements vy, ..., vy € A such that the cube
[0, 11 - (vy, ..., vg) has cardinality at least ;11|A|. (Hint: Using (2.21),
show thatif S is any additive setin Z such that | S| < % | A|, then there exists
a € A suchthat |[SU (S +a)| > %|S|. Then use the greedy algorithm.)
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Fourier-analytic methods

In Chapter 1 we have already seen the power of the probabilistic method in additive
combinatorics, in which one understands the additive structure of a random object
by means of computing various averages or moments of that object. In this chapter
we develop an equally powerful tool, that of Fourier analysis. This is another way
of computing averages and moments of additively structured objects; it is similar
to the probabilistic method but with an important new ingredient, namely that the
quantities being averaged are now “twisted” or “modulated” by some very special
complex-valued phase functions known as characters. This gives rise to the concept
of a Fourier coefficient of a set or function, which measures the bias that object has
with respect to a certain character. These coefficients serve two major purposes in
this theory. Firstly, one can exploit the orthogonality between different characters
to obtain non-trivial bounds on these coefficients; this orthogonality plays a role
somewhat similar to the role of independence in probability theory. Secondly,
Fourier coefficients are very good at controlling the operation of convolution,
which is the analog of the sum set operation, but for functions instead of sets.
Because of this, the Fourier transform is ideal for studying certain arithmetic
quantities, most notably the additive energy introduced in Definition 2.8.

Using Fourier analysis, one can essentially divide additive sets A into two
classes. At one extreme are the pseudo-random sets, whose Fourier transform is
very small (except at 0); we shall introduce the linear bias ||Al|, and the A(p)
constants to measure this pseudo-randomness. Such sets are very “mixing” with
respect to set addition (or to locating progressions of length three), and as the ter-
minology implies, they behave more or less like random sets. At the other extreme
are the almost periodic sets, which include arithmetic progressions, Bohr sets, and
other sets with small doubling constant or large additive energy. The behavior of
these sets with respect to set addition or progressions of length three is almost
completely described by a rather small spectrum Spec,(A), defined as the set
of frequencies where the Fourier transform of 1, is large. We shall rely on this
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dichotomy between randomness and structure in a number of ways, most strik-
ingly in proving Roth’s celebrated theorem (which we discuss in Chapter 10) that
subsets of integers of positive upper density contain infinitely many progressions
of length 3. (Progressions of higher length cannot be treated by linear Fourier
techniques, requiring either higher order Fourier analysis or other approaches; see
Chapter 11.)

Fourier analysis can be performed on any additive group Z (and even on non-
abelian groups). However, we shall only need this transform on finite groups,
where the theory is slightly simpler technically. Thus we shall restrict our atten-
tion exclusively to the finite case. The cases Z =Z, Z = R/Z, and Z = R are
also of importance to additive combinatorics (in particular leading to the Hardy—
Littlewood circle method in analytic number theory), but it turns out that the finite
Fourier theory forms an acceptable substitute for these infinite Fourier theories in
our applications.

4.1 Basic theory

Let Z be a finite additive group (for instance, Z could be acyclic group Z = Zy).In
this section we recall the basic theory of the finite Fourier transform on such groups.

Fourier analysis relies on the duality between a group Z and its Pontryagin dual
7, which can be defined as the space of homomorphisms from Z to the circle group
R/Z. In the case of finite groups, it turns out that a group Z and its Pontryagin dual
7 are always isomorphic, and so it shall be convenient to identify the two in order
to simplify the theory slightly. This can be done by means of a non-degenerate
bilinear form:

Definition 4.1 (Bilinear forms) A bilinear form on an additive group Z is a map
E,x)— & -x from Z x Z to R/Z, which is a homomorphism in each of the
variables £, x separately. We say that the form is non-degenerate if for every non-
zero £ the map x +— £ - x is not identically zero, and similarly for every non-zero
x the map & — & - x is not identically zero. We say the form is symmetric if

E.-x=x-¢&.

Examples 4.2 If Z is a cyclic group Zy then the bilinear form x - £ := x&/N is
symmetric and non-degenerate. If Z is a standard vector space F” over a finite
field F, then the bilinear form (xy, ..., x,) - (&1, ..., &) = d(x1&1 + - - - + x,&)
is symmetric and non-degenerate whenever ¢ : F' — R/Zis any non-trivial homo-
morphism from F to R/Z (e.g. if F =7, we can take ¢(x) := x/p). This
particular choice has the useful additional property that a& - x = & - ax for all
ae€ Fandx,& € Z.



4.1 Basic theory 151

Lemma 4.3 (Existence of bilinear forms) Every finite additive group Z has at
least one non-degenerate symmetric bilinear form.

Proof From Corollary 3.8 we know that every finite additive group is the direct
sum of cyclic groups. We have already seen in Example 4.2 that each cyclic group
has a symmetric non-degenerate bilinear form. Finally, observe that if Z; and
Z, have symmetric non-degenerate bilinear forms, then the direct sum Z; & Z;
also has a symmetric non-degenerate bilinear form, defined by (&1, &) - (x1, x2) 1=
& - x1 4+ & - x5. The claim follows. O

Remark 4.4 A given additive group Z generally has multiple bilinear forms (see
Exercise 4.1.10), but from the point of view of Fourier analysis they are all equiv-
alent'. The symmetry property has some minor aesthetic advantages but is not
essential to the Fourier theory, as the physical space variable and the frequency
space variable usually play completely different roles.

Henceforth we fix a finite additive group Z, equipped with a non-degenerate
symmetric bilinear form & - x; in practice we shall usually use one of the two
examples from Example 4.2.

To perform Fourier analysis, it will be convenient to adopt the following
“ergodic” notation. Let CZ denote the space of all complex-valued functions
f:Z— C.If f € C?, we define the mean or expectation of f to be the quantity

1
Ez(f) =Eicz f(x) = — Z fx).
|Z| xeZ
Similarly, if A € Z, we define the density or probability of A as
) |A]
PZ(A) = Per(x S A) = EZ(IA) = m

We can generalize this notation to other finite non-empty domains than Z, thus
for instance Excy yep f(x,y) := m erA’yeB f(x, y). This notation not only
suggests the connections between Fourier analysis, ergodic theory, and probability,
but is also useful in concealing from view a number of normalizing powers of |Z|
which would otherwise clutter the estimates. Generally, we shall use this ergodic
notation for the physical variable, but use the discrete notation ZE ez f(&)and |A|
(without the normalizing |Z| factor) for the frequency variable. We shall also rely

! One way of viewing this is that the identification between Z and Z is non-canonical, and one
should really be placing the frequency variable in Z instead of Z. This is ultimately the more
correct viewpoint; however since we shall usually be working in very concrete situations such as
cyclic groups Zy, where one does have a standard identification, we have chosen to rely on the
bilinear form approach here rather than the abstract approach.
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heavily on the exponential map e : R/Z — C, defined by
e(9) := ™7, 4.1)

The following two orthogonality properties form the foundation for Fourier
analysis.

Lemma 4.5 (Orthogonality properties) For any §,§’ € Z we have
Eicze(€ - x)e(€ - x) =16 = &)
and for any x, x' € Z we have

Y e - x)e@E - x) = |Z|I(x = x').

teZ

Proof We prove the first identity only, as the second is similar. Since
e(§-x)e(§ - x) =e((E — &) - x), it will suffice to show the claim in the & =0
case, i.e. it suffices to show

Eicze(§ - x) =1(§ =0).

This is clear in the case £ = 0. If &€ # 0, then by non-degeneracy there exists & € Z
such that e(¢ - h) # 1. Shifting x by & we then have

Eicze(§ - x) =Eycze(§ - (x + h)) = e(§ - H)E cze(§ - x)
and hence E,cze(§ - x) = 0 = I(§ = 0) as desired. O

For every & € Z, we can define the associated character eg € C? by es(x) ==
e(& - x). The above lemma then shows that the e; are an orthonormal system in
CZ, with respect to the complex Hilbert space structure

(f &)cz == Ez(f3) = Eez f(X)g(x).

Since the number | Z| of characters equals the dimension |Z| of the space, we see
that this system is in fact a complete orthonormal system. This motivates

Definition 4.6 (Fourier transform) If f € CZ, we define the Fourier transform
f € C? by the formula

F&) = (f ee)cr = Brez f(x)e(E - x).
We refer to f (&) as the Fourier coefficient of f at the frequency (or mode) &.
Since the e¢ are a complete orthonormal basis, we have the Parseval identity

1/2
Bzl f1)"? = (Z |f<s)|2) (4.2)

EeZ
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the Plancherel theorem

(f, &)z =) [©2ZE) (4.3)

EeZ

and the Fourier inversion formula

f=> F®e:. (4.4)

teZ

In particular we see that two functions are equal if and only if their Fourier coeffi-
cients match at every frequency. In other words, the Fourier transform is a bijection
from CZ to C# (in fact it is a unitary isometry, thanks to (4.2), (4.3)).

From Lemma 4.5 we see that the Fourier coefficients of a character e; are just
a Kronecker delta function:

aE)=1E=¢".

In particular 1(¢) = I(€ = 0).

A special role in the additive theory of the Fourier transform is played by the
zero frequency & = 0. This is because the zero Fourier coefficient is same concept
as expectation:

F0) = (f, )cz = Ez(f). (4.5)

If S is any subset of Z, define the orthogonal complement S~ C Z of S to be
the set

St:={teZ:&-x=0forallx € S}.
One can easily verify that S* is a subgroup of Z. Also one has the pleasant identity
16 =P(G)lg: (4.6)

whenever G is a subgroup; see Exercise 4.1.6. Applying (4.2) we see in particular
that

IGIIG*| = |Z]. (C%))

We now introduce the fundamental notion of convolution, which links the
Fourier transform to the theory of sum sets.

Definition 4.7 (Convolution) If f, g € L?>(Z) are random variables, we define
their convolution f * g to be the random variable

frg) =Eyez f(x —y)g(y) = Eyez f(y)g(x — y).

We also define the support supp(f) of f to be the set supp(f) ={f # 0} =
{(xeZ: f(x)#0}
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The significance of convolution to sum sets lies in the obvious inclusion
supp(f * &) S supp(f) + supp(g)
and particularly in the identity
A+ B =supp(ls * 1p).
Indeed we have the more precise statement
14 x1p(x) :=Pz(AN(x — B)). (4.8)

The relevance of the Fourier transform to convolution lies in the easily verified
identity

fre=1-2 4.9)
Applying (4.9) at the zero frequency we have the basic formula
Ez(f*xg) = Ezf)  (Ezg). (4.10)

In particular, if f or g has mean zero, then so does f * g.
As one consequence of (4.9) we see that convolution is bilinear, symmetric,
and associative. We also have a dual version of (4.9), namely the formula

fe® =" fma —n (@.11)
nez
which converts pointwise product back to convolution; we leave the verification
of these identities as an exercise.
In the exercises below, Z is a fixed finite additive group, with a fixed symmetric
non-degenerate bilinear form -.

Exercises

4.1.1  Let Z be the additive group consisting of all the homomorphisms from
Z to R/Z. Show that the identification of a frequency & € Z with the
homomorphism x > £ - x gives an isomorphism from Z to Z.

4.1.2  Define a character to be any map x : Z — C with x(0) =1 and
X(x 4+ y)=xx)x(y)forall x, y € Z. Show that the set of all characters
is precisely {eg : & € Z}.

4.1.3  Show that for any & € Z, ¢ takes values in the | Z|th roots of unity.

4.1.4  Define a linear phase function to be any map ¢ : Z — R/Z with the
property that

O(x +hi+h)—d(x + hy)—d(x + hy)+¢(x)=0forall x, hy, hy € Z.



4.1.6
4.1.7

4.1.10

4.1.11
4.1.12

4.1.13
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Show that ¢ : Z — R/Z is a linear phase function if and only if there
exists £ € Z and ¢ € R/Z such that ¢(x) = & - x 4 ¢ for all c. (The map
¢ is also a Freiman homomorphism of order 2; see Definition 5.21.)

Let x be an element of Z chosen uniformly at random. Show that the ran-
dom variables {eg(x) : § € Z} are pairwise independent, and have vari-
ance 1 and mean zero for & # 0, and variance 0 and mean 1 for £ = 0.
Use this and (1.9), (4.4) to give an alternative proof of (4.2).

Prove (4.6).

Let f : Z — C.If H is a subgroup of Z, and g := f1y, show that

2(6) =Eyepy: f(§ + ) forall§ € Z

and conclude in particular the Poisson summation formula

Eicn f(x) = Eecye f(6).

In the converse direction, if A = f * ﬁ 1 5 is the average of f on cosets
of H,1i.e.

h(x) :==Eyeg f(x + ),

show that h = f - 1.

If  : Z — Z is a group isomorphism of Z, then there exists a unique
group isomorphism ¢! : Z — Z, called the adjoint of ¢, such that
£.¢(x) = ¢f(&) - x forall x, & € Z. Furthermore if g(x) = f(¢(x)) for
all x € Z then g(x) = f((¢T)‘1(x)) forallx € Z.

If¢p:Z— Zand  : Z — Z are group isomorphisms, show that (¢ o
Wi =yiogh

Lete:Z x Z — R/Zands : Z x Z — C be two non-degenerate sym-
metric bilinear forms on a finite additive group Z. Show that there exists a
self-adjoint group isomorphism ¢ : Z — Z such that£ex = £ e ¢p(x) =
¢'(£) e x for all x,£ € Z. This shows that all Fourier transforms are
equivalent up to isomorphisms of either the x or & variable.

Prove (4.9) and (4.11).

Let x be an element of Z chosen uniformly atrandom, andlet&;, ..., §, €
Z. Show that the random variables eg (x), . . ., e, (x) are jointly indepen-
dent if and only if the group (&1, . .., &,) generated by &, .. ., &, has order
ord(&;)...ord(&,).

Let G, H be two subgroups of Z. Show that (G + H)J- =GLtnHL,
(GNH)' =G+ H*, and d(G*, HY) = d(G, H), where d is the
Ruzsa distance defined in Definition 2.5. This may help explain the sym-
metric nature of G + H and G N H in the estimates in Exercise 2.3.11.
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4.1.14

4.1.15

4.1.16

4 Fourier-analytic methods

Let G, H be two subgroups of Z and let x be an element of Z chosen
randomly. Show that the indicators I(x € G) and I(x € H) have non-
negative correlation, i.e. Cov(I(x € G), I(x € H)) > 0; establish this
both by Fourier-analytic means and by direct computation. Show that
equality occurs if and only if G + H = Z.

Show that for any subgroup G of Z, we have (G*)" = G, and for any
random variable f, we have f(x) = |Z|~! f(—x). More generally, for
any A C Z, we have (A) = (A1)L, where (A) is the group generated by
A.

If Z and Z’ are finite groups, formulate a rigorous version of the statement
that the Fourier transform on Z x Z’ is the composition of the Fourier
transform on Z and the Fourier transform on Z’.

4.2 L? theory

We now turn to the analytic theory of the Fourier transform and of convolutions,

starting with the L? theory, and then apply it to the problem of locating arithmetic
progressions inside sum sets.
If f € C?and 0 < p < oo, we define the L?(Z) norm of f to be the quantity

I fllrzy := Bzl FINP = Byez| f()P)VP.

Thus for instance || f'|| 12(z) is just the Hilbert space magnitude of f. We also define

| fllz=czy = sup | f(x)].
xezZ

Similarly we define

1/p
£ llinz) = (Z |f($)|”>

EeZ

for0 < p < oo and

| f llio(z) := sup | f(&)I.
teZ

‘We have the following two basic L? estimates on the Fourier transform and on
convolution.

Theorem 4.8 Let f, g : Z — C be functions on an additive group Z. Then for
any 1 < p <2 we have the Hausdorff—Young inequality

1 £l czy < I Fllerczy (4.12)
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where the dual exponent p’ to p is defined by % + % = 1. Also, whenever 1 <

p,q,r < oo are such that % + é = % + 1, we have the Young inequality

f*gllerzy S W fllerpllgllez)- (4.13)

Both inequalities follow easily from Riesz—Thorin complex interpolation the-
orem. With this theorem, one only needs to verify the extremal (and easy) cases.
The Riesz—Thorin theorem, however, is beyond the scope of this book. On the
other hand, one can also have an elementary proof, using combinatorial arguments
(see Exercise 4.2.3).

Recall the additive energy E(A, B)between two additive sets A, B in Z, defined
in Definition 2.8. From that definition one can easily check that

E(A, B) = |ZP|l1a % 1] 72.z)
By (4.2) and (4.9) we obtain the fundamental identity

E(A,B)=|ZPE(1a, 15) = 1ZP Y [1a@)PIisE)1. (4.14)
EeZ

This formula may illuminate some of the properties of the additive energy that were
obtained in Section 2.3, such as the symmetries E(A, B) = E(B, A) = E(A, —B)
and the Cauchy—Schwarz inequality (2.9); see Exercise 4.2.7.

For the purposes of additive combinatorics, the Fourier transform is most useful
when applied to characteristic functions f = 1,4, and in this case one can say quite
a bit about the Fourier transform and its relation to the additive energy E(A, A).

Lemma 4.9 Let A be a subset of a finite additive group Z, and let L:Z—>C
be the Fourier transform of the characteristic function of A. Then we have the

identities:
Talli~cz) = sup ITa(6)] = 14(0) = P(A); (4.15)
1TalZz = Y 1T = Pz(A); (4.16)
EeZ
14(6) = Ta(=£); (4.17)
~ o~ E(A, A
ITallhg = Y ITa@)* = (—3) (4.18)
= 1Z|
La®) =Y LaTa —n). (4.19)
nezZ

This lemma follows easily from the estimates that have already been established;
see Exercise 4.2.4.
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We now present a simple application of the Fourier transform in the setting of
a finite field F.

Lemma 4.10 [41] Let F be a finite field, and let A be a subset of F\{0} such that
|A| > |F|3*. Then

3(A-A)=A-A+A-A+A-A=F.

Proof We give F a symmetric non-degenerate bilinear form of the type in Exam-
ple 4.2. Let f : F — R denote the non-negative function

f =Eacalaa.

Observe that supp(f) = A - A and f (0) = Er f = Pr(A). Taking Fourier trans-
forms we obtain

F(&) = Epeala¢/a)
for any £ € F. If £ #£ 0, then we observe that the frequencies & /a are all distinct

as a varies. Using Cauchy—Schwarz and then (4.16), we then obtain

@) < ﬁwﬂmm)“ — 1|F|Y for & # 0.

Now let x € F be arbitrary. We use (4.4) and (4.9) to compute
fxfxfx)=Refx* fxf(x)
=Re )  f(E)e( -x)

EeF
>Ref(0) = Y |f@&)P
eF\{0}
> Pr(A) = ) IFI72If )P
EeF
=Pr(A)’ — |F|7?Pr(A)

>0

since Pr(A) > |F|~'/* by hypothesis. Since supp(f * f * f) = 3(A - A) and x
was arbitrary, we are done. O

Remark 4.11 Lemma 4.10 is a simple example of a sum-product estimate — an
assertion that a combination of a sum and product of a set A is necessarily much
larger than A itself. It can be viewed as a quantitative reflection of the fact that a
set A of cardinality greater than | F|3/* has difficulty behaving like a subfield of F.
It should be compared with the results in Section 2.8.
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Exercises

4.2.1

422

423

424
4.2.5

4.2.6

Let I < p < oo. By exploiting the convexity of the function x +— |x|?,
establish the convexity of the set { f € CZ : || f||L»z) < 1}, and conclude
the triangle inequality

I f+gllerzy < N1 flleezy +11gllLr(z)-

Argue similarly for the p = oo case and with L? replaced by 7.

Let 1 < p < 00, and let p’ the dual exponent, thus 1/p + 1/p’ = 1. By
exploiting the convexity of the function x — e*, establish the preliminary
inequality

E.cz| f()||g(x)] < 1 whenever || fllrr(z), lIgllprz) < 1

and then conclude Hélder’s inequality

I fellerzy < N fllellgliLazy

whenever 0 < p, g, r < oo are such that % + 5 = } Similarly with the
L? norms replaced by /” norms.

The purpose of this exercise is to give a proof of Theorem 4.8 that does
not require complex interpolation. First use (4.2), the trivial bound

I F i@ < 1 f L@ (4.20)

and Holder’s inequality to establish the weaker estimate

I £z = Opll fllLrczy)

whenever f e CZ is supported on a set A and obeys an estimate of the
form | f(x)] = ®()) for all x € A and some threshold A. Then, prove the
even weaker estimate

I £l 2y = Opll £l rz) log(1 + | Z]))

for arbitrary f € C% by applying the previous inequality to a dyadic
decomposition of f, followed by the triangle inequality. Finally, remove
the O, (log(1 + | Z])) factor to establish (4.12) by replacing Z with a large
power ZM of Z, and similarly replacing f with a large tensor power (as in
Corollary 2.19) and letting M — oo. Argue similarly to establish (4.13).
Prove Lemma 4.9.

Let A be an additive set in a finite additive group Z. Show that 1, is
real-valued if and only if A is symmetric.

(Law of large numbers for finite groups) Let f : Z — R be such that
Ezf =1 and f(0) # 0, and let H be the subgroup of Z generated by
supp(f). Show that | £ (&) < 1, with equality if and only if £ € H*.
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Next, define the iterated convolutions f ™ forn=1,2,... inductively

by fM:=f and f*+D:= fx £, and show that lim,_ . f™ =

% 1. What can happen when the hypothesis f(0) # 0 is dropped?
4.2.77  Use Fourier-analytic methods to give another proof of Corollary 2.10.
4.2.8  Use Fourier-analytic methods to give another proof of Proposition 2.7.
429  Let f be arandom variable which is not identically zero. By using (4.2)

and (4.20), establish the uncertainty principle
|supp(f)l[supp(/)| = |Z]. 4.21)

Prove that equality occurs if and only if f(x) = ce(§ - x)1 g1y, (x) for
some complex number ¢ € C, some subgroup H of Z, and some
&, xo € Z. This inequality can be improved for certain groups Z: see
Theorem 9.52.

42.10 Let f € C? be normalized so that ||f||iz(z) =3 ez I/ (&)? =1. By
differentiating the Hausdorff—Young inequality in p, establish the entropy
uncertainty principle

1 A 1
+) 1/ E)FPlog——— >
| fOP ;Z IGE
where we adopt the convention that 0 log % = 0. (Hint: differentiate the
Hausdorff—Young inequality in p at p = 2, using the fact that equality
holds at that endpoint.) Using Jensen’s inequality, show that this inequality
implies (4.21).

E.cz| f(x)]*log

k]

4.3 Linear bias

One common way to apply the Fourier transform to the theory of sum sets or
to arithmetic progressions is to introduce the notion of Fourier bias of that set
(also known as linear bias or pseudo-randomness). Roughly speaking, this notion
separates sets into two extremes, ones which are highly uniform (and behave like
random sets, especially with regard to iterated sum sets), and ones which are highly
non-uniform (and behave like arithmetic progressions).

Definition 4.12 (Fourier bias) Let Z be a finite additive group. If A is a subset
of Z, we define the Fourier bias || A||, of the set A to be the quantity
1Al = sup [T4®)l-
§€Z\{0}
This quantity is always non-negative, with [|A ||, = O if and only if A is equal to
Z or the empty set (Exercise 4.3.1). It obeys the symmetries | A, = || — All, =
|A + k|, = ||Z\A]|, for any h € Z (Exercise 4.3.2). We warn that this quantity
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is not monotone: A € B does not imply ||A]l, < ||B|,. However, the Fourier bias
does obey a triangle inequality (Exercise 4.3.3). The Fourier bias || A||, can be as
large as the density Pz(A), but is usually smaller (Exercise 4.3.4). Sets A with
Fourier bias less than « are sometimes called «-uniform or «-pseudo-randoms; sets
with small Fourier bias are called linearly uniform, Gowers uniform of order 1, or
pseudo-random.

The connection between Fourier bias and sum sets can be described by the
following lemma.

Lemma 4.13 (Uniformity implies large sum sets) Let n >3, and let

A1, ..., A, be additive sets in a finite additive group Z. Then for any x € Z
we have
1
WH(Gla-u’an) €A X xAyix =a1+ - +ay}| —Pz(Ay)---Pz(A,)
< A - 1A -2 1 PZ(A,-) PP (A)' 2.

In particular, if we have
A - Al < Pz(AD - - Pz(Au2)Pz(A,-1) PP2(A,)'?
then Ay +---+ A, =Z.

Of course, a similar result is true if we permute the Aj,..., A,. Note
that the quantity Pz(A;)---Pz(A,) is the quantity one would expect for
W%H(al,...,an)eAl X+ XA,:x=ay+---+a,}| if the events a; €
Ai,...,a, € A, were jointly independent conditioning on x = a; + - - - + a,.
This may help explain why uniformity is sometimes referred to as pseudo-
randomness.

Proof By (4.9), the function 14, * --- % 14, has Fourier transform f; e 1/,47.

Applying the Fourier inversion formula (4.4), (4.15), the Cauchy—Schwarz inequal-
ity and (4.16) we thus see that

lAl *"'*IA”(X):RCIAI *-~-*1An(x)

=Re) 14, Ip,Eelx-§)

EeZ

> 000 T, 0= > (Tl 15,6
§€Z\{0}

> Py(A) - Pz(A) = (Al [ Aually Y 1T, @I, )

EeZ

> P2(A) - P2(A) = (Al 1 A2l T4, 2 1, )2
=P(A)- - P(A) = A1l 1A P2 (A, )PP (A2,
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A similar argument gives

Lay oo 1y, (1) < P2(A) -+ P2(A) + [ Al [ An 2l P2(A, ) PP (A2,
Since by definition of convolution
Lay ok 1a,)=1ZI""{(ar, ..., an) € Ay X - X Ay i x =ar+ -+ an}l,
and the lemma follows. O

We now give an application of the above machinery to the finite field Waring
problem. We first need a standard lemma.

Lemma 4.14 (Gauss sum estimate) Ler F be a finite field of odd order, and let
A= F"2 ={a®: a € F)} be the set of squares in F. Then ||A||, < ﬁ + 2\F_1|1/2
Proof Let & € F\O. Since every non-zero element in A has exactly two repre-
sentations of the form a?, we have

NGE |F|Z e(—§ - x 2|F| 2|F|Z e(—§-a’

xeA

On the other hand, we may square

D e(—E-ah)| =|> et a)

2 2

=) e @ =b)

aeF ackF a,beF
= Y et (@ —(a+hD)
a,heF
= e(—=&-h*)) _e(& - 2ah).
heF aeF

If h#0, then 22 #0, and ), _pe(E-2ah) =) . pe(E-c)=0 thanks to
Lemma4.5. Onthe other hand, if » = 0,then ), _, e(£ - 2ah) = |F|. We conclude
that | Y, (€ - a*)|* = |F|, and the claim follows. O

By combining this lemma with Lemma 4.13, one immediately obtains

Corollary 4.15 Let F be a finite field of odd order, and let A = F"2 be the set of
squares in F. Then kA = F for all k > 3. Indeed, for any x € F, the number of
representations of x as a sum x =ay +---+ay withay, ...,a; € F is Q'* 4+
Oc(|[F |74 =22 FIF

We leave the verification of this corollary as an exercise. It shows that the sum
sets kA are more or less uniformly distributed for k > 3. Note that when k = 2, one
can still prove that 2A = F, but the sum sets can be quite irregular; for instance,
if —1 is not a square in F, then O only has one representation as the sum of two
elements in F.



4.3 Linear bias 163

We now present a lemma which asserts, roughly speaking, that if Bis a
randomly-chosen subset of A, then || B, is approximately equal to | 1Al ||A |I..; thus
the Fourier bias decreases proportionally when passing to random subsets.

Lemma 4.16 [149] Let A be an additive set in a finite additive group Z, and let
0 < t < 1. Let B be a random subset of A defined by letting the events a € B be
independent with probability t. Then for any A > 0 we have

Hmmu—wMszwstmw@”%&*Mﬁ%
where o2 = |Alt(1 — 1)/|Z|>.

The lemma is an easy consequence of Chernoff’s inequality and is left as
an exercise. Applying it with A = C log'/?
|[AlT(1 — 7) > log|Z|, we see in particular that

|Z| for some large C, and assuming

P(|Bll, = tllAll. + O(o log'?|Z])) = 1 — 0(1Z]7'")

(for instance). In particular if we set A=Z then we have |BJ, =
tZ2+ 0 — r)log‘zﬂz‘) with high probability; thus random subsets of Z tend
to be extremely uniform. Note that Pz (B) =~ t with high probability, thanks to
Corollary 1.10.

A major application of Fourier bias is in the study of arithmetic progressions
of length 3. We will study this application in detail in Chapter 10.

Exercises

4.3.1  Let A be a subset of a finite additive group Z. Show that ||A||, = Oif and
onlyif A=ZorA=40.

43.2 Let A be a subset of a finite additive group Z. Show that ||A|, =
| —All, = IT"A|l, = | Z\A]||, for any h € Z. More generally, if ¢ :
Z — 7’ is any isomorphism from one additive group to another, show
that ||¢(A)|l, = ||All,- In a similar spirit, show that the Fourier bias of a
set A does not depend on the choice of symmetric non-degenerate bilinear
form.

433 Let A, B be disjoint subsets of a finite additive group Z. Show that
AN = I1Bllul = IAU Blly < |Allu + 1 Bllu-

4.3.4  Let A be an additive set in a finite additive group Z. Show that ||A|[, <
P (A), with equality if and only if A is contained in a coset of a proper
subgroup of Z.

4.3.5 Let A and A’ be subsets of finite additive groups Z and Z’ respectively.
Show that |A x A'll, = |Allul|A |-
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4.3.6

4.3.7

4.3.8

439

4.3.10

43.11

4.3.12

4.3.13
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Let A be a subset of a finite additive group Z. Show that ||All, =
supy (14, e(@))cz|, where ¢ : Z — R/Z ranges over all non-constant
linear phase functions (as defined in Exercise 4.1.4).

Let A, B be additive sets in a finite additive group Z. Show that

|AI*|B|?
|Z
Using (2.8), conclude that if ||Al|, < a«Pz(A), then

E(A,B) < +1Z1IIAI2|B).

1. 1
|A+ B| > Emm(|Z|,;|B|). (4.22)

Thus a-uniform sets tend to expand sum sets by a factor of roughly a2
(unless this is impossible due to the trivial bound |A + B| < |Z]).
Let A be an additive set in a finite additive group Z. Show that

Al < ﬁE(A, A) = P2(A)* < | A|LPz(A). (4.23)
Thus uniform sets have additive energy E(A, A) close to the minimal
value of P;(A)*|Z|3, and vice versa.
Let A be an additive set in a finite additive group Z, and let n > 3 be
an integer. Using Lemma 4.13, show thatif nA # Z, then PZ(A)”ﬁ <
IA]l. <Pz(A). This estimate is especially useful when n is very large,
as it shows that 14 has a very large non-trivial Fourier coefficient.
Prove Corollary 4.15. Also show the identity A - 2A = A and conclude
that 2A = F (using the fact that 3A = F to show that 2A # A).
Use Chernoff’s inequality (in the form of Exercise 1.3.4) to prove
Lemma 4.16.
[149] Let A, B be additive sets in a finite additive group Z. Use
Lemma 4.13 to establish the inequality

ISl > Pz(A)/2P2(B)"/*P4(S)

whenever S is disjoint from A 4+ B. In particular, this inequality holds
when S = Z\(A + B). This shows that complements of sum sets are
“hereditarily non-uniform”.

Let A be a subset of a cyclic group Z, of prime order. Show that for any
arithmetic progression P in Z ,, we have the uniform distribution estimate

1
Pz, (AN P) =Pz, (A)Pz,(P)+ O(e) + O <10g g”A”u)

for any 0 < ¢ < 1. (Hint: apply a change of variables to make P =
[N, N] for some N. Approximate the indicator 1p by something a bit
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smoother (smoothed out at scale ep) and then compute the Fourier expan-
sion. Apply Plancherel’s theorem (4.3) with this smoothed out function
and 14 — P(A).) This inequality is a crude form of the famous Erdds—
Turdn inequality in discrepancy theory, and is related to the Weyl criterion
for uniform distribution modulo one.

43.14 LetA = Zf, be the set of squares in a cyclic group of prime order. Show
that for any arithmetic progression P in Z,, we have

1
|ANPl=ZIPI+ 0(J/plog p).

(Hint: use Lemma 4.14 and the preceding exercise.) This is a special case
of the Polya—Vinogradov inequality from analytic number theory.

4.3.15 Let F be afinite field, let Z be a vector space over F,andletM : Z — Z
be a linear transformation. Show that if dimy(Z) > 3, then there exists
a non-zero x € Z such that Mx - x = 0. (Hint: reduce to the case when
M has full rank, and then modify Lemma 4.14. One can also solve this
problem by purely algebraic methods.)

4.3.16 [160] Let W be a vector space over a finite field F of odd order, and
let M : W — W be a linear transformation. Show that there exists a
subspace U of W with dimension dimg(U) > %dimp(W) — % such that
Misnullon U,ie. Mx -y =0forall x, y € U. (Hint: take a maximal
space U which is null with respect to M. If the orthogonal complement
Ut :={yeW:Mx-y=0forall x € U} is at least three dimensions
larger than U, then use the previous lemma.) For a purely algebraic proof
of this fact, see Exercise 9.4.11.

4.4 Bohr sets

In many applications of the Fourier-analytic method, one starts with some additive
set A and concludes some information about the Fourier transform 1, of A (for
instance, one may obtain some bound on the Fourier bias ||A[,). One would
then like to pass from this back to some new combinatorial information on the
original set A. For some special groups (e.g. finite field geometries F);) one can
do this quite directly (see for instance Lemma 10.15). However, to convert Fourier
information on general groups to combinatorialinformation we need the notion of
a Bohr set (also known as Bohr neighborhoods in the literature). We first define
a “norm” ||@]|r;z on the circle group by defining |6 + Z|g;z = |6] whenever
—1/2 < 6 < 1/2;in other words, [|f]|r,z is the distance from € (or more precisely,
any representative of the coset 6) to the integers. We observe the elementary bounds

4)10|lr/z < le(®) — 1| <27 ||0|lr/z (4.24)
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which follow from elementary trigonometry and the observation that the sinc
function sin(x)/x varies between 1 and 2/7 when |x| < /2.

Definition 4.17 (Bohr set) Let S C Z be a set of frequencies, and let p > 0. We
define the Bohr set Bohr(S, p) = Bohrz(S, p) as

Bohr(S, p) := {x € Z:supll§-xllrz < p}.
EeS

We refer to S as the frequency set of the Bohr set, and p as the radius. The quantity
|S| is known as the rank of the Bohr set.

Remark 4.18 Note that if Z is a vector space over a finite field F, then every
subspace of Z can be viewed as a Bohr set (with radius O(1/|F|), and rank equal
to the codimension). Thus Bohr sets can be viewed as a generalization of subspaces.
Note that most finite groups Z tend to have very few actual subgroups (the extreme
case being the cyclic groups Z,, of prime order), so it is convenient to be able to
rely on the much larger class of Bohr sets as a substitute.

Remark 4.19 One way to think of Bohr sets is to consider the embedding of Z
into the complex vector space C3 (and in particular to the standard unit torus inside
C%) by the multiplicative map x +> (e(& - X))zes- A Bohr set is thus the inverse
image of a cube.

Observe that the ||[|g/z norm is symmetric and subadditive; || — x||r;z =
Ixllr/z and ||x + yllr/z < lIxllr/z + |y llr/z- From this we see that the Bohr sets
Bohr(S, p) are symmetric, decreasing in S, and increasing in p (and fill out the
whole space Z once p > 1/2); they are always unions of cosets of S*, and if p
is sufficiently small they consist entirely of S*. One can also easily verify the
intersection property

Bohr(S, p) N Bohr(S’, p) = Bohr(SU S’, p)
and the addition property
Bohr(S, p) + Bohr(S, p’) € Bohr(S, p + p').
In particular we have
kBohr(S, p) € Bohr(S, kp)

for any k > 1.
Next, we establish some bounds for the size of Bohr sets.

Lemma 4.20 (Size bounds) IfS C Z and p > 0, then we have the lower bound

P(Bohr($, p)) > p'*! (4.25)
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and we have the doubling estimate
P (Bohr(S, 2p)) < 45'P,(Bohr(S, p)). (4.26)

This lemma should be compared with the Kronecker approximation theorem
(Corollary 3.25); indeed the two results are very closely related.

Proof For each & € § let 6; be an element of R/Z chosen independently and
uniformly at random. For any x € Z, one can easily verify that

P2(§ - x —Osllrjz < p/2 forall § € S) = pl.
Summing this over all x € Z using linearity of expectation (1.4), we conclude
Elfx € Z:||§ - x —b;llrjz < p/2 forall § € S}| = p"!|Z]
and thus there exists a choice of ¢ such that
Hx e Z:|E x—6lrjz < p/2forall & € S}| > p¥!|Z]. 4.27)

Now observe from the triangle inequality that if x, x lie in the above set, then
x — x’ lies in Bohr(S, p). The claim (4.25) follows.

Now we prove (4.26). By a limiting argument we may replace 2p by 2p — ¢ on
the left-hand side for some small £ > 0. Observe that we can cover the interval {0 €
R/Z : ||0|lr/z < 2p — ¢} by four intervals of the form {6 € R/Z : ||6 — Olg/z <
0/2}. We can thus can cover Bohr(S, 2p) by 4!5! sets of the type appearing in the
left-hand side of (4.27). The claim follows by arguing as before. O

We have already mentioned that subspaces of a vector space are one example
of a Bohr set. Progressions can form another example; for instance intervals such
as (—N, N) in a cyclic group Z,; can easily be seen to be a Bohr set of rank
1. We can combine these two examples by introducing the concept of a coset
progression.

Definition 4.21 (Coset progressions) [157] A coset progression in an additive
group Z is any set of the form P 4+ H where P is a progression and H is a finite
subgroup of Z. We say that the coset progression P + H is proper if P is proper
and |P + H| = |P||H]| (i.e. all the sums in P + H are distinct). We say that a
coset progression P + H has rank d if the component P has rank d. We say that
P + H is symmetric if P has the form P = (—N, N) - v.

Of course, Corollary 3.8 shows that every coset progression can also be viewed
as an ordinary progression, but possibly of much larger rank. If however Z is a
cyclic group of prime order, then H will either be trivial or equal to the whole
space, and will thus increase the rank by at most 1. Indeed we can view vector
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spaces over small finite fields on the one hand, and cyclic groups of prime order
on the other, as the two extremes of additive behavior for finite groups Z.
Now we relate Bohr sets of rank d with coset progressions of rank d.

Lemma 4.22 (Bohr sets contain large coset progressions) [/60] Let
Bohr(S, p) be a Bohr set of rank d in Z with0 < p < % Then there exists a proper
symmetric coset progression P + H of rank 0 < d’ < d, obeying the inclusions

Bohr(S, d' > p) € P + H € Bohr(S, p). (4.28)
In particular, from Lemma 4.20 we have
P,(P + H) > pd ™. (4.29)
Furthermore we have H = S+.

Proof Let ¢ : Z — (R/Z)S be the group homomorphism ¢(x) := (& - X)ges.
Observe that ¢(Z) is a finite subgroup of the torus (R/Z)5, and that Bohr(S, p) con-
tains the inverse image of the cube Q = {(y¢)zes € RS : | el < p} C R (which
we identify with its projection in (R/Z)%) under ¢.

LetI" C R be the lattice ¢(Z) + Z5. Though it is a slight abuse of notation, we
consider ¢(Z) N Q to be the same as I' N Q. Applying Lemma 3.36, we can find
a progression P .= (=L, L) - w for some linearly independent wy, ..., wy ST
with 0 < d’ < d such that

rnd~.pgcbkbcrno

Since the w; are independent, P is necessarily proper. The claim now follows by
setting v; to be an arbitrary element of ¢~'(w;) for each 1 < j < d’, and setting
H equal to the kernel of ¢, which is of course just S*. O

In the case of a cyclic group, we can dispense with the group H and sharpen
the constants somewhat (though at the cost of losing the first inclusion in (4.28)):

Proposition 4.23 Let Z = Zy be a cyclic group, and let Bohr(S, p) be a Bohr set
of rank d with0 < p < % Then Bohr(S, p) contains a symmetric proper progres-
sion P of rank d and cardinality

d

0
|P|Zd—d

Furthermore we may choose P to be symmetric (i.e. P = —P).

N.

Proof The main tool here will be Minkowski’s second theorem. We use the
standard bilinear form & - x = £x/N, and write S = (£, ..., &;). Let @ € R be
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the vector o := (5—‘, el E—‘I), and let T be the lattice Z - o + Z<; this clearly has
full rank, and by (3.12)

mes(R?/T") = mes(R?/Z9)/|T"/Z¢| > 1/N.
Let Q be the cube
Q :={(x1,....,x5) eR 1 |x;| < pforalll < j <n},

andlet 0 < A; < --- < Ay be the succesive minima of Q with respect to I', with
a corresponding directional basis vy, ..., vy € I' as given by Theorem 3.30. In
particular we see that every coordinate of v; has magnitude at most A p.

Let 1 < j <d be arbitrary. Since v; € I', we see from the definition of I"
that there exists w; € Zy such that v; € aw; + Z%. In particular we see that
& - wjllr/z < Ajp for all 1 <i,j <d. Set w:=(wy,..., wyz). Now we let
M; .= Lﬁ/], and let M := (My, ..., My); we now claim that the progression
P :=(—M, M) - w is proper and lies in Bohr(S, p) (it is clearly symmetric). Let
us first verify that P € Bohr(S, p). If n = (ny, ..., nyg) € (—M, M), then for any
1 < j <d we have

d d
1
1€ (- w)llwyz < Y1l - willrz < Y ——4jp = p
j=I1 j=1 J

and hence njw; + --- 4+ ngwy € Bohr(S, p). This proves the inclusion P C
Bohr(S, p).

Now we show that P is proper. Suppose for contradiction that there exist distinct
n,n' € (—M, M)suchthatn - w =n' - w;setting7i :=n —n’ € (—2M,2M), we
thus see that 7 - w = 0. In particular, (7 - v); is an integer for each i. On the other
hand, by arguing as before, we see that

d d
- ~ 2
(G )il = Y17 jl1Ew; /N < 3 ——hip =2p.
=1 j=1 4N
Since p < 1/2, we conclude that (7 - v); = 0 for all i, and thus Zj fijv; =0.But
this contradicts the linear independence of the directional basis vy, ..., vs. Thus
P is proper.
Finally, the cardinality of the proper progression P is

d d
1
Pri=[lemM;—-=]]-—
|P| ,1:[1 j ,Uldx,-

and the claim follows from Minkowski’s second theorem. O
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One undesirable feature of Bohr sets of large rank d is that they have large
doubling constant: (4.26) suggests that Bohr(S, p) 4+ Bohr(S, p) can be 49 times
larger than Bohr(S, p). A useful observation of Bourgain [39] is that if one con-
siders an imbalanced sum Bohr(S, p) + Bohr(S, p’), with o’ much smaller than
0, then it is still possible for Bohr(S, o) + Bohr(S, p’) to be close to Bohr(S, p).
This intuition is formalized by the notion of a regular Bohr set.

Definition 4.24 (Regular Bohr sets) A Bohr set Bohr(S, p) of rank d is said to
be regular if one has the estimate

(1 — 100d |k )Pz(Bohr(S, p)) < Pz(Bohr(S, (1 + k)p))
< (1 4 100d |« |)Pz(Bohr(S, p))

1
whenever || < 1557+
Not all Bohr sets are regular. However, it turns out that every Bohr set is “close”

to a regular one:

Lemma 4.25 (Regular Bohr sets are ubiquitious) [39] Let S be a non-empty
additive set and let 0 < & < 1. Then there exists p € (e, 2¢] such that Bohr(S, p)
is regular.

Proof Let f:[0,1] - R be the function f(a):= élog2 Pz(Bohr(S, 2%)).
Observe that f is non-decreasing in a, and from Lemma 4.20 we have f(1) —
£(0) < log, 5.

Suppose we could find 0.1 < a < 0.9 suchthat| f(a’) — f(a)| < 20]a — a| for
all |a| < 0.1. Then it is easy to see that Bohr(S, 2%¢) is regular. Thus, it suffices to
obtain an a with this property. This can be done directly from the Hardy-Littlewood
maximal inequality (applied to the Lebesgue—Stieltjes measure d f), or as follows.
If no such a exists, then for every 0.1 < a < 0.9 there exists a real interval I of
length at most 0.1 and with one endpoint equal to a, such that || ,Aaf > / ;20 dx.
These intervals cover {a : 0.1 < a < 0.9}, which has measure 0.8. By the Vitali
covering lemma (see exercises), one can find thus find a finite subcollection of
disjoint intervals Iy, ..., I, of total length |I;| 4+ ---+ |I,] > 0.8/5 (say). But
then we have

10g252/ df>2/df>2/zodx>;8xzo

a contradiction. O

We shall make a crucial use of this lemma in proving Bourgain’s quantitative
version of Roth’s theorem in Section 10.4.
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Exercises

4.4.1

442

443

4.4.4

445

4.4.6

4.4.7

448

Show that if 0 <p<1/6 and [S|>1, then |lpons.p(®)l >
%PZ(Bohr(S , p)) forall £ € S.In particular Bohr sets are extremely non-
uniform: ||Bohr(S, p)|l, > %PZ(Bohr(S, 0)). By applying Plancherel’s
theorem, conclude the additional bound P (Bohr(S, p)) < %.

Give examples to show that the density Pz (Bohr(S, p)) of a Bohr set can
be as low as @(p)S!, and as large as ©(1/|S]), even when p is small and
| S| is large. Thus the bounds in (4.25) and the preceding exercise cannot
be significantly improved.

Establish the bound P(Bohr(S, kp)) < O(k)!S'P,(Bohr(S, p)) for any
k > 1. Using the Ruzsa covering lemma (Lemma 2.14), conclude that one
can cover Bohr(S, kp) by O(k)!S I translates of Bohr(S, p). In particular,
in the notation of Definition 2.25, Bohr(S, p) is a O(1)'Sl-approximate
group.

In the setting of Lemma 4.22, show that Bohr(S, p) can be covered by
O(d)d2 translates of P + H.

Show that a Bohr set Bohr(S, p) of rank d always contains an arith-
metic progression of length ®(|Bohr(S, p)|'/?) and non-zero step size.
(Hint: if |Bohr(S, p)|'/? is large, use the preceding exercise to show
that Bohr(S, p/k) contains a non-zero element for some integer k =
©(|Bohr(S, p)|"/?).)

[160] Let A be an additive set in Z that contains 0. Show that there exists a
set S of frequencies with | S| < 1 4 log, |A|suchthat A N Bohr(S, V2) =
{0}. (Hint: choose 1+ |log, |A|] frequencies randomly and indepen-
dently (allowing for collisions) and use the first moment method.)
(Vitali covering lemma) Let Z be a finite collection of intervals in the real
line. Show that there exist a subcollection Iy, ..., I, of these intervals
whose interiors are disjoint, and such that Y, |7;| > tmes(U, 7 D).
(Hint: use a greedy algorithm, picking the largest intervals first.) By being
more sophisticated in the argument, lower % to % (Hint: eliminate nested
intervals, and then move greedily from left to right to cover | J,.; I by
two families of interior-disjoint intervals.)

(Hardy—Littlewood maximal inequality) Let ; be a non-negative finite
measure on the real line, and let M u denote the Hardy-Littlewood max-
imal function M pu(x) := sup,_ %,u,{y :x —r <y <x+r}. (It can be
verified that M p is a measurable function.) Using the Vitali covering
lemma, establish the distributional inequality

mes({x : Mu(x) > A}) < %u(R).
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4.5 A(p) constants, B;[g] sets, and dissociated sets

In Section 4.3 we discussed one Fourier-analytic characteristic of an additive set
A in a finite additive group Z, namely its linear bias. In this section we discuss a
rather different characteristic, namely the A(p) constants of a set S of frequencies.
These constants measure how “dissociated” or “Sidon-like” a set! S is; in more
practical terms, the A(p) constants quantify the independence of the characters
associated to S in a certain L?(Z) sense. These constants can be used to obtain
precise control on the arithmetic structure of S, for instance in controlling iterated
sum sets of S. One feature of these constants is that they are stable under passage
to subsets, thus A(p) constants will also control iterated sum sets of subsets S’ of
S. This stability (which is not present in the Fourier bias, unless one takes random
subsets as in Lemma 4.16) is useful for a number of applications.
We begin with the formal definition of the A(p) constants.

Definition 4.26 (A(p) constants) Let S be an additive set in a finite? additive
group Z, and let 2 < p < oo. We define the A(p) constant of S, denoted || S||a(p),
to be the best constant such that the inequality

D c®e - x) < ISlagmliellag) (4.30)
£eS LP(Z)
holds for all sequences ¢ : S — C of complex numbers.

One can easily establish the bound
ISlacp < IS]V271P, 431)

for 2 < p < oo, with equality at the endpoints p = 2, 0o; see Exercise 4.5.6. This
exercise indicates that largeness of A(p) constants is correlated to strong additive
structure of S. At the other extreme, we now show that smallness of A(p) constants
is correlated to strong lack of additive structure of S.

Definition 4.27 (B, sets) Let 7 > 2. A non-empty subset S of an additive group
Zis a By, setif forany &, ..., &,n,...,n, € S,onehas & +---+&, =n; +
.-+ np if and only if (§1, ..., &,) is a permutation of (11, ..., n;). We say Sis a
Sidon set if it is a B, set.

These sets are the g = 1 version of the B;[g] sets, encountered in Section 1.7.1;
Sidon sets were also briefly mentioned in Section 2.2. Note that we do not bother
with the notion of a B set, since every set is trivially a B; set.

! Here, we use “Sidon set” to denote a set whose pairwise sums are all disjoint. There is another, more
Fourier-analytic, notion of a Sidon set related to A(p) constants which we will not discuss here.

2 One can also define the concept of a A(p) constant for subsets of the integers, or more general
additive groups, but we will not need to do so in this book.
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Example 4.28 Forany M > 1,theset S := {0} U(M"N) = {0, 1, M, M?, .. }is
a By, setin Z if and only if 7 < M. In particular, the powers of 2 form a Sidon set.
One can of course truncate these examples to finite additive groups such as Zy;
note that any non-empty subset of a By, set is also a By, set.

Proposition 4.29 Let S be a non-empty subset of a finite additive group Z. Then
we have

1\ 4
I1Slla@ = (2 - m) ; (4.32)

with equality holding if and only if S is a Sidon set. More generally, if h > 1, then
there exists a number 1 < a(h, |S|) < (hW)'/?" depending on h and |S| such that
ISl a2ny = a(h, |S]) when S is a By, set, and ||S||a@ny > a(h, |S|) otherwise.

Proof We first prove (4.32). By testing (4.31) with c¢¢ identically equal to 1, it
will suffice to show that

Y e(x, &)

EeS

4

LYZ)

The left-hand side can be expanded as

Y Eeze(E+&—ni —m)-x).

&1,62,m1,mES

By Lemma 4.5 this simplifies to

Hé1, &, m,m e S: & +& =n +nll

Clearly &; + & will equal n; + n, when (§1, &) is a permutation of (1, 172), so
this expression is at least as large as

1
1=IS|(IS| — D2+ S| = (2— E) N
&6, ,meSHELEY={n.n)

as claimed. Note that this argument also shows that the inequality in (4.32) is strict
if S is not a Sidon set, since then we have additional terms coming from pairs
(&1, &) and (11, n2) which are not permutations of each other.

Now suppose that S is a Sidon set. To prove equality in (4.32) it suffices to
show that

4

1
<2-
5]

D ceelx, £)

EeS

LYZ)
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assuming the normalization ZE es lce |> = 1. The left-hand side can be expanded
as

Z Ct, Ce, C Cpy Exeze((§1 + & — i — m2) - X)
&1.6.m,meS

which as before simplifies to

Ce Ce,yC Copy -
&1.6,m,mES:E1+E=n1+m2

Since S is a Sidon set, (171, 172) must be a permutation of (1, 7). Splitting into the
cases & = &, and & # &, we can thus rewrite the previous expression as

dolleely +2 0 Y ey Ples

£eS §1,5€5:51#86

which by the normalization ZE es lce |> = 1 can be written as

2- el

£e§

But from Cauchy-Schwarz and the normalization ), ¢|ce|* =1 we have
> ces lcel* = 1/]S], and the claim follows.
The general case & > 2 is similar but is left to Exercise 4.5.9. O

Another quantification of the heuristic that large A(p) constants corresponds
to strong additive structure is given by

Lemma 4.30 Let S be a non-empty subset of a finite additive group Z, and let
h > 1. Then we have

|S|"

1S — haS| = ——

IS A )
whenever hy, hy, > 0 are such that hy + hy, = h. In particular we have

|S|"

S| = ———.

1S 1200,
Remark 4.31 This lemma shows that if S has a small A(24) constant, then not
only do the sum sets /.S become very large, but so do the sum sets 45’ of all subsets
S’ of S, thanks to the monotonicity of A(p) constants. The converse statement is
also true up to logarithmic factors; see exercises. Thus A(2h) constants measure
the failure of S, or any of its subsets, to have good closure properties under i-fold
sums.
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Proof From (4.30) with p := 2h, and c¢ set identically equal to 1, we have

D e -x)

Ees

2h
2h h
< 18I 1S1".

L2h (2)

The left-hand side is equal to

(Ze(é w))m (Z e(& -x))hz 2

EeS te—S 122

since e(x, —&) is the conjugate of e(x, £). We can expand

hy ha
(Ze@w)) (Ze(aaé)) = el - x)

§es §e=S§ £eS

where ry, 5, is the counting function

&) := {1, ... En & ... &) e ST g
=&+t h - - g

By (4.2) we thus have

2 2h h
E Ty (§)7 < ||S||A(2h)|S|1~
EeS

On the other hand, the function ry, j, is supported in 215 — k2 S, so by Cauchy—
Schwarz

> @) < 111 S — haSIV2 (S| o |SIM2
tEeS

But from the definition of ry, 5, we have

Zrhlﬁhz(‘g) = |Sh]+h2| = |S|hl+hz

£eS

The claim follows. O
We now investigate the A(p) constants of Sidon-like sets as p — oo.

Definition 4.32 An additive set S with cardinality | S| = d is said to be dissociated
if the cube [0, 119 - S is proper, or in other words, the 24 subset sums

FS(S) := {Zs 8 C S}

tes

are all distinct.
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This should be compared with the concept of a Sidon set, which is a set S
of cardinality d whose @ pairwise sums {&; + & : &1, & € S} are all distinct
(except for the trivial identification & + &, = &, + &;). A good example of a dis-
sociated set is the set of powers of 2: S = {1, 2, ..., 2"} in any cyclic groupZ/NZ
with N > 2"+ Observe that if S is a dissociated set of cardinality d, and v is a
non-zero element of [—1, 1]¢, then v - S # 0 (since otherwise we could find two
disjoint sets S, S, in S, corresponding to where the components of v are 41 or
—1l,suchthat ) . ¢ & =3 ;¢ &)

Dissociativity is the Fourier analog of joint independence. It leads to the fol-
lowing Fourier-analytic analog of Chernoff’s inequality:

Lemma 4.33 (Rudin’s inequality) If S is dissociated, then we have

E.c7 exp (oReZc@)e@ ~x>) <o (4.33)
EeS
whenever ||cllipsy < 1 and o > 0. We also have the distributional estimates
Py { D e - x)| = A} = O, (e7/64+9) (4.34)
EeS
for every ¢ > 0, and the A(p) estimate
ISllacy = OG/P) (4.35)

forall2 < p < oo.

Note that when p = 24 then (h!)!/?" is comparable to /P by Stirling’s formula
(1.52), and hence so (4.35) and shows that dissociated sets are comparable in A(2h)
constant to By, sets for any given A (if S is sufficiently large). This also shows
that the bounds in the above lemma cannot be significantly improved except in
the constants, even if one imposes even more additive independence conditions
on S.

Proof Write c(§) = |c(&)|e(0¢) for some phase 6 € R/Z. We begin by observing
the inequality

e"™™ < cosh(x) + ¢ sinh(x)

forall x > 0and —1 <t < 1, which is simply a consequence of the convexity of
e'* as a function of 7. In particular we see that

exp(oRec(§)e(x, §)) < cosh(a|c(§)]) + sinh(o|c(E)DRee(€ - x + 6;),
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which upon multiplying and taking expectations becomes

E.czexp (a Y Rec(®elx, 5))

EeS

1
<E.ez|[] ((Cosh(OIC(S)I) + 5 sinh(o[c(€)De(E - x +6;)

EeS
1
+ 3 sinh(o|c(&)e(—& - x — 95)).

Now we multiply the product out and inspect its behavior in x. We obtain a
large number of terms (3'5!, to be exact) that are of the form e((v - S) - £), for
some v € [—1, 1]
some enumeration S = (&, ..., §s) of S. There is one constant term, namely
]_[5€ gcosh(o|c(§)]), but all the others have a non-zero frequency vector v - §
because S is dissociated, and thus integrate out to zero by the Fourier inversion
formula. Thus we have

, times some constant independent of x, where we select

E.czexp (o D Rec()elt - x)) < [ cosholc)D.

ges ges
and the claim (4.33) then follows from the elementary inequality cosh(x) < e
(which follows by comparing Taylor series). From Markov’s inequality we thus

obtain

P, (RCZC(é)e(E X)) > k) < e /et

EesS

for every A > 0; choosing o := 1/2, we obtain

P (Re > @& - x) > x) < e

teS

Replacing A by (1 — &)A and rotating c(£) by an arbitrary angle e(6), we obtain

| (Ree(9> Y e®e - x) = (1 - s)x> < e MU=,
teS

If take the union of these estimates as ¢’?

(depending on &) we obtain (4.34).

To obtain (4.35), we observe from the identity

o0
= P/ )Lpilpxez
0

varies over a finite number of angles

ZA) dx

P

D c®e& - x)

EeS

D c®e& - x)

EeS

Lr(Z)
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and (4.34) (with ¢ = 1, say) that

P o0
3 c(@)ete - ) =0(p /0 APl dA).

EeS

LP(Z)

To estimate the integral, we observe from elementary calculus that the integrand
AP~1e=*/5 is bounded by O(p)?/? for A = O(/p), and then decays exponentially
for A > ./p. From this we can easily bound the integrand by p® O(p)?/?, and
the claim follows (note that p'/? is bounded by e). O

In the next few sections we shall use Rudin’s inequality to obtain structural
control on various sets of frequencies.

Exercises

4.5.1

452

453

Show that the A(p) constant of a set S does not depend on the choice of
bilinear form used to define the Fourier transform, and is also invariant
under translations or isomorphisms of the set S.

For any 2 < p < oo and any disjoint S, S,, show the triangle inequality
1SIapy < IS1llap + 1520l a¢p) Whenever § € Sy U S,.

Let & be the uniform distribution on {—1, 1}, and let 1, ..., ey be inde-
pendent trials of ¢. If ¢y, ..., cy are arbitrary complex numbers and
2 < p < oo, prove Bernstein’s inequality [25]

N 1/2 N V4 l/P
(Dcm) (z )
j=1 j=1

N 12
<o (VP (Z |c,»|2)

(Hint: for the lower bound, compute the p = 2 moment. For the upper
bound, modify the proof of Lemma 4.33; alternatively, apply Lemma 4.33
to the group Z = Z}', where S is the standard basis for Z}'.) Conclude
that if f1, ..., fy are any complex-valued functions on Z, then we have

Khintchine’s inequality

N 172 N
(Z |fj|2) <E[[Y ¢
j=1 j=1

LP(Z) L¥(Z)

1
p /p

N 1/2
<o|Jp (Zmﬁ)

Lr(Z)
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4.5.6

4.5.7

45.8
459
4.5.10
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Let f:Zy x Zy — C be a function on two variables in two non-
empty finite sets Z;, Z,, and let 2 < p < oo. Establish the Minkowski
inequality

(Byer, Bz, | £ 6, PP < (Brez, (Byez, | £x, IP7) 2
(4.36)
(Hint: use the triangle inequality for the L”/?> norm.) Conclude that
ISl A¢p) is the best constant such that

172
| < 1Sllac (Z ||c(§>||%1>
LP(Z)

£e§

for all finite-dimensional Hilbert spaces H and all sequences (c(§))zes
taking values in H. Using this, conclude that ||S; x Sillap) =
IS1ll apllS2llacpy Whenever Si, S, are additive sets in finite additive
groups Z1, Z, and 2 < p < oo.

[33],[20]Letn > 1beaninteger,let Z := Z).For& = (&1, ...,§,) € 27,
let |& | denote the number of coefficients &1, . . ., &, which are equal to one.
Establish the Bonami—Beckner inequality

ZSIEIC(E)

EeZ

> c®)ex, )

£EeS

H

< llcllaz
Ll+l/sz(z)

for all 0 < & < 1 and all ¢ € [*(Z). (Hint: first establish this by hand
for n = 1, and then exploit (4.36) to obtain the general case.) Conclude
in particular that if Sy := {§ € Z : |§] = k}, then || Skllap) < (P — k72
forall2 < p < o0.

Let 2 < p < 00, and let S be a non-empty subset of Z. Prove (4.31).
(Hint: use the Hausdorff—Young inequality.) If 2 < p < 0o, show that
equality occurs if and only if S is a translate of a subgroup of Z. (You
may need Exercise 4.2.9.)

Let S be an additive set in a finite additive group. Show that

S| Ay = min (1, |Z|7"/7|S|'/?)

forall2 < p < oo. It turns out that these bounds are essentially sharp for
randomly chosen sets S in Z of a fixed cardinality: see [35].

Let S be a B, set in a finite additive group Z. Show that |S| < |Z|!/".
Complete the proof of Proposition 4.29.

Let S be an additive subset of Z. Show that E(S, S) < ||S||‘}\(4)|S|2;
thus the additive energy of an additive set is controlled by its A(4)
constant.
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4.5.12
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Let S be an additive set, and let 4 > 1. Suppose that A > 0 is a constant
such that

, |S/|h
0S| =~
for all non-empty subsets S” of S. Show that
ISllaeny = OCA(l + log |S]));

thus Lemma 4.30 can be reversed after conceding a factor of a logarithm.

(Hint: first verify the estimate (4.30) when c is a characteristic function
by reversing the proof of Lemma 4.30. For general ¢, decompose ¢ into at
most O(1 + log |S]) functions which are comparable to constant multi-
ples of characteristic functions, by partitioning the range of ¢ using powers
of 2, and discarding those values of ¢ smaller than (say) |S|~'%||c||2.)
[251] Show that ||.S]|A(p) is the best constant such that

I fllecsy < USHap L f iz z)

for all random variables f, where p’ is the dual exponent to p, thus
1/p+1/p" = 1. Next, write
B

1 7z = @nfniz(z) +Eoyez fOOFOIx # ) Y elE - (x — y))
EeS

and observe the inequalities

E, ez f()gOIx # ) Y e(€ - (x — y))

Ee§

< fllexzplglaz

and

E ez fOOZOI(x # )) e(€ - (x — y)

EeS

= 1ZIISHull f iz llgleiz)-

Using Riesz—Thorin interpolation (or arguing as in Exercise 4.2.3) con-
clude that

Ec ez fOOZOIx # )Y e - (x — y))

£EeS
1-2
<AZNSID)" PN f e gl Lr z)-

From this, conclude the Tomas—Stein inequality

_2 _2
1S3 < ISHZIT7 + (ISIl ZD' 7

(compare with (4.31)). Thus, Fourier-uniform sets tend to have fairly
small A(p) constants. See also Lemma 10.22.
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4.6 The spectrum of an additive set

We now use Fourier analysis to investigate the spectral properties of additive sets
A which have high additive energy E(A, A); examples of such sets include sets
with small sum set |A + A| or small difference set |A — A| (cf. (2.8)). One can
already conclude from estimates such as (4.23) that such sets must be highly non-
uniform, i.e. 1 4 contains non-trivial Fourier coefficients. However, this by itself is
not the strongest Fourier-analytic statement one can say about such sets. In order to
proceed further it is convenient to introduce the notion of the a-spectrum of a set.

Definition 4.34 (Spectrum) Let A be an additive set in a finite additive group Z
with a non-degenerate symmetric bilinear form - and let « € R be a parameter. We
define the a-spectrum Spec,(A) C Z to be the set

Specy (A) := (£ € Z : [T4(€)] > aP2(A)}.

One could define this spectrum without the assistance of the bilinear form -, but
then it would be a subset of the Pontryagin dual group Z rather than Z.

From Lemma 4.9 we see that the sets Spec, (A) are symmetric, decreasing in c,
empty for @ > 1, contain the origin for ¢ < 1, and are the whole space Z whenever
o < 0. Thus the spectrum is really only an interesting concept when 0 < o < 1.
In the extreme case o = 1 the spectrum becomes a group, see Exercise 4.6.2.

From (4.16) (and Markov’s inequality) we observe the upper bound

ISpec, (A)] < a™?/Pz(A) (4.37)

on the cardinality of the a-spectrum. In fact we can use Rudin’s inequality to
obtain a more precise structural statement, in which the polynomial loss in P2 (A)
is replaced with a logarithmic loss. To prove this statement, we first need an easy
lemma (cf. Corollary 1.42).

Lemma 4.35 (Cube covering lemma) [36] Let S be an additive set in an ambi-
ent group Z, and let d > 1 be an integer. Then we can partition S = DU --- U

Dy UR where Dy, ..., Dy are disjoint dissociated subsets of S of cardinality
d + 1, and the remainder set R is contained in a cube [—1,11% - (1, ..., na) for
some Ny, ...,Nq € Z.

Proof We use the greedy algorithm. We initially set k = 0. If we can find a
dissociated subset D of S of cardinality d + 1, we remove it from § and add it to
the collection Dy, ..., Dy, thus incrementing k£ + 1. We continue in this manner
until we are left with a remainder R where all dissociated subsets of S have
cardinality d or less. Let {n, ..., ns} be a dissociated subset of R with maximal
cardinality; thus d’ < d. Observe that if R contained an element & which was not
contained in [—1, 1]‘1/ -1, ..., nar), then {ny, ..., na, &} would be dissociated,
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so contradicting maximality of d’. Thus we have R C [—1, l]d’ M1y ey Nar),
and the claim follows (padding out the progression with some dummy elements
Na'+1, - - - » Na if necessary). O

Lemma 4.36 (Fourier concentration lemma) [48] Let A be an additive set in
a finite additive group Z, and let 0 < o < 1. Then there exist d = O(a’z(l +
log #(A))) and frequencies 11, . .., ng € Z such that

Spec,(A) C [—1, 114 - (1, - .., na).

This result is essentially sharp in a number of ways; see [146].

Proof Tt will suffice to show that for each phase 8 € R/Z, the set
S = {8 € Z 1 Re e®)Ta(®) = SP2(W)}

can be contained in a progression of the desired form, since from Definition 4.34
we see that Spec,, (A) is contained in the union of a bounded number of the Sy, and
we can simply add all the progressions together (here the fact that we have «/2
instead of « in the definition of Sy is critical).

Fix 6. By Lemma 4.35, it will suffice to show that

1
S’ < Ca™? (1 +1o )
|S gPZ(A)

for all dissociated sets S’ in Sy. But if ' € Sy, then by definition of Sy

Re e(0) ) Li(6)15(6) = SPAA)IS|

EeZ

Let f(x):= W ZE cs €(x, &) be the normalized inverse Fourier transform of
1g; then by (4.3) the left-hand side is equal to Re e(@)|S/|1/2EzlAf. Thus we
have

E 14l f1 = SP2(AS|.
The left-hand side can be rewritten as

E21A|f|=/ Poos(r € A: | f(0)] = 1) dA,
0

cf. (1.6). To bound P,z (x € A;|f(x)| > A), we can either use the trivial bound
of Pz(A) or use (4.34) to obtain a bound of C e X3 (for instance). Thus we have

A
/ min (P2(A), Ce /%) di > %PZ(ANS/I”Z-
0

The left-hand side is at most CPz(A)(1 + logl/ 2 ﬁ), and the claim follows.
O
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The above lemma suggests that the spectrum has some additive structure. This
is confirmed by the following closure properties of the o-spectrum under addition:

Lemma 4.37 Let A be an additive set in an finite additive group Z, and let g, &' >
0. Then we have

Spec;_.(A) + Spec;_..(A) C Spec|_ oy er)- (4.38)

In a similar spirit, for any 0 < a < 1 and for any non-empty S C Spec,(A) we
have

2
€L 6) € S x S: & —& e Spec p(A))] = %|S|2 (4.39)

See Exercise 4.6.2 for the ¢ = 0 case of this lemma. This lemma should be
compared with Lemma 2.33. Indeed there is a strong analogy between the spectra
Spec,(A) and the symmetry sets Sym, (A), which are heuristically dual to each
other.

Proof We first prove (4.38). Let & € Spec,_, and & € Spec,_,., then there exists
phases 6, 8’ € R/Z such that

Re E cze(§ - x +0)1a(x) = (1 — &)Pz(A);
Re E.cze(E - x +6)14(x) > (1 — £)Pz(A).
Since Re E, 714 = Pz(A), we thus have
Re E cz[2e(& - x +0)+2e(& - x +6') — 3]14(x) = (I — 2(e 4+ &"))Pz(A).

To conclude that & + &” € Spec;_,, ., (A), it will thus suffice to establish the
pointwise estimate

Re [2¢(£ - x +60) +2e(E - x +0') — 3] < Re [e"™e(x, & +&)].

Writing e(& - x +60) = ¢ and e(&' - x +0') = ¥ for some —n/2 < B, p <
—m /2, we reduce to showing

2 cos(B) + 2cos(B’) — 3 > cos(B + B).

But by the convexity of cos between —m /2 and 7 /2, we have

2 cos(B) + 2cos(B’) — 3 > 4cos ('BZ'B ) -3

’ 2 / 2
:2005<w) —1—2<1—cos<'8+'8))
2 2

> cos(B + B)

as desired.
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Now we prove (4.39), which is due to Bourgain [41]. Set a(§) := sgn(iA(’g‘))
for & € S; thus

Eccz Y a@e - x)latx) =Y [14)] = aPz(A)|S].
&esS £es
Applying Cauchy—Schwarz, we conclude
2
14(x) = a*Pz(A)|SI.

E.cz|Y_a®)e( - x)

EeS

But the left-hand side can be rearranged as
Y aEnaE)laE — &),
§1.6€8
so by the triangle inequality we have
Y 1TaE — £l = @S
§1.6€S8
In particular (cf. Exercise 1.1.4)
ITa6 — &)1 = ?/2ISP?
§1,.62€8:61—62€8pec,2 5 (A)
and (4.39) follows. O

We now show that small sum sets force large spectra (cf. Exercise 4.3.9, or
Exercise 4.6.3 below).

Lemma 4.38 Let A be an additive set in an finite additive group Z, and let 0 <
o < 1. For any integers n, m > 0 with (n, m) # (0, 0), we have the lower bound
on sum sets

|A]
ISpec, (A)|Pz(A) + o2+m=2"

[nA —mA| >

Proof We may take n, m > 0. Consider the function f = 1 % ---% 14 % 1_4 %
-+ % 1_, formed by convolving n copies of A and m copies of —A. Then f is
non-negative and supported on nA — m A, and thus

E;f <Pz(nA —mA)'*Ez|f1H)'2.
From (4.10) we have Ez f = P,(A)"™. From (4.9) and (4.17) we have f =

~p=m

14 14 .Combining these inequalities with (4.2) we see that
|Z|PZ(A)2(n+m)

[nA —mA| > =~ — .
Y eey [La(E)20m
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But
Z |1/:4(%-)|2(n+m) < Z PZ(A)Z(rH—m)
§eZ £eSpec, (A)
+ Z 062(”+m)72P2(A)2(n+m)72| ﬁ($)|2
§&Spec, (A)
< PZ(A)2(11+m)|SpeCa(A)| + a2(n+m)72PZ(A)2(n+m)71

and the claim follows. O

Now we consider the following inverse-type question: if A has additive structure
in the sense that its energy E(A, A) is large or its difference set |[A — A| is small,
is it possible to approximate A (or a closely related set) by a Bohr set? We give two
results of this type, one which places a relatively large Bohr set inside 2A — 2A,
and another which places A — A inside a relatively small Bohr set. We begin with
the former result, the main idea of which dates back to Bogolyubov.

Proposition 4.39 [295] Let 0 < o < 1, and let A be an additive set in a finite
additive group Z such that E(A, A) > 4a%|A|>. Then we have the inclusion

1
Bohr (Speca(A), 8) C2A —2A. (4.40)

Proof Letx be any element of the Bohr set Bohr(Spec,(A), %), thusRe e(§ - x) >
% for all £ € Spec,(A). To show that x € 2A — 2A4, it would suffice to show that
Tasx1gx1_4%1_4(x) £ 0. Butfrom (4.4), (4.9), (4.17) we have

Laslaslgxl a0 =Y [T4E)|e(E - x).

EeZ

Now take real parts of both sides and use the hypothesis on x to obtain

Laklasl vl )= Y [L@Ree¢ -0+ Y [1a@)I'Ree(x, &)

&eSpecy (A) £¢Spec, (A)
1 A A
=5 > Ler- Y Ler
£eSpec, (A) &¢Specy (A)

1 A 3 N

=32 L@ =5 > @
tez §¢Specy, (A)
1EA,A) 3 ) yr s
= - = Pz(A)|1

= 51Zp 2;“ 2(A) 114
1EA A 3, 5

> - — Za’P,(A)

=27zp 20l z(A)

>0

as desired, where we have used the hypothesis on « in the last step. O
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Now we give a converse inclusion, which applies to sets of small difference
constant 5[ A] but requires the spectral threshold to be very large.

Proposition 4.40 Let K > 1. If A is an additive set in a finite additive group Z
such that |A — A| < K|A| (i.e. §[A] < K)and 0 < ¢ < 1, then

A — A C Bohr(Spec,_,(A — A), V8eK).

Proof Letx,y € Aand& e Spec,_,(A — A). Then there exists aphase ¢ € R/Z
such that

Re ) eE-x+60)=(1—6lA—Al
zEA—A
and hence
Z (1—Ree(f-x+0)) <¢elA—A|l <eK|A|
zeEA—A
Since the summand is non-negative, and A — A contains both x —a and y — a,
we thus have
D Il —Ree( - (x —a)+0)| < eK|A]|
acA
and hence by Cauchy—Schwarz
DI —Re e - (x —a)+0)]'2 < e' 2K
acA

From the elementary identity
11 — e()] = V2|1 — Re e(a)]'?
we conclude that

Dl —eE - (x —a)+0)| < V2e' K| Al

acA

Similarly for x replaced by y. By the triangle inequality we conclude that

Y leE - (y—a)+0) — e - (x —a) + 0)| < V22'PK'?|A].

acA

But the left-hand side is just |A]e(§ - (x — y)); thus
le - (x —y)) — 1| = V8eK.
Since & € Spec;_,(A — A) was arbitrary, the claim follows from (4.24). O

In the next chapter we apply these propositions, together with the additive
geometry results from Chapter 3, to obtain Freiman-type theorems in finite additive
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groups. For now, we shall give one striking application of the above machinery,
namely the following Gauss sum estimate of Bourgain and Konyagin:

Theorem 4.41 [44] Let F = F, be a finite field of prime order, and let H be a
multiplicative subgroup of F such that |H| > p® for some 0 < § < 1. Then, if p
is sufficiently large depending on 8, we have ||H ||, < p~¢ for some ¢ = ¢(§) > O.
In other words, we have

sup < p °lH|.

£eZ,\0

D e(xé)

xeH

Proof We may use the standard bilinear form & - x = x&/p. Since h- H = H
for all i € H, we easily verify that 1,(h'6) = 1,(&) forall h € H and £ € Z.
This implies in particular that Spec,(H) = H - Spec,(H). Thus each Spec,(H)
consists of multiplicative cosets of H, together with the origin 0.

We use an iteration and pigeonhole argument, similar to that used to prove
Theorem 2.35. Let J = J(§) > 1 be a large integer to be chosen later, and let
e = &(J, 8) > 0 be a small number also to be chosen later. Define the sequence
1 >0 > >0y >0bysetting a; := p~° and ajy| 1= ajz./Z. Suppose for
contradiction that ||H|, > p~¢; then Spec, (H) contains a non-zero element,
and hence by the preceding discussion |Spec,, (H)| > |H|+ 1 > p® + 1. Since
Spec,, (H) is increasing in j, we see from the pigeonhole principle that there
exists 1 < j < J such that

|Spec,,,,(H)| < p"’|Spec, (H)I.

On the other hand, from Lemma 4.37 we have

o
{61, &) € Spec,, (H) x Spec,, (H) : &1 =& € Spec,, ., (A)}] = = ISpec,, (H)I*.

Applying Cauchy—Schwarz or Lemma 2.30 we conclude that
E(Spec, (H), Spec, (H)) = QJ(pio"(a)io(l/J”SpCCa/_(H)|3).
If we let A := Spec, (H)\{0}, we thus obtain
E(AA) = Qj(p*01(8)70(1/1)|A|3)

since |A| > p?, J is large enough depending on &, and & small enough depending
on J, §. But A is a union of cosets x - H of H for various x € F,\{0}. Applying
Exercise 2.3.20

E(A,x-H)=Q;(p~ %Y HP?).
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Dilating this by x~
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! we obtain

EG™ A H) = Q(p= @072 DA HP).

But this will contradict Corollary 2.62 if J is sufficiently large depending on &,
and ¢ sufficiently small. O

In [40] this result was extended (using slightly different arguments) to the case

where H was not a multiplicative subgroup, but merely had small multiplicative
doubling, for instance |H - H| < p°|H|. In [41] the result was further extended to
the case where the field F, was replaced by a commutative ring such as F, x F),
(with Theorem 2.63 playing a key role in the latter result). This yields some
estimates on exponential sums related to the Diffie—-Hellman distribution and to
Mordell sums; see [40], [41] for further discussion.

Exercises

4.6.1

4.6.2

4.6.3

4.6.4

4.6.5

Let A be an additive set in a finite additive group Z and let o € R.
Show that A, —A, and T"A all have the same spectrum for any h €
Z; thus Spec, (A) = Spec,(—A) = Spec(T"A).If ¢ : Z — Z is a group
isomorphism of Z, show that Spec,, (¢(A)) = ¢'(Spec,(A)), where ¢ is
the adjoint of ¢, defined in Exercise 4.1.8.

Let A be an additive set in Z. Show that the spectrum Spec;(A) is a
group and is in fact equal to (A — A)*, the orthogonal complement of the
group generated by A — A. Also, recall that Sym,(A) :={h e A: A+
h = A} isthe symmetry group of A; show that the orthogonal complement
Symyg(A)* of this group is the smallest group which contains the Spec,, (A)
for all @ > 0.

Let A be an additive set in an finite additive group Z, andlet 0 < o < 1.
Establish the inequalities

E(A, A)
|AP
Thus, large energy forces large spectrum (and conversely).
Let 0 <@ <1, and let A, B be additive sets in Z with |[A| = |B| =N
and E(A, B) > 4a>N?3. Show that |Spec, (A) N Spec,(B)| > % Thus
pairs of sets with large additive energy must necessary have a large amount
of shared spectrum.
If A is an additive set in a finite additive group Z, and A’ is an addi-
tive set in a finite additive group Z', show that Spec, (A) x Specgz(A") €
Specaﬂ(A x A’)forall 0 < a, B < 1, where we give Z x Z’ the bilinear
form induced from Z and Z'.

a*[Spec, (A)|Pz(A) <

< [Spec, (A)[Pz(A) + o’
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4.6.6  Show that Theorem 4.41 implies Corollary 2.62. (Hint: use (4.14).)

4.6.7  Let S be a subset of a finite additive group Z, andlet0 < p < 1/4. Show
that if A is any additive set in Bohr(S, p), then § € Spec,q(;,)(A). This
can be viewed as a kind of converse to Proposition 4.39.

4.7 Progressions in sum sets

A cornerstone of additive combinatorics is Szemerédi’s theorem. One form of this
theorem states that if A is a subset of the interval [1, N] with positive density «,
then A contains an arithmetic progression of length f(N, ), where f tends to
infinity as N does and « is fixed. In Chapters 10 and 11, we will discuss this result
in more detail, but let us mention here that f tends to infinity very slowly as a
function of N.

In this section, we are going to show that if we replace the additive set A by a
larger set, suchas A+ B, A+ A+ A, or 2A — 2A, then one can locate signifi-
cantly larger progressions inside these sets by taking advantage of the existence of
functions supported on those sets with good Fourier transform, namely 14 * 1,
lA*lA*lA and lA*lA*I,A*l,A.

To illustrate this, we begin with a theorem of Chang (based on earlier work of
Ruzsa [295]) which demonstrates the existence of a large generalized progression
inside 2A — 2A; this theorem will be a key ingredient in one of the formulations
of Freiman’s theorem (see Theorem 5.30).

Theorem 4.42 (Chang’s theorem) [48] Let K, N > 1. Let A be an additive set
ina cyclic group Z = Ly such that E(A, A) > |A|>/K. Then there exists a proper
progression P C 2A — 2A of rank at most O(K(1 + log ﬁ)) and size

—O(K(1+log %))
)) N. “4.41)

Furthermore we may choose P to be symmetric (—P = P).

Pl>0([K|(1+1o
Pl <( P4

Note from (2.8) that the hypothesis E(A, A) > |A? /K will be obeyed if
|[A+ Al < K|A| or |[A — A| < K|A]; thus this theorem covers the case of sets
with small doubling constant or small Ruzsa diameter. Alternatively, from the
trivial bound E(A, A) > |A|> we see this hypothesis is always satisfied with
K = 1/Pz(A), but this is costly as the dependence of (4.41) on K is exponen-
tial. On the other hand, if A has small doubling then this theorem can be applied
efficiently even when A is a rather sparse subset of Z.
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Proof Seta :=1/2K'/2. By Proposition 4.39, we have
1
Bohr | Spec, (A), > C2A —2A.

On the other hand, from Lemma 4.36 we can find a set S := {n, ..., ng} of
frequencies with

d=|S=0 <a—2 (1 + log PZI(A)» =0 (K (1 + log PZI(A)»

such that

Spec, (A) C [—1, 117 - (1, ..., na).

This implies (from the triangle inequality) that

1 1
Bohr | §, — ) < Bohr (| Spec,(A), = ) .
6d 6

Applying Proposition 4.23 we see that Bohr(S, é) contains a proper symmetric
progression of rank d and cardinality

» (1/6d)dN olx(1ie 1 —O(K(1+10g%))N
> >
Pz =g = ( ( " °ng<A>>)

and the claim follows. |

In the proof of the above theorem (or more precisely, in the proof of
Proposition 4.39) one took advantage of the fact that 14 % 14 % 1_4 * 1_4 had
positive Fourier coefficients | f:\(é)|4. However, it turns out that with a slight mod-
ification to the argument one does not need positivity of the Fourier coefficients,
and in fact one only needs three summands instead of four:

Theorem 4.43 [149] Let K, N > 1. Let A, Ay, A3 be additive sets in Ly
such that |A{| = |Az| = |As| and |Ay + Ay + As| < K|Aq|. Then there exists a
proper progression P € A; + A, + As of rank at most O(K?(1 + log %)) and
size

—O(K>(1+log p_{75)
)) N. (4.42)

One can of course generalize the hypotheses to deal with sets A, Ay, A3 of

P> 0 <K <1+10
£pan

differing cardinalities, but the statement of the theorem becomes a little messier
and we do not pursue it here.
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Proof We adapt some arguments of [117]. We consider the non-negative
function f := 14, * 14, % 14,. From (4.10) we have E; f = P,(A;)>. On the
other hand, we have Pz(supp(f)) =Pz(A; + Ay + A3) = KPz(A;). By the
pigeonhole principle, we can thus find an element xo € A; + A, + A3 such that
f(xo) = Pz(A)?/K. By translating one of the A, if necessary, we may assume
xo = 0, thus £(0) > P;(A)*/K.

Next, we observe from (4.9) that f(£) = 1, (6)14,(6)14,(£). From (4.4),
Cauchy—Schwarz, (4.16) and (4.24) we thus have for any x € Z

£ ) = FO) = D Ta T E) T4, E)eE - x) — 1)
teZ
<D TN E T A E)lleE - x) — 1|
EeZ

< (gug 1Ta, (©)]le(€ - x) — 1|) 1wl 2 1 Ty ) 22
= Pz<A1)§ug T4, (E)]le(€ - x) — 1]

< 27P7(Ay)sup Ly, (E)] & - x[|r/z-
EeZ
Combining this with our bound on f(0) and the support of f, we see that

[x €z :supl Ty @11 xllyz < PAN/27K | € A1+ 45 + 45,
EeZ

Since |1/A\,(§)| € - xllr/z < Pz(A1)/2nr K whenever & ¢ Spec, (A1), we
obtain

[rez: s ITLEIE xlrz < P2AD27K] € A+ A+ A,
§eSpecy k(A1)

Moreover, as |1/A\l (&)] < Pz(A)) for all non-zero &, we obtain
Bohr(Spec, ,,x (A1), 1/27K) S Ay + Ax + A3

(for instance). But by Lemma 4.36 we can find d = O(K*(1 + log m)) and
frequencies S := {1y, ..., nqs} C Z such that

Spec o, (A1) S [=1, 114 - (1, ... ma)
and hence by the triangle inequality

Bohr(S, 1/27dK) < Bohr(Spec; ¢ (A1), 1/2nK) S Ay + Ay + As.
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Applying Proposition 4.23, we can locate a proper progression P in
Bohr(S, 1/2ndK) of rank d and cardinality at least

1/2dK)?
Pz 55 4 Q2CET N = (K +10g(1 /Py ) CF0+e0R0
and the claim follows. O

The above arguments relied crucially on having three or more summands;
roughly speaking, two of the summands were treated by Plancherel’s theorem,
leaving at least one other summand to be free to exploit the smallness of its Fourier
coefficients outside of its spectrum. They break down quite significantly for sums
of two sets'. Nevertheless, it is still possible to obtain some relatively large pro-
gressions in a set of the form A + B, because the function 14 * 1 still has /! type
control on the Fourier coefficients. We follow the arguments of Bourgain [36]. We
first give a convenient criterion for establishing the existence of progressions.

Lemma 4.44 (Almost periodicity implies long progressions)/36] Let f : Z —
R™ be a non-negative random variable on an additive group Z, let J > 1 be an
integer, and suppose that r € Z is such that

E max |17 f = f| < Ezf,
<j<
where T7 f(x) := f(x — jr) is the shift of f by jr. Then supp(f) contains an
arithmetic progression a + [0, J] - r of length J + 1 and spacing r.
Proof By the pigeonhole principle, there exists x € Z such that

max |77 f(r) = f(] < f(x)
<j<J

and hence f(x — jr) =T/ f(x) > Oforall 0 < j < J. The claim follows. O

To apply this lemma, we need to estimate expressions of the form
E; maxi<;j<; |T/" f — f|. This can be done easily if f has Fourier transform
in a dissociated set:

Lemma 4.45 [36] Let S C Z be a dissociated set, and let f be a random variable
such that supp(f) C S. Then for any non-empty set of shifts H C Z we have

H max|Thf|

= 01 +1og [HD"?|l fl22)-

! There is a similarity with the Goldbach conjectures. The weak conjecture — every large odd number
is the sum of three primes — has been solved by Fourier methods, whereas the strong conjecture —
every large even number is the sum of two primes — is still open, and probably not amenable to a
purely Fourier-analytic method.
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Proof Let p > 2 be a large exponent to be chosen later. Then

|

max|Thf|

h
max |T
maz \T" f1

<
L2(Z) H heH

’Ll’(Z)

1/p
=| (i sv)

1
= > IT" Ik

heH
< [H"|| fllLez)
< [H|"P[ISIlamll fll2z)
= O(IHI"" P\ fll2z))

by Rudin’s inequality (Lemma 4.33). The claim now follows by setting p :=
O(1 + log |H)). O

LX(Z)

By combining this lemma with Lemma 4.35, we can obtain an estimate when
supp( f) is not dissociated, but f is uniform in size:

Lemma 4.46 [36] Let f be a random variable, and let J,d > 1. Suppose that
there exists an integer m such that 2" < | f (&) < 2" for all £ € supp( f ). Then
one can find a set S C Z of cardinality |S| = d such that such that

. A log J
jrf _ — o .
E; f;‘j‘e",'T f—fl=0 E [f (&)l (,/ 7 +Jdr}71§SX ln rIIR/z>

gesupp(f)
forallr € Z.
Proof Applying Lemma 4.35, we may write
supp(f) =D, U---UD;UR
where Dy, ..., D; are disjoint dissociated sets of cardinality 4 + 1, and
RC[-1,11%-(n,...,nq) for some S ={ni,...,n4} C Z. Using the Fourier

transform, we may then split f = fp, +---+ fp, + fr accordingly. From
Lemma 4.45 we have, forany 1 <i <k,

By max [T/ fp, = fo,| = 2| max |77 fy|
1<jed 0<jeJ LX(Z)

< 0(log"? I\ fo,ll122))

1/2
=0 |log'?J (Z |f<s>|2)

§eD;

0 (\/@ > |f<s>|)

EeD;
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thanks to the uniformity assumption 2" < | f (&)] < 2"*!. Also, we have from the
triangle inequality, (4.24) and the hypothesis on R

max (T f = ful | = max 3 1F©]x le(x + jr.§) = e(& - )]
LY(Z) =/="EeR L'(2)
(Z |f<s>|> max _le(jr, &) — 1|
EeR
<2rJd (Z |f($)|> max [ - rllez.
EeR
Summing these estimates using the triangle inequality, the claim follows. O

Now we can prove Bourgain’s theorem.

Theorem 4.47 [36] Let N > 1 be a prime number, and let A, B be additive sets in
Zy suchthat |A|, |B| > 8N for some C(lo“ﬂ#m 8 < 1 for some large absolute
constant C > 1. Then A + B contains a proper arithmetic progression of length

at least exp(2(§ log N)!/3).

Proof We may assume N to be large. By removing elements from A and B and
increasing § if necessary we may assume Pz(A) = Pz(B) = 6. Set f := 14 * 1,
and let exp(£2(8 log N)'73) < J < N be chosen later: thus supp(f) = A+ B and
E; f = P;(A)Pz(B) = §%; note also that J > 1/8. By Lemma 4.44, it suffices to
show that

E; max [T/ f — f| < &2
I<j=J

for some non-zero r.
The Fourier coefficients f of f cannot exceed f(0) = Ez f = §. Furthermore
we have by Cauchy—Schwarz and (4.16)

PIGIEDNINGEING]

EeZ EeZ
< Malle) 1Tslee (4.43)
= P2(4)'?P(B)'
=4.

To exploit this, we let M > 1 be chosen later and partition

7= U T, UT,,,
0<m<M
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where [, :={6e€Z:27" 182 <|f(&)|<278% and S, :={E€Z:
| £(€)] < 27M§?). This induces a splitting

f="Y fo+tfor

0<m<10log %
We can apply Lemma 4.46 to each f,,, with d > 1 to be chosen later, to obtain
Ez max [T/ fu = ful = (; | n®) (,/ + Jd max | - r||R/z>>

where §,, is a set of frequencies of cardinality |S,,| = d; summing this in m and
using (4.43) we obtain

lo
> By max (177 fu— ful = 0 (8| =~ ogJ +Jdmaxin - iz
O0<m<M d

where S := (Jy<,, -y S is a set of frequencies of cardinality |S| < dM. As for
ferr, we crudely use the triangle inequality:

E; 11’;1]216)(1 |Tjrferr - ferr| = Z ”Tjrferr”Ll(Z)
I=j=J
< Z ”Tjrfer'r”Lz(Z)
I<j=<J
172
=7 < > |f<s)|2>
€l
< J27M50 i)
< J27 Mg,

Combining these estimates using the triangle inequality, we see that to conclude
the theorem we need to find an r # 0 such that

log J
N fl dmax - rlwz + 1277 < e

for some small absolute constant ¢ > 0. If we choose M := ClogJ and d :=
C8721og J for a sufficiently large C, then it is clear the first and third terms will
be less than ¢é/3 (recalling that J >> 1/§), and so it will suffice to find an r # 0
such that

c '8’
— <
3Jd JlogJ

max ||n - r <
nay n-rlr/z
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where ¢’ > 0 is another small absolute constant. Using Lemma 4.20, we see that
this is possible provided that

3 IS
2=ISI c/—8 N > 1.
JlogJ

IS| <dM = 0(8 %log? J)

But since

we see that we can achieve this by setting J := exp(c”(8 log N)!/3) for a suitably
small ¢, using the lower bound hypothesis on §. The claim follows. O

The length exp(Q(8log N)'/3) was recently extended to exp(2(8 log N)'/?)
(and the condition on § relaxed slightly to C (loi)l(gj—g[\;\’)z < 8 by Green [149], by an
interesting variational Fourier argument which we briefly sketch here. The starting
point is Exercise 4.3.12, non-empty set E of some fixed density Pz(E) = 8, to
be chosen later, which is disjoint from A 4+ B and minimizes the quantity || E||,
subject to the above constraints; Exercise 4.3.12 thus places a lower bound on this
quantity || E||,. One then considers the a-spectrum A,(E) of E, for some « to
be chosen later, and uses Lemma 4.36 to place this spectrum inside a progression
[—1,11% - (1, ..., ng) for some set S = {n1, ..., n4} of frequencies which is not
too large. Next, one removes a small number of elements (chosen at random) from
E and replace them by generic elements of Z; by Lemma 4.16 this shrinks the
Fourier bias of E with high probability. Next, one takes these new generic elements
of Z and translates them by a suitable element of Bohr(S, p) (for some suitably
small p) to try to place all of them outside A + B. This operation, if successful, will
not significantly affect the Fourier transform of E on the large spectrum A, (E) and
should thus still shrink the Fourier bias of E. But this contradicts the construction
of E. Thus it must not be possible to translate one of the generic elements outside
of A 4+ B, which means that A + B necessarily contains a translate of Bohr(S, p).
From this and Proposition 4.23 one then establishes a large progression inside
A + B.For more details (such as the selection of the parameters 8, «, p), see [149].

On the other hand, an example of Ruzsa [290] shows that even when 4§ is close
to 1/2, one can find sets A + A which do not contain any progressions of length
exp(Q(log N)*/3).

The arithmetic progressions inside iterated sum sets have been intensively stud-
ied in [350]; we discuss this in detail in Chapter 12.

Exercises

4.7.1 [149] Let Ay, A;, A3 C [1, N] be additive sets of integers such that
|[Ai] = |Az] = |A3] = 8N for some 0 < § < 1/2. Show that A + A;
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contains a proper arithmetic progression of length at least
exp(Q(8log N)'/> — O(loglog N)), A + A + A3 contains a proper
arithmetic progression of length at least O(8CVN®/1081/3) and that
2A; —2A, contains a proper arithmetic progression of length at least
O8O N/1og1/8y " (Hint: embed Aj, Aj, A3 in Z, for some prime
2N < p < 4N and apply the theorems of this section, followed by
Exercise 3.2.5. One needs to pass from a progression in Zy back to one
in Z; one tool for this is Corollary 3.25.)

[349] Let P be a proper arithmetic progression in a torsion-free addi-
tive group, and let A, B be an additive sets in P such that |A|, |B| >
(1 —¢)|P| for some 0 < ¢ < 1/4. Prove that A + B contains a proper
arithmetic progression of length at least (2 — 4¢)|P| — 1. (Hint: work
with those elements of P + P which have at least 2¢| P| representations
as sums of elements of P.)
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Inverse sum set theorems

In Chapter 2 we established the elementary theory of sum set estimates, showing
how information on one sum A + B can be used to control other sums such as
A — BornA — mA. These estimates worked reasonably well even when the dou-
bling constants of the sets involved were fairly large, since all the bounds were
polynomial in this constant. On the other hand, we did not get detailed structural
information on sets with small doubling constant; the best we could do is cover
them by an approximate group (Proposition 2.26).

In this chapter we shall focus on the following question: given two additive sets
A, B with A 4+ B very small, what is the strongest structural statement one can
then conclude about A and B? One of the main results in this area is Freiman’s
theorem which (in the torsion-free case) asserts that an additive set A with small
doubling constant 6 [A] = |2A]/|A| is contained in a progression of bounded rank
which is not much larger than the original set. This theorem comes in a number
of variants; we give several of them below. In doing so we shall also come across
the useful concept of a Freiman homomorphism, which to a large extent frees the
study of additive sets from the ambient group that they reside in, giving rise to a
number of useful tricks, such as embedding the set inside a particularly nice group.

5.1 Minimal size of sum sets and the e-transform

Before we begin with inverse theorems, we first address an even more basic ques-
tion: given the cardinalities |A[, | B| of two additive sets A and B in an ambient
group Z, what is the least possible cardinality |A + B| of the sum set A + B? If
we allow the group Z to be completely arbitrary, then the answer is given by (2.1)
and Proposition 2.2, thus |A + B| > max(|A|, |B|), with equality if and only if
one of the sets is contained inside a coset of a finite group G, and the other set is
a finite union of cosets of G. However, for specific choices of Z, one can improve

198
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this bound somewhat. For instance, if Z is the integers, then Z contains no finite
subgroups other than the trivial one {0}, and so we expect to do better than (2.1)
unless one of |A|, | B| is equal to 1.

A very simple, but surprisingly powerful, tool for establishing the minimal size
of sum sets is the e-transform, which we now define.

Definition 5.1 (e-transform) [73] Let A, B be additive sets in an ambient group
Z, and let e € A — B. We define the e-transform of the pair A, B to be the sets
A :=AU(B+e)and B, := BN (A —e).

One can view this transform as removing the elements of B\(A — ¢) from B
and transferring them to A (after translating them by e). The main point of the
e-transform is that it shrinks (or keeps constant) the size |A 4 B| of the sum set,
while maintaining the total size |A| + |B| of A and B. More precisely:

Lemma 5.2 [73] Let A, B be additive sets in an ambient group Z, lete € A — B,
and let Ay, By be the e-transform of A, B. Then A,y and B, are also additive
sets (i.e. finite and non-empty), and

A+ Bey S A+ B. (5.1)
Furthermore we have
|A@| + 1Bl = |Al + | B, (5.2)
and more generally
[Ae NE|+ By NE|=]ANE|+|BNE]|
+I1(B\(A —e)) N((E — e)\E) (5.3)
—(B\(A — e)) N (E\(E — ¢))|
forany E C Z. Finally, we have
Al = [Al; Bl = |B| (5.4)
with equality in either expression if and only if B 4+ e C A.

We leave the easy proof of this lemma to Exercise 5.1.2. We now give some
applications of this Lemma. First we obtain the minimal size of sum sets in the inte-
gers Z (cf. Lemma 3.18), taking advantage of the fact that the integers are ordered.

Lemma 5.3 If A and B are additive sets in Z, then we have |A + B| > |A| +
|B| — 1.

Proof Let e := max(A) — min(B); then we see that By, is the singleton set
{min(B)}, and thus by (5.2) |A¢)| = |A| + |B| — 1,50 |A) + Byl = |Al + |B| —
1. The claim now follows from (5.1). O
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Now we prove a similar result in a cyclic group Z, of prime order. Here the
key fact to exploit is that Z, contains no non-trivial subgroups.

Theorem 5.4 (Cauchy—Davenport inequality) [47], [68] If p is a prime, and
A, B are two additive sets in Z,, then

|A 4+ B| > min(JA| + |B| — 1, p).

This result was first discovered by Cauchy [47] and then rediscovered 122 years
later by Davenport [68]. We remark that the corresponding result for restricted
summation A+ B :={a+b:a € A, b € B, a # b} requires different methods to
establish; see Section 9.2. We shall give alternative proofs of Theorem 5.4 in
Section 9.2 and Section 9.8.

Proof We induce on the size of | B|; thus we suppose that the claim has already
been proven for all smaller sets B (the case |B| = 1 is trivial). Suppose we can
find an element e € A — B such that the e-transform B, of B is strictly smaller
than B. Then we have |A()| + |B()| = min(|A(,)| + |B()| — 1, p) by the induction
hypothesis, and the claim follows by (5.1) and (5.2). Thus we may assume that
none of the e-transforms of B are strictly smaller than B. Using Lemma 5.2, this
means that B+e C A foralle € A — B, so

A—-B+ B CA.

Using Proposition 2.2, we thus see that B is contained in a coset of a subgroup G
of Z,, and A is a union of cosets of G. But since p is prime, the only subgroups
G available are the trivial group {0} and the full group Z,. In either case the
Cauchy-Davenport inequality is easily verified. O

One can generalize Lemma 5.3 and Theorem 5.4. Recall from Definition 2.32
that the symmetry group Sym,; (A) of an additive set A in an ambient group Z was
defined as Sym;(A) :={h e Z: A+ h = A}.

Theorem 5.5 (Kneser’s theorem) [211] Forany additive sets A, B in an additive
group Z, we have

|A+ B| > |A+Sym,(A+ B)| + |B + Sym,(A + B)| — [Sym,(A + B)|
> |A| + |B| — |Sym,(A + B)|.

Proof We use atriple induction. First we induce upward on |A + B|, thus assum-
ing that the claim has been proven for all pairs A, B with a smaller value of |[A + B].
Next, with |A 4+ B] fixed, we induce downward on |A| + | B| (which is bounded
above by 2|A + B]), assuming the claim proven for larger values of |A| + | B|.
Finally, with |A 4+ B| and |A| + | B| fixed, we induce upward on | B|, assuming the
claim proven for smaller values of | B|. This rather complex induction is forced
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on us by the different reductions on A and B that we will use in the (surprisingly
delicate) argument.

Let G := Sym,(A + B). If G is not the trivial group {0}, then we can pass from
Z to the quotient group Z/G, replacing A and Bby (A + G)/G and (B + G)/G
and reducing the size of | A + B, and the claim then follows from the firstinduction
hypothesis. Thus we may take Sym, (A 4+ B) = {0}. Our task is then to show that
|A+ B[ = |A|+|B| - 1.

Suppose that B,y = B for all e € A — B. Then we have A — B+ B C A as
before, and so by Proposition 2.2, B is contained in a coset of a group H, and A
is a union of cosets of H. Then Sym,(A + B) contains H and hence H = {0},
which implies |B| = 1. The claim is then easily verified.

It remains to consider the case when B, is strictly smaller than B for at least
one e € A — B. Among all such e, we choose one which maximizes the value of
| B(¢)|. By translating B (and B,)) by e if necessary we may normalize e = 0O; thus
Ay = AU Band B = A N B.Notefrom (5.3) that| A + B| < |A + B|, that
Ayl + | Byl = |A| 4 |B|, and | Bgy| < |B|. Thus by the induction hypotheses we
have

|A) + Byl = [Aw) + H| + |Boy) + H| — |H], (5.5)

where H := Sym, (A« + B(y). Let C := (AN B) 4+ H. By definition of H and
A, By, we see that A + C and B + C are contained in A ) + B(g) and hence
in A+ B. So we can replace A and B by AU C and B U C without affecting
A + B or Sym(A + B). Thus we may assume that C is contained in both A and B,
otherwise |A + C| + |B + C| would exceed |A| + | B| and the claim will follow
from the second induction hypothesis. In particular we see that AN B = C is the
union of a non-zero number of cosets of H.

Suppose that A + B(o) is equal to A 4+ B; then H = Sym(A + B) = {0}, and
the claim follows from (5.5) and (5.3). Thus we may assume that A + B is
strictly smaller than A + B.

Let A" denote those elements a € A such that a + b & A + By for some
b € B. By the previous assumption, A’ is non-empty; also observe that a (and
hence a + H) is disjoint from C = By foralla € A’. Let b be such thata + b ¢
Ay + By: then a + b+ H is disjoint from A + By (by definition of H);
since b € Ay, we conclude that a + H is disjoint from A N B. Also we have
((a+ H)N A) + b disjoint from Ao + By and contained in A + B; thus

|A+ B| > [Aq) + Bol + (@ + H)N Al.
Since A N B is disjoint from a 4+ H, we have

Aoy + H| > [A@l + (A + H\A@©) N(a + H)|
= Al +|H|—|(a+ H)NA| —|(a+ H)N B|
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and hence by (5.5) and (5.3)
|A+ B| > |A|+ |B| —|(a+ H)N B|.

Thus we will be done unless we have |(a + H) N B| > 1 foralla € A’, which we
now assume.

Foreacha € A',let A, :=(a+ H)N A and B, := (a + H) N B. Suppose we
can find a,a’ € A’ such that A, — B, + By € A, . Then we can find e € A, —
B, € H such that B, + e € A, . This shows that B is not contained in A — e,
and thus B, is strictly smaller than B, and also contains both By = C and the
non-empty set B, N (A, — e) (which lies in @ + H and is hence disjoint from C),
and is thus strictly larger than B ). This contradicts the maximality of | Bg)|. Thus
we must have A, — B, + By, € Ay for all a,a’ € A’. This implies in particular
that |A,| = |Ay| for all a,a’ € A’, which by Proposition 2.2 implies that the B,
are each contained in a coset of a fixed group K, and that the A, are unions of
cosets of K (in particular K is a subgroup of H). Since we are assuming that
|B,| > 1foralla € A’, we have |K| > 1. Since A, + B is the union of cosets of
K foreach a, and A + B is a union of cosets of H, and hence K, we conclude
that A 4+ B is the union of cosets of K. But this contradicts the hypothesis that
Sym, (A + B) = {0}, and we are done. O

As one application of Kneser’s theorem we give a complete classification of
sets with very small doubling constant.

Corollary 5.6 (Near-exact inverse sum set theorem) Ler A be an additive set
in an ambient group Z. Then the following are equivalent:

* o[A] < 3 (ie. |A+ Al < 3|A]);

* 3[A] < 3 (i.e. |A — A| < 3|Al, ord(A, A) <log3);

* |A+ B| < %|A|f0r some additive set B in Z with |B| > |A|;

* [nA —mA| < %|A|f0r all non-negative integers n, m;

* A C x + G for some x € Z and subgroup G of Z with |G| < %|A|.

This should be compared with Proposition 2.7 and Exercise 2.6.5. The factor
% is sharp, as can be seen by the example A = {0, 1} in the integers Z, or more
generally A = {0, 1} x G in the group Z x G for any finite group G.

Proof We shall only prove that the third claim implies the fifth; the other claims
are similar or trivial and are left as an exercise. From Kneser’s theorem we have

3
1Al > 1A+ Bl = |A[+ |B] — [Sym, (A + B)| = 2[A| — [Sym, (A + B)|;

hence if we set G := Sym,; (A + B), then |G| > |A|/2. Since |A + B| < %|A| and
A + B is a union of cosets of its symmetry group G, we thus see that A + B is
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equal to the union of at most two cosets in G, and |G| < %|A|. Suppose first that
A+ B is the union of two cosets of G. Then 2|B| > 3|A| > |[A + B| =2|G]|,
which implies that neither A nor B can be contained in a single coset of G. But
this contradicts Kneser’s theorem again. Thus A + B is a single coset of G, which
implies that A is also contained in a coset of G. The claim follows. O

Now we return to the integers, and obtain a more advanced version of
Lemma 5.3.

Theorem 5.7 (Mann’s theorem) [243] Let N > 0,let0 <« < 1, and let A, B
be additive sets in Z. such that 0 € A, B and

[AN[l,n]|+|BN[l,n]] >an (5.6)
forall0 <n < N. Then
[((A+ B)N[l,n]| >anforall0 <n < N.

Proof The claim is easily verified for N = 0, so let us assume inductively that
N > 1 and the claim has already been proven for all smaller N. In particular from
this induction hypothesis we already have

[((A+ B)N[l,n]| >anforall0 <n < N
and so it suffices to prove that
[(A+ B)NI[l, N]| > aN.

We now fix N and induce on |B|. If |B| =1, then B = {0} and the claim is
easily verified, so suppose that | B| > 1 and the claim has already been proven for
all smaller values of B. Without loss of generality we may take A C [0, N] and
B C [0, N] as the additional elements of A and B are clearly harmless.

In light of Lemma 5.2 and the induction hypothesis, it will suffice to find an
integer e € A € A — B such that |B(,)| < |B]| and

|A@ N1, n]| + |BeyN[1,n]| > anforall1 <n < N. (5.7)

Note that the constraint e € A will ensure that both A and By, contain 0.

Suppose first that B is not contained in A. Then we can simply choose ¢ = 0 €
A, since By = A N B would then be strictly smaller than B, and from (5.3) and
(5.6) we have

Ao N[1, n]| 4+ [Bo N[1, n]| = [AN[L, n]| +[B N[, n]| = an

as desired.
Now we consider the harder case when B is contained in A. Here we take

e:=minfa € A:a+ B <Z A}.
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Note the set on the right-hand side is non-empty since the largest element of A
clearly belongs to this set. We have e € A; by hypothesis, e is positive, and by
construction we have

(AN[0,e))+ B C A. (5.8)
Also by Lemma 5.2 B, is strictly smaller than B. Thus it remains to show (5.7).
By (5.3) (and observing that B\(A — e) is disjoint from [—e + 1, 0]) we have

[A@ N1 nll +|Be N1l =[AN[L, ]+ |B N[, n]|
—I(B\(A—e)N[n—e+1,n]|
= |AN[Ln]l+[BN[1,n—ell

If BN [n — e+ 1, n]is empty then the claim (5.7) would now follow from (5.6), so
we may assume B N [n — e + 1, n] is non-empty. Then if we let b be the minimal
elementin BN[n —e+1,n],thenb € B C A,andalsosincee € A C [0, N] we

see thatn — b < e — 1 < N. We can now continue the previous calculation using
two applications of (5.8) and the induction hypothesis as

|A@y N[, n]| + |Be) N [1, 1]
>[AN[l,n]l+[BN[l,n—ell
=AN[Lb-1]|+1+|AN[b+1,n]|+|BN[1l,b—1]|
>AN[Lb—-1]+IBN[L,b—=1]|+1+|((AN[0,e))+ B)N[b+1,n]|
>ab—-—D+1+[(AN[0,e)+b)N[b+ 1,n]|
>ab+ |AN[l,n—b]|
>ab+[(AN[0,e))+ B)N[l,n—b]|
>ab+|(A+B)N[l,n—b]|
>ab+an —Db)
=an

as desired. O

For further discussion of Mann’s theorem and several variants, see [168].
The e-transform method also allows one to characterize when the above inequal-
ities are sharp. We begin with an inverse theorem for Lemma 5.3.

Proposition 5.8 Let A and B be additive sets in Z such that |A|, |B| > 2. Then
|A+ B| = |A|+ |B| — 1 if and only if A, B are arithmetic progressions of the
same step.

Proof The “if” part is clear, so we prove the “only if” part. Let e := max(A) —
min(B). From the proof of Lemma 5.3 we see that we must have

A+ B = A+ Bey=(AU(B + ¢)) + min(B) = (A+min(B)) U (B + max(A)).
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Now let min(B) + v be the second smallest element of B, after min(B);thenv > 0
and for any a € A\{max(A)} we have

a+min(B)+v < A+ B = (A4 min(B)) U (B + max(A))
= (A 4+ min(B)) U (B\{min(B)} + max(A)).

Note that since a < max(A) and min(B) + v is the minimal value of B\{min(B)},
than a 4+ min(B) + v cannot lie in (B\{min(B)} + max(A)). We conclude that

a+v e Aforall a € max(A).

From this it is easy to see that A is an arithmetic progression of step v. In particular
max(A) — v is the second largest value of A after max(A), and by adapting the
previous argument we see that B is also an arithmetic progression of step v, and
we are done. O

Now we give an inverse theorem for the Cauchy—Davenport inequality.

Theorem 5.9 (Vosper’s theorem) [375] Let p be a prime, and let A, B be addi-
tive sets in Z, such that |A|, |B| >2 and |A+ B| < p—2. Then |A+ B| =
|A| + |B| — lifand only if A and B are arithmetic progressions with the same step.

A similar theorem has recently been proven [174] in the case when |A + B| =
|A| + | B]. A version of Vosper’s theorem exists for arbitrary groups Z but is more
complicated to state; see [201], [231]. See also Exercise 5.1.11.

Proof The “if” part is easy, so we prove the “only if” part. We first prove this
claim when A is an arithmetic progression {a, a + v, ..., a + nv} forsomen > 1.
Then by Cauchy—Davenport

|B|+n=|A|+|B|—1
=|A + B|
=a,a+v,...,a+ 1n—1)v}+ {0, v} + B|
> |B+{0,v}{+n—1,

and hence (by Cauchy—Davenport again) we have |B + {0, v}| = |B| + 1. Thus B
and B + v only differ by at most one element, which implies that B is a progression
of length v (see Exercise 3.2.7). By symmetry we have the same claim when the
roles of A and B are reversed.

Now we use a duality trick to claim the following variant: if the sum set A + B is
a proper arithmetic progression, and |[A + B| = |A| + |B| — 1, thensois A and B,
and all three progressions have the same step. To see this, set C := —(Z,\(A + B)).
Then C is also an arithmetic progression with the same step as A + B and with
cardinality |C| =p — |A+ B| = p+ 1 — |A| — |B| = 2. Observe also that C +
B C —(Z,\A), because if any element —a of —A was contained in C + B, then
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C would intersect —a — B C —(A + B), a contradiction. Thus |C + B| < p —
|A| = |C| + |B| — 1, and hence by Cauchy—Davenport |C 4+ B| = |C| + |B| — 1.
Since C was an arithmetic progression of length at least 2, we see from the previous
discussion that B is also, and has the same step as C. Similarly for A.

To summarize, we have now proven Vosper’s theorem in the cases when at least
one of A, B, or A + B is an arithmetic progression. Now we handle the general
case. We induce on the size of B. If |B| = 2 then B is an arithmetic progression
already, and the claim has already been proved. Now suppose that |B| > 2 and
the claim has already been proven for smaller B. Suppose first that we can find
an e € A — B such that the e-transform B,y of B has size 1 < |B,)| < |B|. Since
|A + B| = |A| + |B| — 1; by hypothesis, we see from (5.1), (5.2) and the Cauchy—
Davenport inequality that we must have A,y + B,) = A + B and

|A) + Byl = Al + | Byl — 1.

Using the induction hypothesis, we thus see that A,y and B,y are arithmetic pro-
gressions with the same step v, andhence A + B = A + B is also an arithmetic
progression, and the claim follows by the preceding discussion.

The only remaining case is if we have |B)| =1 or |B)| = |B]| for all e €
A — B.Butif E € A — B denotes all the e € A — B such that | B)| = |B|, then
by Lemma 5.2 we have B + E C A, and hence |E| < |A| — |B| + 1 by Cauchy—
Davenport. Since |[A — B| > |A| + |B| — 1 by Cauchy-Davenport, we thus see
that |B()| = 1 for at least 2| B| — 2 values of e. Since B, is a singleton subset of
B, we thus see from the pigeonhole principle that there exists e, ¢’ € A — B and
b € Bsuchthat By = By = {b}. Since |A + B| = |A| + | B| — 1 by hypothesis,
we see from (5.1), (5.2) that

A+B=A(e)+b=A(ef)+b
and hence
AU(B+e)=AU(B+¢€).

Since A intersects B + e only in b + ¢, and A intersects B + ¢’ only in b + ¢, we
thus see that B + ¢ and B + ¢’ differ by at most one element. But this forces B to
be a progression (of step ¢’ — ¢), and the claim follows. O

We now develop an inverse theorem for sets A, B of integers with fairly small
sum set. We need a preliminary lemma.

Lemma 5.10 Let A be an additive set in Z such that 0 € A, let N > 1 be an
integer, and let ¢ : Z — Zy be the canonical quotient map. For each x € ¢pn(A),
let u, :=|{a € A : ¢n(a) = x}| denote the multiplicity of ¢y at x, and denote
m = minxquN(A)\{()) My Then

1241 = |A] + N (A)(1o — 2m) + [2¢5(A)|(2m — 1)
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Proof We split (using Lemma 5.3 and the observation ) con(a) Mx = |A])

2Al= > [24Nn¢y5'(xD)]

xepy(24)

= Y s [(ANgy' @)+ (Aney' (D)
xepy(24) Y ZEPN(A):y+z=x

sup  (JANgy' Wh]+]ANney'(zp] - 1)
xepy(2A) V:2€EPN(A)y+z=x

v

( > sup u>y+uz>—|¢N<2A>|

xepy(24) Y-2EPN(A)y+z=x

> ( > M0+Mx> +( > m+m> — 1N (2A)|
XEPN(A) XEPN(2A)\Pn(A)

= popn(A) + Al + (1o (2A)] — |pn(A))2m — [Ppn(2A)]
as desired (noting that 2¢y(A) = ¢n(2A)). O
Now we give the inverse theorem.

Theorem 5.11 (3k — 3 theorem) [116] Let A be an additive set in Z. such
that |2A| < 3|A| — 3. Then there exists a proper arithmetic progression P =
a—+1[0,]2A] — |Al] - v of length |2A| — |A| + 1 that contains A.

Proof We use an argument from [233]. By translating A we may assume that
min(A) = 0. We may also assume that the set A has no common divisor d > 1,
since otherwise we could replace A by dl - A. We will assume that |[A| > 3 as the
cases |A| = 1, 2 can be verified directly.

Write N := max(A),thus A C [0, N]and 0, N € A. It will suffice to show that
N < |2A| — |A|. Suppose for contradiction that N > |2A| — |A|. We now apply
Lemma 5.10. Observe in this case that uy = 2 and m = 1, and hence

[2A] = |A] + [2¢n5(A)]. (5.9)
Since we are assuming N > |2A| — | A|, we conclude that
2¢n(A)] < N. (5.10)
By Exercise 2.1.6 and the hypothesis |2A| < 3|A| — 3 we have
[2¢n(A)] < 2|A] =3 =2|pn(A)| — 1.

If N were prime then we could apply the Cauchy—Davenport inequality to conclude
the desired contradiction. But in general we must rely instead on Kneser’s theorem.
Let H := Sym,;(2¢n(A)), then by Kneser’s theorem we have

12¢n(A)| = 2|pn(A) + H| — |H]|
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and hence if we set k := |¢pn(A) + H| — |¢pn(A)|, then

|H| —2
0<k< 7 (5.11)

In particular |H| > 2. Also from (5.10) we have |H| < N. Since H is a subgroup
of Zy, we see that H = (h - Z)/(N - Z) for some 2 < h < N which is a factor
of N.

Note that ¢, (A) contains zero, but cannot be contained entirely inside H as
this would mean that A has a common divisor of %, contradicting our hypothesis.
So we know that ¢y (A) contains at least two cosets of H, or equivalently that
|#n(A)| = 2.

Now we apply Lemma 5.10 again, but with N replaced by 4. From (5.11) we
see thatif x + H C Zy is any non-trivial coset of H, then H U (x + H) intersects
¢n(A) in at least 2|H| — k points; since ¢pn(0) = py(N)=0€ HU (x + H),
this implies that ¢,T,1(H U+ H)) = ¢>;1({O, x mod h}) intersects A in at least
2|H| — k + 1 points. In other words we have

wo+m>2|H|—k+1.
A similar argument gives
m > |H|—k.

But since H was the symmetry group of 2¢y(A), we see that 2¢;,(A) has trivial
symmetry group; furthermore from (5.10) we see that |2¢,(A)| < h. Thus by
Kneser’s theorem we have |2¢,(A)| > 2|¢n(A)| — 1. Inserting all these facts into
Lemma 5.10, we obtain

12A] = |A] + |9n(A) (o — 2m) + 2|$pn(A)| — D(2m — 1)
> |Al+ [dn(DIQIH| — k = 3m + 1) + 2|$n(A)| — D2m — 1)
= |Al 4+ 1¢n(A)I2IH| —k — 1) + (Ipn(A)] = 2)m + 1
= |Al+ [gn(DICIH| — k — 1) + (Ign(A)] = 2)(|H| — k) + 1
= |A| 4 3|gp(A)H| = 2k|¢n(A)| — |¢n(A)] — 2| H| + 2k + 1
> |Al 4 3lon(AI[H| = (|H| = 2)[pn(A)| — [¢n(A)| = 2|1H| + 2k + 1
= |A| 4 2|gn(A)H| + |¢n(A)| = 2|H| + 2k + 1
= |A| + 2(JA| + k) + |¢n(A)| — 2|H| + 2k + 1
=3|Al + |¢n(A)| = 2|H| + 4k — 1

|H| -2
-1

> 3|A| +2 —2|H| + 4
> 3|A| -3

which contradicts the hypothesis 2|A| < 3|A| — 3. O
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Note that we have used a result on torsion groups to imply a result in the
torsion-free case; this phenomenon will also come up in later proofs of Freiman’s
theorem. The original proof of Freiman was somewhat different; see [116], [257].
A treatment of the case |2A| = 3|A| — 3 appears in [113], [28]. For some partial
progress in the case |2A| = 3|A| + o(|A]), see [193]. There has also been much
work on generalizing the 3k — 3 theorem to pairs of sets [111], [336], [333], [233].
For instance one has the following result.

Theorem 5.12 [233] Let A, B be additive sets in Z such that |A + B| < |A| +
|B| + min(|A|, |B]) — 3. Then A is contained in an arithmetic progression of
length at most |A + B| — |B| + 1 and B is contained in an arithmetic progres-
sion of length at most |A + B| — |A| + 1, where both progressions have the same
difference.

For some further refinements to this theorem, see [233].

Exercises

5.1.1  Prove the remaining claims in Corollary 5.6.

5.1.2  Prove Lemma 5.1.

5.1.3  Show that Kneser’s theorem implies Lemma 5.3 and the Cauchy—
Davenport inequality.

5.14 [211] Let A, B be additive sets in an ambient group. Show that if |A +
B| < |A| 4 |B] then

|A+B| = |A+Sym;(A+ B)|+|B+Sym,(A + B)| — |Sym,(A + B)|.

5.1.5 [244]Let A, B be additive sets in an ambient group Z such that |A + B| <
|A| 4+ |B| — 1. Show that [(A + Sym,(A + B))\A| < |[Sym,(A + B)| —
1; thus A is rather close to being a union of cosets of Sym,(A + B).
5.1.6  [243]If A is a (possibly infinite) set of integers, define the Schnirelmann
density o(A) of A to be the quantity
0(4) = inf Eveyim(x € 4) = inf %
(Note that this is distinct from the lower density o (A) defined in Definition
1.21, due to the use of the inf rather than the lim inf.) Show that if A and
B are any sets of integers with 0 € A, B, then 6 (A + B) > min(c(A) +
o(B), 1). (Hint: use Theorem 5.7.) Conclude that if 0 € A and o(A) >
1/k for some integer k > 0, then kA C Z*. Thus every set of integers
of positive Schirelmann density that contains 0 is a basis for the positive
integers.
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5.1.10

5.1.11

5.1.12

5.1.13

5 Inverse sum set theorems

[312] Let A, B be sets of integers such that 1 € A and O € B. Show that
0(A+ B)>0(A)+0(B) —o(A)a(B), where () is the Schnirelmann
density from Exercise 5.1.6. (Hint: order the positive elements of A
as a; <ap; < ---, and observe that [(A + B) N [a,, ay+1)| > 14+ |BN
[1, ap41 —a, — 111

[311], [201], [202] Let A and B be additive sets in an ambient group Z.
Prove that

|A+ B|>|A|+ |B] — min |{(a,b)e A+ B:a+b=c}|
ceA+B

(This can be done either by Kneser’s theorem, or more directly via the
e-transform method.)

Let p be a prime, let N > 1, and let Ay, ..., Ay be additive sets in Z,
such that [A| 4+ --- 4+ |Ax| = p + N — 1. Use the Cauchy—Davenport
inequality to show that A; 4 --- 4+ Ay = p. Conversely, show that this
statement can be used to imply the Cauchy—Davenport inequality.

What happens if one extends Theorem 5.9 to cover the cases |A| = 1,
|[Bl=1, or |A+ B| = p —1? (The case |A + B| = p is much more
difficult to analyze and does not have as simple a characterization.)
[201] Let A, B be additive sets in ambient group Z such that |A|, |B| > 1,
[Sym;(A + B)| =1, and |A 4+ B| < |A| 4 | B|. By analyzing the proof
of Kneser’s theorem (and Vosper’s theorem) carefully, show that A + B is
either equal to an arithmetic progression, or there exists a finite subgroup
G of Z suchthat A 4+ B consists of one or more cosets of G, and possibly a
subset of one other coset of G. (Compare with Exercise 5.1.5 and Exercise
3.2.7)

[242] Let A, B be open subsets of the torus (R/Z)d. Prove the Mann—
Kneser—Macbeath inequality mes(A + B) > min(mes(A) + mes(B), 1),
where mes() denotes the usual Haar measure on the torus. (Hint: discretize
the torus to (Z/pZ)? for some large prime p, apply Kneser’s theorem,
and then take limits.) Give examples to show that this inequality cannot
be improved. One can extend this result to arbitrary measurable subsets
of the torus with some additional analytic arguments. See [27] for some
recent developments concerning this inequality. This inequality should
be contrasted with the Brunn—Minkowski inequality (Theorem 3.16),
and shows that sum sets in (R/Z)? and sum sets in R? behave slightly
differently.

[116] Let N > O be an integer, and let A, B be non-empty subsets of
[0, N]suchthatO, N € A and |A| + |B| > N + 3. Prove that |A + B| >
|[B|+ N.
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5.1.14  Show that Theorem 5.11 fails when |2A| = 3|A| — 3, by considering a
progression of rank 2. Also show that the quantity 2|A| — |A| in that
theorem cannot be replaced by any smaller quantity.

5.1.15 Let A, B be additive sets of integers. f A+B :={a+b:a,bec A, a #
b} denotes the restricted sum set of A and B, show that |A+B| > |A| +
|B| — 3. (Hint: a direct application of the e-transform will not work, but
if one deconstructs the proof of Lemma 5.3 one can modify it to deal
with restricted sum sets.) If |A| # |B|, improve the preceding bound
to |A+B| > |A| + |B| — 2. (Hint: one needs to adapt some ideas from
Proposition 5.8.) An analogous result for Z,, is known, but requires more
non-elementary methods; see Section 9.2.

5.2 Sum sets in vector spaces

We now study the minimal size of sum sets in a real finite-dimensional vector space
V, exploiting such concepts as convexity which are not readily available in other
groups. Of course, since V contains a copy of Z, we know from Lemma 5.3 that
|A + B| can be as small as |A| + |B| — 1. However, one can do better than this if
one knows that A + B is high-dimensional, or in other words that it is not contained
in a low-dimensional affine vector space (a translate of a linear vector space).

We begin with the case A = B, which is somewhat easier. Define the rank
rank(A) of a subset of V to be the smallest d such that A is contained in an affine
space of dimension d.

Lemma 5.13 (Frieman’s lemma) [/16] Let A be an additive set in a finite-
dimensional vector space V, and let suppose that rank(A) > d for some d > 1.
Then we have

dld+1
|A+A|z<d+1)|A|—%.

Proof We induce on d. If d = 1 then the claim follows from Theorem 5.5, so
let us assume d > 2 and that the claim is already proven for d — 1. Now we fix d
and induce on |A|. The claim is vacuously true if say |A| = 1, so assume |A| > 2
and that the claim is already been proven for smaller sets A. Let a € A be any
extreme point of A; thus a is a vertex on the convex hull of A. Let A’ := A — {a}.
We divide into two cases. If rank(A’) > d, then by induction hypothesis

dd+1)
—

Since a lies outside of the convex hull of A" and rank(A’) > d, there must exist (by
the greedy algorithm) at least d extreme points x, ..., x; of A" which are visible

A"+ A’ > (d+ DA —
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from a in the sense that the line segments joining a to xi, ..., x4 lie outside the
convex hull of A’. In particular we see that the d + 1 points a, ‘”2)‘1 AU % lie
outside the convex hull of A’, and in particular outside of % - (A" 4+ A’). Dilating

this by 2 we see thata + a, a + x1, ..., a + x4 are disjoint from A" + A’. Thus
dd+1)
2

[A+Al>d+1+|A +A|>d+ DAl -

thus closing the induction.

It remains to consider the case when rank(A’) < d, thus A is contained in
a d — l-dimensional affine space W. Since rank(A) > d, we have a ¢ W. This
means that 2a, a + W, and 2W are all disjoint; thus a +a,a + A’, and A’ + A’
are all disjoint; thus

[A+Al = 1+]|A|—1+]A + AL

But since rank(A) > d, we have rank(A’) = rank(A\{a}) > d — 1, and hence by

induction
dd—1 dd+1
|A/+A/|2d|A/|—¥=d|A|—%

and the claim again follows by induction. O

Now we consider the problem of sums of two sets A, B in V. To make this
problem more precise, let us temporarily define the quantity S(d, n, t) for any
n>1,t>0,and d > 0, to be the least value of |A + B|, where A, B ranges
over all additive sets in a finite-dimensional vector space V, such that |A| > n,
|B| > n — t,andrank(A + B) > d.Since |A + B| > |A| we have the trivial bound

Sd,n,t) > n. (5.12)

This bound is however not sharp in general, and we shall improve it presently. We
first need a lemma analyzing the behavior of A + B near an extreme point of A
and B, similar to that used in the proof of Lemma 5.13.

Lemma 5.14 [296] Let A, B be additive sets in a finite-dimensional vector space
V such that A and B both contain 0, and suppose that 0 is a vertex on the convex hull
of AUB. Let A’ := A — {0} and B’ :== B — {0}, and C := (A’ U B")\(A" + B’).
Then A + B lies in the subspace of V spanned by C.

Proof Without loss of generality we may take V = R". By the Hahn—Banach
theorem, there exists a linear functional ¢ : V — R such that ¢(x) > 0 for all
x € (AU B)\0. We need to show that every element x of A + B lies in the span
of C. We shall prove this by induction on ¢(x), which is a non-negative integer. If
¢(x) = 0,then x = 0 and there is nothing to prove. Now suppose that ¢(x) > 0and
the claim has already been shown for all smaller values of ¢(x).If x € A’ + B’, then
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we can write x = a + b where a € A’ and b € B’. But since ¢(x) = ¢(a) + ¢(b)
and ¢(a), ¢p(b) > 0, we see that ¢(a), ¢(b) are strictly less than ¢(x), and the
claim follows from induction. The only remaining case is when ¢(x) > 0 and
x € (A" + B’). But since x € A + B, this implies that x € C, and we are done.

O

We can now obtain the following recursive inequality on S(d, n, t).
Proposition 5.15 [296] Letd > 1, n > 2, andt <n — 2. Then

Sd,n,t)>min(Sd,n —1,0)+d+1,5d —1,n— 1,1) +n,
Sd—1,n—1,t—1)+n—1).

Proof Let A, B be as in the definition of S(d, n, t); note that A and B contain
at least two elements. Since A and B are finite, we can find a linear functional
¢ : V — R which is injective on A U B (indeed one could select ¢ randomly).
Since ¢ is injective, we see that there is a unique element ¢y € A which minimizes
¢on A,ie. ¢p(a) > ¢(ap) for all a € A\ay. Similarly we can find a by € B which
minimizes ¢ on B, so that ¢(b) > ¢(by) for all b € B\by. By translating A and
B if necessary we may assume ag = by = 0. Thus A and B now both contain 0,
and if we define A’ := A\{0} and B’ := B\{0}, then ¢ is strictly positive on both
A’ and B'. In particular ¢ is strictly positive on A’ 4+ B’, which therefore does not
contain 0.
From Lemma 5.14 we have

(A" UBNA + B)| = d
and hence (since 0 is contained in A + B butnot A’, B’, or A’ + B’)
A+ B|>|A'+B'|+d+ 1.

Let ¢ + W denote the affine span of A’ + B’, where ¢ € V and W is a linear
subspace of W. If we knew that rank(A’ + B’) = dim(W) > d, we could then
conclude that |A" + B’| > S(d,n — 1, t), and we would be done. Thus we may
assume that dim(W) < d — 1. Thus if we pick a; € A" and b; € B’ arbitrarily,
then we have A’ € a; + W and B’ € b; + W. Thus A + B is contained in the
span of W, ay, and b;. By hypothesis, this means that at least one of a;, b; must
lie outside of W.

We now divide into a number of cases depending of the relative position of a;
and b; with respect to W. Suppose first that a; and b; are linearly independent
modulo W.Then A = 0U A’ liesin {0, a;} + W, and is thus disjoint from A + B’,
which lies in {b{, a; + b1} + W, so

|A+B|>|A+B'|+|Al > |A+ B'| +n.
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On the other hand, rank(A + B’) > rank(A + B) — 1 > d — 1, which implies
|A+ B’| > S(d —1,n — 1, t). The claim thus follows in this case.

Now suppose that a;, b; are linearly dependent modulo W and b, ¢ W. Then
A’ Ca;+ Wand A’ + B’ C a; + by + W are disjoint, while 0 is disjoint from A’
(by definition) and A’ + B’ (by previous remarks). Thus

A+ B|>1+|A|+|A' +B|>n+|A + B|.

On the other hand, since A + B is contained in the span of W and b, we have
rank(A" + B’) = dim(W) > rank(A + B) — 1 > d — 1,hence |A’ + B’| > S(d —
1,n — 1, t). The claim again follows.

The only remaining case is when b; € W, which forces a; ¢ W by previous
discussion. Then A’ + B and B are disjoint, thus

|A+B|>|B|+|A'"+B|>n—1t+|A"+ B

But since rank(A’ + B) > rank(A + B) — 1 > d — 1, we have |A' + B| > S(d —
I,n —1,t — 1), and the claim again follows. O

Corollary 5.16 [296] Foranyn > 1,t > 0, d > 0 we have

Sd,n,t)> Z r— Z min(s, d).

n—d<r<n 1<s<t

Proof The casesd =0,n =1,o0rr > n — 1 can be easily verified from (5.12),
so we may restrict ourselves to the case d > 1, n > 2, and r < n — 2. We shall
induce on the positive quantity n + d + ¢, assuming inductively that the claim has
already been proven for all smaller values of n + d + ¢. But then we have

Sdon—10+d+1> Y r— ) min(s,d)+d+]1

n—d—1<r<n—1 1<s<t

= Z r— Z min(s, d)
n—d<r<n 1<s<t

Sd—1n—1.0+n> Y r4n— Y min(s.d—1)

n—d<r<n-—1 1<s=<t

> Z r— Z min(s, d)
n—d<r<n I<s<t

Sd—1l,n—1,t—1)+n—1t> Z r— Z min(s, d) +n —t

n—d<r<n-—1 I<s<t—1

> > r— ) min(s,d)
n—d<r<n l1<s<t

and the claim follows from Proposition 5.15. O
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This inequality is sharp in many cases, although there have been some
refinements using techniques relating to the Brunn—Minkowski inequality
(Theorem 3.16); see [128], [129]. As a consequence of the inequality we obtain
the following generalization of Theorem 5.13:

Theorem 5.17 [296] Let V a finite-dimensional vector space and d > 0, and
let A, B be additive sets in V such that rank(A + B) > d, then have |A + B| >
|A| +d|B| — 44D,

Proof Apply Corollary 5.16 with n := |A[, t := |A| — |B| and use the trivial
bound ZISJSZ min(s, d) > t to obtain

dd+1)

|A+B|z(d+1>(n—§>—r=n+d<n—r>— .

as desired. O

We now return to additive sets in a vector space with small doubling. Define a
d-parallelepiped P in a vector space V to be any set of the form

P=a+1 v+ --+1- v

where vy, ..., vy are vectors in V (not necessarily linearly independent), a €
V,and I = {x e R:—1 < x < 1} is the closed unit interval. The 2¢ points a +
{—1,1}- vy +--- 4+ {—1, 1} - vy (which may possibly have multiplicity) are called
the corners of this d-parallelepiped, while a is the center; note that the corners form
aprogression of rank d and dimensions (2, . . ., 2), which may or may not be proper.
A remarkable fact, known as the Freiman cube lemma, is that if an additive set A in
a d-dimensional vector space has small doubling, then there is a d-parallelepiped
which contains a large fraction of A and whose corners lie in the set A. This is
certainly not true for general sets A, as can be seen for instance by considering the
set {(n,n?): =N <n < N} in Z?> C R2. To prove the Freiman cube lemma we
first prove an auxiliary lemma which is useful for inductive purposes:

Lemma 5.18 [28] Let V be an d-dimensional vector space, and let W bead — r-
dimensional linear subspace of V for some O <r <d. Let A be a symmetric
additive setin'V (thus —A = A)andlet K = o[A] = |A + A|/|A| be the doubling
constant. Then there exists a r-paralleopiped P with corners in A and center 0O
such that

AN (P +W)| > (9K)™2 A

Proof We induce on the codimension r. First suppose that r = 1. Without loss
of generality we may take V to be a Euclidean space R?. We let v; be an element
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of A which maximizes the quantity dist(v;, W); then it is easily seen that the 1-
parallelepiped P = 0 4 I - v, will obey the desired properties (here we exploit the
symmetry of A to place both corners of P in A).

Now suppose that r > 2 and that the claim has already been proven for all
smaller values of 7. We place W inside a d — 1-dimensional hyperplane H C V,
which divides V into the hyperplane H and into two open half-spaces H_ and H..
By the pigeonhole principle, one of the three sets AN H, AN H_,and AN H,
has cardinality at least |A|/3.

Suppose first that |[A N H| > |A|/3. Then by applying the induction hypoth-
esis (with V replaced by H and d replaced by d — 1) we can find an r — 1-
parallelepiped P C H C V with corners in AN H € H and center 0 such
that

JAN(P +W)| > (ANH)N (P + W)| > ©9K)2 "+ |Al/3
> (9K)2 Al

The claim then follows by adding a dummy vector v, =0 to P to make it a
r-parallelepiped.

Without loss of generality, it remains to consider the case when |A N Hy| >
|A|/3. Since |2(A N Hy)| < |2A| < K|A|, we conclude that oc[A N H;] < 3K.
By Exercise 2.3.14, some origin a = x/2 (since F' = x — F) with |F| > |A|/9K
and o[F] < 9K?. Since F is contained entirely in the half-space H., we see that
a € H, also.In particular,a ¢ W.Now let W' be thed — r + 1-dimensional linear
space spanned by W and a, and apply the induction hypothesis with A replaced by
F — a, K replaced by 9K 2, W replaced by W’ and r replaced by r — 1. This allows
ustofindar — 1-parallelepiped P’ =a + I - v; + - -- + I - v,_; with center a and
corners in F such that

IF N (P + W) > @1k "+ F| > 9K)2 +Al

Now we let P be the r-parallelepiped T-a+71-vi+---+1-v,_y;since F and
—F are both contained in A (by the symmetry of A) we see that the corners of P
lie in A, and P is certainly centered at the origin. To conclude the proof we need
to show that

[AN(P +W)| = |[FN (P + W)
To prove this, we use a sliding argument taking advantage of the symmetries of

A and F. Let us split W = W.o U W<, where W~ is the open half-space in W’
with boundary W which contains a, and W is the closed half-space in W’ with
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boundary W which excludes a. Then

I[FO(P + W)l =|FN(P' + W)l + |[FN (P + W)
=|(F =2a) N (P"+ W.o = 2a)| + |F N (P" + W<o)|
= |(=F)N(P" + W.g — 2a)| + |F N (P' + W)
=[(=F)N(P" + W.o = 20)]U[F N (P" + W<o)]|

since F' is symmetric around a, and F and —F are disjoint (one lies in H; and
the other lies in H_). It thus suffices to show that the sets —F N (P’ + W.o — 2a)
and F N (P' 4+ W) lie in A N (P + W). That these sets lie in A is clear, since
A contains both F and —F. Also observe that (P’ + W.y — 2a) is contained in
—(P' + W) since P’ is symmetric around a’. Thus it only remains to show that
FN(P' + W) C P+ W.But since F =2a— F lies in H;, and the corners
of P’ lie in F, and W lies in H, we see that both F and P’ + W lie in the slab
between H and 2a + H. Thus F N (P’ + W) liesintheset P’ — {ta: 0 <t <
2} + W = P + W, and the claim follows. O

As a corollary we obtain

Corollary 5.19 (Freiman cube lemma) Let A be an additive set in a d-
dimensional vector space V, and let K = o[A] be the doubling constant. Then
there exists a d-parallelepiped with corners in A such that |A N P| > (3K)_2d |A].

Proof [28] Applying Exercise 2.3.14 we have o[F] < K?. Now apply
Lemma 5.18 with W = {0} and r = d. O

Lemma 5.13 shows, roughly speaking, that if A is an additive set in a vector
space then rank(A) is controlled by a linear function of the doubling constant o[ A].
The following remarkable theorem shows that if one is willing to pass from A to
a significant subset of A, then one can in fact control the rank by a logarithmic
function of the doubling constant.

Theorem 5.20 (Freiman 2" theorem) Let d > 1, and let A be an additive set
in a vector space V with doubling constant K = o[A] < 2%. Then there exists a
subset A" of A with rank(A’) < d such that o[A’] < K and |A’| = O4 k(|A]).

See [28] for further discussion, including the dependence of constants in the
®4 k() notation.

Proof [28] We fix d and induce on K. For K < 1 the claim is vacuously true.
Now suppose that K > 1 and that the claim has already been proven for values
of K < K —e&(d, K) for some e(d, K) > 0 which is bounded from below for
K in any compact interval {1 < K < 24 — §}; if we can prove the claim under
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such a hypothesis, then the claim follows unconditionally by a standard continuity
argument (the set of K obeying the theorem is open, closed, and contains 1).

Fix A, V, K, and let ¢ = ¢(d, K) be chosen later. If there exists aset A” C A
with |[A”] > ¢/K|Alando[A”] < K — g, then the claim would follow by applying
the induction hypothesis with A replaced by A” and K by K — . Thus we may
assume that 6[A”] > K — ¢ whenever |A”| < ¢/K|A|. In particular we see that

|2A”| > K|A”| — ¢|A| for all non-empty A” C A (5.13)

(treating the case of small A” and large A” separately). Note that this also holds
with A” = ¢ if we adopt the convention that 2A4” = { in this case.

Let r = rank(A). Without loss of generality we may assume that V is r-
dimensional, since otherwise we can restrict V to the affine span of A (and translate
to the origin). If A is small, say |A| < 10K?, then the claim follows just by setting
A’ to be a single point, so assume |A| > 10K2. By Lemma 5.13 we conclude
r < K. We will in fact show that the hypotheses on A force r < d, at which point
we can take A’ := A and be done.

We now claim that (5.13) implies the bound

[ANW| = 0(l|A]) (5.14)

for all affine hyperplanes W in V. To see this, observe that W divides V into the
hyperplane W and two open half-spaces W_, W,.. Since A has full rank, at least
one of AU W,, AU W_ is non-empty. Let us say that A U W, is non-empty. Let
a be a pointin A U W, that minimizes the distance to W. One then observes from
the convexity and disjointness of W, W_, W, that the midpoint sets % 2ANW),
1 20AUWL), 1@+ (ANW)), and § - (2(A U W_)) are all disjoint. Since all
these sets are contained in % -2A, we see that

2(ANW)| +2(AU W) + AN W] +[2(AU W_)| < 24| = K|A|.

Applying (5.13) we conclude (5.14).
Next, we apply the Freiman cube lemma to obtain a r-parallelepiped P with
corners in A such that

AN P| = Qk(A]. (5.15)

Comparing this with (5.14) we see that P cannot be contained in a affine hyperplane
(if ¢ is chosen sufficiently small). Since the parallelepiped P has 2r < 2K faces,
each of which lies on an affine hyperplane, we thus see that, with int(P) denoting
the interior of P, then

|ANint(P)] > |A N P| — O(Ke|A]).
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If Q denotes the 2" corners of P, we observe that the sets {x 4+ int(P) : x € Q}
are all disjoint; thus

2(AN P)| > 2 |ANint(P)| > 2’ |AN P| — 02" Ke|A)). (5.16)

The complement V\P of P in V can be partitioned into at 2r (unbounded)
convex regions By U - - - U B,, (Exercise 5.2.4). Observe from convexity and dis-
jointness that the midpoint sets % - 2(A N B;) are disjoint from each other and from
2(A N P). Thus

o
241 = > 12(AN B))| + [2(AN P)|.
j=1

Applying (5.14) we conclude
[2(ANP)| < K|AN P|+2rel|Al.
Combining this with (5.16), (5.15) and using the bound r < K we see that
2" < K + Ok(e).

By choosing ¢ sufficiently small depending on K < 2¢ and d we obtain r < d as
desired. O

Exercises

5.2.1  [118] Show that Lemma 5.13 is still true if A + A is replaced by A — A.

522 Letd > 1, B :={0, l}d C R?, and A be an additive subset of the convex
hull of B (i.e. A liesin the solid unitcube {(xq, ..., x7) : 0 < xq, ..., x4 <
1}. Show that

|A + B| > (V2 — 04— o(1))!| Al

(Hint: reduce to the case where A is a subset of B, and then reduce
further to the case where A consists of elements (ny, ..., ng) € {0, l}d
where ny + - - - + ny is fixed. Then restrict the elements of B in a similar
manner and apply the covering principle and Stirling’s formula (1.52).
You may find working out the counterexample in the next exercise to be

helpful.)
5.2.3  Show that the quantity +/2 in Exercise 5.2.2 cannot be improved, by
setting A equal to those elements (ny, ...,ny) € Bsuchthatn; +--- +
d
ng =15].

524  Let V be an r-dimensional vector space, and let P be a r-parallelepiped
in V which is not contained in any hyperplane. Show that V\ P is the
union of 2r unbounded convex regions (not necessarily open).
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5.3 Freiman homomorphisms

We now introduce the fundamental concept of a Freiman homomorphism, that
allows us to transfer an additive problem in one group Z to another group Z’ ina way
which is more flexible than the usual algebraic notion of group homomorphism.
Roughly speaking, the role of Freiman homomorphisms is to additive sets as group
homomorphisms are to additive groups. To avoid confusion we shall often write
additive sets A more fully as (A, Z), where Z is the ambient group of A.

Definition 5.21 (Freiman homomorphisms) Letk > 1, and let A, B be additive
sets with ambient groups Z and W respectively. A Freiman homomorphism of order
k ¢ from (A, Z) to (B, W) (or more succinctly from A to B)isamap¢ : A — B
with the property that

a+-tag=a+...+a = pla)+---+ol@)=¢a) +---+ ¢@)

forallai, ..., ax, aj, ..., a;. If in addition there is an inverse map o ':B— A
which is a Freiman homomorphism of order k£ from (B, W) to (A, Z), then we
say that ¢ is a Freiman isomorphism of order k, and that (A, Z) and (B, W) are
Freiman isomorphic of order k.

For an equivalent characterization of a Freiman isomorphism, see Exer-
cise 5.3.1.

It is easy to verify that a Freiman homomorphism of order k£ will also be
Freiman homomorphic of all orders k' < k. Of course it is the k > 2 cases that
are interesting; any map from A to B will be Freiman homomorphic of order 1,
and any bijection will be Freiman isomorphic of order 1. Also, the identity map
id from (A, Z) to (A, Z) is always a Freiman isomorphism of any order, and the
composition of two Freiman homomorphisms (resp. isomorphisms) of order k is
another Freiman homomorphism (resp. isomorphism) of order k; in particular, the
relation of being Freiman isomorphic of order k is an equivalence relation. Thus
the class of additive sets, and the Freiman homomorphisms of a fixed order k
between them, form a category.

Remark 5.22 We digress to give an analogy with the differential geometry of man-
ifolds. Manifolds can either be viewed extrinsically (embedded inside an ambient
space such as a Euclidean space RY) or intrinsically (as a set endowed with certain
structures such as a topology, Riemannian metric, etc.). One can easily get from
the former viewpoint to the latter by restricting certain structures of the ambient
space to the embedded set; reversing this procedure and embedding an intrin-
sic manifold inside a given ambient space is often much harder. Throughout this
book we have taken the extrinsic approach, embedding the additive set A inside
an ambient group Z. However one could also take a purely intrinsic viewpoint,
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fixing the order k of the Freiman homomorphism and viewing the additive set as
(A, ~¢), where A is now thought of an abstract set (rather than a subset of an
additive group) and ~ is the equivalence relation on A* defined (extrinsically) by
setting (a1, ..., ax) ~¢ (ay, ..., ay)ifandonly ifa; + - +ar = a] + - - - + a.
This is still enough to develop the theory of Freiman homomorphism and isomor-
phisms, and one can define notions such as sum sets, additive energy, etc. in this
intrinsic setting. However there do not appear to be any major advantages with
this approach, especially since the embedding problem turns out to be relatively
easy to solve (in contrast with the situation for, say, Riemannian manifolds). See
Exercise 5.5.6 below.

We now give some examples of Freiman homomorphisms.

e If¢p: Z — Z’'is a group homomorphism (resp. isomorphism) from one group
Z to another Z’, then it induces a Freiman homomorphism (resp. isomorphism)
from (A, Z) to (¢(Z), Z') of arbitrary order. In particular, the reflection map
¢ : Z — Z defined by ¢(x) := —x is a Freiman isomorphism from (A, Z) to
(—A, Z) of arbitrary order.

e If (A, Z) and (B, W) are two additive sets such that Z C W and A C B, then
the inclusion map ¢ : A — B is a (rather trivial) Freiman homomorphism of
arbitrary order. Thus, if ¢ : (B, W) — (B’, W’) is any Freiman
homomorphism, then the restriction ¢|4 : (A, Z) — (B’, W) will be a
Freiman homomorphism of the same order.

e If x € Z, then the translation map ¢ : Z — Z defined by ¢(y) :=y +xisa
Freiman isomorphism from (A, Z) to (A + x, Z) of any order.

e Let N, M > 1 be integers. Let ¢ : Z — Z), be the canonical quotient
homomorphism, and let ¥ : [0, N) — ¢([0, N)) be the restriction of ¢ to
[0, N). Then ¢ is a Freiman homomorphism of any order. But v is only a
Freiman isomorphism of order kK when M > kN, in which case 1//’1 is also a
Freiman isomorphism. Thus it is possible to have a Freiman isomorphism
between a set in a torsion-free group and a set in a torsion group, which would
be impossible if one were only considering group homomorphisms.

* Let a, r be elements of an additive group Z, and let P :=a + [0, N) - r be the
arithmetic progression P = {a,a +r,...,a + (N — 1)r}. Then the map
¢ : [0, N) = P defined by ¢(n) := a + nr is a Freiman homomorphism from
([0, N), Z) to (P, Z) of any order. It is a Freiman isomorphism of order k if and
only if ord(r) > kN. In particular, if r is non-zero and Z is torsion-free, then ¢
is a Freiman isomorphism of all orders.

* Let N, M,d > 1 be integers, and let ¢ : Z¢ — Z be the map ¢(ay, ..., aq) :=
Z‘;:] a;M’~". Then the map ¢ is a Freiman homomorphism from [0, N)? to
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([0, N)?) of any order, and is a Freiman isomorphism of order k when
M > kN.

* The sets {0, 1, 10, 11} and {0, 1, 100, 101} in Z are Freiman isomorphic of
order k for any k < 10, but are not Freiman isomorphic of order k for any
k > 10.

The relevance of Freiman homomorphisms to the theory of sum sets lies in the
following lemma:

Lemma 5.23 Let (A, G) be an additive set, and let ¢ : (A, G) — (¢p(A), H) be a

surjective Freiman homomorphism of order k. Then we have
le1p(A) + -+ xPp(Ap)| < [e1Ar + -+ + e Akl

whenever Ay, ..., Ay are non-empty subsets of A and €1, ...,& = £1. If ¢ is
in fact a Freiman isomorphism of order k, then we may replace inequality with
equality. In particular, if A and B are Freiman isomorphic of order k, then

IB—mB| = |lA—mA| wheneverl,m > 0andl +m < k.
Proof Define an equivalence relation ~ on A; x --- x Ay by by declaring
(al,...,ak)N(a/l,...,a,/{) <~ ¢&1a1 + -+ Eag =81ai +"'+8ka,/<.

Observe that the number of equivalence classes in A x --- x Ay is precisely
letAy + - - - + & Ag|. Also observe that we can rewrite the above condition

e1ay + -+ gag = 1a) + - - + eray,
in a positive form as
/ /
2oat L A=) ai+ )
jiej=1 Jiej=—1 Jiej=1 jiej=—1
From this it is clear that the equivalence relation is respected by any Freiman
homomorphism of order k. Combining these observations yields the lemma. O

Thus Freiman isomorphisms will preserve the cardinality of iterated sum and
difference sets (as well as related quantities such as the doubling constant, differ-
ence constant, and energy); see Exercise 5.3.5. Of course, in many applications
one wants to take sum sets involving two additive sets A, B in an ambient group
Z rather than one. One way to resolve this is to work with the union A U B, since
Lemma 5.23 then shows that Freiman isomorphisms of A U B will preserve the
cardinality of sets such as A + B or A — B (if the order of the isomorphism is at
least 2). But this has the slight drawback that one loses the freedom to translate
A and B independently. One way to get around this is to define the disjoint union
A W B of A and B, defined in the ambient group Z x Z as

AWB = (A x {0}) U(B x {1}).
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Then any Freiman isomorphism of the disjoint union will preserve sum sets (see
Exercise 5.3.7). Note that the obvious projection map from AW B to AU B is a
Freiman homomorphism of any order.

Freiman homomorphisms also preserve the property of being a progression:

Proposition 5.24 Let ¢ : A — B be a Freiman homomorphism of order at least
2, andlet P = a + [0, N] - v be a progression in A. Then ¢(P) is a progression in
B with the same rank, dimensions, and volume as P. Furthermore, if ¢ is in fact
a Freiman isomorphism of order at least 2, then ¢(P) is proper if and only if P is

proper.

Proof We may assume that the components N; of N are all strictly positive, since
if one of the components N; is zero then we can simply remove it and lower the
rank by 1. By translation invariance we may suppose that the base point a is equal
to 0, and that ¢(0) is also zero. In particular P, and thus A, contains all the basis
vectors vy, ..., V4.

Since ¢ is a Freiman homomorphism of order 2 and ¢(0) = 0, we see that ¢(x +
v;) = ¢(x) + ¢(v;) whenever x and x + v; both liein A and 1 < j < d. Iterat-
ing this we see from induction that ¢(n - v) = n - ¢(v) for any n € [0, N], where
o) € B¥ is the d-tuple ¢(v) := (¢(v1), ..., #(vy)). Thus ¢(P) = [0, N] - ¢(v)
and is thus a progression with the same rank, dimensions, and volume as P. To
prove the last part of the proposition, observe that if ¢ is a Freiman isomorphism
then | P| = |¢(P)|, and hence | P| = |[0, N]| if and only if |¢(P)| = |[0, N]|. O

We now show that torsion-free additive groups are no richer than the integers,
for the purposes of understanding sums and differences of finite sets.

Lemma 5.25 Let A be a finite subset of a torsion-free additive group Z. Then for
any integer k, there is a Freiman isomorphism ¢ : A — ¢(A) of order k to some
finite subset ¢(A) of the integers L. The same is true if we replace Z. by Ly, if N
is sufficiently large depending on A.

Note that the converse is trivial: one can always embed the integers in any
other torsion-free additive group, and hence any additive set in the integers can be
embedded in any other torsion-free additive group such as R?. However, many of
these embeddings are trivial, living in some subspace of R?. The question of the
largest dimension one can “non-trivially” embed an additive set in will lead to the
concept of Freiman dimension, which we shall study in Section 5.5.

Proof By Corollary 3.6 we may take Z = Z" for some n > 0. By translating
A we may assume that A in fact lives in (Z1)", i.e. all the coordinates are non-
negative. Since A is finite, we see that A is a subset of [0, M /k)" for some large
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integer M (a multiple of k). Now define the map ¢ : A — Z by
o, ....ay) =a, +aM+asM*+ -+ a,M"".

In other words, we view elements of A as digit strings of integers base M. This is
a Freiman isomorphism of order k (with ¢, being defined the same way as ¢, but
restricted to kA); the point is that if M is large enough we never have to “carry” a
digit. This shows that we can map A to the integers via a Freiman isomorphism;
the same argument shows that we can map to Z/(N - Z) if N > M". O

As we shall see later, the machinery of Freiman homomorphisms and Freiman
isomorphisms will also be very useful when dealing with torsion groups, for
instance we can use it to pass from a problem on the integers to a problem on
a cyclic group or vice versa. If one is willing to only work with a fixed fraction of
an additive set A, then the following compression lemma allows one to work in a
cyclic group whose order is only a little bit larger than that of A itself.

Lemma 5.26 [295] Let A be an additive set whose ambient group Z is either
torsion-free or a cyclic group of prime order, and let n > 1 be a positive integer.
Let N be an integer such that

2nlnA —nA| < N < |Z|

(note the condition N < |Z| is vacuous if Z is torsion-free). Then there exists a
subset A C A of cardinality |A’| > |A|/n and a Freiman isomorphismw : A’ —
B from A’ to a subset B C Zy of order n.

Proof By Lemma 5.25 it suffices to consider the case where Z is a cyclic group
Z,, of prime order.

We shall use the first moment method. Let A € Z,\{0} be an invertible element
of Z,, chosen uniformly at random. The map x +— A - x is thus an additive group
isomorphism on Z,, and is in particular a Freiman isomorphism on Z , of all orders.
This freedom to dilate A by an arbitrary amount will be needed to avoid a certain
“collision” problem which will become apparent shortly.

We now define the projection 7 : Z, — Zy by setting

w(m) :=t(m)mod N,

where ¢ : Z,, — [0, p) is the obvious map that sends the residue class m + (p - Z)
tomform=0,...,p—1.

The map m is not quite an additive homomorphism; however note, for j =
0,1,...,n — 1, that 7 is a Freiman homomorphism of order n when restricted to
the set Z; := (jp/n, (j + 1)p/n], which is a set that occupies roughly % of the
original field Z,. By the pigeonhole principle, for each A, there exists a 0 < j =
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Jj(&) < 8 such that the set A’ := A - AN Z; has cardinality |A’| > |A|/n. Thus
if we set B := w(A") C Zy, then the map 7 : A’ — B is a surjective Freiman
homomorphism of order n.

We are almost done; however we have not established that 7 is a Freiman
isomorphism. The only possible obstruction is that there may be collisions in nA’,
in the sense that

r(x)+ -+ w) =)+ -+ m(x)

while x; +--- +x, # x| +--- +x,, forsome xy, ..., X,, x|, ..., x, € A Fortu-
nately, this type of collision rarely occurs, if N is large enough and A is chosen
randomly. Indeed, if we do have the above collision, then we see that

Wx) 4 ux) — @) 4 uxg)

must be a non-zero multiple of N. Since xi, ..., x,, x{, ..., x, liein A’, and hence
in AA, we thus see that a collision can only occur if n((AA) — nit(AA) contains a
non-zero multiple of N. However, we can compute the probability that this occurs:

PGk € Z\0 : kN € nt(AA) — niu(rA))

< Y PKN e m(hA) — nu(rA))
Ik|<np/N:k#0

> PUN+p-ZeniA—niA)
k| <np/N:k#0

IA

P(kN = Ax mod p)
|k|<np/N:k#0 xenA—nA
= > > PO=(N)xmod p)
|k|<np/N;k#0 xenA—nA
>
-1

|k|<np/N:k#0 xenA—nA p

IA

2np 1
—|nA — nA|l——,

N p—1
where we have used the fact that p is prime (to invert kN modulo p). By our
hypotheses on N we thus see that this probability is strictly less than 1. Thus we
may choose A so that 7 : A — B will be a Freiman isomorphism of order n as

claimed. O

IA

The above argument should be compared with the proof of Theorem 1.3.

Exercises

5.3.1 Let ¢ : A — B be a map between two additive sets, and let k > 1. Show
that ¢ is a Freiman isomorphism of order k if and only if ¢ is surjective
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and
ar+ - Fa=ai+ - Fap = pla)+ -+ pla)=ga)+ - - +o(ay)

forallay,...,ax, ay,...,a; € A.

[257] Let n > 1. Show that {0, 1,n + 1} is Freiman isomorphic to
{0, 1, n} of order n but not n + 1.

Show that given any k > 1 and any additive set A, that A is Freiman
isomorphic of order k to some subset of a finite abelian group.

Let (A, Z) and (B, W) be additive sets, and let ¢ : A — B be a map
which is a Freiman homomorphism of any order k. Suppose also that
Z is the group generated by A. Show that there exists a unique group
homomorphism ¢ : Z — W and an element ¢ € Z’ such that ¢(x) =
Y(x) 4+ cforall x € A.

Let (A, Z) and (B, W) be Freiman isomorphic of order at least 2. Show
that o[A] = o[B], that §[A] = §[B], and that E(A, A) = E(B, B). For
any o € R, show that [Sym,(A)| = |Sym,(B)|. (See Definitions 2.4, 2.8,
2.32 for the meanings of these terms.)

Let (A, Z) and (B, W) be additive sets which contain the origin 0, and
let ¢ : (A, Z) — (B, W) be a Freiman isomorphism of order at least 3
which fixes the origin, thus ¢(0) = 0. Show that for any K > 1, that A
is a K-approximate group if and only if B is. Show that if one replaces
“K -approximate group” by “translate of a K-approximate group” then
one can drop the requirement that ¢(0) = 0 and that A, B contain 0.
Let (A, Z),(B, Z), (A’, Z'), (B’, Z’) be additive sets, and suppose that
¢:AY B — A'W B is a Freiman isomorphism of order k which maps
A to A" and B to B’. Show that |n1A — npA +n3B — nyB| = [m A’ —
nyA’ +n3B’ — nyB’| whenever |n{| + |no| + |[n3| + |ng| < k. If k > 2,
show that d(A, B) =d(A’, B’) and E(A, B) = E(A’, B’). Also, show
that A can be covered by K translates of B if and only if A’ can be
covered by K’ translates of B’.

Suppose that two additive sets A and B are Freiman isomorphic of order
k.If n,m, k' > 0 are such that k'(n + m) < k, show that nA — mA and
nB — mB are Freiman isomorphic of order k'.

Show that all Sidon sets of a fixed cardinality N are Freiman isomorphic
of order 2 to each other. More generally, for any # > 2, show that all B,
sets of cardinality N are Freiman isomorphic to each other of order #,
and that the image of a Bj, set under a Freiman isomorphism is still a
B;, set. Thus one could work with a “standard” By, set of order N, such
as the basis ey, ..., ey of ZV, and many additive results concerning that
standard set would automatically transfer over to an arbitrary By, set.
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Let (A, Z) and (A’, Z’) be additive sets in finite additive groups Z, Z’
which are Freiman isomorphic of order & for some /4 > 1. Show that
| Allany = IIA’|| Ac2ny, where the A(p) constants are as in Definition 4.26.
[29] Let p be a prime, let k > 1, and let (A, Z,) be an additive set in
Z, such that |A| < log,; p. Show that there exists an additive set (A", Z)
such that the canonical projection map from Z to Z,, is a Freiman iso-
morphism of order k from A’ to A. (Hint: the claim is obvious if A is
contained in the arithmetic progression [—p/2k, p/2k] - 1 in Z,,. For the
general case, use the Kronecker approximation theorem (Corollary 3.25)
to locate an integer n coprime to p such that n - A lies in this progression
[—p/2k, p/2k] - 1, and then find an integer m with nm = 1 (mod p) to
“invert” the dilation x — n - x.)

[29] Let p be a prime, written in binary as p = 2" + ... 4+ 2 where
ny <---<n,. Let(A,Z),) be the additive set

A:={0)u{L,2", ..., 2nthupm ... 4251 <j<rh

Show that |A| < 2log, p + 1, but there does not exist any set of integers
A’ which is Freiman isomorphic of order 2 to A. This shows that the
estimate |A| < log,, p in Exercise 5.3.11 is very close to being sharp.
Let (A, Z), (B, Z) be additive sets such that A + B can be covered by
K translates of A for some K > 1,andlet¢ : AW B — C be a Freiman
homomorphism of order 4. Show that ¢(A) + ¢(B) can be covered by K
translates of ¢(A).

Let Q be a progression of rank d, letk > 1,andlet N > k9| Q|. Show that
there exists an additive set (Q’, Zy) in the cyclic group Zy and a surjective
Freiman homomorphism ¢ : Q" — Q of order k. If Q is proper, one can
also ensure that ¢ is injective. This fact is useful for viewing progressions
as dense subsets of cyclic groups.

5.4 Torsion and torsion-free inverse theorems

We can now use all the machinery developed thus far to prove two inverse sum set

theorems, one in the setting of r-torsion groups and one in the setting of torsion-
free groups. The two arguments are quite different, but they will be combined to
obtain an inverse sum set theorem for an arbitrary group in Section 5.6.

We begin with the r-torsion case.

Theorem 5.27 (Freiman theorem for r-torsion groups) [300], [154] Suppose
A is an additive set in an r-torsion group Z such that |A + A| < K|A| or
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|A — A| < K|A|. Then there exists a subgroup H of Z of cardinality |A| < |H| <
Pk |A| such that A is contained in a translate of H.

Proof By Proposition 2.26 we can find a K °V-approximate group H such that
A is contained in a translate of H. But then H + H C H + X for some additive
set X of cardinality at most K ). We conclude that the set G := H + (X) is a
genuine group, where (X) is the group generated by X. But from the r-torsion
hypothesis we have [(X)| < r/*!I < 7K and the claim follows. O

Remark 5.28 The upper bound on |G| has been improved to r25°~! in [154],
using the Green—Ruzsa covering lemma and the Pliinnecke inequalities; see Exer-
cise 5.4.1. The exponential dependence in K here is necessary, as the example
Z=17K, A={e,...,ex} shows. However if one relaxes the claim that A is
completely contained in a translate of H then one should do better. For instance,
it is conjectured by Marton [300] that in the above setting we can in fact find a
group H C Z of cardinality at most |A| such that A can be covered by O(K °-(1)
translates of H. This would be sharp up to polynomial losses, since in that case
one can easily verify that |A + A, |A — A| = O(K 9 D|A)).

As a corollary we can also obtain a Chang-type theorem in the r-torsion case.

Corollary 5.29 (Chang theorem for r-torsion groups) Suppose A is an addi-
tive set in an r-torsion group Z such that E(A, A) > |A]>/K. Then 2A —2A
contains a subgroup of Z of cardinality at least FmOK?®) |Al.

Proof We may take r > 2 as the case r =1 is trivial. Using the Balog—
Szemerédi—Gowers theorem (Theorem 2.31) and translating A if necessary, we
may find a subset A’ of A with |A’| = Q(K ~°M|A|) which s contained ina K °(-
approximate group G of size |G| = O(K °@|A|). Using Theorem 5.27 we may
place the approximate group G inside a genuine group H of cardinality at most
rXY1Al; thus Py (A') = r—X”" . By Proposition 4.39, we thus see that 24’ — 2A’
contains a Bohr set Bohry(Spec,(A’), %) for some o = Q(K~°W). Using
Lemma 4.36 as in the proof of Theorem 4.42, we conclude that 24’ — 2A’ (and
hence 2A — 2A) contains a Bohr set Bohry (S, ﬁ) for some set of frequencies
S C H with |S| = O(K°®M). In particular, it contains the subgroup Bohr (S, 0).
But as H is an r-torsion group, Bohrg (S, 0) = Bohry (S, 1/r), and so from (4.25)
we see that

IBohry (S, 0)] = r~ K" H|
> rfo(KU(”)|A/|

= Q(r 0K g oM 4))

and the claim follows (using the hypothesis » > 2 to absorb the lower order terms).
(]



5.4 Torsion and torsion-free inverse theorems 229

We now turn to the torsion-free case. We begin with two preliminary results of
interest in their own right. The first exploits all the above machinery of Freiman
homomorphisms, as well as the powerful techniques of harmonic analysis from
Chapter 4 and the additive geometry results in Chapter 3 (as encapsulated in
Theorem 4.42), to show that if A has small doubling, then 2A — 2A contains a
large proper progression.

Theorem 5.30 (Ruzsa—Chang theorem) [295], [48] Let A be an additive set in
a torsion-free additive group Z such that |A 4+ A| < K|A| for some K > 1. Then
2A — 2A contains a proper symmetric progression P of rank O(K(1 4 log K))
such that |P| > e~ O(K(+log K))| 4.

Proof Let pbe the first prime number larger than 16|8A — 8 A|. By Corollary 2.23
and Bertrand’s postulate (Exercise 1.10.3) one can then find a subset A’ of A of
cardinality |A’| > |A|/8, which is Freiman isomorphic of order 8 to an additive
set B in Z,. Observe that

|IB+ B|=|A'+A'| <|A+ Al < K|A| < 8K|B|

so B has doubling constant at most 8 K. Applying Theorem 4.42 we then obtain a
proper symmetric progression Q inside 2B — 2B of rank at most O (K (1 + log K))
and cardinality at least O(K (1 + log K))~9K(+1o¢ £))| B| In particular we have

10| > e 0Kl D) g|.

Since A’ is Freiman isomorphic to B of order 8, 24’ — 2A’ is Freiman isomor-
phic to 2B — 2B of order 2 (see Exercise 5.3.8). 2A — 2 A, contains a symmetric
progression P which is Freiman isomorphic to P, and the claim follows. O

The second result is a variant of the Ruzsa covering lemma which gives good
constants when the doubling constant is small.

Lemma 5.31 (Chang’s covering lemma) [48] Let K, K’ > 1, and let A, B be
additive sets in an ambient group Z such that [nA| < K"|A| for all n > 1,
and such that |A + B| < K'|B|. Then, for any ay € A, there exists elements
Vi, ..., in A—A with d =2K(1 + log,(KK")) such that A< B— B+
[0, 119 - (vi, .. ., va) + ao.

Proof Without loss of generality we may take K to be an integer. By translation
we may take ap = 0. We construct a sequence of enlargements B = By € B; C
.-+ C By by iterating the argument of Lemma 2.14 as follows. Set By := B. Now
suppose inductively that n > 0 and B,, has already been constructed. Consider the
collection {a + B, : a € A} of translates of B, by elements of A. If we can find at
least 2K such translates which are disjoint, we set B, to be the union of these 2K
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translates; thus B, = B, + A, for some subset A, of A of cardinality 2K, and
|By+1| = 2K|B,|, and then continue the algorithm. If we cannot find 2K disjoint
translates, we select a family of disjoint translates of maximal cardinality, set B,
to be the union of these translates, and then halt the algorithm setting N :=n + 1.
Thus in the terminating case we have B, = B,, + A,, where A, is a subset of A
of cardinality less than 2K.

Let us first see why this algorithm even terminates. By induction we see that
B, € B+nAforall0 <n < N, but we also have | B,| = (2K)"|B|. On the other
hand, from Lemma 2.6, we have

B4 nA| < B ANAFRAL g
|A]
Thus the algorithm must terminate by the time (2K )" exceeds K'K"*!, and we
therefore have the bound N < 1 + log,(K K').

Now let a be any element of A. Observe that By_; + a cannot be disjoint from
By, since otherwise we could have added it to the collection of disjoint translates
comprising By. Thusa € By — By—_; foralla € A, and hence

By Lemma 3.11, we see that each of the A; (or —A;) can be contained in a
progression of the form [0, 11% - v for some d ;i < 2K, where the components of v
liein A; and hence in A — A (since 0 € A and A; C A). The claim then follows
from several applications of (3.2). O

As a consequence of these two results we obtain an inverse theorem in the
torsion-free case.

Theorem 5.32 (Freiman’s theorem for torsion-free groups) [716], [295],
[48] Let A be an additive set in a torsion-free group Z such that
|A+ A| < K|A|. Let ay € A. Then there exists a proper progression P
contained in 2A —2A of rank at most O(K(1 +logK)) and cardinality at
most |P| < |2A —2A| < K°WD|A|, and vectors vy, ...,vy in 4A —4A with
d = O0(K°Y), suchthat A C P + 10,11 - (vy, ..., vg) + ao.

Proof By translation we may assume that a =0, so 0 € A. Applying Theo-
rem 5.30 we see that 2A — 2A contains a proper progression P of rank at most
CK (1 + log K) and cardinality at least e~C(K(+1og” K)| A| Note from Corollary
2.23 that |P| < |2A —2A| < K9D|A|. Now we use Lemma 5.31 to cover A by
P — P. First from Corollary 2.23 note that

|A+ P| < [3A — 24| < KOW|A| < (0K U+oe" KD p|
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and that [nA| < K°™|A| for all n > 1. Thus by Lemma 5.31 (and the remarks
immediately following that lemma) we have

ACP—P+I[0,11% (v, ..., v0)

forsome v, ...,vs € A — Aandd = O(K°W). Also, from Lemma 3.10 we have
P—PCP+[0,11¢ (w,..., wy)whered = O(K(1 4 log K)) is the rank of
P and wy,...,w; € P — P C 4A —4A. Combining these facts using (3.2) we
obtain the result. O

One can reduce the rank of the containing progression to K — 1, at the cost of
worsening the size of | P|:

Theorem 5.33 [48] Let A be an additive set in a torsion-free group Z such that
|A 4+ A| < K|A|. Then there exists a proper progression P of rank at most K — 1
which contains A such that | P| < exp(O(K°M))|A|.

Proof We may assume that |A| < 100K? (for instance) since the claim follows
from Lemma 3.11 and Theorem 3.40 otherwise.

Without loss of generality we may assume that A contains the origin, and then
we may assume that Z is generated by A otherwise we could pass from Z to the
group (A) generated by A. From Theorem 5.32 and (3.2) we can contain A inside a
progression Q of rank d = O(K ) and cardinality at most exp(O(K °M)))|A|.
Now consider the progression 2Q — 2Q, which has the same rank as Q and essen-
tially the same bounds on the cardinality. By Theorem 3.40 we can find a symmetric
proper progression R = [—N, N] - v of some rank d’ < d containing 2Q — 2Q
such that |R| < exp(O(K 1)) A|. In particular, the set A (which is contained
inside Q — Q) is Freiman isomorphic of order 2 to a subset Aof[-N,N]c Z%;
thus A has doubling constant at most K. By Freiman’s lemma (Lemma 5.13) we
may place A in a subspace V of Z¢ of dimension at most K — 1.

We now use the “rank reduction argument”. If d’ < K — 1 then we are done (by
setting P = R), so suppose d’ > K — 1. The intersection of [-N, N] C Z¢ with
V is the intersection of a convex subset with a lattice of rank strictly less than d’ with
cardinality at most exp(O(K O0Myy)|A], so by Lemma 3.36 we may contain it in a
progression of rank strictly less than d’ and cardinality at most exp(O (K OMyy)| A,
with steps inside [—N, N]. Using the Freiman isomorphism, this allows us to
contain A in a progression Q' of rank strictly less than d and cardinality at most
exp(O(K O(My))|A|. We then iterate the above argument (replacing Q by Q') at
most d times until one can contain A in a progression P of length K — 1. As the
rank decreases at each stage it is easy to see that the final progression P will have
size at most exp(O(K M)). O
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The exponential factors in Theorem 5.33 cannot be removed directly, as can
be seen by considering the additive set Z = {e;, ..., ex} in ZX . However it is
conjectured that if one weakens the containment A C P then one can do better,
for instance

Conjecture 5.34 (Polynomial Freiman—-Ruzsa conjecture) Let A be an addi-
tive set in a torsion-free group Z such that |A + A| < K|A|. Then there exists
a progression P of rank at most O(K %Wy such that |P| = O(K°V|A|) and
[ANP| = QK OD|A).

This would be the analog of Marton’s conjecture mentioned earlier in this
section. Such a conjecture, if true, would allow one to obtain substantially better
bounds on many results whose proof involves Freiman’s theorem. See [151], [152]
for further discussion.

By combining Theorem 5.33 with Theorem 5.20 one can show

Proposition 5.35 [28] Let A be an additive set in a torsion-free group Z such
that |A + A| < K|A| for some K < 2%. Then there exists a proper progression P
of rank at most d and size |P| = Ok 4(|A|) such that |A N P| = Ok 4(JA)).

We leave the deduction of this proposition from the previous results to Exer-
cise 5.4.5. Recently, a more quantitative version of this proposition was obtained:

Proposition 5.36 [162] Let A be an additive set in a torsion-free group Z such
that |A + A| < K|A|. Then for any 0 < ¢ < 1 there exists a proper progression
P of rank at most |log, K + ¢] and size at most |A| such that A is covered by
exp(O (K> log® K))/£°%) translates of P.

Exercises

KoM

54.1 [154] Using Lemma 2.17 and Corollary 6.28, improve the factor of r
in Theorem 5.27 to r2K*~1,

542  Show that the term (d + D)|A| — %4 in Corollary 5.13 cannot be
replaced by any smaller quantity.

5.4.3  Using Corollary 6.28, improve the bounds in Theorem 5.32 and Theorem
5.33 as much as you can.

544 [300],[151]Let Z, Z' be two r-torsion groups, let K > 1,andlet f : Z —
Z' be a function which is a “K -almost homomorphism” in the sense that
the set {f(x +y) — f(x) — f(y) : x, y € Z} has cardinality at most K.
Show that there exists a genuine group homomorphism g : Z — Z’ such
at { f(x) — g(x) : x € Z} has cardinality at most 7 X It is conjectured that
one can improve rX to 0,(K %"(1); this would essentially imply Marton’s
conjecture. See [151], [152] for further discussion.
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5.4.5  Prove Proposition 5.35. (In addition to Theorem 5.33 and Theorem 5.20,
you may use the rank reduction argument as in the proof of Theorem 5.33.)

5.4.6  Let A be a bounded non-empty open set in R? such that mes(A + A) <
Kmes(A). Show that K > 29, and that one has the containment A C B +
P, where B is aball and P is a progression of rank O (K ") and volume
O (exp(K °D)mes(A)/mes(B)). (Hint: take B to be a ball contained in A.
Now replace R? with a lattice adapted to the scale of B.)

5.5 Universal ambient groups

In this section we fix the order k of Freiman homomorphisms and isomorphisms,
and shall frequently omit the phrase “of order k™.

It is possible for two additive sets to be Freiman isomorphic even though their
ambient groups are very different. For instance, the additive sets ({1, 2, 3}, Zg),
({1, 2,3}, Z7),and ({1, 2, 3}, Z) are all Freiman isomorphic of order 2, despite the
groups Zg, Z7, Z being different. On the other hand, the additive set ({1, 2, 3}, Z3)
is not Freiman isomorphic of order 2 to any of the above sets and has a quite
different additive structure. It is natural to ask whether there is some universal
ambient group that one can place an additive set in, after Freiman isomorphism.
To phrase this more precisely, we introduce

Definition 5.37 (Universal ambient group) Let(A, Z)be an additive set, and let
the order k of the Freiman homomorphisms be fixed. We say that Z is a universal
ambient group (of order k) for the additive set A if, every Freiman homomorphism
¢ : (A, Z) — (B, W) has a unique extension to a group homomorphism @y :
Z — W (thus ¢exi(x) = ¢(x)forallx € A). More generally, we say that an additive
group Z' is a universal ambient group for (A, Z) if there exists an additive set
(A’, Z") which is Freiman isomorphic to (A, Z) such that Z’ is a universal ambient
group for A’; we then call (A’, Z) an embedding of (A, Z) inside the ambient
group Z'.

Examples 5.38 Let kK = 2, and consider the additive set (A, Z) = ({1, 2, 3}, Z7).
The group Z7 is not a universal ambient group for A = {1, 2, 3}, as can be seen for
instance by considering the Freiman homomorphism¢ : A — Z definedby ¢(1) =
1, ¢(2) = 2, ¢(3) = 3. This homomorphism cannot extend to a group homomor-
phism on Z, since 1 has order 7 in Z; but has infinite order in Z. Even if one
replaces the ambient group Z; with Z, the additive set ({1, 2, 3}, Z) is still not placed
inside a universal ambient group, because the translation map ¢(x) := x + l is a
Freiman homomorphismon {1, 2, 3} but does not extend to a group homomorphism
on Z. On the other hand, the additive set ({(1, 1), (2, 1), (3, 1)}, Z?) is placed
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inside a universal ambient group, as one can easily verify. But the additive set
{1, 1,0),(2,1,0), (3, 1,0)}, Z% is not placed inside a universal ambient group
for a different reason, namely that the extension of Freiman homomorphisms to
group homomorphisms is not unique (one has too much freedom to decide what
to do with the third coordinate).

As stated, the definition of a universal ambient group is invariant under Freiman
isomorphism. Also, if an additive set A has two universal ambient groups Z and
Z', then they are necessarily group isomorphic (as can be seen by extending the
obvious Freiman isomorphism between the two associated embeddings of A). Thus
universal ambient groups, if they exist, are unique up to group isomorphism (for
fixed k).

Lev and Konyagin [232] observed that universal ambient groups always exist:

Theorem 5.39 (Existence of universal ambient groups) [232] Fix k > 2, and
let (A, Z) be an additive set. Then there exists a universal ambient group Z' for
A. Furthermore, if A’ is an embedding of A inside this ambient group Z', then Z'
is generated as a group by A'. In particular, Z' is finitely generated.

Proof Let Z” be a group of rank |A| which is freely generated by some basis
{e. : a € A}. Let (X) be the subgroup of Z* generated by the elements

. . I ’
X = {eal+~-~+eak—eai—-~~—ea2.al,...,ak,al,...,akeA,a1+~-~+ak

=a;+ - +a}.

We then define Z' := Z4/(X), and let A’ be the image of the basis {e, : a € A}
under the canonical quotient map v : Z* — Z#/(X).Itis clear that Z' is generated
by A’. We now show thatthe map: : A — A’ defined by (@) := 7 (e,)is a Freiman
isomorphism. Since this map is surjective, it suffices by Exercise 5.3.1 to show
that

ar+-ta=ay+-+a = va)+-+ua) =ua) + -+ ay).

But this is clear from the construction of Z4 /(X).

Next, let ¢ : (A’, Z') — (B, W) be a Freiman homomorphism. Let v : Z4 —
W be the unique group homomorphism such that ¥ (e,) = ¢(i(a)) for all a € A;
this is uniquely defined since the basis {e, : a € A} freely generates Z*. Also
it is clear that i annihilates X, and hence (X). Thus i descends to a group
homomorphism ¢ey; : Z4/(X) — W, and it is easily verified that ¢y extends ¢.
This proves existence of extensions. To prove uniqueness, it suffices to show that
any two group homomorphisms from Z’ to W which agree on A" will agree on all
of Z'. But this follows since Z’ is generated by A’. O
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For an alternative construction of the universal ambient group, see Exer-
cise 5.5.1. For some examples of universal ambient groups, see Exercise 5.5.1
and Exercise 5.5.17.

If (A, Z) is an additive set with universal ambient group Z, then we can define
a degree map deg : Z — Z to be the group homomorphism extending the trivial
Freiman homomorphism a +— 1. Thus deg equals 1 on A, equals 2 on 2A, and
more generally equals / —m on /A —mA. Thus in the universal ambient group
the sets nA for n € Z are all disjoint. Also observe that deg must annihilate the
torsion group Tor(Z) := {x € Z : nx = 0 for some n € Z*} of Z, since the range
Z of deg is torsion-free. This shows that Z/Tor(Z) is a non-trivial torsion-free
additive group, and hence by Corollary 3.6 is group isomorphic to Z¢*! for some
d > 0. Since all universal ambient groups are group isomorphic, this quantity d
depends only on the additive set A, and we give it a name:

Definition 5.40 (Freiman dimension) Let A be an additive set. We define the
Freiman dimension of A to be the unique non-negative integer dim(A) = d such
that Z/Tor(Z) is group isomorphic to Z4*! for every universal ambient group Z
of A.

Note that the Freiman dimension depends on the choice k of the order of
Freiman homomorphism; see Exercise 5.5.11. Traditionally one works with the
Freiman dimension corresponding to the case k = 2. We caution that Freiman
dimension is not monotone; again, see Exercise 5.5.11. The Freiman dimension
can be interpreted as the largest rank that is attainable by a Freiman isomorphic
copy of A in a vector space; see Exercise 5.5.10.

Let (A, Z) be an additive set with a universal ambient group Z, and let d
be the Freiman dimension of A, and let Z be a universal ambient group for A.
Then by Definition 5.40 we may identify Z = Z¢ x Z x Tor(Z); by applying a
group isomorphism if necessary we may assume that the degree map deg : Z —
Z corresponds to the Z coordinate of this identification, thus deg(n, m, x) = m
foralln € Z4, m € Z, x € Tor(Z). Now let & : Z — Z¢ be the projection to the
first factor. We call the additive set [A] := (7 (A), Z%) a torsion-free universal
representation of A. It is easy to see that the torsion-free universal representation
[A] of an additive set A is unique up to affine group isomorphisms on Z¢ (i.e. up
to translations and elements of SL,(Z)). Also, since A generates Z, we see that
(A) must generate Z¢*!, which implies that Z¢ lies in the affine span of [A]. In
other words, rank([A]) = d.

Note that 7 induces a surjective Freiman homomorphism from A to [A]. If Z
has no torsion group then this is in fact a Freiman isomorphism, but in general
if A contains enough “torsion” then A and [A] will not be Freiman isomorphic;
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see Exercise 5.5.9. Nevertheless, [A] remains a universal embedding of A in the
category of embeddings into torsion-free groups. More precisely:

Proposition 5.41 Let A be an additive set with Freiman dimension d, and let
[A] € Z9 be a torsion-free universal representation of A. Let m : A — [A] be
the associated Freiman homomorphism, and let ¢ : A — (A’, Z') be any Frieman
homomorphism into a torsion-free additive group Z'. Then there exists a unique
vector v = (vi, ..., vg) € (Z') and a € Z' such that ¢(b) = a + 7 (b) - v for all
be A

Proof We may assume that A is embedded inside a universal ambient group
Z =R x R x Tor(Z), and that [A] = m(A) where 7w : Z — R is the projection
to the first factor. On the other hand, ¢ extends to a group homomorphism @y :
R? x R x Tor(Z) — Z'.Since Z’ is torsion-free, ¢y, must annihilate Tor(Z), and
thus ¢y must take the form @ey(n, m,x) =n-v+m-aforalln € R, m € R,
x € Tor(Z), where v € (Z')? and a € Z. Since A is a subset of R? x {1} x Z
and w(n, m, x) = 1, we thus have ¢(b) = ¢ex(b) = (D) - v+ aforallb € A, as
desired. O

From this and Freiman’s lemma we can obtain

Corollary 5.42 Let k > 2, and let A be an additive set in a torsion-free additive
group Z such that min(|A + A|, |A — A]) < (d + D|A| — 24D for some integer
K > 1. Then dim(A) < d.

Proof Let[A] = w(A) be atorsion-free universal representation of A. By Propo-
sition 5.41 we have a Freiman homomorphism from [A] back to A, and hence A
and [A] are Freiman isomorphic. Hence we may without loss of generality work
with [A] instead of A. But then the claim follows from Lemma 5.13 (or Exercise
5.2.1), since rank([A]) = d. O

Thus, in the torsion-free case at least, sets with small doubling necessarily have
small Freiman dimension. A slightly weaker statement is true when A is not a
torsion-free additive group:

Corollary 5.43 Letk > 2, and let A be an additive set. Then dim(A) < o[A]°W,

Proof LetK :=o0[A]landd :=dim(A).If K < % then d = 0 (Exercise 5.5.13).
Hence we may assume K > % and it will now suffice to show d = O(KO(I)).
Without loss of generality we may assume that A is embedded in a universal
ambient group Z. From Proposition 2.26 we see that A + A can be covered by
O(K %) translates of A. Applying the quotient map  : Z — Z/Tor(Z) = Z*',
we then see that w(A) + (A) can be covered by O(K °(") copies of m(A), and
thus |27 (A)] < K°M|z(A)|. But m(A) is Freiman isomorphic to a torsion-free



5.5 Universal ambient groups 237

universal representation [A] of A; thus [2[A]| < K9(V|[A]|. On the other hand,
since rank([A]) =d, we see from Lemma 5.13 that |2[A]| > (d + 1)|[A]| —
w. Since |[A]| > rank(A) 4+ 1 = d + 1 (for instance), we thus have |2[A]| >
%|[A]| (for instance). Combining this with the upper bound on |2[A]| we obtain
the result. O

For a refinement of the bounds in this corollary, see Exercise 6.5.18.

Exercises

5.5.1

552

553

554

For any additive sets A, B,letHom;(A — B)denote the space of Freiman
homomorphisms (of order k) from A to B. Since A is an additive set,
observe that Hom; (A — R/Z) is an additive group which can be viewed
as a compact subgroup of a torus. In particular it has a Pontryagin dual
7 = Homk(X: R/Z), defined as the space of all continuous group
homomorphisms from Hom(A — R/Z) to the circle group R/Z. For any
a € A, define the Gelfand transform a € Z' of a by the formula

a(y) := x(a) forall x € Homy(A — R/Z),

and let A’ := {a : a € A}. Show that (A’, Z’) is Freiman isomorphic to
(A, Z), and that Z’ is a universal ambient group for A.

Let A be an additive set. Show that Z41*! is a universal ambient group
for A if and only if A is a By set (see Definition 4.27), in which case
the additive set ({e; + eja+1: 1 < j < |Al}, Z"1*1) is an embedding
of A into Z"!!. Here of course ey, ..., e+ is the standard basis
for ZIAI+1,

Let A be an additive set, and let x : A — R/Z be a Freiman homomor-
phism. Let us say that y is infinitely divisible if for every integer n there
exists a Freiman homomorphism y /n : A — R/Z which, when multi-
plied by n, yields x. Show that x is infinitely divisible if and only if there
exists a Freiman homomorphism ¢ : A — R such that ¢ mod 1 = .
Conclude that the tangent space of the compact group Homy(A — R/Z)
at the origin is canonically identifiable with Hom;(A — R).

Let¢ : A — B be a Freiman homomorphism (resp. isomorphism). Show
that the map ¢’ : Homy(B — R/Z) — Homy(A — R/Z) defined by
#'(x) := x o ¢ is a group homomorphism (resp. isomorphism). Also,
if¢: A— Band ¢ : B— C are Freiman homomorphisms, show that
(¢ oY)t = ¢l o ¢'. Show that the adjoint functor ¢ +— ¢! is a bijection
between Freiman homomorphisms from A to B, and group homomor-
phisms from Homy (B — R/Z) to Homy(A — R/Z).
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5.5.5

5.5.6

5.5.7

558

559

5.5.10

5.5.11
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Let G be an additive set which is also an additive group (i.e. G + G =
G). Show that Hom; (G — R/Z) is canonically identifiable with G x
(R/Z), where G is the Pontryagin dual of G, i.e. the space of group
homomorphisms from G to R/Z. If A is an additive set contained in
G, give examples to show that Hom;(A — R/Z) can be much larger
or much smaller than Homy (G — R/Z), although Freiman duality will
convert the inclusion map from A to G to a group homomorphism from
Homy (G — R/Z) to Homy(A — R/Z).

Let k = 2. Show that the universal ambient group of A = ({1, 2, 3}, Z¢)
(or ({1, 2,3}, Z7), or ({1,2,3},Z)) is canonically identifiable with 72,
with A being identified with {(1, 1), (2, 1), (3, 1)}. Show on the other
hand that the universal ambient group of A = ({1, 2, 3}, Z3) is canoni-
cally identified with Z3 x Z, with A identified with {(1, 1), (2, 1), (3, 1)}.
Show that the universal ambient group of A = ({1,2,4,5},7Z) is
canonically identifiable with Z3, with A being identified with
{(0,0,1),(0,1,1), (1,0, 1), (1, 1, 1)}.

Let (A, Z) be an additive set embedded inside a universal ambient group
Z,let (B, W) be another additive set, let ¢ : A — B be a Freiman homo-
morphism, and let ' : Z — W be the group homomorphism extension.
Show that ¢ is a Freiman isomorphism if and only if the kernel ker(¢®*') :=
{x € Z: ¢ (x) = 0} of ¢=" is disjoint from (kA — kA)\{0}, or equiva-
lently if ¢**' is injective on kA.

Let (A, Z) be an additive set embedded inside a universal ambient group
Z, and let G be an additive group. Show that G contains a subset A’ that
is Freiman isomorphic to A if and only if G contains a subgroup H that
is group isomorphic to Z/ I for some subgroup I' of Z which is disjoint
from (kA — kA)\{0}.

Let (A, Z) be an additive set embedded inside a universal ambient group
Z. Show that A and [A] are Freiman isomorphic if and only if (kA —
kA) N Tor(Z) = {0}. Note from Proposition 5.41 that A can be embedded
into a torsion-free additive group if and only if A and [A] are Freiman
isomorphic.

Let A be an additive set in a torsion-free additive group Z. Show that
there exists a Freiman-isomorphic copy (A’, V') of (A, Z) inside a vector
space V' such that rank(A’) = dim(A). Furthermore, we have rank(A”) <
dim(A) for any other Freiman isomorphic copy (A”, V") of (A, Z) in a
vector space.

Let (A, Z) be the additive set ({1, 2, 4, 5}, Z). Show that dim(A) = 4 if
k = 1,thatdim(A) = 2ifk = 2, and dim(A) = 1 fork > 3. In particular,
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when k£ = 2, conclude that dim({1, 2, 4, 5}) > dim({1, 2, 3, 4, 5}), thus
demonstrating that Freiman dimension is not monotone.

Show that the Freiman dimension dim(A) = dimy(A) of an additive set
is a non-increasing function of k, thus dimy;(A) < dimg(A).

Let k > 2, and let A be an additive set such that o[A] < % Show that
dim(A) = 1. (Hint: embed A in a universal ambient group and apply
Corollary 5.6.)

Let (A, Z) and (A’, Z') be additive sets. Show that dim(A @ A’) =
dim(A) + dim(A").

Let ¢ : A — A’ be a surjective Freiman homomorphism. Show that
dim(A’) < dim(A).

Let A be an additive set, and let Z be a universal ambient group for
A. Show that Tor(Z) = {0} if and only if the group homomorphism
7 : Homy(A — R) - Homy(A — R/Z) defined by 7 (¢) := ¢ mod 1
is surjective, or in other words every Freiman homomorphism from A to
R/Z lifts up to a Freiman homomorphism from A to R.

Letk = 2 and consider the set A := {2e;, e; + e, 2e, €5 + €3, 2e3, e3 +
es, 2es, e4 + €1} in Z*, where ey, ey, e3, e4 is the standard basis; one can
view this as a generic skew quadrilateral together with the midpoints.
Show that (A, Z*) has Z* x (Z/2Z) as a universal ambient group. Thus
it is possible for the universal ambient group to contain some torsion
even when the additive set can be embedded in a torsion-free additive
group. Write down an embedding of A in the universal ambient group
77 x (Z/2Z), and compare it with a torsion-free representation [A] of A;
are they Freiman isomorphic to each other?

Generalize Theorem 5.11 to handle additive sets A in any torsion-free
additive group.

5.6 Freiman’s theorem in an arbitrary group

Now we use the universal group, combined with Fourier analysis and additive
geometry, to obtain Freiman’s theorem in an arbitrary additive group. This result
was first obtained by Green and Ruzsa [157]; the approach here is inspired by their
argument but is arranged somewhat differently, relying in particular on volume
bounds on polar bodies instead of the Ruzsa—Chang theorem (Theorem 5.30), and
working in the universal ambient group rather than by introducing a sequence of
successively smaller ambient groups to contain the additive set A.
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Observe that in some inverse sum set theorems (Corollary 5.6, Theorem 5.27)
a set with small doubling was contained inside a finite group (or a coset of such a
group), whereas in other inverse sum set theorems (Theorem 5.11, Theorem 5.32,
and to a lesser extent Corollary 5.19) a set with small doubling was contained
inside a progression. In general, it is convenient to place a set of small doubling
inside a coset progression P + H, which was defined in Definition 4.21.

Theorem 5.44 (Freiman’s theorem in an arbitrary group) [/57] Let K > 1,
and let (A, Z) be an additive set in an arbitrary group Z such that |A + A| <
K|A|. Then there a coset progression P + H of rank at most dim(A) such that
A C P+ Hand|P||H| < exp(O(K°Y)|A|. If Z is the universal ambient group
of A, then we can take H = Tor(Z).

One can make the constants in exp(O (K °1)) more explicit; see [157].

Proof Here we shall fix the order k of the Freiman homomorphisms under con-
sideration to be k = 2. Without loss of generality we may assume Z is the universal
ambient group; the general case then follows from Definition 5.37 (and the obser-
vation that the image of a group or progression under a group homomorphism is
still a group or progression). We write d := dim(A); from Corollary 5.43 we have
d = 0(K°W),

We know that Z is isomorphic to Z¢ x Z x Tor(Z); we shall abuse notation and
identify Z with Z¢ x Z x Tor(Z), in particular identifying Tor(Z) with {(0, 0)} x
Tor(Z). We can also arrange matters so that the Z component of Z is given by the
degree map, thus deg((n, m, x)) =m for all n € Z¢ meZ, x € Tor(Z), and A
lives entirely in Z¢ x {1} x Tor(Z). By using a group isomorphism to translate A
in the Z¢ x Tor(Z) direction if necessary, we may assume that (0, 1, 0) € A.

At present, Z is not a finite group and so we cannot directly apply the Fourier
analytic techniques from Chapter 4. Thus we shall truncate Z to a finite group (cf.
the use of Lemma 5.26 to prove Theorem 5.30); an alternative approach (which
we do not pursue here, due to some minor measure-theoretic and analytic issues
which arise) is to extend the theory of the Fourier transform and of Chapter 4 to
infinite additive groups. We choose an extremely large prime number p depend-
ing on A (much larger than any of the d + 1 coefficients of elements of A in
the Z4*! component of Z), and let 7, : Z — Z, be the canonical projection
from Z = Z¢ x Z x Tor(Z) to the finite additive group Z, := Z”pl x Tor(Z). If
p is sufficiently large, then 7, is a Freiman isomorphism from A to the addi-
tive set A, := 7 ,(A). We endow Z, with the symmetric non-degenerate bilinear
form

x§
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forallx, § € Z‘[j, and y, n € Tor(Z), where n - y is some symmetric non-degenerate
bilinear form on Tor(Z) (the exact choice of which will be irrelevant).
1

Let @ := 1 — {55zz- Now we establish some lower bounds on the spectrum

Spec, (A, — A,)of A, — A,, as defined in Definition 4.34. O
Lemma 5.45 We have |Spec, (A, — A,)| > exp(—O(KO(l)))|Zp|/|A,,|.

Proof We first control the size of sum sets nA for very large n. Since A, is
Freiman isomorphic to A, we have 6[A,] < K. By Proposition 2.26 we can thus
contain A, inside a translate of a K C_approximate group H of size |H| < K€|A ol
thus 2H C H + X for some X of cardinality O(K 9V). Iterating this we see that
nH C H+ (n — 1)X, and thus

In(A, — A, < [2nH|
< |H[|(2n — DX]
- K0<1>|A,,|<'X' +2n — z)
IX|
< K°D|A,|(1X] +2n —2)|X].

If we then set n := CK€ for a sufficiently large constant C, we can ensure that
1,
In(A, — A,) < Eaz A, — Ayl
We then apply Lemma 4.38 to obtain
1 2—-2n
|Speca(Ap - Ap)| PZ(Ap - Ap) = Ea

and the claim follows (recall [A, — A,| < K2|A,,| from Ruzsa’s triangle
inequality). O

Now we can use the theory of Freiman homomorphisms and the universal
ambient group to eliminate the role of the torsion group. Let IT: Z — Z¢ C R¢
be the canonical projection from Z = Z¢ x Z x Tor(Z) to Z¢*!, thus T1(A) is a
subset of Z¢*! and hence of RY*!.

Lemma 5.46 We have Spec, (A, — A,) C Z‘; x {0}. Furthermore, if &' € Z‘; is
such that (§',0) € Spec, (A, — A,), then there exists £e % .24 C RY with & =
&'/p (mod 1) such that | (x, §)| <  forall x € TI(A) — TI(A).

Proof From Ruzsa’s triangle inequality we have |[A, — A,| < K 2|A pl. From
Proposition 4.40 we thus see that A, — A, C Bohrz(Spec,(A, — A,), %). Thus
ifé € Spec, (A, — Ap),thenle(§ - x) — 1| < %forallx € A, — A,. Inparticular
we can find a phase e?*'? for some 6 € R such that |e(£ - x) — ¢*™%| < % for all
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x € A,. We can thus find a function y : A, — Rsuch thate(§ - x) = e(x(x)) and
0—1—10 <X(x)<9~|—% for all x € A, It is then easy to see that x : A, — R
is a Freiman homomorphism, and hence x o 7, : A — Ris a Freiman homomor-
phism. Since Z is a universal ambient group for A, we thus see that we can extend
X o 7, to a group homomorphism () o 7)ex : Z — R. Butsince Ris torsion-free,
this group homomorphism must annihilate the torsion group Tor(Z). In particu-
lar, the map ¢ : x > (X © 7 )exi(x) mod 1 is a group homomorphism from Z to
R/Z which annihilates Tor(Z). On the other hand, the map ¢ x> E- 7,(x) is
another group homomorphism from Z to R/Z which agrees with ¢ on A. Since
Z is a universal ambient group for A, this means that ¢ = ¢, and thus ¢ must
also annihilate Tor(Z). In other words we see that £ - x = 0 whenever x € Tor(Z),
which means that & € Zf, x {0}, and the first claim follows.

Now let&’ € Z‘I{ be such that (¢, 0) € Spec, (A, — Ap). Then as before we can
find a Freiman homomorphism x : A, — R such that

(§',0)-x = x(x)mod 1 forallx € A, (5.17)
and a 6 € R such that
1 1
9—1—0<X(x)<9+1—0f0rallxeAp—Ap, (5.18)

and we have a group homomorphism (x o 7)ex : Z — R which extends x o
and annihilates Tor(Z). Since Z = Z% x Z x Tor(Z), we thus see that there exist
£ € R? and 5 € R such that

(x o Mext(n, m,x)=n-& +mnforalln e Z{meZ, xe Tor(Z).
Restricting this to elements of A (which lie in Z¢ x {1} x Tor(Z), we obtain
x((mmod p, x)) = x(w(n,1,x)) =n-&+ nwhenever (n, 1,x) € A. (5.19)
Applying (5.17) we obtain
n-&/p=n-&+n(mod 1) whenever (n, 1, x) € A.

Since (0, 1,0) € A, we conclude that n = 0 (mod 1). Since A generates all of
Z =7¢ x Z x Tor(Z), we infer that £ = &’/p (mod 1) as desired; in particular
e i - Z4. Next, we apply (5.18) to deduce that

1 - 1
Q—E<n-§+n<0+Ewhenever(n,l,x)eA

and thus

. 1
|(n—n')-&| < 3 whenever n, n’ € TI(A),
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and the claim follows (note that the dot product » - x and the inner product (n, x)
agree when n € Z% and x € RY). O

Since IT(A) — I1(A) is a subset of Z7, it is also a subset of R?. Let B be the
convex body generated by the open convex hull of TT(A) — I1(A); note that B
is open and non-empty because A generates Z, and hence I1(A) generates Z¢.
Introducing the polar body

B°:={xeR?:|x-y| <1forall y € B}
of B, we can rewrite the conclusion of Lemma 5.46 as
Fei.p
€ — - B°.
5
Combining this with Lemma 5.45, we thus see that

‘(% ) Bo> n <l -Z") _ exp(—=CK)|Z)| _ exp(—O(KV))p?[Tor(Z)|
p

- |Apl [Al
and thus

p—d

_wC
BN (l -Zd)‘ - exp(—CK©)|Tor(Z)|
p |Al

Now we take limits as p — o0. Since B° is open and bounded, the left-hand side
is just the Riemann sum for mes(B°), and thus

mes(B°) > exp (— O(K°"))[Tor(2)|/|Al.
Now we use the machinery from Chapter 3. Using the rather crude bound

KoM

mes(B)mes(B) < 0(1) = O(1) (5.20)

(see Exercise 5.6.1), we can convert this lower bound on B° to an upper bound
for B:

mes(B) < exp (0 (K°"))|A|/|Tor(Z)|.

Note that B NZ¢ contains TT1(A) — [1(A); since I1(A) generates Z¢, we thus
conclude that B N Z¢ linearly spans R?. From this and Lemma 3.26 we see that

|IBNZY| < exp(0(K°D))|A]/|Tor(Z)]

where we have used the earlier observation d = O (K °"") to absorb the 3¢d!/2¢
factor from that Lemma. Applying the discrete John theorem (Lemma 3.36) we
can thus place B inside a progression Q C Z¢ of rank at most d and volume

10| < exp (O(K°D))|Al/|Tor(Z)],
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again using the observation d = O(K "), this time to absorb the factors of
(d**)? that will appear. Since A was normalized to contain (0, 1, 0), we have
the inclusions IT(A) C T1(A) — [1(A) € BNZ? C Q, and hence A < I17'(Q).
But we may write [T-!(Q) = P + G where P is an isomorphic copy of Q, and
G := Tor(Z). Theorem 5.44 follows.

Remark 5.47 Itseems of interest to improve the exponential losses exp(O(K (1))
in the above argument. Many of these losses are really exponential in the Freiman
dimension d rather than in the doubling constant K, so one expects to gain some-
what when the Freiman dimension is small. However, the main step where the
exponential losses are largest lies in the proof of Lemma 5.45, where one is forced
to control extremely large sum sets of A, in order to obtain a lower bound on the
size of the spectrum. It may be that one will have to use a non-Fourier-analytic
approach in order to avoid this type of loss. On the other hand, the asymptotic
behavior of iterated sum sets is certainly relevant to the task of containing A inside
a convex body or arithmetic progression (see Exercise 5.6.4). However, it may well
be that this type of argument can at least be pushed to improve exp(O (K °1")) to
a factor like exp(O(K log®" K)) or perhaps even exp(O(K)).

We now comment briefly on the slightly different argument of Green and Ruzsa
[157] in establishing the above theorem. Instead of working in a universal ambient
group, which could be infinite, they proceed by first using a Freiman isomorphism
(of order at least 16, say) to embed A inside a very large finite group (similar
to the group Z, used in the analysis here), and then to use an estimate similar
to Lemmas 5.45 and 5.46 to reduce the size of this ambient group Z iteratively
until | Z| < exp(CK€)|A| (the point being that if |Z| > exp(CK€)|A|, then the
arguments of Lemmas 5.45 and 5.46 can be used to locate a narrow Bohr set that
contains A, which is then Freiman isomorphic to a subset of a smaller group than
Z. At this point one can apply an extension of Theorem 4.42 (for arbitrary finite
additive groups, not necessarily cyclic) to show that 2A — 2 A contains the sum of
a large progression and a large group, at which point one can conclude a Ruzsa—
Chang type theorem for arbitrary groups, which then implies the above theorem
by an argument similar to how Theorem 5.30 implies Theorem 5.32. In particular,
they establish

Theorem 5.48 (Ruzsa—Chang theorem in arbitrary groups) [/57] Let A be
an additive set in an arbitrary additive group Z such that |A + A| < K|A| for
some K > 1. Then 2A — 2 A contains a set of the form P + G where P is a proper
symmetric progression of rank at most CK(1 + log K) and G is a finite subgroup
of Z such that |P + G| = |P||G| > e_CK(1+1°g2K)|A|.
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Exercises

5.6.1

5.6.2

5.6.3

5.64

Let B be a symmetric convex body, and consider the Euclidean Fourier
transform

15(8) := fR p(0e(—§ - x) dé.

Show that this Fourier transform is large on a large subset of the polar body
B°, and use this and the Plancherel theorem on R¥ to establish (5.20).
(A much sharper inequality than (5.6.1) is available, namely Santalo’s
inequality [306], but we will not need this inequality here.)

[157] Let A be an additive set with |A + A| < K|A|. Show that there
exists a finite group Z of order |Z| < exp(O (K °V))|A| such that A is
Freiman isomorphic of order 2 (say) to a subset of Z. (Hint: combine the
analysis of this section with Exercise 5.5.8.)

[154] Suppose p is a prime number, and A is an additive set in Z,
such that |[A + A| < K|A| for some K > 1. Suppose also that |A| <
exp(—O(K M) p for some sufficiently large absolute constant C > 1.
Show that A is Freiman isomorphic of order 2 to a subset of the integers
Z. This is known as the Freiman rectification principle; see [29], [154]
for further discussion.

Let A be an additive set in Z¢ which generates 74, and let B be the convex
hull of A. Show that [nA]| = (1 + 0, (1))n%mes(B) as n — oo. (See
[261] for more precise results of this type.)
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Graph-theoretic methods

Additive combinatorics is a subfield of combinatorics, and so it is no surprise that
graph theory plays an important role in this theory. Graph theory has already made
an implicit appearance in previous chapters, most notably in the proof of the Balog—
Szemerédi—-Gowers theorem (Theorem 2.29). However there are several further
ways in which graph theoretical tools can be utilized in additive combinatorics. We
will only discuss a representative sample of these applications here. First we discuss
Turdn’s theorem, which shows that sparse graphs contain large independent sets,
and which is useful for constructing sum-free sets. Next we give a very brief tour
of Ramsey theory, which allows one to find monochromatic structures in colored
graphs (or other colored objects), in particular allowing one to find monochromatic
progressions in any coloring of the integers (van der Waerden’s theorem). Then
we use some results about connectivity of dense graphs to establish the Balog—
Szemerédi—Gowers theorem, which relates partial sum sets to complete sum sets
and which has already been exploited in Chapter 2. Finally, we use the theory of
commutative directed graphs to establish the Pliinnecke inequalities, which are
perhaps the sharpest inequalities known for sum sets and which strengthen several
of the results already established in Chapter 2.

In Chapter 10 and Chapter 11 we shall discuss one final graph-theoretical tool,
the Szemerédi regularity lemma, which has had many applications in several areas
of discrete mathematics, but which in additive combinatorics has had an especially
crucial role in the study of arithmetic progressions in dense sets.

Graph-theoretic tools are especially useful when combined with the probabilis-
tic method, which we already saw in Chapter 1, and indeed many of our arguments
here will be probabilistic in nature.

246
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6.1 Basic Notions

A graph G = G(V, E) consists of a finite set V of vertices (points, nodes) and
a finite set E of edges, where each edge is an unordered pair {a, b} of distinct
vertices (thus we do not allow loops).

If {a, b} € E, we say that the two vertices a and b are adjacent or neighbors.
The collection of all the neighbors of a shall be denoted N(a). The cardinality of
N(a) is called the degree of a and is denoted deg(a).

Consider a subset V' of V. We refer to the graph G’ = G'(V’, E’) where E’ :=
{e € E : e C V'} as the induced subgraph of G which is spanned by V’'. A set
V’ C V is independent if it spans an empty graph, i.e., there is no edge with both
endpoints in V'.

We say that the vertices ay, . . . , a; form a path of length k if {a;, a; 1} is an edge
forall 0 <i <k — 1. If a; = ap, we refer to the path as a cycle. Three vertices
a, b, c form a triangle if they form a cycle of length 3, i.e. {a, b}, {b, c} and {c, a}
are edges.

A graph is bipartite if one can partition its vertex set into two disjoint sets A and
B so that every edge has one end point in A and another in B; A and B are called
the color classes of G. Bipartite graphs play an important role in what follows
and when dealing with them, we prefer to use the notation G(A, B, E) instead
of G(V, E). Note that in a bipartite graph G = G(A, B, E), two vertices in the
same color class can only be connected by paths of even length, while vertices in
opposite color classes can only be connected by paths of odd length. In particular
all cycles must be of even length.

Exercises

6.1.1  Provethata graph G is bipartite if and only if all cycles are of even length.

6.1.2  Let A be a symmetruc additive set (so A = —A) in a finite additive group
Z. The Cayley graph of A is defined to be the graph with vertex set Z,
and two vertices x, y connected by an edge if and only if x — y € A.
Show that deg(v) = |A| for all v € Z, and that two points v, w € Z are
connected by a path of length n if and only if v — w € n(A). Show that
G is connected if and only if A spans Z.

6.1.3  (Popularity principle for bipartite graphs) Let G(V;, V,, E) be a bipar-
tite graph with V, non-empty. Show that there exists a bipartite sub-
graph G'(Vy, V;, E’) of G(Vy, Vo, E) with |E’| > |E|/2 and deg; (v2) >
|E|/2| V| for all v, € V.

6.1.4  (Cauchy-Schwarz for bipartite graphs) Let G(Vy, V,, E) be a bipartite
graph with V|, V, non-empty. Show that G contains at least |E|*/|V;|
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paths of length two with both endpoints in V}, including degenerate paths.
Show, G also contains at least |E|*/|V;||V»| cycles of length four.

6.1.5 [198] Let G(Vy, V,, E) be abipartite graph with V, V, non-empty. Show,
for any k > 1, that G contains at least | E|?/|V;|¥~!| V5 |* paths of length
2k with both endpoints in V}, including degenerate paths, and also that G
contains at least | E|**+1/|V;|¥|V,|* paths of length 2k + 1 from V to V5.
(Hint: using the popularity principle, one can obtain lower bounds like
this but losing an absolute constant depending on k. Then use the tensor
power trick (as in Corollary 2.19) to remove this constant.)

6.1.6 Let G = G(V, E) be a graph. Using the first moment method, show that
G contains a bipartite subgraph G'(A, B, E’) with |E’| > %|E|. Give an
example to show that the number % cannot be replaced by any larger
constant.

6.2 Independent sets, sum-free subsets, and Sidon sets

Intuitively one expects graphs with small degrees to have large independent sets.
The following theorem, due to Turan, quantifies this intuition.

Theorem 6.1 (Turan’s theorem) Let G = G(V, E) be a graph on n vertices.
Then G contains an independent set of size at least ), m. In particular, if
G has maximal degree d, then G has an independent set of size at leastn/(d + 1).

Proof We shall use the probablistic method, or more precisely the first moment
method. Let w : V — [1, n] be a bijection chosen uniformly at random. Let us
call a vertex v € V good if it is larger than all its neighbors, in the sense that
m(w) < w(v) whenever w € N(v), and let S be the set of all good vertices. It is
clear that S is an independent set. Also, forany v € V, the probability that v is good

can be easily verified to be W:))H' Thus by linearity of expectation (1.4) we have

1
E(Sh=) Poes=)
veV veV deg(v) +1
andso |S| > " _y deg(ﬁ with positive probability. The claim follows. O

6.2.1 Sum-free subsets

In 1965, Erd6s and Moser [86] (see also [166], Problem C14) posed the following
question. If B C A are two additive sets, let us say that B is sum-free with respect
to A if no element of A can be represented as the sum of two distinct elements of
B. Given any additive set A, let ¢(A) be the cardinality of the largest subset of A
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which is sum-free with respect to A. Let ¢»(n) be the smallest value of ¢(A) among
all sets A of size n; thus ¢(n) is the largest number such that every set A of n reals
contains a subset of cardinality ¢(n) which is sum-free with respect to A.

Note that it is important that we require the elements of B be distinct in order
for this problem to be interesting. To see this, consider the set A := 2"[1,n] =
{2, 22 ..., 2"}. Clearly, if B is any subset of A of two or more elements, then there
exists an element of A which is the sum of two (equal) elements in B.

It was remarked by Klarner (unpublished) and mentioned by Erdds in [86] that
¢(n) = Qogn) for large n. The first published proof of this bound appeared in
Choi’s paper [55] about ten years later:

Theorem 6.2 Let n be a large integer. Any set A of n real numbers contains a
subset B of cardinality logn — O(1) which is sum-free with respect to A. In other
words, ¢(n) > logn — O(1).

Proof Let us first prove the claim for sets A of positive reals. Let us order the
elements of A asa; > a; > --- > a, > 0. Consider the graph G with vertices A,
with two distinct elements a, b € A connected by an edge ifand only ifa + b € A.
By Theorem 6.1, this graph contains an independent vertex set B of size
|B| > Xn: ;
- deg(a;) + 1

i=1
Since B is independent in G, we see that B is sum-free with respect to A. Also,
since a; +a; > a;, and there are only n — i elements of A larger than a;, we
see that deg(a;) <n —i for all i. Since ) :_, ﬁ = logn — O(1), the claim
follows.

To prove the general case, observe from the pigeonhole principle that any set of
n reals either contains a subsetof n/2 — O(1) positiverealsorn/2 — O(1) negative
reals, and the claim then follows (for large n) from the preceding paragraph. O

Let us now discuss the upper bound. Thus, we are interested in constructing sets
A which do not contain large sum-free subsets. Erd6s and Moser [86] proved that
¢(n) < n/3 and suggested that it probably has order o(n). The first improvement
over the Erd6s and Moser result was due to Selfridge, who showed ¢(n) < n/4.
Choi [55], using sieve methods, proved that ¢(n) < O (n*>*¢) for all € > 0. He
also noted that in this problem it suffices to consider the special case when A is a
set of positive integers. Choi’s result was slightly improved by Baltz, Schoen and
Srivastav [17], who showed that ¢(n) < O(n%°log*> n). A significant improve-
ment of the upper bound was very recently obtained by Ruzsa [297] who proved
that

¢(n) — 60(@).
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In the following we describe Ruzsa’s construction, which, besides being very
clever, is short and instructive. A key trick is to use a Freiman isomorphism to
embed the problem in a very large-dimensional space (see also Exercise 10.1.4).

We shall need a dimension d = ©(y/logn). Using a Freiman isomorphism
(see Lemma 5.25) it is enough to construct a set A C Z¢ such that |A| > n and
P(A) < W2 Forany r > 0, let D, C Z9 be the set of integral lattice points
in the ball of radius r centered at the origin, thus

d
Dyi={(x1,....x)) € 2| Y x} <r?}.

i=1

We then set
r—1 )
A= Uz’ .D,_;
i=0

where r = ¢?W1°e" For an appropriate choice of d and r one can make |A| > n
and we claim that

H(A) < 261 F = 60(@)

Indeed, let S C A have cardinality greater than 2¢r. Then by the pigeonhole
principle there exists 0 < i < r such that |[SN (2 - D,_;)| > 2¢. Since |D;| =
2d +1 <24, we see that i <r — 1. By the pigeonhole principle again, we
can then find two vectors s',s” € SN (2" - D,_;) which are congruent modulo
2.7 (i.e. they have the same parity in each coordinate). Then one easily ver-
ifies that s’ +s” € 2'*!. D,_;_; C A, and so S is not sum-free with respect
to A.

Remark 6.3 We return to the lower bound. In the same paper which established
the upper bound, Ruzsa [297] improved Choi’s result slightly by showing ¢(n) >
2log; n — 1. Given the fact that Ruzsa’s upper bound is sub-polynomial, one may
suspect that ¢(n) = ©(logn), i.e., the right order of magnitude of ¢(n) is logn.
It is, however, not the case. In a recent paper, Sudakov, Szemerédi and Vu [340]
proved that ¢(n) is super-logarithmic: thus in Landau notation

¢(n) = w(n)logn.

While this result improves Choi’s result only slightly, its proof requires
heavy machinery that involves the Balog—Szemerédi—Gowers theorem, Freiman’s
theorem, and Szemerédi’s theorem. In this paper [340], the authors also
proved a hypergraph version of the Balog—Szemerédi—-Gowers theorem (see
Section 6.4).
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6.2.2 Turan’s theorem and triangle-free graphs

Let G be a graph of n vertices and maximum degree d. The lower bound of
n/(d + 1) for the size of an independent set that is given by Theorem 6.1 cannot
be improved for general graphs G. Thus it was a stunning discovery when Ajtai,
Komlés and Szemerédi [2] discovered that one can improve this bound by a factor
Q(log d), provided that the graph is triangle-free (i.e. it contains no cycles of length
three):

Theorem 6.4 [2] Let G = G(V, E) be a triangle-free graph on n vertices with
maximum degree d > 1. Then G contains an independent set of size Q(5 logd).

Proof The original proof of Ajtai, Komlés and Szemerédi is one of the most
important proofs in probabilistic combinatorics, as it inspired the development
of the so-called semi-random method, which is one of the key achievements in
discrete mathematics in the last twenty five years (see for example the introduction
of [204]). That proof, however, is complicated and we choose to present a simpler
one, found later by Shearer [316]. Shearer’s proof also gives the specific lower
bound %.

Let X be the set of all independent sets in G; X is clearly non-empty. Let I be
an element of X chosen uniforml}lf atdrandom; thus 7 is an independent set of G.

nlog,

It suffices to show that E(|1]) > —=.

For each vertex v € V define a random variable
Yy :=d[INn{v}+ |N@w)NI|,

where we recall N(v) is the set of neighbors of v. Since [ is independent, we see
that Y, =d whenv € I,and Y, = |{w € I : {v, w} € E}| otherwise. Since each
vertex w in I can be in the neighborhoods of at most d other vertices, a simple
counting argument then yields that

> v, <241
veV

Taking expectations of both sides and using linearity of expectation, we conclude
that

1
E(I) > - > E(Y).

veV

Thus to prove the desired lower bound on E(|/]), it will suffice to show that

1 d
E(Y,) > %

forallv e V.
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Fix v € V, and consider the induced subgraph G’(V’, E’) spanned by V' =
VA{N(v) U {v}}. The set I N V' is an independent set in V'. To prove the lower
bound on E(Y,) it will suffice to establish the conditional expectation bound

B0V =12 224
for all independent sets I’ in V.

Fix this independent set I’. Let J C N(v) be the set of vertices in V that are
adjacent to v but not adjacent to any vertex in I’. Now we make a critical use
of the triangle-free hypothesis. Since G is triangle-free, J is an independent set.
Therefore, once I’ is fixed, we can construct I by either adding v or adding a
subset of J to I’. If |J| = m, then J has 2™ subsets and so there are exactly 2" + 1
choices for 1. If vis addedto I’, v € I so Y, = d. If a subset J’ of J is added to
I’, then Y,, equals the cardinality of J'. Since the average cardinality of J' is m /2,
and all choices of I are equally likely by construction, we obtain

d n m 2m
2m 41 22m 4]
A routine calculation shows that for any integers d > 16 and m > 1,
2’”(:— 1 + %2’”24- 1 = l0g42d’
concluding the proof. O

EY,INV =1)=

Remark 6.5 Ajtai et al. conjectured that the bound (7 log d) can be sharpened
to (1 + onﬁoo;d(l))g log d; this has been confirmed by Shearer [317].

6.2.3 Sidon sets

Recall that an additive set S is called a Sidon set (also known as Sidon sequence) if
the pairwise sums are all different (except for the trivial equalitiesa + b = b + a).
This notion was introduced by Sidon [319] in 1932, motivated by problems in
functional analysis.

It is well known, from the work of Erd6s & Turdn [100] and Singer [320] that
the maximum cardinality of a finite Sidon sequence of integers contained in [1, n]
is asymptotically /n; see Exercises 2.2.6 and 2.2.7. In [320] Singer showed that
for n = p?> + p + 1, where p is a prime, there is a Sidon set consisting of p + 1
integers between 1 and n. Because of this property, any two translates of this set
modulo p? + p + 1 intersect in exactly one residue class. Thus, the collection of
all p?> + p + 1 translates can be identified with the set of lines of a projective plane
PF, of order p.
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Estimates concerning infinite Sidon sequences are less satisfying. Erd6s &
Turdn and Stohr [339] proved that if S is a Sidon sequence, then

! ISNI[L, nl| 0
msup —————— = VUu.
,Hoop Jn

Using a greedy algorithm, it is easy to show that there is an infinite Sidon sequence
S such that |[S N [1, n]| = Q(n'/?) (see Exercise 6.2.5).

It is quite hard to improve upon this trivial bound. The first break-through was
due to Ajtai, Komlés and Szemerédi:

Theorem 6.6 [2] There is an infinite Sidon sequence S C Zt such that |S N
(1, n]| = Qn'?1og'? n) for all sufficiently large n.

The proof of this theorem used Theorem 6.4. In fact, this theorem was first
developed as a lemma for the proof of Theorem 6.6. Recently, Ruzsa [298] has
significantly improved the above result by constructing a Sidon sequence where
IS N1, n]| = n¥2"1+o0 = Qn414?), using a different method.

Remark 6.7 One can generalize the definition of Sidon sequences by considering
sequences where the sums of any two h-tuples are different. Such sequences are
called B, sets and have been studied by various authors. For instance, in [53, 192],
it was shown that if % is even, then a By, set consisting of integers contained in
[1, n] cannot have more than (h/2)1/h((h /2)!)2/hn1/h + O(n'/*") elements. These
papers also study B}, sets modulo a prime.

Remark 6.8 Let S be a subset of [1, n]. We say that S a maximal Sidon set (with
respectto [1, n]) if S is Sidon and is maximal with respect to inclusion (i.e., adding
any element from [#]\S to S would destroy the Sidon property). It is reasonable
to ask what is the minimum size of a maximal Sidon set. It is easy to prove that
any maximal Sidon set should have at least n'/3 elements. Ruzsa [299], using
Singer’s construction [320], showed that there is a maximal Sidon set with at most
cn'log'? n elements.

Exercises

6.2.1  Without using Theorem 6.1, give an elementary proof of the fact that a
graph G on n vertices with maximum degree d must contain an inde-
pendent set of size n/(d + 1). (Hint: use the greedy algorithm.) Give
examples that show that this n/(d + 1) bound cannot be improved.

6.2.2 Let G = G(V, E) be a graph. Show that G contains an independent set
of size at least 9(%).

6.2.3  Generalize Theorem 6.2 to the case to the case when A takes values
in an arbitrary torsion-free additive group. (The torsion-free condition
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is absolutely necessary, as can be seen by considering the case when
A =17y).

6.24 LetS C [1, n]beamaximal Sidonsetin[1, n]. Show that2S — § contains
[1, n], and conclude that |S| = Q(n'/?).

6.2.5 [339]Let S = {1,2,4,8, 13,21, 31, ...} be the Sidon set of positive inte-
gers constructed by the greedy algorithm (this set is sometimes known
as the Mian—Chowla sequence). Show that the kth element of S does not
exceed (k — 1) + 1, and hence |S N [1, n]| = Qn'/?) as n — .

6.2.6  (Minkowski’s bound for sphere packing) A sphere packing P in R" is
a collection of non-intersecting open spheres with equal radii, and its
density A(P) is the fraction of space covered by their interior. Define A,
to be the supremum of A(P) taken over all packings in R"”. Prove that
A, = Q(27"). (This is a special case of the Hlawka—Minkowski problem
of packing convex sets in R".)

6.2.7 [218] Let the notation be as in the previous exercise. Prove that A, =
Q(n27"). (Hint: Discretize the problem, convert the sphere packing prob-
lem to one of finding a large independent set, and apply Ajtai et al.’s
theorem.) Up to a constant this is the best bound known for sphere
packing.

6.2.8 Prove the following extension of Theorem 6.4. Let G = G(V, E) be a
triangle-free graph on n vertices with maximum degree d and/Z" triangles.

dI‘L]

Then G contains an independent set of size (5 log .77 7). (Hint:

Apply Theorem 6.4 to a properly defined random subgraph of G.)

6.3 Ramsey theory

We now briefly consider another application of graph theory, or more precisely
Ramsey theory, to additive combinatorics. This theory typically can produce results
of the following form: if an explicit set (such as [1, N]) is colored into finitely many
colors, then at least one of the color classes contains a specific arithmetic structure
(e.g. an arithmetic progression). The simplest example of this is the pigeonhole
principle: if we color an n-element set by fewer than n colors, then there exists
two elements with the same color. Indeed one can view Ramsey theory as the
study of generalizations and repeated applications of the pigeonhole principle.
We will focus on only two results in this field, namely Schur’s theorem and the
Hales—Jewett theorem (a generalization of van der Waerden’s theorem); for a more
thorough treatment of these topics, see [143].

We say that a graph G is complete if every pair of distinct vertices v, w € G is
connected by exactly one edge. A edge k-coloring of a graph G(V, E) is a partition
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of the edge set E into k classes Ey, ..., E;. We say that a subgraph G’ of G is
E j-monochromatic if all of its edges lie in E ;.

Theorem 6.9 (Ramsey’s theorem for two colors) [276] Let n,m > 1 be inte-
gers, and let G = (V, E) be a complete graph with at least ("er 2) vertices. Then
foranyedge 2-coloring E = Epe U Eeq, there either exists a blue-monochromatic
complete subgraph Gy With n vertices, or a red-monochromatic complete sub-
graph Geq with m vertices.

Example 6.10 Any two-coloring of a complete graph with six or more vertices
into red and blue edges will contain either a blue triangle or a red triangle.

Proof We shallinduce on the quantity n +m. Whenn +m =2(i.e.n =m = 1)
the claim is vacuously true. Now suppose thatn 4+ m > 2 and the claim has already
been proven for all smaller values of n +m. If n =1 then the claim is again
vacuoust (with R(1, m) = 1), and similarly when m = 1. Thus we shall assume
n,m=>2.

Let G = (V, E) be a complete graph with at least ("""
v € V be an arbitrary vertex. This vertex is adjacent to at least

n+m-—2 n+m-—3 n+m-—23
—1= + —1
n—1 n—2 n—1

many edges, each of which is either blue or red. Thus by the pigeonhole princi-

ple, either v is adjacent to at least (*")°) blue edges, or is adjacent to at least
(n+m 3

) vertices, and let

) red edges. Suppose first that we are in the former case. Then we can find

1
a complete subgraph G’ of G with at least (""" 3) edges such that every vertex

of G’ is connected to v by a blue edge. By the induction hypothesis (with (n, m)
replaced by (n — 1, m)), G’ either contains a blue-monochromatic complete sub-
graph Gy, with n — 1 vertices, or a red-monochromatic complete subgraph G/,
with m vertices. In the latter case we are already done by taking Geq := Greq, and
in the latter case we can find a blue-monochromatic complete subgraph Gyy,e of
G with n vertices by adjoining v to Gy, (and adding in all the edges connecting
v and Gy,,., which are all blue by construction). This disposes of the case when
v is adjacent to at least ("7"°) blue edges; the case when v is connected to at
least ("+m 3) red edges is proven similarly (now using the inductive hypothesis at
(n,m — 1) instead of (n — 1, m)). O

Remark 6.11 The bound (”:’f 1_2) is sharp for very small values of n and m, but
can be improved for larger values of n and m, although computing the precise
constants is very difficult (for instance, when n = m = 5 the best constant is only
known to be somewhere between 43 and 49 inclusive). On the other hand, lower

bounds are known (see Exercise 6.3.6).
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One can iterate this theorem to arbitrary number of colors:

Corollary 6.12 (Ramsey’s theorem for many colors) [276] Given any positive
integers ny, ..., n,, there exists a number R(ni,...,ny,;m) such that given
any complete graph G = (V, E) with at least R(ny, ..., ny,;m) vertices, and
any edge m-coloring E = E\U---UE,, there exists al < j <m and a E;-
monochromatic complete subgraph G ; of G with n; vertices.

Proof We induce on m. The case m = 1 is trivial, and the case m = 2 is just
Theorem 6.9. Now suppose inductively that m > 2 and the claim has already been
proven for all smaller values of m. We set

R(ny,...,np;m) = R(R(ny, ..., np_1;m — 1), ny;2).

Suppose we color the edges of K g,.... n,sm) into m color classes Ey, ..., E,. We
coarsen this edge m-coloring into an edge 2-coloring E; U ---U E,,_1, E,,. By
the induction hypothesis, we see that with respect to the coarsened coloring, either
G contains a E,,-monochromatic complete subgraph G,, with n,, elements, or

G contains a E; U - - - U E,,_;-monochromatic complete subgraph G, ,—; with
R(ny,...,n,_1;m — 1) elements. In the first case we are done; in the second case
we are done by applying the induction hypothesis once again, this time to the
complete graph G ,,—;. This complete the induction and than the proof. O

We now give an immediate application of Ramsey’s theorem to an arithmetic
setting.

Theorem 6.13 (Schur’s theorem) [315]Ifm, k are positive integers, there exists
a positive integer N = N(m, k) such that, given any partition of [1, N] into m
sets [1, N]|= A U---UA,, at least one of the A; contains a subset of the form
{x1, ..., Xk, x1 + -+ -+ x} Infactwe canchoose N .= R(k+1,...,k+ 1;m) —
1, using the notation of Corollary 6.12.

Remarks 6.14 Schur’s theorem (in the k = 2 case) is equivalent to the assertion
that the set [1, N] cannot be covered by m sum-free sets if N is sufficiently large
depending on m; in particular, the integers cannot be partitioned into any finite
number of sum-free sets. Even when k = 2, the value of N given by the above
arguments grows double-exponentially in m (Exercise 6.3.4); this is not best pos-
sible. For instance, it is known that given any 2-coloring of [1, N], there exist at
least ﬁN 2 27—2N monochromatic triples of the form (x, y, x 4+ y), and that this
bound is sharp [280], [313] (see also [142]).

Proof Let G = G(V, E) be the complete graph on the N 4 1 vertices V :=
[1, N + 1], and let us edge m-color this graph as E = E, U - -- U E,, where E; is
the set of those edges (a, b) for which |a — b| € A;. By Corollary 6.12, the graph G
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must contain a complete subgraph G’ of k 4 1 vertices which is E, monochromatic
for some r. If we list the vertices of G’ in order as vy < v; < --- < Vg, then the
quantities ¢(v; — v;) for i > j are all equal to each other. The claim then follows
by setting x; :=v; —v;_| € A,. O

We now give the Hales—Jewett theorem, which we state in an “arithmetic”
format. While not strictly a theorem about graphs, it is certainly close in spirit to
Ramsey’s theorem.

Theorem 6.15 (Hales—Jewett theorem) [/169] Letm > 1 andn > 1. Then there
exists an integer d = d(|A|, m) > 1 such that if [0, n — 119 ¢ Z9 is partitioned
into m non-empty sets [0, n — 119 = E{U---U E,, then at least one of the sets E
contains a proper arithmetic progression a + [0, n — 1] - v of length n, for some
ael0,n—11%andv € [0, 114

This theorem can be proven by a double induction. It is a special case of the fol-
lowing more technical proposition, in which one either locates a single monochro-
matic progression of length 7, or several linked monochromatic progressions of
length n — 1 (with each progression being monochromatic with a different color).

Proposition 6.16 Letm > 1, n > 1, and 1 < s < m. Then there exists an integer
d= J(n, m,s) > 1 such that if [0, n — l]d~ cZ%is partitioned into m non-empty
sets [0, n — 1]‘1~ =E U---UE,, then either at least one of the sets E; con-
tains a proper arithmetic progression a + [0, n — 1] - v, or there exists distinct
classes Ej,, ..., E; and a € [0,n — 1]“"~ and vy, ..., v € [0, l]“7 such that a +
[1,n—1]-v; CEj foralll <i <s.

Indeed, applying Proposition 6.16 with s := m one can conclude Theorem 6.15,
since if one has m distinct monochromatic progressions a + [1,n — 1] - v;, then
one of the progressions a + [0, n — 1] - v; must also be monochromatic by the
pigeonhole principle.

Proof of Proposition 6.16  To abbreviate notation, we shall use “arithmetic pro-
gression” in this proof to denote any proper arithmetic progressiona 4 [0, n — 1] - v
ora+[l,n—1]-vinalattice Z¢ where a € [0,n — 1]¢ and v € [0, 1]%.

We use two induction loops. For the outer loop, we induce on n. The claim
is trivial when n = 1, so we assume that n > 1 and the claim has already been
proven for n — 1 (and for arbitrary m, s). In particular, by the above discussion we
see that we may assume Theorem 6.15 forn — 1.

Now we begin our inner loop, inducing on s. When s = 1 the claim follows from
Theorem 6.15 for n — 1 (shifting [1, n — 1] to [0, n — 2]), so assume that2 < s <
m and the claim has already been proven for s — 1 (and the same value of n, but
with arbitrary m). We set d = J(n, m,s) :=dy + dp, where d| := J(n, m,s — 1)
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and dy :=dm — 1, m*n*®). Let [0,n — l]d~ =E U---UE, be a partition of
[0,n — l]d~ into m distinct color classes. Suppose that none of the E; contain
any arithmetic progressions of length n. Our task is then to show that there are
s distinct classes £, ..., E;,a € [0,n — I]J, and vy, ..., v € [0, 1]”7 such that
a+[l,n—1]-v; CEj foralll <i <s.

We write [0,n — 1]5 =[0,n—1]" x [0,n —1]%, and for each x e
[0,n — 1]% we consider the partition [0, n — 14 = E,,U---UE, ,, where
E;.:={y€l0, 1% : (y,x) e E;}. Since none of the E; contain an arithmetic
progression of length n, neither do the E;,. By definition of d; and the inner
induction hypothesis, we conclude that for each x there exist distinct color classes
Jlxs s Js—1.x>ax € [0,n — 11% and Vix,---» Vs—1.x € [0, 11% such that

ay+[l,n—1]-v, €Ej. 6.1)

for all 1 <i <s — 1. Note that a, itself must then belong to another color class
Js.x distinct from jj , ..., js—1 x, otherwise one of the classes E; , would contain
an arithmetic progression of length n. If we set v, , := 0 then we see that (6.1) now
holds for i = s also, although in that case the progression a, + [1,n — 1] - v; , is
not proper. This will however be rectified by means of the d, coordinates.
Themapx — (Jixs---» Js.x» Qx> Vi x» - -5 Us—1,x) 1S amap from [0, n — 11% to
a set of cardinality at most m*n*¥ . Thus it induces a partition [0, n — 1]? = F; U
-+ U F,pspa; into m*n®® color classes (some of which may be empty). By definition
of d, and the outer induction hypothesis (again shifting [1, n — 1] to [0, n — 2]), we
conclude that one of the color classes F; contains an arithmetic progression a, +
[1,n — 1] v, with a, € [0,n — 1]% and v € [0, 1]%. This means that there exist
distinct jl,(t)v ey j‘v’([) € [l, m], agy € [0, n— l]d], and V1,(t)s - - -5 Us,(r) € [O, 1]d]
(with vy ) = 0) such that a¢) +[1,n — 1] - vy € Ej, forall x ea, +[1,n —
1]-v. and 1 <i <s. But if we now set a := (a¢), a.) € [0,n — l]d~ and v; 1=
(i, (1)» v4) € [0, 1]‘i, we see that a +[1,n]-v; € Ej, forall 1 < j <, and that
each of the a + [1, n] - v; are proper arithmetic progressions of length n — 1. This
closes the induction loop, and the claim follows. O

This theorem has a number of consequences, the most notable being perhaps
van der Waerden’s theorem.

Theorem 6.17 (van der Waerden, [371]) Let k,m > 1 be integers. Then there
exists an integer N = N(k, m) > 1 such that given any proper arithmetic progres-
sion P of length at least N (in an arbitrary additive group Z), and any partition
P=E U---UE, of P into m color classes, at least one of these classes E;

contains a monochromatic proper arithmetic sub-progression P’ of P of length
|P'| = k.
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We leave the proof as an exercise. Let us, however, remark that if we fix k then
the bound on m which follow from Hales—Jewett’s theorem are very poor, being
of growing as fast as the infamous Ackermann function. One can use Gowers’
theorem [138] and the pigeonhole principle to deduce a much better bound.

Remark 6.18 In the case of k = 3, Solymosi observed (private communication)
that one can obtain a rather good bound (which is comparable to the bound one
gets from Roth’s theorem) by a simple argument which does not involve Fourier
analysis. For simplicity, let us assume that we color a group Z of cardinality N by
k colors. We now show that there is a monochromatic arithmetic progression of
length 3, assuming that k is sufficiently small compared with N. Let C; be the most
popular colorandletay, ..., a,,, be the elements colored by Cy.Clearlym; > n/k.
By the pigeonhole principle, there is an element x € Z such that there are at least
(";‘) /n pairs (a;, aj),i < j such that a; — a; = x. If there is no monochromatic
arithmetic progression of length 3, then b; = a; + x is not colored by C;. Thus
we end up with a set S; of at least

(n;l>/n > n/3k2 =n

elements which are not colored by C|. Now repeat the argument with the set S;;
we end up with a set S, of size at least (”2‘) /n > n/27k* = n, elements which are
not colored by either C; or C, (Exercise 6.3.8). Iterating this argument k times,
we end up with a set of n; = n/3* k%' elements which cannot be colored by any
color. This is a contradiction if n > 3% ~1k2".

Exercises

6.3.1  Using Schur’s theorem, show that if the positive integers Z™* are finitely
colored and k > 1 is arbitrary, then there exist infinitely many monochro-
matic sets in Z* of the form {x, ..., xx, x; + - - - + x¢}. (Hint: Schur’s
theorem can easily produce one such set; now color all the elements of
that set by new colors and repeat.) Conversely, show that if the previous
claim is true, then it implies Schur’s theorem.

6.3.2  Show that if the positive integers Z* are finitely colored then there
exist infinitely many distinct integers x and y such that {x, y, x 4+ y}
are monochromatic. (Hint: refine the coloring so that x and 2x always
have different colors.) A more challenging problem is to establish a simi-
lar result for general &, i.e. to find infinitely many distinct xy, . . ., x; such
that {x, ..., xx, X1 + - - - + x¢} is monochromatic.

6.3.3  Show that if the positive integers Z* are finitely colored and k > 1 is
arbitrary, then there exist infinitely many monochromatic sets of the form
{x1, ..., Xk, X1 ...x¢}. Thus Schur’s theorem can be adapted to products
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instead of sums. However, nothing is known about the situation when
one has both sums and products; for instance, it is not even known that
if one finitely colors the positive integers that one can find even a single
monochromatic set of the form {x + y, xy} for some positive integers
x, y (not both equal to 1).

Show that the quantity N(m, k) in Schur’s theorem can be taken to be
o).

Let k be an integer, and let A be an additive set in an ambient group Z such
that |A| > (Zkk:f), and let C be an arbitrary subset of Z. Show that there
exists a set B C A of cardinality | B| = k such that either B+ B C C or
B + B is disjoint from C.

[84] Show thatif n > 3 and N < 2/? then there exists a two-coloring of
the edges of the complete graph on N vertices which does not contain a
monochromatic complete subgraph of n vertices. (Hint: color the graph
randomly.)

Prove van der Waerden’s theorem. (Hint: set N = k¢ for a large d, and
identify P with [0, k — 1]¢. Then apply Theorem 6.15.)

Consider Remark 6.18. Show that if after the ith step we get an element y
which is colored by C; for some j <i,theny,y —(d; +---+d;),y —
2(d; + - - - +d;) are all of color C;, where d| is the “popular” difference
in step /.

Let Z be an arbitrary finite additive group, partitioned into m color classes
E;U---U E,. Show that for any k > 1 there exists a color class £ such
that

P,,ez(a,a+r,...,a+(k—Dr € E;) = Q ().

(Hint: apply Theorem 6.17 to a random progression in Z of a suitable
length N (k, m) and use the first moment method.) This is a weak form of
Varnavides’ version of Szemerédi’s theorem, see Theorem 11.1.

Let A be an additive set, and let P(n) be a statement pertaining to an
element n € A. Let us say that the property P is k-choosable for some
k > 1 if, given every proper arithmetic progression of length k in A, at
least one element n of that progression obeys the property P(n). Show
that if the properties Pi(n), ..., P,(n) are k-choosable, then the joint
property Pi(n) A --- A Py(n)is O ,(1)-choosable. (This statement is in
fact equivalent to van der Waerden’s theorem, and plays a key role in the
original proof [345] of Szemerédi’s theorem.)

(Multi-dimensional Hales—-Jewett theorem) [169] Let n, m, r > 1. Show
that there exists an integer d = d(n, m, r) > 1 such that, given any par-
tition of [0, n — 1]¢ into m color classes Ej, . .., E,,, then at least one of
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the color classes contains a proper generalized arithmetic progression
a+[0,n =11 -(vy,...,v,), where a € [0,n —1]¢ and v;,..., v, €
[0, 1]¢. (Hint: apply Theorem 6.15 with n replaced by n’.)

6.3.12 (Gallai’s theorem) Let k > 1,d > 1, m > 1, and let vy, ..., v; be ele-
ments of Z%. Show that there exists an N = N(k,d, m, vy, ..., V)
such that for partition of the cube [1, N]¢ C Z¢ into m color classes
E, ..., E,, then at least one of the color classes contains a set of the
form {x + rvy,...,x + rv;} forsomex € Z¢ and some non-zero integer
r.

6.4 Proof of the Balog—Szemerédi—-Gowers theorem

Let A and B be two additive sets with common ambient group. Let G =
G(A, B, E) be a bipartite graph whose color classes are A and B and whose edge
setis E (an edge is a pair (a, b) where a € A and b € B). Recall that the partial

G
sum set A + B is defined as the collection of the sums @ + b wherea € A,b € B
and (a,b) € E.

Balog and Szemerédi [16] proved that if A and B are two sets of cardinality N

and |E| > n*/K and |A —?— B| < K'n for some K, K’, then one can find A’ C A
and B’ C B suchthat |A'|, |B’|, |A’ + B'| = Ok g/(n).

As stated, the above theorem is only useful if K and K’ are independent of n
(or extremely slowly growing in #). With a new proof, Gowers [138] has recently
strengthened this statement by showing that the implicit constants in the O g/()
notation can be taken to be polynomial in K and K’, and hence the theorem
remains effective even when K and K’ are as large as n® for some absolute constant
& > 0; we have already stated this result in Theorem 2.29. This has proven to be
immensely valuable in a number of applications in which polynomial-type bounds
are desired, for instance in Gowers’ proof of Szemerédi’s theorem (see in particular
Section 11.3). The polynomials in Gowers’ proof were implicit, but by following
his ideas, one can work out the explicit version given in Theorem 2.29. Our treat-
ment here is based on that in [340].

As it turns out, one can view the Balog—Szemerédi-Gowers theorem as a state-
ment about dense bipartite graphs. Clearly, if a bipartite graph G(A, B, E) has
many edges, then there will be many pairs of vertices a € A, b € B which are
connected by paths of length 1. One then expects there to be many pairs a, a’ € A
which are connected by paths of length two, and many pairs a € A, b € B which
are connected by paths of length three. Furthermore, this connectivity becomes
increasingly more “uniform” as the length of the path increases; compare with the
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results on arithmetic progressions in sum sets in Section 4.7. It is this uniformity
which is essential to the proof of the Balog—Szemerédi—Gowers theorem.

We begin by formalizing the above principle for paths of length two and length
three.

Lemma 6.19 (Paths of length two) Let G(A, B, E) be a bipartite graph with
|E| > |A||B|/K for some K > 1. Then, for any 0 < ¢ < 1, there exists a subset
A’ C A such that
/ |A]
Al = ——
V2K

and such that at least (1 — €) of the pairs of vertices a,a’ € A’ are connected by
at least 55| B| paths of length two in G.

Proof By decreasing K if necessary we may assume |E| = |A||B|/K. Observe
the combinatorial identities
IN® . IN@|  El 1
Pl T Bl T jAIBL T K
and
IND)> |N(a) N N(a")|
beB |A|2 a,a’ €A |B| .

Applying Cauchy—Schwarz we conclude that

IN@NN@) _ 1

Ea,a’eA |B| - F

Let Q be the set of all pairs (a, a’) such that |[N(a) N N(a')| <
words, (a,a’) € Q if a, a’ are not connected by at least 55>
Clearly we have

>z |Bl; in other
paths of length two.

IN@NN@) ¢
/
Foaealll@. @) € DT < 50

and hence

IN@NN@) _ 1

1
Eaa/ I | ) ! € Q -
: eA( ACRED )) i3] z 552

The left-hand side can be rearranged as

1 1 ,
Bren s > (I—EI((a,a)GQ))

a,a’eN(b)
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and hence by the pigeonhole principle there exists b € B such that
1 > ( Y ) e 9)) 1
— — —1((a,a >
AP, N € 2K%

In particular this implies that |N(b)| > '/;‘K and that |{a,a’ € N(b) : (a,d’) €
Q)}| < e|N(b)|*. The claim then follows by setting A" := N(b). O

‘We now obtain an analogous result for paths of length three.

Corollary 6.20 (Paths of length three) Let G(A, B, E) be a bipartite graph
with |E| > |A||B|/K for some K > 1. Then there exists A’ C A, B’ C B with
|A'| > AL and |B'| > 1Bl such that everya € A’ and b € B’ is connected by at

42K 4K’
least ‘2/?2”;' paths of length three.

Proof Before we apply Lemma 6.19 it is convenient to prepare the graph G a
little bit. Let A be the set of vertices in A that have degree at least |B|/2K, and
let G = G(A, B, E) be the induced subgraph. Since at most |A||B|/2K edges
are removed when passing from G to G, we see that G has at least |A||B|/2K
edges. Writing |A| = L|A| for some L > 1 and applying Lemma 6.19 to G (with
K replaced by 2K /L and ¢ := 16#,() we can find a subset A’ of A’ of size

s Al A
= V20K/L) 22K

ofthe pairsa, a’ € A’ are connected by atleast L?|B|/128K?

andsuchthatl — = 6 e
paths of length two.

Let us call a pair (a, a’) € A’ x A’ bad if they are not connected by at least Lg [lﬁl
paths of length two; thus there are at most — : 6 e |A |2 bad pairs. Let A’ be the set of
all @ € A’ such that at most —|A | pairs (a, a’) are bad. Then |[A"\A'| < ‘A‘ ,and
thus

|A"] = 1IA/I > 14

T2 T 42K
Having constructed A’, we turn now to B’. Since every element in A (and hence
in A’) has degree at least | B|/2K, we have

Y llaeA':(a,b) € B} =I{(a,b) € E : aGA}I>|A|u

beB

so if we let

:{beB:HaeA/:(a,b)eEmz 'A,|}

4K
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then we have

IBI A’ |A"|| B

A'||B'| > A (a,b)e E)| > |A B| =
|A'||B’| X:I{aE (a,b) € E)}| || 4Kll 1K

beB’
In particular we have |B’| > |B|/4K.
Finally, let a € A’ and b € B’ be arbitrary. By the construction of B’, then b
is adjacent to at least |A’|/4K elements a’ of A’. By construction of A’, at most
|A’| /8K of the pairs (a, a’) are bad. Thus there are at least |A'| /8K > |A|/163/2K
vertices a’ which are simultaneously adjacent to b, and are connected to a by at

least L;)ﬁ ‘ paths of length two. Thus a and b are connected by at least
|Al LB . 1AllB]
164/2K 128K3 — 212K4
paths of length three. O

We can now derive as a consequence the Balog—Szemerédi—-Gowers theorem,
Theorem 2.29.

Proofof Theorem2.29  First observe that we may ensure that A and B are disjoint,
by the artificial trick of replacing the ambient group Z with Z x Z, replacing A
with A x {0}, and B with B x {1}. Let us view the set G C A x B in the theorem
as a bipartite graph on A and B. Applying Corollary 6.20, we can find A’, B’
obeying (2.18), (2.19), and such that every paira € A’, b € B’ is connected by at
least |A||B|/2'2K* paths of length three:

|AllB|

(@, b) € Ax B :(ab) @ b)) (@ b) e Gl =z S

Exploiting the obvious identity
a+b=@+b)—(@+b)+@ +b)
and writing x :=a +b',y :=d' + b/, 7 := a’ + b, we conclude that

|AllB|

H{(x, y, Z)€A+B x—y+z=a+b} > SR

Since the total number of triples (x, y, z) is at most

G
A+ B < (K')'|AP2BI2,
we conclude that the total number of possible values for a 4+ b is at most

212K4(K")3|A|"?|B|"/?, and the claim follows. O

Note that in this proof it is not critical that the group is abelian. For a
multiplicative group, we can replace a +b = (a + b') — (@’ + b') + (a’ + b) by
ab = (ab')(a'b’)~'(a’b), and the rest of the proof is the same.
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To conclude this section, let us mention a generalization of Balog—Szemerédi—
Gowers result for hypergraphs. Let Ay, ..., A; be additive sets with common
ambient group (which we may take to be disjoint, by the trick used above) and let E
be some family of ordered k-tuples (ay, ..., a;) suchthata; € A;, 1 <i <k.The
sets Ay, ..., Ay together with E are known as a k-uniform k-partite hypergraph
which we shall call H; the set E is then known as the edge set of H (notice
that a bipartite graph is a special case when k = 2). We denote by P Hf.‘:l A; the
collection of the sums a; + - - - + a; where (ay, ..., a;) € E. For the case k = 2,
we are talking about bipartite graphs.

Theorem 6.21 [340] Let k > 1, and let n, K be positive numbers. If Ay, ..., A
are additive sets in a group Z of cardinality at most n, then H(A1, ..., Ax, E)isa
k-partite k-uniform hypergraph with at least n* /K edges and |@Hf:1 A; \ < Kn,
then one can find subsets A} C A; such that

o |All = Qn/K%D) forall 1 <i <k.
o |AL 4 4 Al = (K% Op),

The heart of the proof is the following claim.

Claim 6.22 Let Ay,...,A; and n,K be as in the theorem above. Set
X = @Hle A;. There are subsets A, C A;,i =1,...,k of cardinality at
least Qk(n/KOk(l)) and sets Y; C Z,1 < j <2k —2 of cardinality at most
O, (K %WOn), such that every element in A + -+ + A} can be written in the form
X+ 221“2 vj wherex € X, y; € Y;j in at least Q(n*2 /K %My ways.

j=1
It is easy to deduce Theorem 6.21 from this claim. For the sets A}, ..., A} as
in the claim, we have
XITTS 1]
’ / J=
A} + -+ Ay < Q-2 KO
= Qu(K*Dn)

as desired. The proof of Claim 6.22 is left as an exercise.

Exercises

6.4.1 Let G = G(A, B, E) be a bipartite graph such that |E| > |A||B|/K.
Show that there exists a subset A’ of A of cardinality |A’| > |A|/K such
that any two elements in A’ are connected by at least one path of length
2 in G. Show that |A|/K cannot be improved to |A|/K + 1, even when
A, B, and K are large.

642 [210] Let d be a large integer. Let V = {0, 119, be the d-dimensional dis-
crete cube, and let G = G(V, E) be the bipartite graph formed by joining
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6.4.3

6.4.4

6.4.5

6.4.6
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an edge between x, y € V if x and y differ in at most d/2 coordinates
(i.e. if the Hamming distance between x and y is at most d/2). Show
that |E| = (% + 045 00(1)| V]2, but if V' is any subset of V with size
|V’| > ¢|V| then there exist x, x’" in V' that are connected by fewer than
04—00(|V]) paths of length 2 in G. (Hint: use a volume-packing argument
to find two points x, x” in V' which are almost antipodal in the sense that
their Hamming distance is d — O(1).) Convert this example into a bipar-
tite example and show that one cannot expect to eliminate the (1 — €)
factor in Lemma 6.19 even if one lets ¢ be sufficiently small depending
on K.

(Benny Sudakov, private communication) Let G be a bipartite graph
G = G(A, B, E)with |A| = |B| = N and |E| = ©(N?) where N is suf-
ficiently large. Show that G contains a complete bipartite graph with
Q(log N) vertices in each color class. Show that the bound Q2(log N) is
best possible.

Let Z be the finite additive group Z = Zg for some integer d, and let
Z be the Pontryagin dual. Let G = G(Z, Z, E) be the bipartite graph
formed by connecting x € Z to x € Z whenever x(x) = 0. Show that
|E| = |Al|B]|/2. Using (4.2), show that one has |A||B| < |Z| whenever
A C Z, B C Z'is abipartite clique in G. Conversely, whenever N; and
N, are positive integers such that NN, = |Z|, show that there exists
a bipartite clique A € Z, B C Z' in G with |A| = N; and |B| = N,.
Compare this result with Exercise 6.4.3.

(Dyadic pigeonhole principle) Let G = G(A, B, E) be a bipartite graph
with |E| > |A||B|/K for some K > 1. Show that there exists some 1 <
K’ < K and some induced subgraph G’ = G(A’, B, E’) of G(A, B, E)
with

|E|/(C +ClogK) < |E'| < |E]; |A|/(C+ClogK) < |A'] < |A]

such that |B|/2K’ < deg.,(a) < |B|/K' foralla € A’.
(Simultaneous popularity principle) Let G = G(A, B, E) be a bipartite
graph with |E| > |A||B|/K for some K > 1. Show that there exists an
induced subgraph G’ = G(A’, B’, E') with the bounds

|A||B]

2K?
11

|A’||B'| = |E"| =
|A"| >

|B'| > —
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such that deg;, (a) > |B|/2K and deg, (b) > |A|/2K foralla € A’ and
b € B’. (Hint: choose A’, B’ to maximize the quantity \i?'(/é\;l\i LALEL2

6.4.7  Prove Claim 6.22. (Hint: use induction.)

6.4.8  Usingthe same hypotheses as Theorem 2.29, show that forany ¢ > 0 there
exists aset G’ € A’ x A’ such that |G'| > (1 — ¢)|A’|* and |A’ Al <
LA

6.4.9  Improve the 2'? factor in Theorem 2.29 to 2!° by exploiting the fact that
all of the paths of length three constructed in Corollary 6.20 pass through
A’, which is a slightly smaller set than A.

6.4.10 [38] Let A, B be additive sets in an ambient group Z, and let G C

A x B be such that |G| > |A||B|/K and |A j;— B| < K|A|'?|B|'/? for
some K > 1. Show that there exist subsets A’, B’ of A, B such that
|A| = QK C°D|A)), |B'| = QK ~°D|B|),d(A’, B') = O(1 + log K),
and |G N (A’ x B")| = QUK ~°D|A||B|). (Hint: the novelty here is that
we still wish the refinement A’ x B’ to capture a large portion of G.
This requires that one revisit the arguments in Lemma 6.19 and Corol-
lary 6.20 and perform some additional “popularity” refinements to ensure
that every time one reduces the size of A or B, one still keeps a significant
fraction of elements from G. One may also need to use Lemma 2.30 at
times to ensure that one also keeps a large number of “popular differ-
ences” between various refinements of A and B.) For an earlier result of
this type, see [223].

6.5 Pliinnecke’s theorem

One of the most useful tools for the study of sum sets is Pliinnecke’s theorem. In
order to state this theorem, we first need some notation.

Definition 6.23 (Magnification ratio) A directed bipartite graph is a triple
G(A, B, E), where A, B are finite sets (not necessarily disjoint) and E C A x B
is a collection of pairs (a, b) from A and B. We write G : A — B to emphasize
the directed nature of this graph, and also write a ¢ b to denote the statement
that (a,b) e E. If X C A, we use G(X) :={b € B :a+> bforsomea € X} to
denote the image of X, and then define the magnification ratio ||G|| of G to be the
quantity

IG(X)I
min .
xcax#p | X|

Gl =
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Equivalently, |G| is the smallest number such that |G(X)| > ||G|||X] for all sets
X C A.

IfG:A— Band H : B — C are two directed bipartite graphs, with A, B, C
disjoint, we define the composition H o G : A — C to be the directed graph
defined by setting a — g ¢ in H o G if and only if there exists b € B such
thata g b —p c.

One can also view a directed bipartite graph G : A — B as a multiply-valued
function from A to B, and the magnification ratio is then a measure of the multi-
plicity of this function.

Example 6.24 Let A, B be additive sets with common ambient group. Then we
can form the directed bipartite graph G4 g : A — A + B by settinga ¢, , a +
bifand only ifa € A and b € B. Observe that

. |IX+Bl |A+B
|G gl ;== min <
xcax#p | X]| |A|

Also, observe thatif A, B, C are additive sets with A, A + B, A + B + C disjoint,
then GA+B,C @) GA,B = GA,B+C~

For general directed bipartite graphs one has the inequality |H o G| <
IG|ll|H]|. However there is a deeper inequality available for certain families of
directed bipartite graphs known as Pliinnecke graphs. While this concept can be
given for abstract graphs, it is easiest to describe for graphs whose vertices lie in
an additive group (which is always the case for our applications).

Definition 6.25 (Pliinnecke graphs) Let Ay, A, A, be three additive sets in an
additive group Z. Two directed bipartite graphs G| : A9 > Ajand G, : A} — A,
are said to be commutative if, whenever a, b, c € Z are such that a ¢, a +
b g, a+ b+ cin Gy, then one also has a ¢, a + ¢ ¢, a + b + c. More
generally, if k > 2, and Ay, ..., A, are additive sets in Z, we define a Pliinnecke
graph of order k to be a k-tuple (G, ..., G) of bipartite graphs G; : A;_; — A;
such that each adjacent pair G;, G4 for 1 < j < k is commutative.

Here is a more informal way to describe commutativity: if two adjacent edges of
aparallelogramliein G| U G, then so do the other two edges of the parallelogram).

Example 6.26 Let A, B be additive sets. Then the k-tuple
(Ga,g:Gat+B,B, -+ Gark—1)B,B)
of directed bipartite graphs (as defined in Example 6.24) forms a Pliinnecke graph.

We are now ready to state Pliinnecke’s theorem.
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Theorem 6.27 (Pliinnecke’s theorem) [273] Let (G4, ..., Gi) be a Pliinnecke
graph of order k. Then the sequence of magnification ratios |G; o --- o G|/,
i =1,...,kisnon-increasing in i. In particular, we have

IGk oo Gill < 1G]
Applying this theorem to Example 6.26, we immediately obtain

Corollary 6.28 (Pliinnecke’s inequality) If A and B are two additive sets in an
ambient group Z and |A + B| < K|A|, then for any positive integer k there is a
subset X of A such that

|X + kB| < K¥|X].
In particular we have
kB| < K*|A].

This inequality has a number of applications to sum set estimates. For instance,
from this inequality and the Ruzsa triangle inequality we obtain

Corollary 6.29 (Pliinnecke—Ruzsa estimates) Suppose that A, B are two addi-
tive sets in an ambient group Z such that |A + B| < K|A|. Then we have
[nB —mB| < K"™™|A| foralln,m > 1.

In particular, this implies thatif |A & A| < K|A|,then|nA — nA| < K?"|A|for
all n > 1; thus sets which are approximately closed under addition or subtraction
are also approximately closed under repeated additions and subtractions.

6.5.1 Main ideas of the proof

To prove Pliinnecke’s theorem, it suffices to prove that
[Gko--oGiI'"* <[Gio- 0G| (6.2)

for all 1 <i < k, since the claim then follows by truncating k to equal i 4+ 1. In
fact, it will suffice to show a special “normalized” case of this inequality:

Proposition 6.30 (Normalized Pliinnecke inequality) Let (G1, ..., Gy) be a
Pliinnecke graph of order k such that ||Gyo---Gi|| = 1. Then we have
|Gio---oGi||=1foralll <i <k.

Our proof consists of two steps. In the first, we show that Proposition 6.30
implies the theorem. In the second step we prove this proposition.

The main tool for the first step is the so-called “tensor product” trick. We first
show that Proposition 6.30 implies an inequality somewhat weaker than what
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we want to prove. Applying this inequality to a high power of the graph under
consideration and taking limits will enable us to obtain the full version.

The second step is a pure graph-theoretical argument, whose main ingredient
is the classical theorem of Menger about the number of disjoint paths in a graph.
The reader may sense a connection here as the assumption |Gy o - - - o Gy ||'/¥ > 1
simply means that the number of vertices in A which can be reached from a subset
X of Ag by a directed path of length & is at least | X|.

6.5.2 The first step

IfG:A— BandG’: A" — B’arebipartite graphs, we define the direct sum G &
G':A® A" — B @ B’ by requiring (a, a’) =g (b, D) ifand only if a ¢ b
and a’ +> ¢ b’. It turns out that the notion of direct sum interacts well with those
of magnification ratio and composition.

Claim 6.31
IGe H| =IGIIH]I (6.3)
(Gro--0G)@®(Hyo---0oH)=(Gy® H)o---0(Gy® Hyp). (6.4)

The proofs are left as exercises.
To prove (6.2), it now suffices to prove the apparently weaker inequality

IGko-o0GiI'"* <0k (IGi o0 Gi|I') (6.5)

for some constant C; ; > 0 depending on i and k. For, if we could prove (6.5) for
all Pliinnecke graphs G, we could in particular apply it to higher powers G® for
any large M. Using the above claim, it follows that

IGko---0GiI"* < 0 (IIGi o+~ 0 Gy ||M7)

for all M > 1. Taking Mth roots and then letting M — oo we obtain (6.2).
We next deduce (6.5) from Proposition 6.30. First we deal with the case
[Gio---0G||"* < 1.Let N be the smallest positive integer such that

k
||Gko-~-oGI||“"zﬁ.

As |Gy o---0G||'/F < 1,then N > k > 2 and the definition of N implies that

IGeo oGk < X < 2
N—-—1" N
We introduce an auxiliary Pliinnecke graph (Hy, . .., H;) of order k, constructed
as follows. Let E := {ey, ..., ey} be the basis vectors of ZV, and set

(Hy,...,Hy) =(Goe, G, GaeEs - - -, Gi—1)E,E),
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where we use the notation of Example 6.24. In other words, we have u >y, u + ¢;
whenever u is the sum of i — 1 basis vectors and 1 < j < n. Itis easy to show that

the ith vertex set i E has cardinality (gvtlﬁ ,ll),' Since
N° N (N+i-1) ;
—_—,e, < — < s
ik il (N =Dl

we have that
l ; 1/i
-N < ||H;jo---0o H{||/" <N.
i

Consider the graph G’ = G @ H. Using the claim, we have

k N
G'|V* = G HEVE s 22—,
Gl G IH] Z N
which guarantees the assumption of Proposition 6.30 for G’. Applying this propo-
sition to G’, we obtain forevery 1 <i <k

IGio--- oG IV =|Gio--- 0G|V ||H;o---oH||" > 1.

Since ||H; o - -- o H{||'/! < N, it follows that
) 1 1
IGio--oGy|I'! > Nz ﬂ”Gko"‘OGI”l/k,

completing the proof.

To deal with the case when |G o - - - o G|/« > 1, wedefine N to be the largest
positive integer such that [|G o - - - o Gll1/x = N.Replacing the Pliinnecke graph
(Hy, ..., Hy) by its transpose (H}', ..., H{"), formed by reversing all the arrows,
one can easily verify that

1 )
SN < |Hf oo HfV < N7\,
4

The rest of the proof is similar.

6.5.3 The second step

The key ingredient of this step is a classical theorem due to Menger. Consider a
directed graph G and let A and B be two disjoint sets of vertices. We say that
a set C of vertices is a cut separating A and B if by removing C we destroy all
directed paths from A to B (a path is from A to B if it starts in A and ends in
B). Let I" be a collection of (mutually) vertex disjoint paths from A to B with
maximum cardinality N. It is trivial that any cut C has cardinality at least N, as C
should contain at least one vertex from each path in I". It turns out that this bound
is always sharp:
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Theorem 6.32 (Menger’s theorem) Let G, A, B, N be as above. Then there is
a cut C with cardinality N separating A and B.

For a proof of this classical theorem, see Section 6 of [238], or the exercises
below.

Now consider a Pliinnecke graph consisting of directed bipartite graphs G :
Ao —> Ay, ..., Gy Ay — Ag. By the trick of replacing the ambient group Z
with Z x Z, and A; with A; x {j}, we can ensure that the A; are disjoint. Now
let G be the union of all the graphs Gy, ..., Gy; thus G is a directed graph on
AgU---UA.Set A= Apand B = Ay andlet” = {yy, ..., yn} be a maximum
collection of vertex disjoint paths as above. By Theorem 6.32 we can find a vertex

cut C ={cy,...,cy} in G separating Ap from Ay such that ¢; € V(y;) for all
I<j=<N.
Since all the paths yy, ..., yy startin Ap and are vertex-disjoint, it is clear that

N < |Ap|. The core of the proof is the following lemma.
Lemma 6.33 Under the assumption of Proposition 6.30, we have N = |Ay|.

Assuming this lemma, the rest of the proof is straightforward. If N = |A¢|, then
every vertex v in Ay must be the initial vertex of exactly one path in I". Since these
paths are vertex-disjoint, we thus see that |G; o --- 0 G{(X)| > | X|forall X C Ay
and the claim follows.

In order to prove Lemma 6.33 we partition the cut C as C = CoU --- U Cy
where C; := C N A;. The heart of the matter is the following lemma.

Lemma 6.34 Forany 1 <i <k —1, C':=(C\C;) UC; isalsoacutinG sep-
arating Ay from Ay.

Applying Lemma 6.34 iteratively, we can conclude that there is a cut which
concentrates on Ay and Aj. The union Cy U Cy (where Cy C Ay, C, C Ay) is a
cut if and only if all paths starting from a point in X = Ap\Cy end in Cy. The
definition of the magnification ratio implies that

| X

[Gko---0Gil = —.
|Ci|

On the other hand, |Cy| + |Cx| = N and | X| = |Ag| — |Co|. Since
Gko---0oGill =1,

it follows that N > |Ay|, proving Lemma 6.33.

It remains to prove the critical Lemma 6.34. This proof is actually the only
place where one needs to utilize the commutativity property of the consecutive
pairs G;, G;+. Consider C; as in the lemma. We can assume that C; is not empty
(otherwise there is nothing to prove). Let C; = {cy, ..., ¢} forsome 1 <m < N.
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Fix a maximum collection of mutually disjoint paths. For each 1 < j <m, ¢;
is a vertex of exactly one path y; from this collection. Thus, there exist unique

; €Aiand c;r € A;41 such that the edges (¢; — ¢;) and (¢; — c;’) liein y;.
Let C* € A;4; denote the sets C:* := {c, ..., cE}. Since the paths y; are vertex-
disjoint, we have |C; | = |C;| = |C[+|. Also, Cl-i must be disjoint from C, since
each path y; in the collection contains exactly one cut point.

Suppose for contradiction that C’ was not a cut, i.e., there was a path y from
A to Ay which did not intersect C’. But since C is a cut, y must intersect C. This
forces y to intersect A;_; at a vertex v € A;_; which does not lie in either C;_
or C; . Furthermore, the intersection of y with C is a point in C;. Let us define
s1 to be the number of edges from C;” to C;, s, to be the number of edges from
C; U {v} to C; and s3 to be the number of edges from C; to C l+ . In order to obtain
a contradiction, we are going to prove the following three mutually inconsistent
inequalities

c

S <82, §2 =83, §3 =5].

The first (strict) inequality s; < s is trivial, as v does not belong to C;” and there is
an edge from v to C; along the path y. To prove s3 < s, we are going to construct
an injective map between the edges from C; to C;" and the edges from C;” U {v}
to C;. Take any edge ¢; — c;r, from C; to C;", for some 1 < j, j’ < m. Since G;
and G, are commutative and (ch —¢j) € G, (¢cjp — c;r,) € Gi41), we see that
(c; > ¢)eGiand (¢ — c;’,) € Giy1), where ¢’ :=¢j + c;r, — ¢;. Furthermore,
¢’ must lie in C;, otherwise we could find a path from A to A; avoiding the cut
C by using y; to travel to ¢, then passing through ¢’ to c;“,, and then using y;: to
travel to A;. Thus we obtain an edge (cj_ — ¢’) from C;” to C;. One can easily
verify that this map is injective.

The proof of the remaining inequality is similar. When dealing with an edge
from v, we, naturally, construct an avoiding path by using y up to v.

Exercises

6.5.1  Show that one can take the set X in Corollary 6.28 to be as large as
(1 —&)|A| for any & > 0, at the cost of replacing the factor K* with
(K /e)*. (Hint: apply Corollary 6.28 repeatedly, removing X from A at
each iteration.)

6.5.2  Prove Claim 6.31 and Claim 6.4.

6.5.3 By induction on the number of edges in a graph G(V, E), show that if
the minimal cut needed to disconnect A and B has size N, then there
exist N disjoint paths from A to B. (Hint: if there exists a minimal cut C
that spans at least one edge {x, y}, then remove this edge and construct
N disjoint paths from A to C and from C to B. If instead every minimal
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6.5.4

6.5.5

6.5.6

6.5.7

6.5.8

6.5.9

6.5.10

6.5.11

6.5.12

6 Graph-theoretic methods

cut is independent, take an edge {x, y} and contract it by identifying x
with y (and removing the resulting loop). Show that the resulting “quo-
tient graph” still has minimal cut N and apply the induction hypothesis.)
Deduce Menger’s theorem as a corollary.

Let A be an additive set. Show that the sequence of real numbers [nA|
is non-increasing in n, i.e. |[mA|"/™ > |nA|'/" foralln > m > 1.
[297] Let N be a large integer, and let A, B C 7> be the sets A :=
([1, N] x [1, N] x {0}) U ({(0, 0)} x [1, N]) and B := ([1, N] x {0} x
{0) U ({0} x [1, N] x {0}). Show that |A| = ®(N?), |B| = O(N), and
|A + B| = ©(N?)but |A +2B| = O(N?).

[297] Let A, B be additive sets in an ambient group Z. Show that
|A+2B| < 'm—ﬁzlz. (Hint: use Exercise 6.5.1 to estimate |A’ + 2B| for
alarge A’ C A, and use the crude bound |(A\A") +2B| < |A\A’||2B]|
and Corollary 6.29 to estimate the remainder. Use the tensor power trick
as in Corollary 2.19 to eliminate any constants you encounter.) Compare
this with Exercise 6.5.5.

Let 0 < § < 1. Show that there exists additive sets A, B in an ambient
group Z such that |A 4+ B| = ®(]A|) but such that for every subset A’
of A for which |A’| > (1 — §)|A|, we have |A’+ B + B| = Q(|A[/9).
(Hint: adapt the example in Exercise 6.5.5.)

Prove Corollary 6.29.

Suppose that A, B are additive sets with common ambient group such
that |A 4+ B| < K|A| and |2B| < K|B|. Show that |A +nB —mB| <
K?2maxnm+3) A| for all n,m > 0. (Hint: use Ruzsa’s covering lemma,
Lemma 2.14.) Compare this with Exercise 6.5.5.

[297] Let d be a large integer, let M be the nearest integer to (7/6)¢,
and in the ambient group ZY x Z let A := (Z4 x {0} U ({0, 1, 3}9 x
[1, M) and B := {0, 1, 3} x {0}.Showthat |A| = ©(7%), |B| = O(39),
|A + B| = ©(7%), but |A — B| = ©((49/6)™). Thus even if |A + B| is
comparable to |A|, |A — B| can be as large as |A|>71°¢6,

[297] Let d be a large integer, let B = {ey, ..., x4} be the standard basis
of Z??, and let A = dB. Show that |A + B| = O(|A|) but |A — B| =
O(]A|log|Al). More generally, show that |A" — B| = @(]A’|log |A|) for
any non-empty subset A’ of A. This shows that there is no analog of
Corollary 6.29 for n = —1 unless one is willing to lose a logarithmic
factor. On the other hand, see Exercise 6.5.12 below.

Let A, B be additive sets with common additive group such that
|A+ B| < K|Al,andlet N > 1. Show that there exists an additive set A’
in A with |A’| > J|A|and |A' — B| < (4K)*" /N A)HYN  Compare this
with Exercise 6.5.11. (Hint: first use Exercise 6.5.1 to locate a large set A’

1/n
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such that |A’ 4+ 2¥ B| < (4K)?"|A’|. Then use the pigeonhole principle to
find0 < j < N such that |2/ B| < (4K)*"|A|)!/V|2/ B|. Then control
|A" — B| by |A’ — 2/ B| and use Ruzsa’s triangle inequality.)

Let A, B be non-empty subsets of F,, such that pa < |A|, |B| < pl’5 for
some 0 < § < 1. Show that there exists an ¢ = ¢(§) > 0 depending only
on § such that either |A + B| > p®|A| or |B - B| > p®|B|. (You will of
course need the results from Section 2.8.)

Let Gy : Ag — A and G, : A| — A, be abstract directed graphs (not
necessarily living in an additive group). We say that G| and G, are
abstractly commutative if for every edge a; — ¢, a> and any collection
of edges a,‘ g, ai,...,al =g, ai, it is possible to find n forward
pathsfroma| g, b' ¢, as, ..., a} ¢, b" g, aa withb!, ... b"
all disjoint, and similarly if G, G, are replaced by their transposes G,
G7. Show that the commutative property implies the abstract commuta-
tive property, and furthermore the Pliinnecke inequalities still hold if the
commutative property is replaced with the abstract commutative property.
Thus while the Pliinnecke inequalities do require some additive structure
on the underlying graph (and in particular the commutativity of the under-
lying group), the amount of structure needed is fairly minimal.

Improve the upper bound in (2.11) to o[A] < €244 or equivalently
that |[A + A| < %. Note that this gives another proof of the inequality
|A + A| < |A — A]’? (Exercise 2.3.13).

Obtain improvements to Corollary 2.23 and Corollary 2.24. Obtain as
sharp a value of the constants as you can.

[Ben Green and Imre Ruzsa, private communication] Let 7w : Z — Z’ be
a group homomorphism, and let A be an additive set in Z. Show that
olr(A)] < o[A) (compare with Exercises 2.2.10 and 2.3.8). Hint: use
Pliinnecke’s theorem to find a subset X C A with |X + 24| < o[A]?|X]|
small. Let M be the largest multiplicity of = on X. Establish the bounds
| X +2A] > M|2n(A)| and M |7 (A)| > | X].

Use the preceding exercise to obtain sharper bounds in Corollary 5.43.
[162] Let A C R be an additive set containing the cube {0, 1}¢. Show
that |[A + A| > 29/?|A|. (Hint: from Exercise 3.4.8 we know that |B +
A+ {0, 1}"| > 2¢|B]| for all subsets B of A. Now use the Pliinnecke
inequality.) In the converse direction, show that there exist arbitrarily
large sets A containing {0, 1}¢ with doubling constant comparable to

3/2)7%.
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The Littlewood—Offord problem

Let vy, ..., vy be d elements of an additive group Z (which we refer to as the
steps). Consider the 2¢ sums €,v; + - - - + €4v; With €y, ..., €5 € {—1, 1}. In this
chapter we investigate the largest possible repetitions among these sums.

We are going to consider two, opposite, problems:

* The Littlewood—Offord problem, which is to determine, given suitable
non-degeneracy conditions on vy, ..., v; and Z (e.g. excluding the trivial case
when all of the steps are zero), what the largest possible repetition or
concentration can occur among these sums.

* The inverse Littlewood—Offord problem, which supposes as a hypothesis that
the vy, ..., vy have a large number of repeated sums, or sums concentrating in
a small set, and asks what one can then deduce as a consequence on the steps
VUi, ..., U4,

These two problems have a similar flavor to that of sum set estimates and
inverse sum set estimates respectively, and occur naturally in certain problems of
additive combinatorics, in particular in considering the set of subset sums F S(A) =
{> 4cpa: B C A}ofagivenset A, orin the determinant and singularity properties
of random matrices with entries +1. These problems has also arisen in several
other contexts, ranging from the zeroes of complex polynomials (which was the
original motivation of Littlewood and Offord [237]), to database security (see
[163]). Note that the problem of determining which elements are representable as
asum €;v; + - - - + €40, is essentially the notorious subset-sum problem, which
is known to be NP-complete in general. Furthermore, by thinking of the sum
Y '_, €v; as a random variable depending on the atom variables €;, we can view
the Littlewood—Offord problem as a special case of the problem of computing the
probability distribution of a random variable, which is a well-developed topic in
probability theory.

276
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In this chapter, we present two different approaches. The first is the combi-
natorial approach of Erd6s and later authors, which phrases the problem in the
theory of set systems (collections of subsets of a given set), thus allowing one to
apply the theory of extremal set systems. This approach is very elegant and gives
sharp results, but it is difficult to extend it to cases in which one has more com-
plicated constraints on the steps v;. The second, and rather different approach,
is the Fourier-analytic one introduced by Haldsz. The bounds obtained by this
approach are usually off by an absolute constant from the best possible results, but
the arguments are more flexible.

A general theme will be that strong concentration or repetition of the above
sums is closely related to strong additive structure among the steps vy, ..., v,. At
one extreme, if the group Z has no 2-torsion, then all the sums are distinct if and
only if the vy, ..., v, are dissociated (see Definition 4.32). At another extreme,
if the vy, ..., v, are contained inside an arithmetic progression of small rank and
volume, then one expects plenty of repetitions among the sums. The situation is
thus somewhat analogous to the theory of sum set estimates and inverse sum set
theorems studied in previous chapters, and indeed there will be strong similarities
in our treatment of the two (in particular, the parallel use of combinatorial and
Fourier-analytic methods).

7.1 The combinatorial approach

The fundamental concept in this approach is that of an anti-chain.

Definition 7.1 (Anti-chains) A collection A of sets is known as an anti-chain if
none of the sets is contained in any other; thus A Z B for any distinct A, B € A.

Anti-chains are sometimes also referred to as Sperner systems, especially in
older literature.

Lemma 7.2 (LYM inequality) [240], [246], [385] Let A be an anti-chain of
subsets of a finite set X. Then we have

> <!

AeA (I\i:) B
Proof We give a probabilistic proof of Bollobdas, using Katona’s method of ran-
dom maps. Let¢ : X — [1, | X|] be arandom bijection from X to [1, | X|], chosen
uniformly at random among all | X |! such bijections. A simple combinatorial argu-

ment shows that

1
P(p(A) = [1, |AlD) = 757
(\A|)
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for each A € A. On the other hand, since none of the A are contained in each
other, the events ¢(A) = [1, |A|] are disjoint. Thus, the sum of their probabilities
is bounded by 1, which implies the claim. O

From the obvious inequality (llﬁ ‘l) < (“ )‘()‘( )2 J) we immediately conclude

Corollary 7.3 (Sperner’s lemma) [332] Let A be an anti-chain of subsets of a

finite set X. Then |A| < (u)l()\(/‘zj)'

Note that the bound is clearly optimal, as can be seen by taking .4 to be the
anti-chain consisting of all subsets of X of cardinality ||X]|/2].
We can apply Sperner’s lemma to the Littlewood—Offord problem as follows.

Corollary 7.4 [82] Let vy, ..., v, be real numbers with |v;| > 1 for all i. Let
I ={x:x0—1<x <xo+ 1} be an open interval of length 2. Then the total
number of n-tuples (€1, ..., €,) € {—1, 1}" with ejv; + - - - + €,v,, € [ is at most
(\_n’;2j)'

Proof By reversing the signs of some of the v; if necessary, we may assume
that v; > 1 for all i. Now let A be the set of all subsets A of [1, n] such that
Doieali— 2 ¢a Vi € 1. One can easily verify that A is an anti-chain, and hence

by Sperner’s lemma | A| < (Ln?Z J). The claim follows. O

Now let us give a different proof of Sperner’s lemma. We need to complement
the notion of an anti-chain with that of a chain.

Definition 7.5 (Chains) A chainisasequenceofsets Ay, ..., A, suchthat A; C
Ajy forall 1 <i < m; we refer to m as the length of the chain. We say a chain is
connected if |A;11\A;] = 1 forall 1 <i < m. A connected chain in a finite set X
is said to be centered if |A|| + |A,u| = | X|, or equivalently if |A;| = M +i
for all 1 <i < m. Note that the length of a centered connected chain has to have

the opposite parity as | X]|.

Lemma 7.6 (Chain decomposition lemma) [206] Let X be a finite set, and let
2% = {A: A C X} be the power set of X. Then 2% can be partitioned into disjoint
non-empty centered connected chains.

Proof Weinduceon |X|. Thecases|X| = 0, 1 are trivial. Now suppose that | X| >
1 and the claim has already been proven for all smaller X. Write X = X’ U {xo}
where |X’| = |X| — 1. By hypothesis, 2X" can be partitioned into disjoint non-
empty centered connected chains in X’. For each such chain Ay, ..., A,,, observe
that the chains

Al .. Ay Ay U {xo)
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and
AU {xo}, ..., A1 U {xo}

are connected centered chains in 2%, and can be easily be seen to partition 2%,
Note that the chains of the second type may be empty, but they can of course be
omitted from the partition without difficulty. The claim follows. O

Every centered connected chain in X has to contain exactly one subset of
cardinality | X /2. Thus the total number of chains in Lemma 7.6 is exactly (LI )l()l(/lz J) .
More generally, we see the number of centered connected chains of length m given
by this lemma is exactly ((lx‘Jszz) - ((lX\Jr}rle)/Z) if m has the opposite parity
of | X|, and O otherwise.

Since an anti-chain can contain at most one element of every chain, we obtain
a new proof of Sperner’s lemma (compare also with Menger’s theorem, Theorem

6.31). In fact, the same argument gives the following generalization.

Proposition 7.7 [82] Let Ay, . .., Ay be k disjoint anti-chains of subsets of a finite
set X. Then

L5 X
Al 4+ Al < Y ( . )
i=—|k/2] L(|X|+1)/2J
We leave the proof of this proposition as an exercise. We can then extend
Corollary 7.4 without difficulty:

Corollary 7.8 (Erdds’s Littlewood—Offord inequality) [82] Let vy, ..., v, be
real numbers with |v;| > 1foralli. Let I = {x : xo — k < x < xo + k} be an open
interval of length 2k for some integer k > 1. Then the total number of n-tuples

. . k)2
(€1, ..., €) € {1, 1YV withejvy + -+ + €,u, € IzsatmostZiL:/_JLk/zJ (L(H';)/zj).

One can replace the real numbers R by higher-dimensional spaces, such as the
complex numbers C. To do this, we need a product form of Sperner’s lemma, as
follows.

Lemma 7.9 (Product Sperner lemma) [206] Let X and Y be finite sets, and let
A be a collection of pairs (A, B) of subsets of X, Y, which are a product anti-chain
in the sense that there are no distinct pairs (A, B), (A’, B") in Awith either A = A’
and B C B, or A C A" and B = B'. (To put it another way, for each fixed B, the
collection of A for which (A, B) € A forms an anti-chain, and vice versa.) Then

|A| < ( | X]+Y] )

LAX1+1Y'D/2)

We leave the proof of this lemma as an exercise. As a consequence we have the
complex version of Corollary 7.4.
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Corollary 7.10 [206] Let vy, ..., v, be complex numbers with |v;| > 1 for all i.
Let B = {z: |z — zo| < 1} be a ball of radius 1. Then the total number of n-tuples
(€1, ..., ) € {—1, 1Y withejv, + - -- + €,v, € B is at most (LJZJ)'

Proof By randomly rotating the complex plane we may assume that none of
the v; are purely real or purely imaginary. By reversing the signs of some of
the v; if necessary we may assume that Imv; > O for all i. Let X be the set
of all i with Rev; > 0, and Y be the set of all i with Rev; < 0; thus XU Y =
[1, n]. Now let A be the set of all pairs (A, B) of sets A C X, B C Y such that
D icaup Vi — 2igaup Vi € I. One can easily verify that A is a product anti-chain
in the sense of Lemma 7.9, and the claim follows. O

In fact one has the analogous claim in general dimension, by a more sophisti-
cated version of this argument; see [207].

This is only the tip of the iceberg concerning extremal combinatorics results of
this type; see for instance [32] for a much more detailed treatment of these topics.
Variants of this approach have also been successfully applied in cyclic groups;
see [163].

Exercises

7.1.1 (Set-pair estimate)[31] Let Ay, ..., Ay, By, ..., B, be finite sets such
that A; N B; = @ if and only if i = j. Show that

Ay =
T ()

= 1
=t U4

1

Note that this includes Lemma 7.3 as a special case (where B; := X\A;).

7.1.2  (Erd6s—Ko-Rado theorem) [94] Let A;,..., A,, be an anti-chain in
Zy such that any two A;, A; intersect (thus A; N A; # ¢ for all i, j),
and |A;| < k for all i and some k < N /2. Show that m < (IZ:]'), and
show that this bound is sharp. (Hint: first show that for any bijection
¢ :Zy — Zy, at most k of the sets ¢(A;) can be an interval of the
form [a + 1, a + |A;|] for some a € Zy; this elegant argument is due to
Katona [196].)

7.1.3  Prove Proposition 7.7. (Hint: for any chain of length m, observe that at
most min(m, k) elements of this chain can lie in A; U--- U A;. Now
count how many chains there are of a given length in Lemma 7.6.)

7.1.4  Prove Proposition 7.9. (Hint: if Ay, ..., A,, is a connected chain in X,
and By, ..., B, is a connected chain in Y, show that there are at most
min(m, n) pairs of the form (A;, B;) in A. Alternatively, decompose 2
into chains By, ..., B,, and for each such chain apply Proposition 7.7.)
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7.2 The Fourier-analytic approach

Now we present the Fourier-analytic approach of Haldsz. It is convenient to use
the language of probability theory. For any n-tuple v = (vy, ..., v,) of steps in an
additive group Z, we use the notation Xy to denote the random variable

Xy i =€v 4+ -+ €0,

where €y, ..., €, are independent random variables taking values in {—1, +1}
with probability 1/2 for each value. Clearly P(Xy = x) equals the number of
representations of x as €jv; + - - - + €,v, with €1, ...,¢, € {—1, 1}, divided by

2". Note that X, is invariant under permutations of the n-tuple v. We use vw
to denote the concatenation of v and w. The Littlewood—Offord problem then
asks to control the distribution of Xy for a given v, while the inverse Littlewood—
Offord problem asks for some structural information on v given some unexpected
distributional property of Xy.

It will be useful to consider the more general random variables X% for any
0 < u <1, defined as

Xy = e 4o+ el

where e%“ ), ..., e are independent random variables which take the values +1

and —1 with probability /2, and 0 with probability 1 — . Thus X is the
same as Xy when p = 1, and at the other extreme & = 0 becomes the constant
0. The intermediate cases correspond to “lazy random walks” with step sizes
vy, ..., U,. As € can be 0 with considerable probability, one expects X 5’* ) to be
more concentrated than Xy, and this will indeed be the case. In practice, the cases
u < 1/2 are more amenable to Fourier analysis than the © = 1 case due to a certain
“positivity” property which we shall come to shortly.

In this section we shall consider the discrete problem of understanding the
probabilities P(Xé“ ) = x) that a random variable Xf,“ ) concentrates at a single
point. In the next section we briefly discuss the analogous probability P(X W e 0)
for concentration in a cube.

Let us first make some technical reductions to the problem. Firstly, we can
reduce to the case when the ambient group Z is finite. This can be achieved
by applying a suitable Freiman isomorphism of order n to the steps vy, ..., v,
(see Exercise 5.3.3) while noting that this does not affect the distribution of X,.
Secondly, we can reduce further to the case that Z is odd. To see this, observe
from Corollary 3.8 that any finite additive group can be written as the product of
a 2-torsion group and a group of odd order. The behavior of the random variable
Xy, when projected down to the 2-torsion group is trivial (since +v; = —v; in this
group), so we may, without loss of generality, project onto the other factor. Note



282 7 The Littlewood—-Offord problem

that if the original elements vy, ..., v, lived in some torsion-free group such as
74, then by Lemma 5.25 we could now place the vectors in a cyclic group of odd
prime order. (In doing so we may temporarily obscure some of the “dimensional”
structure of the elements vy, ..., vz, SO In some cases it is convenient to revert
back to the original ambient group at certain stages of the argument.)

With these reductions we can now express the distribution of X, in terms of
the Fourier transform. As usual we fix a symmetric non-degenerate bilinear form
E-xonZ.

Lemma 7.11 (Fourier representation of X,) Let Z be a finite group of odd
order. If v = (vy ...vy) is an n-tuple of elements of Z, then for any 0 < pu <1
and x € Z we have

P(Xi“) = x) = E¢cz cos(2mé - x) H(l — 1+ pcos(2mé - vj)).
j=1

Proof Since the quantity ]_[;zl(l — w4 pcos(2mwé - v;)) is an even function of
&, we can write the right-hand side as

n

Eccze(—£ - x) [ [(1 — 1+ pcos@ré - v))).
j=1

()
j

Observing that 1 — p + prcos(2mwé - v;) = E(e(§ - €
dence of the e;" ), we can rewrite this as
EE¢cze(£ - (XU —x)).

But the claim now follows from Lemma 4.5. O

v;)) and using the indepen-

This lemma already highlights the special role of the case 0 < u < %, as in this

case I — u + pcos(2mé - v;) becomes non-negative. In the further case 0 < p <
L we have the elementary but very useful estimate

4
1=+ peos2ré - v;) =exp (— O(ull€ - vjlIj/z)) (7.1)
where we recall that || x| g,z denotes the distance to the nearest integer.

From Lemma 7.11 we can immediately establish a number of useful bounds on
how one distribution X 5" ) controls another.

Corollary 7.12 Letv = (vy, ..., v,), W= (wy, ..., wy) be tuples in an additive
group Z which is torsion-free or is finite of odd order. Let x € Z.

® (Domination) If 0 < u < ' < 1, and at least one of W' < 1/2 or p < u'/4
hold, then

P(XU) =x) < P(X!W =0) = Eeez [ [(1 =t + pcos2mé - v))).
j=1
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In particular, if u < 1/2, then XY concentrates more at the origin than
anywhere else.
® (Duplication) If 0 < u < 1/2, then

P(X = x) < P(x4/ =)

for all integers k > 1, where we use V* to denote the concatenation of k copies
of v.
® (Holder) If wy, . .., Wy are tuples in Z (possibly of different length) and
0<u<1/2 then
k
(X% _ l—[ X(u) —o)"t
VWW]...W .
Proof As discussed earlier we may take Z to be finite of odd order. In all cases
we rewrite the probabilities using Lemma 7.11. The Holder formula is clear, as is

the domination formula when u' < 1/2. In the case u < u'/4, one observes the
elementary inequality

3 1
| cos(mh)| < 7 + 7 cos(2m6)

and hence (by the triangle inequality)

11— ) + i cos()| < (1 - %) T % cos(270).
The claim then follows from the change of variables £ — 2& (which is invertible
when Z has odd order).
The duplication formula similarly follows from the elementary inequality

M H k
(1 — ) + p cos(270) < ( 1-T)+ cos(2719)> ,
which can be seen by taking logarithms and exploiting the concavity of log(1 — ¢)
in the region 0 < ¢ < 1. O

The above corollary allows one to show that the quantity P(X W =0)is fairly
stable when one tinkers with the tuple v (for instance, by adding or removing
duplicates) and the parameter j, at least when u < 1/2. As an application, let us
give a Fourier-analytic analog of Corollary 7.4.

Corollary 7.13 Letv = (v, ..., v,) be an n-tuple in a torsion-free group Z such
that at least k of the v; are non-zero. Then for all 0 < u < 1 and x € Z we have

P(X{" =x)=0 (\/%) .
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Proof Using the domination property we may take 1 < 1/2. Without loss of gen-
erality we may take vy, . .., v to be non-zero. Applying Corollary 7.12 repeatedly
we have

P(X{V =x) <

for some 1 < j < k. The latter quantity is a standard quantity in the theory of ran-
dom walks' and can be computed combinatorially using Stirling’s formula (1.52),
but we present here a Fourier-analytic approach. We can map v’]‘. via a Freiman
isomorphism to the identity 1 in a large cyclic group Zy, and use Lemma 7.11 to
conclude

k
P(ij’;/z) _ 0) =E:cz, (1 — % + %cos(ZnS/N))

and thus, on taking limits as N — oo,

1 k
P(X1? = ) = [ (1 g o cos(2n$)> dE.
Yj 0 2 2
Using (7.1), it suffices to bound fol exp(—@(kuzé))dé. It is easy to show that most
of the weight of this integral is in the interval (0, C// k) for some large constant
C. The claim follows. O

We remark that in the case u = 1, Corollary 7.4 gives the sharp bound

y 1
P(x{ =) < (“Z?) -o(%)

thanks to Stirling’s formula (1.52). This shows that the Fourier-analytic method
can give bounds which are sharp up to absolute constants.

If the steps vy, ..., v, are sufficiently “high-dimensional” one can do better
than this O(1/ \/lz) type bound; see Exercise 7.2.3.

Now let us give a deeper distributional inequality which relies in particular on
the Cauchy—Davenport inequality (Theorem 5.4).

Lemma 7.14 (Halasz relative concentration inequality) [195] Let Z be either
torsion-free or cyclic of odd prime order. Let v be a tuple in Z. Then for any

! Indeed, a useful heuristic is to think of X i’; ) as behaving (up to constants) similarly to the uniform

distribution on the progression [—+/uk, +/1tk] - v; note that this heuristic is supported by the
Chernoff inequality.
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0<p<w<1withu <1/4 we have

P(x)=x)<0 <\/5P(X‘(j‘) - o)> + O(P(XW = 0)°%/m)
forallx € Z.

Note that the domination inequality only gives P(XY") = x) < P(X?* = 0).
Thus Haldsz’s inequality becomes superior when pu is significantly smaller than
w/, in which case it asserts that X ) concentrates at the origin substantially more
often than X 5“’) does. For some further discussion and more quantitative versions
of this inequality, see [195], [364], [365].

Proof Using the domination inequality we may assume that &’ < 1/2 and x = 0.
We may also take u'/u to be large. By Corollary 5.25 we may take Z = Z,, for
some odd prime p. Introduce the functions F, G : Z — R by

F@) =[] = '+ cos@ns v G@) =] (1 -+ pcos@ns - v))):
j=1 j=1

J J

then by Lemma 7.11 our task is to show that

Ez,(F)= 0 <\/5EZP(G)) + O(EZP(G)Q(M’/M))_

Now let 0 < o < 1 be arbitrary. Observe from (7.1) that if § € Z,, is such that

F(&) > a, then
n 172 /log L
(Z I - vjn%w) =0
Jj=1

JiZ

By the triangle inequality, we thus conclude thatif &y, . . ., &, are arbitrary elements
of theset {§ € Z, : F(§) > a}, then

1
a

n ) 1/2 log
+- 4+ &) v; =0
;n(sl En)  VillR 2 m

If we take m to be Lc\/% ] for some small absolute constant ¢ > 0, another appli-
cation of (7.1) then gives

G+ +&n) > a
In other words we have established the sum set inclusion

m{§el, F&)>a}C{§ecZ,:GE)>al.
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Applying the Cauchy—Davenport inequality repeatedly, we have'
Pz,(m{§ € Z, : G(§) > a}) = max(mPz,({§ € Z, : F(§) > a}), D).

If « > Ez, (G), then Pz, ({§ € Z), : G(§) > a}) < 1 by Markov’s inequality,
and hence

1
Pz,{§€Z,: F()>a}) < %Pz,,({é €Z,:GE$)>a)).

Integrating this in «, we conclude

B2, (FICF 2 B, (G)) < - Bz, (G) = 0 (\/gEzp(m) .
On the other hand, from (7.1) we have the pointwise bound
F(§) < G®/M(g)
and hence
Ez, (FI(F < Ez,(G)) < Ez,(G)°U/1.
Adding this to the preceding inequality, we obtain the claim. O
A modification of the above argument gives a more direct bound on P(X W = X).

Lemma 7.15 (Halasz concentration inequality) [167] Let Z be a cyclic group
of prime odd order, and letv = (vy, . . ., v,) be a tuple in Z with all the v ; non-zero.
Then forany 0 < u < 1 and x € Z we have

P(XW =x) <0 (\/%ngz (; cos(€ - v;) > %)) + exp(—(un)).
(7.2)

Proof Using the domination property we may take u < 1/2. By Lemma 7.11
and (7.1) we have

P(XVV =x) <EzF < Eeezexp (—® (uz g - vjllﬁ/z)> :
j=1

! To be absolutely precise here, we should have written
Pz,(m{§ € Z) : G(§) > a}) = max(mPz,({§ € Z) : F(§) > a}) —(m — 1)/p, 1),

since Cauchy—Davenport inequality only implies |A + B| > min{|A| + |B| — 1, p}, for any two
subsets A, B of Z,. However, the term (m — 1)/p is negligible as we can take p arbitrarily large.
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We can subdivide the right-hand side based on the size of (3_/_, [I£ - vl )" 2,
and bound the above expression by

12
o > exp(—O(m)Pecy (Z g - v,nR/Z) <Vm/u ||+exp(~Quepn))

I<m<cun

where ¢ > 0 is a small absolute constant. Now observe that

1€ - vjllk/z = ©(1 — cos(2m& - v)) (13)

which in conjunction with Lemma 4.5 gives

Ecez & - vjllg,z = OD).

By linearity of expectation we thus have
n
Ecez Y & - v)llR/z = O);
Jj=1
in particular, we see that Pgez(((Z?Z1 & - v, ||fz/z)l/2 < c4/n)) s strictly less than

one if ¢ is small enough. Applying the Cauchy—Davenport inequality as in the
preceding proof, we conclude

" 1/2
Pec; (Z I& - vjufw) <m/u
j=1

<0 (\/:) Pz (Z I - v,nR/Z)l/2 <cvn

Using (7.3) again, we conclude

n 1/2
Pecz (Zns-vn&/Z) <Vm/pu 50(,/ >P§eZ<ZCOS(§ v)) %)
j=1

if ¢ is sufficiently small. The claim then follows from the observation that

Y exp(— @(m)x/ ( )
Il<m<./un

(the geometric decay of exp(—®(m)) being more than sufficient to counteract the
polynomial growth of \/m). O

This bound easily implies Corollary 7.13, and is in fact significantly stronger.
For instance, we have
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Corollary 7.16 [167] Let O < u < 1, and let n be sufficiently large depending on
u. Let v = (vy, ..., v,) be atuple of positive integers. For each integer j > 0, let
m denote the number of times j occurs in v, thus m; == {1 <i <n:v; = j}
Then for any x € Z we have

—1/2,-5/2 2
P(Xs") =x) <0 <M =31 ij>
Jj>0
In particular, if all the v; are distinct, then
P(Xs") = x) < O(,ufl/zn%/z).

We remark that in the u = 1 case, the second half of this Corollary was first
established by combinatorial means in [310] (with the precise threshold given in
[330]).

Proof We may use a Freiman isomorphism to place vy, ..., v, inside Z, for
some very large prime p. A direct application of Parseval’s theorem 4.2 gives

Y 2
Zcos(é ‘v))| =0 (Z m?)
j=1

j>0
and hence by Markov’s inequality

Y 1
PSeZp (;COS(E . vj) > %) =0 (; Zm?) .

j>0

E:ez,

The claim then follows from Lemma 7.15 (observing that exp(—®(un)) =
O(n~"?n=3/2) when n is large). O

Exercises

7.2.1  Show that in the condition pu < u’/4 in the domination inequality of
Corollary 7.12, the constant 4 cannot be replaced by any smaller constant,
even in the most important case u = 1.

722 Ifv=(vy,...,v,) are a tuple of integers, show that

1 n
P(Xi“) = m) = / cos(2rmé) l—[(l — u+ pecosLrv;&)) dé

for all integers m.

723 [167]Let]l < k <nandd > 1,andletv = (vy, ..., v,), atuple of vectors
in RY, be “non-degenerate” in the sense that every proper subspace of R?
contains at most n — k of the vy, ..., v,. Show that

P(X{W = x) = 04((uk)~*?)



7.2.4

725

7.2.6

7.2.7

7.2.8
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for every 0 < u < 1 and x € R?. (Hint: argue as Corollary 7.13, start-
ing with an expression such as P(Xi’,f/ D= 0) and applying Holder’s

inequality suitably to arrive at a quantity such as P(X Z‘/j 3 Lt )» Where
Kk .wh
wy, ..., wy € R arelinearly independent.) Give examples that show this

bound is best possible up to the implicit constants in the O4() notation.
[364] With the notation and assumptions of Lemma 7.14, establish the
following quantitative special case of the Haldsz inequality:

1 4
1 _ _ (1/16) _ (1/16) _
P(x{V =x) < 2P(xv =0) +P(x{'9 = 0)".

Show that Lemma 7.14 can fail when Z is a non-cyclic finite group. In
particular, if Z = F¢, show that P(X{"’ = 0) can be comparable to 1/3¢
for a large range of u if the tuple v is chosen appropriately. This shows
the pivotal role played by the Cauchy—Davenport inequality in the Haldsz
argument.

Show that if the m; are decreasing in j, then the right-hand side of
Corollary 7.16 cannot be improved except for the implicit constant. (Hint:
compute the variance of X" ).)

Let 0 < u < 1, and suppose n is sufficiently large depending on . Let
v = (vi, ..., v,) take values in an additive set S in Z, for some odd prime
p- Show that for any even integer k > 2 and x € Z we have

k
i ot
P(XW =x) < O | w2072 181K 00 (Z’”3>
jes

where m ; is the number of times j occurs in v, and the A(2k) constant is
defined in Definition 4.26. In particular, if the v; are all distinct, then

P(XU) = x) < Ok (u™ 20~ D281 o)

Thus X\ can only concentrate significantly when the A(p) constants of
the support of v are large.

[167] Let 0 < u < 1, and let n be sufficiently large depending on u.
Let vy, ..., v, be non-zero integers, and let k > 2 be an even integer.
Generalize Corollary 7.16 to show that for any x € Z we have

P(X =x) < Op(n~ "2 %2 Ry)
where R; is the number of solutions to the equation

€1vi, + -+ vy, =0
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whereey, ..., €y € {—1,+1}andiy, ..., iy € [1, n]. Inparticular, if the
v; are all distinct and take values in a set S, then we have

P(X{ = x) < O(u™ 0" E(S, 9)).

Thus X{* can only concentrate significantly when the support has sub-
stantial additive energy. Explain heuristically why this result is related to
the u = 2k/n case of Lemma 7.14.

7.3 The Esséen concentration inequality

In several applications, we are not interested in the probability that a random walk
XU ends up in a specified point, but rather in a region of space such as a cube. In
some “discrete” cases (e.g. when the vy, ..., v, live in a lattice) one can simply
use the union bound to pass from the former to the latter, but this is not always
the best approach. One useful tool for dealing with concentration in general is a
simple concentration inequality of Esséen.

Lemma 7.17 (Esséen concentration inequality) [101] Let X be a random vari-
able taking a finite number of values in R%. Let xo € RY, and let R, & > 0. Then

d
R Jd /
—+ — E - X))| dE.
(\/(_1 8) seRd:\Eks' (e@ DI

Here e(x) := exp(2mix), & - X denotes the usual inner product on R?, and ||
denotes the usual magnitude.

sup P(|X —xo| <R)= 0

onRd

Proof By rescaling X and R by ¢ we may take ¢ = +/d. A simple covering
argument (using for instance Corollary 3.15) then shows that it suffices to show
that

PUX — xo| < ev/d) < o<1>d/ E(e(& - X)) d&
£eR7:|E|<v/d

for all xy € R and some small absolute constant ¢ > 0. By translating X by xg
(which does not affect the right-hand side) we may take xo = 0. Now from the
standard Gaussian integral identity

/ efnclé\ze(s - X) dé- — C*d/Zefn\X\z/Z
£eRd
for any C > 0, we see that

V e - X) d| = Q1) (7.4)
£eR:|E|</d)2
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whenever | X| < c+/d, if ¢ is chosen sufficiently small and C chosen sufficiently
large. Squaring this we obtain

/ et - Xyw() d& = QU)I(X| < eVd)
geRY:|E|</d

—7Cle P p-mCle—&1

where w(§) := fl§1|,|£—€1|<\/d_/26 . Taking expectations of both

sides we obtain
/ E(e(E - X)w(®) d& = QUYP(X] < cv/a).
EeRe:|E|<Vd

From (3.8) we see that w(£) = O(1)¢, and the claim follows. O

Applying this in particular to the random variable X% for some v =
(v1,...,v,)and 0 < u < 1 we obtain the following analog of Lemma 7.11:

d
Jd R !
P(|X™ — x| <R)=0 XY= + — / | ||1—,u+,ucos(2n -v;j)|d§.
(| v 0| ) (s Jd EeR:|g|<e ] s el

(7.5)
As an application we present a higher-dimensional analog of Corollary 7.10,
but with the loss of a dimension-dependent constant.

Proposition 7.18 [207], [167] Let 0 < u < 1, and suppose n is sufficiently large
depending on . Let vy, ..., v, be elements ofRd with |v;| > 1 for alli. Then for
any xo € R?, we have

P(IX0 — x| < k) < O(1) ——

Jan
forallk > 1.

It is worth noting that the right-hand side grows only linearly in &, instead of the
k? type growth that one might naively expect. This is a reflection of the heuristic
that the random variable X’ tends to concentrate the strongest on one-dimensional
spaces (cf. Exercise 7.2.3).

Proof In view of (7.5) (with R = k and ¢ = 1/k), it suffices to show that

n 1\ &
|1—/x+,ucos(2n§-v-)|d$=O(—) .
/gew;|g<1/kg ! kv/d) /i

Applying Holder’s inequality, we reduce to showing that

1\ &
1 — 4+ ncosré -v)|"dé = O (—)
/;GR4:§<1/1< ! k/d N un
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for each 1 < j < n. We can estimate

1=+ peos@u - v))] < exp (— Qull28 - v;13,7))

(cf. (7.1)) and then make the change of variables# = 2§ - v; (using (3.8) to estimate
the volume of the d — 1-dimensional balls that are integrated out) to reduce to
showing the one-dimensional estimate

—1 1
—Q I dt =0 ( ) )
;] [1]<2|v;|/k exp( (/m|| ”R/Z)) «/ﬂ_

Subdividing the 7 variable into unit intervals and using the periodicity of ||#||r,/z and
the hypothesis |v;| > 1, the claim then follows from the easily verified estimate

/_Z exp(—Q(un|t?) dt = O (\/%) )

d

One can similarly develop analogs of many of the results of the preceding
section, though the analysis is a little more technical as the analogs of Corollary 7.12
are somewhat messier. See [167] for further development of this theory.

Exercises

7.3.1 Prove (7.4).
7.3.2  Establish the following dimension-independent analog of the Esséen
concentration inequality:

sup P(e 0l < / [E(e(€ - X))le ™" dt.

xoeR4 £cRY

733 [367] Obtain an analog of Exercise 7.2.3 for the probability P(X} € B)
for some unit ball B, assuming that, for every proper subspace of R”, at
most n — k of the vectors lie within a unit distance of this subspace.

7.3.4  Use the previous exercise to develop an analog of Erdds, results in any
dimension [108, 367].

7.4 Inverse Littlewood—Offord results

In the preceding sections we considered direct Littlewood—Offord results, in
which some assumptions were made on the steps v = (vy, ..., v,), and as a con-
clusion some upper bounds were obtained for concentration probabilities such
as P(XY = x). In many applications it is of more interest to establish inverse
Littlewood—Offord results, in which a lower bound on a concentration probability
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is assumed, and some structural property of v is deduced as a consequence. Of
course, every direct Littlewood—Offord result can be converted into an inverse by
taking contrapositives. For instance, from Corollary 7.13 we know thatif vy, ..., v,
live in a torsion-free group Z and

P( XE]M) — x) > L
ik
for some 0 < p < 1 and some x € Z, then at most O(k) of the steps vy, ..., v,
are non-zero. Similarly, from Corollary 7.16, we see that if vy, . .., v, are positive
integers and P(X(v“) = x) is much larger than 1 ~"/?n73/2 for some 0 < < 1 and
x € Z, then at least two of the v; are equal (in fact one can easily establish that a
large number of pairs (v;, v;) must be equal).

Now we consider inverse Littlewood—Offord theorems that give more structure
on the steps vy, ..., v,. The results in this section can be viewed in analogy with
inverse sum set estimates, in which one assumes that a certain set A has small
doubling constant and concludes some structural information on A, for instance
containing A inside a progression. For simplicity we shall focus on the case u = 1
(though one can use results such as Corollary 7.12 or Lemma 7.14 to then extend
to more general ().

Let us start with an example when max, P(X é = x) is large. This example has
been the main motivation of our results.

Example 7.19 Let P be a symmetric generalized arithmetic progression of (con-
stant) rank d and volume V in Z. Let vy, ..., v, be (not necessarily different)
elements of V. Then the sum ) ;_, €;v; takes values in the generalized arithmetic
progression n P which have volume n¢V . From the pigeonhole principle it follows
that

max P(X| = x) > n V7" (7.6)

The above example shows that if the elements of v belong to a generalized
arithmetic progression with small rank and small volume then P, (v) is large. One
might hope that the inverse of this also holds, namely,

If P,(v) is large, then the elements of v belong to a generalized arithmetic
progression with small rank and small volume.

We are going to present a few results which support this statement. Let us first
give a simple, but rather weak, result.

Proposition 7.20 Let v = (vy, ..., v,) be a tuple in an additive group Z which
is either torsion-free or finite of odd order, such that P(X\" = x) > 277! for
some x € Z and d > 0. Then all the steps v, ..., v, are contained in a cube
[—1, 119 - (w1, ..., wy) of dimension d.
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Proof Suppose the conclusion failed. Then from Lemma 4.35 we see that v must
contain a dissociated subword w = (wy, ..., wy+1) of length d + 1. By condition-
ing on the variables not associated to w, we observe that

2-d=1 P(Xﬁ” = x) < supP(Xivl) = y).
yezZ

On the other hand, since wis dissociated, and Z has no 2-torsion, all the sums in X SVI)
are distinct and so P(X{" = y) < 279~ thus yielding the desired contradiction.
O

In practice, this proposition is not very useful because the dimension d of
the cube can be rather large (typically it is like logn). However, one can lower
dimension its by increasing the side lengths, and allowing some exceptional steps
v; to lie outside of the resulting progression.

Proposition 7.21 Let Z be either torsion-free or finite of odd order. For any integer
d > 1, there is a positive constant 8, such that the following holds. Let k > 2 be
an integer, let x € Z, and let v = (v, ..., v,) be a tuple in Z. Then either

P(XV =x) < 8;k7¢

or there exists a progression P = [—k, K19V (wy, ..., wy_1) in Z such that for
all but at most k? exceptional values of j € [1, n, there exists ag € [1, k] such that
apv; € P.

Note that Corollary 7.13 (with © = 1) can be thought of as the d = 1 case of
this proposition, while Proposition 7.20 can be viewed as the limiting case k = 1.
Of course one should take k < /7 to avoid the claim being vacuous.

Proof Call a tuple (wy, ..., w,) k-dissociated if the progression [—k, k]" -
(wi, ..., w,) is proper. We now construct an k-dissociated tuple (wy, ..., w;)
for some 0 < r < d by the following algorithm.

¢ Step 0. Initialize r = 0. In particular, (w1, ..., w,) is trivially k-dissociated,
and from Corollary 7.12 we have
(1/4d) 1
P (de'wfz...wfz = 0) >P(x{" =x). (7.7)
* Step 1. Count how many 1 < j < n there are such that (wy, ..., w,, v;) is

k-dissociated. If this number is less than k2, halt the algorithm. Otherwise,
move on to Step 2.
* Step 2. Applying Corollary 7.12, we can locate a v; such that (wy, ..., w,, v;)
is k-dissociated, and
(1/4d) _ (1/4d) _
P (Xv"'wfz.“wk2 - 0) =P (de"wf2444u)52vk2 - O) ’

r J
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We then set w, 1| := v; and increase r to r 4 1. Return to Step 1. Note that
(wy, ..., w,) remains k-dissociated, and (7.7) remains true, when doing so.

Suppose that we terminate at some step r < d — 1. Then we have an r-tuple
(w1, ..., w,)whichis k-dissociated, but such that (wy, ..., w,, v;)is k-dissociated
for at most k? values of v;. Unwinding the definitions, this shows that for all but
at most k% values of vj, there exists ag € [1, k] such that agv; € Q — Q, where
0 :=1[0,k]" - (wy,...,w,)andr < d — 1. The claim then follows by adding some
dummy vectors to the w;.

Now we prove that we must indeed terminate at some step r < d — 1. Assume
(for a contradiction) that we have reached step d. Then we have an k-dissociated
tuple (wy, ..., wy) such that

K2 k2
ll)l . U}I

P(X"=x) <P (X(l/“d) = 0) :

Let I' C Z¢ be the lattice
U= {m,...,mg) € Z :myw; + - + mgwy = 0},

then by using independence we can write

d

(my,....,mg)el’ j=I1

where X(1/4d) — 77(11/4d) +oity

Now we use a volume- packmg argument. A simple computation involving
the binomial formula (or induction on the k> parameter) shows that the expres-
sion P(X(l/ = =m) is even in m, and decreasing for positive m. It is also
Oq.(1/k) when |m| < k (this can be seen either from Stirling’s formula (1.52),
or from Corollary 7.13 and variance and monotonicity considerations). Thus we
have

(1/4d)

1
(1/4d) (1/4d)
P(Xlk2 ):Od <% E P(Xlk2 =m))
m'em~+(—k/2,k/2)

and hence from (7.8) we have

d

P(xO =x) <0, [k Y 3 [P (x =m))

(my,...mg)er (m'I ,,,,, m('i)e(ml AAAAA mg)+(—k/2,k/2)d j=1
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Since (wy,...,wy) is k-dissociated, all the (m},...,m)) tuples in I +
(—k/2,k /Z)d are different. Thus, we conclude

.....

But from the union bound we have
d

1*

P (x“/“‘” = mj) =1
1

(my,....mg)eZd j=

To complete the proof, set the constant §, in the proposition to be larger than the
hidden constant in O4(k~%). O

The ag factor in the above proposition is somewhat undesirable. With some
more effort, one can remove this factor, but at the cost of enlarging the progression
somewhat.

Theorem 7.22 (Inverse Littlewood—Offord theorem) [366] Let 0 < pu < 1
and let o and A be arbitrary positive constants. Then there is a constant
B = B(u, a, A) such that the following holds. Assume that v = (vi,...,v,) is
a tuple of rational numbers satisfying max, P(Xy = x) > n=4. Then there is a
generalized arithmetic progression P of rational numbers of rank at most B and
volume at most n® which contains all but at most Bn® elements of v.

The proof of Theorem 7.22 is somewhat lengthy but is a modification of that
of Proposition 7.21. For details see [366].

An inverse theorem in a similar spirit for the relative Haldsz inequality,
Lemma 7.14, was also obtained in [365]:

Theorem 7.23 (Inverse Halasz inequality) [365] Let Z be either torsion-free
or cyclic of odd prime order. Let v= (vy, ..., v,) be a tuple in Z, and suppose
that gy > &1 > 0 are such that

P (XD = 0) > &P (X(/4=20/190 _ ()

and

3 n
P(X\) = 0) > (Z ; 2eo> .

Then there exists a proper progression P of rank O, (1) and volume

1 . .
(0 (m) which contain the vy, . . ., v,.

In fact some additional structural information was obtained, namely that
the vy, ..., v, are mostly contained in the “core” of the progression P, and
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under certain “non-triviality” assumptions on v (basically, that the set of signs
1, ..., ) € {—1, 1}" for which n;v; + --- 4+ n,v, = 0 has to span the hyper-
plane) one can also place the v; in an arithmetic progression of length n°®™.
For more precise statements and proofs see [365]. The main point is to inspect
the use of the Cauchy—Davenport inequality in the proof of Lemma 7.14, and
observe that this inequality is only efficient when sets suchas {§ € Z, : F(§) > «a}
have small doubling constant. This in turn can be used (via some duality argu-
ments) to place the vy, ..., v, in a “Bohr set” of small doubling constant, at
which point one can apply a Freiman-type theorem (e.g. Theorem 5.44) to place
the v; in a progression. This result played an essential role in establishing the
bound P(det(M,) = 0) = (% + 0(1))" for n x n random Bernoulli matrices; see
Section 7.5 for further discussion.

Exercise

7.4.1  Let the notation and hypotheses be as in Proposition 7.21, and let 1 <
m < k. Show that either

P(X{V = x) = 04(mk™?)

or there exists a progression P = [—k, k14 (wy, ..., wy_y) in Z such
that for all but at most k? exceptional values of j € [1, n], there exist at
least k/m values ay € [1, k] such thatagv; € P. (Hint: argue as in Propo-
sition 7.21, but work with k /2-dissociated tuples instead of k-dissociated
ones, and add one extra copy of v in (7.7). Then if the latter conclusion
fails, use Corollary 7.12 one final time to exploit the sparseness of the ag
for which agv; € P and thence obtain the former conclusion.)

7.5 Random Bernoulli matrices

Let M,, be the random n x n matrix whose entries are independent uniformly dis-
tributed signs +1 (M, is often referred to as the random Bernoulli matrix). The
distribution of several quantities relating to M,,, such as its determinant and singular
values, is of interest to a number of fields, including theoretical physics, combi-
natorics and theoretical computer science. It turns out that the tools developed in
earlier sections are very well adapted for the study of M,,.

In this section we focus on a specific problem, namely to understand the singu-
larity probability P(det(M,) = 0). An equivalent formulation is: given n vectors
X1, ..., X, chosen uniformly at random from the unit cube {—1, 1}" € R", what
is the probability that these vectors are linearly independent?
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This simple-sounding problem has turned out to be surprisingly non-trivial. It
is easy enough to show that

P(X; = %X, forsome 1 <i < j <nandsign+)=(1+ 0(1))n22_”. (7.9)

A similar argument (taking into account both the rows and columns of M,,)
gives

P(det(M,) = 0) > (2 + o(1))n*27". (7.10)
It is conjectured that this is sharp; thus

Conjecture 7.24 P(det(M,,) = 0) = (2 + o(1))n*2™". In particular, P(det(M,) =
0) = (5 +o(1)".

This conjecture remains open, although we will discuss some progress on this
problem in this section. Notice that M,, is singular if and only there is a non-zero
vector v € R” such that M,,v = 0. By restricting v to some special sets of vectors,
we can obtain the conjectured bound (1/2 + o(1))”". The following result is due to
Komlés.

Theorem 7.25 Let n > 3, and let 21 be the set of vectors in R" with at least
3n/log, n coordinates. The probability that M,v = 0 for some non-zero v € 2,
is (1 + o(1)n>27".

By considering the transpose of M,,, one can see that this theorem is equivalent
to the following lemma.

Lemma 7.26 Letn > 3, and let E denote the event that a; X, + -+ +a, X, =0
for some non-zero (ay, ..., a,) € Q. Then P(E) = (1 4+ o(1))n*27".

Proof To establish the upper bound, we use the union bound to give

P(E)= Y PENE.)
2<k<n—3n/log,n
where E is the event that ¢\ X; + --- + a,X, = 0 for some (a;,...,a,) € R"
with exactly k of the a; being non-zero. (Note that the event E is vacuous.) From
(7.9) we easily see that P(E») = (1 + o(1)n*27", so it will suffice to show that

P(E{\Ex_1) = o