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Preface

This book explains some recent progress in combinatorial geometry that comes
from an unexpected connection with polynomials and algebraic geometry. One
of the early results in this story is a two-page solution of a problem called the
finite field Kakeya problem, which experts had believed was extremely deep. The
most well-known result in this book is an essentially sharp estimate for the distinct
distance problem in the plane, a famous problem raised by Paul Erdős in the 1940s.
The book also emphasizes connections between different fields of mathematics. For
example, some of the new proofs in combinatorics that we study were suggested
by ideas from error-correcting codes. We discuss this connection, as well as related
ideas in Fourier analysis, number theory, and differential geometry. First- or second-
year graduate students, as well as advanced undergraduates and researchers, should
find this book accessible.

My own work in this area is mostly joint with Nets Katz, and I learned a lot
about this circle of ideas talking with him and exploring together. I taught a class
on this material at MIT in the fall of 2012. I want to thank the students in the
class who typed up notes for some of the lectures. Those lecture notes formed a
first draft for the book. The students were Sam Elder, Andrey Grinshpun, Nate
Harmon, Adam Hesterberg, Chiheon Kim, Gaku Liu, Laszlo Lovasz, Rik Sengupta,
Efrat Shaposhnik, Sean Simmons, Yi Sun, Adrian Vladu, Ben Yang, and Yufei
Zhao. I also want to thank the following people for looking at drafts of the book
and making helpful suggestions: Josh Zahl, Thao Do, Hong Wang, Ben Yang, and
Jiri Matous̆ek. While I was writing the book, I was supported by a Sloan fellowship
and a Simons Investigator award.

Finally, I would like to thank my family for their love and support.

Larry Guth, MIT
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CHAPTER 1

Introduction

This book is about some applications of polynomials to problems in combina-
torics. What I think is interesting about these arguments is that the statements of
the problems do not involve polynomials, but polynomials provide a crucial struc-
ture under the surface. The starting point of the book is Dvir’s solution of the
finite field Kakeya problem [D]. This is a problem on the border between com-
binatorics and harmonic analysis. People in the field had believed that it was a
very hard problem, but the proof is only a few pages long, and it only requires an
undergraduate background to understand.

Here is the statement of the finite field Kakeya problem. Let Fq denote the
finite field with q elements. A set K ⊂ Fn

q is called a Kakeya set if it contains a line
in every direction. (In other words, K is a Kakeya set if it contains a translate of
every 1-dimensional subspace of Fn

q .) The question is, what is the smallest possible
cardinality of a Kakeya set K ⊂ Fn

q ?

Theorem 1.1. ([D]) If K ⊂ Fn
q is a Kakeya set, then

|K| ≥ (10n)−nqn.

For a fixed dimension n, this estimate says that the size of a Kakeya set is at least
a constant factor times the size of the whole vector space Fn

q .
The proof begins by considering a lowest degree (non-zero) polynomial that

vanishes on the set K. Using this polynomial, the proof is short and clean. But
without mentioning this polynomial, proving Theorem 1.1 seems to be very difficult,
and people worked hard to prove much weaker estimates. Over the course of the
book, we will explore different variations of this trick with polynomials, and we will
discuss applications of this method to different problems.

A large piece of the book is about the distinct distance problem in the plane, a
combinatorics problem raised by Erdős in the 1940s [Er1]. The problem asks, given
a set of N points in the plane, what is the minimum possible number of distinct
distances between the points. For example, if the points are evenly spaced along
a line, then there are N − 1 distinct distances. Erdős checked that arranging the
points in a square grid is slightly more efficient, giving on the order of N(log N)−1/2

distinct distances. He conjectured that grids are nearly optimal. We will prove the
following lower bound, which nearly matches the grid example:

Theorem 1.2. (Guth and Katz, [GK2], building on [ElSh]) If P is a set of N
points in R2, then the number of distinct distances between the points of P is at
least cN(log N)−1.

The main applications in the book are to problems in combinatorics. But it
is also striking to me that this trick with polynomials has connections to several
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2 1. INTRODUCTION

other areas of mathematics. We will see related arguments connected with error-
correcting codes in computer science, inequalities about surface area in differential
geometry, diophantine equations in number theory, and geometric estimates related
to Fourier analysis. Each of these arguments has some significant ingredients in
common with the proof of the finite field Kakeya conjecture. Also, each of these
fields offers its own perspective about why polynomials are special functions and
what makes them useful in these applications.

I tried to make the book self-contained, and I hope that it will be accessible
to readers with a first-year graduate background or a strong undergraduate back-
ground.

In the rest of the introduction, we give an overview of the book. Some readers
might want to begin by reading the overview. Other readers might want to begin
by reading the proof of finite field Kakeya in Chapter 2.

1.1. Incidence geometry

When the distinct distance problem was first raised, in [Er1] in the 1940’s, it
didn’t fit into any well-developed field of mathematics. There were a small number
of isolated problems of this flavor that different people had raised in different situ-
ations. Some of these problems - including the distinct distance problem - turned
out to be surprisingly hard. Over the next few decades, people began to study this
circle of problems in a systematic way, and they developed a field of combinatorics
called incidence geometry. Broadly speaking, incidence geometry is the study of
combinatorial problems about basic geometric objects, like lines, circles, angles, or
distances. To give a little sense of this area, let us describe one of the important
theorems and some open problems.

One fundamental question in the field has to do with the possible intersection
patterns of lines in the plane. If L is a set of lines, a point x is called an r-rich
point of L if x lies in at least r lines of L. The set of r-rich points of L is denoted
Pr(L). Given a certain number of lines, how many r-rich points can they form? In
the early 1980s, Szemerédi and Trotter solved this problem up to a constant factor.

Theorem 1.3. ([SzTr], 1983) There are constants 0 < c < C so that the
following holds. If 2 ≤ r ≤ L1/2, then

cL2r−3 ≤ max
|L|=L

|Pr(L)| ≤ CL2r−3.

If L1/2 ≤ r ≤ L, then

cLr−1 ≤ max
|L|=L

|Pr(L)| ≤ CLr−1.

The lower bound comes from a fairly simple example involving a grid of points.
The difficult part is the upper bound. A remarkable thing about this proof is
that it is based on topology. The topological approach was developed further by
other mathematicians in the field, in papers such as [CEGSW] and [Sz], leading
to a range of tools that apply to many problems. Developing topological methods
to prove combinatorial estimates of this kind is one of the main achievements of
incidence geometry.

Incidence geometry also has many simply stated open problems. For instance,
in Theorem 1.3, if we replace lines by circles, we get a difficult open problem.
Replacing lines by unit circles gives a different difficult open problem. Replacing
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lines by ellipses or parabolas gives two more difficult open problems. These prob-
lems have been studied intensively for decades. The topological methods discussed
above give interesting bounds for these problems, but the best current bounds don’t
match any known examples, and most people believe the bounds are not sharp. The
distinct distance problem was also studied by these topological methods. People
proved interesting bounds, but the method runs into similar issues as it does in
problems about circles.

In the last decade, polynomial methods have developed into a second major
approach to incidence geometry. Here is an example of an incidence geometry
problem that seemed out of reach with topological methods but which has a short
proof using polynomials. The joints problem is a problem about lines in R3, which
was raised in the early 90s by [CEGPSSS]. If L is a set of lines in R3, then a point
x is a joint of L if x lies in three non-coplanar lines of L. It is not hard to find
examples with L lines and on the order of L3/2 joints, and [CEGPSSS] conjectured
that the number of joints is always at most CL3/2. Before the polynomial method,
the best known bound was L1.62... ([FS]) and the argument was fairly complex.

Theorem 1.4. ([GK1], proof simplified by [KSS], [Q]) A set of L lines in R3

forms at most CL3/2 joints.

We will prove this result in Chapter 2, right after the proof of the finite field Kakeya
conjecture.

In [ElSh], Elekes and Sharir proposed a new approach to the distinct distance
problem, which connects it to the incidence geometry of lines in R3. This approach
led to new questions about lines in R3, which I think are natural questions in their
own right. These questions were resolved by Nets Katz and the author in [GK2].
The proofs use polynomial methods, and they also bring into play the topological
methods described above and more tools from algebraic geometry. Explaining these
results and their applications is one of the main goals of the book.

Suppose that L is a set of L lines in R3. Let us first consider the 2-rich points
of L. Since any two lines intersect in at most one point, the number of 2-rich points
is at most

(
L
2

)
, and this can actually happen if all the lines lie in a plane. But

the scenario that all lines lie in a plane is a special situation. If we rule out this
situation, can we get a better bound? For instance, in the approach to the distinct
distance problem from [ElSh], one is led to a set L of L lines in R3 with at most
L1/2 lines in any plane. For such a set, can we prove a significantly stronger bound
for |P2(L)|?

Suprisingly the answer is no. The counterexample comes from a degree 2 al-
gebraic surface, such as the surface defined by z = xy. This surface is doubly
ruled – every point in the surface lies in two lines in the surface. Choosing L lines
contained in this degree 2 surface, we get a set L with L2/4 2-rich points, while
any plane contains at most 2 lines of L. This doubly ruled surface has been known
in algebraic geometry for a long time, and it plays an important role in the first
paper on the joints problem [CEGPSSS]. This example, involving a polynomial
surface, helps to explain why polynomials play an important role in studying the
intersection patterns of lines in space.

What if we assume that L contains at most L1/2 lines in any plane or any degree
2 algebraic surface? With these stronger hypotheses, can we prove a significantly
stronger bound on |P2(L)|? This time, the answer is yes. The methods from
[CEGPSSS] give a significant improvement, and [GK2] gives a sharp estimate.
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Theorem 1.5. If L is a set of L lines in R3, and at most L1/2 lines of L lie in
any plane or any degree 2 algebraic surface, then

|P2(L)| ≤ CL3/2.

The proof of Theorem 1.5 uses polynomial methods, and it also draws on the
theory of ruled surfaces from algebraic geometry. (An algebraic surface is called
ruled if it contains a line through every point.)

What about r-rich points for r > 2? If all the lines of L lie in a plane, then
the Szemerédi-Trotter theorem gives a sharp upper bound for |Pr(L)|. We focus on
the range 3 ≤ r ≤ L1/2, which is more challenging and interesting. In this range,
Theorem 1.3 gives

|Pr(L)| ≤ CL2r−3.

It’s not hard to extend this bound to any set of L lines in R3. But suppose that
L contains at most L1/2 lines in any plane. Can we prove a significantly better
upper bound? The answer is yes, and the following sharp upper bound was proven
in [GK2].

Theorem 1.6. ([GK2]) If L is a set of L lines in R3, and at most L1/2 lines
of L lie in any plane, and if 3 ≤ r ≤ L1/2 then

|Pr(L)| ≤ CL3/2r−2.

The proof of Theorem 1.6 combines polynomial methods with topological meth-
ods that come from the proof of Theorem 1.3.

Theorems 1.5 and 1.6 give a lot of understanding of the incidence geometry
of lines in R3. The distinct distance estimate, Theorem 1.2, follows by combining
them with the framework from [ElSh].

1.2. Connections with other areas

The proofs of these combinatorial results have some similarities to proofs in
other fields, and we will discuss a number of these connections.

One connection involves error-correcting codes in computer science. Dvir’s
background is in computer science. His interests include error-correcting codes,
and perspectives from coding theory helped lead to the proof of finite field Kakeya.
Here is a typical problem from error-correcting codes. Suppose that Fq is the finite
field with q elements and that Q : Fq → Fq is a polynomial whose degree is not
too high. Suppose that we have access to a corrupted version of Q. More precisely,
suppose that F : Fq → Fq is a function which is known to agree with Q for a certain
fraction of points x ∈ Fq. By looking at F , we would like to recover the original
polynomial Q, and we would like to do so efficiently. Berlekamp and Welch [BW]
discovered an interesting trick for recovering the original polynomial, and this trick
has common ingredients with the proof of finite field Kakeya.

It turns out that even if F contains quite a lot of corruption, it is still possi-
ble to efficiently recover the polynomial Q. In the field of error-correcting codes,
polynomials are known for their resiliency - a polynomial code can tolerate a high
level of error, and the original information can still be recovered. Polynomials are
important in error-correcting codes because they are an especially resilient class of
functions in this sense.

In differential geometry, polynomials are known for their efficiency. There are
many examples of this efficiency. To mention one classical example, the zero set
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of a complex polynomial is an area-minimizing surface – a surface with the least
possible area given its boundary. Most of these results about efficiency involve very
different ideas from the ones in this book, but there is one recent example involving
closely related ideas. This result is a theorem of Gromov [Gr] proving surface area
estimates for families of functions. It takes a little work to set up the statement of
this theorem, so we postpone it to the chapter on polynomial methods in differential
geometry. Roughly speaking, the theorem says that polynomials are a particularly
efficient class of functions in terms of the surface areas of their zero sets. The proof
from [Gr] has a parallel structure to the proof of finite field Kakeya. It also involves
a different tool coming from topology, the polynomial ham sandwich theorem. This
tool coming from the geometry literature plays a role in the proof of the distinct
distance estimate.

To summarize the last few paragraphs, polynomials are efficient from the point
of view of differential geometry, and polynomials are resilient from the point of view
of error-correcting codes. These two facts are related to each other, and the proofs
in both fields share some common ingredients with the proof of finite field Kakeya.

A third connection involves diophantine equations in number theory. In the
early 20th century, Thue proved that a broad class of diophantine equations in two
variables have only finitely many integer solutions. His theorem was important in
part because it covers a much broader class of equations than any previous work in
the subject. Here is the statement of the theorem.

Theorem 1.7. Suppose that P (x, y) ∈ Z[x, y] is a homogeneous polynomial
of degree d ≥ 3 which is irreducible over Z. (For instance P (x, y) = yd − 2xd for
d ≥ 3.) Then, for any integer A, the diophantine equation P (x, y) = A has only
finitely many integer solutions (x, y) ∈ Z2.

The proof of Theorem 1.7 also involves some similar ideas to the proof of finite field
Kakeya. The statement of Theorem 1.7 involves a polynomial P (x, y), but the proof
also involves a lot of other polynomials, called auxiliary polynomials. The auxiliary
polynomials in the proof play a similar role to the polynomial in the proof of finite
field Kakeya. In the chapter on diophantine equations, we will prove Theorem 1.7
and discuss the parallels with the other proofs in the book.

Finally, we mention the original Kakeya problem. The finite field Kakeya prob-
lem was invented as a cousin for the original Kakeya problem, which involves the
behavior of lines in Rn. Recall that a finite field Kakeya set K ⊂ Fn

q is a set which
contains a line in every direction. Similarly, a Kakeya set K ⊂ Rn is a set which
contains a unit line segment in every direction. There are several variations of the
Kakeya problem, but they all have to do with how big a Kakeya set needs to be.
For instance, one version asks about the minimum possible Hausdorff dimension of
a Kakeya set. All known Kakeya sets K ⊂ Rn have Hausdorff dimension n. The
Kakekya problem is about the possible intersection patterns of lines in Rn, but
unlike in incidence geometry, we consider infinitely many lines instead of finitely
many lines. The Kakeya problem can also be rephrased in terms of the intersection
patterns of finitely many thin tubes in Rn. This description in terms of thin tubes
is the most useful for working on the problem and also the most useful in appli-
cations, so we emphasize it in the book. Here is a version of the Kakeya problem
involving the intersection patterns of long thin tubes.
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Question 1.8. Fix a dimension n and let δ > 0 be a small parameter. Suppose
that T is a set of cylindrical tubes in Rn, each of radius δ > 0 and length 1. For a
tube T , let v(T ) be a unit vector in the direction of T . Suppose that for any two
tubes T1, T2 ∈ T , the angle between v(T1) and v(T2) is at least δ, and suppose that
for any unit vector w, there is some T ∈ T so that the angle between v(T ) and w
is at most 10δ. What is the minimum possible volume of the union of the tubes of
T ?

If the tubes of T are disjoint, then it is easy to check that the volume of the
union is on the order of 1. In the 1920s, Besicovitch constructed an ingenious
example where the volume of the union goes to zero with δ. A slightly improved
version of this construction [Sch] gives logarithmic decay:

| ∪T∈T T | ≤ Cn
1

| log δ| .

This construction is still the best one known. The Kakeya conjecture asserts that,
for any ε > 0, the volume of the union of the tubes in T is at least c(ε)δε. The
best known lower bounds for the volume are much weaker: for instance, if n = 3,
we know that the volume of the union is at least cδ1/2.

In the 1970’s, mathematicians discovered that the Kakeya problem is closely
connected to a circle of problems in Fourier analysis. This connection encouraged
a lot of interest in the problem, and it has been studied intensively ever since.

It is not clear how much the polynomial method can contribute to the original
Kakeya problem. The proof of finite field Kakeya seems like it might be an impor-
tant clue, but there are major difficulties in trying to adapt the proof from lines in
Fn
q to thin tubes in Rn. On the other hand, the polynomial method has had some

successes proving harmonic analysis estimates related to the Kakeya problem. We
will discuss all these issues in the chapter on harmonic analysis.

1.3. Outline of the book

The first part of the book is about introducing the polynomial methods we
will study. In Chapter 2, we prove the finite field Kakeya theorem and the joints
theorem, and we outline the ingredients of the method. In Chapter 3, we discuss
why these problems were difficult to solve without polynomials and what features
of polynomials make them useful. The proofs in Chapter 2 are partly based on
ideas from error-correcting codes. In Chapter 4, we study the Berlekamp-Welch
algorithm and other work in error-correcting codes, and we see how it relates to the
proofs in Chapter 2. In Chapter 5, we discuss some earlier work in combinatorics
with a similar flavor. In Chapter 6, we prove the Bezout theorem, a fundamental
theorem of algebraic geometry. We will use this result in the later chapters, and we
also give a proof with a somewhat similar flavor to the other proofs in the book.

The second part of the book gives background in incidence geometry. In Chap-
ter 7, we prove the Szemerédi-Trotter theorem, and introduce some of the topolog-
ical methods in the area. We discuss the distinct distance problem as well as some
hard open problems in the field. In Chapter 8, we discuss incidence geometry in
higher dimensions, especially dimension three. In Chapter 9, we discuss the partial
symmetry approach to the distinct distance problem.

The third part of the book is about applications of the polynomial method in
incidence geometry. In this part of the book, we prove Theorems 1.5 and 1.6. These
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proofs involve several different tools, and we introduce one tool in each chapter.
Chapter 10 introduces polynomial partitioning. This is an important tool, and it
turns out to be enough to prove a slightly weaker form of the distinct distance
estimate. Chapter 11 explores the connection between combinatorial structure and
algebraic structure. Chapter 12 combines these tools and finishes the proof of
Theorem 1.6. Chapter 13 introduces tools from ruled surface theory in algebraic
geometry and proves Theorem 1.5.

The fourth part of the book discusses connections with a few other areas.
Chapter 14 discusses connections with differential geometry. Chapter 15 discusses
the Kakeya problem and Fourier analysis. Chapter 16 discusses Thue’s work on
diophantine equations.

1.4. Other connections between polynomials and combinatorics

There are a lot of interesting connections between polynomials and combina-
torics. I wanted to mention a few interesting directions that have a similar flavor
to the topics in this book.

The book Linear algebra methods in combinatorics [BF], by Babai and Frankl,
develops a circle of ideas involving polynomials, linear algebra, and combinatorics.
The recent book by Matousek, [Ma2], discusses many of the same ideas. We will
touch on this work briefly in Chapter 5.

Alon proved a variant of the Hilbert Nullstellensatz from algebraic geometry,
called the combinatorial nullstellensatz. This is a theorem about polynomials, re-
lated to classical theorems of Chevalley and Warning. He and others applied this
theorem to problems in combinatorics, including some additive number theory and
some graph theory. See the survey [Al] and the references therein for an introduc-
tion to this area.

Recently, Green and Tao [GT] proved some old conjectures in incidence geom-
etry with an argument that uses a combination of topology and polynomials. We
will say more about these results in Section 7.5.

1.5. Notation

I would like to introduce one convenient piece of notation here. We write A � B
to mean that there is some constant C so that A ≤ CB. We write A ∼ B to mean
that A � B and B � A.

We will introduce other notation as it comes up, but we record here for reference
a few basic pieces of notation that will come up a lot in the book. We let F denote
a field, and we let Fq denote the finite field with q elements. We let PolyD(Fn) be
the space of polynomials in n variables, with coefficients in F, and with total degree
at most D. If P is a polynomial, then we write Z(P ) for the zero set of P . If L is a
set of lines, then we write Pr(L) for the set of r-rich points of L - the set of points
that lie in at least r lines of L.





CHAPTER 2

Fundamental examples of the polynomial method

In this chapter, we give our first examples of the polynomial method, proving
the finite field Kakeya theorem and the joints theorem. We begin by introduc-
ing two simple tools that we will use all through the book, called the parameter
counting argument and the vanishing lemma. These tools are simple lemmas from
undergraduate algebra. Using these tools, we can prove the theorems above in
about one page each.

2.1. Parameter counting arguments

Let F be a field. Let PolyD(Fn) be the space of polynomials in n variables, with
coefficients in F, and with total degree at most D. If the n variables are x1, ..., xn,
then PolyD(Fn) is the subset of the polynomial ring F[x1, ..., xn] consisting of poly-
nomials of degree at most D. The space PolyD(Fn) is a vector space over the field
F.

Suppose that S ⊂ Fn is a finite set. We would like to know if there is a non-
zero polynomial P ∈ PolyD(Fn) that vanishes on the set S. We can get some basic
information on this question by a dimensional argument.

Proposition 2.1. If Dim PolyD(Fn) > |S|, then there is a non-zero polynomial
P ∈ PolyD(Fn) which vanishes on S.

Proof. Let p1, ..., p|S| be the points of S. We let E be the evaluation map

E : PolyD(Fn) → F|S| defined by

E(Q) =
(
Q(p1), ...., Q(p|S|)

)
.

The map E is a linear map. (It follows from the formula for E that for any Q1, Q2 ∈
PolyD(Fn), E(Q1 + Q2) = E(Q1) + E(Q2) and for any Q ∈ PolyD(Fn), λ ∈ F,
E(λQ) = λE(Q).) The kernel of the map E is exactly the set of polynomials in
PolyD(Fn) that vanish on S.

If Dim PolyD(Fn) > |S|, then the dimension of the domain of E is greater than
the dimension of the target of E. By the rank-nullity theorem from linear algebra,
the map E must have a non-trivial kernel. Therefore, there is a non-zero polynomial
P ∈ PolyD(Fn) that vanishes on S. �

This result raises the question “what is the dimension of PolyD(Fn)?” A basis

for PolyD(Fn) is given by the monomials xD1
1 ...xDn

n where Di are non-negative
integers with

∑
Di ≤ D. By counting the elements of this basis, we can compute

the dimension of PolyD(Fn).

Lemma 2.2. The dimension of PolyD(Fn) is
(
D+n
n

)
. In particular,

Dim PolyD(Fn) ≥ Dn/n!

9

https://doi.org/10.1090//ulect/064/02
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Heuristically, we have n exponents Di to choose. Each exponent has ∼ D
choices, and so we expect Dim PolyD(Fn) ∼ Dn. For example, we can choose Di

to be any integer in the range 0 ≤ Di ≤ D/n, and so Dim PolyD(Fn) ≥ Dnn−n.
This crude estimate is strong enough for our applications, but we also explain how
to compute the dimension precisely.

Proof. Fix D and n. We encode a monomial xD1
1 ...xDn

n by a string of D ∗’s
and n |’s as follows. We begin with D1 ∗’s. Then we put one |. Then we put D2 ∗’s.
Then we put a second |. We continue this way until we have put Dn ∗’s, followed
by an nth |. Finally we put D −

∑
i Di ∗’s. This encoding is a bijection between

all the monomials in PolyD(Fn) and all the strings of D ∗’s and n |’s. Therefore,

the number of monomials is
(
D+n
n

)
. �

Plugging in this information about Dim PolyD(Fn) into Proposition 2.1, we get
the following result.

Lemma 2.3. (Parameter counting) If S ⊂ Fn and |S| <
(
D+n
n

)
, then there is a

non-zero polynomial P ∈ PolyD(Fn) that vanishes on S.

The following corollary is a little less sharp, but it’s a useful way to encapsulate
the information.

Lemma 2.4. For any n ≥ 2, for any finite set S ⊂ Fn, there is a non-zero
polynomial that vanishes on S with degree ≤ n|S|1/n.

Proof. Define D to be the greatest integer ≤ n|S|1/n. By an elementary

calculation
(
D+n
n

)
> |S|. Now by the last Corollary, there is a non-zero P ∈

PolyD(Fn) that vanishes on S. �

2.2. The vanishing lemma

Here is a fundamental fact about polynomials that will play a role throughout
the book.

Lemma 2.5. If P ∈ PolyD(F), and if P vanishes at D + 1 points, then P is the
zero polynomial.

This lemma should be familiar to most readers, but we include the proof because
the lemma plays such an important role in the book. We begin with a couple of
other basic lemmas about polynomials which we use to prove Lemma 2.5.

Lemma 2.6. If P (x) ∈ PolyD(F) is a polynomial in one variable and x1 ∈ F,
then we can write P in the form

P (x) = (x − x1)P1(x) + r,

where P1(x) ∈ PolyD−1(F) and r ∈ F.

Proof. We do the proof by induction on D. If D = 0, then P is a constant
and the conclusion is clear.

Suppose P (x) =
∑D

j=0 ajx
j . Let Q(x) = P (x) − (x − x1)(aDxD−1). The xD

term of Q(x) vanishes, and so Q(x) ∈ PolyD−1(F). By induction, we have

P (x) − (x − x1)(aDxD−1) = Q(x) = (x − x1)Q1(x) + r,

where Q1 ∈ PolyD−2(F) and r ∈ F. Therefore, we see

P (x) = (x − x1)(aDxD−1 + Q1(x)) + r. �



2.3. THE FINITE-FIELD NIKODYM PROBLEM 11

Lemma 2.7. If P (x) ∈ PolyD(F) is a polynomial over a field F and P (x1) = 0
for some x1 ∈ F, then P (x) = (x−x1)P1(x) for some polynomial P1 ∈ PolyD−1(F).

Proof. By the previous lemma, we can write P in the form P (x) = (x −
x1)P1(x) + r. Plugging in P (x1) = 0, we see that r = 0. �

Now we are ready to prove Lemma 2.5:

Proof. We prove the lemma by induction on D. As a base case suppose that
D = 0 so that P is a constant. If P vanishes at one point, then P must be the zero
polynomial.

Now we do the inductive step. Suppose that P ∈ PolyD(F) and that P vanishes
at D + 1 distinct points x1, ..., xD+1. By Lemma 2.7, we see that there is some
polynomial P1 ∈ PolyD−1(F) so that

P (x) = (x − xD+1)P1(x).

But P1 must vanish at x1, ..., xD. By the inductive hypothesis, it follows that
P1 = 0, and so P = 0. �

A line l ⊂ Fn is a 1-dimensional affine subspace.

Lemma 2.8. (Vanishing lemma) If P ∈ PolyD(Fn) and P vanishes at D + 1
points on a line l, then P vanishes at every point of l.

Proof. We parametrize l by a map γ : F → Fn of the form γ(t) = at + b,
for vectors a, b ∈ Fn, with a �= 0. We define Q(t) = P (γ(t)) = P (at + b). We
see that Q(t) is a polynomial in one variable of degree ≤ D. Since P vanishes at
D + 1 points of l, Q vanishes at D + 1 values of t. By Lemma 2.5, Q is the zero
polynomial, and so P vanishes on l. �

2.3. The finite-field Nikodym problem

Let Fq be a finite field with q elements. A set N ⊂ Fn
q is called a Nikodym set

if, for each point x ∈ Fn
q , there is a line L(x) containing x so that L(x) \ {x} ⊂ N .

A trivial example of a Nikodym set is the entire set Fn
q . Can one find a significantly

smaller Nikodym set?

Theorem 2.9. ([D]) Any Nikodym set in N ⊂ Fn
q contains at least cnqn

elements. We can take cn = (10n)−n.

Proof. We do a proof by contradiction. Let us assume that N is a Nikodym
set with |N | < (10n)−nqn. By the parameter counting argument, Lemma 2.4, we
can find a non-zero polynomial P that vanishes on N with degree bounded by

Deg P ≤ 2n|N |1/n ≤ (1/5)q < q − 1.

Next we claim that P vanishes at every point of Fn
q . Let x be an arbitrary

point of Fn
q . By the definition of a Nikodym set, there is a line L(x) containing x

so that L(x)\{x} ⊂ N . The polynomial P vanishes on N , so P vanishes at ≥ q−1
points of L(x). Since Deg P < q − 1, the vanishing lemma implies that P vanishes
on the whole line L(x). In particular, P vanishes at x.

We know that P is a non-zero polynomial and that P vanishes at every point
of Fn

q . That might sound like a contradiction, but it’s not quite a contradiction.
For example, the polynomial xq − x vanishes for all x ∈ Fq. But we also know that
Deg P < q. We now get a contradiction from the following lemma.
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Lemma 2.10. Suppose that P ∈ Polyq−1(F
n
q ). If P vanishes at every point of

Fn
q , then P is the zero polynomial.

Proof. The proof uses the vanishing lemma and induction on n.
If n = 1, then the result follows directly from the vanishing lemma, Lemma

2.5. P vanishes at q > Deg P points of Fq, and so P is the zero polynomial.
Now we proceed by induction. We let x1, ..., xn be coordinates on Fn

q , and we
write P in the form

P (x1, ..., xn) =

q−1∑
j=0

Pj(x1, ..., xn−1)x
j
n.

In this formula, Pj are polynomials in x1, ..., xn−1 of degree ≤ q − 1. Fix the
values of x1, ..., xn−1, and let xn vary. We have a polynomial in xn, of degree
≤ q − 1, that vanishes for all xn ∈ Fq. By Lemma 2.5, this polynomial must
be the zero polynomial. In other words, Pj(x1, ..., xn−1) = 0 for all j and all
(x1, ..., xn−1) ∈ Fn−1

q . But now, by induction on n, each polynomial Pj is the zero
polynomial. Then P is the zero polynomial as well. �

This finishes the proof of the finite field Nikodym theorem. �

Here is a summary of the proof. Suppose that N is a small Nikodym set. By
parameter counting, we can find a polynomial that vanishes on N with degree less
than q− 1. By the vanishing lemma, this polynomial vanishes at every point of Fn

q .
Now the polynomial vanishes too much, giving a contradiction.

Before this approach with polynomials, the finite field Nikodym problem was
considered to be very difficult. The finite field Nikodym problem has a more well-
studied cousin called the finite field Kakeya problem. The paper [D] solved this
problem as well with a small variation on the argument above. We give the proof
in the next section.

2.4. The finite field Kakeya problem

A set K ⊂ Fn
q is called a Kakeya set if it contains a line in every direction.

In other words, for every vector a ∈ Fn \ {0}, there is a vector b so that the line
{at + b|t ∈ Fq} is contained in K. A trivial example of a Kakeya set is the entire
vector space Fn

q . Can one find a Kakeya set significantly smaller than this?

Theorem 2.11. ([D]) A Kakeya set K ⊂ Fn
q has at least cnqn elements, for

cn = (10n)−n.

Proof. Suppose that K ⊂ Fn
q is a Kakeya set with |K| < (10n)−nqn. By the

parameter counting argument, Lemma 2.4, there is a non-zero polynomial P that
vanishes on K with Deg P ≤ n|K|1/n < q. We write P as a sum of two pieces -
the terms of highest degree plus the terms of lower degree. If D is the degree of P ,
then we have P = PD + Q, where PD is homogeneous of degree D and Deg Q < D,
and where PD is non-zero.

Let a be any non-zero vector in Fn
q . Choose b so that the line {at + b|t ∈ F} is

contained in K. Consider the polynomial in one variable R(t) := P (at + b). The
polynomial R vanishes for each t ∈ F . It has degree ≤ D < q. By the vanishing
lemma, Lemma 2.5, R is the zero polynomial. In other words, every coefficient of
R is zero. But the coefficient of tD in R is exactly PD(a). So we see that PD(a)
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vanishes for all a ∈ Fn \ {0}! Since PD is homogeneous of degree D ≥ 1, PD also
vanishes at 0, and so PD vanishes at every point of Fn

q . Since D < q, Lemma 2.10
implies that PD is the zero polynomial. This gives a contradiction. �

Splitting off the homogeneous part in this way has a geometric interpretation.
We recall that the projective space PFn is the set of equivalence classes of Fn+1\{0}
where two elements are equivalent if one is a rescaling of the other by a factor λ ∈ F∗.
The projective space PFn can be written as a disjoint union Fn∪PFn−1. The usual
way to do this is to identify a point (x1, ..., xn) ∈ Fn with the equivalence class
of (x1, ..., xn, 1) in PFn. The remainder of PFn is the equivalence classes of points
of the form (x1, ..., xn, 0), and this naturally identifies with PF

n−1. The subset
PFn−1 ⊂ PFn is called the set of points at infinity.

Every line in Fn can be extended to a projective line in PFn by adding one
point at infinity. If a �= 0, then the line {at + b|t ∈ F} in Fn extends to include
the point at infinity in the equivalence class (a, 0). Similarly, if P ∈ PolyD(Fn),
then the zero set of P , Z(P ) ⊂ Fn, can be naturally extended to PFn as follows: if
0 �= a ∈ Fn

q , then the point at infinity (a, 0) lies in Z(P ) if and only if PD(a) = 0.
In the proof of finite field Kakeya, we showed that if a line l ⊂ Fn lies in the zero
set of a polynoimal P of degree < q, then the point of l at infinity also lies in Z(P ).
We can think of this as a version of the vanishing lemma in projective space.

This language is nice for summarizing the proof of Theorem 2.11. Suppose that
K ⊂ Fn

q is a small Kakeya set. By parameter counting, there is a polynomial that
vanishes on K with degree less than q. Since K is a Kakeya set, the polynomial
vanishes on one line in every direction. By a version of the vanishing lemma, the
polynomial vanishes at all the points at infinity in PFn

q . But then the polynomial
vanishes at too many points at infinity, giving a contradiction.

The Kakeya and Nikodym problems presented here are finite field analogues of
deep open problems in Euclidean space Rn. Here is the original Kakeya problem
in Rn. A Kakeya set K ⊂ Rn is a set which contains a unit line segment in
each direction. For example, the ball of radius 1/2 is a Kakeya set. Besicovitch
constructed surprising examples of Kakeya sets with arbitrarily small volume and
even with measure zero. The sets coming from this construction have measure
zero, but they all have full Hausdorff dimension. The Kakeya conjecture states
that every Kakeya set K ⊂ Rn has Hausdorff dimension n. The Kakeya problem
is connected with some other deep problems in Fourier analysis, and it was been
studied intensively.

The finite field Kakeya problem was first raised as a cousin of the Euclidean
problem. Before the polynomial method, it was generally thought that finite field
Kakeya was of the same order of difficulty as the original problem. When this
proof appeared, there was a sense of shock in the harmonic analysis community. It
remains unclear how much the polynomial approach can contribute to understand-
ing the original problem in Rn. We will return to the original Kakeya problem in
Chapter 15 and discuss these issues more.

2.5. The joints problem

Let L be a set of lines in R3. A joint of L is a point which lies in three non-
coplanar lines of L. The joints problem asks what is the maximal number of joints
that can be formed from L lines.
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The joints problem was posed in the early 90’s by Chazelle, Edelsbrunner,
Guibas, Pollack, Seidel, Sharir, and Snoeyink, in [CEGPSSS]. They proved that
the number of joints formed by L lines is � L7/4, and the exponent has gradually
improved. We will explain some of the ideas from that first paper later in the book,
in Section 8.4.

Let us look at some examples. Our first example is based on a grid. Consider
an S×S×S grid of points, and let L be the set of all axis-parallel lines that intersect
the grid. The number of lines in L is 3S2 = L lines. Each point in the grid is a
joint for L, so there are S3 joints. Therefore the number of joints is ∼ L3/2.

There is another example which has slightly more joints than this one. As a
special case, consider the edges of a tetrahedron. A tetrahedron has six edges and
four vertices. Each vertex lies in three non-coplanar edges, and so the tetrahedron
gives a set of six lines with four joints. It is not hard to check that any six lines
can form at most four joints. This tetrahedron example can be generalized to large
numbers of lines in the following way.

Let S ≥ 3 be a parameter. Consider S planes in R3 in general position. Any
two of the planes intersect in a line. Let L be this set of lines. The number of lines
in L is L =

(
S
2

)
lines. Any three of the planes intersect in a point, and each such

point is a joint of L. Therefore, L has
(
S
3

)
joints. If we take S = 4, we recover the

tetrahedron example. In this example, the number of joints is still ∼ L3/2, but the
constant is better than in the grid example.

This example is the best known example in the joints problem. As far as I
know, it is possible that every set of

(
S
2

)
lines in R3 determines at most

(
S
3

)
joints.

It is not known how to prove such a sharp estimate, but we will prove that these
examples are sharp up to a constant factor.

Theorem 2.12. ([GK1], simplified by [KSS] and [Q]) Any L lines in space
determine ≤ 10L3/2 joints.

Main Lemma. If L is a set of lines in R3 that determines J joints, then one
of the lines contains at most 3J1/3 joints.

Before proving the main lemma, let us see how it implies Theorem 2.12. Let
J(L) be the maximum number of joints that can be formed by L lines. If L is a
set of L lines, then the main lemma tells us that one of the lines contains at most
3J(L)1/3 of the joints. The number of joints not on this line is at most J(L − 1).
This gives the following recursive bound for J(L):

J(L) ≤ J(L − 1) + 3J(L)1/3.

Iterating this argument, we see that

J(L) ≤ J(L − 1) + 3J(L)1/3 ≤ J(L − 2) + 2 · 3J(L)1/3 ≤ ... ≤ L · 3J(L)1/3.

Now rearranging gives J(L)2/3 ≤ 3L, which implies the theorem.
Now we turn to the proof of the main lemma.

Proof. Let P be a lowest degree non-zero polynomial that vanishes at every
joint of L. By the parameter counting argument, Lemma 2.4, the degree of P is
≤ 3J1/3. We will prove the main lemma by contradiction, so we suppose that every
line of L contains > 3J1/3 joints. By the vanishing lemma, Lemma 2.8, P must
vanish on every line of L.
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Next we study the gradient of P at each joint of L. Recall that for a smooth
function F : Rn → R, we write ∇F for the gradient ( ∂F

∂x1
, ..., ∂F

∂xn
).

Lemma 2.13. If x is a joint of L, and if a smooth function F : R3 → R vanishes
on the lines of L, then ∇F vanishes at x.

Proof. By hypothesis, x lies in three non-coplanar lines of L. Let v1, v2, v3 be
tangent vectors for these three lines. The directional derivative of F in the direction
vi must vanish at x. So we have ∇F (x) · vi = 0 for each i. Since the vi are a basis
of R3, we have ∇F (x) = 0. �

So we see that the derivatives of P vanish at each joint. The derivatives have
smaller degree than P . Since P was a minimal degree non-zero polynomial that
vanishes at each joint, each derivative of P is identically zero! Then P must be
constant. Since P is non-zero, it follows that there are no joints at all, and this
gives a contradiction. �

Here is an example to illustrate the proof. Suppose that we start with an
A× B × C grid of points with A < B < C, and we let L be the set of axis-parallel
lines that intersect the grid. The number of lines in L is AB + AC + BC, and the
number of joints is ABC. All of the joints are contained in a union of A parallel
planes. Therefore, there is a polynomial P of degree A which vanishes on all the
joints (the polynomial is a product of linear factors, one for each plane). It is an
exercise to check that P has minimal degree among all polynomials that vanish on
the grid above. Moreover, up to scaling, P is the unique polynomial of degree A that
vanishes on the grid. Each line of L contains either A, B, or C joints, depending
on which direction it is pointing. The polynomial P vanishes on all the lines of L
containing B joints and all the lines containing C joints, but on none of the lines
with A joints. We see in this example that the minimal degree polynomial identifies
the more important and less important lines. It locates at least one unimportant
line with not too many joints on it.

2.6. Comments on the method

In each of the proofs in this chapter, there is a polynomial P that plays a crucial
role in understanding the combinatorics. I think it’s interesting to note that we
prove that this crucial polynomial exists in a somewhat indirect way. One could
imagine writing a formula for P in terms of the positions of the points in the set
that we are studying. We will see an argument of this type later in Chapter 5. But
in these arguments, we don’t give a formula for P , and instead we prove that P
must exist by a dimension-counting argument.

This aspect of the proofs reminds me of the probabilistic method. (The book
The Probabilistic Method, [AlSp], by Alon and Spencer gives a clear, engaging
exposition of this topic.) In the probabilistic method, one proves that an object
with certain properties exists by considering a random object in some class, and
showing that the random object has the given property with positive probability.
Many of these arguments can be thought of as counting arguments. Suppose that

we are interested in graphs with property X. There are 2(
n
2) different graphs on a

set of n vertices. We try to count the number of graphs on n vertices that fail to

have property X. If this number is smaller than 2(n2), then we know that there is
a graph on n vertices with property X. A key insight of the probabilistic method
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is that this approach may be much easier than constructing a particular graph and
proving that it has property X.

For comparison, consider the following problem about polynomials. Suppose
that we want to find a (non-zero) polynomial on R2 that vanishes at the points
(j, 2j) for j = 1, ..., 106, and with the smallest possible degree. If we try to write
down an explicit polynomial, we might come up with

P1(x1, x2) =

106∏
j=1

(x1 − j),

or

P2(x1, x2) =
106∏
j=1

(x2 − 2j).

The polynomials P1 and P2 vanish on our set, and they each have degree 106.
I think it is hard to find an explicit polynomial with degree much below 106. If
one hasn’t been shown the right way to think about the problem, then it may well
seem that the minimal degree is on the order of 106.

But the parameter counting lemma, Lemma 2.4, tells us that there is a polyno-
mial that vanishes on our set with degree at most 2000. This polynomial is probably
very complicated to right down in any way. A polynomial in Poly2000(R

2) has over
a million coefficients, and the parameter counting argument exploits all of them.
Most of the polynomials in Poly2000(R

2) are very complicated to write down, but
using linear algebra we can prove that there exists a polynomial with some desired
properties. In the proofs in this chapter, we use this type of indirect method to
prove that there is a polynomial with some desired properties, and then we exploit
that polynomial to study combinatorial problems.

In the last few paragraphs, we discussed the parameter counting portion of
the argument, but there is another basic issue about these proofs: why do we use
polynomials at all? The statements of the problems don’t involve polynomials, and
the idea of using polynomials is a key insight in these proofs. I don’t have a short
clear answer for why polynomials play a special role in these problems. We will
give a long discussion of this question in Chapter 3, and we will come back to it
from time to time later in the book. Polynomials are a special class of functions. In
these proofs, the main special property of polynomials that we use is the vanishing
lemma. We do use some other properties in some of the arguments – for example, in
the proof of the joints theorem, we use the fact that the derivative of a polynomial
is a polynomial of lower degree. But the vanishing lemma is the most essential
ingredient.

There are a lot of special properties of polynomials. Algebraic geometry could
be described as the study of polynomials, or maybe as the study of the special
properties of polynomials. There is no other class of functions which is at the
center of such a large field of mathematics. Later in the book, we will use some
other special properties of polynomials and more algebraic geometry.

The proofs in this chapter are models for all of the polynomial arguments in the
book. In each proof, we use an indirect method, based on parameter counting, to
find a polynomial with some desired properties. Then we exploit that polynomial
to study our problem. In this second step, we bring into play the special properties
of polynomials, especially the vanishing lemma or something related to it.



2.7. EXERCISES 17

I think that it’s surprising and interesting that this method has so many ap-
plications, both in combinatorics and in other fields. This method is sometimes
called the polynomial method. Of course, there are a huge number of methods in
mathematics involving polynomials. Maybe this type of argument should be called
something like the polynomial/parameter counting/vanishing lemma method, but
this name is too long. In any case, the aim of the book is to explore this type of
argument.

2.7. Exercises

Exercise 2.1. Given a set of N points in R3, we proved that there is a non-zero
polynomial of degree � N1/3 that vanishes at all the points. Given any N lines in
R3 prove that there is a non-zero polynomial of degree � N1/2 that vanishes on all
the lines.

State and prove a similar result for k-planes in Rn for any dimensions k, n.

Exercise 2.2. In this section, we discuss some alternate proofs of Lemma 2.5.
We prove a stronger result called polynomial interpolation.

Lemma 2.14. Suppose that S = {x0, ..., xD} is a set of D +1 distinct points in
the field F. Define the evaluation map ES : PolyD(F) → FD+1 by

ES(Q) = (Q(x0), ..., Q(xD)).

The map ES is an isomorphism.

Show that Lemma 2.14 implies Lemma 2.5.
The monomials x0, ..., xD are a natural basis for PolyD(F). Using this basis,

we can write ES as a matrix. This matrix is called the Vandermonde matrix. The
Vandermonde matrix is the N × N matrix with (i, j) entry equal to xi

j , where
0 ≤ i, j ≤ N . (Here N = D + 1.)

One approach to prove Lemma 2.14 is to show that the determinant of the Van-
dermonde matrix is non-zero. The determinant is given by the following formula:

Lemma 2.15. The determinant of the Vandermonde matrix is
∏

j1>j2
(xj1−xj2).

In particular, if x0, ..., xN−1 are distinct, then the Vandermonde matrix is invertible.

There are several proofs in the literature of the Vandermonde determinant
lemma. The most common proof uses Lemma 2.7, but there is also a proof using
row reduction – cf. [Va].

Another approach to prove Lemma 2.14 is to check that ES is surjective. To
prove this, find a polynomial fj ∈ PolyD(F) so that fj(xi) = 0 if i �= j and
fj(xj) �= 0. This approach connects with the argument in Chapter 5.

Exercise 2.3. Prove the following result:

Lemma 2.16. (Schwarz-Zippel lemma) Suppose that Ai ⊂ F are finite subsets,
defined for i = 1, ..., n, with |Ai| = N for all i. Suppose that P ∈ PolyD(Fn) is a
non-zero polynomial. Prove that the number of zeroes of P in A1 × ... × An is at
most DNn−1.

An interesting special case is that F = Fq is a finite field and Ai = Fq for all i.

Exercise 2.4. Suppose that P ∈ Poly(Rn) is a non-zero polynomial. Prove
that Z(P ), the zero set of P , has Lebesgue measure zero.
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Exercise 2.5. We consider a collection of curves Γa ⊂ Fn
q parametrized by

a ∈ Fn−1
q . For each a ∈ Fn−1

q , 1 ≤ j ≤ n − 1, suppose that Qa,j ∈ Polyd(Fq). Let
Γa be defined as the graph:

Γa := {(Qa,1(t), Qa,2(t), ..., Qa,n−1(t), t) ∈ Fn
q |t ∈ Fq}.

Suppose also that (Qa,1(0), ..., Qa,n−1(0)) = a, so that (a, 0) ∈ Γa.
Prove that there is a constant c(d, n) > 0 so that∣∣∣∪a∈F

n−1
q

Γa

∣∣∣ ≥ c(d, n)qn.

Exercise 2.6. The joints problem also makes sense in higher dimensions, and
[KSS] and [Q] proved a generalization of Theorem 2.12 to all dimensions.

If L is a set of L lines in Rn, a joint of L is defined to be a point that lies in n
lines of L pointing in linearly-independent directions.

Theorem 2.17. A set of L lines in Rn determines at most CnL
n

n−1 joints.

Prove this theorem.
Remark. The proof of the joints theorem in this chapter closely follows [KSS]

and [Q]. It generalizes in a direct way to higher dimensions. The original proof in
[GK1] was more complicated, and it did not generalize easily to higher dimensions.

Exercise 2.7. The axis-parallel case of the joints problem is already quite
interesting. Suppose that Li is a set of lines in Rn parallel to the xi axis. Let
L = ∪iLi. A joint of L is a point that lies in one line from each family Li.

Loomis and Whitney proved [LW] that the number of joints of L is at most∏n
i=1 |Li|

1
n−1 . This implies that the number of joints is at most |L| n

n−1 .
Prove the axis-parallel case of the joints theorem. It is a good idea to start

with the case n = 3.
The Loomis-Whitney theorem has interesting implications in analysis and ge-

ometry. We discuss some of these in Section 15.1.

Exercise 2.8. Suppose that A, B, C ⊂ R with |A| < |B| < |C|. Consider the
grid A×B×C ⊂ R3. Let P (x1, x2, x3) =

∏
a∈A(x1−a). Prove that P is a minimal

degree polynomial that vanishes on the grid. Moreover, prove that every minimal
degree polynomial vanishing on the grid is a multiple of P .

What happens in |A| = |B| = |C|?
Exercise 2.9. This is a much harder exercise, or a project, based on similar

ideas to the chapter.
Suppose that li is a line in Fn

q and suppose that Xi ⊂ li is a subset with
|Xi| ≥ q/2 = |li|/2. Prove that

|∪Xi| ≥ c(d, n) |∪li| .
(See [NW] for a proof and some generalizations.)



CHAPTER 3

Why polynomials?

The finite field Kakeya theorem and the joints theorem have short proofs using
polynomials. At the current time, no one knows how to prove them without men-
tioning polynomials. Before people found the proofs from Chapter 2, they tried
hard to attack these problems in other ways. It seems to be very difficult to prove
these results without using the polynomial trick from Chapter 2. It would be in-
teresting to understand why this is happening. The goal of the chapter is to start
to explore this question.

I think it can be hard to appreciate the polynomial proofs of the finite field
Kakeya and joints theorems without trying to prove them in other ways. So to
start the chapter, we discuss finite field Kakeya and joints without polynomials.
We explain some of the methods people have used to work on these problems and
see the difficulties that they encounter.

After that, we discuss what properties of polynomials we used in the proofs
from Chapter 2. What is special about polynomials that make them work well in
these arguments? Could there be other spaces of functions that work equally well
or better?

The real stars of this chapter are some interesting examples of sets of lines. The
finite field Kakeya conjecture and the joints conjecture are true, but these examples
show that some naive conjectures in a similar spirit are not true. Knowing about
these examples shows that certain approaches cannot prove finite field Kakeya or
joints.

These examples are all constructed using polynomials. Having interesting ex-
amples based on polynomials is another indication that polynomials play an im-
portant role in this circle of questions.

3.1. Finite field Kakeya without polynomials

In this section, we prove some estimates for the finite field Kakeya problem
without the polynomial method. These estimates are all much weaker than Theo-
rem 2.11.

Recall that a set K ⊂ Fn
q is called a Kakeya set if it contains a line in every

direction. We want to study the minimal possible size of a Kakeya set K ⊂ Fn
q .

Theorem 2.11 gives the bound |K| � qn. Our first estimate gives a good answer
for n = 2.

Proposition 3.1. Suppose s ≤ q. If l1, ..., ls are lines in Fn
q , then their union

has cardinality at least (1/2)qs.
In particular, if K ⊂ Fn

q is a Kakeya set, then |K| ≥ (1/2)q2.

Proof. We imagine adding the lines one at a time and keep track of the size
of their union. The first line contains q points. The second must contain at least

19
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q − 1 points not in the first line. The third line must contain at least q − 2 points
not in the first two lines, etc. Therefore, the number of distinct points in the union
of all s lines is at least q + (q − 1) + ... + (q − s + 1) > (1/2)qs.

A Kakeya set always contains at least q lines, and so |K| ≥ (1/2)q2.
�

This estimate is very good when n = 2. For larger n, it is not such a good
estimate. Examining the proof, we see that it only uses the fact that K contains
at least q distinct lines. In dimension n, a Kakeya set contains at least qn−1 lines,
so for n ≥ 3 we have only used a small piece of the hypothesis.

Here is a second approach, called the bush method, which does better when n
is large.

Proposition 3.2. (Bush method) If l1, ..., lM are lines in Fn
q , then the number

of points in their union is at least

(1/2)qM1/2.

If K ⊂ Fn
q is a Kakeya set, then

|K| ≥ (1/2)q
n+1
2 .

Proof. Let X be the union of the lines l1, ..., lM . Each of these lines contains
q points of X. By the pigeonhole principle, there is a point x ∈ X which lies in at
least qM |X|−1 of the lines li.

The set of lines li through the point x is called the bush of x. The lines in the
bush of x are disjoint except at x, and their union lies in X. Therefore

(q − 1)qM |X|−1 ≤ |X|.
Rearranging this inequality, we get

|X| ≥ (1/2)qM1/2.

Now a Kakeya set K ⊂ Fn
q contains at least qn−1 lines. Plugging in M = qn−1,

we get |K| ≥ (1/2)q
n+1
2 . �

If n ≥ 4, then the bush method gives a better estimate than our first method.
If n = 3, both these methods give the estimate |K| � q2. Both methods actually
apply to the union of any qn−1 distinct lines in Fn

q . A plane contains more than

q2 distinct lines, and so we can find q2 distinct lines in F3
q whose union contains

only q2 points. But a Kakeya set K ⊂ F3
q contains q2 lines pointing in different

directions. Only a small fraction of these lines can lie in a plane. To improve our
estimate for the size of a Kakeya set in F3

q , we need to exploit this fact.
Here is a third approach to the finite field Kakeya problem called the hairbrush

method. It combines ideas from the first two methods, and it takes advantage of
the fact that not too many lines of a Kakeya set can lie in a plane.

Proposition 3.3. (Hairbrush method, [Wo1]) Suppose that l1, ..., lM are lines
in Fn

q , and suppose that at most q+1 of the lines lie in any plane. Then their union
has cardinality at least

(1/3)q3/2M1/2.

If K ⊂ Fn
q is a Kakeya set, then |K| ≥ (1/2)|q|n+2

2 .
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Proof. Let X = ∪ili. If li is a line in K, then the hairbrush with stem li is
defined to be the set of lines lj which intersect li. (We don’t include li itself in the
hairbrush.) An average point of X lies in qM |X|−1 lines li. If each point of X was
about average, then each hairbrush would contain � q2M |X|−1 lines. We claim
that there is always at least one hairbrush with ≥ (1/2)q2M |X|−1 lines. This claim
is a simple counting argument, and we will come back to it below.

Fix a hairbrush containing ≥ (1/2)q2M |X|−1 lines. Let li be the stem of the
hairbrush. Consider all of the 2-planes that contain the stem li. Each line in the
hairbrush lies in exactly one of these 2-planes. If π is a 2-plane, then we let H(π)
denote the lines of the hairbrush that lie in π. Since every plane contains at most
q + 1 of our lines, we know that there are at most q lines in H(π). Since each line
in the hairbrush lies in exactly one plane π, we have∑

π

|H(π)| ≥ (1/2)q2M |X|−1.

By our first method, Proposition 3.1, we know that the union of the lines in
H(π) contains at least (1/3)|H(π)|q points of π \ li. As π varies among the 2-planes
containing li, the sets π \ li are disjoint. Therefore, the union of the lines in the
hairbrush has cardinality at least∑

π

(1/3)|H(π)|q ≥ (1/6)q3M |X|−1.

The lines in the hairbrush all lie in X, and so we get

(1/6)q3M |X|−1 ≤ |X|.
Rearranging this gives the bound

|X| ≥ (1/3)q3/2M1/2.

To finish this argument, we return to the simple claim about finding a hairbrush
with many lines. Let L be our set of lines l1, ..., lM . Let μ(p) be the number of
lines of L containing the point p. We know that

∑
p μ(p) = qM . Consider triples

of the form (l, l′, p) ∈ L × L × Fn
q , with p ∈ l and p ∈ l′. The number of triples is∑

p∈X μ(p)2. Since the function s2 is convex in s, the number of triples is at least

|X|
(
qM |X|−1

)2
= q2M2|X|−1. Since there are M lines in L, one of them must

participate in at least q2M |X|−1 triples. Call this line li. There are q “degenerate”
triples of the form (li, li, p). But except for these, every triple (li, lj , p) corresponds
to a line lj in the hairbrush of li, and every such line contributes exactly one triple.
Therefore, the number of lines in the hairbrush of li is at least q2M |X|−1 − q.
If |X| ≥ (1/2)qM , then we are done, and otherwise, the number of lines in the
hairbrush of li is at least (1/2)q2M |X|−1 as desired.

This finishes the proof of the first part of the proposition. Now we apply this
estimate to Kakeya sets. Suppose that K = ∪li is a Kakeya set in Fn

q , where the

lines li point in different directions. We have M ≥ qn−1 lines li. Since they point
in different directions, there are at most q + 1 of them in any plane. Plugging this

into our first bound, we see that |K| ≥ (1/3)q
n+2
2 .

�

In F3
q, the hairbrush method shows that a Kakeya set has size � q5/2. More

generally, it shows that if {li} is a set of q2 lines in F3
q with at most q lines in any
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2-plane, then | ∪i li| � q5/2. If q is a square, then there is a remarkable example
which shows that this estimate is tight. This example is called a Hermitian variety
H ⊂ F3

q . It is an algebraic surface in F3
q , it has |H| ∼ q5/2, and it contains a set of

∼ q2 lines LH with far less than q lines of LH in any 2-plane. In the next section,
we describe this example.

(If q is prime, then Ellenberg and Hablicsek [ElHa] recently proved that this
type of example cannot occur. If {li} is a set of q2 lines in F3

q with at most q lines

in any 2-plane, and if q is prime, then they proved that | ∪i li| � q3. Their proof
uses the polynomial method. In particular, it builds on the ideas from Chapter 11.)

Hermitian varieties were described by Bose in [BC] in the 1960’s as an inter-
esting example in algebraic geometry. The connection between this example and
the Kakeya problem was explained by Katz, Laba, and Tao in [KLT]. They used
a closely related example called the Heisenberg group. The paper [KLT] describes
the Heisenberg group in C3 and the finite field version appears in [MT].

The Hermitian variety example shows that in order to improve the bound q5/2

for a Kakeya set in F3
q , we cannot just use the fact that there are not too many

lines of a Kakeya set in any 2-plane. We need to get some additional mileage out
of the fact that the lines point in different directions, and it is quite challenging to
do this. Before the polynomial method, the best proven lower bound for the size
of a Kakeya set in F3

q was ∼ q5/2.
There was some further interesting progress on the Kakeya problem using com-

binatorial number theory. If q is prime, a slightly stronger estimate for the size of
Kakeya sets in F3

q was proven in [BKT]. For large dimensions n, combinatorial
number theory ideas led to stronger estimates than the hairbrush argument, but
they were still much weaker than Theorem 2.11. They had the form |K| � qαn

for some α > 1/2. The best known value of α was a little less than .6. For an
introduction to this interesting line of attack, see [Lab] and [Ta1].

We included this discussion to help put the finite field Kakeya problem in per-
spective. The first couple methods show how a reasonable person might start to
think about the problem and the hairbrush argument is a development of those
methods. It is remarkable that one can prove much better estimates using polyno-
mials.

3.2. The Hermitian variety

The Hermitian variety is an interesting variety H ⊂ F3
q which we can define

whenever q is a square. In this section, we discuss the case that q = p2 where p is
a prime. Our main interest is in large primes p, and in particular we will assume
that p is odd. The Hermitian variety H ⊂ F3

q is defined by the equation

xp+1
1 + xp+1

2 + xp+1
3 = 1.

The Hermitian variety contains a lot of lines that intersect each other in a
complicated way. From the point of view of combinatorics, it is probably the most
interesting configuration of lines that we know about.

Proposition 3.4. The variety H contains ∼ q5/2 points of F3
q . The variety H

contains ∼ q2 lines. We denote the set of lines in H by LH . Any plane contains
� q1/2 lines of LH .
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This example was discovered by Bose and Chakravarti [BC], and independently
by Segre [Seg] in the 1960s. Mockenhaupt and Tao rediscovered a small variation
of this example, [MT]. (Steve Kleiman recently pointed out the work of [BC] and
[Seg] to the combinatorics community.)

We begin with some basic facts about the multiplicative group F∗
q . The group

F∗
q is a cyclic group of order q − 1 = (p + 1)(p − 1) (cf. Theorem 1.9 in Chapter

4 of [Lan]). Now F∗
p ⊂ F∗

q is a cyclic subgroup of order p − 1. Therefore, we can
characterize F∗

p ⊂ F∗
q in the following way:

F∗
p = {y ∈ F∗

q |yp−1 = 1}.
This observation leads to some special properties of the operation x → xp+1:

Lemma 3.5. For every x ∈ F∗
q , xp+1 ∈ F∗

p. On the other hand, for every y ∈ F∗
p,

the equation xp+1 = y has exactly p + 1 solutions x ∈ F∗
q .

Proof. Since F∗
q is cycle of order q−1 = (p−1)(p+1), we see that (xp+1)p−1 =

xq−1 = 1, and so xp+1 ∈ F∗
p. On the other hand, since F∗

q is cyclic of order
(p − 1)(p + 1), the second claim follows. �

As a corollary, we can estimate the size of H.

Corollary 3.6. |H| ∼ q5/2.

Proof sketch. For any x1, x2 ∈ Fq, we study the set of x3 so that (x1, x2, x3)

∈ H. We let y = 1 − xp+1
1 − xp+1

2 ∈ Fp. If y = 0, then (x1, x2, x3) ∈ H if and only

if x3 = 0. But if y �= 0, then Lemma 3.5 says that there are p + 1 ∼ q1/2 values of
x3 so that (x1, x2, x3) ∈ H. It’s straightforward to check that for the majority of
(x1, x2) ∈ F2

q , y �= 0, and so |H| ∼ q1/2q2 = q5/2. �
Before we describe the lines in H, we introduce a piece of algebraic structure

that helps to understand H better. We define a conjugation operation on Fq: for
any x ∈ Fq, x̄ := xp. This conjugation is an involution because (xp)p = xq = x. In
particular x̄ = 0 if and only if x = 0.

This conjugation is analogous to complex conjugation. In fact, if p is congruent
to 3 mod 4, then there is no solution to the equation y2 = −1 with y ∈ Fp, and we
can define Fq = Fp[i]. In this case, if x = y1 + iy2, then the reader can check that
x̄ := xq = y1 − iy2. We won’t need this in the sequel, but it might be helpful to
keep it in mind.

Using our definition of conjugation, x̄ = xp, the equation defining H can be
rewritten in the form

x1x̄1 + x2x̄2 + x3x̄3 = 1.

The left-hand side is reminiscent of a Hermitian inner product. In particular,
the Hermitian variety is a finite-field analogue of the unit sphere in C3, defined by
the equations z1z̄1 + z2z̄2 + z3z̄3 = 1. If v and w are vectors in Fn

q , we will write

v · w̄ =
n∑

i=1

viw̄i.

We observe a couple simple algebraic facts about this expression, analogous to
standard facts about a Hermitian inner product in Cn.

For any v ∈ Fn
q , v · v̄ ∈ Fp. Indeed, v · v̄ =

∑
i viv̄i =

∑
i v

p+1
i . And for each i,

vp+1
i ∈ Fp by Lemma 3.5.
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Also,

(v · w̄) = v̄ · w.

Because we are working in characteristic p, (
∑

i ai)
p =

∑
i a

p
i . Therefore, the

left-hand side of the last equation is(∑
i

viw
p
i

)p

=
∑
i

vpi w
q
i =

∑
i

vpi wi = v̄ · w.

In particular, v · w̄ = 0 if and only if v̄ · w = 0.
With these tools we now study the lines in H. For any a1, b1, a2, b2 ∈ Fq, we

let l(a, b) be the line given by the equations

x1 = a1x3 + b1; x2 = a2x3 + b2.

There are q4 lines l(a, b) and these are almost all of the lines in F3
q . We want to

figure out which lines l(a, b) are contained in H. To see if l(a, b) is contained in H,

we plug in the equations xi = aix3 + bi into the formula xp+1
1 + xp+1

2 + xp+1
3 = 1.

Grouping the terms by powers of x3, we see that l(a, b) lies in H if and only if

(ap+1
1 +ap+1

2 +1)xp+1
3 +(ap

1b1 +ap
2b2)x

p
3 +(bp1a1 + bp2a2)x3 +(bp+1

1 + bp+1
2 − 1) = 0

for all x3 ∈ Fq.

The left-hand side is a polynomial of degree p + 1 < q, and so by the vanishing
lemma it can vanish at all q points x3 ∈ Fq if and only if all the coefficients vanish.
So we see that l(a, b) ⊂ H if and only if the following four equations hold:

(1) ap
1b1 + ap

2b2 = 0.
(2) bp1a1 + bp2a2 = 0.

(3) ap+1
1 + ap+1

2 = −1.

(4) bp+1
1 + bp+1

2 = 1.

These equations become much simpler if we rewrite them using our conjugation
notation and using the vectors a = (a1, a2) and b = (b1, b2). The first two equations
become ā · b = 0 and a · b̄ = 0. As we discussed above, these two equations are
equivalent! The list of equations becomes

(1) a · b̄ = 0
(2) a · ā = −1.
(3) b · b̄ = 1.

Writing the equations in this way they become much more approachable, and
we can get a good estimate for |LH |. The first equation has ∼ q3 solutions, because
for any non-zero vector b ∈ F2

q , there are exactly q values of a that solve the

equation. For most of these solutions a · ā and b · b̄ are non-zero. In other words, if
we define

S := {a, b so that a · b̄ = 0, a · ā �= 0, b · b̄ �= 0},
then |S| ∼ q3.

Now on S, the values of (a · ā, b · b̄) are evenly distributed within (F∗
p)

2. This

follows by a symmetry argument. Lemma 3.5 implies that as λ varies in F∗
q , λλ̄ is

evenly distributed in F∗
p. Now (F∗

q)
2 acts on S: for (λ, μ) ∈ (F∗

q)
2, the action sends

(a, b) to (λa, μb). This action transforms (a · ā, b · b̄) to (λλ̄a · ā, μμ̄b · b̄), and so
(a · ā, b · b̄) must be evenly distributed. Therefore,

|LH | = (p − 1)−2|S| ∼ q2.
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Our description of LH also allows us to see that LH is not a Kakeya set of lines.
The direction of the line l(a, b) is determined by a, and the vector a has to satisfy
the equation a1ā1 + a2ā2 = −1. This equation has ∼ pq ∼ q3/2 solutions. So the
lines of LH only point in ∼ q3/2 different directions, and for each direction there
are ∼ q1/2 parallel lines in that direction.

We have now shown that |LH | ∼ q2, the hardest and most interesting part of
Proposition 3.4. We want to briefly sketch an alternative way to estimate |LH |,
based on the symmetries of H. The set H is very symmetrical: there is a transitive
group of symmetries, and so every point of H is equivalent to any other point. This
symmetry group is an analogue of the unitary group. We define

U(Fn
q ) := {g ∈ GL(Fn

q ) so that v · w̄ = (gv) · (gw) for all v, w ∈ Fn
q }.

Exercise 3.1. The group U(F3
q) acts transitively on the Hermitian variety

H. This is the Fq-analogue of the fact that the standard unitary group U(3) acts
transitively on the unit sphere in C3 defined by z1z̄1 + z2z̄2 + z3z̄3 = 1.

Given this transitive symmetry, it is easier to estimate |LH |, because we only
have to estimate the number of lines through a single convenient point. We consider
the point (1, 0, 0) ∈ H, and we will construct p + 1 lines of LH through this point.
The lines we construct all lie in the plane x1 = 1. The intersection of H with this
plane is given by the equation

xp+1
2 = −xp+1

3 .

This intersection contains the line of the form x1 = 1; x2 = ax3 whenever ap+1 =
−1. There are p+1 such values of a. All of these lines go through the point (1, 0, 0).
In summary, there are p + 1 lines of LH through the point (1, 0, 0).

Using the symmetry under the unitary group, we see that there are at least
p+1 lines of LH through every point of H. Since each line of LH contains q points
of H, and each point of H lies in at least p + 1 lines of LH , we get

q|LH | ≥ (p + 1)|H| ∼ q3.

This argument gives an alternate derivation of the fact that |LH | ∼ q2.
As an aside, it turns out that the p + 1 lines that we constructed are all of

the lines of LH through the point (1, 0, 0). All these lines lay in the plane x1 = 1.
Using the symmetry of H, it follows that the lines of LH do not form any joints at
all: at every point x ∈ H, all the lines of LH containing x lie in a plane.

Finally, we have to check that any plane contains � q1/2 lines of L. To prove
this, we will have to understand a little about the condition v · v̄ = 0. Unlike in Cn,
there can be non-zero vectors v ∈ Fn

q with v · v̄ = 0. To see this, recall that for any

y ∈ F∗
p, there exists some x ∈ F∗

q with xx̄ = xp+1 = y. So we can choose v1 ∈ F∗
q

with v1v̄1 = 1 and v2 ∈ F∗
q with v2v̄2 = −1, and then v · v̄ = 0. However, in F3

q , the
set of vectors v with v · v̄ = 0 does not contain a whole 2 plane. We state this as a
lemma.

Lemma 3.7. Suppose that V ⊂ F3
q is a 2-dimensional subspace. Then there

exists a vector v ∈ V with v · v̄ �= 0.

Proof. For any w ∈ F3
q , define the linear map Lw : F3

q → Fq by Lw(v) = v · w̄.
In coordinates, we have

Lw(v) = w̄1v1 + w̄2v2 + w̄3v3.
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If w �= 0, then Lw is a 2-dimensional subspace of F3
q . If KerLw = Ker Lw′ then

we must have w̄ = λw̄′ for some λ ∈ F∗
q . Conjugating this equation, we see that

w = λ̄w′.
Since V is 2-dimensional, we can choose w, w′ ∈ V so that Ker Lw �= Ker Lw′ .

At least one of these kernels must be different from V . After relabelling, we can
assume that KerLw �= V , and so we can choose u ∈ V with u · w̄ �= 0. After
multiplying u by a scalar, we can assume that u · w̄ = 1. Conjugating, we also see
that ū · w = 1.

We use this information to expand (u + w) · (u + w):

(u + w)(u + w) = u · ū + w · w̄ + 2.

Now, u, w, and u+w all lie in V . We assume that p is odd and so 2 is non-zero,
and so one of the expression u · ū, w · w̄, or (u + w)(u + w) must be non-zero. �

Now we are ready to check that H does not contain a 2-plane.

Lemma 3.8. The set H ⊂ F3
q does not contain a 2-plane.

Proof. We can write an arbitrary 2-plane π in the form a + V , where a ∈ F3
q

and V is a 2-dimensional subspace of F3
q . By the last lemma, there is a vector v ∈ V

with v · v̄ �= 0. Consider the line l ⊂ π parametrized by t → a + tv. We will check
that the line l is not contained in H, and so the plane π is not contained in H.

If l were contained in H, we would have

(a + tv)(a + tv) − 1 = 0 for all t ∈ Fq.

Using that we are in characteristic p, the left-hand side is

(a+tv)·(a+tv)p−1 = (a+tv)·(ā+tpv̄)−1 = (v ·v̄)tp+1+(a·v̄)tp+(v ·ā)t+(a·ā−1).

This expression is a polynomial in t. Since v · v̄ �= 0, it is a non-zero polynomial
of degree p + 1 < q. By the vanishing lemma, Lemma 2.8, it cannot vanish at all q
values of t. Therefore, the line l is not contained in H. �

Now we can estimate the number of lines in H ∩ π for a 2-plane π. Since H
does not contain π, the restriction of the polynomial xp+1

1 + xp+1
2 + xp+1

3 − 1 to the
plane π must be non-zero. It has degree at most p+1, and so by the Schwarz-Zippel
lemma (see Exercise 2.3), |H ∩ π| ≤ (p + 1)q � q3/2.

We can now bound the number of lines in H∩π using Proposition 3.1. If H ∩π
contains s ≤ q/2 lines, then Proposition 3.1 says that |H ∩ π| ≥ (1/2)qs. Since
|H ∩ π| � q3/2, we conclude that s � q1/2, and so there are � q1/2 lines of LH in
any plane. This finishes the proof of Proposition 3.4.

Bose and Chakravarti [BC] also studied higher-dimensional Hermitian vari-
eties, Hn ⊂ Fn

q defined by the equation
∑n

i=1 xix̄i = 1. They showed that higher
dimensional Hermitian varieties contain many k-planes for k on the order of n/2.

Exercise 3.2. Let Q ⊂ F4
q be the degree 2 hypersurface defined by the equation

x2
1 + x2

2 − x2
3 − x2

4 = 1. Prove that each point x ∈ Q lies in ∼ q lines in Q. Also
check that Q contains ∼ q3 points and ∼ q3 lines. Check that the lines through
each point x ∈ Q lie in a 3-plane.
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3.3. Joints without polynomials

The joints problem has a short proof with high degree polynomials, but it
seems hard to prove without polynomials. This is somewhat surprising because the
statement of the problem involves only points and lines and planes. Why is it hard
to prove the joints theorem just mentioning linear objects?

In this section, we consider an approach to the joints problem just mentioning
lines and planes, and we see why it leads to very weak bounds.

A joint is a triple intersection point (a point where ≥ 3 lines meet). So we begin
by asking how many triple intersection points can be formed by L lines. Since two
lines intersect in at most one point, the number of triple intersection points is � L2.
There is an example where the number of triple intersection points is ∼ L2. The
example is a grid of horizontal, vertical, and diagonal lines in R2. Let L denote the
following set of lines:

• Horizontal lines y = b for each integer b = 1, ..., N .
• Vertical lines x = a for each integer a = 1, ..., N .
• Diagonal lines x − y = c for each integer c = −N, ..., N .

This set has L = 4N + 1 lines, and it has a triple intersection point at each
integer point (a, b) with 1 ≤ a, b ≤ N . We let E0 denote this integer grid of ∼ L2

triple intersection points.
The triple intersection points of L are not joints, because all the lines lie in a

plane. We can think of R2 ⊂ R3, so that the lines lie in R3. Then we may ask
if this configuration is flexible? Can we perturb the lines of L, preserving all the
triple intersections, and making the lines not coplanar?

Let us make the question more precise. If L = {l1, l2, ...} is a set of lines and
E = {p1, p2, ...} is a set of points, then the incidence matrix I(L, E) is the matrix
with (i, j) entry equal to 1 if li contains pj and equal to zero if li doesn’t contain pj .
We call (L′, E′) a perturbation of (L, E) if they have the same incidence matrix. In
particular, if (L′, E′

0) is a perturbation of our first example (L, E0), then each point
of E′

0 is a triple point of L′. Now we can ask a precise question about perturbing
(L, E0). Is there a perturbation of (L, E0) so that most of the points of E′

0 are
joints of L′?

The answer to this questions is no. We sketch a proof, using only lines and
planes. A triangle is defined to be a set of three lines and three points so that
each line contains exactly two of the points. A triangle in (L, E0) is defined to be
a triangle where the three lines are in L and the three points are in E0. Triangles
are preserved by perturbation: each triangle of (L, E0) corresponds to a triangle
of (L′, E′

0). Any triangle lies in a unique plane. If (l1, l2, l3) are three lines of a
triangle, lying in a plane π, and if l is a fourth line that intersects two lines of the
triangle at distinct points, then l must also lie in the plane π. Using this fact, we
can force more and more lines to lie in a plane.

Let T be the triangle with edges x = 1, y = N , and x − y = 0 (in L), and
vertices (1, 1), (1, N), (N, N) in E0. Many lines of L intersect T at two distinct
points of E0. All of these lines lie in the same plane as T . In the perturbation
(L′, E′

0), there is a corresponding triangle T ′. It lies in a plane π′. Many lines of L′

intersect T ′ at two distinct points of E′
0. All these lines must also lie in π′. With

a little more work, we see that almost all the lines of L′ lie in the plane π′. (There
are only two exceptions: two of the diagonal lines of L contain exactly one point of
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E0. The corresponding lines of L′ don’t have to lie in π′. So L′ can determine at
most two joints.)

We call this argument the triangle method. The triangle method only mentions
points, lines, and planes, and it seems like a reasonable approach to the joints
problem. The paper [GS] uses the triangle method to prove a very weak estimate
on the number of joints: L lines determine o(L2) joints. Let us describe why it is
hard to prove a good estimate using the triangle method.

Let L be the same grid of horizontal, vertical, and diagonal lines as above, and
suppose that E is a subset of E0. For any subset E ⊂ E0, we can ask whether there
is a perturbation (L′, E′) so that the points of E′ are all joints of L′. If the pair
(L, E) does not contain any triangles, then the triangle method does not give any
information about (L′, E′). For example, Figure 3.1 is a picture of a triangle-free
set E ⊂ E0.

Figure 3.1. A triangle-free set.

The dots are the points of E. In Figure 3.1, is it possible to perturb the lines
of L, preserving all the triple intersections in the set E, and converting the points
of E into joints?

This type of example leads to the following question: how large can E be if
(L, E) does not contain any triangles? The paper [GS] shows that |E| = o(L2).
But triangle-free subsets can be suprisingly large.

Theorem 3.9. (Ajtai and Szemerédi, [AjSz]) For any ε > 0, for all L suffi-
ciently large, there is a subset E ⊂ E0 so that (L, E) contains no triangles and yet
|E| � L2−ε.

In the example of Theorem 3.9, is it possible to perturb the lines of L, pre-
serving all the triple intersections in the set E, and converting the points of E into
joints? Because of the joints theorem, we know that this is impossible. But with-
out mentioning polynomials, it seems hard to rule out this possibility. See [GS] for
further discussion.



3.3. JOINTS WITHOUT POLYNOMIALS 29

To finish this section, we construct the set E. As in the example in Figure 3.1,
the set E will be a union of diagonals of slope −1. In other words, for a well-chosen
subset B ⊂ [1, ..., 2N ], the set E is given by

E := {(x, y) ∈ [1, ..., N ]2 so that x + y ∈ B}.
Triangles in E correspond to 3-term arithmetic progressions in B. Recall that

a 3-term arithmetic progression is a sequence of the form a, a + d, a + 2d.

Lemma 3.10. If the set B contains no 3-term arithmetic progressions, then the
set E contains no triangles of (L, E).

This is easiest to see in a picture. See Figure 3.2.

π

Figure 3.2. A triangle in E leads to an arithmetic progression B.

Proof. Suppose that the lines l1, l2, l3 form a triangle of (L, E). Every pair
of lines must intersect in a point, so no two of them are parellel, and so there must
be one horizontal line, one vertical line, and one diagonal line. We label them so
that l1 is horizontal, l2 is diagonal, and l3 is vertical. Let x1 = (a1, b1) be the
intersection of l2 with l3, and x2 = (a2, b2) be the intersection of l1 and l3 and
x3 = (a3, b3) be the intersection of l1 and l2. We have x1, x2, x3 ∈ E, and so
a1 + b1, a2 + b2, a3 + b3 ∈ B. But we claim that the geometry of the situation forces
a1 + b1, a2 + b2, a3 + b3 to be a 3-term arithmetic progression. This contradiction
will prove the lemma.

We give an algebraic proof as follows. The points x1, x2 are on the same vertical
line l3 and so a1 = a2. Next the points x2, x3 are on the same horizontal line l1,
and so b2 = b3. Finally, the points x1, x3 are on the same diagonal line, and so



30 3. WHY POLYNOMIALS?

a1−b1 = a3−b3. Using these equations, we want to check that a1+b1, a2+b2, a3+b3
form a 3-term arithmetic progression. This boils down to checking

[a3 + b3] − [a2 + b2] = [a2 + b2] − [a1 + b1].

Using the equations:

[a3 + b3] − [a2 + b2] = a3 − a2 = a3 − a1 = b3 − b1 = b2 − b1 = [a2 + b2] − [a1 + b1].

�

This leads to the question, what is the largest possible size of a subset B ⊂
[−N, ..., N ] with no 3-term arithmetic progression? Behrend constructed a surpris-
ingly large example of such a set.

Theorem 3.11. (Behrend) For any ε > 0, for all N sufficiently large, there is
a subset B ⊂ [−N, ..., N ] with no 3-term arithmetic progression and |B| � N1−ε.

Combining Theorem 3.11 and Lemma 3.10 gives Theorem 3.9.
The definition of an arithmetic progression makes sense in any abelian group.

In particular, it makes sense in Zn for any dimension n. Behrend’s construction
begins by finding a large subset A of a high-dimensional cube [−S, S]n, and then
“transferring” A to a subset B ⊂ [−N, ..., N ].

Lemma 3.12. For any dimension n, for any S ≥ 1, there is a subset A ⊂
[−S, ..., S]n with no 3-term arithmetic progression, and with

|A| ≥ c(n)Sn−2.

Proof. We use coordinates x0, ..., xn−1 on Rn. The set A will be the set of

lattice points on the sphere
∑n−1

i=0 x2
i = M for a well-chosen M . There are more

than Sn points in the cube [−S, S]n. For each such point,
∑n−1

i=0 x2
i is an integer

in the range 0, ..., nS2. By the pigeonhole principle, we can choose a value of M so

that the sphere
∑n−1

i=0 x2
i = M contains ≥ c(n)Sn−2 points of the cube [−S, ..., S]n.

We let A be this set of points.
The points of a 3-term arithmetic progression a, a + d, a + 2d ∈ Rn all lie on a

line. By convexity, a line intersects a sphere in at most two points, and so a sphere
does not contain any 3-term arithmetic progression. �

Now we describe how to use A to construct our subset B ⊂ [−N, ..., N ]. Sup-
pose that x = (x0, ..., xn−1) ∈ [−S, ..., S]n. Define

φ(x) =
n−1∑
i=0

(10S)ixi.

We define N = (10S)n and we define B to be the image φ(A). We claim that
φ is injective and that B contains no 3-term arithmetic progression. Since φ is
injective,

|B| ≥ c(n)Sn−2 ≥ c(n)N
n−2
n .

For any ε > 0, we choose n so that 1 − ε ≤ n−2
n , and we get Behrend sets

with |B| ≥ c(ε)N1−ε as desired. It remains to check that φ is injective and that B
contains no 3-term arithmetic progression.
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To check that φ is injective, suppose that φ(x) = φ(y). In other words,

n−1∑
i=0

(10S)ixi =

n−1∑
i=0

(10S)iyi.

We have to check that xi = yi for all i. We first claim that xn−1 = yn−1. Bringing
the xn−1 and yn−1 to one side and all other terms to the other side, we get

(10S)n−1(xn−1 − yn−1) =
n−2∑
i=0

(10S)i(yi − xi).

Since xi, yi ∈ [−S, ..., S], the right hand side is at most 2 · (10S)n−2(2S) <
(10S)n−1. Therefore, |xn−1 − yn−1| < 1. Since xn−1, yn−1 ∈ Z, it follows that
xn−1 = yn−1. By the same argument, we can show that xj = yj for all j ≤ n − 1
by backwards induction on j. Suppose that xi = yi for all j < i ≤ n − 1. Then

j∑
i=0

(10S)ixi =

j∑
i=0

(10S)iyi.

Moving the xj and yj to one side as above, we see that xj = yj .
Next we prove that B contains no 3-term arithmetic progression. Suppose

that φ(x), φ(y), φ(z) form an arithmetic progression, where x, y, z ∈ A. Using
a similar argument to the proof of injectivity, we will show that x, y, z form an
arithmetic progression too. Since there are no 3-term arithmetic progressions in
A, we can conclude that there are no 3-term arithmetic progressions in B. Now
φ(x), φ(y), φ(z) form a 3-term arithmetic progression if and only if

φ(y) − φ(x) = φ(z) − φ(y),

if and only if

n−1∑
i=0

(10S)i(yi − xi) =

n−1∑
i=0

(10S)i(zi − yi).

Noting that |yi −xi|, |zi − yi| ≤ 2S, and using the argument above, we see that
for every i,

yi − xi = zi − yi.

But this shows that x, y, z form a 3-term arithmetic progression. This finishes the
proof of Theorem 3.11.

The construction of Behrend’s example involves polynomials, although it is not
clear to me whether they play a crucial role. A key step in the argument was to find
a strictly convex surface Σ ⊂ Rn which contains many points of the grid [−S, ..., S]n.
This leads to the question: among all strictly convex hypersurfaces Σ ⊂ (−S, S)n,
what is the maximum possible number of lattice points in Σ? In the construction
of the Behrend example, we used a sphere. In order to check that some sphere
contains many lattice points, we examined the polynomial equation

∑
i x

2
i = M .

Are there other strictly convex surfaces with more lattice points than a sphere?
Without mentioning polynomials, can one find an example which is comparable to
a sphere?
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3.4. What is special about polynomials?

Now that we tried for a little while to work on the finite field Kakeya problem
and the joints problem without polynomials, we return to the polynomial proofs,
and we examine what properties of polynomials made them well-suited to these
problems. I would like to highlight two facts which play a crucial role in the
argument.

• Dim PolyD(Fn) ∼ Dn.
• If P ∈ PolyD(Fn) vanishes at more than D points of a line l ⊂ Fn, then

P vanishes on the whole line l.

The first key fact says that there are lots of polynomials. The second key fact
says that polynomials behave rather rigidly on lines. When we pick a polynomial
P ∈ PolyD(Fn), we have ∼ Dn degrees of freedom at our disposal, and this gives
us a lot of flexibility. But then, when we consider P restricted to a line, it behaves
surprisingly rigidly, with only ∼ D degrees of freedom. These facts show that
polynomials have a special relationship with lines. The gap between Dn and D
gives us a kind of leverage which powers the proofs in Chapter 2.

Here is a more precise statement of the fact that a polynomial restricted to a
line has few degrees of freedom. If W ⊂ Fcn(Fn,F) is a vector space of functions
on Fn, and X ⊂ Fn, then we define the dimension of W restricted to X as the rank
of the evaluation map EX from W to Fcn(X,F). In symbols,

Dim W |X := Rank [EX : W → Fcn(X,F)] .

For any line l ⊂ Rn, Dim PolyD(Fn)|l = D +1. By contrast, Dim PolyD(Fn) ∼ Dn.
Most function spaces do not have any such gap. For example, let us consider

the trigonometric polynomials of degree ≤ D on Rn. Recall that a trigonometric
polynomial of degree ≤ D is a function f : Rn → C of the following form:

f(x) =
∑

ω∈Zn,|ωj |≤D for all j

a(ω)e2πiω·x.

Here the coefficients a(ω) are complex numbers. We let TrigD(Rn) denote the vector
space of trigonometric polynomials on Rn of degree at most D. The dimension of
TrigD(Rn) is ∼ Dn, like the dimension of PolyD(Rn). Moreover, if l is an axis-
parallel line, then the restriction of f to l is a trigonometric polynomial in one
variable of degree at most D. So if l is an axis-parallel line, then Dim TrigD(Rn)|l ∼
D. But for a generic line l ⊂ Rn, Dim TrigD(Rn)|l = Dim TrigD(Rn). For generic
lines, trigonometric polynomials don’t offer any “leverage” in the sense above.

If this “leverage” is the key to the polynomial method proofs in Chapter 2, then
it is natural to try to find the function space with the most leverage. We formalize
this question as follows.

Question 3.13. Fix a field F and a dimension n. Suppose that W ⊂ Fcn(Fn,F)
is a vector space of functions, and suppose that for every line l ⊂ Fn,

Dim W |l ≤ D + 1.

What is the maximum possible dimension of W?
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I don’t know anything about this question. But here is a closely related question
which is better understood. We say that W obeys the degree D vanishing lemma
if, for any f ∈ W , if f = 0 at D + 1 points of a line, then f = 0 at every point on
the line.

Question 3.14. What is the maximum possible dimension of a vector space
of functions W ⊂ Fcn(Fn,F) which obeys the degree D vanishing lemma?

Exercise 3.3. If |F| ≥ D + 1, and if W ⊂ Fcn(Fn,F) obeys the degree D
vanishing lemma, prove that DimW ≤ (D + 1)n.

In the lecture notes of a course on the polynomial method, I conjectured that
PolyD(Fn) has the largest possible dimension among all spaces obeying the degree
D vanishing lemma. This turns out to be false, at least for some fields F. In
[LuSu], Luo and Sudan constructed larger vector spaces of functions that still obey
the degree D vanishing lemma. Using these function spaces instead of polynomials,
they were able to give sharper constants in the finite field Nikodym theorem.

Polynomials are a special class of functions. They play an important role in
many areas of mathematics outside of algebra, and each area has its own perspective
about what makes them special. Over the course of the book, we will explore a
couple of other areas where polynomial play a special role, because ideas in those
areas are related to the polynomial method in combinatorics. In Chapter 4, we
will talk about error-correcting codes in computer science. In this field, people talk
about the ‘resiliency’ of polynomials: you can distort or damage a polynomial and
there is enough information left to recover the original polynomial. This makes
them important tools in error-correcting codes. In Chapter 14, we will talk about
zero sets of polynomials in differential geometry. In this field, people talk about
the ‘efficiency’ of polynomials: the zero sets of polynomials have minimal size or
minimal complexity in several different ways. Both the ‘resiliency’ of polynomials
and the ‘efficiency’ of polynomials are connected with the two special features we
have discussed here: the dimension of PolyD(Fn) and the vanishing lemma.

3.5. An example involving polynomials

Since polynomials play an important role in the proofs, it’s reasonable to ask if
there are interesting examples of configurations of lines that are based on polynomi-
als. The Hermitian variety is one important example. In this section, we describe
an even simpler example that will play an important role in the book. This example
is a configuration of lines in R3 based on a degree 2 algebraic surface.

To motivate this example, we begin with some naive questions about the in-
tersection patterns of lines in R3. Suppose we have L lines in R3. How many
intersection points can there be? There are at most

(
L
2

)
intersection points, and

this can be achieved by putting all the lines in a plane.
What if we don’t allow ourselves to put all the lines in a plane? Suppose we

have L lines in R3 with ≤ 10 lines in any plane. How many intersection points can
there be? Remarkably, there can still be ∼ L2.

Let S be the degree 2 algebraic surface defined by the equation z = xy. The
surface S contains many lines. For each y0, there is a ‘horizontal line’ h(y0) ⊂ S
parametrized by γ(t) = (t, y0, y0t). And for each x0, there is a ‘vertical line’ v(x0) ⊂
S parametrized by γ(t) = (x0, t, x0t). Any horizontal line intersects any vertical
line: h(y0) intersects v(x0) at (x0, y0, x0y0). Moreover, all these intersection points
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are distinct. Taking L/2 horizontal lines and L/2 vertical lines gives L2/4 distinct
intersection points. On the other hand, any plane intersects the surface S, and so
any plane contains at most 2 of our lines.

The surface S is an example of a regulus. We will study reguli in Section 8.4.
Reguli played a crucial role in the first work on the joints problem, which we will
describe there.

This is an important example in combinatorial problems about intersecting
lines. It shows that interesting examples don’t come only from subspaces and
objects of linear algebra - they also come from low degree algebraic surfaces. This
example helps motivate using polynomials to study the combinatorics of lines in
R3. If examples that we are worried about can come from polynomials, then we
may hope to enlist the aid of polynomials either to find such examples or to rule
them out.

3.6. Combinatorial structure and algebraic structure

We see that a degree 2 polynomial leads to an interesting configuration of lines.
Next we may wonder if all the interesting configurations come from polynomials.

Continuing our naive questions, what if we forbid the lines to cluster in planes
or degree 2 surfaces? More formally, we have the following question:

Question 3.15. Suppose that L is a set of L lines in R3 with ≤ 10 lines in
any plane or degree 2 algebraic surface. What is the maximum possible number of
intersection points of L?

This time, the answer is much less than L2. Getting optimal bounds is an open
question that looks important to me. The best currently known upper bound is
∼ L3/2. This upper bound was proven in [GK2], and we will prove it in Chapter
13. The only examples I know have far fewer intersection points.

We can get some perspective on this problem by counting parameters. The
set of lines in R3 is a 4-dimensional manifold. So choosing L lines gives us 4L
parameters to play with. If we want one particular line to intersect another, that
gives us one equation that our parameters have to satisfy. Just counting parameters,
one might guess that it’s not hard to find examples with 4L intersections. On the
other hand, one might guess that examples with far more than 4L intersection
points should come from some special structure. Question 3.15 asks whether that
special structure needs to be a plane or a degree 2 surface.

A little more generally, we can ask the following question:

Question 3.16. Let L be a set of L lines in R3 with at most B lines in any
algebraic surface of degree at most D, what is the maximum possible number of
intersection points of L?

This is one of the central problems of the book. We will come back to it three
times with three different approaches: we will use reguli in Chapter 8, we will
use polynomial partitioning in Chapter 10, and we will use ruled surface theory
in Chapter 13. As we develop more tools, our estimates will get stronger. In the
regime B ≥ L1/2, we will be able to prove sharp upper bounds - cf. Theorem 8.3.
On the other hand, we remain far from a complete answer, and this problem marks
an important boundary in our understanding of the subject.

The theme of this section is the connection between combinatorial structure
and algebraic structure. We have seen some examples with a lot of combinatorial
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structure which are built using polynomials. Does every example with a lot of
polynomial structure come from some algebraic structure? Questions 3.15 and 3.16
are precise questions that get at this issue. Investigating this issue is one of the
main goals of the book.





CHAPTER 4

The polynomial method in error-correcting codes

The proofs of the finite field Kakeya theorem and the joints theorem drew
on ideas from computer science. Polynomials over finite fields have been studied
intensively by computer scientists. Polynomials over finite fields are also classical
mathematical objects, and they’ve been studied intensively by mathematicians for
many years. But problems in computer science have suggested different types of
questions and led to new perspectives on polynomials.

The two main ingredients in the proofs of finite field Nikodym and joints are
the parameter counting lemma and the vanishing lemma. This team of ingredients
appeared together earlier in the theory of error-correcting codes. In this chapter,
we present a few interesting results from error-correcting codes, illustrating these
techniques.

4.1. The Berlekamp-Welch algorithm

Let Fq be the finite field with q elements, and let PolyD(Fq) be the vector
space of all polynomials in one variable with degree ≤ D. Because of the vanishing
lemma, any two different polynomials in PolyD(Fq) can only agree at ≤ D values of
x ∈ Fq. If D is much less than q, then any two polynomials in PolyD(Fq) look very
different from each other. This makes them interesting tools for error-correcting
codes.

Here is a typical situation from coding theory. Suppose Q is a polynomial
over Fq with degree ≤ q/100. We want to transmit or save Q, but the data gets
corrupted and instead we end up with a function F : Fq → Fq. Suppose we know
that F agrees with Q for a certain fraction of x ∈ Fq. Is it possible to recover Q
from F? Is it possible to do it efficiently?

An interesting case is when F agrees with Q a little more than half the time.
Let’s suppose that F (x) = Q(x) for at least (51/100)q values of x. In this case,
it follows immediately from the vanishing lemma that we can recover Q from F in
theory.

Lemma 4.1. Let F : Fq → Fq be any function. Then there is at most one
polynomial Q ∈ Polyq/100(Fq) which agrees with F for ≥ (51/100)q values of x.

Proof. Suppose that Q1, Q2 ∈ Polyq/100(Fq) both agree with F for at least

(51/100)q values of x. But then Q1(x) = Q2(x) for ≥ (2/100)q values of x. Now
Q1−Q2 vanishes at ≥ (2/100)q points but has degree ≤ (1/100)q. By the vanishing
lemma, Q1 − Q2 is the zero polynomial. �

The function F does contain enough information to recover Q in theory. But
there is a deeper question: can we recover Q from F in an efficient way? We could
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find Q by trying all the polynomials in Polyq/100(Fq). But the number of polyno-
mials in this set grows more than exponentially fast in q, and so the running time
of this naive algorithm is more than exponential in q. In the mid-80’s, Berlekamp
and Welch [BW] gave a much more efficient algorithm to recover Q from F . The
running time of their algorithm is polynomial in q, and the algorithm is fast enough
to be useful in practice. Their solution combines the parameter counting idea and
the vanishing lemma in an elegant way.

Theorem 4.2. (Berlekamp-Welch, [BW], 1986) Suppose that Q(x) is a polyno-
mial over Fq with degree < q/100. Suppose that F : Fq → Fq, and that F (x) = Q(x)
for ≥ (51/100)q values of x. Then there is a polynomial time algorithm that recovers
Q from F .

This error-correcting code is called a Reed-Solomon code. The message we want
to encode is a sequence of D + 1 elements of Fq: a0, ..., aD. Using this sequence,

we build a polynomial Q(x) =
∑D

j=0 ajx
j . Then we record the values of Q at each

point of Fq. Even if 49 % of the recorded data is corrupted by a clever adversary, we
can still recover the original message in polynomial time (provided that D < q/100).

The Berlekamp-Welch algorithm is based on studying the graph of F : the set
{(x, y) ∈ F2

q |F (x) = y}. This graph looks like a cloud of points. Inside the cloud of
points a certain algebraic structure is hidden: most of the points lie on the graph
of Q. How can we search out this algebraic structure hidden in the cloud of points?

The main idea of the algorithm is to find the lowest degree non-zero polynomial
P (x, y) that vanishes on the graph of F . On the one-hand, we can find an optimal
P with an efficient algorithm. On the other hand, this optimal P uncovers the
hidden algebraic structure in the cloud of points: looking at the zero set of P , the
graph of Q jumps off the page.

In our algorithm, we will treat the degree of P in x and the degree of P in y
differently. This makes sense if we look back at the problem we’re trying to solve.
We’re hoping to find the graph of Q, which is defined by the equation y−Q(x) = 0.
This defining equation has degree 1 in y and high degree in x. In order to adapt to
the problem, it turns out to be a good idea to use polynomials P (x, y) of degree 1
in y and high degree in x. We let PolyD,E(F2

q) be the vector space of polynomials
P (x, y) with degree ≤ D in x and ≤ E in y.

The first step of the algorithm is to find a polynomial P (x, y) which vanishes
on the graph of F , where P has degree 1 in y and the smallest possible degree in
x. We can do this by the following Proposition:

Proposition 4.3. There in a polynomial time algorithm that does the follow-
ing. Given any set S ⊂ F2

q , the algorithm finds a non-zero polynomial P (x, y) ∈
PolyD,1(F

2
q) which vanishes on S and where the degree D is as small as possible.

The degree D will always obey D ≤ |S|/2.

Proof. This problem boils down to linear algebra.
For a given D, we consider the restriction map RS : PolyD,1(F

2
q) → Fcn(S,Fq),

which restricts a polynomial P ∈ PolyD,1(F
2
q) to the set S ⊂ F2

q . The map RS is
a linear map, and we want to check whether it has a non-trivial kernel. We can
write RS as a matrix after we choose a basis for the domain and for the range. For
the domain, a natural basis is given by the monomials xayb, with 0 ≤ a ≤ D and
0 ≤ b ≤ 1. For the range, a natural basis is given by delta functions at the points of



4.1. THE BERLEKAMP-WELCH ALGORITHM 39

S. If S = {(x1, y1), (x2, y2), ...} then the basis elements of S are {δ(xj ,yj)}j=1...,|S|.
In this basis, the matrix entry corresponding to the row (xj , yj) and the column
(a, b) is just xa

j y
b
j . With this explicit matrix, we can compute a basis for the

kernel of RS by using Gaussian elimination. The running time is polynomial in
the dimensions of the matrix. For an N × N matrix, Gaussian elimination takes
time ∼ N3, because it involves ∼ N2 row and column operations, and each such
operation involves ∼ N computations.

We perform this calculation for D = 0, then for D = 1, etc. The dimension
of PolyD,1(F

2
q) is 2D + 2. If 2D + 2 > |S|, then the kernel of RS is guaranteed to

be non-trivial. Therefore, we will find a non-trivial kernel for some D in the range
0 ≤ D ≤ |S|/2. We note the lowest value of D so that RS has a non-trivial kernel,
and we let P (x, y) ∈ PolyD,1(F

2
q) be a non-zero element of this kernel.

�
We apply Proposition 4.3 with the set S being the graph of F . The number

of points in the graph is q, and so we have D ≤ q/2. We can write P (x, y) =
P0(x) + yP1(x) with Deg P0, Deg P1 ≤ q/2. Now the key point in the proof of
Theorem 4.2 is that P (x, y) vanishes on the graph of Q. This follows in a few
simple steps.

1. We know P = 0 on the graph of F . In other words, P (x, F (x)) = 0 for all
x.

2. But we know that F usually agrees with Q. So P (x, Q(x)) = 0 for at least
(51/100)q values of x.

3. But P (x, Q(x)) = P0(x) + Q(x)P1(x) is a polynomial in x of degree ≤
Deg Q + max(Deg P0, Deg P1) < q/100 + q/2 = (51/100)q.

4. By the vanishing lemma, P (x, Q(x)) is the zero polynomial.
We have proven that P (x, Q(x)) is identically zero, and so P vanishes on the

graph of Q. Moreover, since 0 = P (x, Q(x)) = P0(x) + Q(x)P1(x), we see that
Q(x)P1(x) = −P0(x). We know P0 and P1, and now we can recover Q by doing
polynomial division. This is the Berlekamp-Welch algorithm.

There is a more visual way of explaining how to recover Q, which makes the
graph of Q jump off the page. We let the set of errors be E := {x ∈ Fq|F (x) �=
Q(x)}. With a little more work, we will prove the following claim:

Claim 4.4. P (x, y) = c [y − Q(x)]
∏

e∈E(x − e), for some non-zero constant
c ∈ F.

This claim implies that the zero set of our polynomial P is the union of the
graph of Q and a vertical line x = e at each error e ∈ E. Looking at the zero set of
P , the set of errors is immediately visible, together with a large chunk of the graph
of Q. From this large chunk of the graph of Q, we can quickly recover Q itself.

The proof of the claim uses a divisibility lemma:

Lemma 4.5. If P (x, y) is a polynomial of two variables, and Q(x) is a poly-
nomial in one variable, and P (x, Q(x)) is the zero polynomial, then P (x, y) =
(y − Q(x))P1(x, y) for some polynomial P1.

Let us prove Claim 4.4 using the divisibility lemma. We saw above that
P (x, Q(x)) is the zero polynomial – by Lemma 4.5, P (x, y) = (y − Q(x))P1(x).
Now if e ∈ E, then Q(e) �= F (e). We know that P vanishes on the graph of F , and
so

0 = P (e, F (e)) = (F (e) − Q(e))P1(e),
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and so P1(e) = 0. Therefore, P1 is divisible by x − e for each e ∈ E, and we see
that

P (x, y) = (y − Q(x))
∏
e∈E

(x − e)P2(x).

Since P has minimal degree, P2 must be a non-zero constant. This finishes the
proof of Claim 4.4.

We end this section by giving the proof of the divisibility lemma, Lemma 4.5.
This argument is similar to the proof of the vanishing lemma, Lemma 2.8. That
proof was based on Lemma 2.6, which says the following:

Lemma. If P (y) ∈ PolyD(F) is a polynomial in one variable and y1 ∈ FF , then
we can write P in the form

P (y) = (y − y1)P1(y) + r,

where P1(y) ∈ PolyD−1(F) and r ∈ F.

We now give a version of this lemma for polynomials of two variables.

Lemma 4.6. If P (x, y) ∈ Poly(F2) has Degy P ≤ D, and Q(x) ∈ Poly(F), then
we can write P in the form

P (x, y) = (y − Q(x))P1(x, y) + R(x),

where Degy P1(x, y) ≤ D − 1 and R ∈ Poly(F).

Proof. We do the proof by induction on D. If D = 0, then P (x, y) = R(x)
and the conclusion is clear.

Suppose P (x, y) =
∑D

j=0 aj(x)yj , where aj ∈ Poly(F). Let P̃ (x, y) = P (x, y)−
(y−Q(x))(aD(x)yD−1). The yD term of P̃ (x, y) vanishes, and so Degy P̃ ≤ (D−1).
By induction on D, we can write

P (x, y) − (y − Q(x))(aD(x)yD−1) = P̃ (x, y) = (y − Q(x))P̃1(x, y) + R(x),

where Degy P̃1 ≤ D − 1 and R ∈ Poly(F). Therefore, we see

P (x, y) = (y − Q(x))(aD(x)yD−1 + P̃1(x, y)) + R(x).

�

This lemma quickly implies Lemma 4.5:

Proof of Lemma 4.5. Suppose that P (x, Q(x)) is the zero polynomial. By
the previous lemma, we can write P in the form

P (x, y) = (y − Q(x))P1(x, y) + R(x).

Plugging in y = Q(x), we see that P (x, Q(x)) = R(x). Therefore R is the zero
polynomial, and P (x, y) = (y − Q(x))P1(x, y). �

4.2. Correcting polynomials from overwhelmingly corrupted data

In the Berlekamp-Welch algorithm, we considered corrupted data F which was
correct a little more than half the time. If F is correct only half the time, then it’s
impossible to recover the polynomial Q even in theory. For example, start with two
low degree polynomials Q1 and Q2, and arrange for F to agree with Q1 half the
time and with Q2 half the time. There is no way to tell if the original polynomial
was Q1 or Q2. Following this observation, it may seem that data F which is correct
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only 1 % of the time would not be very useful. Surprisingly, it turns out that a
great deal of information can be recovered from such data. In the mid 90’s, Sudan
generalized the algorithm of Berlekamp-Welch to deal with highly corrupted data.
For example, he proved the following result.

Theorem 4.7. (Sudan, 1997) Suppose that F is a field with q elements, and
that F : F → F is any function. There is an efficient algorithm that lists all the
polynomials of degree < (1/200)q1/2 that agree with F for at least q/100 values of
x.

We have the tools to follow most of the steps of Sudan’s argument. We again
consider the graph of F in F2. We find a low-degree polynomial P (x, y) that
vanishes on the graph. By the same argument as in the proof of Proposition 4.3,
we can efficiently find a non-zero polynomial P (x, y) ∈ PolyD(F2

q) that vanishes on
the graph of Q, and where the degree D is as small as possible. Since the graph of
Q has q elements, Lemma 2.4 tells us that there is a non-zero polynomial vanishing
on the graph of Q with degree at most 2q1/2. In particular, the degree of P is
≤ 2q1/2.

Suppose that Q has degree < (1/200)q1/2, and that Q(x) = F (x) for at least
q/100 values of x. We claim that P (x, Q(x)) is the zero polynomial. This follows
for the same reason as above. We know that P (x, F (x)) is zero for every x. So
P (x, Q(x)) has at least q/100 zeroes. But P (x, Q(x)) is a polynomial of degree
at most (Deg P )(Deg Q) < 2q1/2(1/200)q1/2 = q/100. Therefore P (x, Q(x)) is the
zero polynomial. By the divisibility lemma, Lemma 4.5, we see that y−Q(x) divides
P (x, y).

We have efficiently constructed P (x, y), and we know that for every low degree
Q which agrees with F at ≥ q/100 places, y − Q(x) divides P (x, y).

There is a polynomial time algorithm that factors P (x, y) into irreducible fac-
tors. This step is not at all obvious, and it requires different ideas, cf. [Ka]. With
this algorithm, we can find all factors of P (x, y) of the form y−Q(x). The number
of such factors is at most Deg P ≤ 2q1/2. Finally we check all of the Q′s that arise
from the factorization of P (x, y) and we see which ones agree with F for at least
q/100 values of x. This list is the output of our algorithm.

4.3. Locally decodable codes

The Reed-Solomon code, the error-correcting code we considered in the first
section, is quite robust: even if 49 % of the recorded data is corrupted by an
adversary, we can still recover the original message. On the other hand, this code
is a little unwieldy in the following sense: whenever we want to read off a single
letter of the original message from the recorded data, we need to decode the entire
message - a process which will certainly take at least as long as reading the entire
message. In a locally decodable code, any single letter of the message can be quickly
decoded, while looking at only a small fraction of the recorded data, in time far
less than it would take to read through the original message.

It would be interesting to find a locally decodable code which is still as robust
as the Reed-Solomon code: even after 49 % of the recorded data is corrupted, we
would like to be able to quickly read off any desired letter of the original message
by looking at only a small fraction of the recorded data. For this to work, there
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need to be many different ways to reconstruct each letter of the message, and these
different ways need to draw on different parts of the recorded data.

The Reed-Muller code is an interesting code that achieves this goal. It is based
on polynomials on Fn

q instead of polynomials on Fq. Here is the definition of the
code.

For any D < q and any n ≥ 1, we will construct a code. The original message
is a list of (D + 1)n elements of Fq, which we think of as a function

g : {0, ..., D}n → Fq.

Each such function extends to a unique polynomial P : Fn
q → Fq with degree at

most D in each variable. We will prove this as a lemma in a moment. The recorded
data of the Reed-Muller code is the polynomial P .

Lemma 4.8. If D < q, then for any function g : {0, ..., D}n → Fq, there is a
unique polynomial P : Fn

q → Fq so that P = g on {0, ..., D}n and Degxi
P ≤ D for

each i = 1, ..., n.

Proof. The proof is by induction on n with base case n = 1.
If n = 1, the proof follows by linear algebra and van der Monde determinants.

It is closely related to the proof of the vanishing lemma, Lemma 2.8. Let S :=
{0, ..., D} ⊂ Fq. We want to show that the evaluation map ES : PolyD(Fq) →
Fcn(S,Fq) is an isomorphism. We note that ES is a linear map and that the
domain and target both have dimension D + 1. We will express the linear map as
a matrix and then check that its determinant is not zero. We write a polynomial

Q ∈ PolyD(Fq) in the standard form Q(x) =
∑D

j=0 ajx
j . For each i ∈ S, we have

ES(Q)(i) = Q(i) =
∑D

j=0 ijaj . Therefore, the restriction map ES is given by a

(D + 1) × (D + 1) matrix M with coefficients Mij = ij , for 0 ≤ i, j ≤ D. The
determinant of this matrix is given by the van der Monde determinant formula:

det M =
∏

0≤i1<i2≤D

(i1 − i2) �= 0.

Therefore ES is an isomorphism, and this shows that the Lemma is true in the base
case n = 1.

We now turn to the higher-dimensional case. Using the case n = 1, we see
that for any (x1, ..., xn−1) ∈ {0, ..., D}n−1, there is a unique choice of coefficients
a0(x1, ..., xn−1), ..., aD(x1, .., .xn−1) ∈ Fq so that

g(x1, ..., xn) =
D∑

j=0

aj(x1, ..., xn−1)x
j
n for all xn = 0, ..., D.

Note that aj : {0, ..., D}n−1 → Fq. By induction on n, there is a unique polynomial
Pj : Fn−1

q → Fq so that Pj = aj on {0, ..., D}n−1 and Degxi
Pj ≤ D for each

1 ≤ i ≤ n − 1. Now for all (x1, ..., xn) ∈ {0, ..., D}n, we have g(x1, ..., xn) =∑D
j=0 Pj(x1, .., xn−1)x

j
n = P (x1, ..., xn). We also see that Degxi

P ≤ D for each
i = 1, ..., n. So the polynomial P satisfies our conditions.

Finally, to check that P is unique, suppose that Q agrees with G on {0, ..., D}n
and has Degxi

Q ≤ D for all 1 ≤ i ≤ n. We can write Q in the form

Q(x) =
D∑

j=0

Qj(x1, ..., xn−1)x
j
n,
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where Qj is a polynomial of degree at most D in each variable. By the discussion
above, we must have Qj(x1, ..., xn−1) = aj(x1, ..., xn−1) for each (x1, ..., xn−1) ∈
{0, ..., D}n−1, and so Qj = Pj , and so Q = P .

�

The proof shows how to find P from g using linear algebra, and this can be
done in polynomial time. Next we describe how to efficiently recover g(x) from a
corrupted version of P , following [Su]. First, we describe how to recover from 24
% error.

Suppose that g : {0, ..., D}n → Fq is a function, and that P : Fn
q → Fq extends

g with Degxi
P ≤ D for each i. Suppose that F (x) = P (x) for at least (76/100)qn

elements of Fn
q . Suppose that we are given x ∈ {0, ..., D}n, and we wish to recover

g(x) from the function F , in a quick way that reads F at far less than qn points.
We randomly pick a line 
 through the point x. We let F� be the restriction of

F to 
. We apply the Berlekamp-Welch algorithm to F�. Note that the degree of P
is at most nD. We suppose that nD < q/100. Now as long as F�(y) = P�(y) for at
least (51/100)q of the points y ∈ 
, the Berlekamp-Welch algorithm will recover P�

from F�. In this case, we call 
 a good line. If 
 is a good line, the Berlekamp-Welch
algorithm will tell us P (x) = g(x). If 
 is not a good line, then the Berlekamp-Welch
algorithm may either output an incorrect polynomial Q� �= P� or it may terminate
with a message that F� was not actually close to a low degree polynomial.

As long as q is sufficiently large, we claim that at least 51% of the lines 
 through
x are good. Checking the claim is just a simple computation. If the claim is false,
there are at least (49/100)qn−1 lines 
 through x that contain at least (49/100)q−1
points y ∈ 
 \ {x} where F (y) �= P (y). The total number of such bad points is at
least (.49)2qn − O(qn−1) = (.2401)qn − O(qn−1). If q is sufficiently large, this is
> (.24)qn.

This leads to a randomized algorithm that finds g(x) with high probability and
only reads F (x) in � q places. We pick A random lines 
 through x. For each
random line, we use the Berlekamp-Welch algorithm to try to decode g(x). With
probability at least 51%, a line 
 is good and delivers the correct value of g(x).
Our algorithm outputs the most popular guess for g(x) among the A lines. The
probability of error decays exponentially in A, and we can arrange 99.9 % certainty
of correctness by taking a moderately large constant A. The algorithm only reads
F at Aq points.

The running time of the algorithm depends on the running time of Berlekamp-
Welch. With the simple description of Berlekamp-Welch from this chapter, the
running time would be ∼ q4. If we take n much larger than 4, then the running
time of the algorithm to decode g(x) can be much shorter than Dn - the time it
would take to read the original message.

By being a little trickier, we can recover g(x) with a similar algorithm even if
we have 49 % error. We will describe the main modification and leave the proof
as an exercise. To motivate what we do, let us explain why our first algorithm can
fail with 49 % error. Our adversary picks a point x ∈ {0, ..., D}n and designs F
to confuse us when we try to recover g(x). The adversary is allowed to introduce

errors at 49 % of the points x ∈ Fn
q . The adversary picks a polynomial P̃ : Fn

q → Fq

with degree at most D in each variable. Now for 95 % of the lines 
 through x, the
adversary arranges that F (y) = P̃ (y) for at least (51/100)q of the points y ∈ 
. For
the remaining 5 % of the lines 
 through x, the adversary can only introduce very
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few errors. When we pick a random line 
 through x, run Berlekamp-Welch, and
guess the value of g(x), 95 % of the lines give the guess P̃ (x) �= g(x), and only 5 %
of the lines give to the correct guess P (x) = g(x).

However, there is a clue that could help us realize that the 5 % of lines that
give the guess g(x) are more reliable than the 95 % of lines that give the wrong
guess. The Berlekamp-Welch algorithm outputs a polynomial Q� defined on the
line 
. For each of bad lines, Q� agrees with F� at only (51/100)q points y ∈ 
. But
for each good line, Q� agrees with F� at almost every point y ∈ 
. We can make a
better algorithm by weighting the vote of a line more heavily if Q� agrees with F�

at a large fraction of the points y ∈ 
.
Here is a modified algorithm to recover g(x) from the function F . We pick A

random lines 
 through x. For each of these lines, we run the Berlekamp-Welch
algorithm. For a given line 
, if the algorithm outputs a polynomial Q�, then we
proceed as follows. We count the number of points y ∈ 
 where F�(y) = Q�(y).
We let p(
) be the fraction of points y ∈ 
 where F�(y) = Q�(y), and we define a
weight w(
) = 2p(
)− 1. Then we say that the line 
 votes for the value Q�(x) with
a vote of weight w(
). (If the algorithm terminates with a message that F� was
not actually close to a low degree polynomial, then the line 
 does not vote for any
value.) We output the winner of the election: the value that receives votes of the
greatest total weight.

Exercise 4.1. Suppose that g : {0, ..., D}n → Fq is a function, and that
P : Fn

q → Fq extends g with Degxi
P ≤ D for each i. Suppose that q is sufficiently

large, that nD < q/100. Suppose that F (x) = P (x) for at least (51/100)qn elements
of Fn

q . For any x ∈ {0, ..., D}n, prove that the algorithm described in the last
paragraph will recover g(x) with high probability.

4.4. Error-correcting codes and finite-field Nikodym

The proofs of the finite field Nikodym conjecture and the finite field Kakeya
conjecture were partly inspired by ideas from error-correcting codes. After dis-
cussing some of these ideas, let us revisit the proof of the finite field Nikodym
conjecture from the point of view of coding theory.

Suppose that N ⊂ Fn
q is a Nikodym set. Recall that this means that for every

point x ∈ Fn
q , there is a line 
 so that 
 \ {x} ⊂ N . The finite field Nikodym

conjecture says that |N | ≥ cnqn.
Nikodym sets have a close relationship with the Reed-Muller code. We consider

a degree D in the range nD < q − 1. The Reed-Muller code takes as input an arbi-
trary function g : {0, ..., D}n → Fq and encodes it by extending it to a polynomial
P : Fn

q → Fq with degree at most D in each coordinate. The key observation is
that if we know P on a Nikodym set N , then we can recover the polynomial P
everywhere, and hence we can recover the function g. For any point x, there is a
line 
 so that 
 \ {x} ⊂ N . We know the values of P on 
 \ {x}. The polynomial P
has degree at most nD < q−1, and so we can recover P on the line 
. In particular
we can recover P (x).

This shows that the Reed-Muller code gives an injective map from

Fcn({0, ..., D}n,Fq) → Fcn(N,Fq).

This gives us a lower bound on the size of N :

|N | ≥ |{0, ..., D}n| = (D + 1)n.
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We are allowed to choose any D with nD < q − 1. This leads to the lower bound
|N | ≥ cnqn, and the constant cn works out to be roughly n−n. In this way, the
Reed-Muller code proves the finite field Nikodym conjecture.

4.5. Conclusion and exercises

Polynomials over finite fields play an important role in error-correcting codes.
Sudan’s thesis [Su] refers to “the resilience of polynomials” (cf. the title of Chapter
2 of [Su]). The word resilience captures a property of polynomials that is important
for coding theory: we can significantly distort the polynomial Q, but the informa-
tion in Q survives. This resilience appears in several different ways, starting with
the vanishing lemma, and it makes polynomials important tools in coding theory.

From the point of view of coding theory, we should mention one important
caveat about the polynomial codes we have been discussing. The caveat is that the
code is written as a string of symbols from Fq, and it is a disadvantage for the code
when q is large. The reason is that on a computer, information is stored as a series
of 0’s and 1’s. An element of Fq could be stored as log2 q bits. If even one of these
bits changes, then the corresponding element in Fq changes also. Suppose we have
recorded a list of elements of Fq, and the data is corrupted. In order to guarantee
that at most 49 % of the recorded elements of Fq are changed, we have to insist
that at most a fraction (49/100)(log2 q)−1 of the recorded bits are changed. If q
is large, the amount of error we can tolerate at the level of bits gets smaller. The
polynomial codes we have discussed require q to be large in order to be interesting.
For the Reed-Solomon code, the message has length D and we require q > 100D.
For the Reed-Muller code, the situation is a little better: the message has size Dn

and we require q > 100nD. But even for Reed-Muller codes, q is still quite large.
On the other hand, polynomial codes have important applications in the the-

ory of computational complexity, helping to understand the difficulty of finding
approximate answers to computational problems. It is beyond the scope of this
book to really explain these applications, but we can give the flavor of the subject
by stating one of the results. As an example of a computational problem, we con-
sider MAX-3SAT. We are given n Boolean variables x1, ...xn, and we are given a
list of clauses of the form “ NOT xi1 and xi2 and xi3 ”. (Each clause involves three
of the variables, and each clause can have 0, 1, 2, or 3 NOTs arranged in any way.
The length of the list of clauses is at most the number of possible clauses, which
is O(n3).) Our job is to find the maximum number of clauses that can be satisfied
by any choice of values for the Boolean variables x1, ..., xn. It is possible do this by
brute force, checking all of the 2n possible assignments to the variables x1, ..., xn.
This process would take an exponential length of time. Is it possible to solve this
problem in only polynomial time? This is (equivalent to) the famous P �= NP
problem, and no one knows the answer. It sounds intuitive to almost all experts
that there is no polynomial time algorithm to solve this problem.

Since no one knows how to solve MAX-3SAT efficiently, it is reasonable relax
our goal and try to find an approximate solution instead of an exact solution.
Instead of trying to find the exact maximum number of clauses that can be satisfied,
what if we try to estimate this maximum number up to an error of 1%? If we
allow a 1% error, is there a way to estimate the answer in much less time than
it would take to try all the possibilities? This is a natural, fundamental question.
Surprisingly, Arora, Lund, Motwani, Sudan, and Szegedy ([ALMSS]) proved that
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this approximation problem is just as hard as the original problem! More precisely,
if there were a polynomial-time algorithm to estimate MAX-3SAT up to 1% error,
then it could be used as a subroutine to build a polynomial time algorithm to solve
MAX-3SAT exactly. The proof in [ALMSS] uses polynomial codes in a crucial
way. The proof method also applies to many other computational problems.

Polynomials (especially over finite fields) have a special structure which makes
them useful tools in error-correcting codes and in complexity theory. Work in these
fields has also led to new perspectives about polynomials.

For instance, here is an interesting problem about polynomials that plays a key
role in the proof of the hardness of approximation theorem described in the last
paragraph. This question could have been asked in the 1890s, but it wasn’t asked
until the 1990s, in connection with problems from computer science.

Suppose that f : Fn
q → F is a function. Suppose that on most lines in Fn

q , the
function f is close to a low-degree polynomial. To be more precise, suppose that
for at least 99% of the lines l ⊂ Fn

q , there is a polynomial Pl of degree at most d
so that Pl agrees with f on at least 99% of the points of l. Does this imply that
there is a polynomial P : Fn

q → F of degree at most d that agrees with f on at
least 90% of the points of Fn

q ? The answer turns out to be yes as long as d is small
compared to q (see Chapter 3 of [Su] and [AS]). If the dimension n is large, this
theorem leads to a very efficient way to test whether a function f is close to a low
degree polynomial: we take a few random lines lj in Fn

q , and we test whether the
restriction of f to each line lj is close to a polynomial. This test is surprisingly
efficient because it is only necessary to look at f on a few lines, making up a tiny
fraction of the points of Fn

q .
We end the chapter with some exercises related to this theorem. The proof

is based once again on the vanishing lemma and parameter counting, and the ex-
ercises give more practice using these tools. The main step in the proof of this
n-dimensional theorem is a 2-dimensional result of Arora and Safra [AS].

Theorem 4.9. (Arora-Safra) Suppose that R, C : F2
q → Fq are functions. For

every y ∈ Fq, Ry(x) := R(x, y), and Ry is a polynomial in x of degree ≤ d. Similarly,
for every x ∈ Fq, Cx(y) is a polynomial in y of degree at most d. We also suppose
that for a random point (x, y) ∈ F2

q ,

P[R(x, y) �= C(x, y)] ≤ δ <
1

100
.

If q > 106d2, then there exists a polynomial Q(x, y) with degree at most d in
each variable so that

P[Q(x, y) = R(x, y) = C(x, y)] ≥ 1 − 10δ.

We will break the proof of this theorem into a sequence of exercises. But before
we start the details of the proof, let us discuss some of the issues and ideas. The
first issue is, how can we find this polynomial Q(x, y)? Suppose that we find a
subset A × B ⊂ F2

q with |A| = |B| = d + 1 so that R(x, y) = C(x, y) for all
(x, y) ∈ A×B. Then there is a unique polynomial Q(x, y) with degree at most d in
each variable which agrees with R and C on A × B. This Q is a reasonable guess
for the polynomial we are looking for.

But will such a grid exist? Let E ⊂ F2
q be the set of errors:

E := {(x, y) ∈ F2
q so that R(x, y) �= C(x, y)}.
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We wish to find a large grid A × B avoiding the set E. The size of E may be
as large as (1/100)q2 and d may be almost q1/2. If we take a random subset of
(1/100)q2 points in F2

q , then the largest grid A × B avoiding this set of points will
have min(|A|, |B|) ≤ C log q, far smaller than d. So it doesn’t sound likely that we
will be able to find a (d + 1) × (d + 1) grid avoiding the set of errors.

However, the set of errors is not a random set. The hypotheses of the problem
imply a lot of structure about the set of errors, and it turns out that there is indeed
a (10d) × (10d) grid A × B without errors. Understanding the shape of the set of
errors is a crucial step in the proof.

Given that the theorem is true, then it’s not hard to see that there must be a
very large grid without any errors. If we fix a value of y, then Q(x, y) and R(x, y)
are each polynomials of degree at most d, and so either they agree for every value of
x, or else they agree for at most d values of x. If the theorem is true, then Q(x, y) =
R(x, y) except for a bad set of at most 10δq2 points. Therefore, Q(x, y) = R(x, y)
except for a bad set of at most 20δq rows. Similarly, Q(x, y) = C(x, y) except for a
bad set of at most 20δq columns. Hence R(x, y) = C(x, y) outside a small number
of rows and a small number of columns.

But how can we use the hypotheses of the theorem in order to prove that there
is a substantial error-free grid? Drawing on some ideas from the Berlekamp-Welch
algorithm, Arora and Safra found a polynomial of the form

P (x, y, z) = P0(x, y) + zP1(x, y, z)

so that

• Deg P0, Deg P1 ≤ 10d.
• There are subsets G, H ⊂ Fq with |G|, |H| ≥ (2/3)q so that for all (x, y) ∈

G × H,

(4.1) P (x, y, R(x, y)) = P (x, y, C(x, y)) = 0.

The proof that such a polynomial P exists uses the parameter counting argu-
ment and the vanishing lemma, roughly as in the Berlekamp-Welch algorithm. We
use parameter counting to find a polynomial P so that Equation 4.1 holds at some
points, and then we use the vanishing lemma to prove that it holds at many other
points. Since P (x, y, z) = P0(x, y) + zP1(x, y), Equation 4.1 implies that either
R(x, y) = C(x, y) or P1(x, y) = 0. Therefore, we see that

R(x, y) = C(x, y) for all (x, y) ∈ G × H \ Z(P1).

But Z(P1) is very small. It contains at most 10dq points. The number of errors in
F2
q may be as large as (1/100)q2, but the number of errors in G×H is at most 10dq.

By hypothesis q > 106d2, and so 10dq is much smaller than (1/100)q2. So we have
found a large grid G×H where the density of errors is far smaller than in F2

q . There
are so few errors in G × H that there has to be a (10d) × (10d) error-free sub grid
A × B ⊂ G × H. Using this error-free grid, we can find the polynomial Q. Then
more applications of the vanishing lemma show that Q(x, y) = R(x, y) = C(x, y)
for almost all (x, y) ∈ F2

q .
This finishes our outline of the proof of Theorem 4.9. Now we break the proof

into a sequence of exercises. If you’re interested in studying the proof, you can
either go through the exercises, or try to prove Theorem 4.9 more independently,
maybe looking at the exercises when you get stuck.
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1. By an averaging argument, find sets A1, B1 ⊂ Fq with |A1| = |B1| = 14d so
that

P(x,y)∈Fq×B1
[R(x, y) �= C(x, y)] ≤ δ.

2. By parameter counting, find a polynomial P (x, y, z) = P0(x, y) + zP1(x, y)
so that

• P (x, y, R(x, y)) = 0 for all (x, y) ∈ A1 × B1.
• The polynomials P0, P1 have degree at most 10d in each variable x and

y.

In the next steps, we use the vanishing lemma to show that P (x, y, R(x, y))
and P (x, y, C(x, y)) vanish at many other points (x, y) ∈ F2

q .
3. If y ∈ B1 and x ∈ Fq, show that

P (x, y, R(x, y)) = 0.

4. Let G := {x ∈ F|R(x, y) = C(x, y) for at least 13d values of y ∈ B1}. By
an averaging argument, show that

|G| ≥ (2/3)q.

5. For every x ∈ G, y ∈ Fq, show that

P (x, y, C(x, y)) = 0.

6. Let H = {y ∈ Fq|R(x, y) = C(x, y) for at least 13d values of x ∈ G}. By an
averaging argument, show that

|H| ≥ (2/3)q.

7. For all y ∈ H, x ∈ Fq, show that

P (x, y, R(x, y)) = 0.

Summarizing what we did so far, we have found a large grid G×H so that for
all (x, y) ∈ G × H,

P (x, y, R(x, y)) = P (x, y, C(x, y)) = 0.

Since P (x, y, z) = P0(x, y)+ zP1(x, y), Equation 4.1 implies that either R(x, y)
= C(x, y) or P1(x, y) = 0. Therefore, we see that

R(x, y) = C(x, y) for all (x, y) ∈ G × H \ Z(P1).

But Z(P1) is very small. It contains at most 10dq points.
8. Prove that there are subsets A ⊂ G and B ⊂ H with |A| = |B| = 10d so

that A × B contains no points of E and so that

P(x,y)∈Fq×B[R(x, y) �= C(x, y)] ≤ 2δ.

9. Show that there is a polynomial Q(x, y) with degree at most d in each
variable so that Q(x, y) = R(x, y) = C(x, y) on A × B.

Now we again use the vanishing lemma to show that Q(x, y) = R(x, y) and/or
Q(x, y) = C(x, y) at many other points (x, y) ∈ F2

q .
10. Show that Q(x, y) = R(x, y) on Fq × B.
11. Show that there is a subset G′ ⊂ Fq with |G′| ≥ (1−3δ)q so that Q(x, y) =

C(x, y) on G′ × Fq.
12. Show that there is a subset H ′ ⊂ Fq with |H ′| ≥ (1−3δ)q so that Q(x, y) =

R(x, y) on Fq × H ′.
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Finally, we see that Q(x, y) = R(x, y) = C(x, y) on G′ × H ′, which has size at
least (1 − 10δ)q2.

More results in this direction and the connection to hardness of approximation
are explained in [Su], [AS], and [ALMSS].





CHAPTER 5

On polynomials and linear algebra
in combinatorics

There is a lot of interesting work in the combinatorics literature that involves
polynomials and linear algebra in an indirect way. We mentioned some directions
in the introduction, in Section 1.4. In this chapter, we describe in detail one proof
that has a similar flavor to the proof of finite field Kakeya. At the end of the
chapter, we will give some references to further reading about these ideas.

The theorem we prove in this chapter is about the distinct distance problem
in high dimensions. One of the main problems in the book is the distinct distance
problem in the plane: given a set of N points in the plane, what is the smallest
possible number of distinct distances determined by the set. It is also natural to ask
about the same problem in higher dimensions. In the 1970s, Larman, Rogers, and
Seidel [LRS77] proved the following theorem about the regime where the number
of distinct distances is fixed and the number of dimensions goes to infinity.

Recall that we write d(P ) for the set of (non-zero) distances among points of
P :

d(P ) := {|p1 − p2|}p1,p2∈P ;p1 �=p2
.

Theorem 5.1. ([LRS77]) Suppose that P ⊂ Rn is a set, and that |d(P )| ≤ s.
Then

|P | ≤
(

n + s + 1

s

)
.

On the other hand, there is an example of a set P ⊂ Rn with |d(P )| = s and

|P | =

(
n + 1

s

)
.

If we fix s and send n → ∞, the ratio between the upper bound and the lower
bound approaches 1. In this regime, the theorem is very accurate. The case s = 2
is already interesting. On the other hand, if we take n = 2, then we get the bound
|P | ≤

(
s+3
3

)
∼ s3. In other words, this gives the lower bound |d(P )| � |P |1/3. More

generally, if n is fixed and s → ∞, the bounds here are not very good.

Proof. We start with the example. For any subset A ⊂ {1, ..., n + 1}, we
define the point p(A) ∈ Rn+1 to be the vector (p1, ..., pn+1) with pj = 1 if j ∈ A
and pj = 0 if j /∈ A. We let P be the set of points p(A) given by all s-element subsets

A ⊂ {1, ..., n + 1}. We have |P | =
(
n+1
s

)
. The distance between p(A1) and p(A2)

only depends on the cardinality of A1∩A2. If A1 �= A2, then 0 ≤ |A1∩A2| ≤ s−1,
and so |d(P )| = s. The set P has been written as a subset of Rn+1, but it actually
lies in the n-dimensional hyperplane defined by x1 + ... + xn+1 = s. Therefore, we
can consider P as a subset of Rn. This finishes the discussion of the example.
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Now we turn to the upper bound. Suppose that P is the set {p1, ..., pN}, with
N = |P |. For every point pj ∈ P , we construct a polynomial fj so that fj(pj) �= 0
but fj(pj′) = 0 for all j′ �= j. To construct fj , suppose that d1, ..., ds are the
distances in d(P ). Recall that d(P ) is the set of non-zero distances between points
of P , so none of the dr is zero. Now we define the polynomial fj by

fj(x) =

s∏
r=1

(
|x − pj |2 − d2r

)
.

For any j′ �= j, we have |p′j − pj | = dr for some r, and so fj(pj′) = 0. On the other

hand, fj(pj) =
∏s

r=1(−d2r) �= 0.
Because fj(pj′) �= 0 if j = j′ and 0 if j �= j′, it follows that the functions fj are

linearly independent. Indeed, suppose that there are some real numbers λj so that

the function
∑N

j=1 λjfj is equal to zero. Evaluating this function at the point pj ,
we see that λj = 0. This holds for every j, so all the λj vanish. This shows that
the functions fj are indeed linearly independent.

Now the fj are all polynomials of degree at most 2s. Since they are linearly
independent in Poly2s(R

n), we get the bound

N ≤ Dim Poly2s(R
n) =

(
n + 2s

n

)
.

But we can get a better bound than this, because the span of the polynomials fj
lies in a subspace of Poly2s(R

n). To find this subspace, we expand everything out
in coordinates: we let x = (x1, ..., xn) and we let pj = (pj,1, ..., pj,n). We use the
index k to label the coordinates. First we expand out |x − pj |2.

|x − pj |2 =
n∑

k=1

(xk − pj,k)
2 =

n∑
k=1

(
x2
k − 2pj,kxk + p2j,k

)
.

So we see that |x − pj |2 − d2r is in the span of the following polynomials:

1, x1, ..., xn,

(
n∑

k=1

x2
k

)
.

Define g0 = 1, gj = xj for j = 1, ...n, and gn+1 =
∑

k x2
k. Every function fj can

be written as a homogeneous polynomial in the gj (where j = 0, ..., n+1) of degree
s. The dimension of the space of homogeneous polynomials in the gj of degree s is(
n+1+s

s

)
. Therefore, the span of the functions fj lies in a subspace of Poly2s(R

n)

of dimension at most
(
n+s+1

s

)
. �

The key idea in the proof, using linear independence to prove that the number
of functions fj is not too big, goes back to a slightly earlier paper by Koornwinder
[Koo]. This idea has many more applications. There are two very engaging books
that explain the further developments of this idea. One is the book Linear algebra
methods in combinatorics, by Babai and Frankl, [BF]. This book was never quite
finished, but there is a draft available on Babai’s webpage. In spite of being not
quite finished, it is very clearly written. A second book that discusses many of
the same ideas is Thirty three miniatures by Matousek, [Ma2]. There is also a
literature on blocking numbers which involves related arguments – for instance, see
the short paper [BrSc] by Brouwer and Schrijver.
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There are some similarities and also some differences between this argument
and the proof of finite field Kakeya. Both arguments use linear algebra on the space
of polynomials, and the flavor of the questions is similar. On the other hand, the
rank-nullity theorem is used in the opposite direction in some sense. In finite field
Kakeya, we use dimension arguments to prove that there must exist a polynomial
with certain properties, even though it’s hard to write down the polynomial. In this
proof, we write down some polynomials fj fairly explicitly and we use dimension
arguments to show that there are not too many polynomials in our list.





CHAPTER 6

The Bezout theorem

As we continue to develop the polynomial method, we will need to use the
Bezout theorem, a fundamental result from algebraic geometry. We will give a proof
that connects to some of the ideas we have seen in previous chapters. In particular,
the dimension of the space of polynomials PolyD(Fn) will be an important character
in the argument.

The Bezout theorem controls the intersection of two algebraic varieties. There
are many variations of the Bezout theorem, and we will only discuss a couple. Here
is the simplest version of the theorem.

Theorem 6.1. (Bezout in the plane) Suppose F is a field and P, Q are polyno-
mials in Poly(F2) with no common factor. Let Z(P, Q) := {(x, y) ∈ F2|P (x, y) =
Q(x, y) = 0}. Then the number of points in Z(P, Q) is at most (Deg P )(Deg Q).

We recall some basic facts about factorization in a polynomial ring Poly(Fn).
The units in Poly(Fn) are the non-zero elements of F. We say that P and Q have
no common factor if every common factor of P and Q is a unit. We say that P is
reducible if P = Q1 · Q2 where neither of Q1, Q2 is a unit. Otherwise, we say that
P is irreducible.

Polynomial rings have unique factorization (cf. Corollary 2.4 in Chapter 4 of
[Lan]). In particular, the following proposition holds.

Proposition 6.2. If P, Q, R ∈ Poly(Fn) and P divides Q · R, and if P and Q
have no common factor, then P divides R.

There are several approaches to proving the Bezout theorem. I found the
approach that we use here in Joe Harris’s book Algebraic Geometry, a First Course,
[Ha], Exercise 13.17.

6.1. Proof of the Bezout theorem

We recall that PolyD(Fn) is the vector space of polynomials of degree at most
D. Suppose that I ⊂ Poly(Fn) is an ideal. We define ID to be I ∩ PolyD(Fn). We
will also be interested in the ring R := Poly(Fn)/I. We define the vector space
RD ⊂ R to be PolyD(Fn)/ID. In other words, an element of R lies in RD if and
only if it can be represented by a polynomial P ∈ PolyD(Fn). The spaces RD are
nested: R0 ⊂ R1 ⊂ ... ⊂ R. The dimensions of ID and RD for various ideals I will
be the main characters in the proof of the Bezout theorem.

We begin with some lemmas that explain how the number of points in a set
like Z(P, Q) is connected to the dimensions of ideals.

Lemma 6.3. If X ⊂ Fn is any finite set, and f : X → F is any function, then
there is a polynomial P of degree ≤ |X| − 1 which agrees with f on X.
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Proof. For each p ∈ X, we will construct a polynomial Pp with Pp(p) = 1 and
Pp = 0 on X \ p. Fix p. For each q ∈ X \ p, let Lq be a polynomial that vanishes
at q but not at p. Then define Pp = c

∏
q∈X\p Lq. We see that Pp(q) = 0 for each

q ∈ X \ p, and that Pp(p) �= 0. By choosing the constant c, we can arrange that
Pp(p) = 1. The degree of Pp is |X| − 1.

Finally, for an arbitrary function f , we define P =
∑

p∈X f(p)Pp. �

Lemma 6.4. Let I ⊂ Poly(Fn) be an ideal, and let R := Poly(Fn)/I. We write
Dim R for the dimension of R as a vector space over F, which may be finite or
infinite. Then |Z(I)| ≤ Dim R.

Proof. For any set X ⊂ Fn, let EX : Poly(Fn) → Fcn(X,F) be the map that
restricts each polynomial P ∈ Poly(Fn) to a function on X. If X ⊂ Z(I), then
I ⊂ Ker EX , and so EX descends to a map EX : R → Fcn(X,F).

If X ⊂ Z(I) is any finite set, then Lemma 6.3 says that EX is surjective.
Therefore, DimR ≥ |X| for any finite subset X ⊂ Z(I). �

Now we can begin the proof of the Bezout theorem, Theorem 6.1

Proof. Suppose that P, Q ∈ Poly(F2) have no common factor. To prove the
Bezout theorem, we will apply Lemma 6.4 to the ideal I = (P, Q), giving the
inequality:

|Z(P, Q)| ≤ Dim R = Dim
(
Poly(F2)/(P, Q)

)
.

So to prove the Bezout theorem, it suffices to show that for arbitrarily large
degrees D,

(6.1) Dim
(
PolyD(F2)/(P, Q)D

)
≤ (Deg P )(Deg Q).

To estimate this dimension, we consider the following sequence of quotient
maps:

PolyD(F2)
α−→ PolyD(F2)/(P )D

β−→ PolyD(F2)/(P, Q)D.

We want to estimate the dimension of the last space on the right. We start
with the dimension of the first space on the left and estimate the dimensions of all
the kernels and images.

The dimension of PolyD(Fn) has played a fundamental role in earlier chapters.
Near the beginning of the book, in Lemma 2.2, we calculated Dim PolyD(Fn) for
any n. In particular, we saw that

(6.2) Dim PolyD(F2) =

(
D + 2

2

)
.

The kernel of the map α is (P )D. Next we calculate its dimension.

Lemma 6.5. If P ∈ Poly(F2) is a non-zero polynomial, then for all D ≥ Deg P ,

Dim(P )D = Dim PolyD−DegP (F2) =

(
D − Deg P + 2

2

)
.

Proof. Define μP by μP (R) = PR. The map μP is a linear map from
PolyD−DegP to (P )D. We claim this linear map is an isomorphism. The ker-
nel of the map is zero. Any element in (P )D can be written as PR for some
R ∈ Poly(F2). We have D ≥ Deg(PR) = Deg P +Deg R, and so Deg R ≤ D−Deg P
and R ∈ PolyD−DegP (F2). This shows that μP is surjective. Therefore, μP is an
isomorphism and the dimension of its domain equals the dimension of its range. �
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The map α is clearly surjective, and so we get

Dim
(
PolyD(F2)/(P )D

)
= Dim Image α = Dim PolyD(F2) − Dim Kerα.

Plugging in our results for these dimensions, we get

Dim
(
PolyD(F2)/(P )D

)
= Dim PolyD(F2) − Dim(P )D

=

(
D + 2

2

)
−
(

D − Deg P + 2

2

)
.

For all D ≥ Deg P , we can expand
(
D−DegP+2

2

)
and

(
D
2

)
to get

Dim
(
PolyD(F2)/(P )D

)
= (Deg P )D + (1/2)(3 Deg P − (Deg P )2)

The right-hand side is a degree 1 polynomial in D. The constant term is a
little complicated. The exact form of the constant term is not important for our
argument, so we abbreviate it as c(P ):

(6.3) Dim
(
PolyD(F2)/(P )D

)
= (Deg P )D + c(P ).

Now we study the map β, which is a little bit subtler than α. We estimate the
dimension of Kerβ.

Lemma 6.6.

Dim Ker β ≥ Dim
(
PolyD−DegQ(F2)/(P )D−DegQ

)
.

Proof. Let μQ be the linear map μQ(R) := QR. The map μQ is well-defined
on various spaces. In particular,

μQ : PolyD−DegQ(F2) → PolyD(F2).

μQ : (P )D−DegQ → (P )D.

Therefore, μQ descends to the quotient:

μQ : PolyD−DegQ(F2)/(P )D−DegQ → PolyD(F2)/(P )D.

From now on, we fix this domain and range for μQ. The image of μQ lies in
the kernel of β. Using the fact that P and Q have no common factor, we will prove
that μQ is injective. This will imply that

Dim Ker β ≥ Dim Image μQ = Dim
(
PolyD−DegQ(F2)/(P )D−DegQ

)
.

It just remains to prove μQ is injective. Suppose r ∈ Ker μQ ⊂ PolyD−DegQ(F2)/

(P )D−DegQ. Let R ∈ PolyD−DegQ(F2) be a polynomial representing r. We know

that QR vanishes in PolyD(F2)/(P )D, and so QR lies in (P ). Since P and Q
have no common factor, Proposition 6.2 implies that R ∈ (P ). But then r = 0
in PolyD−DegQ(F2)/(P )D−DegQ. This shows that μQ is injective, finishing the
proof. �

Remark: It is not always true that

Dim Kerβ = Dim
(
PolyD−DegQ(F2)/(P )D−DegQ

)
.

It is a good exercise for the reader to find a counterexample.
The map β is surjective, and so we see that

Dim
(
PolyD(F2)/(P, Q)D

)
= Dim Image β = Dim

(
PolyD(F2)/(P )D

)
− Dim Ker β.
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Plugging in Lemma 6.6, we get

Dim
(
PolyD(F2)/(P, Q)D

)
≤ Dim

(
PolyD(F2)/(P )D

)
− Dim

(
PolyD−DegQ(F2)/(P )D−DegQ

)
.

Now if D is sufficiently large, we can plug in Equation 6.3 to the right-hand
side, getting

Dim
(
PolyD(F2)/(P, Q)D

)
≤ [(Deg P )D + c(P )] − [(Deg P )(D − Deg Q) + c(P )]

= (Deg P )(Deg Q).

This proves Inequality 6.1 and finishes the proof of the Bezout theorem. �

6.2. A Bezout theorem about surfaces and lines

To study lines in 3-dimensional space, we will need the following variation of
the Bezout theorem.

Theorem 6.7. Suppose that F is an infinite field. If P, Q ∈ Poly(F3) have no
common factor, then the number of lines in Z(P, Q) ⊂ F3 is at most (Deg P )(Deg Q).

We approach this result by generalizing the proof of Theorem 6.1.

Proof. We define I to be the ideal generated by P and Q, and we define R to
be the ring Poly(F3)/I. As above, define ID := PolyD(F3)∩I to be the polynomials
in I of degree at most D. Define RD ⊂ R to be the elements of R that can be
represented by a polynomial of degree at most D. We have RD = PolyD(F3)/ID.

On the one hand, we will bound the dimension of RD from above in terms of
the degrees of P and Q:

(6.4) Dim RD ≤ (Deg P )(Deg Q)D + c(P, Q).

On the other hand, if Z(P, Q) contains L lines, then we will bound the dimen-
sion of RD from below as follows:

(6.5) Dim RD ≥ LD − c(L).

Given these two bounds, taking D → ∞, we see that L ≤ (Deg P )(Deg Q).
Therefore, it suffices to establish these two inequalities.

We begin with the upper bound on Dim RD, Equation 6.4. We closely follow
the argument in the planar case. We have RD = PolyD(F3)/(P, Q)D. We study
the sequence of quotient maps

PolyD(F3)
α−→ PolyD(F3)/(P )D

β−→ PolyD(F3)/(P, Q)D.

By Lemma 2.2,

(6.6) Dim PolyD(F3) =

(
D + 3

3

)
.

By the same argument as Lemma 6.5, the dimension of (P )D is equal to

Dim Poly(F3)D−DegP . For D ≥ Deg P , this is equal to
(
D−DegP+3

3

)
. In this range

of D, we get:

Dim
(
PolyD(F3)/(P )D

)
= Dim PolyD(F3) − Dim(P )D

=

(
D + 3

3

)
−
(

D − Deg P + 3

3

)
.
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The right-hand side is a polynomial in D of degree 2. The coefficient of D2 is
(1/2)(Deg P ). The lower coefficients depend on Deg P in a more complicated way,
but they don’t play a role in our proof. Focusing on the highest-order term, we
write

(6.7) Dim
(
PolyD(F3)/(P )D

)
= (1/2)(Deg P )D2 + c1(P )D + c0(P ).

By the same argument as Lemma 6.6, we see that

Dim Kerβ ≥ Dim
(
PolyD−DegQ(F3)/(P )D−DegQ

)
.

Since β is surjective, we see that

Dim
(
PolyD(F3)/(P, Q)D

)
= Dim Image β = Dim

(
PolyD(F3)/(P )D

)
−Dim Kerβ ≤

≤ Dim
(
PolyD(F3)/(P )D

)
− Dim

(
PolyD−DegQ(F3)/(P )D−DegQ

)
.

Plugging in Equation 6.7, we get

Dim
(
PolyD(F3)/(P, Q)D

)
≤ (Deg P )(Deg Q)D + c(P, Q).

This finishes the proof of Equation 6.4.
Now we turn to the lower bounds on the size of RD related to the lines in

Z(P, Q).
For any set X ⊂ Fn, let EX be the restriction map from PolyD(Fn) to Fcn(X,F).

Lemma 6.8. If F is an infinite field, and if X is a union of L lines in Fn, then
the rank of EX : PolyD → Fcn(X,F) is ≥ LD − c(L).

Proof. Fix D. After a linear change of variables, we can assume that each
line is transverse to planes of the form xn = h. Choose D − L values h1, ..., hD−L

so that each plane xn = hj intersects the L lines in L distinct points. Let X0 ⊂ X
be these L(D − L) points.

We claim that for any function f : X0 → F, there is a degree D polynomial
that agrees with f on X0. This will imply that Rank EX : PolyD(Fn) → Fcn(X,F)
is at least |X0| = LD − L2.

Fix a value hj . The set X0 intersects the plane xn = hj at L points. Call
these points (y1,j , hj), ..., (yL,j , hj) where yk,j ∈ Fn−1. By Lemma 6.3, we can find
a polynomial Pj ∈ PolyL(Fn−1) so that Pj(yk,j) = f(yk,j) for each 1 ≤ k ≤ L.

Now we want to find a polynomial P ∈ PolyD(Fn) so that P (y, hj) = Pj(y) for
all y and all j from 1 to D − L. Let’s expand out Pj and P :

Pj(y) =
∑
I

cI(j)y
I ,

where I is a multi-index in (n − 1) variables of degree at most L.

Now we will choose P to have the following form:

P (y, xn) =
∑
I

PI(xn)yI , where |I| ≤ L and Deg PI ≤ D − L.

It suffices to choose PI so that PI(hj) = cI(j) for each j = 1, ..., D − L. We
can do this by applying Lemma 6.3 again. �

Suppose that Z(P, Q) contains L lines, and let X be the union of these lines.
The dimension of RD is at least the rank of EX : RD → Fcn(X,F). By the last
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Lemma, this rank is at least DL − L2. Therefore, Dim RD ≥ DL − L2, proving
Inequality 6.5.

This finishes the proof of Theorem 6.7. �

Exercise 6.1. To what extent does Theorem 6.7 hold in finite fields?

6.3. Hilbert polynomials

In the proof of the Bezout theorem, we studied the dimension of vector spaces
of the form

(Poly(Fn)/I)D := PolyD(Fn)/ID.

These dimensions have been studied a lot in algebraic geometry, and they also
play an important role in the polynomial arguments in this book. The goal of
this section is to give a very brief introduction to the study of these dimensions in
algebraic geometry, with references to some further reading.

One fundamental theorem says that for large values of D, the dimension of
the space PolyD(Fn)/ID is given by a polynomial in D, called an affine Hilbert
polynomial. (A small variation of this result was proven by Hilbert.)

Proposition 6.9. If I ⊂ Poly(Fn) is an ideal, then there exists a polynomial
hPoly(Fn)/I(D) and a number D0, so that for all D ≥ D0,

Dim(Poly(Fn)/I)D = hPoly(Fn)/I(D).

Chapter 1.9 of [Ei] gives a nice introduction to Hilbert polynomials. I couldn’t
find a nice reference for the exact statement of Proposition 6.9, but it does follow
quickly from a general theorem in [Ei]. At the end of the section, we quote Theorem
1.11 from [Ei] and explain how to deduce Proposition 6.9 from it.

We give a couple examples of Hilbert polynomials from the arguments we have
seen. In the first chapter, we computed the dimension of PolyD(Fn). If the ideal I
is zero, then for all D ≥ 0, we see that

(6.8) Dim PolyD(Fn)/ID = Dim PolyD(Fn) =

(
D + n

n

)
= (1/n!)Dn + ...

In the proof of the Bezout theorem in the plane, we considered the principal
ideal (P ) ⊂ Poly(F2). We proved that for all D ≥ Deg P ,

(6.9) Dim(Poly(F2)/(P ))D = (Deg P )D + (1/2)(3 Deg P − (Deg P )2).

If I ⊂ Poly(Fn) is an ideal, then the Hilbert polynomial hPoly(Fn)/I(D) encodes
some information about the variety Z(I) defined by the ideal I. In particular,
the dimension of Z(I) can be defined to be the degree of the Hilbert polynomial
hPoly(Fn)/I(D). The reader can check this in the two examples above. When I is
the zero ideal in Poly(Fn), then Z(I) = Fn, which should have dimension n. The
degree of the Hilbert polynomial is indeed n. When I is the ideal (P ) ⊂ Poly(F2),
then Z(I) is a curve F2, and it should have dimension 1. The degree of the Hilbert
polynomial is indeed 1.

This discussion ties back to the polynomial method. In polynomial method
proofs, like the proof of finite field Kakeya, it is crucial that the dimension of
PolyD(Fn) grows like Dn. In other words, it is crucial that hPoly(Fn)(D) has degree
n. According to the point of view of Hilbert polynomials, this is a way of saying
that Fn has dimension n.
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For more information about the dimensions of varieties and about Hilbert poly-
nomials, the reader can consult [Ha] and [Ei].

To finish the Section, for completeness, we explain how to reduce Proposition
6.9 to Theorem 1.11 in [Ei]. Theorem 1.11 is a general theorem saying that certain
dimension functions are polynomials. It is stated in terms of graded modules.
Let M be a finitely generated module over the ring Poly(Fn) = F[x1, ..., xn]. We
say that M is a graded module if M =

⊕
D≥0 MD and if, for any homogeneous

polynomial P of degree E, and any m ∈ ME , Pm ∈ MD+E. Theorem 1.11 in [Ei]
says that if M is a finitely generated graded module over Poly(Fn), then there is
a polynomial hM (D) and an integer D0 so that Dim MD = hM (D) for all D ≥
D0. We reduce Proposition 6.9 to this result as follows. Let I ⊂ Poly(Fn) be
an ideal. Let ID ⊂ I be I ∩ PolyD(Fn). Let R = Poly(Fn)/I, and let RD =
PolyD(Fn)/ID. We have R0 ⊂ R1 ⊂ R2 ⊂ .... Next we define MD := RD/RD−1.
We let M =

⊕
D≥0 MD. We claim that M is a finitely generated graded module

over Poly(Fn). If P is a homogeneous polynomial of degree E, and m ∈ MD

is represented by a polynomial Q ∈ PolyD(Fn), then we define Pm to be the
class of PQ in MD+E = RD+E/RD+E−1. We can assume that I is a proper
ideal, so I0 = 0, and so M0 = R0 = F. The element 1 ∈ F = M0 generates M .
Therefore, M is a finitely generated graded module over the ring Poly(Fn). By
Theorem 1.11, Dim MD = hM (D) for large D, where hM is a polynomial. But then

Dim RD =
∑D

d=0 Dim Md is also a polynomial for large D.

Exercise 6.2. (The image of a polynomial map) Suppose that P : F → F2

is a polynomial map with coordinates P1, P2. Prove that the image of P lies in
Z(Q) for some polynomial Q ∈ Poly(F2). If P1, P2 have degree at most D, give an
estimate for Deg Q.

Here is a small generalization. Suppose that H ⊂ F2 is the hyperbola defined
by the equation x2 − y2 = 1. Suppose that P : F2 → F2 is a polynomial map with
coordinates P1, P2. Prove that the image of P lies in Z(Q) for some polynomial
Q ∈ Poly(F2). If P1, P2 have degree at most D, give an estimate for Deg Q.

What is the most general version of this result that you can prove?





CHAPTER 7

Incidence geometry

The main subject of this book is applying polynomial methods to incidence
geometry. In the first part of the book, we introduced the polynomial method and
saw some applications in a few different directions. We are now starting the second
part of the book, where we introduce incidence geometry. Over the next three
chapters, we will explain some of the main results, techniques, and open problems
in the field. In the third part of the book, we will apply the polynomial method to
incidence geometry.

Incidence geometry studies the possible intersection patterns of simple geomet-
ric objects such as lines or circles. The joints problem and the distinct distance
problem are examples of incidence geometry. In the next few chapters, we consider
incidence geometry more systematically. We discuss some fundamental results and
questions in the field that help put these problems in context.

In this chapter, we discuss incidence geometry in the plane. We begin by
studying lines in the plane and learn the Szemerédi-Trotter theorem, the most
fundamental result in the field. Here we meet one of the most important discoveries
in the field: the role of topology in incidence geometry. Next we consider distance
problems in the plane, such as the distinct distance problem. This leads into the
incidence geometry of circles and other curves. Here we meet many difficult open
problems, and we try to explain why these problems are difficult with our current
methods. I hope that this chapter will help to put the distinct distance problem in
context.

In the next chapter we will discuss incidence geometry in three or higher dimen-
sions. We will see some new issues that appear in higher dimensions. The joints
problem is an example of incidence geometry in higher dimensions, and I hope that
this chapter will help to put it in context.

In the third chapter, we discuss the method of partial symmetries, which gives
an interesting connection between some planar problems - like the distinct distance
problem - and problems in higher dimensions.

These three chapters give a brief introduction to incidence geometry. We mostly
focus on the issues that will be relevant in the applications of the polynomial method
later. But there is a lot more to the field. The book Combinatorial geometry and
its algorithmic applications [PS] by Pach and Sharir gives a fuller introduction to
the subject, with many more questions, results, and applications. In particular,
there are interesting connections between incidence geometry and algorithms for
geometric problems which are described in [PS].
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7.1. The Szemerédi-Trotter theorem

Let L denote a set of L lines in the plane R2. An r-rich point of L is a point
that lies in at least r lines. The set of all r-rich points of L is denoted Pr(L).

Pr(L) := {x ∈ R2|x lies in at least r lines of L}.
One of the basic questions about the intersection patterns of lines in the plane

is to estimate
max
|L|=L

|Pr(L)|.

This question was answered up to a constant factor by Szemerédi and Trotter
in [SzTr] in the early 1980’s. Before we state their theorem, let us consider some
examples.

If we pick Lr−1 points, and we draw r lines through each point, we get a con-
figuration of L lines with Lr−1 r-rich points. We call this the ‘stars’ configuration.

If we pick L generic lines, then we get
(
L
2

)
∼ L2 2-rich points, but no 3-rich

points.
To construct a set of L lines with ∼ L2 3-rich points, we can use a grid of

vertical, horizontal, and diagonal lines as follows:

• Horizontal lines y = b for each integer b = 1, ..., L/4.
• Vertical lines x = a for each integer a = 1, ..., L/4.
• Diagonal lines x − y = c for each integer c = −L/4, ..., L/4 − 1.

Now each integer point (a, b) with 1 ≤ a, b ≤ L/4 is a 3-rich point, giving ∼ L2

3-rich points.
For larger r, we can make many r-rich points by using a similar grid structure

and adding lines of other slopes. Begin with an N × N square grid of points.
Then we choose r slopes for lines. We want the slopes to be rational numbers
with small numerator and denominator. Let us define the set of slopes to be the
first r numbers in the list 0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, ... In this list we only
include fractions in lowest terms. Next we let L be the set of lines that go through
at least one point of the N ×N grid with slope in the list of r slopes. We call these
examples grid examples. We will analyze the grid examples below and see that a
grid example with L lines can determine ∼ L2r−3 r-rich points.

The Szemerédi-Trotter theorem says that these examples are sharp up to a
constant factor.

Theorem 7.1. If L is a set of L lines in the plane, then

|Pr(L)| � L2r−3 + Lr−1.

If r � L1/2, then the second term dominates, and the stars example is sharp.
If r � L1/2, then the first term dominates, and the grid example is sharp.

Now we analyze the grid examples. Let Sr be the first r rational numbers in
the sequence 0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, etc. Let GN be the N × N integer grid
{(a, b) ∈ Z2|1 ≤ a, b ≤ N}. Let LN,r be the set of lines with slope in Sr that
intersect at least one point of GN . By construction, every point of GN is an r-rich
point of LN,r, and so |Pr(LN,r)| ≥ N2. It is not as obvious how big |LN,r| is. We
will show that

L := |LN,r| � Nr3/2.

This implies that
|Pr(LN,r)| ≥ N2 � L2r−3.
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(With a little more work, the reader can show that L ∼ Nr3/2 and that
|Pr(LN,r)| ∼ L2r−3.)

We claim that the r slopes in Sr all have numerator and denominator � r1/2.
If we consider all fractions p/q with 1 ≤ p < q ≤ Q, then we have approximately
(1/2)Q2 fractions. Not all these fractions are in lowest terms, so they don’t give
(1/2)Q2 rational numbers, but the number of fractions in lowest terms is still � Q2.
See Exercise 7.1 for a quick proof. (In fact, something much sharper is known: the
probability that a fraction from the list is in lowest terms tends to 6/π2 as Q → ∞.)
This implies that the fractions in Sr have numerator and denominator � r1/2.

If l is a line with slope p/q going through an integer point x = (x1, x2), then
(x1 + q, x2 + p) is another integer point on the line l. Since each of our slopes has
numerator and denominator � r1/2, each line in LN,r contains � Nr−1/2 points of
a 3N × 3N grid centered on our original N × N grid. We will assume from now
on that N ≥ r1/2, so that Nr−1/2 ≥ 1. (If N < r1/2, then a typical line in LN,r

intersects GN in just a single point.)
Now we can estimate the number of lines in LN,r by a double counting argu-

ment. Each point in the 3N × 3N grid lies in at most r lines of LN,r. Since each

line of LN,r contains � Nr−1/2 points of this 3N × 3N grid, we see that

L � N2r

Nr−1/2
= Nr3/2.

This finishes our proof that |Pr(LN,r)| � |LN,r|2r−3. We have assumed that

N ≥ r1/2. Since L ∼ Nr3/2, this corresponds to L � r2. If we pick L and r with
L � r2, then the stars example gives ∼ Lr−1 r-rich points, and if we pick L and r
with L � r2, then a grid example gives ∼ L2r−3 r-rich points. Theorem 7.1 says
that these examples are sharp up to a constant factor.

Having seen some examples, we begin to discuss upper bounds for |Pr(L)|. The
first upper bounds in this problem are based on the Euclidean axiom:

Two lines intersect in at most one point. (E)

We can use this lemma to bound Pr(L) by a double counting argument:

Lemma 7.2. Pr(L) ≤
(
L
2

)(
r
2

)−1 ∼ L2r−2.

Proof. Suppose L is a set of L lines. For each point x ∈ Pr(L), list all the
pairs of lines in L that intersect at x. For each x, we have a list of at least

(
r
2

)
pairs. By the Euclidean axiom, any pair of lines intersects in at most one point,
so the total number of pairs of lines in all these lists is at most

(
L
2

)
. Therefore,

|Pr(L)|
(
r
2

)
≤
(
L
2

)
. �

Is this the only bound for Pr(L) that follow from the Euclidean axiom? Perhaps
surprisingly, there is a subtler counting argument that gives additional bounds.

Lemma 7.3. If r ≥ 2L1/2, then Pr(L) < 2Lr−1.

Proof. Suppose that L is a set of L lines. We will give a proof by contra-
diction, so suppose that |Pr(L)| ≥ 2Lr−1. Now choose a subset P ′ ⊂ Pr(L) with
2Lr−1 ≤ |P ′| < 2Lr−1. Since r ≥ 2L1/2, |P ′| < r/2 + 1. Each point of P ′ lies
in r lines of L. But because of the Euclidean axiom, less than r/2 of those lines
can intersect any other point of P ′! Therefore, the number of lines L is bigger
than |P ′|(r/2). But |P ′|(r/2) ≥ (2Lr−1)(r/2) = L. This contradiction shows that
|Pr(L)| < 2Lr−1. �
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In the range r ≥ 2L1/2, Lemma 7.3 matches the stars example up to a constant
factor. Therefore it is sharp up to a constant factor, which proves Theorem 7.1 in
the range r ≥ 2L1/2. In the range r ≤ L1/2, the method of Lemma 7.3 doesn’t apply,
and Lemma 7.2 gives |Pr(L)| � L2r−2. There is a gap between these estimates and
Theorem 7.1. The gap is largest and most interesting when r = L1/2. In this case,
the counting lemmas give |PL1/2(L)| � L, and Theorem 7.1 gives |PL1/2(L)| � L1/2.

These two lemmas give some bounds, but they don’t prove Theorem 7.1. One
may wonder if there is an even more clever way to use the Euclidean axiom to
get better bounds. It turns out that the Euclidean axiom alone is not enough to
prove Theorem 7.1. At this point in the story, we come to the main obstacle in
understanding Theorem 7.1. The Euclidean axiom holds over every field, but the
Szemerédi-Trotter theorem does not hold over every field.

Let Fq be the finite field with q elements. Let L be the set of all non-vertical
lines in F2

q . Each non-vertical line is a graph y = mx + b, so there are exactly

L = q2 lines in L. Each point of F2
q lies in one line of every slope, so there are q2

points in Pq(L). So we have |PL1/2(L)| = L, essentially matching the upper bound
from the counting lemmas. (If we include vertical lines, the example becomes even
slightly stronger – see Exercise 7.3.)

We have now seen the main obstacle in proving Theorem 7.1. In order to prove
Theorem 7.1, we need to use something that is true for lines in R2 but false for
lines in F2

q . We can’t just use the fact that two lines intersect in at most one point.
We need to use something rather different and subtler.

There are several proofs of Theorem 7.1. All of the proofs use the topology
of R2 in some way. Understanding how to use topology to bound quantities like
|Pr(L)| is one of the main discoveries of incidence geometry. Over the course of the
book, we will give two proofs of Theorem 7.1 and sketch a third. In this chapter,
we will give a proof that uses Euler’s formula from topology.

7.1.1. Exercises.

Exercise 7.1. Let R(Q) be the set of pairs (p, q) with 1 ≤ p < q ≤ Q and with
gcd(p, q) = 1. Prove that |R(Q)| ≥ (1/10)Q2. We sketch one possible proof below.

For an integer a ≥ 2, let D(a, Q) be the set of pairs (p, q) with 1 ≤ p < q ≤ Q,
and so that a divides both p and q. Check that |D(a, Q)| ≤ a−2Q2.

Note that R(Q) can be formed by starting with all pairs (p, q) with 1 ≤ p <
q ≤ Q and then removing D(a, Q) for every prime a. Therefore,

|R(Q)| ≥ Q2 −
∑

a prime

|D(a, Q)| ≥

⎛
⎝1 −

∑
a≥2, prime

a−2

⎞
⎠Q2.

So it only remains to check that the quantity in parentheses is at least 1/10.
To do this, consider the sum in each dyadic interval:∑

2k≤a<2k+1,a prime

a−2 ≤
∑

2k≤a<2k+1

a−2 < 2−k.

Using this crude bound for k ≥ 2 to bound all the terms a ≥ 4 and estimating
a = 2, 3 by hand, prove that |R(Q)| ≥ (1/10)Q2.

Exercise 7.2. Show that |LN,r| ∼ Nr3/2. We proved in the text that |LN,r| �
Nr3/2, and so it just remains to prove that |LN,r| � Nr3/2. Hint: Let S′

r ⊂ Sr
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be the subset of fractions with numerator and denominator at least 1
10r1/2. Check

that |S′(r)| ≥ r/2. Let L′
N,r ⊂ LN,r be the lines with slope in S′

r. Each line in

L′
N,r intersects the N ×N grid GN in � Nr−1/2 points. But each point of GN lies

in at least r/2 lines of L′
N,r. Use double counting to finish the argument.

Exercise 7.3. There is a slighlty sharper version of the finite field example
that we mentioned above, using the projective plane PF2

q instead of the regular

plane F2
q . Let L denote the set of all lines in the projective space PF2

q . Check that

every two lines of L intersect at exactly one point in PF2
q and each point of PF2

q lies
in exactly q +1 lines of L. Therefore, we get equality in Lemma 7.2 with r = q +1:

|Pq+1(L)| =

(
|L|
2

)
/

(
q + 1

2

)
.

7.2. Crossing numbers and the Szemerédi-Trotter theorem

In this section, we give a proof of the Szemerédi-Trotter theorem using the
Euler formula from topology. To see how the Euler formula may come into play, let
us first quickly prove something much weaker. Is it possible to arrange L lines in the

plane so that |Pr(L)| is exactly
(
L
2

)(
r
2

)−1
, where L > r? For this to happen, every

pair of lines must intersect, and every intersection point must lie in exactly r lines.
If r− 1 is a prime power, then we saw in Exercise 7.3 that this can happen for lines
in PF2

r−1. But we claim that for r ≥ 6, this is impossible in R2 because of Euler’s
formula. A set L of lines in R2 determines a polyhedral structure on R2, where
each intersection point is a vertex, each segment of a line between two vertices is
an edge, and each component of the complement of the lines is a face. Some of the
faces and edges are unbounded. We let X be the union of the bounded faces, edges,
and vertices. Since L > r, X is non-empty, and it must be a topological disk. The
lines define a polyhedral structure on X with V vertices, E edges, and F faces. By
Euler’s formula, we have V −E+F = 1. Each vertex has degree at least r, and each
edge contains only two vertices. Therefore, V ≤ (2/r)E ≤ (1/3)E. Each face has
at least three edges, and each edge lies in at most two faces, and so F ≤ (2/3)E.
But then the left-hand side, V − E + F , is at most 0, giving a contradiction.

Directly generalizing the argument in the last paragraph doesn’t give good
estimates for |Pr(L)|. We encourage the reader to try this and see what hap-
pens. Crossing numbers of graphs will allow us to leverage the Euler formula more
effectively by looking at a well-chosen piece of the above picture instead of the
whole picture. This approach to proving the Szemerédi-Trotter theorem is due
to Székely, [Sz]. It is based on an important estimate about crossing numbers of
graphs, proven independently by Leighton ([Le]) and Ajtai, Chvátal, Newborn and
Szemerédi ([ACNS]).

7.2.1. Crossing number estimates. A drawing of a graph G in the plane
assigns each vertex of G to a distinct point in R2 and assigns each edge of G to a
simple continuous curve in R2 between its endpoints so that no edge passes through
any vertex other than its endpoints. Every finite graph admits a drawing in the
plane: map the vertices to points in general position and map the edges to straight
lines. A crossing in the drawing is a point x and an unordered pair of open edges
e, e′, so that x ∈ e ∩ e′. For example, if r distinct edges go through a point, then
it counts as

(
r
2

)
crossings. The crossing number of G is the smallest number of
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crossings among all drawings of G in the plane. The graph G is planar if and only
if the crossing number of G is zero. We denote the crossing number of G by k(G).

For example, consider the complete graph on N vertices, KN . How does the
crossing number of KN grow as N → ∞? The graph KN has

(
N
2

)
edges. If a

graph has E edges, then we can draw it with straight line edges giving at most
(
E
2

)
crossings, and so the crossing number of KN is clearly at most

((N2 )
2

)
∼ N4. We will

prove that the crossing number of KN really does grow like N4. More generally, we
will study how the crossing number of a graph G is related to the number of edges
and vertices of G.

It’s also interesting to consider crossings in straight line drawings. We let
kstr(G) denote the straight-line crossing number of G: the minimal number of cross-
ings in a drawing of G where each edge is a straight line. Clearly kstr(G) ≥ k(G).
This straight-line crossing number kstr(G) may be different from k(G). Either
one is useful for proving the Szemerédi-Trotter theorem. The straight-line crossing
number requires a little less topology background to work with, but k(G) will have
later applications to incidence geometry problems with curves.

Now we turn to estimates about the crossing numbers of graphs, starting with
a classical estimate for the number of edges and vertices of a planar graph. This
combinatorial estimate is based on the Euler formula.

Proposition 7.4. If G is a planar graph with E edges and V vertices, then
E − 3V ≤ −6.

We first sketch the main idea of the proof. Suppose that G is planar and
consider an embedding of G into S2. This embedding cuts S2 into faces, and we
get a polyhedral structure on S2 with V vertices, E edges, and some number F of
faces. By the Euler formula, V −E + F = 2. The number of faces cannot easily be
read from the graph G, but we can estimate it as follows. Each face has at least
three edges in its boundary, whereas each edge borders exactly two faces. Therefore
F ≤ (2/3)E. Plugging in we get 2 = V − E + F ≤ V − (1/3)E. Rearranging gives
E − 3V ≤ −6.

This sketch is not quite a proof. For example, suppose that the graph G is
a disconnected graph homeomorphic to two circles. If G is drawn in S2 as two
concentric circles, then there are three “faces” : two disks and an annulus. But the
Euler formula is false for this configuration, because annular faces are not allowed.
The Euler formula also does not apply if G consists of a single edge, or if G is a
tree. To apply the Euler formula, we need to know that each face is homeomorphic
to a polygon.

Writing down all the details of the argument is actually a little bit involved,
although the main idea is elegant. When I was teaching this proof, it reminded me
of Lakatos’s book [Lak] about the history of the Euler formula and the long story
of clarifying the statement of the result.

We invite the interested reader to finish the proof as an exercise, and we give
a few more clues for guidance. Alternatively, the reader may consult the original
papers [Le] or [ACNS]. Suppose that G is a connected planar graph and that every
vertex belongs to at least two edges. If we draw G in S2, then we claim that each
component of S2 \ G will be homeomorphic to a polygon, and the Euler formula
argument above will apply. On the other hand, once we know that the result holds
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for connected planar graphs where every vertex belongs to at least two edges, then
it follows easily for all planar graphs by induction on the number of vertices.

As a consequence of Proposition 7.4, it follows that the graph K5 is not planar.
The complete graph K5 has 5 vertices and 10 edges, and so E − 3V = 10 − 15 =
−5 > −6. It’s not hard to draw K5 with one crossing, and so we see that k(K5) = 1.

If E − 3V > −6, then we see that G is not planar, and if E − 3V is large and
positive then we may expect that G has a large crossing number. We now prove a
simple bound of this type.

Proposition 7.5. The crossing number of G is at least E − 3V + 6.

Proof. Let k(G) be the crossing number of G. Embed G in the plane with
k(G) crossings. By removing at most k(G) edges, we get a planar graph G′ with
E′ = E − k edges and V ′ ≤ V vertices. By Proposition 7.4 we see that −6 ≥
E′ − 3V ′ ≥ E − k − 3V . �

For the complete graph KN , this Proposition gives k(KN ) ≥
(
N
2

)
−3N+6 ∼ N2.

We will eventually prove a much stronger estimate: k(KN ) � N4.
How can we hope to improve Proposition 7.5? When we remove an edge of

G, it’s in our interest to remove the edge with the most crossings, and when we
do this, the crossing number of G can decrease by more than 1. For example, for
the complete graph KN , it looks plausible that there is always an edge with ∼ N2

crossings. But how can we prove such an estimate?
This seems to be a tricky problem, and [Le] and [ACNS] found a clever solu-

tion. Instead of trying to prove that one edge of G intersects many other edges of
G, we consider a small random subgraph G′ ⊂ G and prove that some edges of G′

must cross. Since G′ is only a small piece of G, it follows that many pairs of edges
in G must cross.

Theorem 7.6. ([Le] and [ACNS]) If G is a graph with E edges and V vertices,
and E ≥ 4V , then the crossing number of G is at least (1/64)E3V −2.

In particular, for the complete graph KN , Theorem 7.6 implies that k(KN ) �(
N
2

)3
N−2 ∼ N4.
We start with a slightly easier estimate for the straight-line crossing number

and then explain the modifications needed for the general crossing number.

Theorem 7.7. ([Le] and [ACNS]) If G is a graph with E edges and V vertices,
and E ≥ 4V , then kstr(G) ≥ (1/64)E3V −2.

Proof. Let p be a number between 0 and 1 which we choose below. Let G′

be a random subgraph of G formed by including each vertex of G independently
with probability p. We include an edge of G in G′ if its endpoints are in G′.

We consider the expected values for the number of vertices and edges in G′. The
expected value of V ′ is pV . The expected value of E′ is p2E. For every subgraph
G′ ⊂ G, the crossing number of G′ is at least E′ − 3V ′. Therefore, the expected
value k(G′) is at least p2E−3pV . Since the straight line crossing number is at least
the crossing number, the expected value of kstr(G

′) is at least p2E − 3pV .
On the other hand, we give an upper bound on the expected value of kstr(G

′)
as follows. Consider a straight-line drawing of G in R2 with kstr(G) crossings.
Because each edge is a straight line, two edges sharing a common vertex can never
cross. So each crossing must involve two edges containing four distinct vertices.
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By restricting our drawing of G to G′, we get a straight-line drawing of G′. The
expected number of crossings in this drawing of G′ is p4kstr(G). Therefore, the
expected value of kstr(G

′) is at most p4kstr(G).
Comparing our upper and lower bounds for the expected value of kstr(G

′),
we see that p4kstr(G) ≥ p2E − 3pV , and so we get the following lower bound for
kstr(G).

kstr(G) ≥ p−2E − 3p−3V.

We can now choose p to optimize the right-hand side. We choose p = 4V/E, and
we have p ≤ 1 since we assumed 4V ≤ E. Plugging in we get k(G) ≥ (1/64)E3V −2.

�

Next we discuss the modifications needed to prove Theorem 7.6. The new issue
is that in a drawing of G with curved edges, two edges leaving the same vertex
may cross. Such a crossing involves two edges with a total of three vertices. So
this crossing would appear in G′ with probability p3 much higher than p4. We get
around this difficulty by proving the following lemma.

Lemma 7.8. In a drawing of a graph G with k(G) crossings, each crossing
involves two edges with four distinct vertices.

We describe the idea of the proof of this lemma. Suppose that we have a
drawing of a graph G where two edges sharing a vertex have a crossing. Given a
drawing with such a crossing, we explain how to modify it to reduce the crossing
number. This will show that in a drawing with the minimal number of crossings,
two edges leaving a common vertex cannot cross.

Suppose that e1 and e2 each leave the vertex v and cross at a point x. (If they
cross several times, then let x be the last crossing.) We modify the drawing as
follows. Suppose that e1 crosses k1 other edges on the way from v to x and that
e2 crosses k2 other edges on the way from v to x. We label the edges so that so
that k1 ≤ k2. Then we modify the drawing of e2 so that e2 follows parallel to e1
until x and then rejoins its original course at x, so that e1 and e2 never cross. This
operation reduces the number of crossings in the drawing.

It takes a little work to make this argument rigorous. We refer to the original
papers [Le] and [ACNS] or leave it as an exercise for the reader. The argument is
a little bit easier if we assume that the edges are piecewise smooth curves instead
of just continuous curves. One can define the piecewise smooth crossing number
using piecewise smooth embeddings and prove a piecewise smooth crossing number
estimate. Such an estimate will be sufficient for all the applications that we talk
about later.

7.2.2. The Szemerédi-Trotter theorem. Now we use our crossing number
estimate to prove the Szemerédi-Trotter theorem.

Theorem 7.9. If L is a set of L lines in the plane, then

|Pr(L)| ≤ max(2Lr−1, 29L2r−3).

Proof. Using L and Pr(L) we construct a graph drawn in the plane. The
vertices of our graph G are the points of Pr(L). We join two vertices with an edge
of G if the two points are two consecutive points of Pr(L) along a line l ∈ L. The

crossing number of this drawing is at most
(
L
2

)
≤ L2, since each crossing of the
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graph G must correspond to an intersection of two lines of L. This is also a straight
line drawing. So we see that k(G) ≤ kstr(G) ≤ L2.

We will count the vertices and edges of the graph G and apply the crossing
number theorem. The number of vertices of our graph is V = |Pr(L)|. The number
of edges of our graph is rV − L. To see this, we count the number of pairs (v, e)
where v is a vertex and e is an edge containing v. Each vertex is adjacent to
2r segments of lines. The bounded segments are edges, but there are also two
unbounded segments on each line. Therefore, there are 2rV − 2L pairs (v, e) as
above. Each edge contains exactly two vertices, so the number of edges is rV − L.
As long as E ≥ 4V , we can apply the (straight line) crossing number theorem,
Theorem 7.7, and it gives

L2 ≥ kstr(G) ≥ (1/64)(rV − L)3V −2.

The rest of the argument is just elementary computation. The number of
edges is rV − L. The most interesting case occurs when the first term dominates.
Suppose that rV − L ≥ (1/2)rV . In this case, we have L2 ≥ 2−9r3V , and so
|Pr(L)| = V ≤ 29L2r−3. On the other hand, if rV − L < (1/2)rV , then we have
|Pr(L)| = V ≤ 2Lr−1.

In order to apply the crossing number theorem, we assumed that E ≥ 4V .
If E < 4V , we have rV − L ≤ 4V , and hence V ≤ L

r−4 . As long as r ≥ 8,

this implies V ≤ 2L/r, and we are done. Finally, for r < 8, the counting bound

|Pr(L)| ≤
(
L
2

)
/
(
r
2

)
does the job:

(
L
2

)
/
(
r
2

)
≤ 2L2r−2 ≤ 29L2r−3. �

Exercise 7.4. In this exercise, we describe an alternate example showing that
the Szemerédi-Trotter theorem is sharp. This example uses a rectangular grid
instead of a square grid.

Let L be the set of lines in the plane of the form y = mx + b, where m, b are
integers in the ranges 1 ≤ m ≤ r and |b| ≤ 2H. Here r and H are parameters which
can be any positive integers. If (x, y) ∈ Z2 with |x| ≤ Hr−1 and |y| ≤ H, prove
that (x, y) is an r-rich point for L. Conclude that

|Pr(L)| � L2r−3.

7.3. The language of incidences

The Szemerédi-Trotter theorem plays a fundamental role in incidence geometry
in the plane. There are several closely related versions of the Szemerédi-Trotter
estimate, and each version is valuable. Theorem 7.1 gives an estimate for the
number of r-rich points of a set of lines. Next we introduce the definition of an
incidence and use it to give a different formulation of the theorem.

If S is a set of points and L is a set of lines (or curves), the set of incidences is
defined as follows:

I(S,L) = {(p, l) ∈ S × L|p ∈ l}.
The number of incidences can be counted in several ways, making it a useful object
in double counting arguments. For instance,

|I(S,L)| =
∑
p∈S

∣∣{l ∈ L|p ∈ l}
∣∣ =

∑
l∈L

∣∣{p ∈ S|p ∈ l}
∣∣.

Here is a basic estimate for |I(S,L)| that takes advantage of the multiple ways
to count I(S,L).
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Proposition 7.10. If S is a set of S points in the plane, and L is a set of L
lines in the plane, then

|I(S,L)| ≤ L + S2,

and

|I(S,L)| ≤ S + L2.

Proof. We let L1 be the set of lines in L that contain exactly one point of S,
and we let L>1 be the set of lines in L that contain more than one point of S. We
see that |I(S,L)| = |I(S,L1)| + |I(S,L>1)|.

Now |I(S,L1)| ≤ |L1| ≤ L. On the other hand,

|I(S,L>1)| =
∑
p∈S

|{l ∈ L>1|p ∈ l}|.

For each p ∈ S, there are at most S − 1 lines containing p that hit another
point of S. Therefore,

|I(S,L>1)| ≤
∑
p∈S

(S − 1) ≤ S2.

This finishes the proof of the first inequality. The second inequality is similar.
We define S1 to be the set of points of S that lie in exactly one line of L and S>1

to be the set of points of S that lie in more than one line of L.

|I(S,L)| ≤ |I(S1,L)| + |I(S>1,L)| ≤ S +
∑
l∈L

|{p ∈ S>1|p ∈ l}|.

For each l ∈ L, there are at most L − 1 points in l that intersect another line
of L, and so the last expression is

≤ S +
∑
l∈L

(L − 1) ≤ S + L2.

�

We now state the Szemerédi-Trotter bound on the number of incidences.

Theorem 7.11. If S is a set of S points in the plane, and L is a set of L lines
in the plane, then the number of incidences between S and L is bounded as follows:

|I(S,L)| � (S2/3L2/3 + S + L).

Szemerédi and Trotter proved Theorem 7.11 and Theorem 7.1 in [SzTr]. The
two theorems are closely related, and either estimate can be referred to as the
Szemerédi-Trotter theorem. Theorem 7.11 can be proved by making a small modi-
fication in the proof of Theorem 7.1 in Subsection 7.2.2.

The two results are also essentially equivalent. We now prove Theorem 7.11
using Theorem 7.1.

Proof. We sort S according to the number of lines that each point of S lies
in. We define Shigh to be the set of points p ∈ S that lie in at least 2L1/2 lines
of L. By Proposition 7.10, |I(Shigh,L)| ≤ |Shigh|2 + L. But |Shigh| ≤ |P2L1/2(L)|.
By Lemma 7.3, |P2L1/2(L)| ≤ L1/2. All together, we get |I(Shigh,L)| ≤ 2L. This
inequality is based only on double counting and not on topological considerations.

We subdivide the rest of S more finely. We define

Sk := {p ∈ S so that 2k−1 ≤ |{l ∈ L|p ∈ l}| < 2k}.
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From this definition, we see that |I(Sk,L)| ≤ 2k|Sk|. We let K denote the smallest
integer with 2K−1 ≥ 2L1/2. This guarantees that ∪k>KSk ⊂ Shigh. We can now
break up the incidences as follows:

|I(S,L)| ≤ 2L +

K∑
k=1

2k|Sk|.

We know that |Sk| ≤ |P2k−1(L)|. Since 2k−1 ≤ L1/2, Theorem 7.1 tells us that
|P2k−1(L)| � L22−3k. Of course we also know that |Sk| ≤ S. Putting everything
together, we see that

|I(S,L)| � L +
K∑

k=1

2k min(S, 2−3kL2).

It just remains to estimate this sum. The sum splits into two pieces, depending
on whether S or 2−3kL2 is bigger, and each piece is just a geometric series. We
note that S ≤ 2−3kL2 if and only if 2k ≤ L2/3S−1/3. So the last sum is bounded
by ∑

1≤k≤K;2k≤L2/3S−1/3

2kS +
∑

1≤k≤K;2k≥L2/3S−1/3

2−2kL2.

The most interesting case is when 1 ≤ L2/3S−1/3 ≤ 2K . In this case, each
geometric sum is � L2/3S2/3.

If L2/3S−1/3 > 2K , then only the first sum appears, and the total is � 2KS ≤
L2/3S−1/3S = L2/3S2/3.

If L2/3S−1/3 < 1, then only the second sum appears, and the total is � L2.
But since L2/3S−1/3 < 1, we have L2 < S.

Combining all the cases, we see that |I(S,L)| � L2/3S2/3+S+L as desired. �

Exercise 7.5. Show that Theorem 7.11 implies Thoerem 7.1.

Exercise 7.6. Prove Theorem 7.11 directly using the crossing number method,
modifying the proof from Subsection 7.2.2.

Exercise 7.7. Here is a third version of the Szemerédi-Trotter estimate. Sup-
pose that S is a set of S points in the plane, and let Lr be the set of lines that
contain ≥ r points of S.

Using Theorem 7.11 or Theorem 7.1, prove that |Lr| ≤ C(S2r−3 + Sr−1).

The reader may note that in the Szemerédi-Trotter theorem, the role of points
and lines is symmetric: in Theorem 7.11, the right-hand side, (S2/3L2/3 + S + L),
is symmetric with respect to S and L. This symmetry comes from the notion of
duality in the projective plane, which interchanges points and lines. To end this
section, we briefly recall how duality works in projective geometry.

If F is any field, then recall that the projective space FPn is defined to be the
set of all 1-dimensional subspaces of Fn+1. We define two elements x, y ∈ Fn+1\{0}
to be equivalent if and only if x = λy for some λ ∈ F∗. Then FPn is the set of
equivalence classes of elements in Fn+1 \{0}. If (x1, x2, ..., xn+1) ∈ Fn+1 \{0}, then
we write [x1, x2, ..., xn+1] for the corresponding point in FPn.

A k-dimensional plane in FPn corresponds to a (k + 1)-dimensional subspace
S ⊂ Fn+1. The k-plane corresponding to S is the set of all the 1-dimensional
subspaces of Fn+1 that are contained in S. In particular, a line in FP2 corresponds
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to a 2-dimensional subspace of F3. Every 2-dimensional subspace of F3 is defined
by an equation of the form

∑
j ajxj = 0, where (a1, a2, a3) �= 0 ∈ F3. A point

[x1, x2, x3] ∈ FP2 lies in this plane if and only if
∑

j ajxj = 0. Two equations∑
j = 13ajxj = 0 and

∑3
j=1 bjxj = 0 determine the same subspace of F3 if and

only if a = λb for some λ ∈ F∗ if and only if [a] = [b]. Therefore, the set of all lines
in FP2 can be identified with FP2.

Given a point p = [x1, x2, x3] in FP2, we let the dual line p∗ be the line cor-
responding to [x1, x2, x3]. In other words, [y] ∈ p∗ if and only if

∑
j xjyj = 0.

Similarly, if l is a line in FP2 corresponding to [a1, a2, a3], then we let the dual
point l∗ be the point [a1, a2, a3]. Now we note that p ∈ l if and only if l∗ ∈ p∗ if
and only if

∑
j ajxj = 0.

If S is a set of points in FP2 then we let S∗ be the set of lines dual to the points
of S. Similarly, if L is a set of lines in FP2, then we let L∗ be the set of points dual
to the lines of L. The number of incidences between S and L is the same as the
number of incidences between L∗ and S∗.

Finally we note that the Szemerédi-Trotter theorem extends to points and lines
in RP2. The set of points of the form [a1, a2, 1] ∈ RP2 is naturally identified with R2.
The remaining points, the points of the form [a1, a2, 0], can be naturally identified
with RP1, and they are called the points at infinity. For any finite set S ⊂ RP2,
there is a projective transformation that takes S into R2 ⊂ RP2. We recall the
definition of a projective transformation. If L : Fn+1 → Fn+1 is an isomorphism,
then L maps k-dimensional subspaces of the domain to k-dimensional subspaces of
the range for every k. In particular, L induces a map from FPn to FPn. Such a
map is called a projective transformation. Since L takes each (k + 1)-dimensional
subspace of the domain to a (k +1)-dimensional subspace of the range, the induced
map sends each k-plane in FPn to another k-plane in FPn.

Exercise 7.8. For any finite set S ⊂ RP2, prove that there is a projective
transformation which maps S to a subset of R2 ⊂ RP2.

Prove that the Szemerédi-Trotter theorem extends to points and lines in RP2.
Also, using duality, show that the function

Imax(S, L) := max
S⊂R2,|S|=S,L a set of L lines in R2

I(S,L)

is symmetric in S, L.

Exercise 7.9. Suppose that L is a finite set of lines in RP2. We say the lines
of L are concurrent if there is a single point which lies in all the lines of L. If the
lines of L are not concurrent, prove that each component of the complement of the
lines is a polygon with at least three sides. Using Euler’s formula, prove that there
is a point lying in exactly two lines of L.

Using duality prove the following corollary. Suppose that S is a finite set of
points in R2, not all lying on one line. Then, there is a line that contains exactly
two points of S. Such a line is called an ordinary line.

This result is called the Sylvester-Gallai theorem and the proof sketched in this
exercise is due to Melchior. It plays a role in the paper [GT] which we will discuss
in Section 7.5 below.
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7.4. Distance problems in incidence geometry

Having studied one of the central theorems in incidence geometry, we now
describe some other problems in the field, mostly difficult open problems. We
begin with Erdős’s paper “On sets of distances of n points” [Er1], one of the earliest
papers in the field. He posed two main questions in the paper: the distinct distance
problem and the unit distance problem. These questions played an important role
as the field developed.

The distinct distance problem. Given N points in the plane, what is the
smallest number of distinct distances they can determine? In other words, if P ⊂ R2

is a set of N points, and d(P ) := {|p1 − p2|}p1,p2∈P,p1 �=p2
, then what is the smallest

possible size of d(P )?

The unit distance problem. Given N points in the plane, what is the
maximum number of unit distances that they can determine? In other words,
if P ⊂ R2 is a set of N points, what is the maximum possible number of pairs
p1, p2 ∈ P with |p1 − p2| = 1?

We discuss the examples and the known bounds in these problems, starting with
the distinct distance problem. A generic set of N points has

(
N
2

)
distinct distances.

If we arrange N points along a line with even spacing, then |d(P )| = N − 1. Erdős
realized that it is slightly better to arrange the points in a square grid. Let P be
the set of integer points (a, b) with 1 ≤ a, b ≤ S, so that N = S2. The distance
from (a1, b1) to (a2, b2) is the square root of (a1 − a2)

2 + (b1 − b2)
2. We have

|(a1 − a2)
2| ≤ S2 = N , and so (a1 − a2)

2 + (b1 − b2)
2 is an integer in the range

[1, 2N ]. Therefore, |d(P )| ≤ 2N . But the key point is that (a1 − a2)
2 + (b1 − b2)

2

is a sum of two squares. Not all integers in [1, 2N ] are sums of two squares, and
in fact most of them are not. Erdős had been studying this type of number theory
problem, and using the tools in the area, he proved that |d(P )| ∼ N(log N)−1/2.
Erdős conjectured that the square grid is essentially the most extreme example,
and that any set of N points has |d(P )| � N(log N)−1/2. He reported that he
had thought about the problem for several years, but he could only prove that
|d(P )| � N1/2.

No one has ever found an example significantly better than the square grid.
Also, as far as I know, the only examples with at most N/2 distinct distances come
from lattices with algebraic entries - slight variations of Erdős’s example.

Over the years, different people improved the estimate in the distinct distance
problem. Szemerédi and Trotter were partly motivated by this problem when they
proved Theorem 7.1, and ideas from that theorem helped prove some of the esti-
mates. Using the crossing number method, Szekely proved that |d(P )| � N4/5,
and we will study his proof in the exercises below. The best estimate before the
polynomial method was |d(P )| � N .86 by [KatTar].

Using the polynomial method, the paper [GK2] proved that |d(P )| �
N(log N)−1, nearly proving Erdős’s conjecture. This theorem is the main result
of the book.

Next we discuss the unit distance problem. If we let P be the set of points
(1, 0), (2, 0), ..., (N, 0), then P has N − 1 unit distances. It is possible to find sets
with a superlinear number of unit distances. For example, let v1, ..., va be unit
vectors, and consider the N = 2a points

∑
j cjvj with cj ∈ {0, 1}. Each point
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has a unit distances to other points, so the total number of pairs at unit distance
is a2a = N(log2 N). Erdős considered a square grid of points with a well-chosen
spacing. This example has more unit distances than the last one. Nevertheless, the
known examples have ≤ CεN

1+ε unit distances.
The paper [Er1] proved that the number of unit distances of N points is �

N3/2. Using techniques related to Theorem 7.1, Szemerédi, Trotter, and Spencer
proved in the early 80’s that the number of unit distances is � N4/3. (In the
exercises, we will give a proof below using the crossing number method.) The
exponent 4/3 has not been improved in thirty years, and this is a major open
problem in the field.

Let me take a little time to discuss why I think these problems are interesting
and important. Erdős’s background was in number theory and especially the theory
of prime numbers. In these areas, there are many difficult questions with elementary
statements, and this feature was very interesting to Erdős. At the time, it may have
seemed that deep elementary questions are a special feature of number theory. Over
his career, Erdős sought out difficult elementary questions, and he found many of
them. The study of prime numbers is a kind of well containing huge numbers of deep
elementary questions. Erdős helped to find several new wells of deep elementary
questions, and incidence geometry is one of those wells. The existence of deep
elementary questions is a significant fact about mathematics, and finding new ones
helps to expand our subject. In the search for difficult elementary questions, the
most exciting discovery is an elementary question which looks very different from
the known library of difficult elementary questions. (The most exciting aspect
would be to find an elementary question which is difficult for a new reason.) I
think that Erdős’s distance problems were such questions. Today there is a whole
well of deep elementary questions around them. In the next section, we look at some
of the other questions in this well, and we try to discuss why they are difficult.

7.5. Open questions

The Szemerédi-Trotter theorem provides a good estimate for

max
|L|=L

|Pr(L)|.

We can pose variations on this question by replacing lines with other types of
curves. What happens for circles? Unit circles? Parabolas? Ellipses? These are
four interesting open problems of incidence geometry. We do not understand the
possible intersection patterns for any of these classes of curves.

Let us try to discuss why these problems are hard, or at least why the methods
we have discussed so far do not resolve them. We focus on the example of unit
circles, which is probably the example that people have studied the most.

If L is a set of L unit circles in the plane, an adaptation of the crossing number
proof shows that |Pr(L)| � Lr−1 + L2r−3, the same bound as for straight lines.
This is the best known upper bound for r-rich points of unit circles, but we don’t
know examples where this bound is sharp. We can find examples with Lr−1 r-rich
points by choosing Lr−1 points and then choosing r circles through each point.
Also, if r = 2, it’s easy to make examples with ∼ L2 2-rich points. But in the
interesting range 3 ≤ r � L1/2, there is a big gap between the examples and the
upper bound. For straight lines, the grid example gives ∼ L2r−3 r-rich points. But
the grid example does not work nearly as well if we replace lines by circles. The
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difference is that a circle can contain very few points of a grid. For any ε > 0, for
an S×S grid of points, any circle contains ≤ C(ε)Sε of the points. For large values
of r, the grid construction is still the best known construction, and the number of
r-rich points is only slightly more than the trivial example Lr−1.

The most well studied variation of the problem is to estimate the maximum
number of incidences between L unit circles and L points. This problem is equiva-
lent to estimating the maximum number of unit distances formed by L points. The
arguments coming from the Szemerédi-Trotter theorem show that the number of
incidences is � L4/3. The best known examples are based on grids. The number of
incidences in these examples is superlinear but ≤ C(ε)L1+ε for any ε > 0.

Understanding the number of 3-rich points is also interesting. The only upper
bound that we know is the trivial bound L2. Elekes found an arrangement of L
unit circles with ∼ L3/2 3-rich points [El1].

It is widely believed that the maximal number of incidences is close to the
examples, at least for the unit distance problem. This means that the upper bounds
need to be improved. The upper bound arguments that we know apply to both
unit circles and straight lines, and they are sharp for straight lines. To improve
these upper bounds, we need to use a property that holds for unit circles but not
for straight lines. It is hard to come up with a good candidate for this property.
We can get another perspective by comparing unit circles with unit parabolas. A
unit parabola is the graph of an equation of the form y = x2 + ax + b, for a, b ∈ R.
The crossing number arguments apply to unit parabolas as well as unit circles and
give the same estimates: |Pr(L)| � Lr−1+L2r−3. For unit parabolas, these bounds
are sharp up to constant factors, like for straight lines. The reason is that there is
a transformation Φ : R2 → R2 that turns straight lines into unit parabolas. The
transformation is Φ(x, y) = (x, y + x2). The map Φ is bijective. If l is a (non-
vertical) straight line, then Φ(l) is a unit parabola. If γ is a unit parabola, then
Φ−1(l) is a straight line. Therefore, the incidence geometry of straight lines and
of unit parabolas is exactly the same. On the other hand, unit parabolas and unit
circles have many features in common. A unit parabola and a unit circle are each
degree 2 algebraic curves. They are each strictly convex. They are each determined
by two real parameters. Two unit circles intersect in at most two points. Two unit
parabolas intersect in at most one point, which seems even better. What special
property of unit circles can we use to distinguish them from unit parabolas and
from straight lines? (See [ESS] for some interesting ideas about this question.)

This discussion suggests another question. Do mathematicians know of any
other configurations of lines, besides the grid example, that produce a lot of r-rich
points? For small values of r, there are some other examples. For r = 3, there is an
example based on a degree 3 algebraic curve which was found by Sylvester in the
19th century – see [GT] for a discussion of this example. For other small values of
r, there are more recent examples – see [SoSt] and the references therein. But for
r in the range L.01 < r < L.49, the only known examples that give ∼ L2r−3 r-rich
points are minor variations of the grid example. It’s striking how few examples we
know. It could be that there are more exotic examples we haven’t found yet, or it
could be that integer grids are essentially the only examples. Understanding this
issue is another major open problem in incidence geometry.

We can get a little bit of perspective on this problem by just counting param-
eters. A line in R2 is determined by two real parameters. In our questions, there
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is no real loss of generality in restricting to lines of the form y = mx + b. The
space of configurations of L lines lj ⊂ R3 is determined by 2L real parameters:
mj , bj ,, with j = 1, ..., L. The condition that the three lines lj1 , lj2 , lj3 intersect
in a common point can be written as one equation in the six variables that define
these lines: mj1 , bj1 , mj2 , bj2 , mj3 , bj3 . The condition that r lines, lj1 , ..., ljr all meet
in a common point can be written as r − 2 equations in the 2r variables defining
these lines.

Suppose that we have a configuration of L lines in R2 with N r-rich points.
There is some combinatorial information which encodes which lines intersect at
each of these r-rich points. Given this combinatorial information, we can write
down (r − 2)N equations which must be solved by the 2L real parameters mj , bj
representing the set of lines. If (r − 2)N > 2L, then this system of equations is
overdetermined.

Let us look back at the examples in the Szemerédi-Trotter problem with this
idea of counting equations and variables. We gave one example with N = Lr−1

r-rich points. In this example, (r − 2)N < 2L, so this example was actually under-

determined. Using generic lines, we gave an example with N =
(
L
2

)
2-rich points. In

this case (r−2)N = 0 < 2L, so this example was also underdetermined. As we saw
in the discussion on unit circles, these underdetermined examples easily generalize
to unit circles. Finally, we gave the grid example, with N ∼ L2r−3 r-rich points. If
3 ≤ r � L1/2, then (r − 2)N is far bigger than 2L. So the grid example is heavily
overdetermined.

Faced with a heavily overdetermined system of equations, it is a reasonable first
guess that it has no solutions at all. If it does have solutions, then we might guess
that the problem has some special structure, and that the solutions are all related
to the special structure. Just based on this parameter counting, it is plausible to
hope that all the near-sharp examples in the Szemerédi-Trotter problem have some
special structure. Whether this is really true and exactly what the structure should
be is a major open problem.

The cutting of edge of research in this direction is a recent paper of Green
and Tao, [GT]. Given a set of points P ⊂ R2, we let L=3(P ) be the set of lines
containing exactly three points of P . For all sufficiently large N , [GT] finds the
exact maximum size of |L=3(P )| among all sets of N points. This is dual to a
problem about lines. If L is a set of lines, we let P=3(L) be the set of points
contained in exactly three lines of L. For all sufficiently large N , [GT] finds the
exact maximum size of |P=3(L)| among all sets of N lines. The sharp examples
are based on degree 3 algebraic curves. And [GT] also shows that if the size of
|L=3(P )| is very close to the maximum, then P must closely resemble the sharp
example.

In Chapter 11 and Chapter 13, we will discuss the connection between combi-
natorial structure and algebraic structure. For some incidence geometry problems
about lines in R3, we will prove that all the near-sharp examples have a special
structure based on low degree polynomials. The special structures for these prob-
lems about lines in R3 turn out to be simpler to understand than the possible
special structure for the Szemerédi-Trotter problem. We understand these struc-
ture problems a lot better, and they play an important role in the proof of the
distinct distance estimate.
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7.5.1. Exercises.

Exercise 7.10. In this exercise, we describe an example, due to Elekes [El1],
of a set of N unit circles in the plane with ∼ N3/2 3-rich points.

Let v1, ..., vm be a set of generic unit vectors in R2. Let X be the set of all
sums vi +vj with i and j distinct. If the vi are chosen generically, then all the sums
are distinct, and the number of points in X is N ∼ m2. Let Γ be the set of all unit
circles with centers in X. Check that every point of the form vi +vj +vk with i, j, k
distinct is a 3-rich point of Γ. If the vi are chosen generically, then these points are
all distinct. Conclude that the number of 3-rich points of Γ is � m3 ∼ N3/2.

Exercise 7.11. In [El2], Elekes gave an interesting application of the Sze-
merédi-Trotter theorem to combinatorial number theory. Suppose that A ⊂ R is a
finite set. We let A + A denote the set of all sums:

A + A := {a1 + a2|a1, a2 ∈ A}.
Similarly, we let A · A denote the set of all products:

A · A := {a1 · a2|a1, a2 ∈ A}.
For a generic set A, |A + A| and |A · A| are both on the order of |A|2. It

is interesting to understand how small these sets can be. If A is an arithmetic
progression, then |A + A| is roughly 2|A|. If A is a geometric progression, then
|A · A| is roughly 2|A|. But it seems to be difficult for |A + A| and |A · A| to be
small at the same time. Erdős and Szemerédi conjectured that for any ε > 0

(7.1) max(|A + A|, |A · A|) ≥ c(ε)|A|2−ε.

The best known results on this problem are far from the conjecture. In [El2],
Elekes proved the bound

(7.2) max(|A + A|, |A · A|) � |A|5/4.
This result is no longer the best known, but it was a big milestone.
Let L be the set of lines y = mx− b with m ∈ A ·A and b ∈ A + A. If 1/x ∈ A

and −y ∈ A, then check that (x, y) is an r-rich point of L for r = |A|. Applying
Theorem 7.1 to bound |Pr(L)|, prove Inequality 7.2.

Modifying this argument a little bit, prove that max(|A − A|, |A/A|) � |A|5/4
also. (Here A − A is the set of differences a1 − a2, and A/A is the set of quotients
a1/a2, with a1, a2 ∈ A.)

7.6. Crossing numbers and distance problems

In this section, we explore the distinct distance problem and the unit distance
problem using the crossing number method. The section mostly consists of exercises
where the reader can practice using the crossing number method. Over the course
of the exercises, we will prove some interesting results about distance problems,
and we will see some of the approaches to these problems that people have tried.
We will also try to give a sense of why it is hard to fully solve these problems using
the crossing number method. In this way, we will think more about the nature of
the difficulty of these problems.

The main tool in this section is the crossing number theorem of [Le] and
[ACNS], Theorem 7.6, which we repeat here.
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Theorem. If G is a graph with E edges and V vertices, and E ≥ 4V , then
the crossing number G obeys the inequality k(G) ≥ (1/64)E3V −2.

To begin our exploration, let us sketch a wrong proof of the distinct distance
conjecture using the crossing number theorem. As you read the proof, try to figure
out where the mistake is.

Suppose that P ⊂ R2 is a set of N points with |d(P )| = t < N . Consider the
set of circles with centers at points of P and radii in d(P ). The number of circles
in this set is Nt. Each point of P lies in N − 1 of the circles. Using these circles,
we construct a graph G. The vertices of G will be the points of P , and the edges
will be the arcs of circles between consecutive points. What is the crossing number
of the graph? We know that any two circles intersect in at most two points. So
we have the inequality k(G) ≤ 2

(
Nt
2

)
≤ (Nt)2. On the other hand, we know that

the graph G has N vertices. Each point of P is contained in N − 1 circles, so each
vertex has degree 2(N − 1). So G has N(N − 1) edges. Using the crossing number
theorem, we get the following inequalities:

N2t2 ≥ K(G) ≥ (1/64)E3V −2 = (1/64)N3(N − 1)3N−2 ≥ (1/100)N4.

Solving for t, this implies that |d(P )| = t ≥ (1/10)N . This inequality is actually
wrong if P is a square grid, and the proof must also be wrong. Where is the
mistake? Before you read ahead, try to go through the argument carefully, draw a
picture, and see if you can find the mistake.

The mistake in the argument is that G is not a graph. In the definition of G
above, there may be multiple edges with the same two endpoints. Suppose that
q1, q2 ∈ P and that P contains many points on the perpendicular bisector of the
segment from q1 to q2. Then our set of circles will contain many different circles
that go through q1 and q2. Potentially, this could create many edges from q1 to q2.
(In addition to multiple edges, G may contain loops. A loop is an edge whose two
endpoints are the same.)

Definition 7.12. We will use the term multigraph to refer to a graph that
can have multiple edges, but no loops. For a multigraph G, define Mult(G) as the
highest number of parallel edges between two points, so Mult(G) ≤ M implies that
no two points have more than M edges between them.

The crossing number of a multigraph is defined in the same way as for a graph.

Exercise 7.12. Prove a crude form of the crossing number theorem for multi-
graphs with a bound on Mult(G). For instance, the following Proposition has a
short proof using the crossing number theorem, Theorem 7.6.

Proposition 7.13. If G is a multigraph with Mult(G) ≤ M , and E ≥ 4MV ,
then K(G) ≥ 1/64E3V −2M−3.

Exercise 7.13. Modifying the wrong proof above, and using Proposition 7.13,
prove the following result about the distinct distance problem.

Theorem 7.14. If we have N points in the plane, no 100 of which are on a
common line, then the number of distinct distances is at least cN , where c is a
constant.

Hint: If there are many edges from q1 to q2, then there must be many points
of P on their perpendicular bisector.
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Exercise 7.14. Adapt the crossing number proof of Szemerédi-Trotter to the
unit distance problem. Using Proposition 7.13, prove the following theorem.

Theorem 7.15. (Spencer, Szemerédi, Trotter [SST]) A set S of N points in
the plane determine at most CN4/3 unit distances.

Hint: It is crucial to observe that through any two points there at most two
unit circles.

This theorem is currently the best known result about the unit distance prob-
lem.

Exercise 7.15. Examining the proof of the last result and seeing what prop-
erties of unit circles really appear, prove the following generalization.

Theorem 7.16. Suppose that Γ is a set of L connected curves in the plane.
(The curves can be either closed like circles or unbounded like lines.) Suppose that
any two curves of Γ intersect in at most s points and any two points lie in at most
s curves of Γ. Prove that

|Pr(Γ)| ≤ C(s)(L2r−3 + Lr−1).

The last theorem is sharp for either straight lines or unit parabolas. Recall
that a unit parabola is given by the equation y = x2 + ax + b.

Exercise 7.16. Give an example of a set Γ of N unit parabolas with N r-rich
points for r � N1/3.

Here is another application of this theorem.

Exercise 7.17. Suppose that γ0 is a closed strictly convex curve in the plane.
Let Γ be a set of translates of γ0. Prove that any two points in the plane lie in at
most two of the curves of Γ.

Applying Theorem 7.16, conclude that |Pr(Γ)| � |Γ|2r−3 + |Γ|r−1.
Suppose that γ0 is a closed strictly convex curve in the plane of diameter d.

Prove that the number of integer points on γ0 is � d2/3. (This result goes back
to Jarnik [Ja] in the early 20th century. It has a more elementary proof, without
topology, but this proof using incidence geometry is pretty.)

Now we return to the crossing numbers of multigraphs and try to prove a
sharper estimate for k(G) in terms of the number of edges, the number of vertices,
and the multiplicity. We illustrate the issues on an example. Let K5;M be the multi-
graph with 5 vertices and M edges between each pair of vertices. It has multiplicity
M . What is the crossing number of K5;M . How does it depend asymptotically on
M? We can easily embed K5;M into the plane with M2 crossings: embed K5 so
that it has one crossing, and draw each edge M times. Can we do better?

Suppose we have a drawing of K5;M . Take a random subgraph G′ ⊂ K5;M

consisting of one edge between each pair of vertices. In the induced embedding on
the subgraph, each crossing occurs with probability 1/M2, since it occurs if and
only if both edges are in G′. So the number of crossings in the diagram is at least
M2E(k(G′)) ≥ M2. Therefore, k(K5;M ) = M2.

Exercise 7.18. Generalizing this idea to an arbitrary graph, prove the follow-
ing result.
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Theorem 7.17. If G is a multigraph with multiplicity at most M , and E ≥
100MV , then K(G) ≥ cE3V −2M−1 for some c.

Hint: Start with the case that between any two vertices of G the number of
edges is either 0 or lies in [M/2, M ].

Next, following [Sz], we apply the crossing number therorem (for multigraphs)
to the distinct distance problem. Using Theorem 7.17, we will prove the following
estimate, which was the best known estimate for the distinct distance problem in
the late 90’s.

Theorem 7.18. (Székely, [Sz]) If we have N distinct points in the plane, then
they determine ≥ cN4/5 distinct distances. In fact, there is one point p in the set
so that the distance from p takes ≥ cN4/5 distinct values.

We describe the proof, writing out some of the ideas and leaving other steps as
exercises.

Suppose that for each point p in our set S, the set of distances {dist(p, q)}q∈S
takes on ≤ t different values. We assume t ≤ cN4/5 and we will get a contradiction.

We let Γ0 be the set of circles S(p, r) with centers p ∈ S, and radii r = dist(p, q)
for some q ∈ S. The total number of circles in Γ0 is at most Nt. We let Γ ⊂ Γ0 be
the set of circles in Γ0 that contain at least two distinct points of S. Using Γ and
S, we define a multigraph G as follows. The vertices of G are the points of S and
the edges are arcs between consecutive points on one of the circles of Γ. By leaving
out circles that contain only one point, we arrange that G has no loops.

The multigraph G has N vertices and approximately N2 edges. We estimate
the number of edges in the following exercise.

Exercise 7.19. If N is large enough, we can assume that t ≤ (1/100)N . With
this assumption, prove that the number of edges of G is at least (1/2)N2.

The multigraph G was constructed with a drawing in the plane, and every
crossing in this drawing corresponds to the intersection of two of the circles of Γ. A
pair of circles intersects in at most two points, and |Γ| ≤ Nt, and so G has crossing
number ≤ 2(Nt)2.

The multigraph G may have very high multiplicity. Our strategy will be to
estimate how many high-multiplicity edges G can have, and trim edges from G to
reduce the multiplicity.

Lemma 7.19. The number of edges of G with multiplicity ≥ M is at most
C[N2M−2t + N log Nt].

This is one of the harder steps. The reader may certainly find the proof on
their own, but we also include a proof here.

Proof. Consider edges from a vertex p1 to a vertex p2. Each edge is the arc
of a circle, and the center of the circle must lie on the perpendicular bisector of p1
and p2. If there are many edges from p1 to p2, then there must be many points of
our set along the perpendicular bisector.

We define a map from edges of our multigraph to lines, sending an edge to the
corresponding perpendicular bisector. A line containing A points of S contributes
≤ 2At edges of the multigraph, each with multiplicity ≤ A.
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Let Lj denote the set of lines in the plane which contain ∼ 2j points of S.
(More precisely, the number of points is greater than 2j−1 and at least 2j .) The
number of edges with multiplicity at least M is bounded by∑

2j≥M

|Lj |2 · 2jt.

The size of Lj is bounded by the Szemerédi-Trotter theorem (see Version 3
above). Plugging in, we get:

≤
∑

2j≥M

C(N22−3j + N2−j)2jt.

The N22−3j term decays exponentially in j, and the total is ≤ CN2M−2t. The
second term is independent of j, and we need to sum over ∼ log N values of j, so
the total is ≤ CN log Nt. �

For any M , we define G≤M ⊂ G to be the multigraph given by deleting all
edges of G with multiplicity ≥ M . (Recall that the multiplicity of an edge in a
multigraph is the number of edges with the same endpoints as the given edge.) For
any M , we know that

k(G≤M ) ≤ k(G) ≤ 2(Nt)2.

We want to choose M as small as possible, but still guaranteeing that G≤M

has ≥ (1/3)N2 edges. Using Lemma 7.19 we can estimate how small we can make
M .

Exercise 7.20. Applying Theorem 7.17 to G≤M , prove that t ≥ cN4/5 for a
constant c > 0.

We end this section with a few comments about crossing numbers and dis-
tinct distances. Building on the crossing number approach introduced in [Sz],
Solymosi-Toth [SoTo] and then Katz-Tardos [KatTar] improved the estimates in
the distinct distance problem. The paper [KatTar] proved that for any N points
in the plane, one of the points determines ≥ cN .864 distances with the other points.
This approach gave the best estimate in the distinct distance problem before the
polynomial method approach.

We saw very early on that if a set of N points has at most 100 points on any
line, then it has at least cN distinct distances. Therefore, any example with far
less than N distinct distances must have a lot of points on a line. If there was only
one rich line, then we could deal with it separately, so we are really worried about
examples with many rich lines. This sounds like a very special structure for the
set of points. At first sight, it seemed to me that this structure should give us a
lot of leverage. The argument by [Sz] does exploit this structure to some extent.
However, this situation recalls one of the basic issues that we discussed in the open
questions section, Section 7.5. We know a few examples of sets of points with many
rich lines, and these examples have a lot of structure. On the other hand, we can
prove very little about the structure of a set of points with many rich lines.

Using the polynomial method we will prove during the book that the number of
distinct distances given by N points is ≥ cN(log N)−1. However, this approach does
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not bound the number of distances from a single point. It looks completely plausible
that for any N points in the plane, one of the points determines ≥ cN(log N)−1 (or
even ≥ cN(log N)−1/2)) distances with the other points. This would be a better
theorem if it’s true.



CHAPTER 8

Incidence geometry in three dimensions

In the last chapter, we discussed incidence geometry in the plane. Now we turn
to higher dimensions. The polynomial method has led to some significant progress
in incidence geometry in higher dimensions, and this is the main topic for the rest
of the book. In particular, we will study in depth the incidence geometry of lines
in R3. The joints problem concerns the incidence geometry of lines in R3, so we
have already seen how the polynomial method plays a role.

In the first section, we discuss the incidence geometry of lines in R3 and we
formulate the main results about them that we will prove over the course of the
book, using the polynomial method. In the next section, we discuss what is known
about even higher dimensions, giving some references to the literature. This area
is only beginning to be explored.

After that, we discuss a couple of other topics that play an important role in
higher dimensional incidence geometry. The first tool is the Zarankiewicz problem
– a fundamental combinatorial problem that comes up in many places in incidence
geometry. After that, we introduce reguli. These are degree 2 algebraic surfaces
that play an important role in studying lines in three-dimensional space. These are
some of the main tools that were used to study incidence geometry of lines in R3

before the polynomial method, and we give a sample argument showing how they
can be applied.

8.1. Main results about lines in R3

In this section, we consider the incidence geometry of lines in R3. We might
start with the first question we considered in R2: given a set L of L lines in R3,
what is the maximum possible number of r-rich points? It turns out the answer is
exactly the same as in the plane.

Proposition 8.1. Suppose n ≥ 2. Then for any L, r,

max
L a set of L lines in Rn

|Pr(L)| = max
L a set of L lines in R2

|Pr(L)| � L2r−3 + Lr−1.

Proof. Consider a set of lines L in Rn. Let π : Rn → R2 be a projection. For
a generic choice of π, the images of the lines of L will be distinct lines in R2. So
π(L) will be a set of L (distinct) lines in R2. For a generic choice of π, the images
of Pr(L) will be distinct points in R2, and we always have Pr(π(L)) ⊂ π(Pr(L)).
Therefore, |Pr(L)| ≤ Pr(π(L))|.

On the other hand, R2 ⊂ Rn, so a set of lines in R2 can be seen as a set of lines
in Rn. This proves that

max
L a set of L lines in Rn

|Pr(L)| = max
L a set of L lines in R2

|Pr(L)|.
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Now by the Szemerédi-Trotter theorem, we see that in any dimension n,

|Pr(L)| � L2r−3 + Lr−1.

�

This result answers the question about the maximal number of r-rich points
for L lines in R3. It turns out that this question is not “really 3-dimensional”.
The worst examples are when all lines lie in a plane, and the general case quickly
reduces to the planar case. It takes some thought to formulate interesting questions
about lines in R3 – questions that are really 3-dimensional and don’t reduce to the
planar case.

The joints problem is one such question. We now have a little more context to
appreciate the joints problem. The joints problem is a question about the incidence
geometry of lines in R3 that doesn’t reduce to a 2-dimensional question. It is
probably the simplest really 3-dimensional problem about the incidence geometry
of lines in R3.

Here is another approach to formulating a really 3-dimensional question. We
consider a set of lines in R3 with an extra condition that not too many lines lie
in any plane. Under this extra condition, we can ask whether there is a better
estimate for |Pr(L)|.

We considered this type of problem in Chapter 3. We saw that a set of L
lines in R3 lying in a degree 2 algebraic surface can have ∼ L2 2-rich points, even
though at most two of the lines lie in a plane. This example suggests that maybe
we should consider low degree algebraic surfaces as well as planes, leading to the
following question.

Question 8.2. Suppose that L is a set of L lines in R3 which contains at most
B lines in any algebraic surface of degree ≤ D. What is the maximal possible size
of |Pr(L)|?

This type of question came out of work by Elekes-Sharir [ElSh]. They gave a
new approach to the distinct distance problem, which led to this problem. We will
explain this approach in Chapter 9. The connection to distinct distances in their
work is an important motivation to look at this question. But I think this question
is also a natural question in its own right. I think it does a good job of getting at
really 3-dimensional phenomena in the incidence geometry of lines in R3. The next
six chapters of the book are concerned with this question and its applications.

We discuss some examples, and then state our main results about the question.
We start by considering 2-rich points. In Section 3.5, we described a configuration
of L lines in a certain degree 2 algebraic surface with ∼ L2 2-rich points. The
degree 2 surface was defined by the equation z = xy. It is an example of a regulus,
and we will study reguli systematically in Section 8.4 below. In any regulus, for
any L ≥ 2, we can find L lines with ∼ L2 2-rich points.

If we let S1, ..., SL/B be planes or reguli, and if L is a set of lines containing

B lines from each Sj , then the number of 2-rich points of L can be ∼ (L/B)B2 ∼
LB. Our first theorem shows that this example is sharp up to a constant factor if
B ≥ L1/2.

Theorem 8.3. If L is a set of L lines in R3 with at most B lines in any plane
or degree 2 surface, then |P2(L)| � LB + L3/2.
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If B ≥ L1/2, then our upper bound is |P2(L)| � LB, which matches the example
above. If B ≤ L1/2, then the our upper bound is still |P2(L)| � L3/2. Even for
small B, the only examples that I currently know have |P2(L)| � BL.

Now we consider r-rich points for r ≥ 3. Suppose we take L/B planes, and
we let L be a set containing B lines in each of the planes. The grid example from
Section 7.1 is a configuration of B lines in a plane with ∼ B2r−3 r-rich points. If
we use a grid example in each plane, then the total number of r-rich points will be
(L/B)B2r−3 = BLr−3. The value B = L1/2 will be an important example in the
book, and in this case, we note that the number of r-rich points is L3/2r−3.

Here is another example that is more 3-dimensional. Let G0 denote the integer
lattice {(a, b, 0)} with 1 ≤ a, b ≤ L1/4. Let G1 denote the integer lattice {(a, b, 1)}
with 1 ≤ a, b ≤ L1/4. Let L denote all the lines from a point of G0 to a point of
G1. Since G0, G1 each contain L1/2 points, L is a set of L lines. The horizontal
planes z = 0 and z = 1 do not contain any lines of L. Any other plane contains
at most L1/4 points of each Gi, and so at most L1/2 lines of L. In this example,
|Pr(L)| ∼ L3/2r−2 for all r in the range 2 ≤ r ≤ L1/2/400. We put this computation
in the exercises with some guidance. Notice that for B = L1/2, and for large r,
this example has more r-rich points than the previous example. Our second main
theorem says that when B = L1/2, this example is optimal.

Theorem 8.4. If L is a set of L lines in R3 with at most L1/2 lines in any
plane, and if 3 ≤ r ≤ 2L1/2, then |Pr(L)| � L3/2r−2.

(If r ≥ 2L1/2 then |Pr(L)| ≤ 2Lr−1. We proved this for lines in the plane in
Lemma 7.3, and the same argument applies in any dimension.)

The proof of Theorems 8.3 and 8.4 will take some work. In the rest of this
chapter, we give some more background about incidence geometry in dimension at
least three. In the next chapter, we explain the connection between these estimates
about lines in R3 and the distinct distance problem. In Chapters 10 to 13, we
prove Theorems 8.3 and 8.4. We will prove a slightly weaker estimate at the end of
Chapter 10. We will finish the proof of Theorem 8.4 at the end of Chapter 12 and
we will finish the proof of Theorem 8.3 at the end of Chapter 13.

Exercise 8.1. In this exercise, we estimate the number of r-rich points for the
set of lines described a few paragraphs ago. Namely, let G0 be the set of points
(a, b, 0) with a, b integers in the range 1 ≤ a, b ≤ L1/4, and G1 be the set of points
(a, b, 1) with a, b integers in the same range. Let L be the set of all lines that contain
one point of G0 and one point of G1. The number of lines in L is L. The goal of
the exercise is to show that for all r in the range 2 ≤ r ≤ (1/400)L1/2, we have the
estimate

|Pr(L)| � L3/2r−2.

Here is an approach to studying the r-rich points of L. For any point x =
(x1, x2, x3) ∈ R3, with x3 �= 0, 1, we define a map ρx : R2 → R2 as follows. If
v ∈ R2, then we define ρx(v) so that (v, 0), x, and (ρx(v), 1) are collinear. Now
observe that x is r-rich if and only if

|ρx(G0) ∩ G1| ≥ r.

Using a similar triangles argument, show that

ρ(0,0,x3
)(v) = −1 − x3

x3
v.
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More generally, show that if x = (x1, x2, x3),

ρx(v1, v2) = −1 − x3

x3
(v − (x1, x2)) + (x1, x2) = −1 − x3

x3
v +

1

x3
(x1, x2).

If p/q is a rational number (in lowest terms) with max(|p|, |q|) ∼ H, show that
there are � H2L1/2 choices of (x1, x2) so that (x1, x2, p/q) lies in ≥ (1/10)H−2L1/2

lines of L.
Adding up the contributions from different rational heights, show that |Pr(L)| �

L3/2r−2 for all r in the range 2 ≤ r ≤ (1/400)L1/2.

8.2. Higher dimensions

So far we have discussed in some depth the incidence geometry of lines in R2

and of lines in R3. The incidence geometry of lines in R3 will be the main subject
of the rest of the book. It would be very interesting to have a systematic theory
of the incidence geometry of k-planes in Rn for every k, n. So far we know only a
little in this direction. It’s not even clear to me what questions a systematic theory
should aim to answer.

Let us first consider 2-planes in R3. We might first ask, given a set Π of N
2-planes in R3 and a set S of S points in R3, how many incidences can they form?
The answer to this question is NS – in other words, every point can lie in every
plane. To achieve this, pick a line l ⊂ R3, and then choose N planes containing
l and S points in l. To get interesting bounds on the number of incidences, it is
necessary to put further restrictions on the planes and/or the points.

Mathematicians have considered many different possible restrictions. Edels-
brunner, Guibas, and Sharir [EGS] consider the restriction that any line contains
at most two points of S. Chazelle [Ch] considers the restriction that there is no
line which contains at least r points of S and lies in at least r planes of Π. Agar-
wal and Aronov [AA] consider the restriction that each plane in Π contains three
non-collinear points of S. Elekes and Toth [ElTo] consider a stronger version of
this restriction: for each plane π ∈ Π, at most α|S ∩ π| points of S ∩ π can lie on
any line, where 0 < α < 1 is given. Under these different restrictions, there are
various interesting bounds on the number of incidences. Most of these bounds are
not known to be sharp, although there are a few sharp inequalities known. These
different setups provide complementary estimates – there doesn’t seem to be one
central conjecture/question about incidences of points and 2-planes.

To give a flavor for the area, we state one theorem about incidences of points
and planes due to [EGS]. (See also Appendix A of [ApSh] for the sharpest version
and some interesting discussion.)

Theorem 8.5. Suppose that Γ is a set of N 2-planes in R3, no three of which
are collinear. Suppose that S is a set of S points in R3. Then

|I(Γ,S)| � S4/5N3/5 + S + N.

This inequality is sharp, as explained in Appendix A of [ApSh]. We will study
incidences between points and planes in the exercises in Chapter 10. In particular,
in Exercise 10.6, we will prove a slightly weaker version of Theorem 8.5.

Some of the work on 2-planes in R3 generalizes to hyperplanes in Rn for any
dimension n – see [Ch] and [ApSh]. Point-hyperplane incidences are already quite
complex. But even more generally, we would like to understand incidences between
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points and k-planes in Rn for any k, n. Dealing with other values of k creates new
problems. In Chapter 10, we will discuss the cutting method, an important method
for studying incidences between points and hyperplanes, and we will discuss why it
is hard to adapt to k-planes for k < n − 1.

For k-planes in Rn, with arbitrary k, n, I know of one interesting setup where
we have a good estimate for the number of incidences. This setup was proposed by
Toth in the early 2000’s. Suppose that Π is a set of k-planes in Rn with the extra
condition that any two k-planes of Π intersect in at most one point. Let S be a
set of points in Rn. Given |Π| and |S|, what is the maximum possible number of
incidences between Π and S?

The condition that two k-planes intersect in at most one point requires n ≥
2k. The case n = 2k is the main case. By a random projection argument, as
in Proposition 8.1, the case n = 2k is equivalent to any other ambient dimension
n ≥ 2k.

We can get interesting examples by taking products of (interesting) configura-
tions of lines in the plane. For j = 1, ..., k, suppose that Lj is a set of lines in R2 and
Sj is a set of points in R2. Define S to be the product S1 × ... ×Sk ⊂ R2k, so that

|S| =
∏k

j=1 |Sj |. Similarly, we define Π to be the product L1× ...×Lk. An element

of L is a k-plane in R2k defined as a product l1 × ... × lk ⊂ R2k, where lj ∈ Lj .

So Π is a set of
∏k

j=1 |Lj | k-planes in R2k. The number of incidences of Π and

S is
∏k

j=1 |I(Lj ,Sj)|. For instance, suppose that for each j, |Lj | = |Sj | = N and

I(Lj ,Sj) ∼ N4/3. Then |Π| = |S| = Nk and |I(Π,S)| ∼ (Nk)4/3. Toth conjectured
that this example is sharp up to a constant factor.

Toth raised this question in connection with his work on the complex version
of the Szemerédi-Trotter theorem. Suppose that L a set of complex lines in C2,
and S a set of points in C2. In terms of |L| and |S|, what is the maximum possible
number of incidences between L and S? For real lines, this question is answered
by the Szemerédi-Trotter theorem. But the topological methods used for real lines,
such as the crossing number method, do not easily adapt to the complex setting.
Toth was able to adapt the original proof from [SzTr] to the complex setting,
proving the following result.

Theorem 8.6. (Toth, [To]) Suppose that L a set of complex lines in C2, and
S a set of points in C2. Then

|I(L,S)| � max(|L|2/3|S|2/3, |L|, |S|).

Along the way, he observed that complex lines can be thought of as real 2-
planes in R4, where every pair of 2-planes intersects in at most one point. This
suggested to him the question above, and he made the following conjecture.

Conjecture 8.7. (Toth) Suppose that Π is a set of k-planes in Rn with the
extra condition that any two k-planes of Π intersect in at most one point. Let S
be a set of points in Rn. Then

|I(Π,S)| �k max(|Π|2/3|S|2/3, |Π|, |S|).

Because of the product examples, this upper bound would be sharp up to a constant
factor.

Using the polynomial method, Solymosi and Tao were able to prove an estimate
which nearly gives Toth’s conjecture.
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Theorem 8.8. (Solymosi-Tao, [SoTa]) For any ε > 0, and any k ≥ 1, there is
a constant C(k, ε) so that the following holds. Suppose that Π is a set of k-planes
in Rn with the extra condition that any two k-planes of Π intersect in at most one
point. Let S be a set of points in Rn. Then

|I(Π,S)| ≤ C(k, ε)|Π|ε max(|Π|2/3|S|2/3, |Π|, |S|).

We don’t prove this theorem in this book, but it is related to many of the
ideas in the book. In particular, polynomial partitioning, the subject of Chapter
10, plays an important role in the argument. After reading Chapter 10, the reader
will be ready to read this interesting paper.

8.3. The Zarankiewicz problem

There is a fundamental combinatorial problem called the Zarankiewicz problem
that comes up in several places in incidence geometry.

To motivate the problem, we start by considering incidences between points
and lines in the plane. Suppose that S is a set of points in the plane and L is a set
of lines in the plane. The incidence matrix of (S,L) encodes which points lie on
which line. It has one row for each point of S and one column for each line of L.
Given a point x ∈ S and a line l ∈ L, the corresponding entry of the matrix is 1 if
x ∈ l and 0 otherwise. The number of 1’s in the incidence matrix is the number of
incidences between S and L.

A fundamental question in incidence geometry is to understand which 0-1 ma-
trices occur as the incidence matrix of some pair (S,L). Because two lines intersect
in at most one point, the incidence matrix (S,L) contains no 2× 2 minor of all 1’s.
This basic fact leads to some estimates on the number of incidences I(S,L). In this
section, we will study this type of estimate systematically.

In the early 1950’s, Zarankiewicz posed the following more general problem.
Suppose that A is an M × N matrix with entries 0 or 1, and suppose that A has
no V × W minor of all 1’s. What is the maximum possible number of 1’s that
A can have? This is a fundamental problem of combinatorics, and various special
cases occur in incidence geometry in different places. The main known result is the
following theorem.

Theorem 8.9. (Kővári-Sós-Turán, 1954) Suppose that A is an M ×N matrix
whose entries are 0 or 1. Suppose that A has no V × W minor of all 1’s, for some

integers V ≤ W . Then the number of 1’s in A is at most C(V )[W 1/V MN
V −1
V +N ].

Remark. We can write the upper bound above in the less precise form

C(V, W )[MN
V −1
V + N ]. Sometimes, we have V fixed, while W tends to infinity

with M, N . In this case, the more explicit dependence on W is useful.

Proof. Let C1, ..., CN denote the columns of A. We can think of each column
as a subset of the numbers [1, ..., M ]. We let

(
M
V

)
denote all of the sets of V distinct

elements of the numbers 1, ..., M . We let
(
Cj

V

)
denote all of the sets of V distinct

elements of Cj . Clearly
(
Cj

V

)
⊂
(
M
V

)
. We let |Cj | be the number of elements in Cj ,

so that the number of elements in
(
Cj

V

)
is
(|Cj |

V

)
.
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The condition that A has no V ×W minor of all 1’s implies that each element
of

(
M
V

)
occurs in < W of the sets

(
Cj

V

)
. So we get the following inequality:

N∑
j=1

(
|Cj |
V

)
< W

(
M

V

)
.

The expression
(|Cj |

V

)
is somewhat complicated, but it’s approximately equal to

|Cj |V . We write A � B for A ≤ C(V )B. Then |Cj |V �
(|Cj |

V

)
+ 1. We need the +1

term in case 1 ≤ |Cj | ≤ V − 1. Plugging this in, we get

N∑
j=1

|Cj |V �
N∑
j=1

(

(
|Cj |
V

)
+ 1) ≤ WMv + N.

The total number of 1’s in A is
∑

j |Cj |. Now by Holder’s inequality,

N∑
j=1

|Cj | ≤ (
∑

|Cj |V )1/V N
V −1
V � (WMV + N)1/V N

V −1
V � W 1/V MN

V −1
V + N.

�

Returning to the incidence matrix of S and L, we get the following corollary.

Corollary 8.10. If S is a set of S points and L is a set of L lines, then

• I(S,L) � SL1/2 + L.
• I(S,L) � LS1/2 + S.

Proof. The incidence matrix of S and L is an S × L matrix with no 2 × 2
minor. By Theorem 8.9, the number of 1’s is � SL1/2 + L. The transpose matrix
also has no 2 × 2 minor, and so the number of 1’s is � LS1/2 + S as well. �

Here are a couple other applications of Theorem 8.9 in incidence geometry.
None of these bounds are sharp, but they still play a useful role in incidence geom-
etry.

Corollary 8.11. If S is a set of S points in R2 and Γ is a set of L unit circles,
then the number of incidences obeys the following bounds:

• I(S, Γ) � SL1/2 + L.
• I(S, Γ) � LS2/3 + S.

Proof. The incidence matrix of S and Γ is an S×L matrix. Three unit circles
can intersect in at most one point, and so the matrix has no 2× 3 minor of all 1’s.
By Theorem 8.9, the number of incidences is � SL1/2 + L as above. If we take the
transpose, we see that the number of incidences is also � LS2/3 + S. �

In the unit distance problem, we have N points which are the centers of N
unit circles. The number of unit distances is the number of incidences between the
points and the unit circles. The argument above shows that the number of unit
distances is � N3/2. This argument appears in the first paper on the unit distance
problem, [Er1].
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Now consider S points and L unit spheres in R3.

Corollary 8.12. If S is a set of S points in R3 and Γ is a set of L unit spheres,
then the number of incidences obeys the following bounds:

• I(S, Γ) � SL2/3 + L.
• I(S, Γ) � LS2/3 + S.

Proof. The incidence matrix of S and Γ is an S×L matrix. Three unit spheres
intersect in at most 2 points, and so the incidence matrix has no 3× 3 minor of all
1’s. By Theorem 8.9, the number of incidences is at most SL2/3 + S. Taking the
transpose matrix, the number of incidences is also at most LS2/3 + L. �

In particular, this corollary shows that the number of unit distances determined
by N points in R3 is � N5/3.

It’s a very interesting question how sharp the Kővári-Sós-Turán theorem is.
There are a few cases where the theorem is known to be sharp, but in general this
is a deep open problem. To keep our discussion simpler, we focus on square N ×N
matrices and square V × V minors.

Example 1. Consider an N ×N 0-1 matrix with no 2× 2 submatrix. The KST
theorem says that the matrix has � N3/2 1’s. This estimate is sharp. The example
was discovered by Reiman in [Re]. We have essentially already seen the example:
it is the incidence matrix of lines over a finite field. We pick N = q2 lines in the
plane F2

q . We let the rows of our matrix correspond to the points of F2
q and the

columns correspond to the q2 chosen lines. We put a 1 in the matrix if the point
corresponding to the row lies in the line corresponding to the column. Since two
lines intersect in at most 1 point, there are no 2 × 2 submatrices. Since each line
contains q points, our matrix has q3 = N3/2 1’s. Working with the projective plane
over Fq is even better: it gives an example with exactly the maximum possible
number of 1’s.

Example 2. Next consider an N ×N 0-1 matrix with no 3× 3 submatrix. The
Kővári-Sós-Turán theorem says that the matrix has � N5/3 1’s. In the early 60’s,
Brown gave an example with � N5/3 1’s. Brown’s construction uses ‘spheres’ of
a fixed radius over a finite field. Suppose that x ∈ F3

q and r ∈ Fq. We define the
‘sphere’ S(x, r) as follows:

S(x, r) := {y ∈ F3
q |
∑
i

(xi − yi)
2 = r}.

For a fixed r, there are q3 = N spheres S(x, r) ⊂ F3
q , and there are N = q3 points

y ∈ F3
q . Brown’s matrix is the incidence matrix of these spheres and points for well-

chosen values of q and r. For many q, r, the sphere S(0, r) has ∼ q2 = N2/3 points.
Since each point y ∈ F3

q belongs to exactly one sphere S(0, r), the average size of

|S(0, r)| = q2, and it turns out there are many r that give close to the average value.
For any point x, S(x, r) is just a translate of S(0, r) and so |S(x, r)| = |S(0, r)|.
Therefore, it is not hard to choose q, r so that the incidence matrix has ∼ N5/3 1’s.

Now in Euclidean space R3, it is easy to check that any three spheres of the
same radius intersect in at most two points. (Three spheres with different radii
may intersect in a circle.) It is not obvious whether this result extends to spheres
S(x, r) ⊂ F3

q . Brown checked that for some values of q and r this is indeed true.
We discuss this issue more in the exercises.
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Brown’s example is clever and special, and no one knows how to generalize it
to 4 × 4 minors. Consider an N × N 0-1 matrix with no 4 × 4 submatrix. The
Kővári-Sós-Turán theorem says that the matrix has � N7/4 1’s. The best known
examples have only ∼ N5/3 1’s - and these are Brown’s examples which have no
3× 3 minor of all 1’s! It’s a longstanding open problem in combinatorics where the
truth lies between Brown’s example and the Kővári-Sós-Turán upper bound.

Example 3. Finally, consider an N × N 0-1 matrix with no V × V submatrix.
The Kővári-Sós-Turán theorem says that the number of 1’s is ≤ C(V )N2−(1/V ).
For V ≥ 6, the best known examples come from a random construction.

Proposition 8.13. Fix V . For each N , there is an N ×N 0-1 matrix with no

V × V minor of all 1’s and with ≥ c(V )N2− 2
V +1 1’s.

Proof. Let p be a probability to be chosen later. We assign the entries of an
N ×N matrix independently, giving each entry a 1 with probability p and a 0 with
probability 1 − p. The expected number of 1’s in the matrix is N2p.

The expected number of V × V minors of all 1’s is
(
N
V

)2
pV

2

. We call a V × V
minor of all 1’s a bad minor. We choose a random matrix M and then delete a
1 from each of its bad minors. The resulting matrix has no bad minors, and the
number of 1’s left is at least the number of 1’s in M minus the number of bad
minors in M . By an averaging argument, we can choose a matrix M so that the
number of 1’s minus the number of bad V ×V minors is at least the expected value

N2p −
(

N

V

)2

pV
2 ≥ N2p − N2V pV

2

.

Finally, we choose p ∈ [0, 1] to maximize the right hand side. Taking p =

(1/2)N− 2
V +1 gives the result. �

(If V = 4, then Brown’s construction beats the random construction. For
V = 5, Brown’s construction and the random construction are comparable. For
V ≥ 6, the random construction beats Brown’s construction and gives the best
known examples.)

If we consider matrices with no V ×W minor with V ≤ W , then Kollár, Rónyai,
and Szabó [KRS] gave examples showing that Theorem 8.9 is sharp whenever
W > V !.

Exercise 8.2. This is a rather long exercise explaining Brown’s construction.
Recall that the “sphere” S(x, r) ⊂ F3

q is defined as follows:

S(x, r) := {y ∈ F3
q |
∑
i

(xi − yi)
2 = r}.

We will consider the q3 × q3 matrix with rows indexed by x ∈ F3
q and columns

indexed by y ∈ F3
q , and with a 1 in the (x, y) position if and only if y ∈ S(x, r).

For well-chosen q and r, we will prove that this matrix has no 3 × 3 minor of all
1’s, and that the number of 1’s in the matrix is at least q5 − O(q4). We break the
argument into six steps.

Step 1. Suppose that q is odd so that 2 is invertible in Fq. Prove that the
intersection S(u, r) ∩ S(v, r) lies in the plane defined by the equation:∑

i

(ui − vi)yi =
∑
i

(ui − vi)2
−1(ui + vi).
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In R3 this plane would be the perpendicular bisector of the segment from u to
v. We denote this plane by Perp(u, v).

Step 2. Given a point u ∈ F3
q and given Perp(u, v), show how to recover the

vector v. In other words, prove that if Perp(u, v) = Perp(u, w), then v = w.
Step 3. If u, v, w ∈ F3

q are distinct points, show that S(u, r) ∩ S(v, r) ∩ S(w, r)
lies in a line.

Step 4. If the sphere S(0, r) does not contain any line, then show that for any
three distinct points u, v, w ∈ F3

q , |S(u, r) ∩ S(v, r) ∩ S(w, r)| ≤ 2.
Suppose that S(0, r) does not contain any line. Then by Step 4, the incidence

matrix between the spheres {S(x, r)}x∈F3
q

and the points y ∈ F3
q has no 3×3 minor of

all 1’s. The number of 1’s in this matrix is q3|S(0, r)|. So to finish Brown’s example,
we need to choose r so that S(0, r) does not contain a line and |S(0, r)| ∼ q2.

We will prove that these two properties hold if q is a prime of the form 4n + 1
and if r is a quadratic non-residue. Since q is prime of the form 4n + 1, −1 is a
quadratic residue in Fq.

Step 5. Show that the sphere S(0, r) ⊂ F3
q contains a line if and only if r is a

quadratic residue.

Hint: Suppose that S(0, r) contains the line parametrized by γ(t) = �mt + �b,

where �m = (m1, m2, m3) and �b = (b1, b2, b3). This is equivalent to saying that∑
i

(mit + bi)
2 − r = 0 for all t ∈ Fq.

If we expand the left-hand side as a polyomial in t, each coefficient must vanish,
leading to the equations∑

i

m2
i = 0;

∑
i

mibi = 0;
∑

b2i = r.

These formulas lead to a tricky way of writing r as a negative square. Since
−1 is a quadratic residue, we can conclude that r is a quadratic residue.

m2
1r = m2

1

∑
b2i = (m1b1)

2 + m2
1(b

2
2 + b23) =

= (m2b2 + m3b3)
2 − (m2

2 + m2
3)(b

2
2 + b23) = −(m2b3 − m3b2)

2.

There is a lot of algebra involved in this derivation, and it would be interesting
to understand it in a more conceptual way. It might help a little to consider
the following analogous situation in R3. Consider the hyperboloid in R3 defined
by x2

1 + x2
2 − x2

3 = r. If r > 0 (i.e. if r is a square), then the hyperboloid is
connected and it contains infinitely many lines. On the other hand, if r < 0,
(i.e. if r is a non-square), then the hyperboloid has two sheets, and it contains
no lines. We can see that it has no lines geometrically as follows. We have the
equation x3

3 = x2
1 + x2

2 − r > 0, and so the hyperboloid does not intersect the plane
x3 = 0. But then the only line that could possibly lie in the hyperboloid must be
tangent to the (x1, x2)-plane. But on such a line, x3 and r are fixed, and x2

1 + x2
2

is unbounded, and so such a line does not lie in the hyperboloid either. This is a
geometric argument explaining which hyperboloids contain lines. There is also a
purely algebraic argument, similar to the argument in Step 5.

Step 6. Suppose that q is a prime of the form 4n + 1. Prove the following
formula for the number of points in S(0, r) ⊂ F3

q . If r is zero, |S(0, r)| = q2. If r is a

non-zero quadratic residue, then |S(0, r)| = q2 + q. If r is a quadratic non-residue,
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then |S(0, r)| = q2 − q. Hints: First check that |S(0, r1)| = |S(0, r2)| if r1, r2 are
any two quadratic non-residues. Similarly, |S(0, r1)| = |S(0, r2)| if r1, r2 are both
(non-zero) quadratic residues. Next, when r = 0 or r = s2, count the number of
points in S(0, r) by hand.

8.4. Reguli

A regulus is a tool from classical algebraic geometry for studying lines in R3.
Chazelle, Edelsbrunner, Guibas, Pollack, Seidel, Sharir, and Snoeyink used reguli
in [CEGPSSS] to study the joints problem. Reguli play an important role in
studying the incidence geometry of lines in R3.

One example of a regulus is the surface z = xy. We saw this surface in Chapter
3. Each point in the surface z = xy lies in two lines in the surface. Choosing L
lines in the surface, we found an example of L lines with ∼ L2 intersection points,
even though no three of the lines lie in a plane.

The theory of reguli that we present here works over any field with more than
two elements. For the rest of the section, we let F denote a field with more than
two elements.

In this section, we will define reguli, and learn their properties and how to use
them. Here is a fundamental result about lines in F3 that leads to the theory of
reguli: any three lines in F3 lie in the zero set of a degree 2 polynomial.

Proposition 8.14. For any three lines l1, l2, l3 in F3, there is a non-zero degree
2 polynomial Q that vanishes on all three lines.

Proof. We will prove this result by counting dimensions. We can think of the
argument as an example of the polynomial method.

Let Poly2(F
3) be the space of polynomials of degree ≤ 2 in three variables.

The space Poly2(F
3) is a vector space of dimension 10. (A basis is given by

x2, xy, xz, y2, yz, z2, x, y, z, 1.)
We choose three points on each line. Let pi,j be three distinct points on li.

(At this step, we used that F contains at least three elements.) We have a total
of nine points. By linear algebra, we can find a non-zero degree 2 polynomial
Q ∈ Poly2(F

3) that vanishes at all the points pi,j . Since Q has degree 2 and
vanishes at three distinct points of li, it must vanish on all of li. So Q vanishes on
all three lines as desired. �

This proposition allows us get good information about the lines that intersect
all three lines l1, l2, and l3. Exactly what happens depends a little on the properties
of l1, l2, and l3. Recall that two lines in F3 are skew if they don’t intersect and
they’re not parallel. The most important case concerns three skew lines.

Proposition 8.15. If l1, l2, and l3 are pairwise skew, then there is an irre-
ducible degree 2 algebraic surface R(l1, l2, l3) which contains every line that inter-
sects l1, l2, and l3.

Proof. By the last proposition, there is a non-zero degree 2 polynomial Q
that vanishes on l1, l2, and l3. Let R(l1, l2, l3) be the zero set of Q. Suppose that
l intersects l1, l2, and l3. Since l1, l2, and l3 are disjoint, the line l must intersect
R in three distinct points. But then Q vanishes identically on l, and l is contained
in R.
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Finally, if Q was reducible, then it would be a product of linear factors, and R
would be a union of two planes. But since the lines l1, l2, and l3 are skew, no two
of them lie in a plane, and so R cannot be a union of two planes. Also, if Q had
degree 1, then R would be a plane, and this cannot happen either. �

The surface R(l1, l2, l3) is called a regulus. We define a regulus to be any
irreducible degree 2 surface in F3 that contains three pairwise-skew lines.

To complement our understanding of three skew lines, we record a couple of
trivial lemmas which deal with the case when two lines are not skew.

Lemma 8.16. Suppose that l1 and l2 are lines in F3 that intersect at a point p.
Suppose that P is the plane that contains l1 and l2. Then any line which intersects
both l1 and l2 either contains p or lies in P .

Lemma 8.17. Suppose that l1 and l2 are parallel. Let P be the plane that
contains them. Then any line which intersects both l1 and l2 lies in P .

The paper [CEGPSSS] applied these results to incidence geometry of lines in
F3. For example, they proved that the number of joints determined by L lines in F3

is � L7/4. We will demonstrate their method by considering the following question:
if L is a set of L lines in F3 with ≤ 10 lines in any plane or degree 2 surface, how
many intersection points can L have? We first met this question in Chapter 3. We
will study it with several different methods during the book. Here is our first result
on the problem.

Theorem 8.18. Suppose that L is a set of L lines in F3 with ≤ 10 lines in any
plane or degree 2 surface. Then the number of intersection points of L is � L5/3.

Later in the book, we will return to this question. When F is R or C, we will
prove that the number of intersection points of L is � L3/2.

Proof. A simple intersection point of L is a point that lies in exactly two lines
of L. First we bound the number of simple intersection points of L. Then we refine
our analysis to bound the total number of intersection points.

Let us define a square matrix M with rows and columns corresponding to the
lines of L. The matrix M has a 1 in the entry corresponding to row li and column
lj if li and lj intersect in a simple intersection point. Otherwise, the entry of M is
zero. (By convention, the diagonal entries of M are zero.) The number of simple
intersection points is half the number of 1’s in the matrix M .

We claim that M has no 3×10 minor of all 1’s. Then by Theorem 8.9, it follows
that M has � L5/3 1’s, and so L has � L5/3 simple intersection points. Suppose
for contradiction that M has a 3×10 minor of all 1’s. Let l1, l2, l3 be the three lines
corresponding to the rows in this 3×10 minor, and let l̃j be the lines corresponding
to the 10 columns in this minor. First suppose that the lines l1, l2, l3 are pairwise
skew. In this case, all the 10 lines l̃j lie in the regulus R(l1, l2, l3), contradicting
our hypothesis. Otherwise, two of the lines l1, l2, l3 are coplanar. By relabelling,
suppose that l1 and l2 are coplanar. By hypothesis, each line l̃j intersects both l1
and l2 at a simple intersection point. Therefore, the 10 lines l̃j also lie in the plane
containing l1 and l2, contradicting our hypothesis.

Now we make an analysis of the higher multiplicity intersection points. We let
A be the intersection matrix of L. In other words, the rows and columns of A are
indexed by L, and the entry aij is 1 if and only if li and lj intersect. We make the
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convention that the diagonal entries of A are zero. We let At be the matrix with a
1 in the (i,j)-entry if li and lj intersect at a point lying in ∼ 2t lines of L. (More
precisely, ∼ 2t means > 2t−1 and ≤ 2t.) The number of points with intersection
multiplicity ∼ 2t is ∼ |At|2−2t. Therefore, the number of intersection points is

∼
∑
t≥1

|At|2−2t.

Our next goal is to estimate |At|.

Lemma 8.19. Suppose that L has ≤ 10 lines in any plane or degree 2 surface.
Then At has no 3 × 20 · 2t minor of all 1’s.

Proof. Suppose that At has a 3 × 20 · 2t minor of all 1’s. Let the three rows
by labelled by l1, l2, l3, and let the columns be labelled by l̃j for j = 1, ..., 20 · 2t.
If l1, l2, l3 are all skew, then each line l̃j lies in the degree 2 surface R(l1, l2, l3).
This contradicts our hypothesis. Suppose that l1, l2, l3 are not all skew. After
relabelling, we can assume that l1 and l2 are not skew. If l1 and l2 interesect in a
point p and lie in a plane P , then we either get 10 · 2t column lines containing p or
10 · 2t column lines lying in P . By the definition of At, there should only be ≤ 2t

lines of L containing p. And by hypothesis, there are ≤ 10 lines in any plane. So
we get another contradiction. Finally, if l1 and l2 are parallel lines in the plane P ,
then we get 20 · 2t lines in the plane P , another contradiction. Since all the cases
lead to a contradiction, we see that At has no 3 × 20 · 2t minor of all 1’s. �

Knowing that the matrix At does not have any 3×20·2t minors of all 1’s controls
the number of 1’s in the matrix by the Kővári-Sós-Turán Theorem, Theorem 8.9
above. We recall the statement in our case:

Suppose that A is an L × L matrix whose entries are 0 or 1. Suppose that A
has no V × W minor of all 1’s, for some integers V ≤ W . Then the number of 1’s

in A is at most C(V )W 1/V L
2V −1

V .
Plugging in the last lemma, we see that |At| � 2t/3L5/3. This gives the following

bound on the total number of intersection points of L:∑
t

|At|2−2t � L5/3
∑
t

2−(5/3)t � L5/3.

�

Exercise 8.3. If l1, l2, l3 are three skew lines in F3, prove that there is only
one degree 2 algebraic surface containing them. In other words, there is only one
regulus R(l1, l2, l3).

Exercise 8.4. Suppose that R(l1, l2, l3) ⊂ R3 is a regulus in R3. Show that
R is a smooth surface. Show that each point of R lies in at most two lines in R.
What happens over other fields?

Exercise 8.5. (The joints estimate from [CEGPSSS].) We describe the main
idea of the joints estimate from [CEGPSSS], using reguli.

If L has ≤ 10 lines in any plane or degree 2 surface, then we know by Theorem
8.18 that L has � L5/3 intersection points, and in particular � L5/3 joints. At the
other extreme, the lines of L can all lie in a plane or a regulus. If all lines of L lie
in a plane, then L has no joints. Using the previous exercise, show that if all the
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lines of L lie in a regulus R, then L has no joints. We need a method to deal with
all the inbetween cases.

First, generalize Lemma 8.18 to get a bound for the number of intersection
points of a set of L lines in R3 with at most B lines in any plane or regulus. Then,
using this bound, prove by induction that a set of L lines determines at most CL7/4

joints.
Here is an outline of the induction. The reader will have to choose a judicious

value of B. If L contains at most B lines in any plane or regulus, then we use the
bound mentioned in the last paragraph. If Σ is a plane or regulus containing more
than B lines of L, then we break up L into LΣ and L′, where LΣ are the lines in Σ
and L′ are the other lines. As we remarked above, LΣ has no joints. The number
of joints of L involving some lines from L′ and some lines from LΣ is bounded by
2L, because each line of L′ intersects Σ in at most two points. Therefore,

|J(L)| ≤ 2L + |J(L′)|, |L′| < L − B.

Using induction, we can bound |J(L′)| ≤ C(L − B)7/4. For a judicious choice
of B, the induction will close.



CHAPTER 9

Partial symmetries

In [ElSh] Elekes and Sharir introduced a very different approach to the distinct
distance problem based on partial symmetries.

Suppose G is a group acting on a space X. If P ⊂ X is a finite set, then we
can look at the symmetries of P under the group action. We define

G(P ) := {g ∈ G such that g(P ) = P}.

A partial symmetry of P is a group element that maps a large chunk of P to another
large chunk of P . More precisely we define the r-rich partial symmetries by

Gr(P ) := {g ∈ G such that |g(P ) ∩ P | ≥ r}.

The set Gr(P ) ⊂ G is not a subgroup. Perhaps because it lacks this algebraic
structure, it hasn’t been studied until recently. Elekes started the study of partial
symmetries. One important question is to understand the maximum possible size
of Gr(P ) in different situations.

The group of rigid motions of the plane is a symmetry group for the distinct
distance problem: if g is a rigid motion, and P is a set of points, then d(P ) =
d(g(P )). But before [ElSh], it was not clear that this symmetry group was an
important feature of the problem. In their approach, the symmetries - or partial
symmetries - of P play a central role.

In this chapter, we introduce partial symmetries and give some examples. Then
we describe a sequence of connections (due to [ElSh]), beginning with the distinct
distance problem, going through partial symmetries, and ending with the incidence
geometry of lines in R3.

We will ultimately prove the following estimate about the distinct distance
problem.

Theorem 9.1. If P ⊂ R2 is a set of N points, then P determines � N(log N)−1

distinct distances.

In this chapter, we will use partial symmetries to connect this theorem to the
incidence geometry of lines in R3. We will prove that Theorem 9.1 follows from
Theorems 8.3 and 8.4 about lines in R3.

9.1. Partial symmetries of sets in the plane

Let G be the group of orientation-preserving rigid motions of the plane. Sup-
pose that P ⊂ R2 is a finite set. The r-rich partial symmetries of P are defined as
follows:

Gr(P ) := {g ∈ G such that |g(P ) ∩ P | ≥ r}.
99
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We will study how big Gr(P ) can be in terms of r and |P |.
For a generic set of N points, |Gr(P )| = 1 for r ≥ 3 and |G2(P )| =

(
N
2

)
+ 1.

(The number
(
N
2

)
+ 1 comes up as follows: for each pair of points in P , there is a

unique g ∈ G that switches the two points in the pair. The 2-rich rigid motions are
these

(
N
2

)
transpositions and the identity.)

The most interesting example is a square grid of points. If P is a square grid of
N points, then |Gr(P )| ∼ N3r−2 for all 2 ≤ r ≤ N/2. I have found it surprisingly
hard to give a clean proof of this estimate. We are interested in this result mainly
to build intuition and to practice thinking about partial symmetries. Therefore, we
will give here a heuristic (non-rigorous) argument why |Gr(P )| ∼ N3r−2. We will
outline a rigorous proof in the exercises at the end of the chapter.

We can suppose that P is the grid of integer points (x1, x2) with |x1|, |x2| ≤
M , and with N ∼ M2. We begin by considering translations, which are easy to
analyze. If g is a translation by an integer vector (v1, v2) with |(v1, v2)| ≤ (1/4)M ,
then |g(P ) ∩ P | ≥ N/2. There are ∼ N such choices for v, and this proves that
Gr(P ) � N for every r ≤ N/2.

Next we consider (orientation-preserving) rotations. For a rotation ρ, we define
Λ(ρ) := ρ−1(Z2) ∩ Z2. Understanding Λ(ρ) will help up to understand ρ(P ) ∩ P .
This Λ(ρ) is always a subgroup of Z2. Also, if Λ(ρ) is non-zero, then it has a nice
structure. Suppose that v is a minimum-length (non-zero) vector in Λ(ρ). Besides
the rotation ρ, we also want to consider a rotation by angle π/2, which we denote
by ρπ/2. We claim that ρπ/2(v) is also in Λ(ρ). This happens because ρπ/2 is an

isomorphism of Z2, and so ρπ/2(v) and ρπ/2(ρ(v)) = ρ(ρπ/2(v)) are both integer
points. Second, we claim that Λ(ρ) is equal to the span of v and ρπ/2(v) – otherwise,
Λ(ρ) would contain a non-zero vector shorter than v. Finally, we see that Λ(ρ) has
only four minimal vectors: ±v and ±ρπ/2(v).

Let |Λ(ρ)| denote the length of a minimal vector in Λ(ρ). The cardinality
of ρ−1(P ) ∩ P is ∼ (M/|Λ(ρ)|)2. Next we would like to estimate the number of
rotations ρ with |Λ(ρ)| ∼ S. This estimate is the most important and trickiest point
in the discussion. We will give a non-rigorous argument suggesting that the number
of such rotations is roughly S2. If |Λ(ρ)| ∼ S, then there is an integer vector v with
|v| ∼ S so that ρ(v) ∈ Z2. Once we know v and ρ(v), we have determined ρ. There
are ∼ S2 possible v in Z2 with |v| ∼ S. For each v, the possible choices for ρ(v) are
integer vectors that lie on the circle |x| = |v|. There are always at least eight such
vectors: if v = (v1, v2), then the vectors (±v1,±v2) and (±v2,±v1) all qualify. Four
of these choices lead to ρ being a rotation by a multiple of π/2. For these rotations,
v is not minimal (unless v was a unit vector). If we choose ρ(v) = (v1,−v2), then
there seems to be a good chance that v is a minimal vector for ρ (as v1 and v2
have no common factor). This discussion suggests that there is often at least one
choice of ρ(v) so that the resulting rotation ρ has v as a minimal vector. So as a
heuristic we may expect that there are � S2 rotations ρ with |Λ(ρ)| ∼ S. On the
other hand, for any ε > 0, the circle |x| = |v| contains �ε Sε integer points on it.
Therefore, the number of rotations ρ with |Λ(ρ)| ∼ S is �ε S2+ε.

Now we can count rigid motions. Suppose that g is a rigid motion taking p
to q, where p, q ∈ P . We write τv for the translation by the vector v. There is a
unique rotation ρg so that we can write g as a composition:

g = τq ◦ ρg ◦ τ−p.
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We are interested in |g(P ) ∩ P |. We always have |g(P ) ∩ P | � M2|Λ(ρg)|−2, and
this upper bound is sharp as long as p and q are not too close to the edge of P .
If we want |g(P ) ∩ P | ∼ r, then we must have |Λ(ρg)| ∼ Mr−1/2, which gives us
∼ Nr−1 choices of ρg.

The rest of the discussion is a standard double-counting argument. We consider
all the choices p, q ∈ P and ρg with |Λ(ρg)| ∼ Mr−1/2. We have ∼ N3r−1 choices.
For each choice, τq ◦ ρg ◦ τ−p belongs to Gr(P ). But we have overcounted: we
counted each element of Gr(P ) roughly r times, once for each point q ∈ g(P ) ∩ P .
Therefore, the number of elements of Gr(P ) is roughly N3r−2.

We will come back to counting the partial symmetries of the square grid in an
exercise at the end of the chapter.

The paper [ElSh] conjectured that the grid example is optimal up to constant
factors. They proved the result for r = 3, and the general conjecture was proven in
[GK2].

Theorem 9.2. Let P ⊂ R2 be a set of N points. For any r ≥ 2,

|Gr(P )| � N3r−2.

In the next section, we will see that Theorem 9.2 implies Theorem 9.1 about the
distinct distance problem. In the following few sections we will see that Theorem
9.2 connects to the incidence geometry of lines in R3. In particular, we will see
that Theorem 9.2 follows from Theorems 8.3 and 8.4, our main results about the
incidence geometry of lines in R3.

9.2. Distinct distances and partial symmetries

Let P be a finite set in the plane R2. If the distance set d(P ) is small, then we
will see that P must have lots of partial symmetries.

If d(P ) is small, then it must often happen that the same distance occurs
between various pairs of points. We can capture this by talking about the distance
quadruples, Q(P ). They are defined as follows:

Q(P ) := {(p1, q1, p2, q2) ∈ P 4 such that |p1 − q1| = |p2 − q2| �= 0}.

For example, if P is a generic set, then the only distance quadruples have the form
(p, q, q, p) or (p, q, p, q) for p, q ∈ P with p �= q. In this case, the number of distance

quadruples is 4
(
N
2

)
.

If there are few distinct distances, then it sounds reasonable that Q(P ) must
be large, and we make this precise in the following lemma.

Lemma 9.3. For any set of N points P ⊂ R2, the following holds:

|d(P )||Q(P )| ≥ (N2 − N)2.

Proof. Let the distances in d(P ) be d1, ..., d|d(P )|. Recall that d(P ) is defined
to be the set of distances |p − q| among pairs of distinct points p, q ∈ P , so the
distances dj are non-zero. Let nj be the number of ordered pairs (p, q) ∈ P 2 with
|p − q| = dj . Then we have

Q(P ) =

|d(P )|∑
j=1

n2
j .
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On the other hand
∑|d(P )|

j=1 nj = N2 − N is just the number of ordered pairs

(p, q) ∈ P 2 with p �= q. Now using Cauchy-Schwarz, we see

N2 − N =

|d(P )|∑
j=1

(nj · 1) ≤

⎛
⎝∑

j

n2
j

⎞
⎠

1/2⎛
⎝|d(P )|∑

j=1

1

⎞
⎠

1/2

= |Q(P )|1/2|d(P )|1/2.

�
For example, if P is a generic set, we see d(P ) = (1/2)(N2 − N) and Q(P ) =
2(N2 − N), so we get equality in the lemma.

A more interesting observation is that Q(P ) is closely connected to the number
of partial symmetries of P . We state this in the following Proposition.

Proposition 9.4. Let P ⊂ R2. Then

Q(P ) =
∑
r≥2

(2r − 2)|Gr(P )| ∼
∑
r≥2

r|Gr(P )|.

Proof. There is a natural map from Q(P ) to G2(P ), which comes from the
following lemma.

Lemma 9.5. Suppose that (p1, q1, p2, q2) ∈ Q(P ). In other words, we have
(p1, q1, p2, q2) ∈ P 4 and |p1 − q1| = |p2 − q2| �= 0. Then there is a unique g ∈ G so
that g(p1) = p2 and g(q1) = q2.

Proof. The set of g ∈ G taking p1 to p2 is obtained by applying the translation
by p2 − p1, followed by a rotation around p2. Since |p1 − q1| = |p2 − q2| �= 0, there
is exactly one such rotation so that the map takes q1 to q2. �

We define the map E : Q(P ) → G2(P ) as follows. For any quadruple (p1, q1,
p2, q2) in Q(P ), we define E(p1, q1, p2, q2) to be the unique g ∈ G so that g(p1) = p2
and g(q1) = q2. The letter E stands for Elekes, who first defined this map. We will
use the map E to help count Q(P ). It’s important to note that the map E is not
injective. Instead, we have the following lemma.

Lemma 9.6. Suppose that g ∈ G and |g(P ) ∩ P | = r. Then |E−1(g)| = 2
(
r
2

)
.

Proof. The set E−1(g) ⊂ Q(P ) is the set of distance quadruples of the form
(p1, q1, g(p1), g(q1)). The pair (g(p1), g(q1)) must lie in g(P ) ∩ P . We get one
quadruple of E−1(g) for each ordered pair of distinct elements in g(P ) ∩ P . There
are 2

(
r
2

)
such ordered pairs. �

If we let |G=r(P )| be the set {g ∈ G such that |g(P ) ∩ P | = r}, then we get

Q(P ) =

|P |∑
r=2

2

(
r

2

)
|G=r(P )|.

We can rewrite this sum in terms of |Gr(P )| by using the fact that |G=r(P )| =
|Gr(P )| − |Gr+1(P )|.

Q(P ) =

|P |∑
r=2

2

(
r

2

)
|G=r(P )| =

∑
r≥2

2

(
r

2

)
(|Gr(P )| − |Gr+1(P )|) =

=
∑
r≥2

|Gr(P )|
(

2

(
r

2

)
− 2

(
r − 1

2

))
=
∑
r≥2

(2r − 2)|Gr(P )|.
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This finishes the proof of Proposition 9.4. �
In this section, we have studied the relationship between |Gr(P )|, |Q(P )|, and

|d(P )|. Using Theorem 9.2, we get the following estimates for |Q(P )| and |d(P )|:

Corollary 9.7. If P ⊂ R2 is a set of N points, then |Q(P )| � N3 log N .

Proof. By Proposition 9.4, we have |Q(P )| ∼
∑N

r=2 r|Gr(P )|. By Theorem
9.2,

|Q(P )| ∼
N∑
r=2

r|Gr(P )| �
N∑
r=2

N3r−1 ∼ N3 log N.

�
We can now prove Theorem 9.1: if P ⊂ R2 is a set of N points, then |d(P )| �

N(log N)−1.

Proof. By Lemma 9.3, we know that |d(P )||Q(P )| � N4. By Corollary 9.7
we know that |Q(P )| � N3 log N . Therefore, we see that |d(P )| � N(log N)−1.

�
We finish this section by returning to the example of a square grid. For a square

grid of N points, as we discussed above, |Gr(P )| ∼ N3r−2 for all 2 ≤ r ≤ N/2.
Therefore, |Q(P )| ∼ N3 log N . On the other hand, for the square grid, |d(P )| ∼
N(log N)−1/2, not ∼ N(log N)−1. We lost the factor (log N)1/2 when we applied
the Cauchy-Schwarz inequality inside the proof of Lemma 9.3. The Cauchy-Schwarz
inequality is sharp if each distance di ∈ d(P ) occurs the same number of times. In
the case of a square grid, different distances occur with different frequencies.

9.3. Incidence geometry of curves in the group of rigid motions

We have seen Theorem 9.1, an estimate about distinct distances, follows from
Theorem 9.2, an estimate about partial symmetries. But this problem of partial
symmetries sounds hard. It’s not at all clear how to get started. The paper [ElSh]
next describes how partial symmetries are connected to an incidence geometry
problem about a natural class of curves in the group G.

For any p1, p2 ∈ R2, define

Sp1,p2
:= {g ∈ G such that g(p1) = p2}.

If p1 = p2 then Sp1,p2
is a subgroup of G. If p1 �= p2, then Sp1,p2

is a coset of a
subgroup. In any case, Sp1,p2

is a 1-dimensional smooth curve in G, diffeomorphic
to a circle. If P ⊂ R2, then some of the geometry of P is encoded in the set of curves
{Sp1,p2

}p1,p2∈P . In particular, these curves are connected to the partial symmetries
of P by the following Proposition.

Proposition 9.8. If P ⊂ R2, then Gr(P ) is exactly the set of g ∈ G that lie
in ≥ r of the curves {Sp1,p2

}p1,p2∈P .

Proof. First suppose that g ∈ Gr(P ). By definition, there is a subset A1 ⊂ P
with |A1| = r and A2 = g(A1) ⊂ P . Let the points of A1 be {pj,1} for j = 1, ..., r.
Let pj,2 = g(pj,1) ∈ A2 ⊂ P . For each j = 1, ..., r, we see that g ∈ Spj,1,pj,2

. So g
lies in ≥ r of the curves {Sp1,p2

}p1,p2∈P .
On the other hand, suppose that g lies in ≥ r of the curves {Sp1,p2

}p1,p2∈P .
In particular, suppose that g ∈ Spj,1,pj,2

for j = 1, ..., r, where the pairs (pj,1, pj,2)
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are all distinct. We claim that the points pj,1 are all distinct. If pj,1 = pj′,1, then
pj,2 = g(pj,1) = g(pj′,1) = pj′,2, and then the pairs (pj,1, pj,2) and (pj′,1, pj′,2) would
be the same. Define A1 := ∪r

j=1pj,1 ⊂ P . We see that A1 ⊂ P with |A1| = r, and
g(A1) = ∪pj,2 ⊂ P . Therefore, g ∈ Gr(P ). �

Figure 9.1 contains two pictures illustrating the same element g ∈ G3(P ). The
first picture takes place in the plane R2 and it illustrates the sets A1 and A2. The
second picture takes place in the group G, and it illustrates the element g and the
curves Spj,1,pj,2

.
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Sp
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3,2
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g

Sp
2,1
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1,1

, p
1,2
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p1,2
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A2

R2

Figure 9.1. A 3-rich partial symmetry g.

Because of Proposition 9.8, estimating |Gr(P )| is equivalent to estimating the
number of r-rich points of the curves {Sp1,p2

}p1,p2∈P ⊂ G. This is a problem of
incidence geometry involving curves in a 3-dimensional space. It is similar in spirit
to problems about lines in R3, and we will see in the next section that it is equivalent
to a problem about lines in R3.

As we remarked above, the curves Sp1,p2
are cosets of 1-parameter subgroups

of G. In the future, it may be an interesting direction for incidence geometry to
work directly in Lie groups. Instead of working in Rn and studying the incidence
geometry of k-planes or k spheres, one can work in a Lie group G and study the
cosets of a subgroup H ⊂ G. In this book, we don’t know how to exploit this coset
structure in a useful way. Instead we change coordinates to reduce to a problem
about lines in R3.

9.4. Straightening coordinates on G

In this section, we define some useful coordinates on most of the group G. In
these coordinates, the curves Sp1,p2

become straight lines. We let Gtrans ⊂ G be
the translations, and we let G′ := G \ Gtrans. The translations make up only a
small part of G, and it’s easy to bound |Gr(P )∩Gtrans|. We will choose coordinates
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ρ : G′ → R3 so that the image of each curve Sp1,p2
is a straight line in R3. In this

way, estimating |Gr(P ) ∩ G′| reduces to a problem in incidence geometry about
lines in R3.

First we dispense with Gtrans.

Lemma 9.9. If P ⊂ R2 is a set of N points, then for any r ≥ 2, |Gr(P ) ∩
Gtrans| � N3r−2.

Proof. We first count the quadruples in E−1(Gtrans) ⊂ Q(P ). Each such
quadruple has the form (p1, q1, p2, q2) with g(p1) = p2 and g(q1) = q2 for some
translation g. Because g is a translation, we must have q2 − q1 = p2 − p1. Now the
number of such quadruples in P 4 is ≤ N3, because q2 is determined by the other
three variables.

By Lemma 9.6, each element of Gr(P )∩Gtrans has 2
(
r
2

)
preimages in E−1(Gtrans).

Therefore,

|Gr(P ) ∩ Gtrans| ≤ N3(2

(
r

2

)
)−1 � N3r−2.

�

Next we define the coordinates ρ : G′ → R3. If g ∈ G is not a translation,
then it must be a rotation around a fixed point (x, y) by an angle θ ∈ (0, 2π).
The functions x, y and θ define coordinates on G′. Our coordinates ρ are a small
variation of these. In terms of x, y, and θ, we can define ρ by the formula

ρ(g) = (x, y, cot(θ/2)).

It’s straightforward to check that ρ is a bijection: we note that θ/2 ∈ (0, π) and
that the cotangent function is a bijection from (0, π) to R.

The point of this definition lies in the following lemma.

Lemma 9.10. For any p1, p2 ∈ R2, ρ(Sp1,p2
∩ G′) is a straight line lp1,p2

in R3.
If p1 = (x1, y1) and p2 = (x2, y2), then this straight line can be parametrized as
follows. Let a be the midpoint of p1 and p2: a = (1/2)(p1+p2). Let v be the vector
formed by rotating (1/2)(p2− p1) by π/2. In equations v = (1/2)(y1− y2, x2−x1).
Now ρ(Sp1,p2

∩ G′) is equal to the line parametrized by t → (a + tv, t).

Proof. Suppose that g ∈ G′ with g(p1) = p2, and that g is a rotation around
(x, y) by angle θ. The distance from (x, y) to p1 must be the same as the distance
from (x, y) to p2, and so (x, y) must lie on the perpendicular bisector of p1 and p2.
Next, we consider how the angle θ depends on the center (x, y). Consider Figure
9.2.

The points (x, y), a and p2 form a right triangle, with right angle at a. The
angle of this triangle at (x, y) is θ/2. The vector from a to p2 is (1/2)(p2 − p1).
Recall that v is the vector formed by rotating (1/2)(p2 − p1) by π/2. So the vector
from a to (x, y) is in the direction of v, and it has length cot(θ/2)|v|. Therefore,
(x, y) = a + cot(θ/2)v.

This formula shows how (x, y) depends on θ. If we define t = cot(θ/2), then
(x, y) = a+ tv. Since ρ(x, y, θ) = (x, y, cot(θ/2)), we see that ρ(Sp1,p2

∩G′) is equal
to the line parametrized by t → (a + tv, t).

(For completeness, we should also draw a second picture. See Figure 9.3
In this slightly funny picture, p1 is a small positive rotation from p2. Since

g takes p1 to p2, and since we defined θ to lie in (0, 2π), θ is actually > π in
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p2

p1

θ/2

a

(x,y)

Figure 9.2

(x, y)

p2

p1 v

a

θ

π − 
θ
2

Figure 9.3. This figure illustrates the case θ > π.

this picture. It is still true that (x, y), a, and p2 make a right triangle with a
right angle at a. In this case, the angle of the triangle at (x, y) is π − θ/2. Note
that cot(θ/2) = − cot(π − θ/2). On the other hand, in this picture, the vector v
points in the opposite direction of the vector from a to (x, y). Therefore, (x, y) =
a + cot(π − θ/2)(−v) = a + cot(θ/2)v.)

�

These coordinates are quite useful because lines are easier to understand than
other curves. I don’t have any more general perspective on this construction, and
it may just be a fortuitous coincidence. Using these coordinates, problems about
partial symmetries of sets in R2 can be translated into problems about the incidence
geometry of lines in R3.
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9.5. Applying incidence geometry of lines to partial symmetries

Let P be a set of N points in R2. Let L(P ) be the set of lines {lp1,p2
}p1,p2∈P . We

recall from Lemma 9.10 that lp1,p2
= ρ(Sp1,p2

∩G′) and that lp1,p2
is parametrized by

t → (a+ tv, t) where a, v are described as follows. If p1 = (x1, y1) and p2 = (x2, y2),
then

(9.1) a =
1

2
(x1 + x2, y1 + y2); v =

1

2
(y1 − y2, x2 − x1).

First we check that the lines lp1,p2
are all distinct.

Lemma 9.11. For each a, v ∈ R2, there is a unique p1, p2 ∈ R2 obeying equation
9.1. Therefore, the lines {lp1,p2

}p1,p2∈R2 are all distinct.

Proof. Given a, v, we can find x1 + x2 and x2 − x1, and then we can find x1

and x2. Similarly, we can find y1 + y2 and y1 − y2, and then we can find y1 and y2.
If (a, v) �= (a′, v′), then the lines parametrized by t → (at+v, t) and t → (a′t+v′, t)
are distinct. Therefore, the lines {lp1,p2

}p1,p2∈R2 are all distinct. �

In particular, we see that L(P ) is a set of N2 straight lines in R3. The r-rich
points of L(P ) correspond to r-rich partial symmetries of P . More precisely, we
have the following lemma:

Lemma 9.12. |Gr(P ) ∩ G′| = |Pr(L(P ))|.

Proof. By Proposition 9.8, Gr(P ) ∩ G′ is exactly the set of g ∈ G′ that lie
in ≥ r of the curves {Sp1,p2

}p1,p2∈P . Since ρ : G′ → R3 is a bijection, the result
follows. �

We see that the partial symmetries of P are related to the incidence structure
of L(P ). Our goal is to prove Theorem 9.2, saying that |Gr(P )| � N3r−2. So
we would like to prove that the number of r-rich points determined by L(P ) is
� N3r−2 = |L(P )|3/2r−2 for each 2 ≤ r ≤ N . We may first ask if these inequalities
holds for any set of N2 lines in R3. This inequality can fail badly if the lines cluster
in a plane or a degree 2 surface. For any 2 ≤ r ≤ N , the grid construction from
Section 7.1 gives a configuration of N2 lines in a plane with ∼ N4r−3 r-rich points.
Also, the regulus construction from Section 3.5 gives a configuration of N2 lines in
a regulus with ∼ N4 2-rich points.

This leads us to ask how many lines of L(P ) can lie in a plane or a degree 2
surface.

Lemma 9.13. For any degree D ≥ 1, there is a constant C(D) so that the
following holds. If P is a set of N points in the plane, then L(P ) contains ≤ C(D)N
lines in any degree D algebraic surface.

We will prove Lemma 9.13 in Section 9.6 below.
We can now prove Theorem 9.2 using Lemma 9.13 and our main results on

the incidence geometry of lines in R3: Theorems 8.3 and 8.4. These theorems
immediately give the following estimate:

Theorem 9.14. If L is a set of N2 lines in R3 with ≤ N lines in any plane
or degree 2 surface, and if 2 ≤ r ≤ N , then the number of r-rich points of L is
� N3r−2.
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We want to apply Theorem 9.14 to L(P ), but there is a tiny wrinkle, because the
hypothesis of Theorem 9.14 requires that L contains ≤ N lines in any plane or
degree 2 surface, while Lemma 9.13 tells us that L(P ) contains at most CN lines
in any plane or degree 2 surface. To get around this tiny wrinkle, we enlarge L to a
set of (N ′)2 lines L′, with N ′ � N so that L′ contains at most N ′ lines in any plane
or regulus. Then Theorem 9.14 implies that |Pr(L(P ))| ≤ |Pr(L

′)| � (N ′)3r−2 �
N3r−2. This proves that |Gr(P ) ∩ G′| = |Pr(L(P ))| � N3r−2. By Lemma 9.9,
we know that |Gr(P ) ∩ Gtrans| � N3r−2. So all together, |Gr(P )| � N3r−2,
establishing Theorem 9.2.

Except for checking Lemma 9.13, we have now proven that Theorems 8.3 and
8.4 imply Theorem 9.2, our estimate for partial symmetries.

We will develop several tools for studying the incidence geometry of lines in R3.
The first important tool is the polynomial partitioning method, which we study in
Chapter 10. Using just polynomial partitioning, we will prove a slightly weaker
incidence estimate for lines in R3:

Theorem 9.15. For any ε > 0, there are constants D(ε) and C(ε) so that the
following holds. If L is a set of N2 lines in R3 with at most N lines in any algebraic
surface of degree ≤ D(ε), and 2 ≤ r ≤ N , then

|Pr(L)| ≤ C(ε)N3+εr−2.

The proof of Theorem 9.15 is significantly shorter than the proof of Theorem 9.14.
Theorem 9.15 leads to slightly weaker estimates about partial symmetries, distance
quadruples, and distinct distances. By the same arguments as above, Theorem
9.15 implies that if P ⊂ R2 is a set of N points, then |Gr(P )| �ε N3+εr−2,
|Q(P )| �ε N3+ε and |d(P )| �ε N1−ε.

This finishes our discussion of the connection between distinct distances, dis-
tance quadruples, partial symmetries, and the incidence geometry of lines in R3.

9.6. The lines of L(P ) don’t cluster in a low degree surface

Now we come back to the proof of Lemma 9.13, which says that the lines of
L(P ) cannot cluster in a low degree surface. Let us recall the statement.

Lemma. For any degree D ≥ 1, there is a constant C(D) so that the following
holds. If P is a set of N points in the plane, then L(P ) contains �D N lines in any
degree D algebraic surface.

Proof. We begin with the case of a plane ( a degree 1 surface). We state this
as its own lemma.

Lemma 9.16. If P ⊂ R2 is a set of N points, then there are at most N lines of
L(P ) in any plane.

Proof. Let lp1,p2
be the line ρ(G′ ∩ Sp1,p2

). For a fixed p1 ∈ R2, any two
lines lp1,p2

and lp1,p′
2

are skew. The curves Sp1,p2
and Sp1,p′

2
are disjoint because

g cannot map p1 to both p2 and p′2. Therefore, the lines lp1,p2
and lp1,p′

2
are also

disjoint. Next we check that these lines are not parallel. To do that, we recall
the parametrization for lp1,p2

given in Lemma 9.10: t → (a + tv, t), where a is the
midpoint (1/2)(p1 + p2), and where v is the rotation by π/2 of (1/2)(p2 − p1). The
vector (v, 1) is parallel to lp1,p2

. Similarly, the vector (v′, 1) is parallel to lp1,p′
2
,
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where v′ is the rotation by π/2 of (1/2)(p′2− p1). We have v′ �= v, and so lp1,p2
and

lp1,p′
2

are not parallel.

For a fixed p1 ∈ R2, a plane contains at most one of the lines {lp1,p2
}p2∈R2 .

Hence a plane can contain at most N of the lines {lp1,p2
}p1,p2∈P . �

Now we turn to the higher degree case which will take more work. Suppose
that Q is an irreducible polynomial of degree at most D and that Q is not degree
1. It suffices to prove that Z(Q) contains ≤ 3D2N lines of L(P ).

Fix p ∈ P and consider the set of lines {lp,p′}p′∈P . It can happen that all N
of these lines lie in a regulus. This occurs if P is contained in a circle or in a line;
we will discuss the examples more in the next section. But we will see that if Z(Q)
is not a plane, then there is at most one point p so that Z(Q) contains many lines
{lp,q}q∈R2 . We let Lp := {lp,q}q∈R2 .

Lemma 9.17. If Q is an irreducible polynomial of degree at most D and Q is
not degree 1, then there is at most one point p ∈ R2 so that Z(Q) contains at least
2D2 lines of Lp.

Given Lemma 9.17, the proof of Lemma 9.13 is straightforward. For N − 1 of
the points p ∈ P , Z(Q) contains at most 2D2 of the lines {lp,p′}p′∈P . For the last
point p ∈ P , Z(Q) contains at most all N of the lines {lp,p′}p′∈P . In total, Z(Q)
contains at most (2D2 + 1)N lines of L(P ).

The proof of Lemma 9.17 is based on a more technical lemma which describes
the algebraic structure of the set of lines {lp,q} in R3.

Lemma 9.18. For each p, each point of R3 lies in a unique line from the set
{lp,q}q∈R2 . Moreover, for each p, there is a non-vanishing vector field Vp(x1, x2, x3),
so that at each point, Vp(x) is tangent to the unique line lp,q through x. Moreover,
Vp(x) is a polynomial in p and x, with degree at most 1 in the p variables and
degree at most 2 in the x variables.

Let us assume this technical lemma for the moment and use it to prove Lemma
9.17.

Fix a point p ∈ R2. Suppose Z(Q) contains at least 2D2 lines from the set
Lp := {lp,q}p,q∈R2 . On each of these lines, Q vanishes identically, and Vp is tangent
to the line. Therefore, Vp·∇Q vanishes on all these lines. But Vp·∇Q is a polynomial
in x of degree at most 2D − 2. If Vp · ∇Q and Q have no common factor, then a
version of Bezout’s theorem, Theorem 6.7, implies that there are at most 2D2−2D
lines where the two polynomials vanish. Therefore, Vp · ∇Q and Q have a common
factor. Since Q is irreducible, Q must divide Vp · ∇Q, and we see that Vp · ∇Q
vanishes identically on Z(Q).

Now suppose that Z(P ) contains at least 2D2 lines from Lp1
and from Lp2

. We
see that Vp1

· ∇Q and Vp2
· ∇Q vanish on Z(Q). For each fixed x, the expression

Vp · ∇Q is a degree 1 polynomial in p. Therefore, for any point p in the affine span
of p1 and p2, Vp · ∇Q vanishes on Z(Q).

Suppose that Z(Q) has a non-singular point x, which means that ∇Q(x) �= 0.
In this case, x has a smooth neighborhood Ux ⊂ Z(Q) where ∇Q is non-zero. If
Vp ·∇Q vanishes on Z(Q), then the vector field Vp is a vector field on Ux, and so its
integral curves lie in Ux. But the integral curves of Vp are exactly the lines of Lp.
Therefore, for each p on the line connecting p1 and p2, the line of Lp through x lies
in Z(Q). Since x is a smooth point, all of these lines must lie in the tangent plane
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TxZ(Q), and we see that Z(Q) contains infinitely many lines in a plane. Using
Bezout’s theorem, Theorem 6.7, again, we see that Z(Q) is a plane, and that Q is
a degree 1 polynomial. This contradicts our assumption that Deg Q > 1.

We have now proven Lemma 9.17 in the case that Z(Q) contains a non-singular
point. But if every point of Z(Q) is singular, then we get an even stronger estimate
on the lines in Z(Q):

Lemma 9.19. Suppose that Q is a non-zero irreducible polynomial of degree D
on R3. If Z(Q) has no non-singular point, then Z(Q) contains at most D2 lines.

Proof. Since every point of Z(Q) is singular, ∇Q vanishes on Z(Q). In partic-
ular, each partial derivative ∂iQ vanishes on Z(Q). We suppose that Z(Q) contains
more than D2 lines and derive a contradiction. Since ∂iQ = 0 on Z(Q) and Z(Q)
contains more than D2 lines, then Bezout’s theorem, Theorem 6.7, implies that Q
and ∂iQ have a common factor. Since Q is irreducible, Q must divide ∂iQ. Since
Deg ∂iQ < Deg Q, it follows that ∂iQ is identically zero for each i. This implies that
Q is constant. By assumption, Q is not the zero polynomial and so Z(Q) is empty.
But we assumed that Z(Q) contains at least D2+1 lines, giving a contradiction. �

This finishes the proof of Lemma 9.17 assuming Lemma 9.18. It only remains
to prove Lemma 9.18.

First we check that each point x ∈ R3 lies in exactly one of the lines {lp,q}q∈R2 .
Suppose p = (p1, p2) and q = (q1, q2) are points in R2. By Lemma 9.10, x lies in
lp,q if and only if the following equation holds for some t ∈ R.(

p1 + q1
2

,
p2 + q2

2
, 0

)
+ t

(
p2 − q2

2
,
q1 − p1

2
, 1

)
= (x1, x2, x3).

Given p and x, we can uniquely solve this equation for t and q = (q1, q2). First
of all, we see that t = x3. Next we get a matrix equation for q1, q2 of the following
form: (

1 −x3

x3 1

)(
q1
q2

)
= ap(x),

where ap(x) is a vector whose entries are polynomials in x, p of degree ≤ 1 in x
and degree ≤ 1 in p. Since the determinant of the matrix on the left-hand side is
1 + x2

3 > 0, we can solve this equation for q1 and q2. The solution has the form

(9.2) q1 = (x2
3 + 1)−1b1,p(x); q2 = (x2

3 + 1)−1b2,p(x),

where b1, b2 are polynomials in x, p of degree ≤ 2 in x and degree ≤ 1 in p.
We have now proven that each point of R3 lies in a unique line from the set

{lp,q}q∈R2 . Now we can construct the vector field Vp. From Lemma 9.10, we see
that the vector (p2 − q2, q1 − p1, 2) is tangent to lp,q. If x ∈ lp,q, then we can use
Equation 9.2 to expand q in terms of x, p, and we see that the following vector field
is tangent to lp,q at x:

vp(x) := (p2 − (x2
3 + 1)−1b2,p(x), (x2

3 + 1)−1b1,p(x) − p1, 2).

The coefficients of vp(x) are not polynomials because of the (x2
3 + 1)−1. We

define Vp(x) = (x2
3 + 1)vp(x), so

Vp(x) =
(
p2(x

2
3 + 1) − b2,p(x), b1,p(x) − p1(x

2
3 + 1), 2x2

3 + 2
)
.

The vector field Vp(x) is tangent to the family of lines {lp,q}q∈R2 . Moreover,
Vp never vanishes because its last component is 2x2

3 + 2. Therefore, the integral
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curves of Vp are exactly the lines {lp,q}q∈R2 . Moreover, each component of Vp is a
polynomial of degree ≤ 2 in x and degree ≤ 1 in p.

This finishes the proof of Lemma 9.18 and hence the proof of Lemma 9.13. �

9.7. Examples of partial symmetries related to planes and reguli

We have been exploring the connection between the geometry of a finite set
P ⊂ R2 and the incidence properties of the associated lines L(P ) in R3. Problems
about partial symmetries Gr(P ) or distance quadruples Q(P ) can be seen from two
perspectives: the perspective of R2 or the perspective of the lines L(P ) in R3. In
this section, we consider some examples which might help give a feel for how these
two perspectives are related. We won’t need these examples anywhere in the book;
they are just for context. In particular, we focus on examples involving planes and
reguli in R3 – what do planes and reguli in R3 correspond to in R2? We will give
one example in detail and suggest other examples as exercises.

For q ∈ R2 and r > 0, let S1(q, r) denote the circle around q of radius r. Let
S(p, S1(q, r)) be the set of g ∈ G′ so that g(p) ∈ S1(q, r). We use the ρ coordinates
on G′, as defined in Section 9.4, so we can think of S(p, S1(q, r)) ⊂ R3.

Proposition 9.20. For any p, q ∈ R2 and r > 0, S(p, S1(q, r)) lies in a regulus.

Proof. It’s easiest to describe the rulings of the regulus first. For any q′ ∈
S1(q, r), lp,q′ is in S(p, S1(q, r)). This gives one ruling. Now observe that g(p) ∈
S1(q, r) if and only if g−1(q) ∈ S1(p, r). For p′ ∈ S1(p, r), lp′,q lies in S(p, S1(q, r)).
These lines give the other ruling.

Now we prove that S(p, S1(q, r)) lies in a regulus. We pick three points q′1, q
′
2, q

′
3

in S1(q, r), and consider the three lines li = lp,q′i . As we saw above, these three

lines all lie S(p, S1(q, r)). From the formula for the line lp,q, it is easy to check that
any two of the lines {lp,q}q∈R2 are skew – we used this fact in the proof of Lemma
9.16. In particular, the lines l1, l2, l3 are skew, and there is a regulus R(l1, l2, l3) that
contains them. If l is any other line that intersects l1, l2, and l3, then l ⊂ R(l1, l2, l3)
as well.

If p′ ∈ S(p, r), then for each q′i, there is a unique g ∈ G so that g(p) = q′i
and G(p′) = q. Therefore, for any point p′ ∈ S1(p, r), the curve Sp′,q intersects
each S(p, q′i). For almost every p′ ∈ S1(p, r), lp′,q intersects each li. Therefore, for
almost every p′ ∈ S(p, r), lp′,q lies in R(l1, l2, l3).

If we replace q′1, q
′
2, q

′
3 by other points in S1(q, r), we get a new regulus that still

contains almost every line lp′,q. Since these two reguli intersect in infinitely many
lines, they must actually be the same regulus. Therefore, R(l1, l2, l3) contains lp,q′
for every q′ ∈ S1(q, r). But S(p, S1(q, r)) = ∪q′∈S1(q,r)lp,q′ ⊂ R(l1, l2, l3). �

(Remark. With some more work and more algebraic geometry, I think that it’s
possible to show that S(p, S1(q, r)) is equal to the regulus R described above.)

We sketch some more examples of this flavor as exercises for the reader.

Exercise 9.1. Suppose that λ ⊂ R2 is a line. (In this section, we use l for
lines in R3 and λ for lines in R2.) We define S(p, λ) to be the set of g ∈ G′ so that
g(p) ∈ λ. We use the ρ coordinates on G′, so we can think of S(p, λ) as a subset of
R3. Prove that S(p, λ) is contained in a regulus.
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One approach is to find the two rulings of the regulus as in the last Proposition.
We give some hints about this appraoch. For any q ∈ λ, we see that lp,q ⊂ S(p, λ).
These lines give one ruling of the regulus. The other ruling requires a small detour.

Let l be a line in R3. We call l “horizontal” if it lies in a plane of the form
z = h. The lines lp,q are not horizontal, as we can see from their parametrization
in Lemma 9.10. The horizontal lines also have a nice interpretation in terms of the
group of rigid motions. Let λ1, λ2 be oriented lines in R2. Let S(λ1, λ2) be the set
of g ∈ G′ so that g maps λ1 onto λ2 preserving the orientation.

Exercise 9.2. Prove that S(λ1, λ2) is a horizontal line in R3 and that each
horizontal line in R3 is S(λ1, λ2) for a pair of oriented lines (λ1, λ2).

Prove that each non-horizontal line l ⊂ R3 is lp,q for a unique pair p, q ∈ R2.

Now we can describe the other ruling of S(p, λ). For every λ′ containing p,
S(λ′, λ) lies in S(p, λ). These lines give the other ruling of S(p, λ).

There is another example of reguli that appears in connection with a distance
problem for two lines. Here is the distance problem. Let P be a set of N points
on the x axis. Let Q be a set of N points on the y axis. Consider d(P, Q), the
set of distances {d(p, q)}p∈P,q∈Q. For generic P, Q, |d(P, Q)| = N2, but there is a
clever choice where |d(P, Q)| ∼ N . Namely, let P = {(

√
a, 0)}a=1,...,N , and let Q =

{(0,
√

b)}b=1,...,N . The distance from (
√

a, 0) to (0,
√

b) is (a+b)1/2. Since there are
2N −1 values of a+b, |d(P, Q)| = 2N −1. Because there are few distinct distances,
there are many (∼ N3) quadruples (p1, q1, p2, q2) with |p1 − q1| = |p2 − q2|, pi ∈ P ,
qi ∈ Q. We can study these quadruples using the lines L(P, Q) := {lp,q}p∈P,q∈Q.

Exercise 9.3. Prove that the N2 lines of L(P, Q) are clumped into ∼ N reguli
with ∼ N lines in each regulus. In each regulus, there are ∼ N2 intersection
points, for a total of ∼ N3 intersection points, corresponding to the ∼ N3 distance
quadruples.

More generally, one can study the distances between points on two lines. Sup-
pose that P ⊂ l ⊂ R2 and P ′ ⊂ l′ ⊂ R2. We define d(P, P ′) := {|p − p′|}p∈P,p′∈P ′ .
If l, l′ are not parallel or perpendicular, then there are interesting lower bounds for
d(P, P ′). If |P | = |P ′| = N , then the best known lower bound is |d(P, P ′)| � N4/3,
due to Sharir, Sheffer and Solymosi [SSS].

Exercise 9.4. Consider a plane π ⊂ R3. Identifying G′ = R3, this plane
describes some subset of the group of rigid motions G. Describe this subset of the
rigid motions in terms of how they act on the plane.

9.8. Other exercises

Exercise 9.5. Let P be a square grid of N points. Find L(P ) and use it to
estimate Gr(P ). Show that L(P ) is the set of lines we considered in Exercise 8.1.
Using this example, show that |Gr(P )| ∼ N3r−2 for all 2 ≤ r ≤ N/400.

Exercise 9.6. Suppose that P ⊂ R2 has N points and |d(P )| = εN . Prove

that P has an r-rich partial symmetry for r ≥ ecε
−1

for some c > 0.



CHAPTER 10

Polynomial partitioning

The last few chapters of the book gave a survey of incidence geometry, explain-
ing some of the main theorems and questions in the field. Now that we have this
background, we begin the third part of the book, studying applications of the poly-
nomial method to incidence geometry. There will be several chapters, discussing a
few different methods of using polynomials in incidence geometry.

In this chapter, we study the polynomial partitioning method. We introduce
the method, and we use it to give a different proof of the Szemerédi-Trotter theorem.
Then we turn to estimates about lines in R3, and we start to study the questions
from Section 8.1.

The main result of the chapter is Theorem 9.15, which we restate here in a
slightly stronger way:

Theorem 10.1. For any ε > 0, there are constants D(ε) and C(ε) so that the
following holds. If L is a set of L lines in R3 with at most L(1/2)+ε lines in any
algebraic surface of degree ≤ D(ε), then

|Pr(L)| ≤ C(ε)L(3/2)+εr−2 + 2Lr−1.

Chapter 9 explains how this type of estimate is connected with partial sym-
metries and the distinct distance problem. In particular, as explained in Section
9.5, Theorem 10.1 implies that for any ε > 0, any set of N points in the plane
determines at least cεN

1−ε distinct distances.
Polynomial partitioning builds on an older partitioning method in incidence

geometry, called the cutting method. We start by describing the cutting method,
and then we explain how polynomials come into the picture.

10.1. The cutting method

In order to motivate polynomial partitioning, we begin by discussing the first
partitioning method in incidence geometry, called the cutting method. The cutting
method is a fundamental approach to incidence geometry problems introduced by
Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl in [CEGSW]. They used the
method to reprove the Szemerédi-Trotter theorem and to prove many new results.
One interesting feature is that the cutting method also applies to incidence geometry
problems in higher dimensions. For example, [CEGSW] estimates the number of
r-rich points determined by a set of unit spheres in R3.

In this section, we will describe some of the key ideas of the cutting method.
The goal of the section is to give intuition and background, but not complete
proofs. There aren’t any results in this section that we will use later. Hopefully, it
will give a flavor of the cutting method, which will help to understand polynomial
partitioning later in the chapter. If you’re interested, you can learn much more
about the cutting method in the book [PS].
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The cutting method is a divide-and-conquer approach. We cut the plane into
pieces, estimate the number of incidences in each piece, and add up the contribu-
tions of the different pieces. To get a sense of how it works, we outline a proof of
the Szemerédi-Trotter theorem using the cutting method. We will consider the ver-
sion of the Szemerédi-Trotter theorem about incidences between points and lines,
Theorem 7.11, which we restate here:

Theorem. If S is a set of S points in the plane, and L is a set of L lines in
the plane, then the number of incidences between S and L is bounded as follows:

|I(S,L)| � (S2/3L2/3 + S + L).

In addition to the lines of L, let us consider a set of D auxiliary lines. These
lines cut the plane into pieces, called cells. More formally, the cells are the connected
components of the complement of the D lines. In the cutting method, we estimate
the number of incidences in each of these cells and add up the contributions. For
a generic choice of D auxiliary lines, there are ∼ D2 cells. Crucially, each line of L
can enter only a small fraction of these cells.

Lemma 10.2. A line can enter at most D+1 of the cells determined by D lines.

Proof. To go from one cell to another, a line must cross one of the D auxiliary
lines. But a given line intersects each of the D auxiliary lines at most once. �

This divide-and-conquer approach works best if we can divide the problem into
roughly equal pieces. Since each line enters ∼ D of the D2 cells, an average cell
intersects ∼ L/D lines of L. We say that the lines are (roughly) equidistributed if

Each cell intersects � LD−1 lines of L. (EquiL)

Similarly, we say the points of S are (roughly) equidistributed if

Each cell contains � SD−2 points of S. (EquiS)

Let us suppose for now that we are able to arrange (EquiL) and (EquiS), and
let us sketch how to bound |I(S,L)|.

We know a bound for |I(S,L)| using double counting. Recall that the incidence
matrix of (S,L) encodes which points lie on which line. It has one row for each
point of S and one column for each line of L. Given a point x ∈ S and a line l ∈ L,
the corresponding entry of the matrix is 1 if x ∈ l and 0 otherwise. Because two
lines intersect in at most one point, the incidence matrix has no 2 × 2 minor of
all 1’s. Therefore, the Kővári-Sós-Turán theorem, Theorem 8.9, has the following
corollary about the number of incidences between points and lines (Corollary 8.10):

Corollary. If S is a set of S points and L is a set of L lines, then

I(S,L) � SL1/2 + L. (∗)

Instead of applying this corollary to control the incidences between S and
L, we apply it to control the number of incidences in each cell. Since each cell
has � SD−2 points and � LD−1 lines, the number of incidences in each cell is
� SL1/2D−5/2 + LD−1. The number of cells is � D2, and so the total number of
incidences in all the cells is

� D−1/2SL1/2 + DL.
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There could also be some incidences on the cell walls – on the union of the D
auxiliary lines. For simplicity, let us assume that the auxiliary lines are distinct
from the lines of L (but this point is not crucial to the argument). Each line of L
has at most D intersection points with the auxiliary lines, so there are at most DL
incidences coming from the cell walls. All together, we get the following bound.

|I(S,L)| � D−1/2SL1/2 + DL.

If we optimize the right-hand side over D, we get |I(S,L)| � S2/3L2/3. To
summarize, if we can arrange equidistribution, then we recover the Szemerédi-
Trotter bound. In this analysis, we assumed both (EquiL) and (EquiS), but with
a little more work, it turns out that either one of them suffices.

After I had done these calculations, I thought that I had understood the main
idea of the proof of the Szemerédi-Trotter theorem. I initially assumed that it
wouldn’t be so hard to find D auxiliary lines so that S and/or L are equidistributed.
My wrong intuition went something like this. Suppose that we choose D auxiliary
lines without thinking too much or somehow at random. There is no particular
reason why the points of S should clump into one of the cells instead of another,
and so they will probably be fairly evenly distributed. This intuition was totally
wrong.

Here is a different heuristic about the equidistribution problem. Suppose that
we attempt to equidistribute the points of S. We are going to choose D auxiliary
lines, which means that we have 2D real variables at our disposal. There will be
∼ D2 cells. Equidistribution involves one condition for each cell. Since there are
∼ D2 cells, there are ∼ D2 conditions that we want to satisfy. Each condition is an
inequality, but it’s approximately an equality. In each cell, we would like to have
� SD−2 points of S. This SD−2 is the average number of points per cell, so in a
lot of the cells we will have ∼ SD−2 points of S. Roughly speaking, we have ∼ D
variables and we are hoping to solve ∼ D2 equations. Without other information,
this is a method which sounds unlikely to work.

Here is an example of a set S which is impossible to equidistribute. Let γ be a
strictly convex closed curve such as a circle, and suppose that S is contained in γ.
Each auxiliary line meets γ in at most 2 points. Therefore, the curve γ is divided
into at most 2D pieces by the auxiliary lines. So the points S lie in at most 2D
cells. One of these cells must have � SD−1 points of S, which is much more than
SD−2.

To make the cutting method work, one needs a major additional idea in order
to find D auxiliary lines with some equidistribution properties. We give a rough
sketch of how [CEGSW] approach this problem. In the next sections, we discuss
polynomial partitioning, which will give a different approach to this issue.

An important idea from [CEGSW] is to choose the D auxiliary lines randomly
from the lines of L. If we do that, then the auxiliary lines interact well with the
lines of L. The auxiliary lines don’t quite obey (EquiL), but they do have some
useful equidistribution properties.

The D auxiliary lines give a polyhedral decomposition of R2, where the cells
are 2-faces, and there are also edges and vertices. One quantity that is fairly easy
to estimate is the maximal number of lines of L that intersect any edge. To get a
little intuition about this, suppose that we first choose D/10 auxiliary lines and cut
the plane into cells with them. We still have 9D/10 more lines to choose, which will
cut these cells into smaller cells. Consider an edge of the current decomposition
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that intersects KLD−1 lines of L for some K > 100. When we choose the next
D/10 auxiliary lines, we will on average choose K/10 lines that intersect our edge.
An edge from the first stage that intersects > 100LD−1 lines of L is likely to be
cut into many smaller edges in the second stage. Heuristically, edges that intersect
> 100LD−1 lines have a short half-life, and rapidly decay into smaller edges. Filling
in some details of this argument, it is not hard to show that with high probability,
every edge intersects at most 1000(L log L)D−1 lines of L.

If we somehow knew that every cell had � 1 edges, then it would follow that
every cell intersects � L log LD−1 lines of L, which is very close to (EquiL). How-
ever, there are configurations of lines where this fails badly. Suppose that K is a
convex polygon with L sides, and let L be the set of lines formed by extending each
edge of K to be a line. Suppose that we choose D lines of L. The original convex
polygon K lies in one of the components of the complement of the D lines. This
component has D edges and all the other lines enter it.

The paper [CEGSW] builds a good cell decomposition by starting with the cell
decomposition using random lines of L, and then refining it with some additional
well chosen line segments, used to break up cells with many edges. For more details,
we refer to the original paper [CEGSW] or the book [PS].

One of the interesting features of the cutting method is that it gives results in
higher dimensions. Suppose that we have S points and L hypersurfaces in Rn. If
we randomly choose D of the hypersurfaces, they will cut Rn into cells. Because
we choose the D auxiliary hypersurfaces randomly, we can hope to prove that
the L hypersurfaces are fairly equidistributed among the cells. If we do prove an
equidistribution bound, then we can estimate the incidences in each cell and add
up the contributions. For example, using this approach, [CEGSW] was able to
prove an interesting estimate about the incidence geometry of unit spheres in R3.
We will come back to this problem using polynomial partitioning in the exercises
later in the chapter.

The cutting method leads to interesting estimates about (n − 1)-dimensional
surfaces in Rn for any n. But there are significant difficulties trying to apply it to
k-dimensional surfaces for k < n − 1, such as lines in R3.

10.2. Polynomial partitioning

Now we can explain the main idea of polynomial partitioning. Instead of using
D hyperplanes to cut space into cells, we use the zero set of a degree D polynomial.
Partitioning with D hyperplanes is a special case that happens when the polynomial
is a product of D degree 1 factors. If P is a polynomial of degree D, then a line
either lies in Z(P ) or else it crosses Z(P ) at most D times. So each line intersects
at most D + 1 connected components of Rn \ Z(P ) – exactly the same bound as
if Z(P ) was a union of D hyperplanes. Allowing an arbitrary degree D algebraic
surface instead of just a union of D planes greatly increases our flexibility, which
makes equidistribution much easier to achieve.

The complement of D hyperplanes in Rn generically has ∼ Dn components.
The topology of real algebraic varieties was studied by Oleinik-Petrovski, Milnor,
and Thom - (see [Mi]). They proved among other things that for any degree D
polynomial P , Rn \ Z(P ) has at most ∼ Dn connected components. The vector
space PolyD(Rn) also has dimension ∼ Dn. If we would like Rn \ Z(P ) to have
∼ Dn connected components, and we would like the objects we are studying to
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be equidistributed among these components, then we have roughly Dn degrees of
freedom and we want to satisfy ∼ Dn conditions. Although this parameter counting
doesn’t prove anything, it sounds more plausible that we can choose P ∈ PolyD(Rn)
to arrange even distribution.

Now we can state our main result about the existence of good polynomial
partitionings.

Theorem 10.3. For any dimension n, we can choose C(n) so that the following
holds. If X is any finite subset of Rn and D is any degree, then there is a non-zero
polynomial P ∈ PolyD(Rn) so that Rn \Z(P ) is a disjoint union of � Dn open sets
Oi each containing ≤ C(n)|X|D−n points of X.

There is a crucial caveat about this theorem. The theorem does NOT guarantee
that the points of X lie in the complement of Z(P ). In fact it is possible that
X ⊂ Z(P ). There are two extreme cases. If all the points of X lie in the complement
of Z(P ), then we get optimal equidistribution, and we have a good tool to do a
divide-and-conquer argument following ideas from the cutting method. If all the
points of X lie in Z(P ), then we see that X is contained in a surface of controlled
degree, and we can try to use algebraic tools to study X. Generally, X will have
some points in Z(P ) and some points in the complement, and we study each part
of X separately.

The proof of Theorem 10.3 uses ideas from topology, which we describe in the
next section. These topological ideas connect to several parts of mathematics. In
this chapter, we focus on the connection with incidence geometry. Earlier, Gromov
used similar ideas to study a problem in differential geometry. His proof has a lot
of parallels with the proof of the finite field Kakeya problem. We will come back
to discuss these ideas in Chapter 14.

10.3. Proof of polynomial partitioning

The polynomial partitioning theorem, Theorem 10.3, is based on topology. It
is based on the Stone-Tukey ham sandwich theorem, which in turn is based on the
Borsuk-Ulam theorem. In this section, we introduce all these results, and we prove
that Theorem 10.3 follows from the Borsuk-Ulam theorem. We don’t give a proof
of the Borsuk-Ulam theorem, but we give references to well-written proofs.

10.3.1. Ham sandwich theorems. We will build our polynomial cell decom-
position using a tool from topology, the ham sandwich theorem. In this section, we
introduce ham sandwich theorems. Here is the first version of the ham sandwich
theorem.

Theorem 10.4. (Ham sandwich theorem, [StTu]) If U1, ..., Un are finite volume
open sets in Rn, then there is a hyperplane that bisects each set Ui.

(Banach proved this theorem in the 3-dimensional case in the late 30’s. Stone
and Tukey generalized the proof to higher dimensions.)

For example, if each Ui is a round ball, then the solution is a plane that goes
through the center of each ball. If the centers are in general position, there will
be exactly one solution. We can get a heuristic sense of the situation by counting
parameters. The set of hyperplanes in Rn is given by n parameters. Heuristically,
we might expect that the subset of hyperplanes that bisect U1 is given by n − 1
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parameters; that the subset of hyperplanes that bisect U1 and U2 is given by n− 2
parameters etc.

Stone and Tukey generalized Banach’s proof to higher dimensions. They also
realized that the same proof gives a much more general version of the ham sandwich
theorem. Now we formulate the Stone-Tukey ham sandwich theorem.

Notice that the planes are exactly the zero sets of degree 1 polynomials (poly-
nomials of the form a1x1 + ...+anxn + b). We can generalize this setup by allowing
other functions, such as higher degree polynomials. Suppose that V is a vector
space of functions from Rn to R. Multiplication by a scalar doesn’t change the zero
set of a function f , so might say heuristically that the family of zero sets is given
by Dim V − 1 parameters. For example, if V is the space of polynomials of degree
≤ 1, then Dim V = n + 1, and the dimension of the set of hyperplanes is n. Since
we have Dim V − 1 parameters to play with, we might hope to bisect Dim V − 1
sets Ui ⊂ Rn. Stone and Tukey showed that this heuristic is correct under very
mild conditions on the space V .

To state our theorem, we make a little basic notation. For any function f :
Rn → R, we let Z(f) := {x ∈ Rn|f(x) = 0}. We say that f bisects a finite volume
open set U if

V oln{x ∈ U |f(x) > 0} = V oln{x ∈ U |f(x) < 0} = (1/2)V olnU.

Theorem 10.5. (General ham sandwich theorem, Stone and Tukey, [StTu])
Let V be a vector space of continuous functions on Rn. Let U1, ..., UN ⊂ Rn be
finite volume open sets with N < Dim V . For any function f ∈ V \ {0}, suppose
that Z(f) has Lebesgue measure 0. Then there exists a function f ∈ V \ {0} which
bisects each set Ui.

The ham sandwich theorem is one corollary, given by taking V to be the degree
1 polynomials. If we consider the space of polynomials with degree ≤ D, we get
the following corollary.

Corollary 10.6. Let U1, ..., UN ⊂ Rn be finite volume open sets. Suppose
that N <

(
D+n
n

)
= Dim PolyD(Rn). Then there is a non-zero P ∈ PolyD(Rn) that

bisects all the sets Ui.

Proof. In Lemma 2.2, we proved that Dim PolyD(Rn) =
(
D+n
n

)
. It’s also

easy to check that for a non-zero polynomial P , Z(P ) has measure 0. We outlined
the proof in Exercise 2.4. Now the conclusion follows from the Stone-Tukey ham
sandwich theorem. �

The polynomial ham sandwich theorem is analogous to the more basic polyno-
mial existence lemma which we have been using throughout the course. We recall
the lemma here to make the analogy clear.

Lemma 10.7. (Polynomial existence lemma) If F is a field and if p1, ..., pN ∈ Fn

are points and N <
(
D+n
n

)
= Dim PolyD(Fn), then there is a non-zero polynomial

of degree ≤ D that vanishes at each pi.

The polynomial existence lemma is analogous to the polynomial ham sandwich
theorem. The first is based on linear algebra, and the second is based on topology.
The polynomial existence lemma was a basic step in all of our arguments in Chapter
2. Using the polynomial ham sandwich theorem instead gives a new direction to
the polynomial method.
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10.3.2. The proof of the ham sandwich theorem. The proof of the ham
sandwich theorem is based on the Borsuk-Ulam theorem.

Theorem 10.8. (Borsuk-Ulam) Suppose that φ : SN → RN is a continuous
map that obeys the antipodal condition φ(−x) = −φ(x) for all x ∈ SN . Then the
image of φ contains 0.

For a proof of the Borsuk-Ulam theorem, the reader can look at Matousek’s
book Using the Borsuk-Ulam theorem [Ma] or in the book Differential Topology
by Guillemin and Pollack, [GP], Chapter 2.6. The book Using the Borsuk-Ulam
theorem discusses some surprising applications of Borsuk-Ulam to combinatorics.

Proof of the general ham sandwich theorem. For each i from 1 to N ,
we define φi : V \ {0} → R by

φi(F ) := V ol ({x ∈ Ui|F (x) > 0}) − V ol ({x ∈ Ui|F (x) < 0}) .

So φi(F ) = 0 if and only if F bisects Ui. Also, φi is antipodal, φi(−F ) =
−φi(F ).

We will check below that φi is a continuous function from V \ {0} to R. We
assemble the φi into one function φ : V \ {0} → RN .

We know that Dim V > N , and without loss of generality we can assume that
Dim V = N + 1. Now we choose an isomorphism of V with RN+1, and we think
of SN as a subset of V . The map φ : SN → RN is antipodal and continuous. By
the Borsuk-Ulam theorem, there is a function F ∈ SN ⊂ V \ {0} so that φ(F ) = 0.
This function F bisects each Ui.

It only remains to check the technical point that φi is continuous. We state
this fact as a lemma.

Continuity Lemma. Let V be a finite-dimensional vector space of continuous
functions on Rn. Suppose that for each f ∈ V \ {0}, the set Z(f) has measure 0.

If U is a finite volume open set, then the measure of the set {x ∈ U |f(x) > 0}
depends continuously on f ∈ V \ {0}.

Proof. The proof is based on measure theory. A good reference for measure
theory is the book Real Analysis by Stein and Shakarchi, [StSh].

Suppose that f is a function in V \ {0} and fn ∈ V \ {0} with fn → f in V .
A priori, fn converges to f in the topology of V . But then it follows that fn → f
pointwise. Pick any ε > 0. We can find a subset E ⊂ U so that fn → f uniformly
pointwise on U \ E, and m(E) < ε. (See Theorem 4.4 on page 33 of [StSh].)

The set {x ∈ U |f(x) = 0} has measure zero. Also U has finite measure.
Therefore, we can choose δ so that the set {x ∈ U such that |f(x)| < δ} has
measure less than ε. (See Corollary 3.3 on page 20 of [StSh].)

Next we choose n large enough so that |fn(x)− f(x)| < δ on U −E. Then the
measures of {x ∈ U |fn(x) > 0} and {x ∈ U |f(x) > 0} differ by at most 2ε. But ε
was arbitrary. �

This finishes the proof of the Stone-Tukey ham sandwich theorem. �
10.3.3. A ham sandwich theorem for finite sets. We now adapt the ham

sandwich theorem to finite sets of points. Instead of open sets Ui, we will have
finite sets Si. We say that a polynomial P bisects a finite set S if at most half the
points in S are in {P > 0} and at most half the points in S are in {P < 0}. Note
that P may vanish on some or all of the points of S.
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Corollary 10.9. Let S1, . . . , SN be finite sets of points in Rn with N <(
D+n
n

)
= Dim PolyD(Rn). Then there is a non-zero polynomial P ∈ PolyD(Rn)

that bisects each set Si.

Let us give an example now. Suppose that we take two sets S1 and S2 in the
plane, both lying on the x-axis, with S1 ⊂ [0, 1] × {0} and S2 ⊂ [2, 3] × {0}. Since
2 <

(
2+1
2

)
= 3, we should be able to choose a degree 1 polynomial P to bisect both

S1 and S2. The only option is to choose P = x1 so that Z(P ) is the x1-axis. Any
line transverse to the x1-axis will fail to bisect one of the two sets. Because of this
situation, we have to allow P to “bisect” a finite set S in the case that P vanishes
on S.

The idea of the proof is to replace the finite sets by finite unions of δ-balls,
apply the polynomial ham sandwich theorem, and then take δ → 0.

Proof. For each δ > 0, define Ui,δ to be the union of δ-balls centered at the
points of Si. By the polynomial ham sandwich theorem we can find a non-zero
polynomial Pδ of degree ≤ D that bisects each set Ui,δ. By rescaling Pδ, we can
assume that Pδ ∈ SN ⊂ PolyD(Rn) \ {0}.

Since SN is compact, we can find a sequence δm → 0 so that Pδm converges to
a polynomial P ∈ SN ⊂ PolyD(Rn) \ {0}. Since the coefficients of Pδm converge to
the coefficients of P , Pδm converges to P uniformly on compact sets.

We claim that P bisects each set Si. We prove the claim by contradiction.
Suppose instead that P > 0 on more than half of the points of Si. (The case P < 0
is similar.) Let S+

i ⊂ Si denote the set of points of Si where P > 0. By choosing
ε sufficiently small, we can assume that P > ε on the ε-ball around each point of
S+
i . Also, we can choose ε small enough that the ε-balls around the points of Si

are disjoint. Since Pδm converges to P uniformly on compact sets, we can find m
large enough that Pδm > 0 on the ε-ball around each point of S+

i . By making m
large, we can also arrange that δm < ε. Therefore, Pδm > 0 on more than half of
Ui,δm . This contradiction proves that P bisects Si. �

10.3.4. Cell decompositions. Now we are ready to prove our polynomial
partitioning theorem, Theorem 10.3. We restate the theorem here:

Theorem. For any dimension n, we can choose C(n) so that the following
holds. If S is any finite subset of Rn and D is any degree, then there is a non-zero
polynomial P ∈ PolyD(Rn) so that Rn \Z(P ) is a disjoint union of � Dn open sets
Oi each containing ≤ C(n)|S|D−n points of S.

Proof. We construct our polynomial cell decomposition by repeatedly using
Corollary 10.9 - the polynomial ham sandwich theorem for finite sets. To begin,
we find a polynomial P1 of degree 1 that bisects S. We divide Rn \Z(P1) into two
disjoint open sets according to the sign of P1. We let S+ denote the points of S
where P1 > 0, and S− denote the points of S where P1 < 0. The sets S+ and S−
each contain ≤ |S|/2 points. Next we find a low degree polynomial P2 that bisects
S+ and S−. There are four possible sign conditions on P1 and P2, and the subset
of S for each sign condition contains ≤ |S|/4 points. The complement of Z(P1P2)
is a disjoint union of four open sets determined by the signs of P1 and P2, and each
of these open sets contains at most |S|/4 points of S. We continue in this way to
define polynomials P3, P4, etc.
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The polynomial Pj bisects 2j−1 finite sets, determined by the signs of P1, ..., Pj−1.

By Corollary 10.9, we can find Pj with degree ≤ C(n)2j/n. The complement of
Z(P1 · ... ·Pj) is the disjoint union of 2j open sets corresponding to the possible signs
of P1, ..., Pj , and each of these open sets contains ≤ |S|2−j points. We repeat this
procedure J times, and we define P = P1 · ... ·PJ . The sign conditions of P1, ..., PJ

divide Rn \Z(P ) into 2J open sets Oi each containing at most |S|2−J points of S.
(Some of these open sets may be empty.)

Finally we choose D so that Deg(P ) ≤ D, which means that C(n)
∑J

j=0 2j/n ≤
D. The sum is a geometric sum, and the last term is comparable to the whole.
Therefore, we can arrange that Deg P ≤ D for D ≤ C(n)2J/n. The number of
points of S in each Oi is ≤ |S|2−J ≤ C(n)|S|D−n. �

10.4. Using polynomial partitioning

Now we discuss how to apply polynomial partitioning in incidence geometry.
We begin by reproving the Szemerédi-Trotter theorem. We follow the argument
from the paper [KMS], which uses polynomial partitioning to reprove several clas-
sical theorems of incidence geometry.

We recall the statement of the Szemerédi-Trotter theorem. We proved the
theorem in Chapter 7 using the crossing number lemma - see Theorem 7.11 and
Theorem 7.1.

Theorem 10.10. (Szemerédi-Trotter, [SzTr]) If S is a set of S points in R2

and L is a set of L lines in R2, then the number of incidences obeys the following
bound:

I(S,L) � S2/3L2/3 + S + L.

We first recall a simple estimate for |I(S,L)| using double counting.

Lemma 10.11. If S and L are as above, then

• I(S,L) ≤ L + S2.
• I(S,L) ≤ L2 + S.

Proof. Fix x ∈ S. Let Lx be the number of lines of L that contain x and no
other point of S. For each other point y ∈ S, there is at most one line of L containing
x and y. Therefore, I(x,L) ≤ S + Lx. So I(S,L) ≤ S2 +

∑
x∈S Lx ≤ S2 + L.

The proof of the other inequality is similar. �

To prove the theorem, we will combine polynomial partitioning with this double
counting bound. We will use polynomial partitioning to divide the plane into cells,
and we will use the double counting bound to estimate the number of incidences in
each cell.

Proof of Theorem 10.10. If L > S2 or S > L2, then the conclusion follows
from the counting lemma. Therefore, we can now restrict to the case that

(10.1) S1/2 ≤ L ≤ S2.

Let D be a degree that we will choose later. By the polynomial partitioning
theorem, Theorem 10.3, we can find a non-zero polynomial P of degree ≤ D so that
each component of the complement of Z(P ) contains � SD−2 points of S. Let Oi

be the components of R2 \Z(P ). For each i, let Si = S ∩Oi and let Li ⊂ L be the
set of lines of L that intersect Oi. Let Si = |Si| and Li = |Li|.
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If a line does not lie in Z(P ), then it intersects Z(P ) in at most D points, and
so each line intersects at most D + 1 cells. Therefore,

∑
Li ≤ (D + 1)L.

Applying Lemma 10.11 in each cell, we get

I(Si,Li) ≤ Li + S2
i .

We let Scell be the union of Si - all the points of S that lie in the interiors of
the cells.

I(Scell,L) =
∑
i

I(Si,Li) ≤
∑
i

Li +
∑
i

S2
i � LD + SD−2

∑
i

Si ≤ LD + S2D−2.

We let S = Scell ∪ Salg, where Salg is the set of points in Z(P ). It remains to
bound I(Salg,L). We divide L as Lalg ∪Lcell, where Lalg are the lines contained in
Z(P ) and Lcell are the other lines. The total number of incidences is bounded by

|I(S,L)| ≤ |I(Scell,L)| + |I(Salg,Lcell)| + |I(Salg,Lalg)|.

Each line of Lcell has at most D intersection points with Z(P ), and so it has
at most D incidences with Salg. Therefore I(Salg,Lcell) ≤ LD.

The number of lines in Lalg is at most D. By Lemma 10.11,

|I(Salg,Lalg)| ≤ S + D2.

All together, we see that

|I(S,L)| � LD + S2D−2 + S + D2.

Now we choose D to optimize this bound. We can minimize the sum of LD +
S2D−2 by choosing D ∼ S2/3L−1/3. We need to choose D ≥ 1 an integer. By
Inequality 10.1 above, we know that L ≤ S2, and so S2/3L−1/3 ≥ 1. Therefore, we
can choose D to be a positive integer of size ∼ S2/3L−1/3. Inequality 10.1 also tells
us that L ≥ S1/2, and so D2 ∼ S4/3L−2/3 ≤ S. Therefore,

|I(S,L)| � S2/3L2/3 + S.

�

The proof of the Szemerédi-Trotter theorem uses the topology of R2. In this
proof, using polynomial partitioning, topology enters twice. The idea of a cell
decomposition uses topology. More precisely, we are using topology when we refer
to the connected components of R2 \ Z(P ) and when we say that a line enters at
most 1 + Deg P cells. Then the proof of the polynomial partitioning theorem uses
topology again. It involves the ham sandwich theorem which in turn follows from
the Borsuk-Ulam theorem.

10.5. Exercises

In these exercises, we apply polynomial partitioning to various problems in
incidence geometry. Instead of lines in the plane, we consider various curves in the
plane and also surfaces in R3. The proofs follow the main outline of the polynomial
partitioning proof of Szemerédi-Trotter. All of the results we discuss here were
proven earlier using the cutting method, mostly in [CEGSW]. There is a lot more
information about this type of problem in [PS].
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Exercise 10.1. If Γ is a set of N unit circles in the plane and S is a set of S
points in the plane, prove that

|I(S, Γ)| � N2/3S2/3 + N + S.

As a corollary, show that a set of N points in the plane determines � N4/3

unit distances.

Exercise 10.2. Next suppose that Γ is a set of N circles in the plane and S is
a set of S points in the plane. Check that a set of 3 points lies on a unique circle.
Using this observation and a double counting bound, prove that

|I(Γ,S)| ≤ S3 + N.

(There is a slightly different bound which follows from Theorem 8.9: |I(Γ,S)| ≤
N2/3S + N .)

In particular, if N > S3, then |I(Γ,S)| � N . This bound is sharp because we
can easily arrange that every curve of Γ passes through at least one point of S.

Now combine this counting bound with polynomial partitioning to give an
improved estimate. Show that

|I(Γ,S)| ≤ S3/5N4/5 + N + S.

As a corollary, show that

|Pr(Γ)| � N2r−5/2.

The same arguments apply to parabolas as well as circles. Here a parabola
means a curve of the form y = ax2 + bx + c.

Remark: These bounds on the incidence problem for parabolas and circles were
first proven in [CEGSW] using the cutting method. In the early 2000’s, [ArSh]
proved somewhat better bounds. These bounds don’t match any examples. All
known bounds give the same estimates for circles and parabolas. On the other
hand, the best known examples of parabolas have far more incidences than for
circles.

Exercise 10.3. In this exercise, we describe a set of parabolas and a set of
points with many incidences. Suppose that S is a grid of points (x, y) ∈ Z2 with
|x| ≤ X and |y| ≤ Y . Let Γ be the set of all parabolas of the form y = ax2 + bx + c
where (a, b, c) ∈ Z3 with |a| ≤ A, |b| ≤ B, |c| ≤ C. By adjusting the parameters
X, Y, A, B, C, try to find an example with many incidences.

Exercise 10.4. Suppose that Γ is a set of N irreducible algebraic curves in
the plane of degree at most d. In other words, each curve in Γ is the zero set of an
irreducible polynomial Q ∈ Polyd(R

2). Using the Bezout theorem, show that for
any set of d2 + 1 points in R2, there is at most one curve γ ∈ Γ containing all the
points.

If N ≥ Sd2+1, prove that

|I(Γ,S)| � N.

Combining this bound and polynomial partitioning, prove the following esti-
mate for the number of incidences: setting k = d2 + 1,

|I(Γ,S)| � S
k

2k−1 N
2k−2
2k−1 + S + N.
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Remark: For d ≥ 3, this bound was improved in [WYZ]. For d = 2, this is the
best known bound at the present time. For all d ≥ 2, the best current bound does
not match any known examples.

Exercise 10.5. In the arguments above, we do polynomial partitioning using
polynomials of large degree – the degree is typically a polynomial in terms of the
size of Γ and the size of S. The paper [SoTa] gave an alternate proof of a slightly
weaker estimate which only uses polynomials of a large constant degree. This is a
useful technique in some other problems, especially in higher dimensions. We will
use this approach later in this chapter to study lines in R3.

For any ε > 0, constant degree partitioning leads to a proof of the following
weak version of Szemerédi-Trotter: if L is a set of L lines in the plane, and S is a
set of S points in the plane, then

|I(S,L)| ≤ C(ε)
(
L

2
3+εS

2
3+ε + S + L

)
.

Let D = D(ε) be a large constant degree. Using polynomial partitioning with
polynomials of degree at most D, together with induction on the size of L and S,
prove this inequality.

Next we turn to incidence problems about surfaces in R3. We start with 2-
planes and then discuss unit 2-spheres and 2-spheres.

In order to apply the partitioning method to 2-planes in R3, we need to estimate
the number of components of R3 \Z(P ) which a 2-plane Π may enter. The Harnack
inequality leads to such an estimate.

Theorem 10.12. (Harnack inequality) If P ∈ PolyD(R2), then R2 \ Z(P ) has
� D2 connected components.

Therefore, if P ∈ PolyD(R3), and Π ⊂ R3 is a 2-plane, then Π \ Z(P ) has
� D2 connected components. In particular, a 2-plane Π enters � D2 connected
components of R3 \ Z(P ).

In a later exercise, we will sketch a proof of this theorem. Before that, let us
apply it to give an incidence estimate. Suppose that Γ is a set of N 2-planes in R3

and S is a set of S points in R3. We might like to estimate |I(Γ,S)|. However, this
problem does not turn out to be interesting. It may happen that there is a line
l ⊂ R3 so that every point of S lies in l, and every plane of Γ contains l. In this
case, |I(Γ,S)| = SN , and this is the maximum possible value. In order to get an
interesting question, we need to modify the hypotheses. One possible modification
is to bound the number of planes of Γ containing any line.

Exercise 10.6. In this exercise, we prove a slightly weaker version of a theorem
from [EGS] about the incidences between points and planes. We mentioned this
result earlier as Theorem 8.5.

Suppose that Γ is a set of N 2-planes in R3 where no three 2-planes are collinear.
Suppose that S is a set of S points in R3.

By a double counting argument, show that

|I(Γ,S)| ≤ 2S2 + N.

Combine this counting bound with polynomial partitioning to prove an inci-
dence estimate: for any ε > 0,

I(Γ,S) ≤ C(ε)
(
S

4
5+εN

3
5+ε + S + N

)
.
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In the proof, use constant degree partitioning as in Exercise 10.5, as well as the
Harnack inequality.

(This result was first proven in [EGS], using the cutting method. The proof
there is a little sharper – avoiding the ε’s. This is one of the fairly rare inequalities
in higher dimensions which is known to be sharp. The example is described by
Apfelbaum and Sharir in Appendix A of [ApSh], following some ideas of Brass and
Knauer from [BrKn].)

Here are some other variations. What would happen if instead of saying that
no three two-planes are collinear, we say that there are at most 100 planes of Γ
containing any line? We could also replace the condition on planes by a condition
on points. What if no three points are collinear? What if at most 100 points lie on
any line?)

Exercise 10.7. In this exercise, we give a sketch Harnack’s inequality, Theorem
10.12. Let P be a non-zero polynomial in PolyD(R2). We have to estimate the
number of connected components of R2 \ Z(P ). The key tool in the estimate is
Bezout’s theorem.

We will estimate the bounded and unbounded components separately. If S is a
circle not contained in Z(P ), then |Z(P ) ∩ S| ≤ 2D by the Bezout theorem. Con-
sidering large circles, prove that R2 \Z(P ) has at most 2D unbounded components.

Next consider bounded components. A key observation is that inside of each
bounded component of R2 \ Z(P ), P must have either a local maximum or a lo-
cal minimum. So each bounded component must contain a critical point of P , a
point where ∂1P = ∂2P = 0. If the polynomials ∂1P and ∂2P have no common
factor, then the Bezout theorem implies that the number of such zeroes is at most
(Deg ∂1P )(Deg ∂2P ) ≤ (D − 1)2. In this case, the number of bounded components
of R2 \ Z(P ) is at most (D − 1)2.

It may happen that ∂1P and ∂2P have a common factor. In this case, we
consider the critical points of a small perturbation of P . Consider the polynomial
Q = P +w1x1+w2x2. If |w1|, |w2| are small enough, prove that Q also has a critical
point in each connected component of R2 \Z(P ). If w1, w2 are generic, then prove
that ∂1Q and ∂2Q have no common factor.

Similar arguments apply to spheres. For these arguments, we need a version of
the Harnack inequality for spheres.

Theorem 10.13. (Spherical version of the Harnack inequality) If P ∈PolyD(R3),
and S2 ⊂ R3 is a sphere (with any center or radius), then S2 \ Z(P ) has � D2

connected components.

The proof of Theorem 10.13 is similar to the proof in the planar case described
in the last exercise but technically harder. For a reader interested in the different
versions of Bezout’s theorem, it would be interesting to work it out.

Exercise 10.8. Suppose that Γ is a set of N unit 2-spheres in R3, and suppose
S is a set of S points in R3. Check that the intersection of three unit 2-spheres
consists of at most two points. In other words, given any three points in R3, there
are at most two spheres γ ∈ Γ containing these three points. Using this, show that
if N ≥ S3, then

I(Γ,S) � N.
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Combine this counting bound with polynomial partitioning to prove an inci-
dence estimate: for any ε > 0,

I(Γ,S) ≤ C(ε)S
3
4+εN

3
4+ε + S + N.

As a corollary, show that N points in R3 determine at most N
3
2+ε unit dis-

tances.
This result was first proven in [CEGSW].

Exercise 10.9. Now suppose that Γ is a set of N 2-spheres in R3 (of any radii).
Note that the intersection of two 2-spheres is always a circle (or a point). Suppose
that S is a set of S points in R3 with at most 10 on any circle. Try to estimate
|I(Γ,S)|.

We have seen how polynomial partitioning (or the cutting method) gives inter-
esting estimates about a wide variety of incidence problems. However, in all of the
problems we considered in this section, the bounds from polynomial partitioning
are not believed to be sharp.

10.6. First estimates for lines in R3

In the rest of this chapter, we use polynomial partitioning to study lines in R3.
We are now ready to return to the question at the start of the chapter: “Suppose
that L is a set of lines in R3 with at most B lines in any algebraic surface of degree
at most D. What is the maximum possible size of Pr(L)?”

We will focus in this section on 2-rich points, and we begin with some examples.
A set of B lines in a plane can have

(
B
2

)
∼ B2 2-rich points. A set of B lines in

a regulus can also have ∼ B2 2-rich points. If we choose L/B planes or reguli
in general position and select B lines from each, we get a set of L lines with
∼ (L/B)B2 ∼ BL 2-rich points, and with at most B lines in any low degree
surface. For B ≥ L1/2, we will eventually prove that this bound is sharp. The
methods in this book hit a barrier at L3/2 2-rich points, and we won’t be able to
prove any estimate better than this even if B is very small. We will eventually
prove that the number of 2-rich points is � BL + L3/2, and in this chapter, we will
prove that the number of 2-rich points is �ε BL + L(3/2)+ε.

We need to find a way to use the hypothesis that not many lines of L lie in
any algebraic surface of degree at most D. We will use polynomial partitioning
with a polynomial P ∈ PolyD(Rn), and the hypothesis implies that there are few
lines in Z(P ). We will use this estimate to help control the number of r-rich points
in Z(P ). And we will use induction to control the number of r-rich points in the
cells. With these tools, we can give a rather short proof of an estimate for 2-rich
points. This is not the strongest estimate we will prove, but we start here because
the proof is short and clear, and later we will add more ideas to improve it.

Proposition 10.14. For any ε > 0, there is a degree D = D(ε) and a constant
C(ε) so that the following holds. If L is a set of L lines in R3 with at most B lines
in any algebraic surface of degree ≤ D, then

|P2(L)| ≤ C(ε)B(1/2)−εL(3/2)+ε.

This result is most interesting if B is small. For instance if B � log L, then
|P2(L)| �ε L(3/2)+ε, which is nearly the best known bound in this situation. If
B is larger, this result is not as good. In connection with the distinct distance
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problem, we are interested in B = L1/2. In this case Proposition 10.14 gives
|P2(L)| �ε L(7/4)+ε, but we will eventually prove that |P2(L)| � L3/2.

Proof. We will choose the degree D = D(ε) below. We do polynomial parti-
tioning with degree D for the set of r-rich points P2(L). By Theorem 10.3, there
exists a non-zero P ∈ PolyD(R3) so that R3 \Z(P ) is a disjoint union of ∼ D3 cells
Oi, and each cell contains � D−3|P2(L)| points of P2(L).

If most of the points of P2(L) lie in the union of the cells Oi, we proceed as
follows. We let Li ⊂ L denote the set of lines in L that intersect Oi. Notice that
P2(L) ∩ Oi ⊂ P2(Li). Since most of the points of P2(L) lie in the cells Oi, there
must be ∼ D3 cells Oi obeying the following inequality:

(10.2) |P2(L)| � D3|P2(Li)|.

Each line l ∈ L enters at most D+1 of the cells. Therefore,
∑

i |Li| ≤ (D+1)L.
Since there are ∼ D3 cells Oi obeying equation 10.2, one of them must have |Li| �
D−2L. We now study this cell Oi.

We will study P2(Li) by induction. We will choose D sufficiently large to
guarantee that |Li| < |L|, so we can use induction on the number of lines. By
induction we can assume that |P2(Li)| ≤ C(ε)B(1/2)−ε|Li|(3/2)+ε. Assembling all
the information, we have the following estimate:

|P2(L)| � D3|P2(Li)| � D3C(ε)B(1/2)−ε(D−2L)(3/2)+ε.

The total power of D in this inequality is −2ε < 0. (The exponent (3/2) + ε was
chosen exactly to make this happen.) We can rewrite the last inequality as:

|P2(L)| ≤ CD−2εC(ε)B(1/2)−εL(3/2)+ε.

In this equation C is an absolute constant. We now choose D(ε) sufficiently large
so that CD−2ε ≤ 1. As long as the majority of points of P2(L) lie in the union of
the cells Oi, the induction closes and we get the desired bound for |P2(L)|.

Suppose on the other hand that at least half the points of P2(L) lie on the
surface Z(P ). In this case, we will estimate |P2(L)| directly. We let LZ be the set
of lines of L that lie in Z(P ). By hypothesis, |LZ | ≤ B. If x ∈ P2(L) ∩ Z(P ), then
either x ∈ P2(LZ), or x lies in a line of L \ LZ . Since |LZ | ≤ B, |P2(LZ)| ≤ B2.
On the other hand, each line l ∈ L \ LZ intersects Z(P ) in at most D points. The
total number of such intersection points is ≤ DL. In total,

|P2(L) ∩ Z(P )| ≤ B2 + DL.

We can assume B ≤ L, and if we choose C(ε) ≥ 4D(ε), then we get |P2(L)| ≤
C(ε)B(1/2)−εL(3/2)+ε as desired. �

We discuss the proof a little. There was some algebra in the proof, and it may
not be totally clear where the expression B(1/2)−εL(3/2)+ε comes from. Suppose
we try to prove that |P2(L)| � F (B, L) for some function F . Because of easy
examples, we need to have F (B, L) � B2 + L for any B ≤ L. In order for the
inductive step to work, we need another condition on F (B, L). Ignoring small
factors, this condition roughly says that F (B, L) ≥ D3F (B, LD−2). The smallest
function that obeys these two conditions is B1/2L3/2. We need a little extra room
in the argument because of the constant factors, and this leads to the right-hand
side C(ε)B(1/2)−εL(3/2)+ε.
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10.7. An estimate for r-rich points

Essentially the same proof also leads to an estimate for |Pr(L)|. To estimate
the number of r-rich points in Z(P ), we use the Szemerédi-Trotter theorem. We
state this estimate as a lemma.

Lemma 10.15. Suppose that L is a set of L lines in R3, P ∈ PolyD(R3), and
that Z(P ) contains at most B lines of L. Then

|Pr(L) ∩ Z(P )| � DLr−1 + B2r−3.

Proof. Let LZ be the set of lines of L that lie in Z(P ). If x ∈ Pr(L) ∩ Z(P ),
then either x lies in at least r/10 lines of L \ LZ , or else x lies in at least (9/10)r
lines of LZ . We estimate the number of points of each type.

Since each line of L \ LZ intersects Z(P ) in at most D points, the number of
points of the first type is at most DL(r/10)−1 = 10DLr−1.

Since there are at most B lines in LZ , the number of points of the second type
is � B2r−3 + Br−1. The term Br−1 is dominated by DLr−1, so we don’t need to
include it on the right-hand side. �

Let I(B, D, L, r) be defined to be the maximum possible size of |Pr(L)| for a
set of L lines with at most B lines in any algebraic surface of degree at most D.

Exercise 10.10. Adapting the proof of Proposition 10.14, prove the following
inductive estimate for I(B, D, L, r):

(10.3) I(B, D, L, r) ≤ C

(
D3I(B, D, CLD−2, r) + DLr−1 + B2r−3

)
.

We also know I(B, D, L, r) for r ≥ 2L1/2. Lemma 7.3 says that if r ≥ 2L1/2,
then |Pr(L)| ≤ 2Lr−1. Therefore, if r ≥ 2L1/2, then I(B, D, L, r) ≤ 2Lr−1. We
restate the result here and give a slightly different proof, which will be a model for
another proof a little later in the chapter.

Lemma 10.16. If L is a set of L lines in Rn and r > 2L1/2, then |Pr(L)| ≤
2Lr−1. Therefore, if r ≥ 2L1/2, then I(B, D, L, r) ≤ 2Lr−1.

Proof. Let Pr(L) be x1, x2, .., xM , with M = |Pr(L)|. Now x1 lies in at least
r lines of L. The point x2 lies in at least (r − 1) lines of L that did not contain
x1. More generally, the point xj lies in at least r − (j − 1) lines of L that did not
contain any of the previous points x1, ..., xj−1. Therefore, we have the following
inequality for the total number of lines:

L ≥
M∑
j=1

max(r − j, 0).

If M ≥ r/2, then we would get L ≥ (r/2)(r/2) = r2/4. But by hypothesis,
r > 2L1/2, giving a contradiction. Therefore, M < r/2, and we get L ≥ M(r/2)
which proves the proposition. �

Exercise 10.11. Combining the inductive estimate in Equation 10.3 with
Lemma 10.16, prove the following theorem.

Proposition 10.17. For any ε > 0, there exists a degree D = D(ε) and a
constant C(ε) so that the following holds. Suppose that L is a set of L lines in
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R3 with at most B lines in any algebraic surface of degree ≤ D. Then for any
2 ≤ r ≤ 2L1/2,

|Pr(L)| ≤ C(ε)B(1/2)−εL(3/2)+εr−2.

If B is very small, then this estimate is close to the best known bound. For
instance, if B � log L, then we get the bound |Pr(L)| �ε L(3/2)+εr−2. The best
known bound in this situation is |Pr(L)| � L3/2r−2, as explained in Chapter 12.
But for larger B, the bound in Proposition 10.17 is not so sharp.

Exercise 10.12. Suppose that L is a set of lines in Rn with at most B lines
in any algebraic hypersurface of degree at most D. Try to estimate |Pr(L)|.

10.8. The main theorem

Now we turn to the main theorem of the chapter, Theorem 10.1. We restate
the theorem for convenience.

Theorem. For any ε > 0, there are constants D(ε) and C(ε) so that the
following holds. If L is a set of L lines in R3 with at most L(1/2)+ε lines in any
algebraic surface of degree ≤ D(ε), then

|Pr(L)| ≤ C(ε)L(3/2)+εr−2 + 2Lr−1.

If r > 2L1/2, then |Pr(L)| ≤ 2Lr−1 by the double counting argument in Lemma
10.16, so the interesting case is in the range 2 ≤ r ≤ 2L1/2.

We will prove this theorem using induction on L and polynomial partitioning.
The proof follows the method from the last two sections, but with a new wrinkle.
If we directly follow the method from the last section, we run into the following
issue. After polynomial partitioning, we consider the lines Li that intersect a cell
Oi. Since Li ⊂ L, we know that at most L(1/2)+ε lines of Li lie in any algebraic
surface of degree at most D, but we don’t know that at most |Li|(1/2)+ε lines of
Li lie in any algebraic surface of degree at most D. So we cannot directly apply
induction to Li. We have to somehow deal with low degree algebraic surfaces that
contain more than |Li|(1/2)+ε lines of Li. The new wrinkle is a way to deal with
these surfaces.

We will actually prove a slightly stronger theorem, because a slightly stronger
theorem makes the induction work better. This stronger theorem roughly says that
if a set of lines L in R3 has more than L(3/2)+εr−2 r-rich points, then most of these
points must “come from” a small set of low degree algebraic surfaces. Here is a
little notation to help state the theorem: if Z is an algebraic surface in R3, then
we define LZ ⊂ L to be the set of lines in L that lie in Z.

Theorem 10.18. For any ε > 0, there are D(ε), and K(ε) so that the following
holds. For any r ≥ 2, let r′ = �(9/10)r�, the least integer which is at least (9/10)r.

If L is a set of L lines in R3, and if 2 ≤ r ≤ 2L1/2, then there is a set Z of
algebraic surfaces so that

• Each surface Z ∈ Z is an irreducible surface of degree at most D.
• Each surface Z ∈ Z contains more than L(1/2)+ε lines of L.
• |Z| ≤ 2L(1/2)−ε.
• |Pr(L) \ ∪Z∈ZPr′(LZ)| ≤ KL(3/2)+εr−2.
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Theorem 10.18 immediately implies Theorem 10.1. Suppose that L is a set of
L lines in R3 with at most L(1/2)+ε lines in any algebraic surface of degree at most
D(ε). As we remarked above, if r > 2L1/2, then we know that |Pr(L)| ≤ 2Lr−1 by
double counting. If r ≤ 2L1/2, then we apply Theorem 10.18. Since L contains at
most L(1/2)+ε lines in any algebraic surface of degree at most D, the set Z must
be empty and so |Pr(L)| ≤ KL(3/2)+εr−2.

Here is an outline of the proof of Theorem 10.18. We use a polynomial parti-
tioning argument to cut R3 into cells Oi. We use induction to study the lines of
L that enter each cell. For each cell, we get a set of surfaces Zi that accounts for
all but a few of the r-rich points in Oi. We let Z̃ be the union of all the surfaces
from the different cells together with the irreducible components of the polynomial
partitioning surface. The good news is that the surfaces in Z̃ account for almost
all of the r-rich points of L: as long as D(ε) is large enough, a computation similar
to the last two sections shows that

(10.4) |Pr(L) \ ∪Z∈Z̃Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

But there is also some bad news. A surface Z ∈ Zi must contain more than
|Li|(1/2)+ε lines of Li, but it doesn’t have to contain more than L(1/2)+ε lines of
L. If Z contains ≤ L(1/2)+ε lines of L, then we are not allowed to include Z in
Z. Another piece of bad news is that the number of surfaces in Z̃ is too large. It
turns out that the number of surfaces in Z̃ could be bigger than CDL(1/2)−ε for a
large constant C. On the other hand, to close the induction, we need to choose a
set of surfaces Z with |Z| ≤ 2L(1/2)−ε. The factor CD may not seem that large,

but inductive proofs are very delicate, and Z̃ contains far more surfaces than we
are allowed to put into Z.

At the moment, we might worry that Z̃ consists of 1000DL(1/2)−ε surfaces,
each containing L(1/2)+ε−1 lines of L. The key new idea in this section is that this
scenario is impossible (for large L). Recall that the surfaces in Z̃ are irreducible
algebraic surfaces of degree ≤ D. By the Bezout theorem, Theorem 6.7, the inter-
section of two such surfaces contains at most D2 lines. But in the scenario above, a
simple counting argument shows that two of the surfaces of Z̃ would have to share
more than D2 lines. More generally, we will prove the following estimate about the
number of surfaces that contain many lines of L.

Lemma 10.19. Let L be a set of L lines in R3. Suppose Zj are irreducible
algebraic surfaces of degree at most D, each containing at least A lines of L. If
A > 2DL1/2, then the number of surfaces Zj is at most 2L/A.

proof of Lemma 10.19. The proof of Lemma 10.19 is a double counting ar-
gument, closely analogous to the proof of Lemma 10.16. Suppose that Zj = Z(Pj)
for an irreducible polynomial Pj of degree at most D. Since the surfaces Zj are
distinct, no two polynomials of the polynomials Pj can have a common factor. By
the Bezout theorem for lines, Theorem 6.7, the number of lines in Z(Pj1) ∩Z(Pj2)
is at most D2 for any j1 �= j2.

The surface Z1 contains at least A lines of L. The surface Z2 contains at least
A − D2 lines of L that are not in Z1. In general, the surface Zj contains at least
A − (j − 1)D2 lines that are not in the previous Zj . If the number of surfaces Zj
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is J , then we get the following inequality:

J∑
j=1

max(A − (j − 1)D2, 0) ≤ L. (∗)

The rest of the proof is just a computation to see what Inequality (∗) tells us
about J . If j ≤ (1/2)AD−2, then A − jD2 ≥ A/2. If J ≥ (1/2)AD−2, we see that
L ≥ (1/2)AD−2(A/2) = (1/4)A2D−2. Since A > 2DL1/2, this inequality gives the
contradiction L > L. Therefore, J ≤ (1/2)AD−2. Therefore, all the terms on the
left-hand side of (∗) are at least A/2, and we get J(A/2) ≤ L. And so J ≤ 2L/A
as desired. �

We will use Lemma 10.19 to control Z̃. We let Z ⊂ Z̃ be the subset of surfaces
that contain many lines of L:

Z := {Z ∈ Z̃|Z contains more than L(1/2)+ε lines of L}.
Just by definition, we know that each surface Z ∈ Z contains more than

L(1/2)+ε lines of L. And Lemma 10.19 gives the desired bound on |Z|:
(10.5) |Z| ≤ 2L(1/2)−ε.

To close the induction, it remains to prove that Z accounts for almost all the r-
rich points of L: we have to bound |Pr(L) \ ∪Z∈ZPr′(LZ)|. Given Inequality 10.4,

we just have to check that the surfaces in Z̃/Z did not contribute too much to
controlling the r-rich points of L. More precisely we will prove that

(10.6)
∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

To prove this estimate, we sort Z̃ according to the number of lines in each
surface. We define

Z̃s := {Z ∈ Z̃ so that |LZ | ∈ [2s, 2s+1)}.
A surface Z ∈ Z̃ \ Z contains at most L(1/2)+ε lines, and so it belongs to some Z̃s

with 2s ≤ L(1/2)+ε. Now for each s, we use Lemma 10.19 to estimate |Z̃s|, and for

each Z ∈ Z̃s, we use the Szemerédi-Trotter theorem to estimate |Pr′(LZ)|. Adding
up the terms gives Inequality 10.6.

We have now finished our outline of the plan and assembled our tools, and we
are ready to prove Theorem 10.18.

Proof. We start with some minor book-keeping to describe the constants D
and K and to explain the base of the induction. We remark that if ε ≥ 1/2 then
the theorem is trivial: we can take Z to be empty, and it is easy to check that
|Pr(L)| ≤ 2L2r−2. (This follows from Szemerédi-Trotter, which gives a stronger
estimate. But it also follows from a simple double-counting argument.) So we can
assume that ε ≤ 1/2.

We will choose D a large constant depending on ε and then we will choose K a
large constant depending on ε and D. As long as these are large enough at certain
points in the proof, the argument goes through.

The proof is by induction on L. By choosing K large, we can assume that the
theorem holds when L is small. As long as K ≥ 4L2, Theorem 10.18 is trivial:
we take Z to be empty, and we observe that |Pr(L)| ≤ L2. Since r ≤ 2L1/2,
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L2 ≤ KL(3/2)+εr−2. We choose K ≥ 4(2D)2/ε, so that the Theorem holds whenever
L ≤ (2D)1/ε. This is the base of the induction.

Now we turn to the induction, which is the heart of the matter.

10.8.1. Building Z̃. Let S be any subset of Pr(L). An important case is
S = Pr(L), but we will have to consider other sets as well. We use Theorem 10.3 to
do a polynomial partitioning of the set S with a polynomial of degree at most D.
The polynomial partitioning theorem, Theorem 10.3, says that there is a non-zero
polynomial P of degree at most D so that

• R3 \ Z(P ) is the union of at most CD3 disjoint open cells Oi, and
• for each cell Oi, |S ∩ Oi| ≤ CD−3|S|.

We define Li ⊂ L to be the set of lines from L that intersect the open cell Oi.
We note that S ∩ Oi ⊂ Pr(Li). If a line does not lie in Z(P ), then it can have at
most D intersection points with Z(P ), which means that it can enter at most D+1
cells Oi. So each line of L intersects at most D + 1 cells Oi. Therefore, we get the
following inequality:

(10.7)
∑
i

|Li| ≤ (D + 1)L ≤ 2DL.

Let β > 0 be a large parameter that we will choose below. We say that a cell
Oi is β-good if

(10.8) |Li| ≤ βD−2L.

The number of β-bad cells is at most 2β−1D3. Each cell contains at most
CD−3|S| points of S. Therefore, the bad cells all together contain at most Cβ−1|S|
points of S. We now choose β so that Cβ−1 ≤ (1/100). β is an absolute constant,
independent of ε. We now have the following estimate:

(10.9) The union of the bad cells contains at most (1/100)|S| points of S.

For each good cell Oi, we apply induction to understand Li. By choosing D
sufficiently large, we can guarantee that for each good cell, |Li| ≤ (1/2)L. Now
there are two cases, depending on whether r ≤ 2|Li|1/2.

If r ≤ 2|Li|1/2, then we can apply the inductive hypothesis. In this case, we
see that there is a set Zi of irreducible algebraic surfaces of degree at most D with
the following two properties:

(10.10) |Zi| ≤ 2|Li|(1/2)−ε ≤ 2(βD−2L)(1/2)−ε.

|Pr(Li) \ ∪Z∈Zi
Pr′(LZ)| ≤ K|Li|(3/2)+εr−2 ≤ K(βD−2L)(3/2)+εr−2.

Because S ∩ Oi ⊂ Pr(Li), we see that

(10.11) |(S ∩ Oi) \ ∪Z∈Zi
Pr′(LZ)| ≤ C1KD−3−2εL(3/2)+εr−2.

On the other hand, if r > 2|Li|1/2, then we define Zi to be empty, and Lemma
10.16 gives the bound

(10.12) |S ∩ Oi| ≤ |Pr(Li)| ≤ 2|Li|r−1 ≤ 2Lr−1 ≤ 4L3/2r−2.

By choosing K sufficiently large compared to D, we can arrange that 4L3/2r−2

≤ C1KD−3−2εL(3/2)+εr−2. Therefore, inequality 10.11 holds for the good cells with
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r > 2|Li|1/2 as well as the good cells with r ≤ 2|Li|1/2. We sum this inequality
over all the good cells:∑

Oi good

|(S ∩ Oi) \ ∪Z∈Zi
Pr′(LZ)| ≤ CD3 · C1KD−3−2εL(3/2)+εr−2

≤ C2D
−2εKL(3/2)+εr−2.

We choose D(ε) large enough so that C2D
−2ε ≤ (1/400). Therefore, we get the

following:

(10.13)
∑

Oi good

|(S ∩ Oi) \ ∪Z∈Zi
Pr′(LZ)| ≤ (1/400)KL(3/2)+εr−2.

We have studied the points of S in the good cells. Next we study the points
of S in the zero set of the partioning polynomial Z(P ). Let Zj be an irreducible
component of Z(P ). If x ∈ S ∩ Zj , but x /∈ Pr′(LZj

), then x must lie in at least
r/10 lines of L\LZj

. Each line of L that is not contained in Zj has at most Deg(Zj)
intersection points with Zj . Therefore,

|(S ∩ Zj) \ Pr′(LZj
)| ≤ 10r−1(Deg Zj)L.

If {Zj} are all the irreducible components of Z(P ), then we see that

|(S ∩ Z(P )) \ ∪jPr′(LZj
)| ≤ 10r−1DL.

We choose K = K(ε, D) sufficiently large so that 10D ≤ (1/800)K. Since
r ≤ 2L1/2, we have

(10.14) |(S ∩ Z(P )) \ ∪jPr′(LZj
)| ≤ (1/800)KLr−1 ≤ (1/400)KL3/2r−2.

Now we define Z̃S to be the union of Zi over all the good cells Oi together
with all the irreducible components Zj of Z(P ). Each surface in Z̃S is an algebraic
surface of degree at most D. By equation 10.10, we have the following estimate for
|Z̃S |:

(10.15) |Z̃S | ≤ CD3(βD−2L)(1/2)−ε + D ≤ CD3L(1/2)−ε.

(We could have written something a little smaller than the right-hand side,
with a more complicated power of D depending on ε, but notice that our bound is
at least CD2L(1/2)−ε.)

Summing the contribution of the bad cells in equation 10.9, the contribution of
the good cells in equation 10.13, and the contribution of the cell walls in equation
10.14, we get:

(10.16) |S \ ∪Z∈Z̃S
Pr′(LZ)| ≤ (1/100)|S| + (1/200)KL(3/2)+εr−2.

If we didn’t have the (1/100)|S| term coming from the bad cells, we could

simply take S = Pr(L) and Z̃ = Z̃S . Because of the bad cells, we need to run the
above construction repeatedly. This is a minor detail which we didn’t mention in
the outline above.

Let S1 = Pr(L), and let Z̃S1
be the set of surfaces constructed above. Now we

define S2 = S1 \ ∪Z∈Z̃S1
Pr′(LZ). We iterate this procedure, defining

Sj+1 := Sj \ ∪Z∈Z̃Sj
Pr′(LZ).
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Each set Sj is a subset of Pr(L). By Equation 10.15, each set of surfaces Z̃Sj

has cardinality at most CD3L(1/2)−ε. Iterating equation 10.16 we see:

(10.17) |Sj+1| ≤ (1/100)|Sj | + (1/200)KL(3/2)+εr−2.

We define J = 1000 log L. Since |S1| = |Pr(L)| ≤ L2, the iterative formula in
equation 10.17 implies that

(10.18) |SJ | ≤ (1/100)KL(3/2)+εr−2.

We define Z̃ = ∪J−1
j=1 Z̃Sj

. This set of surfaces has the following properties.

Since each set Z̃Sj
has at most CD3L(1/2)−ε surfaces, we get:

(10.19) |Z̃| � D3L(1/2)−ε log L.

Our bound for |Z̃| is log L times bigger than we could have gotten if there were
no bad cells. It turns out that this factor of log L does not have much effect on the
estimates later in the proof.

Also, Pr(L) \ ∪Z∈Z̃Pr′(LZ) = SJ , and so equation 10.18 gives:

(10.20) |Pr(L) \ ∪Z∈Z̃Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

This finishes our construction of Z̃. Next we prune Z̃ down to our desired set
of surfaces Z.

10.8.2. Pruning Z̃. We define

Z := {Z ∈ Z̃|Z contains at least L(1/2)+ε lines of L}.
To close our induction, we have to check two properties of Z.

(1) |Z| ≤ 2L(1/2)−ε.
(2) |Pr(L) \ ∪Z∈ZPr′(LZ)| ≤ KL(3/2)+εr−2.

To prove item (1), we apply Lemma 10.19 to the set of surfaces Z with A =
L(1/2)+ε. To apply the lemma, we need to know that A > 2DL, which is equivalent
to Lε > 2D. We can assume that Lε > 2D, because the case of Lε ≤ 2D was
the base of our induction, and we handled it by choosing K sufficiently large.
Therefore, the hypotheses of Lemma 10.19 are satisfied. The lemma tells us that
|Z| ≤ 2L(1/2)−ε.

Now we turn to item (2). We proved above that the surfaces of Z̃ account for
all but a small number of r-rich points. We made this precise in equation 10.20:

|Pr(L) \ ∪Z∈Z̃Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

Therefore, it suffices to check that

(10.21)
∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

We sort Z̃ \Z according to the number of lines in each surface. For each integer
s ≥ 0, we define:

Z̃s := {Z ∈ Z̃ so that |LZ | ∈ [2s, 2s+1)}.
Since each surface of Z̃ with at least L(1/2)+ε lines of L lies in Z, we see that:

(10.22) Z̃ \ Z ⊂
⋃

2s≤L(1/2)+ε

Z̃s.
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Now we can break up
∑

Z∈Z̃\Z |Pr′(LZ)| into contributions from different values

of s:

(10.23)
∑

Z∈Z̃\Z

|Pr′(LZ)| ≤
∑

2s≤L(1/2)+ε

⎛
⎝ ∑

Z∈Z̃s

|Pr′(LZ)|

⎞
⎠ .

For each Z ∈ Z̃s, we use the Szemerédi-Trotter theorem, Theorem 7.1, to bound
Pr′(LZ). Since Z ∈ Z̃s, |LZ | ≤ 2s+1. Since r′ ≥ (9/10)r, Szemerédi-Trotter gives
the bound |Pr′(LZ)| ≤ C(22sr−3 + 2sr−1). Plugging this estimate into Inequality
10.23, we get

(10.24)
∑

Z∈Z̃\Z

|Pr′(LZ)| ≤ C
∑

2s≤L(1/2)+ε

|Z̃s|
(
22sr−3 + 2sr−1

)
.

Next, we estimate |Z̃s|. If 2s > 2DL1/2, then Lemma 10.19 gives the estimate

|Z̃s| ≤ 2L2−s. This allows us to estimate the contribution to 10.24 from s in the
range 2DL1/2 < 2s ≤ L(1/2)+ε as follows:∑
2DL1/2<2s≤L(1/2)+ε

|Z̃s|
(
22sr−3 + 2sr−1

)
≤

∑
2s≤L(1/2)+ε

(2L2−s)
(
22sr−3 + 2sr−1

)
≤

≤ C
∑

2s≤L(1/2)+ε

(L2sr−3 + Lr−1) ≤ C(L(3/2)+εr−3 + L(log L)r−1).

Since r ≤ 2L1/2, this last expression is ≤ CL(3/2)+εr−2. In summary, we see that

(10.25)
∑

2DL1/2<2s≤L(1/2)+ε

|Z̃s|
(
22sr−3 + 2sr−1

)
≤ CL(3/2)+εr−2.

Next we consider the contribution to 10.24 from s in the range 2s ≤ 2DL1/2.
For s in this range, we use Equation 10.19 to estimate |Z̃s| ≤ |Z̃| � D3L(1/2)−ε log L.∑

2s≤2DL1/2

|Z̃s|
(
22sr−3 + 2sr−1

)
� D3

(
L(1/2)−ε log L

)(
Lr−3 + L1/2r−1

)
.

Since r ≤ 2L1/2, this is � D3L3/2r−2. In summary, we see that

(10.26)
∑

2s≤2DL1/2

|Z̃s|
(
22sr−3 + 2sr−1

)
� D3L3/2r−2.

Combining Inequalities 10.24, 10.25, and 10.26, we get the bound∑
Z∈Z̃\Z

|Pr′(LZ)| ≤ D3L(3/2)+εr−2.

If we choose K = K(ε, D) sufficiently large, then∑
Z∈Z̃\Z

|Pr′(LZ)| ≤ (1/100)KL(3/2)+εr−2.

This is Inequality 10.21. As we discussed above, it implies item (2):

|Pr(L) \ ∪Z∈ZPr′(LZ)| ≤ KL(3/2)+εr−2.

This estimate closes the induction, finishing the proof of Theorem 10.18. �





CHAPTER 11

Combinatorial structure, algebraic structure,
and geometric structure

The next three chapters are about the structure of configurations of lines with
many r-rich points. If L is a set of lines in R3 and P is a non-zero polynomial of
minimal degree that vanishes on L, we will see that the combinatorics of L, the
algebraic properties of P , and the geometry of Z(P ) are all connected with each
other.

For example, suppose that L is a set of L lines in R3 with � L3/2 3-rich
points. The only examples that we have seen occur when the lines of L cluster
into a small number of planes. Using polynomial partitioning, we proved that if
|P3(L)| ≥ C(ε)L(3/2)+ε, then the lines of L cluster into algebraic surfaces of degree
at most D(ε). In this chapter, we will prove the following sharper theorem:

Theorem 11.1. There is a constant K so that the following holds. If L is a
set of L lines in R3 with |P3(L)| ≥ KL3/2, then there is a plane that contains at
least 10L1/2 lines of L.

The proof of this theorem uses completely different methods from the polyno-
mial partitioning arguments in the last chapter. We suppose that L is a set of L
lines in R3 with at least KL3/2 3-rich points. This hypothesis describes the combi-
natorial structure of L. We prove that there is a polynomial P vanishing on L with
a surprisingly small degree. This step shows that L has a special algebraic struc-
ture. With the help of this algebraic structure, we study the geometry of Z(P ). We
prove that Z(P ) has many flat points, and eventually that Z(P ) contains a plane
which contains many of the lines of L. In summary, combinatorial structure leads
to algebraic structure which leads to geometric structure.

In Chapter 12, combining these techniques with polynomial partitioning, we
will prove a sharper theorem about r-rich points for all r ≥ 3.

11.1. Structure for configurations of lines with many 3-rich points

Theorem 11.1 gives a lot of information about the structure of configurations of
lines in R3 with many 3-rich points. At first sight, the conclusion may look a little
weak. We assumed that L has more than L3/2 3-rich points, and the conclusion
tells us that there is a plane with at least L1/2 lines of L. If a plane contains L1/2

lines of L then the lines in the plane can only have at most L 3-rich points, so it
seems that they only account for a small fraction of all the 3-rich points of L.

To see that exponent of L1/2 in the conclusion is sharp, we consider the following
example. Consider L/A planes in general position. Suppose that L consists of A
lines from each plane. Within each plane, we can arrange these A lines in a grid
pattern so that they contribute ∼ A2 3-rich points. Then the total number of 3-rich
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points is ∼ LA. If we take A = CL1/2 for a large constant C, then L will have
KL3/2 3-rich points, and each plane will contain at most CL1/2 � L1/2 lines of L.

In this example, each plane contains at most ∼ L1/2 lines of L, but there are
many such planes, and all together they account for almost all of the 3-rich points
of L. Theorem 11.1 implies that every set of lines with many 3-rich points has this
type of structure.

Corollary 11.2. If L is a set of L lines in R3, then there is a set of planes
Π1, ..., ΠS with S ≤ L1/2, and there are disjoint subsets Li ⊂ L so that the lines of
Li are contained in Πi so that

|P3(L) \ ∪iP3(Li)| ≤ KL3/2.

The corollary shows that if |P3(L)| is much larger than KL3/2 then almost all
of the 3-rich points are accounted for by subsets of lines concentrated in various
2-dimensional planes.

Proof. We prove the corollary by induction on L. If |P3(L)| ≤ KL3/2, then
the estimate holds immediately (with no subsets Li). If |P3(L)| > KL3/2, then
Theorem 11.1 implies that there is some plane Π1 containing at least 10L1/2 lines
of L. Define L1 to be the set of lines of L that lie in Π1.

If |P3(L) \ P3(Li)| ≤ KL3/2, then we are done. Otherwise, we let L′ := L \L1.
We know that

|L′| ≤ L − 10L1/2.

By induction on L, we know that the corollary is true for L′. We note that
|L′|1/2 < L1/2 − 1. Applying the corollary to L′, we get planes Π2, ..., ΠS with
S ≤ L1/2 and disjoint subsets Li ⊂ L′ for 2 ≤ i ≤ s, so that the lines of Li lie in
Πi and so that

(11.1)
∣∣P3(L

′) \ ∪S
i=2P3(Li)

∣∣ ≤ K|L′|3/2 ≤ K(L − 10L1/2)3/2.

We have now defined the planes Π1, ..., ΠS and the sets L1, ...,LS . Since L1

and L′ are disjoint, it follows that L1 is disjoint from any of the sets L2, ...,LS , and
so the sets Li are disjoint as claimed. We just have to estimate |P3(L) \ ∪iP3(Li)|.

Suppose that x ∈ P3(L). Either x ∈ P3(L1) or x ∈ P3(L
′) or x lies in at least

one line of L1 and of L′. In this last case, x must lie in the plane Π1. Every line
of L′ intersects Π1 in at most one point, and so the number of 3-rich points in this
last case is at most L. In other words:

(11.2) |P3(L) \ (P3(L1) ∪ P3(L
′))| ≤ L.

Combining Equations 11.1 and 11.2, we get

|P3(L) \ ∪iP3(Li)| ≤ K(L − 10L1/2)3/2 + L ≤ KL3/2.

This closes the induction and finishes the proof. �
For configurations of lines in R3 with significantly more than L3/2 3-rich points,

Corollary 11.2 gives a detailed description of the structure. In Chapter 13, we will
prove a similar structure theorem for configurations of lines with significantly more
than L3/2 2-rich points. This structure theorem will involve planes and degree 2
algebraic surfaces.

It would be interesting to try to go below KL3/2. Can we prove a structure
theorem for configurations of lines with (1/10)L3/2 3-rich points? How about L1.49

3-rich points? In Section 7.5 we discussed overdetermined and underdetermined
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problems in incidence geometry. Asking a set of L lines in R3 to have L1.49 3-rich
points is heavily overdetermined in this sense, and it is plausible that there may
be some structure theroem for such configurations, but all the methods we know
so far break down in this regime. We will come back to this question at the end
of Chapter 13, after we have seen all of the incidence geometry techniques in the
book.

Now we turn to the proof of Theorem 11.1.

11.2. Algebraic structure and degree reduction

We begin by thinking about the algebraic complexity of a set and the idea of
algebraic structure. Let F be a field and let S ⊂ Fn. We define Deg(S) to be the
minimal degree of a non-zero polynomial that vanishes on S. At the beginning of
the book, in Proposition 2.1, we used parameter counting to prove an estimate for
Deg(S):

Proposition 11.3. Suppose that S ⊂ Fn, and that |S| < Dim PolyD(Fn) =(
D+n
n

)
. Then Deg(S) ≤ D.

This result is sharp. We will check in the appendix that if M ≥
(
D+n
n

)
, then

a generic set S of M points in Fn has degree > D. A generic set S has degree
∼ |S|1/n. If Deg(S) is much smaller than |S|1/n, then we say that the set S has
algebraic structure.

We can define the degree of a set of lines in a similar way. Suppose that L

is a set of lines in Fn. We define Deg(L) to be the minimal degree of a non-zero
polynomial that vanishes on each line of L. Any set of L lines in Fn has degree

� L
1

n−1 .

Proposition 11.4. If L is a set of L lines in Fn, and if (D+1)L < Dim PolyD(F)n

=
(
D+n
n

)
, then Deg(L) ≤ D. In particular, Deg(L) ≤ (2n + 1)L

1
n−1 .

Proof. Let S be a set of points with D + 1 points on each line of L, and with
|S| ≤ (D + 1)|L|. By Proposition 11.3, there is a non-zero P ∈ PolyD(Fn) which
vanishes on S. By the vanishing lemma, it vanishes on each line of L.

Now we check that Deg(L) ≤ (2n + 1)L
1

n−1 . This part is just a computation.

We take D to be the greatest integer less than (2n + 1)L
1

n−1 , and so we have

D ≥ (2n)L
1

n−1 . It suffices to check that (D + 1)L ≤ Dnn−n <
(
D+n
n

)
.

We have

(D + 1)L ≤ (2n + 1)L
n

n−1 ≤ (2n + 1)nn−nL
n

n−1 = Dnn−n.

�
If the degree is below the bound given by Proposition 11.4, then the set of

lines L has algebraic structure. In particular, if n = 3, then any set of L lines has
degree ≤ 7L1/2, and if the degree is significantly less than L1/2, then the lines have
algebraic structure.

Now we come to a connection between combinatorial structure and algebraic
structure. We show that a set of lines in F3 with many intersection points has small
degree.

Proposition 11.5. Let L be a set of lines in F3. Suppose that each line of L
contains at least A points of P2(L). Then Deg(L) � L/A.
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Proposition 11.5 is an important philosophical point in the polynomial method.
The hypothesis that each line of L has ≥ A intersection points with other lines of L
describes the combinatorics of L. By Proposition 11.5, this combinatorial structure
implies that L has algebraic structure: it implies that there is a polynomial of
surprisingly low degree that vanishes on L. Once we know about this polynomial,
it is reasonable to try to exploit this algebaric structure to study L.

We consider a couple examples to put Proposition 11.5 in context. If A =
L1/2, then Proposition 11.5 says that Deg(L) ≤ CL1/2 for a large constant C. By
Proposition 11.4, we already know that Deg(L) ≤ 7L1/2 for any set of L lines.
In this case, the bound from Proposition 11.5 is not interesting. But if A is much
larger than L1/2, Proposition 11.5 will show that Deg(L) is much smaller than L1/2,
showing that L has algebraic structure. The larger A is, the more structure L has.

When A ≥ L1/2, there is a simple example that shows we cannot hope to reduce
the degree below L/(A + 1). Suppose that A + 1 divides L. Choose L/(A + 1)
planes, and let L contain A + 1 lines in each of the planes. Within each plane, we
choose the A + 1 lines in general position, so that each line contains A intersection
points with other lines. Let Qj be the degree 1 polynomial that vanishes on the
jth plane. The product

∏
Qj vanishes on L and has degree L/(A + 1). On the

other hand, suppose that P vanishes on L. For each j, there are A + 1 lines in
Z(P, Qj). By Bezout’s theorem for lines, Theorem 6.7, either Deg(P ) ≥ A + 1
or else Qj and P have a common factor. Since Qj is degree 1, the only possible
common factor is Qj . Therefore, either Deg P ≥ A+1 or else each Qj divides P . So

Deg P ≥ min(A + 1, L/(A + 1)). If A ≥ L1/2, then Deg P ≥ L/(A + 1). Therefore,
Proposition 11.5 is sharp up to a constant factor for all A ≥ L1/2.

We prove Proposition 11.5 in the next section. The proof uses ideas from the
finite field Nikodym proof. I call this argument the contagious vanishing argument.

11.3. The contagious vanishing argument

Here is the main idea of the proof of Proposition 11.5. Let L be a set of L
lines in F3 where each line contains ≥ A intersection points with other lines. By
parameter counting, we can find a polynomial P of degree D ∼ L/A that vanishes
on ∼ D2 lines of L. In the interesting cases, D2 will be much smaller than L, so our
polynomial only vanishes on a small fraction of the lines. But the vanishing of P
is ‘contagious’: if a line l has > D intersection points with lines where P vanishes,
then P vanishes on l also. The situation is a little bit like the spread of a disease in
a population. If each member of a population is exposed to many other members of
the population, then a fairly small outbreak can become an epidemic. In our case,
we are assuming that each line has ≥ A intersection points with other lines. For
an appropriate choice of D, the vanishing of P starts on D2 lines and then spreads
to all of the lines.

Next let’s do a simple heuristic calculation to figure out how small we can
expect to make D. Initially, P vanishes on ∼ D2 lines of L. Let’s suppose that
we choose these D2 lines randomly. Let’s imagine that the vanishing set of P is
colored red, so that we have ∼ D2 red lines. Now consider a line l ∈ L, and let’s
estimate the expected number of intersection points between l and these D2 red
lines. For each intersection point between l and L, the probability that P vanishes
at the intersection point is � D2/L. The number of intersection points along l is
A. So the expected number of red intersection points along l is � AD2L−1. If this



11.3. THE CONTAGIOUS VANISHING ARGUMENT 141

expected number is > 10D, then we can expect P to vanish on most lines of L.
This condition is AD2L−1 > CD for a universal constant C. Doing a little algebra,
it suffices to take any D obeying D > CL/A. Therefore, we heuristically expect to
do degree reduction with a degree D � L/A. We will see below that this is correct.

In the heuristic above, we discussed the expected value of various quantities. In
the full proof, we will need to know that these quantities are close to their expected
values with high probability. In particular, we will use the following lemma.

Lemma 11.6. (Probability lemma) Let S be a set of N elements. Let X ⊂ S
be a random subset where each element of S is included in X independently with
probability p. The expected size of X is pN .

(1) P [|X| > 2pN ] ≤ exp(− 1
100pN).

(2) P [|X| < (1/2)pN ] ≤ exp(− 1
100pN).

The lemma says that the size of |X| is close to the expected value pN almost all
the time. It is an example of a large deviation bound. See Appendix A of [AlSp]
for a good introduction to this type of estimate. We will also give a self-contained
proof of Lemma 11.6 at the end of the section.

Now we can begin the formal proof of Proposition 11.5.

Proof. Let D ≥ 1000 be a degree which we will choose later. Let p be the
number (1/20)D2/L. We form a subset L0 ⊂ L by including each line independently
with probability p. The expected number of lines in L0 is pL = (1/20)D2. With
high probability, the size of L0 is at most (1/10)D2. More precisely, because D ≥
1000, Lemma 11.6 implies that |L0| ≤ (1/10)D2 with probability at least 99

100 . As

long as |L0| ≤ (1/10)D2, we can find a non-zero polynomial P of degree ≤ D that
vanishes on the lines of L0.

Fix a line l ∈ L. It contains ≥ A intersection points with other lines of L. Each
of these intersection points has a probability ≥ p of lying in a line of L0 \{l}. These
events are independent. The expected number of points of l lying in lines of L0 is
E ≥ Ap = (1/20)D2A/L.

We now choose D in the range (106 − 1)L/A ≤ D ≤ 106L/A. An easy calcula-
tion shows that E ≥ 104D.

If l intersects L0 in ≥ D + 1 points, then P = 0 on l. But by the proba-
bility lemma, Lemma 11.6, the probability that l intersects L0 in ≤ D points is
≤ exp(− 1

100E) ≤ exp(−100D) ≤ exp(−107L/A).

If L/A > 10−5 log L then the probability that l contains ≤ D intersection points
with L0 is < L−10. In this case, with high probability, P vanishes on every line of
L, and we are done. This is the main case.

If L/A ≤ 10−5 log L, then the probability that l contains ≤ D intersection
points with L0 is < exp(−107). In this case, with high probability, P vanishes on
at least 99

100L lines of L. This does not give the conclusion, but it is a good step.

In order to fully handle the case that L/A ≤ 10−5 log L, we organize our proof
by induction on L. We will prove by induction on L that L lies in the zero set
of P with Deg P ≤ 107L/A. The case L ≤ 107 is now trivial, because any 107

lines lie in a union of 107 planes. This is the base of our induction. Also, if
L/A > 10−5 log L, then we proved above that L lies in the zero set of a polynomial
P with Deg P ≤ 106L/A.

If L/A ≤ 10−5 log L, we proved that there is a polynomial P1 with Deg P1 ≤
106L/A so that P1 vanishes on L1 ⊂ L with |L1| ≥ (99/100)L. Let L2 ⊂ L



142 11. COMBINATORIAL, ALGEBRAIC, AND GEOMETRIC STRUCTURES

be the set lines of L on which P1 does not vanish. We have |L2| ≤ (1/100)L.
Each line of L2 has ≤ Deg P1 intersection points with lines of L1. But it has ≥ A
intersection points with lines of L. Therefore, each line of L2 has at least A−Deg P1

intersection points with other lines of L2. We note that A ≥ 100L(log L)−1 and
Deg P1 ≤ 106L/A ≤ 10 log L, and so A − Deg P1 ≥ (9/10)A. By induction, we see
that L2 lies in Z(P2) for a polynomial P2 with

Deg P2 ≤ 107|L2|(A − Deg P1)
−1 ≤ 107(

1

100
L)(

9

10
A)−1 ≤ 106L/A.

Now P = P1P2 vanishes on L and has degree at most (106L/A) + (106L/A) ≤
107L/A, closing the induction. �

To finish the section, we recall and prove the probability lemma that we used
above, Lemma 11.6.

Lemma. (Probability lemma) Let S be a set of N elements. Let X ⊂ S be
a random subset where each element of S is included in X independently with
probability p. The expected size of X is pN .

(1) P [|X| > 2pN ] ≤ exp(− 1
100pN).

(2) P [|X| < (1/2)pN ] ≤ exp(− 1
100pN).

Proof. We let aj be 1 if the jth element of S is included in X and 0 otherwise.
The functions aj are independent, and the probability that aj = 1 is p. Also
|X| =

∑
j aj .

If fj are independent functions, then E(
∏

j fj) =
∏

j(Efj). To prove the lemma,
we will apply this equality for well-chosen functions fj . Since the functions aj are
independent, we could take fj = aj , giving the equation E(

∏
j aj) =

∏
j(Eaj). But

we are trying to study |X| =
∑

j aj , and having information about
∏

j aj is not

obviously helpful. Instead, we will choose fj = eβaj for some number β ∈ R. Since
the functions aj are independent, the functions fj = eβaj are also independent.

This is a useful choice for fj because
∏

j eβaj = e
∑

j βaj = eβ|X|. Therefore, we see
that for any β ∈ R,

(11.3) E

(
eβ|X|

)
= E

⎛
⎝∏

j

eβaj

⎞
⎠ =

∏
j

E
(
eβaj

)
= (peβ + 1 − p)N .

These inequalities give a lot of information about the distribution of |X|. In
the rest of the proof, we just extract the information from these bounds to control
the probability that |X| lies in a certain range.

We would like to bound P [|X| > 2pN ]. We can relate this probability to
E
(
eβ|X|) by observing that

P [|X| > 2pN ] · e2βpN ≤ E

(
eβ|X|

)
.

Combining our last two inequalities, we get the following upper bound for the
probability that |X| is > 2pN :

P [|X| > 2pN ] ≤
[
peβ + 1 − p

e2βp

]N
.

This bound holds for any β ∈ R. To get the best possible bound on the
probability that |X| > 2pN , we want to choose β to make the fraction in brackets
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as small as possible. In particular, we want the fraction in brackets to be less than
1. Taking β = 1 gives a reasonable estimate: if β = 1, the fraction in brackets is

1 + p(e − 1)

e2p
≤ 1 + p(e − 1)

1 + 2p
≤ exp(−p/100).

Therefore, inequality 1 holds.
The proof of inequality 2 is similar but we have to choose β differently. First

we observe that

P [|X| < (1/2)pN ] e(1/2)βpN ≤ E

(
eβ|X|

)
.

Combining this observation with Equation 11.3, we get the following upper
bound for the probability that |X| is < (1/2)pN :

P [|X| < (1/2)pN ] ≤
[
peβ + 1 − p

e(1/2)βp

]N
.

This bound again holds for any β. We will see that if β is negative and close to
zero, then the expression in brackets is less than 1. In particular, we will check
that if β = −1/10, then the expressions is brackets is less than e−p/100, and this
will prove inequality 2.

We begin by proving some simple estimates for e−α using Taylor’s theorem. Let
g(α) = e−α. We note that g′′(α) ≥ 0 for all α. Therefore, by Taylor’s theorem, for
all α, g(α) ≥ g(0)+g′(0)α = 1−α. Also, g′′′(α) ≤ 0 for all α. Therefore, by Taylor’s
theorem, for all α ≥ 0, g(α) ≤ g(0) + g′(0)α + (1/2)g′′(α)α2 = 1 − α + (1/2)α2. In
summary, for any α ≥ 0,

1 − α ≤ e−α ≤ 1 − α + (1/2)α2.

If β = −1/10, then the expression in brackets is

peβ + 1 − p

e(1/2)βp
=

pe−1/10 + 1 − p

e−(1/20)p
≤ 1 − (1/10)p + (1/200)p

1 − (1/20)p
≤ exp(−p/100).

Therefore, inequality 2 holds. �

11.4. Planar clustering

We will now study configurations of lines in R3 with many triple points. If
there are too many triple points, then we will prove that the lines must cluster in
planes. Here is our main result.

Theorem 11.7. (Planar clustering theorem) (similar to results in [GK1],
[EKS]) There is a constant K so that the following holds. Let L be a set of L
lines in R3 so that each line contains ≥ A = KL1/2 points of P3(L). Then L lies in
≤ KL/A planes.

For example, consider (1/10)L/A planes in general position. Suppose that L

consists of 1000A lines from each plane. Within each plane, we can arrange these
10A lines in a grid pattern so that each line contains at least A triple points. In
coordinates, we can consider the horizontal lines y = b for b = 1, ..., 2A, the vertical
lines x = a for a = 1, ..., 2A, and the diagonal lines x− y = c for c = −A, ..., A. An
integer point (x, y) is a triple point for this configuration of lines if 1 ≤ x ≤ 2A,
1 ≤ y ≤ 2A and |x − y| ≤ A. Each line in the collection contains at least A triple
points.
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Corollary 11.8. Suppose that L is a set of L lines in R3 that contains at
most B lines in any plane. If B ≥ L1/2, then

|P3(L)| � BL.

Proof. Let K be the constant from Theorem 11.7. Using induction on L, we
will prove that

|P3(L)| ≤ KBL.

If |P3(L)| ≤ KBL, there is nothing to prove, so we may assume that |P3(L)| >
KBL ≥ KL3/2.

We apply Theorem 11.7 with A = |P3(L)|L−1 ≥ KL1/2. If each line of L

contains ≥ A points of P3(L), then Theorem 11.7 implies that L is contained in at
most KL/A planes. Therefore, one plane contains at least A/K lines of L, and so
A/K ≤ B. In this case, we can bound |P3(L)| as follows:

|P3(L)| = AL = K(A/K)L ≤ KBL.

On the other hand, suppose that there is a line l ∈ L that contains at most A
points of P3(L). We let L′ := L \ {l}. Now we bound |P3(L)| by induction:

|P3(L)| ≤ A + |P3(L
′)| ≤ |P3(L)|L−1 + KB(L − 1).

Rearranging we get L−1
L |P3(L)| ≤ KB(L − 1), and so

|P3(L)| ≤ KBL.

�

11.5. Outline of the proof of planar clustering

Suppose that L is a set of L lines in R3, and each line contains ≥ A ≥ KL1/2

triple intersection points. The first key step is degree reduction, Proposition 11.5.
This proposition says that L lies in Z(P ) where P is a polynomial of degree � L/A.
Since A is much larger than L1/2, Deg(L) is lower than the degree of a generic set
of L lines. We can assume that P is a minimal degree polynomial that vanishes on
L. Our goal is to prove that P is a product of linear factors. Since Deg P � L/A,
it would then follow that Z(P ) is a union of � L/A planes.

The first observation is that for each point x ∈ P3(L), the three lines of L thru
x influence the local geometry of Z(P ). Recall that a point x in a smooth surface
in R3 is called a flat point if there is a plane that is tangent to the surface at x to
second order. We will explain this definition in more detail in the next section. In
the proof of the joints theorem, we saw that if x is a joint of L, then it must be a
critical point of the polynomial P . If x is not a critical point of P , then the three
lines must lie in the tangent space of Z(P ). The lines then force Z(P ) to be flat at
the point x.

Lemma 11.9. Every point of P3(L) is either a critical point or a flat point of
Z(P ).

The next observation is that being critical and/or flat is contagious. Once
Z(P ) has many flat points, then the flatness starts to infect other points, and we
will eventually prove that every point of Z(P ) is flat. This will show that Z(P ) is
a union of planes.
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The crucial reason that being critical and/or flat is contagious is that these
geometric conditions are equivalent to an algebraic condition. In algebraic geom-
etry, one tries to find an algebraic way to describe geometric conditions (and vice
versa). In particular, we will work out an algebraic way to describe what it means
for a point to be flat, and this leads to the following lemma:

Lemma 11.10. For any polynomial P ∈ PolyD(R3), there is a list of nine
polynomials, called SP1, ..., SP9, of degree at most 3D, so that a point x ∈ Z(P )
is critical or flat if and only if SP1(x) = ... = SP9(x) = 0.

Now we can see why being critical/flat is contagious. A line l ∈ L contains
≥ A > 3D points of P3(L). Each of these points is a critical or flat point of Z(P ).
So at each of these points, each SPj vanishes. Now by the vanishing lemma, each
SPj vanishes on l. But then every point of l is either critical or flat. With more
work, we will eventually see that all the points of Z(P ) are either critical or flat.

Once we know that every point of Z(P ) is either critical or flat, we will show
that Z(P ) is a union of planes. If every point of Z(P ) is flat, then we can check
with a little differential geometry that Z(P ) is a union of planes. There could also
be critical points in Z(P ), and it takes a little extra work to deal with them, but
we will still be able to show that Z(P ) is a union of planes. The number of planes
is at most Deg P � L/A.

This finishes our outline. Now we start to study flat points more carefully so
that we will be able to fill in the details.

11.6. Flat points

We study flat points of a smooth submanifold M2 ⊂ R3. We recall two defini-
tions of a flat point. Consider a point x ∈ M2. After translating and rotating, we
can assume that x = 0 and that the tangent space of M at x is x3 = 0. In this case,
the manifold M is locally described by a graph x3 = h(x1, x2), where h(0) = 0 and
∇h(0) = 0. Now the point x is flat if and only if the second derivatives of h vanish
at 0.

There is an alternate definition of flat using the normal vector to the manifold.
Suppose that N : M → S2 is the unit normal vector of M . We say that x is
flat if the derivative of N vanishes at x. In other words, x is flat if the map
dNx : TxM → TN(x)S

2 is zero.
We recall that the derivative dNx can be defined as follows. We write the

normal vector in coordinates as N = (N1, N2, N3). If v = (v1, v2, v3) ∈ TxM , then

dNx(v) :=
3∑

i=1

vi∂i(N1, N2, N3).

For more background about smooth submanifolds and derivatives, the reader
can consult the first chapter of [GP].

We now check that these two definitions are equivalent. As in the first def-
inition, we choose coordinates so that the point x is 0 and so that near x, M is
described as a graph x3 = h(x1, x2) with h(0) = 0 and ∇h(0) = 0. Next we describe
the normal vector to M in terms of the function h. At the point (x1, x2, h(x1, x2)),
the vectors (1, 0, ∂1h) and (0, 1, ∂2h) are tangent to M , and they span the tangent
space to M . Therefore, the vector (−∂1h,−∂2h, 1) is normal to M . We can define
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the unit normal vector N by normalizing this vector:

N(x1, x2, h(x1, x2)) =
1√

1 + |∇h|2
(−∂1h,−∂2h, 1).

Next we want to compute the derivative dNx(v) at the point 0, for vectors
v ∈ TxM . At the point x = 0, the tangent space of M is the plane x3 = 0, and
it is spanned by the vectors v1 = (1, 0, 0) and v2 = (0, 1, 0). By the definition of a
derivative, we have at the point x = 0,

dNx(v1) := ∂1

(
1√

1 + |∇h|2
(−∂1h,−∂2h, 1)

)∣∣∣∣
x1=x2=0

.

This formula looks complicated, but at the point x=0, we also know that ∂1h(0) =
∂2h(0) = 0. So when we apply the chain rule, almost all of the terms vanish, leaving
the following simple formulas for dNx(v):

dNx(v1) = (−∂2
1h,−∂1∂2h, 0).

dNx(v2) = (−∂1∂2h,−∂2
2h, 0).

From these formulas we see that dNx = 0 if and only if the second derivatives of h
vanish at 0.

We have now reviewed everything that we need to know about flat points.
Next we consider polynomials P on R3. If x is a regular point of Z(P ), then

Z(P ) is a submanifold in a neighborhood of x.
The first connection between combinatorics of lines and the geometry of alge-

braic surfaces is the following.

Lemma 11.11. Suppose that x lies in three lines that lie in Z(P ). Then x is
either a critical point or a flat point of Z(P ).

We saw in the proof of the joints theorem that if x lies in three non-coplanar
lines in Z(P ), then x is a critical point of Z(P ). This result refines that earlier
result by describing what happens when the three lines are coplanar.

Proof. Suppose that x is a non-critical point of Z(P ). We see that ∇P (x)
vanishes in the direction of each of the three lines, and so all the lines lie in TxZ(P ).

We use the first definition of flatness above. We rotate and translate so that
x is at the origin and Z(P ) is described by the equation x3 = h(x1, x2), where
the tangent plane of Z(P ) is given by x3 = 0. We have three lines contained in
Z(P ) and in the plane x3 = 0. So h vanishes on these three lines. We expand h
in a Taylor series, and look at the second-order terms: h = h2 + O(|x|3), where
h2(x1, x2) is a homogenous polynomial of degree 2. It follows that h2 vanishes on
three lines in the x1x2-plane. But h2 is a degree 2 polynomial, and it then follows
from the vanishing lemma that h2 is identically zero. This means that x is a flat
point. �

Being flat is a geometric condition, but there is an essentially equivalent al-
gebraic condition. A basic theme of algebraic geometry is that geometric features
of Z(P ) are connected with algebraic features of P and vice versa. The algebraic
description of flat points is a small example of this type of correspondence.

Suppose that x is a non-critical point of Z(P ). Let N be the unit normal
to Z(P ). In terms of P , the unit normal vector is given by N = ∇P

|∇P | , which is

well-defined at every regular point. Our second definition says that x is flat iff
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∂vN(x) = 0 for all v ∈ TxZ(P ). We would like to say that x is flat if and only if
certain polynomials vanish at x. We can adapt the definition of a flat point using
a couple of tricks.

The components of ∇P are polynomials, but the components of N are not.
Therefore, we would like to rewrite the definition of a flat point in terms of ∇P
without mentioning N . The first trick is to see that ∂vN = 0 if and only if ∂v∇P
is parallel to ∇P , which happens if and only if ∂v∇P ×∇P = 0. Here × denotes
the cross-product of vectors in R3.

The second trick is to note that {ej ×∇P}j=1,2,3 is a spanning set for TxZ(P ).
For two vectors, v, w ∈ R3, the cross product v × w is perpencidular to both
v and w. In particular, ej × ∇P (x) is perpendicular to ∇P (x) and so lies in
TxZ(P ). It remains to check that the span of {ej × ∇P (x)}j=1,2,3 contains all
of TxZ(P ). Let v and w be an orthonormal basis of TxZ(P ). Of course, v and
w lie in the span of {ej}j=1,2,3. Therefore, v × ∇P (x) and w × ∇P (x) lie in the
span of {ej ×∇P (x)}j=1,2,3. Since v ×∇P (x) is perpendicular to v and to ∇P (x),
v × ∇P (x) must be a non-zero multiple of w. Similarly, w × ∇P (x) must be a
non-zero multiple of v. Therefore, the span of {ej ×∇P (x)}j=1,2,3 contains v and
w, and so it contains TxZ(P ).

We are now ready to define the polynomials SP :

SP (x) = {(∂ej×∇P∇P (x)) ×∇P (x)}j=1,2,3.

Note that SP (x) is a list of 3 vectors in R3, so we can think of it as a list of 9
polynomials. Each polynomial has degree ≤ 3 Deg P . We write SP (x) = 0 if all 9
polynomials vanish at x.

Proposition 11.12. If x ∈ Z(P ) then SP (x) = 0 iff x is critical or flat.

Proof. If x is critical, then ∇P (x) = 0, and so SP (x) = 0.
If x is regular and x is a flat point of Z(P ), then ∇vN = 0 for any v ∈ TxZ(P ).

In particular, ∇ej×∇PN vanishes at x, for j = 1, 2, 3. Now ∇P = |∇P |N , and so
∇ej×∇P∇P (x) is parallel to N and to ∇P . Therefore, (∇ej×∇P∇P )×∇P vanishes
at x. In other words, SP (x) = 0.

On the other hand, suppose that SP (x) = 0 and x is not critical. We have to
show that x is flat. Since SP (x) = 0, we know that ∇ej×∇P∇P (x) is parallel to

∇P (x). Since N = |∇P |−1|∇P |, we see that ∇ej×∇PN(x) is parallel to N(x). But
since N · N = 1 globally, it follows that ∇ej×∇PN(x) is perpendicular to N(x).
It follows that ∇ej×∇PN(x) = 0 for j = 1, 2, 3. But the vectors ej ×∇P (x) span
TxZ(P ). So ∇vN(x) = 0 for all v ∈ TxZ(P ), and x is flat. �

Next we investigate what happens if SP vanishes at every point of Z(P ). Does
this mean that Z(P ) is a union of planes? This is not literally true because of some
degenerate cases. For example, we could have P = x2

1 +x2
2. In this case Z(P ) ⊂ R3

is the line x1 = x2 = 0. In this case, every point of Z(P ) is critical. If Z(P )
contains a regular point, then we have the following lemma.

Lemma 11.13. If P is an irreducible polynomial in Poly(R3), and SP vanishes
on Z(P ), and Z(P ) contains a regular point, then P is a degree 1 polynomial and
Z(P ) is a plane.

Proof. Let x be a regular point in Z(P ). In a neighborhood of x, Z(P ) is
a flat submanifold. The normal vector is constant, and so the tangent space is
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constant, and so this neighborhood is an open subset of a plane. By the vanishing
lemma, Z(P ) contains the whole plane. Let P1 be the degree 1 polynomial that
vanishes on the plane.

Next we claim that P1 divides P . After rotation and translation, we can assume
that P1 is the polynoimal x3. Now we write P in the form

P (x1, x2, x3) = x3Q(x1, x2, x3) + R(x1, x2).

By assumption P vanishes on the plane x3 = 0, and so R vanishes at every point
(x1, x2) ∈ R2. By the Schwarz-Zippel lemma (Exercise 2.3), R is the zero polyno-
mial. (This argument is also very similar to the proof of Lemma 2.10.) Since R is
zero, we see that P = x3Q, and so P1 divides P .

But since P is irreducible, P = P1. �

We can summarize what we learned here in the following:

Plane detection lemma. For any polynomial P in R[x1, x2, x3], we can
associate a list of polynomials SP with the following properties.

(1) If x ∈ Z(P ) then SP (x) = 0 iff x is critical or flat.
(2) If x is contained in three lines in Z(P ), then SP (x) = 0.
(3) Deg SP ≤ 3 Deg P .
(4) If P is irreducible and SP vanishes on Z(P ) and Z(P ) contains a regular

point, then Z(P ) is a plane.

11.7. The proof of the planar clustering theorem

Now we are ready to give the proof of Theorem 11.7.
Let K be a sufficiently large constant.
Let L be a set of L lines in R3. Suppose that each line of L contains ≥ A ≥

KL1/2 points of P3(L). We let P be the minimal degree non-zero polynomial that
vanishes on L. By the degree reduction argument (Proposition 11.5), we know that
Deg P � L/A. Choosing K large enough, Deg P ≤ 10−2L1/2.

We factor P into irreducible factors. We have P =
∏

j Pj , where Pj is irre-
ducible. We will decompose L into subsets Lj corresponding to the Pj . First we
define Lmult to be the set of lines that lie in Z(Pj) for multiple j. By the Bezout
theorem, Theorem 6.7, |Lmult| ≤

∑
j,j′ Deg Pj Deg Pj′ = (Deg P )2 ≤ 10−4L. So

most of the lines lie in exactly one Z(Pj).
We define Lj ⊂ L to be the set of lines that lie in Z(Pj) and don’t lie in any

other Z(Pj′). Since P has minimal degree, each Lj is non-empty.

Lemma 11.14. Each line in Lj contains ≥ (99/100)A points of P3(Lj).

Proof. Let l ∈ Lj . By definition of Lj , for any j′ �= j, Pj′ does not vanish
everywhere on l. So Pj′ vanishes at ≤ Deg Pj′ points of l. Therefore, there are
≤ Deg P points of l where Pj′ vanishes for some j′ �= j. But deg P ≤ (1/100)A.
So l contains ≥ (99/100)A points of P3(L) that don’t lie in any other Z(Pj′). We
claim that each of these points lies in P3(Lj). Let x be a point of l ∩ P3(L), with
Pj′(x) �= 0 for all j′ �= j. The point x lies in at least two other lines of L, l1 and
l2. These lines lie in Z(P ), but they don’t lie in Z(Pj′) for any j′ �= j. Therefore,
they lie in Z(Pj), and so they belong to Lj . �
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Since P is the minimal degree polynomial that vanishes on L, it follows that
Pj is the minimal degree polynomial that vanishes on Lj . By Proposition 11.5,
Deg Pj � |Lj |/A. Choosing K large enough, this implies that

Deg Pj ≤ 10−2|Lj |1/2.

At each point x ∈ P3(Lj), SPj(x) = 0. Now we will use the idea of contagious
structure to show that SPj vanishes on Z(Pj). For each line l ∈ Lj , l contains
≥ (99/100)A > 3 Deg Pj points of P3(Lj). We know that SPj = 0 at each of these
points, and Deg SPj ≤ 3 Deg Pj , and so SPj vanishes on each l ∈ Lj .

At this point we use that Pj is irreducible. By the Bezout theorem for lines,
Theorem 6.7, either SPj vanishes on Z(Pj) or else Z(SPj) ∩ Z(Pj) contains ≤
(Deg SPj)(Deg Pj) lines. But (Deg SPj)(Deg Pj) ≤ 3(Deg Pj)

2 < |Lj |, and SPj

and Pj both vanish on every line of Lj . So we conclude that SPj vanishes on
Z(Pj).

Next we want to show that Z(Pj) contains a regular point. If each point of
P3(Lj) were a critical point of Pj , then we would see that ∇Pj vanished on all
the lines of Lj . But Deg ∂iPj < Deg Pj . Since Pj is a minimal degree (non-zero)
polynomial that vanishes on Lj , we would conclude that ∇Pj was identically zero,
leading to a contradiction. Therefore, Z(Pj) contains a regular point.

But now the plane detection lemma says that Z(Pj) is a plane for every j. The
number of different factors Pj is ≤ Deg P � L/A. So we conclude that L lies in
� L/A planes.

This finishes the proof of the planar clustering theorem.

11.8. Exercises

Exercise 11.1. Suppose that li are lines in F3
q and that Xi ⊂ li are subsets

with |Xi| ≥ q/2. Using the methods from the degree reduction argument, prove
that

| ∪i li| � (log q)| ∪i Xi|.
Hint: It is not hard to reduce to the special case that for every i, at least q/4

points of Xi also lie in Xi′ for some i �= i′. In this special case, use the contagious
vanishing argument to estimate the degree of ∪iXi. Prove that

Deg(∪iXi) � (log q)q−2| ∪i Xi|.

But for any set X ⊂ F3
q , it is not hard to check that |X| � q2 Deg X. In fact,

the Schwarz-Zippel lemma (Exercise 2.3) gives the estimate |X| ≤ q2 Deg X.
If you work harder, it may be possible to remove the factor log q. It seems to

be quite hard to generalize this method to higher dimensions. See [NW] for a very
different approach that works in all dimensions and avoids any factor of log q.

Exercise 11.2. Suppose that F is an infinite field and that N ≥Dim PolyD(Fn).
Prove that there exists a set of N points in Fn with degree greater than D.

Exercise 11.3. Using Theorem 11.1, prove the following conjecture, made by
Bourgain in [CrLe]. Suppose that L is a set of N2 lines in R3, with at most N
lines in any plane. Suppose that X ⊂ R3 is a finite set. Suppose that each line
l ∈ L contains at least N points of X. Prove that |X| � N3.
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Exercise 11.4. (*) Generalize all the arguments in the chapter to complex
lines in C3. The only part of the argument that needs some modification is the
discussion of flat points in Section 11.6. Conclude that Theorem 11.1 holds for
lines in C3. As a corollary, show that the result from Exercise 11.3 also holds in
C3: If L is a set of N2 complex lines in C3 with at most N lines in any complex
2-plane in C3, and if X is a finite set with at least N points of X on every line of
L, then |X| � N3.

This result contrasts with an example using thin tubular neighborhoods of
complex lines in Section 15.9.

Exercise 11.5. (*) Explore degree reduction for a set of lines in F4.
Suppose that L is a set of L lines in F4. Prove that Deg(L) � L1/3.
Now suppose in addition that each line of L contains at least A points of P2(L).

Prove that Deg(L) � L1/2A−1/2. If A is much larger than L1/3, then this bound
improves on the bound from the last paragraph, which holds for an arbitrary set of
lines in F3.

Here is a new twist in F4 as opposed to F3. If A is close to L, then we have
shown that the lines of L lie in a low degree 3-dimensional variety. But if A is
close to L, we could hope to prove something stronger: the lines of L may lie in
a low degree 2-dimensional variety. The following paragraph gives an estimate in
this spirit.

Suppose that L is a set of L lines in F4, each line of L contains at least A points
of P2(L), and all the lines of L lie in Z(P ), the zero set of an irreducible polynomial
P of degree D � L1/2A−1/2. Prove that there is a polynomial Q, which is not a
multiple of P , so that the lines of L lie in the zero set of Q as well, and with the
degree bound (Deg P )(Deg Q) � LA−1.

(**) Try to set up a theory of degree reduction for lines in Fn for all n. This is
currently an open problem for n ≥ 5.



CHAPTER 12

An incidence bound for lines in three dimensions

In this chapter, we combine the polynomial partitioning technique from Chapter
10 and the technique of flat points from Chapter 11. Using these methods together,
we prove Theorem 8.4. We restate the theorem here:

Theorem. If L is a set of L lines in R3 with at most L1/2 lines in any plane,
and if 3 ≤ r ≤ 2L1/2, then |Pr(L)| � L3/2r−2.

This theorem follows from an incidence bound for points and lines in R3, which
one can think of as a 3-dimensional version of the Szemerédi-Trotter theorem.

Theorem 12.1. Let S be a set of S points and L a set of L lines in R3. Suppose
that there are at most B lines of L in any plane, and that B ≥ L1/2. Then the
number of incidences is bounded as follows:

I(S,L) � S1/2L3/4 + B1/3L1/3S2/3 + L + S.

This bound on incidences gives a bound on r-rich points for all sufficiently large
r.

Corollary 12.2. There is some constant r0 > 0 so that the following holds.
If r ≥ r0, and if L is a set of L lines in R3 with ≤ B in any plane, and if B ≥ L1/2,
then

|Pr(L)| � L3/2r−2 + LBr−3 + Lr−1.

Proof. We apply the incidence estimate from Theorem 12.1. We let S =
Pr(L). We have

rS ≤ I(S,L) � S1/2L3/4 + B1/3L1/3S2/3 + L + S.

Therefore, one of the following holds:

(1) rS ≤ CS1/2L3/4.
(2) rS ≤ CB1/3L1/3S2/3.
(3) rS ≤ CL.
(4) rS ≤ CS.

Option (1) gives S � L3/2r−2. Option (2) gives S � BLr−3. Option (3) gives
S � Lr−1. Option (4) gives r ≤ C. If we choose r0 > C, then one of Options (1) -
(3) must occur, and we get the desired bound. �

In Chapter 11, we proved good estimates for 3-rich points. In particular, Corol-
lary 11.8 gives the following bound:

Corollary. Suppose that L is a set of L lines in R3 that contains at most B
lines in any plane. If B ≥ L1/2, then

|P3(L)| � BL.
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Plugging in B = L1/2 in Corollary 12.2 and Corollary 11.8 gives Theorem 8.4.
The incidence bound in Theorem 12.1 is sharp up to a constant factor (for any

S and L and any B in the range L1/2 ≤ B ≤ L). There are three types of examples
to show that the bound is sharp. The upper bound on the number of incidences is
S1/2L3/4 + B1/3L1/3S2/3 + L + S. To get S incidences, choose all the points on a
single line. To get L incidences, choose all the lines through a single point. To get
B1/3L1/3S2/3 incidences, choose LB−1 planes Πi. For each plane Πi, let Li be a
set of B lines in Πi and let Si be a set of SBL−1 points in Πi. Choose Li and Si in
a grid example, so that they are optimal for the Szemerédi-Trotter theorem. Then
the number of incidences between Li and Si is � B2/3(SBL−1)2/3. Therefore the
total number of incidences is � LB−1 · B2/3(SBL−1)2/3 = B1/3L1/3S2/3. To get
S1/2L3/4 incidences, use the example in Exercise 8.1. This example is a set of L
lines in R3 with at most L1/2 lines of L in any plane, and it has ∼ L3/2r2 r-rich
points for any 2 ≤ r ≤ L1/2/400. Setting S = Pr(L), we see that the number of
incidences is

|I(L,S)| ≥ r|Pr(L)| ∼ L3/2r−1 = (L3/2r−2)1/2L3/4 = S1/2L3/4.

In the rest of the chapter we prove Theorem 12.1. The proof involves the
polynomial partitioning method from Chapter 10 and the technique of flat points
from Chapter 11. There aren’t really new ideas in the proof, but the organization is
a little bit complex, with many different terms. Therefore, as a warmup, we give a
slightly different proof of the Szemerédi-Trotter theorem following a similar outline.

12.1. Warmup: The Szemerédi-Trotter theorem revisited

We begin by reproving the Szemerédi-Trotter theorem using polynomial parti-
tioning, organizing the proof in a way that will help get ready for the 3-dimensional
version in Theorem 12.1.

Theorem 12.3. (Szemerédi-Trotter) If S is a set of S points and L is a set of
L lines in R2, then the number of incidences obeys the following bound:

I(S,L) � S2/3L2/3 + S + L.

We will prove the result by using a polynomial cell decomposition together with
elementary counting bounds in each cell. We first recall the counting bounds.

Lemma 12.4. If S and L are as above, then

• I(S,L) ≤ L + S2.
• I(S,L) ≤ L2 + S.

Proof. Fix x ∈ S. Let Lx be the number of lines of L that contain x and no
other point of S. For each other point y ∈ S, there is at most one line of L containing
x and y. Therefore, I(x,L) ≤ S + Lx. So I(S,L) ≤ S2 +

∑
x∈S Lx ≤ S2 + L.

The proof of the other inequality is similar. �

Now we turn to the proof of the theorem.

Proof. If L > S2/10 or S > L2/10, then the conclusion follows from Lemma
12.4. Therefore, we can now restrict to the case that

101/2S1/2 ≤ L ≤ S2/10. (1)
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We will also use induction on L, and so we can assume the theorem holds for
smaller sets of lines. More precisely, we let C0 be a large constant to choose later.
We want to prove that

I(S,L) ≤ C0

(
S2/3L2/3 + S + L

)
.

We can assume that this inequality holds for any set of at most L/2 lines, and we
have to prove that it also holds for a set of L lines. (For the base of the induction,
we take L = 1, and then the number of incidences is clearly at most S.)

Now we come to the heart of the proof. We use the polynomial cell decompo-
sition to cut R2 into cells, and then we use the counting lemma in each cell.

Let D be a degree to choose later. By the polynomial partitioning theorem,
Theorem 10.3, we can find a non-zero polynomial P of degree ≤ D so that each
component of the complement of Z(P ) contains � SD−2 points of S. Let Oi be
the components, Si the number of points of S in Oi, and Li the number of lines
of L that intersect Oi. Since each line intersects ≤ D + 1 cells, we know that∑

Li ≤ L(D + 1).
Applying the counting lemma in each cell, we get

I(Si,Li) ≤ Li + S2
i .

We let Scell be the union of Si - all the points of S that lie in the interiors of
the cells.

I(Scell,L) =
∑
i

I(Si,Li) ≤
∑
i

Li +
∑
i

S2
i � LD + SD−2

∑
i

Si ≤ LD + S2D−2.

We let S = Scell ∪ Salg, where Salg is the set of points in Z(P ). It remains to
bound I(Salg,L). We divide L as Lcell∪Lalg, where Lcell are the lines that intersect
some open cells, and Lalg are the lines contained in Z(P ).

Each line of Lcell has ≤ D intersection points with Z(P ), hence ≤ D incidences
with Salg. Hence I(Salg,Lcell) ≤ LD. Summarizing everything so far, we have the
following:

I(S,L) ≤ C(LD + S2D−2) + I(Salg,Lalg).

We will deal with the last term by induction. We will choose D ≤ L/2. So Lalg

contains ≤ L/2 lines. By induction,

I(Salg,Lalg) ≤ C0[S
2/3(L/2)2/3 + S + L/2].

Now we are ready to optimize over D. We need to choose D to be an integer
between 1 and L/2. We choose dD ∼ S2/3L−1/3. Because of the bounds in equation
(1), we can find D this size in the range 1 ≤ D ≤ L/2. Plugging in, we get

I(S,L) ≤ CL2/3S2/3 + C0[S
2/3(L/2)2/3 + S + L/2].

Finally, we choose C0 large enough compared to C, and the whole right hand
side is bounded by C0[S

2/3L2/3 + S + L]. �
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12.2. Three-dimensional incidence estimates

In this section, we prove Theorem 12.1. We restate it here for convenience:

Theorem. There is a large constant C0 so that the following holds. Let S be a
set of S points and L a set of L lines in R3. Suppose that there are at most B lines
of L in any plane, and that B ≥ L1/2. Then the number of incidences is bounded
as follows:

I(S,L) ≤ C0

[
S1/2L3/4 + B1/3L1/3S2/3 + L + S

]
. (∗)

The proof follows a similar outline to the proof of Szemerédi-Trotter in the
last section. Unfortunately, there are many different terms, making the argument
complicated. I apologize to the reader for this complexity. We do a polynomial
cell decomposition with a polynomial Z(P ). There are three main contributions.
We use the polynomial partitioning theorem to control the incidences in the cells
(outside of Z(P )). We divide the surface Z(P ) into planar parts and non-planar
parts. The contribution from the planar parts is controlled using the fact that there
are at most B lines in any plane. The contribution from the non-planar parts of
Z(P ) is controlled using the theory of flat points and lines. When we carry out this
argument, there end up being a lot of terms. Most of the terms fall into the three
main contributions descibed above. There are also some contributions that involve
small numbers of lines, which we handle by induction on L, as we saw in the last
section.

Proof. The proof is by induction on L. We assume that (∗) holds for sets of
< L lines, and we want to prove that it also holds for L.

We have some previous estimates for I(S,L). The counting argument in Lemma
12.4 gives

I(S,L) ≤ L + S2; I(S,L) ≤ L + S2.

Also the Szemerédi-Trotter theorem applies in any dimension by a random
projection argument (cf. Proposition 8.1), giving the estimate

I(S,L) �
[
S2/3L2/3 + L + S

]
.

Because of the counting bounds, we can assume that 10L1/2 ≤ S ≤ (1/10)L2.
Let D ≥ 1 be an integer that we will choose later. We do a polynomial cell

decomposition of degree D for the point set S. By the polynomial partitioning
theorem, Theorem 10.3, we can choose a non-zero polynomial P of degree ≤ D so
that each component of R3 \ Z(P ) contains � SD−3 points of S.

First we estimate the incidences coming from points outside of Z(P ). We make
some vocabulary to describe which objects are in Z(P ):

• Salg is the set of points of S that lie in Z(P ).
• Scell = S \ Salg.
• Lalg is the set of lines of L that lie in Z(P ).
• Lcell = L \ Lalg.

Lemma 12.5. (Cellular estimate) For some constant C,

I(S,L) ≤ C
[
D−1/3L2/3S2/3 + DL + Scell

]
+ I(Salg,Lalg).
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Proof. Let Oi be the components of R3 \ Z(P ). We define

• Si = S ∩ Oi.
• Li is the set of lines of L that intersect Oi.

We know that
∑

Si = Scell, that Si � SD−3, and that
∑

i Li � DL.
Now I(Scell,L) =

∑
i I(Si,Li). We bound each term of the sum using Sze-

merédi-Trotter.∑
i

I(Si,Li) �
∑
i

L
2/3
i S

2/3
i + Li + Si � DL + Scell +

∑
i

L
2/3
i S

2/3
i .

To bound the last term, we recall that Si � SD−3 and then apply Holder:∑
i

L
2/3
i S

2/3
i � S1/3D−1

∑
i

L
2/3
i S

1/3
i ≤ S1/3D−1/3(

∑
i

Li)
2/3(

∑
i

Si)
1/3 �

� S1/3D−1(DL)2/3S1/3 = D−1/3S2/3L2/3.

Altogether, we have

(12.1) I(Scell,L) � D−1/3S2/3L2/3 + L + Scell.

On the other hand, each line of Lcell intersects at most D points of Salg, and
so

(12.2) I(Salg,Lcell) ≤ DL.

We know I(S,L) ≤ I(Scell,L) + I(Salg,Lcell) + I(Salg,Lalg). Combining in-
equalities 12.1 and 12.2, we get the conclusion of this lemma. �

Our next goal is to control the algebraic incidences I(Salg,Lalg). For the argu-
ment in the 2-dimensional case, in Section 12.1, we knew that |Lalg| ≤ D, and we
chose D to arrange |Lalg| ≤ L/2, allowing us to handle this term by induction. In
the 3-dimensional case, there is no bound on the size of Lalg, and we have to pay
more attention to this term.

Some of the incidences in I(Salg,Lalg) may come from points and lines that lie
in planes of Z(P ). To control these incidences, we need to use the hypothesis that
≤ B lines of L lie in any plane. We make the following vocabulary to describe the
contribution of the planes in Z(P ).

• Lplan is the set of lines of L contained in at least one plane in Z(P ).
• Luniplan is the set of lines of L contained in exactly one plane in Z(P ).
• Lmultiplan is the set of lines of L contained in at least two planes in Z(P ).

Similarly, we can define subsets of S:

• Splan is the set of points of S contained in at least one plane in Z(P ).
• Suniplan is the set of points of S contained in exactly one plane in Z(P ).
• Smultiplan is the set of points of S contained in at least two planes in

Z(P ).

We prove the following estimate for incidences involving planes.

Lemma 12.6. (Planar estimate)

I(Salg,Lplan) ≤ C
(
B1/3L1/3S2/3 + DL + Suniplan

)
+ I(Smultplan,Lmultplan).
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The statement is a little complicated and so we discuss it. When we eventually
choose D, we will choose it so that the first term on the right hand side is acceptable
for (∗). There cannot be too many lines in Lmultplan, and we will handle the
contribution of Lmultplan by induction. Since Z(P ) contains at most D planes,

|Lmultplan| ≤
(
D
2

)
≤ D2. We note this inequality for later:

(12.3) |Lmultplan| ≤ D2.

We will choose D so that D2 ≤ L/10, and then we will handle the contribution of
Lmultplan by induction on L. Now we turn to the proof of Lemma 12.6

Proof. We first observe that

I(Salg,Lplan) = I(Salg,Luniplan) + I(Smultplan,Lmultplan).

Therefore, it suffices to prove that

I(Salg,Luniplan) � B1/3L1/3S2/3 + DL + Suniplan.

Morally, we just use Szemerédi-Trotter in each plane of Z(P ) and add up the
results. If π is a plane in Z(P ), we let Lπ ⊂ Lplan be the set of lines of L that lie in
π, and we let Luniπ ⊂ Luniplan be the set of lines of L that lie in π and in no other
plane of Z(P ). We define Sπ and Suniπ in the same way. Next we observe that

I(Salg,Luniplan) =
∑
π

I(Sπ,Luniπ).

If l is a line of Luniπ, the l can contain at most D points of Smultplan. Therefore,∑
π

I(Sπ,Luniπ) ≤ DL +
∑
π

I(Suniπ,Luniπ).

The sets Suniπ are disjoint (as π varies), and so
∑

π Suniπ ≤ Suniplan. Similarly,∑
π Luniπ ≤ L. Now we bound the last sum by applying Szemerédi-Trotter to each

term: ∑
π

I(Suniπ,Luniπ) �
∑
π

(L
2/3
uniπS

2/3
uniπ + Luniπ + Suniπ)

≤ L + Suniplan +
∑
π

L
2/3
uniπS

2/3
uniπ.

To bound the last sum, we use that Luniπ ≤ B and apply Holder:∑
π

L
2/3
uniπS

2/3
uniπ ≤ B1/3

∑
π

L
1/3
uniπS

2/3
uniπ

≤ B1/3(
∑
π

Luniπ)1/3(
∑
π

Suniπ)2/3 ≤ B1/3L1/3S2/3.

Assembling our estimates we get the desired conclusion:

I(Salg,Luniplan) � B1/3L1/3S2/3 + DL + Suniplan.

�

We have now bounded the incidences coming from points and lines in the planar
part of Z(P ). Next we turn to the points and lines in the rest of Z(P ). These
bounds involve the theory of critical and flat points in Z(P ) which we studied in
Section 11.6.
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Recall that we say a point x ∈ Z(P ) is special if x is critical or flat. We say
that a line l ⊂ Z(P ) is special if each point of the line is special. Now we define
some subsets of S and L that have to do with special points and lines.

• Sspec is the subset of S consisting of special points of Z(P ).
• Snonspec = Salg \ Sspec

• Lspec is the subset of L consisting of special lines of Z(P ).
• Lnonspec = Lalg \ Lspec.

In Section 10.5 we proved the following result about special points and lines:

Plane detection lemma. For any polynomial P in R[x1, x2, x3], we can
associate a list of polynomials SP with the following properties.

(1) If x ∈ Z(P ) then SP (x) = 0 iff x is critical or flat.
(2) If x is contained in three lines in Z(P ), then SP (x) = 0.
(3) Deg SP ≤ 3 Deg P .
(4) If P is irreducible and SP vanishes on Z(P ) and Z(P ) contains a regular

point, then Z(P ) is a plane.

This result allows us to bound the contribution from non-special lines in Z(P ).
More precisely:

Lemma 12.7. (Algebraic estimate)

I(Salg,Lalg \ Lplan) ≤ C(DL + Snonspec) + I(Sspec,Lspec \ Lplan).

Proof. We note that

I(Salg,Lalg \Lplan) ≤ I(Snonspec,Lalg)+ I(Sspec,Lnonspec)+ I(Sspec,Lspec \Lplan).

By item (2) of the plane detection lemma, I(Snonspec,Lalg) ≤ 2Snonspec.
By item (3) of the plane detection lemma, I(Sspec,Lnonspec) ≤ 3DL.

�
We still have to control the contribution of the special lines – more precisely

we have to bound I(Sspec,Lspec \ Lplan). The last key point is that there are few
lines in Lspec \ Lplan, allowing us to control this term by induction. In particular,
we will prove the following bound on |Lspec \ Lplan|:
(12.4) |Lspec \ Lplan| ≤ 4D2.

This estimate follows from a bound on the number of special lines in an algebraic
surface. We begin with the irreducible case.

Proposition 12.8. If P is irreducible and Z(P ) is not a plane, then Z(P )
contains ≤ 3(Deg P )2 special lines.

Proof. Suppose that Z(P ) has a regular point. If SP vanished on Z(P ), then
the plane detection lemma would imply that Z(P ) was a plane. Therefore, SP does
not vanish on Z(P ). Let Q be one of the polynomials in the list SP that does not
vanish on Z(P ). Since P is irreducible, P and Q have no common factor. Note that
SP vanishes on each special line, so the special lines lie in Z(P )∩Z(Q). But by the
Bezout theorem for lines, Theorem 6.7, Z(P ) ∩ Z(Q) contains at most 3(Deg P )2

lines.
Now suppose that Z(P ) has no regular point. Then ∂iP vanishes on Z(P )

for each i. Since P is not constant, we can choose i so that ∂iP is not the zero
polynomial. Since P is irreducible and Deg ∂iP < Deg P , we see that P and ∂iP
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have no common factor. Using the Bezout theorem for lines, Theorem 6.7, we see
that Z(P ) ⊂ Z(P ) ∩ Z(∂iP ) contains at most D2 lines. �

Now we turn to the general case.

Proposition 12.9. If P is any (square-free) non-zero polynomial, then there
are at most 4(Deg P )2 special lines of Z(P ) that are not contained in any plane in
Z(P ).

This Proposition implies inequality 12.4.

Proof. Suppose that P =
∏

Pj , where Pj are irreducible and distinct. We
claim that a line l ⊂ Z(P ) is a special line for P if and only if either l is a special
line of Pj for some j or l lies in Z(Pj) for more than one j. Assuming the claim
for a moment, let us count special lines of Z(Pj). By Bezout, Theorem 6.7, the
number of lines lying in Z(Pj) for more than one j is ≤ (Deg P )2. The number
of special lines in Z(Pj) is ≤ 3(Deg Pj)

2. The total number of special lines in all
Z(Pj) is ≤

∑
j 3(Deg Pj)

2 ≤ 3(Deg P )2. So the total number of special lines in

Z(P ) is ≤ 4(Deg P )2.
Now we prove the claim. First suppose that a line l is contained in Z(Pi)

and Z(Pj) for i �= j. At any point x ∈ l, ∇P (x) = 0. To see this, expand
∇P =

∑
k(∇Pk)P1...Pk−1Pk+1... and note that each term of the sum vanishes at x.

So every point of l is critical and l is a special line. Now suppose that l ⊂ Z(Pj) for
a unique j. Along l, we have ∇P = (∇Pj)P1...Pj−1Pj+1.... Since Pi i �= j vanishes
at only finitely many points of l, we see that ∇P vanishes on l if and only if ∇Pj

vanishes on l. So l is a critical line of Z(P ) if and only if l is a critical line of Z(Pj).
Finally suppose that l is not a critical line of Z(P ) or Z(Pj). Then l is special if
and only if every regular point of l is flat. But we can check flatness of Z(P ) near
a regular point x by examining Z(P ) in a small neighborhood of x. For a regular
point x, there is a small neighborhood x ∈ U where Z(P ) ∩ U = Z(Pj) ∩ U . So a
regular point x is flat for Z(P ) if and only if x is flat for Z(Pj). This proves the
claim.

�

When we put together the three lemmas, we get an estimate for lots of the
incidences in I(S,L) plus a leftover term involving special and multiplanar lines.
We will bound the leftover term by induction. We let Lleftover = Lmultplan ∪
(Lspec \ Lplan), and we define Sleftover = Smultplan ∪ Sspec. We define Smain to be
S \ Sleftover. Assembling our estimates, we get the following:

I(S,L) ≤ C
[
D−1/3S2/3L2/3 + DL + B1/3L1/3S2/3 + L + Smain

]
+

+I(Sleftover,Lleftover).

Moreover, we have proven that |Lmultplan| ≤ D2 (inequality 12.3) and |Lspec \
Lplan| ≤ 4D2 (inequality 12.4), and so

|Lleftover| ≤ 10D2.

Now we choose D in the range 1 ≤ D ≤ (1/10)L1/2 in order to minimize the
term in brackets above. Since D ≤ (1/10)L1/2, we have |Lleftover| ≤ L/2, allowing
us to apply induction to the leftover term. The rest of the proof is just a calculation.
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When we choose the optimal value of D in the range 1 ≤ D ≤ (1/10)L1/2, we
claim that we will get:

(12.5) D−1/3S2/3L2/3 + DL � S1/2L3/4 + B1/3L1/3S2/3.

We will check this claim below by computation. Given the claim, and given
that |Lleftover| ≤ 10D2 ≤ L/2, we see by induction that

I(S,L) ≤ C
[
S1/2L3/4 + B1/3L1/3S2/3 + Smain + L

]
+

+C0

[
S1/2(L/2)3/4 + B1/3(L/2)1/3S2/3 + (L/2) + Sleftover

]
.

At this point, we choose C0 sufficiently large compared to C, and we get the
desired inequality (∗).

Finally we check the claim that we can choose D in the range 1 ≤ D ≤
(1/10)L1/2, so that inequality 12.5 holds.

To minimize D−1/3S2/3L2/3 + DL, we want to choose D to balance the two
terms: D−1/3S2/3L2/3 with DL. The balancing is achieved by setting D∼S1/2L−1/4.
Because of the counting estimates, we have been able to assume from the beginning
that 10L1/2 ≤ S ≤ (1/10)L2. This implies that 1 ≤ S1/2L−1/4 ≤ L3/4. However, in
order to apply the induction, we need to choose D in the range 1 ≤ D ≤ (1/10)L1/2.
There are now two cases depending on whether S1/2L−1/4 is larger than (1/10)L1/2.

If S1/2L−1/4 ≤ (1/10)L1/2, then we set D to be (the greatest integer at most)
S1/2L−1/4, and D−1/3S2/3L2/3 + DL ∼ S1/2L3/4.

If S1/2L−1/4 > (1/10)L1/2, the we set D to be (the greatest integer at most)
(1/10)L1/2. In this case, D−1/3S2/3L2/3 + DL is dominated by D−1/3S2/3L2/3 ∼
S2/3L1/2. But since B ≥ L1/2, S2/3L1/2 ≤ B1/3L1/3S2/3. This checks inequality
12.5. �





CHAPTER 13

Ruled surfaces and projection theory

In this chapter, we continue the theme of connecting combinatorial structure
and algebraic structure. In terms of combinatorics, we will study 2-rich points of
a collection of lines. The main result of this Chapter is Theorem 8.3, which we
restate here for convenience.

Theorem. If L is a set of L lines in R3 with at most B lines in any plane or
degree 2 surface, then |P2(L)| � LB + L3/2.

More generally, we will prove that this inequality holds for lines in C3:

Theorem 13.1. If L is a set of L lines in C3 with at most B lines in any plane
or degree 2 surface, then |P2(L)| � LB + L3/2.

Recall that in Section 3.5, we saw an example where all the lines of L lie in
the degree 2 surface z = xy, and where L has ∼ L2 2-rich points. (This degree 2
surface was an example of a regulus, which we discussed more in Section 8.4.) So
we really do need to mention degree 2 surfaces in the statement of the theorem.
The presence of degree 2 surfaces and not just planes makes this theorem a lot more
complex and it brings in some interesting ideas from algebraic geometry.

The arguments in this chapter involve the theory of ruled surfaces from al-
gebraic geometry. We begin this Chapter with a long introduction, introducing
ruled surface theory and explaining how it becomes relevant to our combinatorial
problem.

Recall that an algebraic surface Z(P ) is called ruled if every point of Z(P ) lies
in a line of Z(P ). An algebraic surface is called doubly ruled if every point of Z(P )
lies in two distinct lines in Z(P ). The surface z = xy is doubly ruled, as we saw in
Section 3.5. Based on this example, we might try to build configurations of lines
with many 2-rich points by taking lines inside of other doubly ruled surfaces. There
is a classification of doubly ruled surfaces in C3, which I believe was proven in the
19th century.

Theorem 13.2. Suppose that P ∈ Poly(C3) is an irreducible polynomial, and
suppose that Z(P ) is doubly ruled. Then P has degree 1 or 2, and Z(P ) is a plane
or regulus.

This theorem is mostly based on the theory of reguli from Section 8.4. We will prove
it later in the chapter. We can think of Theorem 13.1 as a strong generalization of
the classification of doubly ruled surfaces. Not only is it true that an irreducible
algebraic surface with two lines through every point is a plane or a regulus, but we
will see that a sufficiently big finite configuration of lines with many points lying
in two lines must be modeled on a small number of planes or reguli.

The proof in this chapter uses some of the ideas from Chapter 11, but it also
requires some significant new ideas related to the theory of ruled surfaces. In
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Chapter 11, we proved that if L has at most B lines in any plane, then |P3(L)| �
BL + L3/2. We give a high-level summary of the proof so that we can introduce
the new issues and ideas.

The proof was by contradiction: we assumed that |P3(L)| was too large and
then we proved that many lines of L lie in a plane. We considered a lowest degree
polynomial P that vanishes on the lines of L. By the degree reduction argument,
Proposition 11.5, we got a strong bound on Deg P . Then we showed that each point
of P3(L) is a special point of Z(P ): either a critical point or a flat point. Being a
critical or flat point has an algebraic interpretation: a point x ∈ Z(P ) is critical
or flat if and only if some polynomials SP (x) vanish, and Deg SP � Deg P . Since
there are many 3-rich points, and since Deg P is small, the critical or flat points
are contagious, and we were able to prove that every point of Z(P ) is critical or
flat. But if every point of Z(P ) is critical or flat, then Z(P ) must be a union of
planes, and the number of planes is at most Deg P . Since all the lines of L lie in
Z(P ), there must be a plane containing many lines.

When we switch from 3-rich points to 2-rich points, we encounter a new diffi-
culty. Is a point of P2(L) a special point of Z(P )? It does not need to be either
critical or flat. What other special feature might it have? And if we find a special
feature of these points, how do we know whether the special feature is contagious?

Our approach to this question comes from the theory of ruled surfaces. A point
z ∈ Z(P ) is called flecnodal if there is a line through z where P vanishes to third
order. In talking about flecnodes, it is helpful to introduce the jets of a polynomial.
The r-jet JrP (z) ∈ Polyr(C

3) is the rth order Taylor series of P at z. In other
words, JrP (z) is the unique polynomial of degree at most r so that

(13.1) P (z + h) = JrP (z)(h) + O(|h|r+1).

(In this equation, h is a variable in C3, and JrP (z)(h) is the evaluation of the
polynomial JrP (z) at the point h.) The point z ∈ C3 is flecnodal if J3P (z) vanishes
on a line through 0.

We can generalize the definition of flecnode in various ways. A point z ∈ Z(P )
is called r-flecnodal if there is a line through z where P vanishes to order r. In
terms of jets, z is r-flecnodal for P if JrP (z) vanishes on a line through 0. A point
z is doubly r-flecnodal if JrP (z) vanishes on two distinct lines through 0.

If z lies in two distinct lines in Z(P ), then z is clearly doubly r-flecnodal for
any r. This is our special feature of points in P2(L). If P vanishes on the lines of
L, then every point of P2(L) is doubly r-flecnodal for every r.

Next we want to understand if this condition is contagious. For instance, if
Z(P ) has many doubly 10-flecnodal points, does it follow that every point of Z(P ) is
doubly 10-flecnodal? Are there polynomials that detect doubly 10-flecnodal points
in the way that SP detects flat/critical points?

In the 1800’s, Salmon introduced the flecnode polynomial. He proved that for
any polynomial P ∈ Poly(C3), there is another polynomial Flec P ∈ Poly(C3) so
that a point z ∈ Z(P ) is flecnodal if and only if FlecP (z) = 0. He also proved that
Deg Flec P ≤ 11 Deg P . We will prove a generalization of this result for r-flecnodal
points for any r, as well as a version of the result for doubly r-flecnodal points.

Let us give the generalization of Salmon’s theorem for doubly r-flecnodal points.
Informally, it says the following. For any polynomial P ∈ Poly(C3), there is a finite
list of other polynomials called Flec2,r,j P with Deg Flec2,r,j P � Deg P , and these
polynomials encode which points z ∈ C3 are doubly r-frecnodal for P . A little more
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precisely, for any point z ∈ C3, if you tell me, for each j, whether Flec2,r,j P (z) = 0,
then I will have enough information to know whether z is doubly r-flecnodal.

Here is a formal statement of the generalized Salmon’s theorem for doubly r-
flecnodal points. We first define a function v : C → {0, 1} by setting v(0) = 0 and
v(z) = 1 if z �= 0.

Proposition 13.3. For each r > 0, there is an integer J(r) and a subset
Br ⊂ {0, 1}J(r) so that the following holds. For each P ∈ Poly(C3), there is a list
of other polynomials Flec2,r,j P ∈ Poly(C3) with j = 1, ..., J(r), so that z is doubly
r-flecnodal if and only if(

v(Flec2,r,1 P (z)), ..., v(Flec2,r,J(r) P (z))
)
∈ Br ⊂ {0, 1}J(r).

Moreover, for each j,

Deg(Flec2,r,j P ) ≤ C(r) DegP.

This Proposition is good enough to show that being doubly r-flecnodal is quite
contagious. In a sense that we will make precise below, if Z(P ) has too many
points that are doubly 10-flecnodal, then almost every point of Z(P ) is doubly
10-flecnodal.

The proof of Proposition 13.3 is based on projection theory. To see the basic
issue, we start with flecnodal points. Recall that a point z is flecnodal for P if
J3P (z) ∈ Poly3(C

3) vanishes on a line through 0. Let Flec ⊂ Poly3(C
3) be the set

of polynomials that vanish on a line through 0. A point z is flecnodal if and only if
J3P (z) ∈ Flec. Recall that CP2 is the set of lines through 0 in C3. When we talk
about flecnodal points, the following set naturally appears:

V := {(P, l) ∈ Poly3(C
3) × CP

2|P vanishes on l}.

It is not hard to show that this set V is an algebraic subset of C3 × CP
2. But

what about the set Flec? The set Flec is the projection of V to C3. Is Flec also an
algebraic set?

Projection theory studies the structure of this type of set. Here is one of the
basic questions of the theory. Given an algebraic set Y ⊂ Cm × Cn, if we let π(Y )
be the projection of Y to Cm, what kind of set is π(Y )? In general π(Y ) is not
an algebraic set, but a fundamental theorem says that π(Y ) is defined in terms of
finitely many equations and non-equations. This is Chevalley’s projection theorem,
the main tool from algebraic geometry that we use in the chapter. It is a flexible
tool that enables one to prove a variety of results in the flavor of Proposition 13.3.
Chevalley’s projection theorem works over C but not over R – this is the reason
that we work over C throughout this chapter.

We now return to the outline of the proof of Theorem 13.33. We know that
the lines L lie in a surface Z(P ) of small degree and that each point of P2(L) is
doubly r-flecnodal. Any value of r ≥ 3 will work in the rest of the argument, so
we now focus on r = 3. A doubly 3-flecnodal point is just called doubly flecnodal.
With Proposition 13.3 in hand, it is not hard to prove that being doubly flecnodal
is contagious. If P2(L) is too big, we will be able to prove that (almost) every point
of Z(P ) is doubly flecnodal.

To finish the proof of Theorem 13.33, we have to classify irreducible algebraic
surfaces where (almost) every point is doubly flecnodal – proving that every such
surface has degree at most 2. This requires another idea from ruled surface theory.
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We recall that an algebraic surface Z(P ) ⊂ C3 is called a ruled surface if each
point in Z(P ) lies in a line in Z(P ). Clearly, if Z(P ) is ruled then every point
of Z(P ) is flecnodal. Remarkably, the converse is also true. It was proven by
Cayley and Salmon, and earlier by Monge. See [Ko] for more information about
the history.

Theorem 13.4. (Monge-Cayley-Salmon) If P ∈ Poly(C3) and every point of
Z(P ) is flecnodal, then Z(P ) is ruled.

This theorem may be a little surprising at first. It may easily happen that a
line is tangent to a surface Z(P ) to order 3 but does not lie in Z(P ). So a point of
Z(P ) can be flecnodal even if Z(P ) does not contain any lines. But if every point
of Z(P ) is flecnodal, then the theorem says that every point of Z(P ) lies in a line
of Z(P ).

This theorem has a local-to-global flavor. The hypothesis that each point of
Z(P ) is flecnodal gives local information about Z(P ). We need to turn this local
information into the global conclusion that Z(P ) contains many lines. The argu-
ment uses some simple differential geometry. We have already mentioned a simple
local-to-global argument in Chapter 11, when we noted that if Z(P ) ⊂ R3 is flat at
each regular point (and if Z(P ) contains a regular point) then Z(P ) is a plane (see
Lemma 11.13). The theorem of Monge-Cayley-Salmon has the same flavor, but it
is subtler.

To prove Theorem 13.1, we need a doubly-ruled analogue of the Monge-Cayley-
Salmon theorem.

Proposition 13.5. If P ∈ Poly(C3) is irreducible, and every point of Z(P ) is
doubly flecnodal, then there is an open set O ⊂ Z(P ) so that every point of O is
regular and every point of O lies in two different lines in Z(P ).

(This Proposition is actually easier than Theorem 13.4. We will prove Proposition
13.5, but not Theorem 13.4. For a discussion of the proof of Theorem 13.4, see
[Ko] or [Ka].)

Once we have found all these lines in Z(P ), we will use the theory of reguli to
prove that Z(P ) is a union of planes and reguli. (This last argument is essentially
equivalent to the classification of doubly ruled surfaces mentioned above, and we
will prove that result at the same time.)

Here is an outline of the Chapter. First, we will introduce projection theory and
prove Chevalley’s theorem. Then we will use this important tool to study doubly
r-flecnodal points. After that, we will review some differential geometry and use it
to prove Proposition 13.5. With these two tools available, we will be able to give a
short proof of Theorem 13.33.

13.1. Projection theory

Let F be a field. Recall that an algebraic set in Fn is just the zero set of a finite
list of polynomials. Suppose that Z is an algebraic set in Fm×Fn, and we consider
the projection of Z onto the second factor. Is the projection also an algebraic set?

In general the answer is no. We consider two examples. We begin working over
the field R where everything is as simple as possible to visualize.

Example 13.6. (Circle example) Let Z be the zero set of x2 + y2 − 1 in R2.
If we project Z to the x-axis we get the closed segment [−1, 1]. This is not an
algebraic set.
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Example 13.7. (Hyperbola example) Let Z be the zero set of xy = 1 in R2.
If we project Z to the x-axis, we get R \ {0}. This is not an algebraic set.

What would happen if we work over C instead of R? The example with the
circle gets better. If we let Z be the zero set of x2+y2−1 in C2, then the projection
of Z to the x axis is C. But the hyperbola example is the same as before – if we work
over C, the image of the projection is C \ {0}. The set C \ {0} is not an algebraic
set, but it is an example of a slightly more general object called a constructible set.

A constructible set is determined by the vanishing or non-vanishing of finitely
many polynomials. More precisely, this means the following. Let F be a field.
As above, define v : F → {0, 1} by setting v(0) = 0 and v(z) = 1 for z �= 0 A
constructible set Y ⊂ Fn is described by the following data:

• A list of polynomials Pj ∈ F[z1, ..., zn], for j = 1, ..., J .
• A subset B ⊂ {0, 1}J .

The corresponding constructible set Y is defined as

Y := {z ∈ Fn|(v(P1(z)), ..., v(PJ(z))) ∈ B}.
We denote this constructible set as Y (P1, ..., PJ ; B).

For instance, the set C \ {0} is not an algebraic set but it is a constructible set.
Chevalley proved that over C, any projection of an algebraic set is constructible.
More generally, any projection of a constructible set in constructible. This theorem
is one of the most fundamental results in projection theory.

Theorem 13.8. (Chevalley) Suppose that Y is a constructible set in Cm×Cn.
Let π : Cm ×Cn → Cm be the projection to the first factor. Then π(Y ) ⊂ Cm is a
constructible set.

We begin with some simple facts about constructible sets over any field F.

Lemma 13.9. For any field F, constructible sets in Fn enjoy the following prop-
erties.

(1) The complement of a constructible set is constructible.
(2) A finite union or intersection of constructible sets is constructible.
(3) If f : Fm → Fn is a polynomial map and Y ⊂ Fn is constructible, then

f−1(Y ) is constructible.

Proof. Suppose that Y = Y (P1, ..., PJ ; B) is a constructible set, where Pj ∈
Poly(Fn) and B ⊂ {0, 1}J . Then the complement of Y is Y (P1, ..., PJ ; Bc), which
is a constructible set.

Next, suppose that Ya is a constructible set defined using the polynomials Pj,a,
for a = 1, ..., A. In other words, membership in Ya depends only on the values of
v(Pj,a). Then membership in the union of Ya depends only on the values of v(Pj,a).
Therefore, ∪A

a=1Ya is a constructible set. By the same argument, the intersection
of Ya is a constructible set.

Finally, suppose that Y (P1, ..., PJ ; B) is a constructible set in Fn, and suppose
that f : Fm → Fn is a polynomial map. Then Pj ◦ f are polynomials on Fm, and
f−1(Y ) = Y (P1 ◦ f, ..., Pj ◦ f ; B) is a constructible set in Fm.

�

The definition of constructible set makes sense in any vector space. In par-
ticular, Polyd(C

n) is a complex vector space, and it makes sense to talk about
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constructible subsets of Polyd(C
n). This will come up during the proof of Theorem

13.8 and also later in the chapter.
Using induction on the dimension, Theorem 13.8 follows rather quickly from a

certain 1-dimensional result. Consider the following condition on some polynomials
Pi and Qj :

(13.2) There exists z ∈ C so that Pi(z) = 0 for all i and Qj(z) �= 0 for all j.

We will be interested in the set of polynomials that obey this condition, and with
some bounds on their degrees. Given degrees d1, d2, ...., dI , and e1, e2, ..., eJ , we

define Y (�d,�e) to be the set of tuples (P1, ...PI , Q1, ..., QJ ) where Pi ∈ Polydi
(C)

and Qj ∈ Polyej (C) obeying Condition 13.2. In symbols, Y (�d,�e) is⎧⎨
⎩(P1, ..., PI , Q1, ..., QJ ) ∈

I∏
i=1

Polydi
(C) ×

J∏
j=1

Polyej (C) obeying Condition 13.2

⎫⎬
⎭ .

The main step in the proof of Chevalley’s theorem is to prove that Y (�d,�e)

is a constructible subset of
∏I

i=1 Polydi
(C) ×

∏J
j=1 Polyej (C). We state this as a

proposition.

Proposition 13.10. For any degrees d1, ..., dI , e1, ..., eJ , the set Y (�d,�e) is a

constructible subset of
∏I

i=1 Polydi
(C) ×

∏J
j=1 Polyej (C).

Proof of Theorem 13.8 using Proposition 13.10. It suffices to prove that
the projections π : Cn → Cn−1 send constructible sets to constructible sets. Us-
ing this result repeatedly, we can handle projections from Cn to Cn−k for any
k, which gives the general theorem. We let π : Cn → Cn−1 be the projection
π(z1, ..., zn−1, zn) = (z1, ..., zn−1).

Suppose that Y ⊂ Cn is constructible. By definition, Y = {z ∈ Cn|v(Pj) ∈ B}
for some polynomials P1, ..., PJ and some subset B ⊂ {0, 1}n. The set Y is a finite
union Y = ∪b∈BYb, where Yb = {z ∈ Cn|v(Pj) = b ∈ {0, 1}n}. It suffices to prove
that the projection of Yb is constructible, because π(Y ) = ∪b∈Bπ(Yb), and a finite
union of constructible sets is constructible.

After relabeling the polynomials Pj , we can write each set Yb in the following
form

{z ∈ Cn|Pi(z) = 0 for 1 ≤ i ≤ I and Qj(z) �= 0 for 1 ≤ j ≤ J}
We consider each polynomial Pi(z) as a polynomial in the last coordinate zn

depending upon the other coordinates:

Pi(z) =

di∑
k=0

ai,k(z1, ..., zn−1)z
k
n = Pi,z1,...,zn−1

(zn).

In this formula the coefficients ai,k(z1, ..., zn−1) are polynomials in z1, ..., zn−1.
Similarly, we write Qj(z) as

Qj(z) =

ej∑
k=0

bj,k(z1, ..., zn−1)z
k
n = Qj,z1,...,zn−1

(zn).

The point (z1, ..., zn−1) lies in π(Yb) if and only if there exists a zn ∈ C so
that Pi(z1, ..., zn−1, zn) = 0 and Qj(z1, ..., zn−1, zn) �= 0. By Proposition 13.10, this

occurs if and only if the polynomials Pi,z1,...,zn−1
and Qj,z1,...,zn−1

lie in Y (�d,�e), a
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constructible set. Now the map f sending (z1, ..., zn−1) to the list of polynomials

Pi,z1,...,zn−1
, Qj,z1,...,zn−1

in
∏I

i=1 Polydi
(C)×

∏J
j=1 Polyej (C) is a polynomial map.

Therefore, π(Yb) = f−1
(
Y (�d,�e)

)
is a constructible set.

�

Now we turn to the proof of Proposition 13.10:

Proof. We begin with a lemma.

Lemma 13.11. Let Mm,n(C) denote the vector space of m × n matrices with
entries in C. The subset of matrices of rank r is a constructible set.

Proof. A matrix in Mm,n(C) has rank r if and only if the determinant of
every (r + 1) × (r + 1) minor vanishes and the determinant of some r × r minor
does not vanish. Each determinant of a minor of the matrix is a polynomial on the
vector space Mm,n(C), and being rank r is a Boolean condition depending on the
vanishing or non-vanishing of finitely many polynomials. �

We will apply this lemma to the matrix of a linear map that describes multipli-
cation of polynomials. Given polynomials P1, ..., PI ∈ Poly(C) of degrees d1, ..., dI ,
and given a degree e ≥ max di, we define a linear map

M [P1, ..., PI , e] :
I∏

i=1

Polye−di
(C) → Polye(C),

by the formula

M [P1, ..., PI , e](g1, ..., gI) := P1g1 + ... + PIgI .

For large enough e, the rank of M [P1, ..., PI , e] is related to the greatest common
divisor of P1, ..., PI , written gcd(P1, ..., PI).

Lemma 13.12. Suppose that Pi ∈ Polydi
(C) with Deg Pi = di. If e ≥ 2 maxi di,

then the image of M [P1, ..., PI , e] is exactly the multiples of gcd(P1, ..., PI) in
Polye(C). In particular, if e ≥ 2 maxi di, then RankM [P1, ..., PI , e] = e + 1 −
Deg(gcd(P1, ..., PI)).

Proof. Since M [P1, ..., PI , e](g1, ..., gI) := P1g1 + ... + PIgI , the image of
M [P1, ..., PI , e] is contained in the multiples of gcd(P1, ..., PI). It remains to check
that the image of M [P1, ..., PI , e] contains the multiples of gcd(P1, ..., PI) in Polye(C).

We do the proof by induction on I. We begin with I = 2, which we use as
a base case. The dimension of the domain of M [P1, P2, e] is Dim Polye−d1

(C) +
Dim Polye−d2

(C) = 2e − d1 − d2 + 2.

(13.3) Dim(Domain M [P1, P2, e]) = 2e − d1 − d2 + 2.

Next we determine the kernel of M [P1, P2, e]. We let

P := gcd(P1, P2).

d := Deg P .
Therefore, we have

P1 = P · P̃1; P2 = P · P̃2.

Deg P̃i = di − d.



168 13. RULED SURFACES AND PROJECTION THEORY

Now we define a linear map

A : Polyk(C) → Polye−d1
(C) × Polye−d2

(C),

where
A(h) = (P̃2h,−P̃1h),

and
k = e − d1 − d2 + d.

(The condition that e ≥ 2 maxi di guarantees that k ≥ 0.)
We claim that A is an isomorphism from Polyk(C) to Ker M [P1, P2, e].
First we check that A does indeed map Polyk(C) into Polye−d1

(C)×Polye−d2
(C).

We have Deg P̃2h = Deg P̃2+Deg h ≤ (d2−d)+(e−d1−d2+d) = e−d1. Similarly,

Deg P̃1h ≤ (d1 − d) + (e − d1 − d2 + d) = e − d2.
Next we check that the image of A lies in Ker M [P1, P2, e]:

M [P1, P2, e](A(h)) = M [P1, P2, e](P̃2h,−P̃1h)

= P1P̃2h − P2P̃1h = PP̃1P̃2h − PP̃1P̃2h = 0.

Next we check that the image of A contains Ker M [P1, P2, e]. Suppose that
(g1, g2) ∈ KerM [P1, P2, e]. We have

0 = P1g1 + P2g2 = P (P̃1g1 + P̃2g2).

Since gcd(P̃1, P̃2) = 1, it follows that P̃2 divides g1 and P̃1 divides g2. So we can

write g1 = P̃2h1 and g2 = P̃1h2. Now the equation P̃1g1 + P̃2g2 = 0 becomes
P̃1P̃2(h1 + h2) = 0, and so h2 = −h1. We define h to be h1, and so (g1, g2) =

(P̃2h,−P̃1h).
To see that (g1, g2) is in the image of A, it just remains to check that Deg h ≤ k.

We note
Deg h + Deg P̃2 = Deg g1 ≤ e − d1,

and so Deg h + (d2 − d) ≤ e − d1, which gives

Deg h ≤ e − d1 − d2 + d = k.

We have now proven that the image of A is exactly Ker M [P1, P2, e]. The map
A is clearly injective, and so A is an isomorphism from Polyk(C) to Ker M [P1, P2, e].
In particular, we see that

Dim Ker M [P1, P2, e] = Dim Polyk(C) = k + 1 = e − d1 − d2 + d + 1.

Comparing the dimension of the domain and the dimension of the kernel, we
see that the dimension of the range of M [P1, P2, e] is

(13.4) Dim(Range M [P1, P2, e]) = e − d + 1.

We already know that Range M [P1, P2, e] is contained in the multiples of P =
gcd(P1, P2) in Polye(C). But the dimension of this space of multiples is e − d + 1.
Therefore, Range M [P1, P2, e] is exactly the multiples of gcd(P1, P2) in Polye(C).

This proves our result for I = 2. Now we prove the result for all I by induction.
Suppose that I ≥ 3 and e ≥ 2 max di. We want to understand the image of
M [P1, ..., PI , e], that is the set of polynomials of the form

P1g1 + ... + PI−1gI−1 + PIgI , Deg gi ≤ e − di.

We start by considering the possible values of the sum of the last two terms:
PI−1gI−1 + PIgI . By the case I = 2, we know that this sum could be any multiple
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of gcd(PI−1, PI) in Polye(C). In other words, this last sum could be any polynomial
of the form gcd(PI−1, PI)ḡ where Deg ḡ ≤ e − Deg(gcd(P1, P2)). But this means
that the range is the set of polynomials of the form:

P1g1 + ... + PI−2gI−2 + gcd(PI−1, PI)ḡ, Deg gi ≤ e − di, Deg ḡ ≤ e − d.

In other words,

(13.5) Range M [P1, ..., PI , e] = RangeM [P1, ..., PI−2, gcd(PI−1, PI), e].

By induction on I, we know that this image is the set of multiples of
gcd(P1, ..., PI−2, gcd(PI−1, PI)) = gcd(P1, ..., PI).
This proves the lemma.

�
Combining the last two lemmas, we get the following corollary:

Corollary 13.13. For any degrees d1, ..., dI , d, the subset of tuples (P1, ..., PI)
∈ Polyd1

(C)×...×PolydI
(C) so that Deg Pi = di for all i and Deg(gcd(P1, ..., PI)) =

d is a constructible set.

Proof. Pick e ≥ 2 max di. Suppose that Deg Pi = di for all i. By Lemma
13.12, Deg(gcd(P1, ..., PI)) = d if and only if Rank M [P1, ..., PI , e] = e − d + 1. We
are going to apply Lemma 13.11, which says that the set of m × n matrices with
rank r is a constructible subset of Mm,n(C). In order to do this, we have to write
the linear operator M [P1, ..., PI , e] as a matrix.

To write M [P1, ..., PI , e] as a matrix, we have to choose a basis for the domain
and target. Recall that the domain is the direct sum of Polye−di

(C), and the target

is Polye(C). The space Polyd(C) has a natural basis of monomials: 1, z, z2, ... We
use this monomial basis for Polye(C) and for each Polye−di

(C), giving a basis for
the domain and target. We define μ(P1, ..., PI) to be the matrix for M [P1, ..., PI , e]
written in this basis. Each entry of μ(P1, ..., PI) is just a coefficient of one of the
polynomials Pi. The entry in the column of the matrix corresponding to the zj

term of gi ∈ Polye−di
(C) and the row of the matrix corresponding to the zk term of

the output is the coefficient of zk−j in Pi. Therefore, μ :
∏

i Polydi
(C) → Mm,n(C)

is a linear map. (Here m and n are the dimensions of the matrix μ(P1, ..., PI):
m = Dim Polye(C) and n =

∑
i Dim Polye−di

(C). )
By Lemma 13.11, the set of matrices of rank e− d + 1 is a constructible subset

of Mm,n(C). Since μ is linear, the set of (P1, ..., PI) so that RankM [P1, ..., PI , e] =

e − d + 1 is a constructible subset of
∏I

i=1 Polydi
(C). The set of (P1, ..., PI) with

Deg Pi = di is clearly constructible. The set of (P1, ..., PI) so that Deg Pi = di and
Deg gcd(P1, ..., PI) = d is the intersection of these two constructible sets, which is
constructible. �

Corollary 13.14. For any degrees d1, ..., dI , d, the subset of tuples (P1, ..., PI)
∈ Polyd1

(C)× ...×PolydI
(C) so that Deg(gcd(P1, ..., PI)) = d is a constructible set.

Proof. We let Poly=d(C) be the set of polynomials of degree exactly d. The set
Poly=d(C) is not a vector space (for instance, it does not contain zero). A constant
polynomial has degree 0. We make the convention that the zero polynomial has
degree −1. Then we can decompose the space Polyd(C) by degree as follows:

Polyd(C) = ∪d
e=−1 Poly=e(C).

It’s easy to see that each subset Poly=e(C) ⊂ Polyd(C) is constructible.



170 13. RULED SURFACES AND PROJECTION THEORY

We can decompose
∏

i Polydi
(C) as the disjoint union of

∏
i Poly=ei(C) for

some −1 ≤ ei ≤ di.
It suffices to prove that the set of (P1, ..., PI) ∈

∏
i Poly=ei(C) with

Deg gcd(P1, ..., PI) = d is a constructible set. But this follows from Corollary
13.13. �

At this point it is convenient to define a constructible function. We say that a
function F on Cn is constructible if it takes finitely many values, and the preimage
of each value is a constructible set. We have just proved that Deg(gcd(P1, ..., PI))
is a constructible function on Polyd1

(C) × ... × PolydI
(C). Because finite unions

and intersections of constructible sets are constructible, finite sums and products
of constructible functions are constructible.

Recall that we write Z(P1, ..., PI) for the set of z ∈ C where P1(z) = ... =
PI(z) = 0. Next, we will prove that the cardinality |Z(P1, ..., PI)| is a constructible
function on Polyd1

(C) × ... × PolydI
(C). Up to this point in the argument, we

have not used any special properties of C: Corollary 13.14 is true over any field
with the same proof. Now we will use that the complex numbers are algebraically
closed. To see how this is relevant, we observe that Z(P1, ..., PI) is non-empty in
C if and only if Deg gcd(P1, ..., PI) > 0. On the one hand, if β ∈ Z(P1, ..., PI),
then z − β divides P1, ..., PI , and so Deg gcd(P1, ..., PI) > 0. On the other hand,
suppose that P = gcd(P1, ..., PI) has degree > 0. Because C is algebraically closed,
P factors as c

∏
k(z − βk)

μk , where c �= 0, βk ∈ C, and μk ≥ 1. In particular, β1 ∈
Z(P1, ..., PI). This shows that the set of (P1, ..., PI) ∈ Polyd1

(C)× ...×PolydI
(C) so

that Z(P1, ..., PI) is non-empty is a constructible set. With a little bit more work,
we will prove that |Z(P1, ..., PI)| is a constructible function.

Lemma 13.15. For any degrees d1, ..., dI , the function |Z(P1, ..., PI)| is a con-
structible function on Polyd1

(C) × ... × PolydI
(C).

Proof. Suppose that gcd(P1, ..., PI) =
∏K

k=1(z − βk)
μk , where μk ≥ 1. The

degree of gcd(P1, ..., PI) =
∑K

k=1 μk, and |Z(P1, ..., PI)| = K.
As usual, we write P ′

i for the derivative of Pi. The key observation is that

(13.6) gcd(P1, P
′
1, P2, P

′
2, ..., PI , P

′
I) =

K∏
k=1

(z − βk)
μk−1.

Given this formula, we can solve for |Z(P1, ..., PI)| by

|Z(P1, ..., PI)| = Deg (gcd(P1, ..., PI)) − Deg (gcd(P1, P
′
1, ..., PI , P

′
I)) .

By Corollary 13.14, Deg(gcd(P1, ..., PI)) and Deg(gcd(P1, P
′
1, ..., PI , P

′
I)) are

constructible functions, and so |Z(P1, ..., PI)| is constructible as well.
So it only remains to check Equation 13.6 for gcd(P1, P

′
1, ..., PI , P

′
I). We know

that (z − βk)
μk divides Pi for every i, k. By the Leibniz formula, (z − βk)

μk−1

divides P ′
i for every i, k. Hence

∏
k(z − βk)

μk−1 divides every Pi and every P ′
i .

Finally, we have to check that (z−βk)
μk does not divide every P ′

i . Fix k. Since
gcd(P1, ..., PI) =

∏
k(z − βk)

μk , there must be some i so that (z − βk)
μk+1 does

not divide Pi. Then Pi = (z − βk)
μk P̃i,where (z − βk) does not divide P̃i. By the

Liebniz rule,
P ′
i = μk(z − βk)

μk−1P̃i + (z − βk)
μk P̃ ′

i .

From this formula, we see that (z − βk)
μk does not divide P ′

i . This finishes the
proof of Equation 13.6 and so the proof of the lemma. �
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Note that Z(P1, ..., PI) = ∩I
i=1Z(Pi). For any subset A ⊂ {1, ..., I}, we define

VA(P1, ..., PI) := ∩i∈AZ(Pi).

By Lemma 13.15, we see that for every subset A ⊂ {1, ..., I}, |VA(P1, ..., PI)| is
a constructible function on Polyd1

(C) × ... × PolydI
(C). More generally, given any

sets A0, A1 ⊂ {1, ..., I} we define
(13.7)
VA0,A1

(P1, ..., PI) := {z ∈ C|Pi(z) = 0 for all i ∈ A0 and Pi(z) �= 0 for all i ∈ A1}.

Lemma 13.16. For any degrees d1, ..., dI and any sets A0, A1 ⊂ {1, ..., I},
the function |VA0,A1

(P1, ..., PI)| is a constructible function on Polyd1
(C) × ... ×

PolydI
(C).

Proof. If A0 and A1 intersect, then VA0,A1
(P1, ..., PI) is empty, and so the

conclusion is trivial. We suppose that A0 and A1 are disjoint. Now we can express
|VA0,A1

(P1, ..., PI)| using the inclusion/exclusion principle:

|VA0,A1
| = |VA0

| −
∑
i∈A1

|VA0∪i| +
∑

i1 �=i2∈A1

|VA0∪i1∪i2 | − ...

Each term on the right-hand side is a constructible function by Lemma 13.15.
Since finite sums and/or differences of constructible functions are constructible,
|VA0,A1

(P1, ..., PI)| is a constructible function. �

In particular, for any A0 or A1, we see that the set of (P1, ..., PI) ∈ Polyd1
(C)×

...×PolydI
(C) so that |VA0,A1

(P1, ..., PI)| ≥ 1 is a constructible subset. This proves
Proposition 13.10.

�

We have now finished the proof of Chevalley’s projection theorem, Theorem
13.8. The theorem is very general and versatile, in part because there are lots of
constructible sets. For example, Theorem 13.8 easily implies the following more
general result.

If Y ⊂ Cm × Cn and s is an integer ≥ 1, then we define

π(s)Y := {z ∈ Cm| there exist s distinct wk ∈ Cn so that (z, wk) ∈ Y }.
If s = 1, π(1)Y is just the projection of Y to the first factor.

Corollary 13.17. If Y ⊂ Cm × Cn is a constructible set and s ≥ 1 is an
integer, then π(s)Y ⊂ Cm is also constructible.

Proof. Starting with Y , we build up a variety of constructible sets. Through-
out this argument, z ∈ Cm and w or wk lie in Cn.

For each 1 ≤ k ≤ s, the following set is constructible:

Ak := {(z, w1, ..., ws)|(z, wk) ∈ Y }.
Since finite intersections of constructible sets are constructible, the following

set is constructible:

A := ∩s
k=1Ak = {(z, w1, ..., ws)|(z, wk) ∈ Y for every 1 ≤ k ≤ s}.

On the other hand, for any k1 �= k2, the following set is clearly constructible:

Dk1,k2
:= {(z, w1, ..., ws)|wk1

�= wk2
}.
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Taking the intersection of all the sets Dk1,k2
, we see that the following set is

constructible:

D := {(z, w1, ..., ws)| the points w1, ..., ws are distinct}.
Now the set A ∩ D is constructible. We can describe A ∩ D as follows:

A ∩ D = {(z, w1, ..., ws)| the points w1, ..., ws are distinct

and (z, wk) ∈ Y for all 1 ≤ k ≤ s}.

The set π(s)Y is the projection of A ∩ D onto the z-coordinate. By Theorem
13.8, π(s)Y is constructible. �

13.2. Flecnodes and double flecnodes

Let P ∈ Poly(C3). Recall that a point x is flecnodal for P if there is a line
through x so that P vanishes to third order at x along l. We can state this in terms
of the degree 3 jet J3P (x). The point x is flecnodal if J3P (x) vanishes on a line
through 0.

We say that a point x is doubly flecnodal for P if there are two different lines
through x so that P vanishes to third order at x on each line. In other words, x is
doubly flecnodal if J3P (x) vanishes on two distinct lines through 0.

More generally, we say that a point x is (s, r)-flecnodal if there are s distinct
lines through x so that P vanishes to order r on each line. In other words, x is
(s, r)-flecnodal if JrP (x) vanishes on s distinct lines through 0.

We define Flecs,r ⊂ Polyr(C
3) to be the set of polynomials that vanish on s

distinct lines through 0. So x is (s, r)-flecnodal for P if and only if JrP (x) ∈ Flecs,r.
Our first main result is that Flecs,r is a constructible set.

Proposition 13.18. For any integers s ≥ 1 and r ≥ 1, the set Flecs,r ⊂
Polyr(C

3) is a constructible set.

Proof. We begin by parametrizing lines through 0 in C3. For any (a1, a2) ∈
C2, we define la1,a2

to be the line defined by the equations

(13.8) z1 = a1z3; z2 = a2z3.

The lines la1,a2
are all distinct. The set of lines {la1,a2

} are all of the lines
through 0 that don’t lie in the (z1, z2)-plane.

We consider the following set:

(13.9) V := {(P, a1, a2) ∈ Polyr(C
3) × C2|P vanishes on la1,a2

}.
We will show that this set V is algebraic and hence constructible. In particular,

we claim that a polynomial P ∈ Polyr(C
3) vanishes on la1,a2

if and only if

(13.10) P (ta1, ta2, t) = 0 for each integer in the range 1 ≤ t ≤ r + 1.

The points (ta1, ta2, t) all lie on la1,a2
, so if P vanishes on la1,a2

, then P (ta1, ta2, t) =
0 for all t. On the other hand, if P (ta1, ta2, t) = 0 for t = 1, ..., r+1, then P vanishes
on r + 1 points of la1,a2

. Since P ∈ Polyr(C
3), P vanishes on la1,a2

. Equations
13.10 are a finite list of polynomial equations in a1, a2, and the coefficients of P .
Therefore, V is an algebraic set.

Now we consider π(s)V : the set of polynomials P ∈ Polyr(C
3) so that P

vanishes on s distinct lines la1,a2
. By Corollary 13.17, π(s)V is constructible. This
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almost finishes the proof. Let π0 denote the z1z2-plane. We have now proven that
the following set is constructible:

Flecs,r,π0
:= {P ∈ Polyr(C

3)|P vanishes on s distinct lines thru 0, not in π0}.
There was nothing special about the (z1, z2)-plane. By changing coordinates,

we can prove that Flecs,r,π is constructible for any complex 2-plane π thru 0. We
let π1, ..., π2s+1 be 2-planes thru 0 in general position. We claim that

Flecs,r = ∪m Flecs,r,πm
.

Indeed, suppose that P vanishes on s distinct lines through 0. Since the planes,
πm are in general position, each of these lines lies in at most two of them. Since
there are 2s + 1 planes, one of these planes, πm, contains none of the s lines.
Therefore, P lies in Flecs,r,πm

.
Since a finite union of constructible sets is constructible, Flecs,r is constructible.

�

Once we know that Flecs,r is constructible, we can easily prove Proposition
13.3. There is a more general Proposition that holds for any constructible set Y ,
and we now formulate it. Suppose that Y ⊂ Polyr(C

3). We say that a polynomial
P obeys the condition Y at a point z if and only if JrP (z) ∈ Y .

Lemma 13.19. Suppose that Y ⊂ Polyr(C
3) is a constructible set. Then for

any polynomial P : C3 → C, there is a finite list of polynomials YjP , j = 1, ..., J(Y ),

and a subset BY ⊂ {0, 1}J(Y ) obeying the following:

• Deg YjP ≤ C(Y ) Deg P .
• The polynomial P obeys condition Y at a point z if and only if(

v(Y1P (z)), ..., v(YJP (z))
)
∈ BY .

Proof. Since Y is a constructible set, there is a finite list of polynomials fj on

Polyr(C
3) and a subset BY ⊂ {0, 1}J(Y ) so that w ∈ Y if and only if v(fj(w)) ∈ BY .

The polynomial P obeys condition Y at a point z if and only if v(fj(J
rP (z)) ∈ BY .

We define YjP (z) = fj(J
rT (z)). So P obeys condition Y at z if and only if

v(YjP (x)) ∈ BY .
We note that JrP : C3 → Polyr(C

3) is a vector-valued polynomial of degree
≤ Deg P . (Each coefficient of JrP is a constant factor times a derivative ∇IP for
some multi-index I, and each ∇IP is a polynomial of degree ≤ Deg P .) We let
C(Y ) be the maximal degree of the polynomials fj . Then YjP is a polynomial of
degree ≤ C(Y ) Deg P . �

13.3. A definition of almost everywhere

Our next goal is to study the contagious properties of (s, r)-flecnodal points. If
Z(P ) is a low degree surface with many (s, r)-flecnodal points, does it follow that
every point of Z(P ) is (s, r)-flecnodal? Under appropriate conditions, we will prove
that “almost every point” of Z(P ) is (s, r)-flecnodal. In this section, we introduce
an appropriate notion of almost every point.

If P ∈ Poly(Cn) is an irreducible polynomial, we say that a condition holds at
almost every point of Z(P ) ⊂ Cn if the set of points z ∈ Z(P ) where the condition
fails to hold is contained in Z(Q) for some polynomial Q which is not divisible
by P .
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To illustrate the definition, we prove that almost every point of an irreducible
surface is regular.

Lemma 13.20. For any irreducible P ∈ Poly(Cn), almost every point of Z(P )
is regular.

Proof. Consider the partial derivatives ∂iP . Since P is irreducible, ∂iP does
not divide P . We can assume that P is not constant, and so we can assume that
for some i, ∂iP is not the zero polynomial. But every point in Z(P ) \ Z(∂iP ) is
regular. Therefore, almost every point of Z(P ) is regular. �

To show that the definition of almost every point is reasonable, we prove that
if a condition holds at almost every point of Z(P ) ⊂ Cn, then there is a point of
Z(P ) where it holds.

Proposition 13.21. Suppose that P ∈ Poly(Cn) is irreducible, and that Q ∈
Poly(Cn) is not divisible by P . Then, there is a point in Z(P ) \ Z(Q).

Proof. Let I(Z(P )) be the ideal of polynomials that vanish on Z(P ). By the
Hilbert Nullstellensatz, I(Z(P )) is the radical of the ideal (P ). (The reader can
find a proof of the Hilbert Nullstellensatz as Theorem 1.5 in Chapter 9 of [Lan].
There is also a good discussion of the Nullstellensatz in Section 1.6 of [Ei].) We
claim that since P is irreducible, I(Z(P )) is actually equal to (P ). Suppose that
Q ∈ I(Z(P )). By the definition of a radical, Qr ∈ (P ) for some r. In other words,
P divides Qr. Since P is irreducible, and since there is unique factorization in the
ring C[z1, ..., zn], P divides Q. This shows that the ideal I(Z(P )) is equal to (P ).

Now we prove the Proposition. We suppose that Q is not divisible by P . In
other words, Q is not in (P ) = I(Z(P )). Since Q /∈ I(Z(P )), Q does not vanish on
Z(P ). In other words, there is a point in Z(P ) \ Z(Q). �

(We remark that this result does not hold over R. We need C to be algebraically
closed in order to use the Nullstellensatz.)

Combining the last two results, we get the following corollary:

Corollary 13.22. For any irreducible P ∈ Poly(Cn), Z(P ) contains a regular
point.

The definition of almost every point also behaves well when we intersect two
sets.

Lemma 13.23. Suppose that P ∈ Poly(Cn) is irreducible and that A1, A2 ⊂
Z(P ) each contain almost every point of Z(P ). Then A1∩A2 contains almost every
point of Z(P ).

Proof. We know that Z(P )\Aj is contained in Z(Qj) where P doesn’t divide
Qj . Therefore, Z(P ) \ (A1 ∩ A2) = (Z(P ) \ A1) ∪ (Z(P ) \ A2) is contained in
Z(Qj) ∪ Z(Q2) = Z(Q1Q2). Since there is unique factorization in the polynomial
ring C[z1, ...., zn], P does not divide Q1Q2. �

Corollary 13.24. Suppose that P ∈ Poly(Cn) is irreducible. Let Y ⊂
Polyr(C

n) be any subset. Suppose that JrP (z) ∈ Y for almost every point
z ∈ Z(P ). Then there is an open subset O ⊂ Z(P ) so that every point of O
is regular and JrP (z) ∈ Y for every z ∈ O.
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Remark. When we talk about open and closed subsets, we are using the Eu-
clidean topology on Cn.

Proof. We know that JrP (z) ∈ Y for almost every point z ∈ Z(P ). We
also know that almost every point of Z(P ) is regular. By Lemma 13.23, at almost
every point z ∈ Z(P ), JrP (z) ∈ Y and z is regular. In other words, there is some
polynomial Q, not divisible by P , so that for every z ∈ Z(P ) \ Z(Q), JrP (z) ∈ Y
and z is a regular point of Z(P ).

By Proposition 13.21, there is at least one point z0 ∈ Z(P ) \ Z(Q). Since Q is
continuous, we can find a small radius r so that every point of Z(P )∩B(z0, r) lies
in Z(P ) \Z(Q). These points are all regular, so we know that Z(P )∩B(z0, r) is a
complex submanifold of (complex) dimension n − 1. We let O := Z(P ) ∩ B(z0, r).
We know that for every z ∈ O, JrP (z) ∈ Y . �

13.4. Constructible conditions are contagious

We are now ready to study the contagious properties of constructible conditions.
If a polynomial P obeys a constructible condition Y at too many points along

a line, then it obeys Y at all but finitely many points of the line.

Lemma 13.25. Suppose that Y ⊂ Polyr(C
3) is a constructible condition, for

some r ≥ 0. Then there is a constant K(Y ) so that the following holds. Suppose
that l ⊂ C3 is a line. Suppose that P : C3 → C is a polynomial. If P obeys
condition Y at > K(Y ) Deg P points of l, then P obeys condition Y at all but
finitely many points of l.

Proof. Let S ⊂ l be a set of points where P obeys condition Y , and suppose
that |S| > K(Y ) Deg P .

Recall from Lemma 13.19 that there is a list of polynomials YjP with Deg YjP ≤
C(Y ) Deg P , for j = 1, ..., J(Y ), and that P obeys condition Y at z if and only if
the vector v(YjP (z)) lies in BY ∈ {0, 1}J(Y ).

At each point z ∈ S, we let β(z) ∈ BY be the vector v(YjP (z)). We let

Sβ := {z ∈ S|β(z) = β}. There are at most 2J(Y ) elements in BY , and so by the

pigeonhole principle, there is some β ∈ BY so that |Sβ| > 2−J(Y )K(Y ) Deg P. We

choose K(Y ) > C(Y )2J(Y ), so that

|Sβ| > C(Y ) Deg P ≥ Deg YjP.

We fix this value of β. If βj = 0, then we see that YjP vanishes at > (Deg YjP )
points of l. Therefore,YjP vanishes on l. If βj = 1, then we see that YjP fails to
vanish at at least one point of l. Therefore, YjP vanishes at only finitely many
points of l.

Thus at all but finitely many points of l, v(YjP ) = β ∈ BY . Hence all but
finitely many points of l obey condition Y . �

Lemma 13.26. Suppose that Y ⊂ Polyr(C
3) is a constructible condition, for

some r ≥ 0. Then there is a constant K(Y ) so that the following holds. Let
P : C3 → C be a polynomial. Suppose that L is a set of lines in C3, and that P
obeys Y at all but finitely many points of each line of L. Suppose that all the lines
of L are contained in an algebraic surface Z(Q) for an irreducible polynomial Q. If
|L| > K(Y ) Deg P Deg Q, then P obeys Y at almost every point of Z(Q).
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Proof. For each line l ∈ L, we will choose an element β(l) ∈ BY ⊂ {0, 1}J(Y ).
Define βj(l) = 0 if and only if YjP (z) vanishes on l. For all but finitely many points

z ∈ l, we have v(YjP (z)) = βj(l). We must have β(l) ∈ BY ⊂ {0, 1}J(Y ).

For each β ∈ BY , we define Lβ := {l ∈ L|β(l) = β}. There are at most 2J(Y )

elements of BY , and so by the pigeonhole principle, we can choose β ∈ BY so that
|Lβ| ≥ 2−J(Y )|L|.

Recall from Lemma 13.19 that Deg YjP ≤ C(Y ) Deg P . We choose K(Y ) =

2J(Y )C(Y ), so that

|Lβ| > 2−J(Y )K(Y ) Deg P Deg Q ≥ C(Y ) Deg P Deg Q ≥ Deg YjP Deg Q.

Fix this value of β. We consider the behavior of YjP on Z(Q) for different
values of j. First suppose that βj = 0. Then YjP vanishes on each line of Lβ.
So Z(YjP ) ∩ Z(Q) contains all the lines of Lβ. Since |Lβ | > Deg YjP Deg Q, the
Bezout theorem for lines (Theorem 6.7) implies that Q and YjP have a common
factor. Since Q is irreducible, it follows that Q divides YjP , and so YjP vanishes
on Z(Q). In other words, v(YjP ) = βj at every point of Z(Q).

On the other hand, suppose that βj = 1. Then YjP does not vanish on a line
l ∈ Lβ with l ⊂ Z(Q). In particular we can find at least one point of Z(Q) where
YjP does not vanish, and so Q does not divide YjP . In this case, v(YjP ) = 1 for
almost every point of Z(Q).

By Lemma 13.23, at almost every point of Z(Q), v(YjP ) = βj for all j. Hence,
at almost every point of Z(Q), P obeys Y . �

In particular, we get the following Corollary.

Corollary 13.27. If Y is a constructible condition, then there is a constant
K(Y ) so that the following holds. Suppose that P ∈ Poly(C3) is irreducible, and
that Z(P ) contains greater than K(Y )(Deg P )2 lines each of which contains greater
than K(Y ) Deg P points where P obeys Y . Then almost every point of Z(P ) obeys
Y .

Proof. By Lemma 13.25, P obeys Y at almost every point of each of the lines
above. Then by Lemma 13.26, P obeys Y at almost every point of Z(P ). �

By Proposition 13.18, being (s, r)-flecnodal is a constructible condition. Ap-
plying Corollary 13.27 to this condition, we get the following.

Corollary 13.28. For any (s, r) there is a constant K(s, r) so that the fol-
lowing holds. Suppose that P ∈ Poly(C3) is irreducible. Suppose that L is a set of
lines in Z(P ) with |L| > K(s, r)(DegP )2. Suppose that each line l ∈ L contains
greater than K(s, r) DegP points that are (s, r)-flecnodal for P . Then almost every
point of Z(P ) is (s, r)-flecnodal for P .

13.5. From local to global

So far we have studied the local geometry of Z(P ). We have studied the (s, r)-
flecnodal points for various (s, r). Whether a point z ∈ Z(P ) is (s, r)-flecnodal
depends only on the r-jet of P at the point z. We will call such a condition a local
condition. In this section we go from local to global. Suppose that every point of
a surface Z(P ) is r-flecnodal for a large r. Does this imply that Z(P ) is actually
ruled? The answer is yes, by a classical theorem of Monge, Cayley, and Salmon.
See [Ko] for some discussion of the history.
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Theorem 13.29. (Cayley-Monge-Salmon) If P is an irreducible polynomial in
Poly(C3), and if every point of Z(P ) is flecnodal, then Z(P ) is ruled.

For our application, we need an analogue of this theorem for doubly ruled
surfaces. The doubly ruled case is actually easier.

Proposition 13.30. Suppose that P is an irreducible polynomial in Poly(C3).
Suppose that almost every point of Z(P ) is doubly flecnodal. Then P has degree
1 or 2, and Z(P ) is a plane or regulus.

This Proposition easily implies the classification of doubly ruled surfaces we
stated above as Theorem 13.2:

Theorem. Suppose that P ∈ Poly(C3) is an irreducible polynomial, and sup-
pose that Z(P ) is doubly ruled. Then P has degree 1 or 2, and Z(P ) is a plane or
regulus.

We will prove Proposition 13.30. We don’t give a complete proof of Theorem
13.29, but we introduce many of the ideas. The key issue is the following: given that
many points are flecnodal or doubly flecnodal, how do we prove that the surface
Z(P ) actually contains some lines? We prove this type of result using differential
geometry. We will carry out the argument first over R and then over C. The proof
we use here is based on the proof sketched by Kollar in [Ko].

Here is a convenient setup for the differential geometry argument. Suppose
that B ⊂ R2 is a ball, and h : B → R is a smooth function. We study the graph of
h.

The flecnodal condition involves the second and third derivatives of h. The
second derivatives of h form the Hessian, ∇2h. Recall that the Hessian of h is a
symmetric bilinear form defined as follows: if v, w ∈ R2 are vectors, then

(13.11) ∇v∇wh :=
∑
i,j

viwj
∂2h

∂xi∂xj
.

There is a similar notation for third derivatives. If u, v, w ∈ R2 are vectors, then
we define

(13.12) ∇u∇v∇wh :=
∑
i,j,k

uivjwk
∂3h

∂xi∂xj∂xk
.

Because partial derivatives commute, these expressions are symmetric: for instance
∇v∇u∇wh = ∇w∇v∇uh. We sometimes abbreviate ∇2

vh := ∇v∇vh.
A point (x1, x2, h(x1, x2)) is a flecnodal point for the graph of h if and only if

it lies in a line which is tangent to the graph of h to third order. This holds if and
only if there is a 1-dimensional subspace K ⊂ R2 so that for any vector v ∈ K, we
have

(13.13) 0 = ∇2
vh(x1, x2) = ∇3

vh(x1, x2).

Now we are ready to state our local-to-global lemma about graphs x3 =
h(x1, x2).

Lemma 13.31. Suppose that B ⊂ R2 is a ball and h : B → R is smooth. For
each x ∈ B, let K(x) ⊂ R2 be a 1-dimensional subspace, depending smoothly on
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x. Suppose that for any vector v ∈ K(x), we have the flecnodal condition

∇2
vh(x) = ∇3

vh(x) = 0.

Finally, suppose that Rank∇2h(x) = 2 at every point x ∈ B.
For each x0 ∈ B, let L(x0) ⊂ R2 be the line through x0 with tangent space

K(x0). Then at each point x ∈ L(x0) ∩ B, the space K(x) is equal to the tangent
space of L(x0). As a result, we will show that the restriction of h to each line L(x0)
is linear.

This lemma implies that every point of the graph of h lies in a line segment in
the graph of h. (For any x0 ∈ B, the graph of h over L(x0) is a line segment in the
graph of h containing the point (x0, h(x0)).)

Before we start the proof, we discuss a subtle point in the statement. Why
do we need the hypothesis that Rank∇2h = 2 at every x ∈ B? If we remove this
hypothesis entirely, then the lemma is not true. Suppose that h is a linear function.
In this case, ∇2

vh(x) = ∇3
vh(x) = 0 for any x ∈ B, v ∈ R2, and Rank∇2h(x) = 0 for

any x ∈ B. Let K(x) ⊂ R2 be any 1-dimensional subspace depending smoothly on
x. Aside from the hypothesis Rank∇2h = 2, this example satisfies all the remaining
hypotheses of the lemma, no matter what space K(x) we choose. But for a generic
choice of K, it will not be true that for every x ∈ L(x0), K(x) is the tangent space
of x. Lemma 13.31 is also true in the case Rank∇2h(x) = 1 for all x ∈ B, but this
proof is a little more complicated than the proof of Lemma 13.31 – we will discuss
it more in the exercises at the end of the chapter.

Proof of Lemma 13.31. Pick a point x0 ∈ B. We will show that K(x) is
constant on L(x0) in a neighborhood of x0.

Since K(x) varies smoothly in x, we can find a smooth non-vanishing vector
field v on a neighborhood of x0 so that v(x) ∈ K(x) for every x. (To do this, pick
an affine 1-space A which does not contain zero and is transverse to K(x0), and
then define v(x) to be the intersection point of K(x) with A.)

We let φ be the integral curve of v starting at x0. In other words, φ is a map
from an interval I to B with φ(0) = x0 and φ′(s) = v(φ(s)) ∈ K(φ(s)). Since v is a
smooth vector field, there is a unique integral curve φ by the fundamental theorem
about solving ordinary differential equations. The interval I is an open interval
around 0.

We claim that K(φ(s)) is constant in s. The proof of this claim is the heart of
the lemma. The proof of the claim depends on two facts about φ(s): φ′(s) never
vanishes and φ′(s) ∈ K(φ(s)) for every s ∈ I. Since 0 �= φ′(s) ∈ K(φ(s)) and K
is 1-dimensional, we see that K(φ(s)) = Span(φ′(s)) for every s ∈ I. So to prove
that K(φ(s)) = Span(φ′(s)) is constant , it suffices to check that φ′′(s) ∈ K(φ(s))
for every s.

We know that for every s, ∇2
φ′(s)h = ∇3

φ′(s)h = 0. Therefore, we can compute

using the Liebniz rule:

(13.14) 0 =
d

ds

(
∇2

φ′(s)h(φ(s))
)

= ∇3
φ′(s)h(φ(s)) + 2∇φ′(s)∇φ′′(s)h(φ(s)).

Since ∇3
φ′(s)h vanishes, we conclude that ∇φ′(s)∇φ′′(s)h(φ(s)) vanishes identically

on I. At this moment, we use the fact that Rank∇2h = 2. For each value of s, we
consider the kernel of the linear map

(13.15) w → ∇φ′(s)∇wh(φ(s)).
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Since ∇2h is non-degenerate, this linear map is onto and its kernel is 1-dimensional.
We know that ∇2

φ′(s)h(φ(s)) = 0, and so φ′(s) is in the kernel. We conclude

that the kernel is exactly the span of φ′(s), which is exactly K(φ(s)). Therefore,
φ′′(s) ∈ K(φ(s)) for every s. This finishes the proof of the claim: K(φ(s)) is
constant in s.

For all s, φ′(s) ∈ K(φ(s)) = K(x0). Therefore, φ(s) stays in the line L(x0).
The image of φ must contain a neighborhood of x0 in the line L(x0). Therefore, we
see that K(x) is constant on a neighborhood of x0 in L(x0).

From here, we can quickly prove that K(x) is constant on L(x0) ∩ B. Let
A ⊂ L(x0) ∩ B be the set of points x where K(x) = K(x0). Since K(x) varies
continuously in x, the set A is closed. But by the argument in the last paragraph,
A is also open. Since B is a ball, L(x0) ∩ B is a convex set, and in particular it is
connected. Therefore, K(x) = K(x0) for every x ∈ L(x0) ∩ B.

We know that K(x) = K(x0) on L(x0) ∩ B. Since ∇2
vh = 0 for v ∈ K, it

follows that the restriction of h to L(x0)∩B has zero second derivative. Therefore,
h restricted to L(x0) ∩ B is linear. �

We need a complex version of Lemma 13.31. Most of the ideas adapt from R

to C in a straightforward way, but one or two points require more thought.
Suppose now that B ⊂ C2 is a ball, and h : B → C is a holomorphic function.

We will again study the graph of h.
We first recall how partial derivatives work for a holomorphic function. Suppose

that zj = xj + iyj with xj , yj real. So xj , yj are real coordinates on C2 = R4. The
function h is holomorphic if and only if it obeys the Cauchy-Riemann equations:
for each j, ∂h

∂yj
= i ∂h

∂xj
. The Cauchy-Riemann equations assert that the derivative

map dh : C2 → C is complex linear. They can also be written in the following way:
for each j,

∂h

∂xj
+ i

∂h

∂yj
= 0.

We note that the graph of h is a complex submanifold if and only if h obeys the
Cauchy-Riemann equations. In particular, if P ∈ Poly(C3) and O ⊂ Z(P ) is an
open set of regular points, and if O is the graph of a function h : B2 → C, then h
will be holomorphic.

Next, recall that the derivative ∂h
∂zj

is defined as:

∂h

∂zj
:=

∂h

∂xj
− i

∂h

∂yj
.

Because of the Cauchy-Riemann equations, all of the first derivatives ∂h
∂xj

and ∂h
∂jy

can be recovered from ∂h
∂zj

. Higher derivatives of h are defined by iterating. For

instance,

∂2h

∂zi∂zj
:=

∂

∂zj

(
∂h

∂zi

)
.

As usual, partial derivatives commute. The flecnodal condition involves the second
and third derivatives of h. The second derivatives of h form the Hessian, ∇2h.
Recall that the Hessian of h is a symmetric bilinear form defined as follows: if
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v, w ∈ C2 are vectors, then

(13.16) ∇v∇wh :=
∑
i,j

viwj
∂2h

∂zi∂zj
.

There is a similar notation for third derivatives. If u, v, w ∈ C2 are vectors, then
we define

(13.17) ∇u∇v∇wh :=
∑
i,j,k

uivjwk
∂3h

∂zi∂zj∂zk
.

Because partial derivatives commute, these expressions are symmetric: for instance
∇v∇u∇wh = ∇w∇v∇uh. We sometimes abbreviate ∇2

vh := ∇v∇vh.
A point (z1, z2, h(z1, z2)) is a flecnodal point for the graph of h if and only if

it lies in a (complex) line which is tangent to the graph of h to third order. This
holds if and only if there is a 1-dimensional (complex) subspace K ⊂ C2 so that for
any vector v ∈ K, we have

(13.18) 0 = ∇2
vh(z1, z2) = ∇3

vh(z1, z2).

This point is slightly subtler over C. In particular, suppose that there is a subspace
K as above. If we restrict h to the complex line L through (z1, z2) tangent to K,
then on this line we see that the holomorphic second and third derivatives of h
vanish at (z1, z2). Now by the Cauchy-Riemann equations, it follows that all the
ordinary real second and third derivatives of h on the line L also vanish at (z1, z2).
Let L′ be the complex line in C3 which is tangent to the graph of h over L at the
point (z1, z2, h(z1, z2)). Since the second and third derivatives vanish, L′ is tangent
to the graph of h to third order.

Now we are ready to state our local-to-global lemma about holomorphic graphs
z3 = h(z1, z2).

Lemma 13.32. Suppose that h : B → C is holomorphic, for a ball B ⊂ C2. For
each z ∈ B, let K(z) ⊂ C2 be a 1-dimensional complex subspace, varying smoothly
in z. Suppose that for any vector v ∈ K(z), we have

∇2
vh(z) = ∇3

vh(z) = 0.

Finally, suppose that Rank∇2h = 2 everywhere in B.
For each z0 ∈ B, let L(z0) ⊂ C2 be the line through z0 with tangent space

K(z). Then at each point z ∈ L(z0)∩B, the K(z) is equal to the tangent space of
L(z0). Moreover, the restriction of h to each line L(z) is linear.

Proof. An important piece of the proof of Lemma 13.31 adapts very readily
to the complex case. We consider real curves that are tangent to the subspaces
K(z). More precisely, suppose that φ : I → C2 is a curve defined on an interval
I ⊂ R with φ′(s) never vanishing, and suppose that φ′(s) ∈ K(φ(s)) for every s ∈ I.
An important step of the proof is to show that K(φ(s)) is constant in s.

We write Span A for the complex span of a subset A ⊂ C2. Since K(φ(s)) =
Span φ′(s), it suffices to check that φ′′(s) ∈ K(φ(s)) for every s ∈ I.

We know that for every s, ∇2
φ′(s)h = ∇3

φ′(s)h = 0. Therefore, we can compute

using the Liebniz rule:

(13.19) 0 =
d

ds

(
∇2

φ′(s)h(φ(s))
)

= ∇3
φ′(s)h(φ(s)) + 2∇φ′(s)∇φ′′(s)h(φ(s)).
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Since ∇3
φ′(s)h vanishes, we conclude that ∇φ′(s)∇φ′′(s)h(φ(s)) vanishes identically

on I. At this moment, we use the fact that Rank∇2h = 2. At each point s, we
consider the kernel of the linear map

(13.20) w → ∇φ′(s)∇wh(φ(s)).

Since ∇2h is non-degenerate, this linear map is onto and its kernel is 1-dimensional.
We know that ∇2

φ′(s)h(φ(s)) = 0, and so φ′(s) is in the kernel. We conclude

that the kernel is exactly the span of φ′(s), which is exactly K(φ(s)). Therefore,
φ′′(s) ∈ K(φ(s)) for every s.

This finishes the proof of our first claim: if φ : I → C2 is a smooth curve with
φ′(s) never vanishing and φ′(s) ∈ K(φ(s)) for all s, then K(φ(s)) is constant in s.

We want to find appropriate curves φ(s) to apply this claim. Over R, we picked
a non-vanishing vector field v with v(z) ∈ K(z) for every z, and then we let φ be
an integral curve of z.

We do something similar over C. We fix a point z0 ∈ B. On a neighborhood of
z0, we choose a non-vanishing smooth vector field v with v(z) ∈ K(z) for every z.
(Again, we can do this by picking an affine 1-dimensional complex space A ⊂ C2

transverse to K(z0) and letting v(z) = K(z0)∩A.) For each angle θ, we also consider
the vector field eiθv. We let φθ(s) be the solution to the ordinary differential
equation φ′

θ(s) = eiθv and φθ(0) = z0. The solution φθ is defined for s in some
interval around 0, until the solution leaves the neighborhood where v(z) is defined.
In particular, there is some ε > 0 so that for every θ, the solution is defined on
[0, ε).

By the discussion above, φ′
θ(s) ∈ K(z0) for every θ, s. Therefore, φθ(s) ∈ L(z0)

for every θ, s. Allowing θ to vary in [0, 2π] and s to vary in [0, ε], we can think of θ, s
in polar coordinates so that φ becomes a map from B2(ε) ⊂ R2 to L(z0). Since the
solution of an ordinary differential equation depends smoothly on the vector field, φ
is a smooth map from B2(ε) to L(z0). The map sends 0 to z0, and its derivative at
0 is an isomorphism. By the inverse function theorem, the image contains an open
neighborhood of z0 in L(z0). At each point in the image K(z) = K(z0). Therefore,
we see that K is constant on a neighborhood of z0 in L(z0).

From here, we can quickly prove that K is constant on L(z0) ∩ B. Let A ⊂
L(z0)∩B be the set of points z where K(z) = K(z0). Since K(z) varies continuously
in z, the set A is closed. But by the argument in the last paragraph, A is also open.
Since B is a ball, L(z0) ∩ B is a convex set, and in particular it is connected.
Therefore, K(z) = K(z0) for every z ∈ L(z0) ∩ B.

We know that K(z) = K(z0) on L(z0)∩B. Since ∇2
vh = 0 for v ∈ K, it follows

that the restriction of h to L(z0) ∩ B has zero (holomorphic) Hessian. Since h is
holomorphic, it follows using the Cauchy-Riemann equations that h restricted to
L(z0) ∩ B is linear. �

We now have the tools to prove Proposition 13.30. For convenience, we now
recall the statement:

Proposition. Suppose that P is an irreducible polynomial in Poly(C3). Sup-
pose that almost every point of Z(P ) is doubly flecnodal. Then P has degree 1 or
2, and Z(P ) is a plane or regulus.
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Remark: Along the way, we will prove that Z(P ) contains an open set O where
each point is regular and each point lies in two lines in Z(P ). So along the way, we
will establish Proposition 13.5.

Proof. By Corollary 13.24, we know that there is an open subset O ⊂ Z(P )
where every point is regular and doubly-flecnodal. By shrinking O, we can assume
that it is given by a graph, z3 = h(z1, z2), for a holomorphic function h defined on
a small ball B ⊂ C2.

If ∇2h vanishes on the whole domain B, then the graph of h is an open subset
of a plane. In this case, since P is irreducible, it follows that P is degree 1 and
Z(P ) is a plane. So we can assume that there is one point of B where ∇2h is not
zero. By shrinking the domain B, we can then assume that ∇2h(z1, z2) is non-zero
on all of B.

Fix (z1, z2) ∈ B. Since P is doubly flecnodal at (z1, z2, h(z1, z2)), there must
be two different 1-dimensional subspaces K1, K2 ⊂ C2 so that for any v in K1 or
K2,

(13.21) 0 = ∇2
vh(z1, z2) = ∇3

vh(z1, z2).

Now we consider the set of null directions N := {v ∈ C2|∇v∇vh(z1, z2) =
0}. The expression ∇v∇vh(z1, z2) is a (non-zero) quadratic polynomial in v. If
Rank∇2h(z1, z2) is 1, then N is a single line. (If the rank of ∇2h(z1, z2) = 1,
then we can make a linear change of coordinates so that ∇v∇vh(z1, z2) = v21 . In
these coordinates, N is the line v1 = 0.) But we know that there are two different
lines where ∇2

vh = 0. So for a doubly flecnodal point, ∇2h cannot have rank 1.
Therefore, Rank∇2h(z1, z2) = 2 for all (z1, z2) ∈ B.

If Rank∇2h(z1, z2) = 2, then the set of null directions N is the union of two
lines. (If Rank∇2h(z1, z2) = 2, then we can make a linear change of coordinates so
that ∇v∇vh(z1, z2) = v21 + v22 . In these coordinates, the null set N is exactly two
lines: v1 + iv2 = 0 and v1 − iv2 = 0.) Therefore, at each point of B, K1(z1, z2) ∪
K2(z1, z2) is exactly N(z1, z2).

Since ∇2h is a smooth function on B, and has constant rank 2, it follows that
K1(z1, z2) and K2(z1, z2) vary smoothly on B.

We are now in a position to apply Lemma 13.32. For each point z ∈ B ⊂ C2, we
let Li(z) be the line through z tangent to Ki(z). By Lemma 13.32, the function h

restricted to each line Li(z) is linear. We let L̃i(z) be the graph of h over Li(z). We

note that L̃i(z) is a complex line segment in the graph of h. By abuse of notation,

we also let L̃i(z) be the complex line in C3 containing this line segment. We note

that L̃i(z) is a line in Z(P ).
We have now proven that each point in the graph of h lies in two lines in Z(P ).

The graph of h is an open set O ⊂ Z(P ) where each point is regular and each point
lies in two lines in Z(P ), establishing Proposition 13.5. Now using all of these lines,
we will prove that Z(P ) contains arbitrarily many lines in a plane or regulus.

Let z0 ∈ B. After a linear change of variables in C2, we can assume that
L1(z0) is parallel to the z1-axis and that L2(z0) is parallel to the z2-axis. Now by
restricting B to a small ball around z0, we can assume that Lj(z) is nearly parallel
to the zj-axis for all z ∈ B.

We claim that any point z ∈ B lies in exactly one line of the form L1(w). We
know that z lies in L1(z). Suppose that z also lies in L1(w) for some w /∈ L1(z).
But then ∇2

vh(z) must vanish for v in the tangent space of L1(z) and L1(w), and
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also in the tangent space of L2(z). But ∇2
vh(z) only vanishes for v in two complex

subspaces: K1(z)∪K2(z). By assumption the tangent space of L1(w) is not K1(z).
The tangent space of L1(w) is also not K2(z), because K2(z) is nearly tangent to
the z2-axis and L1(w) is nearly tangent to the z1-axis. This contradiction proves
the claim.

Now pick three points in B that are very close to z0, called w1, w2, w3. Consider
the three lines L1(w1), L1(w2), L1(w3). By choosing w1, w2, w3 generically, we can
assume that these are three distinct lines. By the last paragraph, the three line
segments L1(wm) ∩ B are disjoint. Recall that L̃1(wm) is the graph of h over
L1(wm) ∩B, which is a line in Z(P ). By Proposition 8.14 in the section on reguli,
there is a polynomial Q of degree at most 2 so that Z(Q) contains all three lines

L̃1(wm).
Now consider many points un ∈ B, also very close to z0. Each line L2(un) must

intersect L1(w1), L1(w2), and L1(w3) in B. (Since L2(un) is almost parallel to the
z2-axis, and L1(wm) is almost parallel to the z1-axis, the lines L2(un) and L1(wm)
must intersect each other. Since un and wm are both close to z0, the intersection
point must also be close to z0, and so it lies in B.) Since the segments L1(wm)∩B
are disjoint, each line L2(un) must intersect L1(w1), L1(w2), and L1(w3) in three

distinct points in B. Therefore, the line L̃2(un) must intersect L̃1(w1), L̃1(w2) and

L̃1(w3) in three distinct points. So L̃2(un) intersects Z(Q) in three distinct points,

and so L̃2(un) lies in Z(Q). Since we can choose infinitely many lines L2(un), there
are infinitely many lines in Z(P )∩Z(Q). By the Bezout theorem for lines, Theorem
6.7, Q and P must have a common factor. Since P is irreducible, P must divide
Q, and so the degree of P must be 1 or 2. The surface Z(Q) must be a plane or
regulus, and so Z(P ) must also be a plane or regulus.

�

13.6. The proof of the main theorem

We now have all the tools we need to prove our main results about |P2(L)|.
We begin with a theorem describing the structure of a configuration of lines where
every line has many 2-rich points. This theorem is the heart of the matter.

Theorem 13.33. There is an absolute constant K so that the following holds.
Let L be a set of L lines in C3 so that each line contains ≥ A = KL1/2 points of
P2(L). Then L lies in � L/A planes and reguli.

Proof. Let K be a sufficiently large constant.
Let L be a set of L lines in C3. Suppose that each line of L contains ≥ A ≥

KL1/2 points of P2(L). We let P be the minimal degree non-zero polynomial that
vanishes on L. By the degree reduction argument (Proposition 11.5), we know that
Deg P � L/A. Choosing K large enough, Deg P ≤ 10−2L1/2.

Next we factor P into irreducible factors. We have P =
∏

j Pj , where Pj is

irreducible. We define Lj ⊂ L to be the set of lines that lie in Z(Pj) and don’t lie
in any other Z(Pj′). Since P has minimal degree, each Lj is non-empty.

Lemma 13.34. Each line in Lj contains ≥ (99/100)A points of P2(Lj).

Proof. Let l ∈ Lj . By definition of Lj , for any j′ �= j, Pj′ does not vanish
everywhere on l. So Pj′ vanishes at ≤ Deg Pj′ points of l. Therefore, there are
≤ Deg P points of l where Pj′ vanishes for some j′ �= j. But Deg P ≤ (1/100)A.
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So l contains ≥ (99/100)A points of P2(L) that don’t lie in any other Z(Pj′). We
claim that each of these points lies in P2(Lj). Let x be a point of l ∩ P2(L), with
Pj′(x) �= 0 for all j′ �= j. The point x lies in at least one other line of L, l1. The
line l1 lies in Z(P ), but it doesn’t lie in Z(Pj′) for any j′ �= j. Therefore, it lies in
Z(Pj) and belongs to Lj . �

Since P is a minimal degree polynomial that vanishes on L, it follows that
Pj is a minimal degree polynomial that vanishes on Lj . By Proposition 11.5,

Deg Pj � |Lj |/A � K−1|Lj |1/2.
To finish the proof, we have to show that each Pj has degree at most 2. Fix a

j. For the rest of the proof we study Lj and Pj .
Suppose that z ∈ P2(Lj). We know that z lies in two different lines in Z(Pj).

Therefore, z is doubly flecnodal for Pj .
Next we use the contagious vanishing lemmas from Section 13.4. Each line l ∈

Lj contains at least (99/100)A doubly flecnodal points. We know that (99/100)A �
K Deg Pj . If K is sufficiently large, then by Lemma 13.25, almost every point in
each line l ∈ Lj is doubly-flecnodal. The set Lj contains |Lj | lines. We know that
(Deg P )2 � K−2|Lj |. If K is large enough, then by Lemma 13.26, almost every
point of Z(Pj) is doubly flecnodal.

Once we know that almost every point of Z(Pj) is doubly flecnodal we can
appeal to the local-to-global arguments. By Proposition 13.30, Pj has degree at
most 2.

The number of different factors Pj is ≤ Deg P � L/A. So we conclude that L

lies in � L/A algebraic surfaces of degree at most 2.
�

By a standard induction argument, we get the following corollary, which easily
implies Theorem 8.3:

Corollary 13.35. Suppose that L is a set of L lines in C3 that contains at
most B lines in any plane or regulus. If B ≥ L1/2, then

|P2(L)| � BL.

Proof. Let K be the constant from Theorem 13.33. Using induction on L,
we will prove that

|P2(L)| ≤ KBL.

If |P2(L)| ≤ KBL, there is nothing to prove, so we may assume that |P2(L)| >
KBL ≥ KL3/2.

We apply Theorem 13.33 with A = |P2(L)|L−1 ≥ KL1/2. If each line of L

contains ≥ A points of P2(L), then Theorem 11.7 implies that L is contained in at
most KL/A planes. Therefore, one plane contains at least A/K lines of L, and so
A/K ≤ B. In this case, we can bound |P2(L)| as follows:

|P2(L)| = AL = K(A/K)L ≤ KBL.

On the other hand, suppose that there is a line l ∈ L that contains at most A
points of P3(L). We let L′ := L \ {l}. Now we bound |P2(L)| by induction:

|P2(L)| ≤ A + |P2(L
′)| ≤ |P2(L)|L−1 + KB(L − 1).
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Rearranging we get L−1
L |P2(L)| ≤ KB(L − 1), and so

|P2(L)| ≤ KBL.

�

This corollary immediately implies Theorem 13.1:

Proof. Suppose that L is a set of L lines in C3 with at most B lines in
any plane or degree 2 surface. We have to show that |P2(L)| � BL + L3/2. In
particular, L contains at most B lines in any plane or regulus. If B ≥ L1/2, then
Corollary 13.35 gives |P2(L)| � BL. If B < L1/2, then we apply Corollary 13.35
with B = L1/2, and we get |P2(L)| � L3/2.

�

Finally, we are ready to prove Theorem 8.3.

Proof. Suppose that L is a set of L lines in R3 with at most B lines in any
plane or degree 2 surface. We have to prove that |P2(L)| � BL + L3/2. For each
real line l ⊂ R3, let lC be the corresponding complex line in C3. Let LC be the set
of complex lines corresponding to the lines of L. We note that |P2(L)| ≤ |P2(L

C)|.
Next we claim that LC contains at most B lines in any plane or degree 2 surface.

Indeed, suppose that P is a complex polynomial of degree 1 or 2 that vanishes on
more than B lines of LC. Restrict P to R3, and write P = P1 + iP2, where P1, P2

are real polynomials on R3 of degree at most 2. The polynomials P1, P2 are not
both 0, and they both vanish on the lines of L.

Now we apply Theorem 13.1:

|P2(L)| ≤ |P2(L
C)| � BL + L3/2.

�

13.7. Remarks on other fields

In this chapter, we worked over the field of complex numbers. A lot of the
material in the chapter can be generalized to other fields.

We should mention first that the main theorem of the chapter is not true
over finite fields. A counterexample is given by the Hermitian variety described in
Section 3.2. The Hermitian variety H in F3

q contains ∼ q2 lines, each point of H

lies in ∼ q1/2 lines, and H contains ∼ q5/2 points. If we randomly select a subset
L of 100q3/2 of the lines in H, then L will still have ∼ q5/2 2-rich points. In other
words, |P2(L)| ∼ |L|5/3. As we saw in Section 3.2, the Hermitian variety contains
� q1/2 lines in any plane. Therefore, our set of lines L contains even fewer lines in
any plane: L contains � log q lines in any plane. It is not hard to check that H
contains fewer than q1/2 lines in any degree 2 surface as well, and so our set of lines
L contains � log q lines in any degree 2 surface. This example shows that Theorem
13.1 does not generalize to F3

q .
Nevertheless Kollar proved that Theorem 13.1 goes generalize to arbitrary fields

F as long as the number of lines is not too big compared to the characteristic of the
field (see Corollary 40 in [Ko]). For fields of characteristic p, one requires |L| ≤ p2.
Kollar’s theorem applies over all fields, including C. His method has some similar
ideas to the method in [GK2] and the method here, but also some different ideas.
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In connection with other fields, it is worth mentioning that the Chevalley pro-
jection theorem, Theorem 13.8 holds over all algebraically closed fields (cf. Theorem
3.16 in [Ha]). Also, there is a version of the Cayley-Monge-Salmon theorem, Theo-
rem 13.4, which holds over all fields, provided that the degree of the polynomial is
not too large compared to the characteristic – see the discussion before Corollary
40 in [Ko].

13.8. Remarks on the bound L3/2

In Section 3.6, we raised the question, if L is a set of lines in R3 with at most 10
lines in any plane or degree 2 surface, how many 2-rich points can L have? Using
ruled surface theory, we proved in this chapter that |P2(L)| � L3/2. In Chapter 10,
we worked on the same problem using polynomial partitioning. Under a somewhat
stronger hypothesis, Theorem 10.1 gives the bound |P2(L)| ≤ C(ε)L(3/2)+ε for any
ε > 0. These two methods are very different from each other, but they lead to
essentially the same bound. On the other hand, I don’t know of any example where
|P2(L)| is close to L3/2. In this section, we briefly discuss why each of these two
methods does not do better than L3/2.

The method in this chapter is based on studying the lowest degree polynomial
that vanishes on the set of lines L. Suppose that L has the following structure: there
are L.51 planes or reguli Sj and each surface Sj contains L.49 lines of L. The number
of 2-rich points of L is ∼ L.51(L.49)2 = L1.49. Suppose we consider the lowest degree
polynomial P that vanishes on L. Multiplying together the polynomials defining
the surfaces Sj gives a polynomial Pprod of degree ∼ L.51. But this polynomial is
not the lowest degree polynomial vanishing on L. By parameter counting, we know
that there is a non-zdero polynomial P vanishing on L with degree � L1/2. The
zero set of P probably does not contain any planes or reguli, and so it is not clear
how this polynomial P could be helpful in the problem.

A second observation is that if we consider lines in finite fields, then the bound
L3/2 is essentially sharp. Suppose that L is a set of q2 randomly chosen lines in
F3
q . There are a total of ∼ q4 lines in F3

q, and each point lies in ∼ q2 of these lines.
Therefore, the probability that a given point lies in at least two lines of L is ∼ 1. So
with high probability, |P2(L)| ∼ q3. On the other hand, every plane in F3

q contains

∼ q2 lines. So for a fixed plane π ⊂ F3
q , the probability that π contains at least B

lines of L is � e−cB. The total number of planes in F3
q is ∼ q3. Therefore, with high

probability, every plane in F3
q contains � log q lines of L. Every irreducible degree

2 surface in F3
q contains � q lines of L. Therefore, the probability that a given

degree 2 surface contains more than 10 lines of L is � q−10. On the other hand, the
number of irreducible degree 2 surfaces in F3

q is � q9, because Dim Poly2(F
3
q) = 10.

Therefore, with high probability, every regulus in F3
q contains at most 10 lines of L.

Exercise 13.1. Consider βq2 random lines L in F3
q for a parameter β. Show

that for any ε > 0, there exists a constant B(ε), so that for all q, there exists a set
of lines L in F3

q with |P2(L)| � L(3/2)−ε and so that every plane or regulus in F3
q

contains at most B(ε) lines of L.

This example in finite fields does not easily generalize to lines in R3. Based on
our experience with the Szemerédi-Trotter theorem, it is reasonable to try to use
a partitioning argument to do better. We tried this approach in Chapter 10, but
we were not able to do any better. In fact, we got a slightly weaker bound. Let
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us explain why the polynomial partitioning method also got stuck at the exponent
3/2. Suppose that L is a set of L lines in R3 with KLα 2-rich points for some
parameters K, α. Suppose that we do a degree D polynomial partitioning, where
D is a parameter that we can choose, and suppose that all the 2-rich points end
up in the cells. We have ∼ D3 cells Oi. Each cell contains ∼ D−3KLα 2-rich
points of L. Let Li ⊂ L be the set of lines that intersect the cell Oi. We know that∑

i |Li| � DL, and so for most cells Oi, |Li| ∼ D−2L. We would like to understand
whether this divide-and-conquer approach is making progress. To do that, we write
the number of 2-rich points of Li in terms of |Li|:

|P2(Li)| � D−3KLα ∼ D−3K(D2|Li|)α = D2α−3K|Li|α.

For comparison, we recall that

|P2(L)| = K|L|α.

These equations have the same form, and the constant K on the whole space is
replaced by D2α−3K for the lines in a typical cell. If α > 3/2, then 2α−3 > 0, and
we see that the intersection pattern in each cell is more extreme than the original
pattern. This provides a good basis for doing induction. On the other hand, if
α < 3/2, then we see that the intersection pattern in each cell is less extreme than
the original pattern. In this situation, it is not clear how such a cell decomposition
could be helpful.

13.9. Exercises related to projection theory

In this section, we give some exercises related to projection theory and flecn-
odes.

Exercise 13.2. Let Flec(k − plane)r ⊂ Polyr(C
n) be the set of polynomials

that vanish on some k-plane through 0. Prove that Flec(k−plane)r is a constructible
set.

Exercise 13.3. Note that Flec(2 − plane)2 ⊂ Polyr(C
3) is closely related to

flat points. If P ∈ Poly(C3), a point z ∈ Z(P ) ⊂ C3 is a flat point if and only if z
is a regular point and J2P (z) ∈ Flec(2 − plane)2.

This point of view can be used to give an alternate treatment of the study of
critical and flat points from Section 11.6. This treatment works over C, and it can
be used to prove that Theorem 11.1 holds for complex lines in C3.

Exercise 13.4. If L is a set of N2 complex lines in C3 with at most N lines
in any complex 2-plane in C3, and if X is a finite set with at least N points of X
on every line of L, then prove that |X| � N3.

This result contrasts with an example using thin tubular neighborhoods of
complex lines in Section 15.9.

Exercise 13.5. Let Y ⊂ Cn be a constructible set. Recall that we say that
something occurs at almost every point of Cn if the set of exceptional points is
contained in Z(P ) for a non-zero polynomial P ∈ Poly(Cn). Prove that either Y
contains almost every point of Cn or else the complement of Y contains almost
every point of Cn.

In the next set of exercises, we use Chevalley’s projection theorem, Theorem
13.8, to explore some basic facts about constructible sets in Cn. In particular, we
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define the dimension and the degree of constructible sets in Cn and show their
basic properties. These exercises have to do with how a constructible set intersects
k-planes in Cn.

If b ∈ Cn−k, and m is a linear map from Ck to Cn−k, then we let Π(m, b)
denote the k-plane

Π(m, b) := {(x, mx + b) ∈ Cn|x ∈ Ck}.

We let Gk,n be the set of all possible (m, b), where b ∈ Cn−k, and m is a linear

map from Ck to Cn−k. Note that we can identify Gk,n with C(k+1)(n−k). Almost
every k-plane in Cn can be written in the form Π(m, b), although not every k-plane.
The set Gk is a convenient approximation of the affine Grassmannian of Cn - the
set of all k-planes in Cn.

Exercise 13.6. Let Y ⊂ Cn be a constructible set. Prove that the set of
k-planes which intersect Y is constructible:

{(m, b) ∈ Gk,n so that Π(m, b) ∩ Y is non-empty} is constructible.

Combining Exercise 13.6 and Exercise 13.5, we see that either almost every k-
plane intersects Y , or almost every k-plane does not intersect Y . The codimension
of Y , CoDim(Y ), is defined to be the smallest k so that almost every k-plane
intersects Y . The dimension of Y is defined to be Dim(Y ) = n − CoDim(Y ).

Exercise 13.7. Suppose that L : Cn → Cn is an invertible linear map. Suppose
that Y ⊂ Cn and Y ′ = L(Y ). Prove that Dim(Y ) = Dim(Y ′).

Exercise 13.8. If Y ⊂ Cn is an infinite constructible set, show that almost
every n − 1-plane intersects Y . Conclude that Dim(Y ) ≥ 1.

Exercise 13.9. Let Y ⊂ Cn be a constructible set with CoDim(Y ) = k. By
definition, almost every (k − 1)-plane Π ∈ Gk−1,n is disjoint from Y .

Prove that for almost every k-plane Π′ ∈ Gk,n, almost every (k − 1)-plane
Π ⊂ Π′ is disjoint from Y .

Combining this observation with Exercise 13.8, prove that for almost every
k-plane Π′ ∈ Gk,n, Y ∩ Π′ is finite (and non-zero).

Conclude that if k = CoDim(Y ), then almost every k-plane intersects Y in
finitely many points.

Exercise 13.10. Let Y ⊂ Cn be a constructible set. For any integer s, prove
that the set of k-planes which intersect Y in exactly s points is constructible:

{(m, b) ∈ Gk,n so that |Π(m, b) ∩ Y | = s} is constructible.

Exercise 13.11. A countable union of constructible sets is not necessarily
constructible. Nevertheless, if Yj ⊂ CN are constructible sets, and the countable
union ∪∞

j=1Yj contains almost every point of CN , prove that one of the Yj contains

almost every point of CN .

Exercise 13.12. Let Y ⊂ Cn be a constructible set. Let k = CoDim(Y ).
Prove that there exists an integer D ≥ 1 so that almost every k-plane intersects Y
in a set of cardinality D. The integer D is called the degree of Y .



13.10. EXERCISES RELATED TO DIFFERENTIAL GEOMETRY 189

13.10. Exercises related to differential geometry

The proof of the incidence theorem in this chapter used algebraic geometry in
a crucial way, and it also used some differential geometry. In this section, we do
some exercises related to the differential geometry tools in the chapter. The goal of
the exercises is to understand some geometric facts related to the shapes you can
make with a piece of paper. If you have time, try taking a piece of paper and see
what shapes you can make with it, without folding or crumpling. In some ways, it
seems pretty flexible. For instance, it is easy to roll the paper into a thin cylinder or
cone. On the other hand, without folding or crumpling, it is hard to get the paper
to fit into a small ball. You can roll it up into a narrow tube, but the shape always
seems to be long in one direction. If you look carefully at it, you may see that the
surface contains a lot of line segments. The presence of these line segments forces
the shape to have at least one long direction. This phenomenon was established
by Darboux and others in the late 19th century. See [CL] or [JP] for more recent
references. Over the exercises, we will explore why this happens and say it in a
more precise way. The tools are similar to the ones we used in Section 13.5.

Suppose that Σ ⊂ R3 is a smooth 2-dimensional surface. (We use the word
smooth to mean C∞.) Near a point p ∈ Σ, we can choose orthonormal coordinates
x1, x2, x3 so that Σ can be written locally as a graph:

x3 = h(x1, x2).

In the arguments in Section 13.5, the rank of the Hessian, Rank∇2h, played an
important role. We begin by exploring the geometric meaning of this rank. Our
first observation is that the rank of the Hessian at a point p ∈ Σ does not depend
on the choice of orthonormal coordinates (x1, x2, x3). The rank only depends on
the geometry of the surface Σ. We state this as an exercise.

Exercise 13.13. Suppose that R : R3 → R3 is a rotation, or more generally
a rigid motion. Suppose that Σ ⊂ R3 is a smooth 2-dimensional submanifold, let
Σ̃ = R(Σ) and let p̃ = R(p). Suppose that near p, Σ is described by a graph

x3 = h(x1, x2), and near p̃, Σ̃ is described as a graph x̃3 = h̃(x̃1, x̃2). Show that

Rank∇2h(p1, p2) = Rank∇2h̃(p̃1, p̃2).
A similar statement holds for m-dimensional submanifolds of Rn for any m, n.

To study the geometry of a surface Σ near a point p ∈ Σ, it is convenient to
choose orthonormal coordinates so that p = 0 and the tangent plane of Σ at p is
the (x1, x2)-plane. In terms of the function h, this means that 0 = h(0) = ∇h(0).
(This choice of coordinates is helpful in the exercise above, for example.) In these
coordinates, h has the form

h(x1, x2) = Q(x1, x2) + O(|x|3),
where Q is a homogeneous polynomial of degree 2, which we can think of as a
symmetric matrix A. The precise relationship between Q and A is that

Q(x) = xtAx.

Here x = (x1, x2) ∈ R2 is a vector and xt denotes the transpose of x. The eigenval-
ues of the matrix A are called the principal curvatures of Σ at p, and the matrix A
itself is the second fundamental form of Σ at p.

We see from this discussion that Rank∇2h ≤ 1 at a point of Σ if and only if
one of the principal curvatures of Σ vanishes at p. Now the Gauss curvature of Σ at
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p is the product of the two principal curvatures, and so we see that Rank∇2h ≤ 1
at a point p ∈ Σ if and only if the Gauss curvature of Σ vanishes at p.

The Gauss curvature is one of the main characters in the differential geometry
of surfaces in R3. One of the important properties of the Gauss curvature is that
it is invariant under isometries. Suppose that Σ0 ⊂ R3 is a smooth 2-dimensional
surface. Recall that a smooth embedding φ : Σ0 → R3 is called an isometric
embedding if φ preserves the lengths of tangent vectors: for any p ∈ Σ0 and v ∈
TpΣ0, |dφ(v)| = |v|. If Σ is the image of the isometric embedding φ : Σ0 → R3,
then the Gauss curvature of Σ0 at p is the same as the Gauss curvature of Σ at
φ(p). Gauss called this result the Theorem Egregium. For an explanation of this
result, see [Ca].

If Σ0 is an open subset of a plane, then the principal curvatures of Σ0 vanish at
every point, and so Σ0 has zero Gaussian curvature. If φ : Σ0 → R3 is an isometric
embedding with image Σ, then the Theorem Egregium implies that Σ has zero
Gaussian curvature. Near any point, we can write Σ as a graph, x3 = h(x1, x2),
and by the discussion above we see that Rank∇2h ≤ 1 at all points.

The fact that Rank∇2h ≤ 1 has some important consequences. We start by
discussing the algebraic consequences and then we work towards the geometric
consequences.

Exercise 13.14. Suppose that Rank∇2h(x) ≤ 1. If ∇2
vh(x) = 0, then prove

that ∇w∇vh(x) = 0 for any vector w.
If Rank∇2h(x) = 1, and if v is a non-zero vector with ∇2

vh(x) = 0, then prove
that

(13.22) ∇w1
∇w2

h(x) = 0 if and only if w1 or w2 is in Span(v).

Suppose that h : B → R is a smooth function defined on a ball B ⊂ R2 obeying
the condition Rank∇2h ≤ 1. We are going to explore the geometric consequences
of this condition. Suppose that v is a smooth vector-field on B which obeys the
condition

∇2
vh(x) = 0 for all x ∈ B.

Then surprisingly, v is forced to obey the stronger condition

(13.23) ∇3
vh(x) = 0 for all x ∈ B.

Exercise 13.15. Prove Equation 13.23. To start, observe that since ∇2
vh(x) =

0 on all of B, we can differentiate to get

0 = ∂v(∇2
vh(x)) for all x ∈ B.

Expand out the left-hand side and use Exercise 13.14 to find ∇3
vh(x).

For the rest of this section, we focus on the special case that Rank∇2h(x) = 1
for all x ∈ B. In this special case, the geometry is cleaner and simpler. In this
case, for any x ∈ B, there is a 1-dimensional subspace K(x) of vectors v so that
∇2

vh(x) = 0. This 1-dimensional subspace K(x) depends smoothly on x. In the
neighborhood of a point x0 ∈ B, we can always find a smooth non-vanishing vector
field v with v(x) ∈ K(x) for all x. (See the beginning of the proof of Lemma 13.31
for a construction of v.) By Equation 13.23, we see that every point in the graph of
h is flecnodal! This is really a little surprising because the condition Rank∇2h = 1
is a condition about the second derivatives of h, but being flecnodal is about third
derivatives. Nevertheless it is true.
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Now a variation of the Cayley-Monge-Salmon theorem implies that every point
in the graph of h lies in a line segment in the graph of h. The variation that we need
here is the version of Lemma 13.31 when Rank∇2h = 1 instead of Rank∇2h = 2.
Here is the statement.

Lemma 13.36. Suppose that h : B → R is a smooth function, for a ball B ⊂ R2.
For each x ∈ B, let K(x) ⊂ R2 be a 1-dimensional subspace, varying smoothly in
x. Suppose that for any vector v ∈ K(x), we have

∇2
vh(x) = ∇3

vh(x) = 0.

Finally, suppose that Rank∇2h = 1 everywhere in B.
For each x0 ∈ B, let L(x0) be the line through x0 with tangent space K(x).

Then at each point x ∈ L(x0)∩B, the K(x) is equal to the tangent space of L(x0).
Moreover, the restriction of h to each line L(x) is linear.

There is also a complex version of this lemma, where we replace R with C and
assume that h is holomorphic. The proof is essentially the same in the real or
complex cases.

The proof of the Cayley-Monge-Salmon theorem about ruled surfaces requires
both the rank 1 case and the rank 2 case. See [Ko] for an outline of the proof,
explaining how to boil the proof down to these two cases. Lemma 13.36 is probably
the trickiest step in the proof of Cayley-Monge-Salmon. We will explain the main
steps of the proof in the exercises below.

Lemma 13.36 implies a lot about the geometry of isometric embeddings of a
planar surface, at least in the special case that the rank of the Hessian is identically
1.

Exercise 13.16. Suppose that φ is a smooth isometric embedding from the
unit disk into R3 with image Σ. Suppose in addition that at each point of Σ′, the
second fundamental form has rank exactly 1. (Therefore, if Σ is locally given by a
graph x3 = h(x1, x2), then Rank∇2h is identically 1.)

Using Lemma 13.36, prove that every point of Σ lies in a line segment in Σ, and
the endpoints of this line segment lie in ∂Σ. Using this, prove that Σ contains a
line segment of length 2, and conclude that Σ is not contained in any ball of radius
< 1.

The proof of Lemma 13.36 involves similar ideas to the proof of Lemma 13.31
(the rank 2 case), but the proof is trickier and more complicated. Before diving
into the proof, let us talk a little about what makes the proof trickier. Suppose
that h : B → R is a smooth function and φ is a smooth map from an interval I into
B. We say that φ is a flecnodal curve if

• For each s ∈ I, φ′(s) �= 0.
• For each s ∈ I, ∇2

φ′(s)h(φ(s)) = ∇3
φ′(s)h(φ(s)) = 0.

In the proof of Lemma 13.31, we showed that if Rank∇2h(x) = 2 for all x ∈ B,
then every flecnodal curve is a straight line. This step was the hardest part of the
proof of the Lemma. Using the hypothesis that at every point there is a flecnocal
direction, it was straightforward to construct a flecnodal curve through every point
of the domain B. Then we showed that each of these flecnodal curves was a straight
line. However, for a general smooth h it is not true that every flecnodal curve is a
straight line. We give a counterexample in the next exercise.
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Exercise 13.17. Suppose that h is the smooth function

h(x1, x2) = (x2
1 + x2

2 − 1)2.

Let φ : R → R2 be given by φ(s) = (cos s, sin s). Check that φ is a flecnodal
curve. The image of φ is the unit circle and not a straight line.

In this example, the rank of ∇2h(x) is sometimes 1 and sometimes 2. In
particular, the rank of ∇2h(x) = 1 for x in the unit circle. This example is not,
however, a counterexample to Lemma 13.36. The circle is a flecnodal curve, and
at every point in the circle, there is a flecnodal direction. But for other values of
x, there is no flecnodal direction. Under the assumptions of Lemma 13.36, it is not
hard to show that there is a flecnodal curve through every point of the domain.
Using this whole family of curves, instead of just one curve, we will show that all
of the curves are straight lines. The need to use a whole family of flecnodal curves
instead of a single flecnodal curve is the new wrinkle in the proof of Lemma 13.36.

We give an outline of the proof, leaving the calculations as exercises for the
reader.

Outline of the proof of Lemma 13.36. Let Φ(r, s) be a map from (−ε, ε)2

to B ⊂ C2 so that at each point (r, s),

0 �= ∂Φ

∂s
(r, s) ∈ K(Φ(r, s)).

To find such a function, we may first pick a non-vanishing vector field v on B
with v(x) ∈ K(x). Then we define Φ on (−ε, ε) × {0}. For each r ∈ (−ε, ε), we
solve the ordinary differential equation ∂Φ

∂s (r, s) = v(Φ(r, s)). In this way, we define

Φ(r, s) on the whole domain (−ε, ε)2. We can think of Φ(r, s) as a 1-parameter
family of integral curves of v – hence as a 1-parameter family of flecnodal curves.

Since ∂Φ
∂s (r, s) ∈ K(Φ(r, s)), we know that

(13.24) ∇2
∂Φ
∂s

h(Φ) = 0.

and

(13.25) ∇3
∂Φ
∂s

h(Φ) = 0.

By choosing the initial curve Φ(r, 0) in a generic way, we can assume that
∂Φ
∂r (0, 0) /∈ K(Φ(0, 0)). After possibly shrinking the domain of Φ, we can then
assume that for all (r, s),

(13.26)
∂Φ

∂r
(r, s) /∈ K(Φ(r, s)).

We would like to prove that ∂2Φ
∂s2 (r, s) ∈ K(Φ(r, s)) for every (r, s), which implies

that K(Φ(r, s)) is constant in the s variable. This implies that each curve s →
Φ(r, s) lies in the line LΦ(r,0), showing that each flecnodal curve in our family is a
straight line.

We will repeatedly use the fact that Rank∇2h = 1 via Lemma 13.14. Lemma
13.14 tells us that

(13.27) ∇w1
∇w2

h(x) = 0 if and only if at least one of w1, w2 lies in K(x).
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We will eventually calculate that ∇ ∂Φ
∂r
∇ ∂2Φ

∂s2
h = 0. Since ∂Φ

∂r is not in K,

Equation 13.27 implies that ∂2Φ
∂s2 ∈ K as desired. We build up to calculating

∇ ∂Φ
∂r
∇ ∂2Φ

∂s2
h in a sequence of steps, combining the equations we have found so far.

Since ∂Φ
∂s ∈ K, Equation 13.27 tells us that for any vector w:

(13.28) ∇w∇ ∂Φ
∂s

h(Φ) = 0.

In particular,

(13.29) ∇ ∂Φ
∂r
∇ ∂Φ

∂s
h(Φ) = 0.

Differentiating Equation 13.24 with respect to r, we get

0 =
∂

∂r

(
∇2

∂Φ
∂s

h(Φ)
)

.

Exercise 13.18. Expand the right-hand side and use Equation 13.28 to show
that

(13.30) ∇ ∂Φ
∂r
∇2

∂Φ
∂s

h(Φ) = 0.

Next we differentiate Equation 13.29 with respect to s, to get

0 =
∂

∂s

(
∇ ∂Φ

∂r
∇ ∂Φ

∂s
h(Φ)

)
.

Exercise 13.19. Expand the right-hand side and use Equations 13.28 and
13.30 to show that

(13.31) ∇ ∂Φ
∂r
∇ ∂2Φ

∂s2
h(Φ) = 0.

By Equation 13.27, this equation implies that

(13.32)
∂2Φ

∂s2
∈ K.

The rest of the proof of Lemma 13.36 is the same as for Lemma 13.31.
�

In this discussion, we have developed a pretty good understanding of isometric
embeddings of the unit disk into R3, in the special case that the second fundamental
form of the image has rank identically 1. For the reader interested in differential
geometry, it could be a good project to try to understand which features of our
discussion extend to general smooth isometric embeddings.





CHAPTER 14

The polynomial method in differential geometry

In this chapter, we discuss some ideas from differential geometry that are anal-
ogous to the ideas we have seen in combinatorics and in coding theory. We consider
the question, “what is special about polynomials?” from the point of view of differ-
ential geometry. Eventually, using these observations, we will prove a differential
geometry theorem with no apparent connection to polynomials. The proof of this
result is analogous to the proof of the finite field Nikodym theorem - based on
parameter counting and on the vanishing lemma.

From the point of view of differential geometry, polynomials are strikingly ef-
ficient. There are a lot of interesting examples of this efficiency in Arnold’s essay
“Topological economy principle in algebraic geometry”, [Ar]. We begin with a
short survey of results about complex polynomials. These results are interesting,
but the proofs are not closely related to the methods in this book.

Next we switch from complex to real polynomials. In particular, we discuss
a recent theorem of Gromov on the efficiency of the space PolyD(Rn). The proof
uses the Stone-Tukey ham sandwich theorem, which plays an important role in the
polynomial partitioning arguments in Chapter 10. This argument from differential
geometry helped to suggest the polynomial partitioning arguments there.

This chapter requires a little background in differential geometry and topology.
A good reference is the book Differential Topology [GP]. The chapter is not used
anywhere else in the book, so it would be fine to skip it, or to read it for the main
ideas without following every detail.

14.1. The efficiency of complex polynomials

We recall the definition of regular points and regular values from differential
topology. Suppose that f : Rm → Rn is a smooth map. A point x ∈ Rm is called a
regular point if the derivative dfx : Rm → Rn is surjective. A point y ∈ Rn is called
a regular value if every point x ∈ f−1(y) is a regular point.

If f : Rn → Rn is a smooth map between spaces of the same dimension, and if x
is a regular point, then dfx is either orientation preserving or orientation reversing.
We define μf (x) = +1 if det dfx > 0 and μf (x) = −1 if det dfx < 0.

Another fundamental object from topology is the winding number. If f : S1 →
R2, then we write W (f, 0) for the winding number of f around 0. (For an intro-
duction to winding numbers see Chapter 3 of [Ful] or page 86 of [GP].)

Now there is a fundamental theorem of differential topology that connects the
winding number of a map f and the multiplicities μf (x) for points x ∈ Z(f).

195
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Theorem 14.1. (Page 87 of [GP]) If F : B̄2 → R2 is a smooth map and 0 is
a regular value, and if F |S1 does not vanish, then

W (F |S1 , 0) =
∑

x∈Z(F )∩B2

μ(x).

We will use this theorem to study a complex polynomial in one variable. We will
prove that, in a certain sense, a complex polynomial has as few zeroes as possible.
We identify C with R2.

Theorem 14.2. Suppose that P : C → C is a complex polynomial, and suppose
that F : R2 → R2 is a smooth function that agrees with P outside of the unit disk.
Also suppose that 0 is a regular value for both F and P . Then |Z(P )| ≤ |Z(F )|.

Proof. We can assume that P does not vanish on the unit circle. (If P
vanishes on the unit circle, just replace the unit disk by a disk of radius (1 + ε)
and rescale the domain.) By hypothesis, P and F agree on the unit circle. Now by
Theorem 14.1,∑

x∈Z(F )∩D2

μF (x) = W (F |S1 , 0) = W (P |S1 , 0) =
∑

x∈Z(P )∩D2

μP (x).

At a point x ∈ Z(P ), the multiplicity μP (x) is always +1, because the derivative
dP : C → C is complex linear. If we view dP as a map from R2 to R2, then it
preserves orientation, and so it has positive determinant. Then it follows that
|Z(F ) ∩ D2| ≥ |Z(P ) ∩ D2|. Since P and F agree outside of D2, we have |Z(F )| ≥
|Z(P )|. �

There is a deeper theorem that generalizes this result to polynomials in many
variables. To state this result, we first recall a little more about regular values.

Proposition 14.3. (The Preimage Theorem on page 21 of [GP] ) If f : Rm →
Rn is a smooth map, and y ∈ Rn is a regular value, then f−1(y) is a smooth
submanifold of dimension m − n.

The same definition and result make sense over the complex numbers. If f :
Cm → Cn is a holomorphic map, and point z ∈ Cm is a regular point if dfz : Cm →
Cn is surjective, and a point w ∈ Cn is a regular value if every point z ∈ f−1(w) is
a regular point. If w is a regular value, then f−1(w) is a complex submanifold of
Cm of (complex) dimension m − n.

Now we can state a generalization of Theorem 14.2 to polynomials of many
variables. We identify Cn = R2n and use the Euclidean metric on R2n to measure
volumes.

Theorem 14.4. (Federer) Suppose that P : Cn → C is a complex polynomial,
and suppose that F : R2n → R2 is a smooth function that agrees with P outside of
the unit ball B2n. Moreover, suppose that 0 is a regular value of P and F . Then

(14.1) Vol2n−2 Z(P ) ∩ B2n ≤ V ol2n−2Z(F ) ∩ B2n.

This result says that the zero set of P does not waste any volume - it is as
efficient as possible. This theorem implies that Z(P ) is a minimal surface. This
result plays an important role in the theory of minimal surfaces and in differential
geometry. Among other places, the proof appears in Federer’s book on geometric
measure theory [Fed].
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The proof of this theorem is beyond the scope of this book, but we can make a
couple comments about it. Suppose that L is a complex line in Cn. For almost any
such line, P does not vanish on L ∩ ∂B2n. In this case, Theorem 14.2 implies that
|Z(F )∩L∩B2n| ≥ |Z(P )∩L∩B2n|. In other words, for almost every complex line
L, the intersection L ∩ (Z(F ) ∩ B2n) is bigger than L ∩ (Z(P ) ∩ B2n). From this
information, we would like to conclude that Z(F )∩B2n is bigger than Z(P )∩B2n.
It is possible to do this using integral geometry.

Integral geometry studies the connection between the geometry of a surface
M ⊂ Rn and the intersections M ∩ π for various planes π ⊂ Rn. We will introduce
integral geometry in Section 14.3 below, but we won’t do enough to prove Theorem
14.4.

The proof of Theorem 14.4 is usually written in a different way using differential
forms. It has had a significant influence in geometry - many other arguments
modelled on it have appeared since then. This type of argument was dubbed a
calibration argument by Harvey and Lawson who generalized it to many other
settings. A good place to read about this material is their paper [HL].

A more recent result describes the topological efficiency of complex algebraic
curves. It was conjectured by Milnor in the 60’s and proven by Kronheimer and
Mrowka in the 90’s. We state a special case of their result here:

Theorem 14.5. (Kronheimer-Mrowka [KM]) Suppose that P : C2 → C is a
complex polynomial, and suppose that F : R4 → R2 is a smooth function that
agrees with P outside of the unit ball B4. Also, suppose that 0 is a regular value
for P and F , and that Z(P ) ∩ B4 and Z(F ) ∩ B4 are connected. Then the genus
of Z(P ) ∩ B4 is at most the genus of Z(F ) ∩ B4.

Since 0 is a regular value for P and F , Z(P ) ∩ B4 and Z(F ) ∩ B4 are both
oriented surfaces. The theorem says that Z(P ) ∩ B4 is topologically simpler than
Z(F )∩B4 – the polynomial P does not waste any ‘handles’ of Z(P ). It seems to be
unknown if this theorem has any generalizations to polynomials on Cn for n > 2.

14.2. The efficiency of real polynomials

The results in the last section describe beautiful special features of complex
polynomials. Our next goal is to understand whether they have any analogue for
real polynomials. At first, this seems impossible. By the Weierstrauss approxima-
tion theorem, any continuous function on a compact set in Rn can be approximated
arbitrarily well by a real polynomial. Morally, a real polynomial can impersonate
any function – conversely, nothing at all is special about real polynomials. It’s easy
to write down a real polynomial P and a competitor F which badly violate the
volume inequality in Equation 14.1.

For example, consider the polynomial in one variable: P (x) = x2 − 1 on the
interval [−2, 2]. This polynomial has two zeroes on the interval [−2, 2], but it is
easy to find a smooth function which agrees with P outside of [−2, 2] and which is
strictly positive.

Interesting results appear when we shift our perspective from a single de-
gree D polynomial to the whole space PolyD(Rn). An individual polynomial
P ∈ PolyD(Rn) is not an efficient function, but the whole space PolyD(Rn) is
efficient compared to other spaces of functions with the same dimension. Moreover,
the ideas in the proof are similar to the ideas in the proof of the finite field Nikodym
theorem.
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Let us set up some relevant terminology. If Ω ⊂ Rn is an open set, and
V ⊂ C0(Ω,R) is a vector space of continuous functions from Ω to R, then we define

AreaΩ V := sup
0�=f∈V

Voln−1 Z(f) ∩ Ω.

Now we can state a precise theorem about the efficiency of real polynomials.

Theorem 14.6. (Gromov, [Gr]) Let n be any dimension and D ≥ 1 be any de-
gree. If V ⊂ C0(Bn,R) is a vector space of functions and Dim V = Dim PolyD(Rn),
then

AreaBn V ≥ cn AreaBn PolyD(Rn).

This theorem appears in Section 4.2 of [Gr], and there are related ideas in
[Gr2]. The optimal constant cn in this theorem is unknown.

The proof of the theorem is based on two steps. The first step is to show that
AreaPolyD(Rn) ∼ D. This step is a classical result, which is based on the vanishing
lemma.

Proposition 14.7. (Crofton) There are constants cn < Cn so that cnD ≤
AreaBn PolyD(Rn) ≤ CnD.

The next step is to show that AreaBn V cannot be too small.

Proposition 14.8. If V ⊂ C0(Bn,R) is a vector space of functions with
Dim V ≥ 2, then AreaBn V ≥ cn(DimV )1/n.

The proof of this proposition uses a version of the parameter counting argument.
If Dim V is large, we have many parameters at our disposal, and we can tune the
parameters to find a non-zero f ∈ V which vanishes a lot. The argument uses the
Stone-Tukey ham sandwich theorem.

These two propositions immediately imply Theorem 14.6. In particular, if we
know that Dim V = Dim PolyD(Rn) ≥ cnDn, then we see that AreaBn V ≥ cnD ≥
cn AreaBn PolyD(Rn).

14.3. The Crofton formula in integral geometry

In this section, we sketch the proof of Proposition 14.7. The proof is based on
integral geometry.

Suppose that P is a non-zero polynomial in PolyD(Rn). What is the maximal
possible volume of Z(P )∩Bn? If P is a product of D linear factors, then Z(P ) is a
union of D planes. By choosing planes that go through the origin, we can arrange
that Z(P )∩Bn has (n−1)-volume ∼ D. We will prove that for any P ∈ PolyD(Rn),
Z(P ) ∩ Bn−1 has volume � D.

In Exercise 2.3, we proved that if P ∈ PolyD(Fn
q ), then |Z(P )| ≤ Dqn−1. This

estimate is sharp when Z(P ) consists of D parallel planes. The proof was based
on the vanishing lemma, which says that if l is a line in Fn

q , then either Z(P ) ∩ l
contains ≤ D points or else l ⊂ Z(P ). The lines contained in Z(P ) turn out to be
rather rare. Just for heuristics, suppose that we knew that |Z(P )∩ l| ≤ D for every
line l. Then it follows by averaging over all the lines that |Z(P )|/|Fn

q | ≤ D/q giving

|Z(P )| ≤ Dqn−1. (In the real proof of Exercise 2.3, you have to be more careful to
deal with the lines l ⊂ Z(P ).)

Our estimate for the volume of Z(P ) ⊂ Rn follows similar ideas. If l is a line,
then either l∩Z(P ) contains ≤ D points, or else l ⊂ Z(P ). We will control the size
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of Z(P ) by considering |Z(P )∩ l| for each line l ⊂ Rn and averaging over all lines l.
In the real case, we are averaging over an infinite set of lines. In the 1800’s, Crofton
figured out how to take such an average. Crofton found a formula to recover the
volume of a hypersurface S ⊂ Rn in terms of the number of intersections in S ∩ l
for all the lines l ⊂ Rn. Crofton’s formula says that the volume is an appropriate
average of |S ∩ l| over all l.

Each line in Rn has a parametrization of the form γ(t) = vt+b, where v ∈ Sn−1

and b is perpendicular to v. Let l(v, b) be the line parametrized by γ(t) = vt + b.
(Each line now has exactly two parametrizations with opposite orientations, because
l(v, b) = l(−v, b).)

Theorem 14.9. (Crofton) For each dimension n ≥ 2 there is a constant αn > 0
so that the following holds. If S is a smooth hypersurface in Rn, then

Voln−1 S = αn

∫
Sn−1

(∫
v⊥

|l(v, b) ∩ S|db

)
dvolSn−1(v). (∗)

We give some motivation for this theorem, but not a complete proof. The key
point is that both sides of equation (∗) are invariant with respect to translating and
rotating S. (The left hand side is clearly invariant with respect to translation and
rotation. Checking that the right hand side is invariant with respect to rotation
and translation is an exercise in multivariable calculus.)

By choosing αn, we can arrange that formula (∗) holds when S is the unit
(n − 1)-cube [0, 1]n−1 × {0}. By invariance, (∗) also holds for any translation or
rotation of the unit (n − 1)-cube.

Next we notice that both sides of (∗) are additive with respect to disjoint
unions. Let’s define the right hand side of (∗) to be Cr(S), the Crofton size of
S. If S1 and S2 are disjoint hypersurfaces, then VolS1 ∪ S2 = Vol S1 + Vol S2 and
Cr(S1 ∪ S2) = Cr(S1) + Cr(S2).

Next, we subdivide the unit cube into An−1 subcubes of side length A−1, for
some integer A ≥ 2. By translation symmetry, they each have the same Crofton
size. By additivity, we see that Cr([0, A−1]n−1 × {0}) = A−(n−1). In other words,
the equation (∗) holds for cubes of side length A−1 for any integer A ≥ 1.

Finally, we approximate an arbitrary smooth S by a finite union of small (n−1)-
cubes. In fact, we let Sj be a sequence of approximations with finer cubes. For
every j, we have Voln−1 Sj = Cr(Sj). We only have to check that we can choose
a sequence of approximations Sj so that VolSj → VolS and Cr(Sj) → Cr(S).
This last point is more technical, and we don’t prove it here, but I hope that
this discussion gives some hint why the Crofton formula should be true. For more
information about the Crofton formula, see [Sa].

Assuming Crofton’s formula, we can now bound the volumes of algebraic sur-
faces. Again we give the main idea but don’t do all technical details. Let P be a
non-zero polynomial of degree ≤ D. Suppose first that Z(P ) is a smooth hyper-
surface. We know that |l(v, b) ∩Z(P )| ≤ D unless l(v, b) ⊂ Z(P ). Next we explain
why the lines contained in Z(P ) contribute nothing to the integral in Cr(Z(P )).
For each v, the set of b ∈ v⊥ so that l(v, b) ⊂ Z(P ) has measure 0. Therefore, for
each v, these lines contribute nothing to the inner integral.

Next we note that if |b| > 1, l(v, b) does not intersect the unit ball Bn. In this
case, l(v, b)∩ (Z(P )∩Bn) is empty. Combining the information we have gathered,
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we see that

Voln−1 Z(P ) ∩ Bn ≤ αn

∫
Sn−1

(∫
b∈v⊥,|b|≤1

Ddb

)
dvolSn−1(v).

For comparison, every line l(v, b) with |b| < 1 intersects the unit sphere Sn−1

in exactly two points. Therefore,

Voln−1 Sn−1 = αn

∫
Sn−1

(∫
b∈v⊥,|b|≤1

2db

)
dvolSn−1(v).

Comparing the last two equations, we see that

V oln−1Z(P ) ∩ Bn ≤ (D/2) Voln−1 Sn−1.

Incidentally, if D is even, the bound is exactly sharp, because Z(P ) could consist
of D/2 spheres with center at 0 and radii arbitrarily close to 1.

To prove Proposition 14.7, one has to check that the same bound holds when
Z(P ) has singular points. We don’t address this technical point here.

Although there are some technical details to fill in, I would like to emphasize
that morally the estimate for the volume of Z(P )∩Bn follows from the symmetry
of Rn and the vanishing lemma. Our theorem says that a polynomial of degree ≤ D
cannot vanish on a set of much larger volume than D planes, and so the theorem is
a cousin of estimates for the number of zeroes of a polynomial P : Fn

q → Fq which
we used in the proof of the finite field Nikodym theorem.

14.4. Finding functions with large zero sets

Let V be a vector space of functions in C0(Bn,Rn). If the dimension of V is
large, we want to prove that there exists a non-zero F ∈ V so that Voln−1 Z(F )∩Bn

is large. Morally, we are going to prove this by a parameter-counting argument. If
Dim V is large, we have a lot of parameters to play with, and we will choose them
so that F vanishes at a lot of places.

We will exploit the large dimension of V by using the Stone-Tukey ham sand-
wich theorem, which we discussed in Section 10.3.1.

Theorem. (General ham sandwich theorem, Stone and Tukey, [StTu]) Let V
be a vector space of continuous functions on Rn. Let U1, ..., UN ⊂ Rn be finite
volume open sets with N < Dim V . For any function f ∈ V \ {0}, suppose that
Z(f) has Lebesgue measure 0. Then there exists a function f ∈ V \ {0} which
bisects each set Ui.

(Recall that a function f bisects a finite volume open set U if the sets {x ∈
U |f(x) > 0} and {x ∈ U |f(x) < 0} each have one half the volume of U .)

Using the ham sandwich theorem, we can now prove Proposition 14.8. Suppose
that V ⊂ C0(Bn,R) is a vector space. If there is a non-zero F ∈ V so that Z(F ) has
positive Lebesgue measure, then Z(F ) has infinite (n−1)-dimensional volume, and
so the conclusion holds. So we can assume that Z(F ) has zero Lebesgue measure
for each 0 �= F ∈ V . Then we can apply the general ham sandwich theorem.

Let N = Dim V − 1. Suppose that U1, ..., UN are disjoint balls in Bn. We can
choose U1, ..., UN to have radius ≥ cnN−1/n, for example by putting the centers of
the balls on a cubical grid. Now we can choose a non-zero F ∈ V that bisects each
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Ui. This bisection forces Z(F )∩Ui to be fairly large for each i. We make this more
precise as follows:

Lemma 14.10. Suppose that F bisects the unit ball Bn. Then Z(F ) ∩Bn has
(n − 1)-volume at least cn > 0.

We indicate a proof of this lemma in the exercises. Rescaling the ball, we see

that Voln−1(Z(F ) ∩ Ui) ≥ cnN−n−1
n . Since the balls Ui are disjoint, it follows

that the total volume Voln−1(Z(F ) ∩ Bn) is ≥ cnN1/n. In other words, AreaV ≥
cnN1/n ≥ cn(DimV )1/n. This proves Proposition 14.8.

Exercise 14.1. We outline a proof of the bisection lemma, Lemma 14.10, based
on ideas of Federer and Fleming from geometric measure theory. For simplicity, we
explain the proof in the case that Z(F ) is a smooth (n−1)-dimensional submanifold
of Rn. But this argument can also be extended to more general situations.

Let p ∈ Bn, and let πp : B̄n \ {p} → ∂Bn be the radial projection. In other
words, if x ∈ B̄n \p, then πp(x) is the point where the ray starting at p and passing
through x intersects ∂Bn. (If x ∈ ∂Bn, then πp(x) = x. ) We will study how πp

behaves on Z(F ) ∩ B̄n for various points p ∈ Bn.
If F (p) > 0, then the image πp(Z(F ) ∩ B̄n) contains all the points in ∂Bn

where F ≤ 0. To see this, suppose that F (p) > 0 and suppose that y ∈ ∂Bn with
F (y) ≤ 0. Then there must be some point x on the segment from p to y where
F (x) = 0, and πp(x) = y.

After possibly replacing F by −F , we can assume that

Voln−1({y ∈ ∂Bn|F (y) ≤ 0}) ≥ (1/2) Voln−1 ∂Bn.

Therefore, we see that for all p with F (p) > 0,

Voln−1(πp(Z(F ) ∩ B̄n) � 1.

This suggests the following question: If S ⊂ B̄n is an (n − 1)-dimensional
manifold, is it true that Voln−1(πp(S)) ≤ Cn Voln−1(S)? In general the answer to
this question is no. For instance, if S is a small sphere centered at p, then Voln−1(S)
is small, but πp(S) = ∂Bn. However, for a fixed surface S, Federer and Fleming
proved that Voln−1(πp(S)) ≤ Cn Voln−1(S) for many points p ∈ Bn. In particular,
Federer and Fleming proved that, for any ρ < 1, for any (n − 1)-dimensional
submanifold S in Bn,∫

Bρ

Voln−1(πp(S))dp ≤ C(ρ, n) Voln−1(S). (∗)

Use (∗) to prove the bisection lemma.
Next we outline the proof of (∗). Suppose that S ⊂ Bn is an (n−1)-dimensional

submanifold and that ρ < 1. First, using multivariable calculus, prove that

(14.2) Voln−1 πp(S) ≤ C(ρ, n)

∫
S

|p − x|−(n−1) dvolS(x).

Next plug this formula into
∫
B(ρ)

Voln−1 πp(S)dp and use Fubini.

14.5. An application of the polynomial method in geometry

We now give an application of the polynomial method to a geometry problem
that does not mention polynomials. The problem has to do with area-expanding
embeddings.
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If Ω ⊂ R3 is an open set, recall that an embedding φ : Ω → R3 is a smooth
map so that there is a smooth inverse map φ−1 : φ(Ω) → Ω. In particular, if φ
is an embedding then φ is injective and dφx is an isomorphism for every x ∈ Ω.
An embedding φ is called area-expanding if it does not decrease the area of any
2-dimensional surface in Ω. In other words, for any 2-dimensional submanifold
Σ ⊂ Ω, Vol2 φ(Σ) ≥ Vol2 Σ.

For example, the linear map φε(x, y, z) = (εx, ε−1y, ε−1z) is an area-expanding
embedding for any ε in the range 0 < ε < 1. If Σ is a square in the xy-plane, then
Areaφε(Σ) = AreaΣ. The same holds for a square in the xz-plane, and a square in
the yz-plane gets much bigger under φε. With a little more work, the reader can
check that the same holds for a small square at any angle, which implies that φε

is area-expanding. (For a further introduction to area-expanding embeddings, see
[Gu1].) The map φε sends the unit cube to a rectangular solid with one small axis
and two large axes, something like a long thin sheet.

There are also lots of non-linear area-expanding embeddings. To visualize one
example, let us imagine that the domain is made out of rubber. Anything you
can do with the rubber without stretching/contracting it much is approximately an
area-expanding embedding. For example, if the domain is a long thin rubber sheet,
you could roll it up like a carpet. If we begin with an embedding that doesn’t stretch
or contract lengths by more than 20 %, then we can make an honest area-expanding
embedding by composing it with the map x → 2x.

We have now met two area-exanding embeddings: the linear map φε which
distorts lengths a lot, and the carpet-rolling map which approximately preserves
lengths but is very non-linear. To construct complicated examples, notice that the
composition of two area-expanding embeddings is an area-expanding embedding.
For example, we can first send the unit cube to a thin square sheet and then roll
up the sheet into a tube. Then we could use another linear map to flatten the tube
into a thin sheet, and then we could roll up that thin sheet...

Now we come to a question about area-expanding embeddings. Given two
rectangular solids Ω1 and Ω2, when is there an area-expanding embedding from Ω1

into Ω2? Here is an interesting subcase:
Suppose that T is a rectangular solid of dimensions 1× 1×L, for some L ≥ 1.

The letter T stands for tube. Suppose that P is a rectangular solid of dimensions
ε × S × S, where ε < 1 < S. The letter P stands for pancake. For which values of
L, ε, S can we find an area expanding embedding from T into P? First we sketch a
construction.

Proposition 14.11. If L < (1/10)ε2S2, then there is an area-expanding em-
bedding T → P .

We sketch the proof. As we saw above, there is an area-expanding embedding
φε : T → [0, ε] × [0, ε−1] × [0, ε−1L]. Next we want to find an area-expanding
embedding from this rectangle into P . Notice that both this rectangle and P have
first dimension ε. We will look for a map of the form (x, y, z) → (x, ψ(y, z)), where
ψ is a length-expanding embedding from [0, ε−1] × [0, ε−1L] into [0, S]2. It just
remains to find such a ψ.

The inequality L < (1/10)ε2S2 is equivalent to

Area
(
[0, ε]−1 × [0, ε−1L]

)
≤ (1/10) Area([0, S]2).
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ψ

Figure 14.1. Folding up a rectangle inside a square.

Since L ≥ 1, it also implies that ε−1 ≤ (1/3)S. It’s now relatively easy to fold
up the rectangle [0, ε−1] × [0, ε−1L] inside of [0, S]2 without shrinking any lengths.
Figure 14.1 shows a picture of how the image of such a map may look.

This finishes our sketch of the proof.
The construction we just described only works if L is smaller than ε2S2. The

question arises whether there is a better construction that would work even if
L is much larger than ε2S2. There are lots of highly non-linear area expanding
embeddings, and so there are lots of possible constructions. But it turns out that
our construction is optimal up to a constant factor.

Theorem 14.12. There is a constant C so that the following holds. If φ : T →
P is an area-expanding embedding, then L < Cε2S2.

The statement of this theorem has nothing to do with polynomials, but we will
prove it using polynomials. The proof is somewhat analogous to the proof of the
finite field Nikodym theorem.

Proof. Let V ⊂ C0(P,R) be the vector space of polynomials in the variables
y, z with degree ≤ L1/2. We have Dim V ∼ L.

We evaluate AreaP V . If Q is a polynomial in y, z of degree ≤ L1/2, then the
Crofton formula implies that the length of Z(Q) ∩ [0, S]2 is � L1/2S. Now if we
think of Q as a map from P to R which doesn’t depend on the x coordinate, then
the area of Z(Q) ∩ P is � εL1/2S.

AreaP V � L1/2εS. (1)

Consider the pullback φ∗V ⊂ C0(T,R). (If F : P → R, then recall that the
pullback φ∗F : T → R is just defined by φ∗F (x) = F (φ(x)). The pullback φ∗V is
just the set of all φ∗F, F ∈ V . It’s easy to check that φ∗(F1 + F2) = φ∗F1 + φ∗F2

and φ∗(λF ) = λφ∗F for λ ∈ R. Therefore, φ∗V is a vector space with the same
dimension as V .)

Because φ is area-expanding, we claim that

AreaT φ∗V ≤ AreaP V. (2)
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To see this, consider any function F ∈ V . Since φ : T → P is area-expanding,
we have

AreaZ(φ∗F ) ∩ T ≤ AreaZ(F ) ∩ φ(T ) ≤ AreaZ(F ) ∩ P ≤ AreaP V.

Next we estimate AreaT φ∗V using the Stone-Tukey ham sandwich theorem.
We have Dim φ∗V ∼ L. The tube T contains ∼ L disjoint balls of radius 1. By
the ham sandwich theorem, we can choose a non-zero G ∈ φ∗V which bisects ∼ L
disjoint unit balls in T . Therefore, AreaZ(G) ∩ T � L. Therefore,

L � AreaT φ∗V. (3)

Assembling equations 3, 2, and 1, we get

L � AreaT φ∗V ≤ AreaP V � L1/2Sε.

Rearranging gives L � S2ε2. �

Why are polynomials the right space of functions to use in this argument? They
work because polynomials are the most efficient space of functions. We chose a space
V with dimension ∼ L. It was crucial that AreaP V was approximately minimal
among all spaces of dimension ∼ L. As we saw in the last section, polynomials have
approximately minimal area. Any space with approximately minimal area would
work just as well. (But can you find any other such space... ?)

This proof is analogous to the proof of the finite field Nikodym theorem, and
we end this chapter by comparing the two proofs. They are both proofs by contra-
diction.

For the finite field Nikodym theorem, we suppose that we have a small Nikodym
set N ⊂ Fn

q . By parameter counting, there must be a polynomial Q(x1, ..., xn) of
small degree that vanishes on N . By the vanishing lemma, Q vanishes at every
point of Fn

q . Now the polynomial Q vanishes too much, giving a contradiction.
For Theorem 14.12, we suppose that we have an area-expanding embedding

φ : T → P with dimensions obeying L � ε2S2. By parameter counting, there must
be a polynomial Q(y, z) of controlled degree so that φ∗Q bisects a lot of unit cubes
in T . Since φ is area-expanding, Q(y, z) must vanish on a surface of large area in
P . Comparing with the Crofton formula, we see that Q vanishes too much, giving
a contradiction.

Exercise 14.2. (**) To end this section, we mention a difficult open problem.
Theorem 14.6 says that AreaBn PolyD(Rn) ≤ Cn AreaBn V , whenever Dim V =
Dim PolyD(Rn), for some constant Cn. It would be very interesting to prove a
theorem in this spirit with constant Cn = 1. I believe that the sharp constant in
Theorem 14.6 is bigger than 1, but there is an analogous question on real projective
space where I think the sharp constant may be 1. This question requires a little
more background in differential geometry or algebraic geometry to state.

Let Poly=D(Rn+1) be the space of homogeneous polynomials on Rn+1 of degree
exactly D. For any P ∈ Poly=D, we can define Z(P ) ⊂ RPn. Now P is not a
function on RPn. Instead P is a section of a line bundle over RPn, called O(D). So
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we can think of Poly=D(Rn+1) as a vector space of sections of O(D). Suppose that
V is another vector space of sections of O(D), with DimV = Dim Poly=D(Rn+1).
Does it follow that

AreaRPn Poly=D+1(R
n+1) ≤ AreaRPn V ?

If it is true, this result would be a sharp statement about the efficiency of real
polynomials.





CHAPTER 15

Harmonic analysis and the Kakeya problem

At the beginning of the book, in Chapter 2, we discussed the proof of the
finite field Kakeya conjecture. This proof started many of the investigations we
have described in the book. The finite field Kakeya problem is a toy problem
for the original Kakeya problem in Euclidean space, an important open problem
in harmonic analysis. In this chapter, we explain the Kakeya problem and its
connections to harmonic analysis.

We also discuss how much the polynomial method has been able to say about
the original Kakeya problem and about harmonic analysis. We explain some of the
difficulties in trying to adapt the proof of finite field Kakeya to the Euclidean case,
and we give a succesful application of the polynomial method to an easier problem
related to Kakeya.

More broadly, this chapter is about some interactions between combinatorics,
geometry, and analysis in Euclidean space Rn. We will build up to the Kakeya
problem, beginning with some simpler and more classical connections between com-
binatorics and geometry.

15.1. Geometry of projections and the Sobolev inequality

15.1.1. Loomis-Whitney Inequality. The Loomis-Whitney inequality is a
geometric inequality related to the isoperimetric inequality. From the combinatorial
point of view, it is a special case of the joints problem when the lines are axis-
parallel.

Let X be a set of unit cubes in the unit cubical lattice in Rn, and let |X| be
its volume. Let πj be the projection onto the coordinate hyperplane perpendicular
to the xj-axis. If πj(X) is small for all j, what can we say about |X|?

Theorem 15.1. ([LW]) If |πj(X)| ≤ A, then |X| � A
n

n−1 .

Loomis and Whitney proved an estimate with a sharp constant: |X| ≤ A
n

n−1 .
Their original proof uses Holder’s inequality repeatedly.

This inequality is one of my favorite problems to give students. We can describe
it informally in the following way. We have a set X which appears small when
viewed from any coordinate direction. Does that mean that the set is actually
small? Even more informally, does a large object always look large?

I have spent some time trying to find the most direct and least computational
proof that I can. Here we give a proof which uses some of the inductive structure
from the proof of the joints theorem in Section 2.5. It doesn’t give the sharp
constant, but the computations are fairly simple.

Define a column to be the set of cubes obtained by starting at any cube and
taking all cubes along a line in the xj-direction, for some j.

207

https://doi.org/10.1090//ulect/064/15



208 15. HARMONIC ANALYSIS AND THE KAKEYA PROBLEM

Lemma 15.2. If |πj(X)| ≤ B for every j, then there exists a column of cubes

with between 1 and B
1

n−1 cubes of X.

Proof. Suppose not, so every column has > B
1

n−1 cubes. This means that

there are > B
1

n−1 cubes of X on some line parallel to the x1-axis. Call this line A1.
If p lies in A1 and lies in a cube of X, then the line through p parallel to the x2-

axis must intersect > B
1

n−1 cubes of X. Let A2 be the 2-plane containing A1 and

parallel to the (x1, x2)-plane. It must intersect > B
2

n−1 cubes of X. Proceeding this
way, we find an (n−1)-plane An−1, parallel to the (x1, ..., xn−1)-plane, intersecting
> B cubes of X. But then |πn(X)| > B, giving a contradiction. �

The Loomis-Whitney inequality follows from this Lemma by induction.

Corollary 15.3. If
∑

j |πj(X)| ≤ B, then |X| ≤
∑B

b=1 b
1

n−1 .

Therefore, |X| ≤ B
n

n−1 .

This corollary implies that if |πj(X)| ≤ A for each j, then |X| ≤ (nA)
n

n−1 ,
proving Theorem 15.1.

Proof of Corollary 15.3. We proceed by induction on B. The case B = 1
is trivial.

Let X ′ be X with its smallest column removed. Removing a column reduces
the size of πj(X) for some j, and so

∑
j |πj(X

′)| ≤ B − 1. By induction on B, we
can assume that

|X ′| ≤
B−1∑
b=1

b
1

n−1 .

By Lemma 15.2, the column that we removed contained at most B
1

n−1 cubes.
Therefore,

|X| ≤ |X ′| + B
1

n−1 ≤
(

B−1∑
b=1

b
1

n−1

)
+ B

1
n−1 .

�

We now generalize the Loomis-Whitney inequality to open sets instead of just
unions of unit cubes.

Theorem 15.4 (more general Loomis-Whitney). If U is an open set in Rn with

|πj(U)| ≤ A, then |U | � A
n

n−1 .

Proof. Take Uε ⊂ U be a union of ε-cubes in ε-lattice. Then |Uε| � A
n

n−1

and |Uε| → |U |. �

As a corollary, we can prove a version of the isoperimetric inequality with a
non-sharp constant.

Corollary 15.5 (Isoperimetric inequality). If U is a bounded open set in Rn,
then

Voln(U) � Voln−1(∂U)
n

n−1 .
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Proof. Since U is bounded, any line that intersects U must also intersect ∂U .
Therefore, πj(U) ⊂ πj(∂U). The projection map πj can only decrease (n − 1)-
dimensional volumes and so we get the inequality |πj(U)| ≤ Voln−1(∂U). Now
applying Theorem 15.4, we get the bound

|U | � (max
j

|πj(U)|) n
n−1 ≤ Voln−1(∂U)

n
n−1 .

�

15.1.2. Sobolev Inequality. The Loomis-Whitney inequality is a combina-
torial/geometric inequality about Euclidean space. Now we turn to its consequences
in analysis. We will use Theorem 15.4 to prove the Sobolev inequality, a funda-
mental estimate in analysis. The Sobolev inequality relates the size of a function u
and the size of its gradient ∇u.

We write C1
comp(R

n) for the space of C1 compactly supported functions on Rn.

Suppose that u ∈ C1
comp(R

n) satisfies
∫
|∇u| = 1. How big can the function u be?

Perhaps surprisingly, if n ≥ 2, then max |u| may be arbitrarily large. (We describe
an example in the exercises below.) Nevertheless, the restriction

∫
|∇u| = 1 does

the limit the size of u for a well-chosen notion of size.
Recall that the Lp-norm ||u||Lp is given by

||u||Lp =

(∫
|u|p

)1/p

For p = n
n−1 , the Lp norm of u ∈ C1

comp(R
n) is controlled by

∫
|∇u|.

Theorem 15.6 (Sobolev inequality). If u ∈ C1
comp(R

n), then

||u||
L

n
n−1

� ||∇u||L1 .

The Sobolev inequality is true only for this value of p. (Again see the exercises.)
To understand the size of u, the following definition is useful.

Su(h) := {x ∈ Rn so that |u(x)| > h}.
Knowing the volume of Su(h) for different h encodes a lot of information about

the size of u (including the Lp norms of u). The norm ‖∇u‖L1 controls the size of
the projection of Su(h) by the following lemma.

Lemma 15.7. If u ∈ C1
comp(R

n), then for any j,

|πj(Su(h))| ≤ h−1 · ||∇u||L1 .

Proof. For x ∈ Su(h), take a line 
 in the xj-direction. It eventually reaches
a point x′ where u(x′) = 0, so

∫
�
|∇u| ≥ h by the fundamental theorem of calculus.

This means that

||∇u||L1 ≥
∫
πj(Su(h))×R

|∇u| =

∫
πj(Su(h))

(∫
R

|∇u|dxj

)
dxother ≥ |πj(Su(h))| · h.

�

If we combine the Loomis-Whitney theorem, Theorem 15.4, with Lemma 15.7,
we get the following estimate:

(15.1) |Su(h)| � h− n
n−1 · ||∇u||

n
n−1

L1 .
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This inequality is closely related to the Sobolev inequality, but it’s a little
weaker. To relate ‖u‖Lp with the sizes Su(h), we can proceed as follows. For each
integer k, define Tu(k) to be the set where |u| is roughly 2k. More precisely:

Tu(k) := {x ∈ Rn so that 2k < |u(x)| ≤ 2k+1}.

Then for any p,

‖u‖pLp =

∫
|u|p ∼

∑
k∈Z

|Tu(k)|2kp.

On the other hand, |Tu(k)| ≤ |Su(2k)|. By Equation 15.1, we get the estimate

|Tu(k)|2k n
n−1 � ‖∇u‖

n
n−1

L1 .

We don’t get any bound for ‖u‖
n

n−1

L
n

n−1
∼
∑

k∈Z
|Tu(k)|2k n

n−1 , but we get a good

bound for each term in the sum. Equation 15.1 is a weaker version of the Sobolev
inequality. To get the full Sobolev inequality, we have to be a little more careful
about how the different scales relate to each other.

Proof of Theorem 15.6.

Lemma 15.8 (More careful version of Lemma 15.7). If u ∈ C1
comp(R

n), then for
any j, we have the inequality

|πjTu(k)| � 2−k

∫
Tu(k−1)

|∇u|.

The new detail here is that on the right-hand side, instead of taking the integral
of |∇u| over all of Rn, we only have to integrate |∇u| over Tu(k − 1).

Proof. Suppose x ∈ Tu(k). In other words, 2k < |u(x)| ≤ 2k+1.
Consider a line 
x in the xj-direction through x. There is a point x′ on 
 with

u(x′) = 0. Between x and x′, there is a region of 
x where |u| is between 2k−1 and
2k – this region lies in Tu(k − 1). In this region, there must be at least one line
segment where |u| = 2k at one endpoint and 2k−1 at the other endpoint. By the
fundamental theorem of calculus we see that∫

�x∩Tu(k−1)

|∇u| ≥ 1

2
2k.

We note that 
x does not depend on the xj coordinate of x - only on the other
coordinates. Now we proceed as in the proof of Lemma 15.7:∫

Tu(k−1)

|∇u| ≥
∫
πj(Tu(k))

(∫
�x∩Tu(k−1)

|∇u|dxj

)
dxother ≥ 1

2
2k|πj(Tu(k))|.

�

If we combine the Loomis-Whitney theorem, Theorem 15.4, with Lemma 15.8,
we get the following slightly stronger version of Inequality 15.1:

(15.2) |Tu(k)| � 2−k n
n−1

(∫
Tu(k−1)

|∇u|
) n

n−1

.
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We can now finish the proof of the Sobolev inequality by summing the contri-
bution from different values of k.∫

|u| n
n−1 ∼

∞∑
k=−∞

|Tu(k)|2k n
n−1 �

∑
k

(∫
Tu(k−1)

|∇u|
) n

n−1

≤
(∫

Rn

|∇u|
) n

n−1

,

where in the last step we move the sum inside the n
n−1 -power. �

Exercise 15.1. Examples for the Sobolev inequality. Let u be any function in
C1

comp(R
n). Define uλ by rescaling the space variable:

uλ(x) := u(x/λ).

Consider functions of the form huλ. If p �= n
n−1 , show that we can choose a

sequence hj , λj so that ‖u‖Lp → ∞ and ‖∇u‖L1 → 0.

15.2. Lp estimates for linear operators

Suppose that T is an operator that takes functions on Rn to functions on Rn.
Harmonic analysts often study Lp estimates for the operator. In other words, they
try to find all pairs of exponents p, q so that, for some constant C,

‖Tf‖Lq(Rn) ≤ C‖f‖Lp(Rn).

For the reader who hasn’t studied Lp estimates before, let us briefly try to explain
the kind of information contained in these inequalities. Suppose that the input
function f has support of volume V and suppose that on the support h/2 ≤ |f | ≤ h.
We want to understand the size of the output function Tf . Recall that STf (H) is
the set of x where |Tf(x)| > H. In terms of V, h, we would like to understand how
big |STf (H)| can be. This type of estimate is closely related to Lp estimates.

Proposition 15.9. Suppose that T obeys the inequality ‖Tf‖Lq(Rn) ≤
C‖f‖Lp(Rn). If the measure of the support of f is equal to V , and if |f | ≤ h
everywhere, then

|STf (H)| ≤ CqV q/p(h/H)q.

Proof. We have

|STf (H)|1/qH ≤ ‖Tf‖Lq ≤ C‖f‖Lp ≤ CV 1/ph.

Rearranging, we get

|STf (H)| ≤ CqV q/p(h/H)q.

�

In summary, understanding Lp estimates for an operator T describes to what
extent T can take a short wide input f and produce a tall thin output, and to what
extent it can take a tall thin input and produce a short wide output.

The linear operators that we study in this chapter will be convolutions. We do
a quick review of convolutions.

If f, g are functions from Rn to R (or to C), we define the convolution to be

(f ∗ g)(x) :=

∫
Rn

f(y)g(x − y)dy =

∫
Rn

f(x − y)g(y)dy.

If you haven’t seen this definition before, it might help to explain it with the
following story. Suppose there is a factory at 0 which generates a cloud of pollution



212 15. HARMONIC ANALYSIS AND THE KAKEYA PROBLEM

centered at 0 described by g(−y). If the density of factories at x is f(x), then the
final observed pollution is f ∗ g.

The first operator we will study is convolution by |x|−α, for 0 < α < n. We
define

Tαf := f ∗ |x|−α.

In other words,

Tαf(x) :=

∫
f(y)|x − y|−αdy.

We will take α in the range 0 < α < n, and we will assume (at least ini-
tially) that f is a bounded measurable function with compact support. These two
assumptions guarantee that integral above converges for each x, and that Tαf is
continuous.

To get a feel for this operator, we consider the case when f is the characteristic
function of a ball. We write Br for the ball of radius r centered at 0, and χBr

for
the characteristic function of Br. For these examples, we estimate TχBr

.

|TαχBr
(x)| ∼

{
rn · r−α if |x| ≤ r

rn · |x|−α if |x| > r.

Suppose that A ⊂ Rn has volume rn. It may seem intuitive that for any height
H,

|STχA
(H)| � |STχBr

(H)|.
This inequality turns out to be true. It follows from Lp estimates for the operator Tα

which were first proven by Hardy and Littlewood and (independently) by Sobolev.

Theorem 15.10. (Hardy-Littlewood-Sobolev) If p > 1 and α = n(1 − 1
q + 1

p ),

then ‖Tαf‖q ≤ C(n, p, q)‖f‖p.

This inequality has many applications in analysis and partial differential equa-
tions. We sketch one in the exercises at the end of this section. The algebraic
restriction on p, q, n, α looks a little complicated, but it has a simple interpretation:
these are just the exponents so that the inequality ‖Tαf‖q � ‖f‖p holds in the
simple example f = χBr

. More precisely, we can say that

Proposition 15.11. Fix a dimension n and consider the linear operator Tα.
The following are equivalent:

(1) There exists a constant C so that for every r > 0, ‖TαχBr
‖q ≤ C‖χBr

‖p.
(2) p > 1 and α = n(1 − 1

q + 1
p ).

(We leave the proof as an exercise for the reader.)
The proof of Theorem 15.10 is based on geometric/combinatorial estimates

about the intersection patterns of balls in Rn. It is our second example of how
geometry, combinatorics, and analysis interact. We give the proof in the next
section.

Exercise 15.2. Prove Proposition 15.11.

Exercise 15.3. Assuming Theorem 15.10, prove the following. Suppose that
A ⊂ Rn has volume rn. For any r and any H,

|STχA
(H)| ≤ C(n, α)|STχBr

(H)|.
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Exercise 15.4. If u ∈ C1
comp(R

n), prove that at each point x,

|u(x)| � Tn−1|∇u|.
Applying Theorem 15.10, prove the following version of the Sobolev inequality.

Suppose that u ∈ C1
comp(R

n), and 1 < p < n and n − 1 = n(1 − 1
q + 1

p ). Then

‖u‖Lq(Rn) ≤ C(n, p)‖∇u‖Lp(Rn).

15.3. Intersection patterns of balls in Euclidean space

Our next topic in the geometry of Euclidean space is to study the combinatorics
of how balls overlap. Here is a typical question, called the ball doubling problem.
Suppose that Bi is a finite list of balls in Rn. Let 2Bi be the ball with the same
center as Bi and twice the radius. Is there a universal constant Cn so that for any
finite set of balls in Rn,

| ∪i 2Bi| ≤ Cn| ∪i Bi|?
If we take a single ball B, then |2B| = 2n|B|. It looks plausible that for any
collection of balls Bi, | ∪i 2Bi| ≤ 2n| ∪i Bi|, but it is not obvious how to prove even
with a larger constant Cn. We will prove such an estimate using the Vitali covering
lemma, a fundamental result about balls in Euclidean space.

Lemma 15.12. (Vitali Covering Lemma) If {Bi}i∈I is a finite collection of balls
in Rn, then there exists a subcollection J ⊂ I such that {Bj}j∈J are disjoint but⋃

i∈I Bi ⊂
⋃

j∈J 3Bj .

Proof. Let Bj1 be a ball with maximal radius, and add j1 into J . Let Bj2

be a ball disjoint from Bj1 , with maximal radius among all the choices. Add j2 to
J . We continue in this way, adding a ball of maximal radius disjoint from all the
balls in J , until no more balls are available. Suppose that i /∈ J . We have to show
that Bi ⊂ ∪j∈J3Bj . Since i was not added to J , there must be a first jk so that
Bi ∩ Bjk is non-empty. Since Bi is disjoint from all the previous balls of J , the
radius of Bjk must be at least the radius of Bi. But then Bi ⊂ 3Bjk . �

Remark: This Lemma actually holds in any metric space.
From the Vitali covering lemma, we get the following estimate for the ball

doubling problem.

Lemma 15.13. (Ball doubling) If {Bi}i∈I is a finite collection of balls, then
|
⋃

2Bi| ≤ 6n|
⋃

Bi|.
Proof. We apply the Vitali covering lemma to the set of balls 2Bi. By the

Vitali Covering Lemma, there exists a subcollection J ⊂ I such that {2Bj}j∈J

are disjoint but
⋃

i∈I 2Bi ⊂
⋃

j∈J 6Bj . In particular, {Bj}j∈J are disjoint. Hence

|
⋃

2Bi| ≤ |
⋃

6Bj | ≤ 6n
∑

j |Bj | = 6n|
⋃

Bj |. �

(The reader may be interested to know whether the sharp constant is 2k. I
am not sure of the answer, and I leave this as a possible project for the interested
reader.)

Later on, we will also need to study infinite collections of balls. The Vitali
covering lemma for infinite sets of balls requires a small wrinkle. Suppose that Bi

is the ball centered at 0 with radius i. Any two of these balls intersect. So if we
take a subset of disjoint balls, it contains only one ball, say Bi. But 3Bi, or even
100Bi does not contain the union of all the balls - which is all of Rn. But the Vitali
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covering lemma still holds for infinite collections of balls if we put an extra, slightly
technical, hypothesis.

Lemma 15.14. (Vitali Covering Lemma for infinite collections of balls) Suppose
{Bi}i∈I is a collection of balls in Rn. Suppose that there is some finite constant M
so that any disjoint subset of the balls {Bi} has total volume at most M . Then there
exists a subcollection J ⊂ I such that {Bj}j∈J are disjoint but

⋃
i∈I Bi ⊂

⋃
j∈J 4Bj .

Proof. Any ball Bi has volume at most M , and so the radii of Bi are uniformly
bounded. Let Bj1 be a ball with radius at least (3/4) times the supremal radius.
Add j1 to J . Among all balls disjoint from Bj1 , let Bj2 be a ball with radius at
least (3/4) times the supremal radius. Add j2 to J . We continue in this way. The
process may terminate in finitely many steps, or we may get a countable sequence
of balls Bjk . If the process goes on forever, then the total volume of the balls Bjk

is finite (at most M), and so the radius of Bjk tends to zero.
Suppose that i /∈ J . We have to show that Bi ⊂ ∪j∈J4Bj . Since i was not

added to J , and since the radius of Bjk tends to zero, there must be a first jk so
that Bi∩Bjk is non-empty. Since Bi is disjoint from all the previous balls of J , the
radius of Bjk must be at least (3/4) times the radius of Bi. But then Bi ⊂ 4Bjk .

�

15.3.1. Hardy-Littlewood maximal function. Next we consider the aver-
ages of functions on various balls. Denote the average of a function f on a set A
by ∮

A

f :=
1

VolA

∫
A

f.

The Hardy-Littlewood maximal function of f is defined by

Mf(x) := sup
r

∮
B(x,r)

|f |.

If f is continuous, then Mf(x) ≥ |f(x)|. It can happen that Mf(x) > |f(x)|.
Hardy and Littlewood wanted to understand how much bigger Mf can be than
f . For instance, if f is the characteristic function of the unit ball, χB1

, then it is
straightforward to check that

MχB1
(x) = 1 if x ∈ B1,

MχB1
(x) ∼ |x|−n if x /∈ B1.

In particular,
∫
Rn MχB1

is infinite, but MχB1
is in Lp for every p > 1. Hardy

and Littlewood were able to prove the following general estimate about ‖Mf‖Lp .

Theorem 15.15. (Hardy and Littlewood) For any dimension n and any p > 1,
there is a constant C(n, p) so that

‖Mf‖Lp(Rn) ≤ C(n, p)‖f‖Lp(Rn).

This theorem plays an important role in harmonic analysis. The combinatorics
of how balls overlap plays a key role in the proof.

Recall that for a function u and a number h,

Su(h) := {x ∈ Rn : |u| > h}.
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As in the proof of the Sobolev inequality in Section 15.1, we begin by studying
SMf (h). We study SMf (h) using the Vitali covering lemma.

Lemma 15.16. For each h > 0, |SMf (h)| � h−1‖f‖1.

Proof. For each x ∈ SMf (h), there exists r(x) such that
∮
B(x,r(x))

|f | ≥ h,

so
∫
B(x,r(x))

|f | ≥ h|B(x, r(x))|. These B(x, r(x)) cover SMf (h). We wish to apply

the Vitali covering lemma to this collection of balls. To apply Lemma 15.14, we
need to check that for any disjoint subcollection of these balls, the total volume is
at most some number M . But if {Bα} is a disjoint subcollection of these balls, then∫

Rn

|f | ≥
∫
∪αBα

|f | =
∑
α

∫
Bα

|f | ≥ h
∑
α

|Bα|.

Therefore,
∑

α |Bα| ≤ h−1‖f‖L1 . With this technical hypothesis checked, we
can apply Lemma 15.14. The Lemma guarantees that we can find disjoint Bj ’s so
that SMf (h) ⊂ ∪j4Bj . Hence,

|SMf (h)| �
∑
j

|Bj | ≤ h−1

∫
⋃

Bj

|f | ≤ h−1‖f‖1.

�

Our next goal is to use this estimate for |SMf (h)| to prove Theorem 15.15. One
approach would be to consider dyadic h and add their contributions. As in the last
section, let TMf (k) := {x ∈ Rn : 2k < |Mf | ≤ 2k+1} ⊂ SMf (2k). We note that∫

|Mf |p ∼
∞∑

k=−∞
|TMf (k)|2kp ≤

∑
k

|SMf (2k)|2kp.

If we plug in Lemma 15.16 we get a divergent sum∫
|Mf |p �

∑
k

2−k2kp‖f‖L1 .

As in the proof of the Sobolev inequality, we need a slight modification of the
previous lemma. We observe that if |f | ≤ h/2 everywhere, then SMf (h) would be
empty. More generally, |SMf (h)| can be controlled by the integral of |f | over the
region where |f | > h/2. More precisely:

Lemma 15.17. |SMf (h)| � h−1
∫
Sf (h/2)

|f |.

Proof. In the previous proof, we found disjoint balls Bj so that 4Bj covers
SMf (h) and so that for each j, ∫

Bj

|f | ≥ h|Bj |.

We note that
∫
Bj\Sf (h/2)

|f | ≤ h
2 |Bj |, and so∫

Bj∩Sf (h/2)

|f | ≥ h

2
|Bj |.
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Therefore, we get

|SMf (h)| ≤ | ∪j 4Bj | �
∑
j

|Bj | � h−1
∑
j

∫
Bj∩Sf (h/2)

|f | ≤

≤ h−1

∫
Sf (h/2)

|f |.

�

With this refined Lemma in hand, we can now prove Theorem 15.15

Proof. ∫
|Mf |p �

∞∑
k=−∞

|SMf (2k)|2kp.

By Lemma 15.17, the right hand side is

�
∑
k

2k(p−1)

∫
Sf (2k−1)

|f |.

By interchanging summation and integral, we have

(15.3) =

∫
Rn

|f |

⎛
⎝ ∑

2k−1≤|f |
2k(p−1)

⎞
⎠ .

Since p > 1, the sum is a geometric sum, and the largest term dominates. The
largest term occurs when 2k ∼ |f |, and it has size ∼ |f |p−1. Therefore, Equation
15.3 is

∼
∫

|f | · |f |p−1 =

∫
Rn

|f |p.

So, ‖Mf‖p � ‖f‖p.
�

15.3.2. Proof of the Hardy-Littlewood-Sobolev inequality. In this sub-
section, we give the proof of Theorem 15.10, the Hardy-Littlewood-Sobolev inequal-
ity. This inequality gives Lp estimates for the operator Tα. The proof involves some
computations and some complicated exponents. (Even the statement of the the-
orem involves a fairly complicated formula involving the exponents.) We try to
emphasize the key ideas in the proof, and we leave some of the computations as
exercises for the reader.

Recall that Tαf(x) is defined by

Tαf(x) =

∫
Rn

f(y)|x − y|−αdy.

We first observe that Tαf(x) can be computed in terms of the average value of
f on B(x, r) for all 0 < r < ∞.

Lemma 15.18.

Tαf(x) =

∫ ∞

0

rn−α−1

(∮
B(x,r)

f

)
dr.
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(The proof is a computation which we leave to the reader.)
Next we need some upper bounds for

∮
B(x,r)

f . One upper bound comes from

the Hardy-Littlewood maximal function. By the definition of Mf(x) we get imme-
diately

(15.4)

∣∣∣∣∣
∮
B(x,r)

f

∣∣∣∣∣ ≤ Mf(x).

We can also get an upper bound in terms of ‖f‖Lp by using Holder’s inequality.

(15.5)

∣∣∣∣∣
∮
B(x,r)

f

∣∣∣∣∣ � r−n

∫
B(x,r)

|f | � r−n‖f‖prn(p−1)/p = r−n/p‖f‖p

Using just one of these two inequalities does not give any finite bound on
‖Tαf‖Lq . The key idea is to combine these two inequalities:

(15.6)

∣∣∣∣∣
∮
B(x,r)

f

∣∣∣∣∣ � min
(
Mf(x), r−n/p‖f‖p

)
.

Plugging this bound into the expression for Tαf in Lemma 15.18, we get

|Tαf(x)| �
∫ ∞

0

rn−α−1 min
(
Mf(x), r−n/p‖f‖p

)
dr.

It is an exercise to evaluate the right-hand side. When we do so, we get a
bound of the form

|Tαf(x)| � |Mf(x)|A‖f‖Bp ,

where A and B depend on α, p, and n.

Exercise 15.5. Do this computation and find A(α, p, n) and B(α, p, n).

Exercise 15.6. Give a conceptual explanation why A + B = 1.

We want to bound ‖Tαf‖Lq for some q. For any q, we now have the bound∫
|Tαf(x)|q � ‖f‖Bq

p

∫
|Mf(x)|Aq.

We now choose q so that Aq = p. With this condition on q, we see that

‖Tαf‖qLq � ‖f‖Bq
p ‖Mf‖Aq

Lp .

Applying Theorem 15.15, as long as p > 1, we get

‖Tαf‖qLq � ‖f‖Bq
p ‖Mf‖Aq

Lp � ‖f‖(A+B)q
Lp = ‖f‖qLp .

Therefore, we get the bound ‖Tαf‖Lq � ‖f‖Lp as long as p > 1 and A(α, p, n)q
= p. After solving for A(α, p, n), the reader can check that this is the condition on
the exponents in the statement of the theorem.
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15.4. Intersection patterns of tubes in Euclidean space

In this section, we study the possible intersection patterns of cylindrical tubes
in Euclidean space. The questions we ask are similar to the ones for balls, but the
answers are much more difficult and many of the problems are still open.

We began Section 15.3 by discussing the ball doubling problem. We now pose
an analogous problem for tubes: the tube doubling problem. Suppose that Ti ⊂ Rn

are cylindrical tubes of radius 1 and length N . Let 2Ti be the concentric tube of
radius 2 and length 2N formed by dilating Ti around its center by a factor of 2.
For a single tube T , we note that |2T | = 2n|T |. Is there a constant Cn so that for
any N , for any set of 1 × N tubes Ti in Rn,

| ∪i 2Ti| ≤ Cn| ∪i Ti|?
The answer to this question turns out to be no. Besicovitch gave a beautiful

counterexample, in which

| ∪i 2Ti| ∼
log N

log log N
| ∪i Ti|.

(A refinement by Schoenberg [Sch] removes the log log N factor.)
For any given value of N , it is not hard to prove an estimate of the form | ∪i

2Ti| ≤ Cn(N)| ∪i Ti|, with a constant Cn(N) depending on N . But the dependence
of Cn(N) on N is poorly understood. No one has found a more extreme example
than the one constructed by Besicovitch and Schoenberg, leading to the following
conjecture:

Conjecture 15.19. (Tube doubling conjecture) For any dimension n, for any
ε > 0, there is a constant Cn(ε), so that the following estimate holds for any N . If
Ti are tubes of radius 1 and length N , then

| ∪i 2Ti| ≤ Cn(ε)Nε| ∪i Ti|.
This conjecture is known in dimension 2, but it is open for all n ≥ 3.
There are a number of conjectures about tubes in this spirit. The most famous

is the Kakeya conjecture. We now formulate one version of the Kakeya conjecture.
For a tube T ⊂ Rn as above, we write v(T ) ∈ Sn−1 for a unit vector parallel to
the axis of symmetry of T . (There are two choices of v(T ), differing by a sign.) We
call v(T ) the direction of the tube T .

Definition 15.20. Suppose that Ti ⊂ Rn are tubes of length N and radius 1.
{Ti} is a Kakeya set of tubes if {v(Ti)} is 1

N -separated and 2
N -dense in Sn−1.

Our question is: how small can | ∪ Ti| be? Each tube Ti has volume ∼ N , and
the number of tubes in a Kakeya set of tubes is ∼ Nn−1. If the tubes were disjoint,
then we would have |∪iTi| ∼ Nn. The construction of Besicovitch mentioned above
gives a Kakeya set of tubes in the plane with

| ∪i Ti| ∼
log log N

log N
N2.

A refinement by Schoenberg [Sch] removes the log log N factor. In this example, a
typical point of ∪iTi lies in ∼ log N tubes, giving a compression by a factor log N .
These constructions generalize to higher dimensions, giving examples in Rn with
| ∪i Ti| � (log N)−1Nn. No one has found an example where | ∪i Ti| is significantly
smaller, leading to the following conjecture.
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Conjecture 15.21. (Kakeya Conjecture, tube version) In any dimension n ≥
2, for any ε > 0, there is a constant Cn,ε so that for any N the following holds. For
any Kakeya set of tubes Ti ⊂ Rn of dimensions 1 × N ,

| ∪ Ti| � Cn,ε · Nn−ε.

(There are several closely related but not exactly equivalent versions of the
Kakeya conjecture. For completeness, we mention the most standard and famous
version. Suppose that K ⊂ Rn contains a unit line segment in every direction.
Then the Hausdorff dimension of K is equal to n.)

Now we give the example of Besicovitch. We will construct a set of N rectangles
in the plane, Rj , with width 1/N and length 1, with slopes changing evenly between
0 and 1, and with a lot of overlap.

For integers 1 ≤ j ≤ N , let lj : [0, 1] → R be a list of affine linear functions of
the form

lj(x) =
j

N
x + H(j).

Let Rj be the 1/N neighborhood of the graph of lj , which contains a rectangle of
width 1/N and length 1.

Theorem 15.22. Suppose that N is an integer of the form AA for some large
integer A. Let Rj be the rectangles described above. If we choose the constants
H(j) correctly, then

| ∪j Rj | � A−1 � log log N

log N
.

Note that
∑

j |Rj | ∼ 1, and so this inequality represents a compression by a

factor log logN
logN .

Proof. This is a multiscale argument. In order to talk about the different
scales, we expand j/N in base A:

j

N
=

A∑
a=1

j(a)A−a.

In this equation j(a) are the digits in the base A decimal expansion of j/N . The
first term j(1), is the first digit after the decimal, and it contributes the largest
amount to j/N . The different values of a represent different scales in the problem.

We will choose H(j) so that the following key estimate holds.

Property 15.23. Suppose 1 ≤ b ≤ A. If j(a) = j′(a) for 1 ≤ a ≤ b − 1, then
for all x ∈

[
A−b
A , A−b+1

A

]
,

|lj(x) − lj′(x)| ≤ 4A−b.

Property 15.23 quickly implies our desired bound on | ∪j Rj |. Fix a value of
b. For a given choice of j(1), ..., j(b − 1), consider all the rectangles Rj′ where

j′(a) = j(a) for 1 ≤ a ≤ b − 1. By Property 15.23, each Rj′ ∩
[
A−b
A , A−b+1

A

]
× R

lies in the parallelogram defined by the inequalities

A − b

A
≤ x ≤ A − b + 1

A
and |y − lj(x)| ≤ 5A−b.
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This parallelogram has area 10A−b−1. Since there are Ab−1 possible values of
j(1), ..., j(b − 1), we see that∣∣∣∣(∪jRj

)
∩
([

A − b

A
,
A − b + 1

A

]
× R

)∣∣∣∣ ≤ 10A−2.

Summing over all choices of b in the range 1 ≤ b ≤ A, we see that

|(∪jRj) ∩ ([0, 1] × R)| ≤ 10A−1.

The rectangles Rj may stick out a little from [0, 1] ×R, but it’s straightforward to
see that | ∪j Rj | ≤ 11A−1. So it only remains to choose H(j) in order to guarantee
Property 15.23.

We will write H(j) as a sum of A different terms with different orders of mag-
nitude. Each term is designed to arrange Property 15.23 for a particular value of
b. We write H(j) as

H(j) =

A∑
a=1

h(a)j(a)A−a,

where h(a) ∈ [−1, 1] is a constant that we can choose later. The constant h(a) will
be designed to make Property 15.23 hold for b = a.

Plugging this expression into the formula for lj(x), we see that

lj

(
A − b

A

)
=

A − b

A
· j

N
+ H(j) =

A∑
a=1

(
A − b

A
+ h(a)

)
j(a)A−a.

Therefore,∣∣∣∣lj
(

A − b

A

)
− lj′

(
A − b

A

)∣∣∣∣ ≤
A∑

a=1

∣∣∣∣A − b

A
+ h(a)

∣∣∣∣ |j(a) − j′(a)|A−a.

For the rest of the proof, let us suppose that j(a) = j′(a) for 1 ≤ j ≤ b − 1.
These equalities imply that, in the last inequality, the first b−1 terms on the right-
hand side vanish. We now choose h(a) := −A−a

A . With this choice, the bth term on
the right-hand side vanishes also. We can easily bound the other terms by noting
that |h(a)| ≤ 1 and |j(a) − j′(a)| ≤ A, yielding∣∣∣∣lj

(
A − b

A

)
− lj′

(
A − b

A

)∣∣∣∣ ≤
A∑

a=b+1

A−a+1 ≤ 2A−b.

Now for any x ∈ [A−b
A , A−b+1

A ], we see that

|lj(x) − lj′(x)| ≤
∣∣∣∣lj

(
A − b

A

)
− lj′

(
A − b

A

)∣∣∣∣+
∣∣∣∣ j

N
− j′

N

∣∣∣∣
∣∣∣∣x − A − b

A

∣∣∣∣ ≤
≤ 2A−b + A−b+1A−1 = 3A−b.

This finishes the proof of Property 15.23 and hence the proof of Theorem 15.22.
�

In this theorem, the directions v(Rj) ∈ S1 are pairwise separated by � 1/N .
They form a ∼ 1/N net for an eighth of the circle S1. Taking eight rotated copies
of this set of rectangles, and rescaling by a factor of N , we get a Kakeya set of
1 × N tubes with total area � log logN

logN N2.

This example can also be used as a counterexample for the tube doubling
problem that we discussed at the beginning of the section. For a rectangle Rj as
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above let v(Rj) be the direction of Rj . Recall that v(Rj) is only defined up to
sign, and we make the choice so that the x-component of v(Rj) is negative. Now

we define R+
j to be the translation of Rj by 10v(Rj). We note that since Rj has

length ∼ 1, R+
j is contained in 100Rj .

We claim that for the values of H(j) constructed in the proof above, the rect-
angles R+

j are disjoint. We state this refined result as a corollary.

Corollary 15.24. Suppose that N is an integer of the form AA for some large
integer A. Let Rj be the rectangles described in Theorem 15.22. If we choose the
constants H(j) correctly, then

| ∪j Rj | �
log log N

log N

∑
j

|Rj |,

and yet R+
j are disjoint.

Proof. Let H(j) be as in the proof of Theorem 15.24. Recall that we expanded
j/N in base A as

j

N
=

A∑
a=1

j(a)A−a.

In terms of the digits j(a), we define

H(j) := −
A∑

a=1

A − a

A
j(a)A−a.

A simple calculation shows that for any 1 ≤ j < j′ ≤ N , H(j′) < H(j).
Therefore, for x ≤ −5, and 1 ≤ j < j′ ≤ N , we have

lj′(x) − lj(x) =

(
j′

N
− j

N

)
x + (H(j′) − H(j)) ≤ −5

∣∣∣∣ j′N
− j

N

∣∣∣∣ ≤ −5/N.

Therefore, R+
j and R+

j′ are disjoint.
�

From this corollary we see that

| ∪j 100Rj | ≥ | ∪j R+
j | =

∑
j

|Rj | �
log N

log log N
| ∪j Rj |.

With a little bit more care, it is also possible to choose 1×N rectangles Rj so

that | ∪j 2Rj | � logN
log logN | ∪j Rj |.

Besicovitch was interested in these problems about overlapping tubes as natural
variations of the problems about overlapping balls that we discussed in the previous
section. For example, the Vitali covering lemma is used to prove the Lebesgue
differentiation theorem (see for example Chapter 3 of [StSh]). Besicovitch asked
whether there was a generalization of the Lebesgue differentiation theorem using
tubes instead of balls, and he gave a counterexample to such a generalization using
the construction above.

In the 1970’s, Fefferman found a connection between the Besicovitch construc-
tion and oscillatory integral operators. We will discuss this connection in the next
section. This discovery led to renewed interest in quantitative estimates for the
Kakeya problem and the tube doubling problem.



222 15. HARMONIC ANALYSIS AND THE KAKEYA PROBLEM

15.5. Oscillatory integrals and the Kakeya problem

In this section, we study an oscillatory integral operator, and we see how the
Lp estimates for such an operator connect with intersection patterns of tubes in
Euclidean space.

Earlier in the chapter, we proved the Hardy-Littlewood-Sobolev theorem, The-
orem 15.10. This theorem gave Lp estimates for the operator Tα defined by

Tαf = f ∗ Kα,

where

Kα(x) := |x|−α.

Note that the kernel Kα is positive. Now we consider a variation of Tα using
an oscillating kernel which is sometimes positive and sometimes negative.

T̃αf := f ∗ K̃α,

where

K̃α(x) := [1 + |x|]−α
cos |x|.

The function K̃α(x) is still radial. Near the origin, it is bounded instead of

going to infinity. For |x| ≥ 1, |K̃α(x)| � Kα(x), and they are often comparable.

But K̃α(x) oscillates with the radius, so that it has positive and negative parts. If
one dropped a stone into a pond and looked at the ripples, the shape would be a
little bit like K̃α, with a modest peak in the center, and then waves going outward
and getting smaller the farther they are from the center.

As in the Hardy-Littlewood-Sobolev inequality, we will focus on the range 0 <
α < n. Our main question is: what are all the Lp estimates obeyed by T̃α?

At first sight, this problem may look like a small variation on the Hardy-
Littlewood-Sobolev problem - it is just a similar kernel with some oscillations added.
For a reader who has not studied this area before, it may be surprising to learn that
this is a major open problem of analysis. The kernel K̃α has positive and negative
parts, and so in the convolution T̃αf = f ∗ K̃α, some cancellation can occur. The
key issue is to understand how much cancellation needs to occur. This problem
turns out to be connected to the intersection patterns of long thin tubes in Rn.
This may be a little surprising, since the kernel K̃α is not shaped like a long thin
tube. The goal of this section is to explain this connection.

We will focus on estimates of the form ‖T̃αf‖p � ‖f‖p, so that we have fewer

parameters to keep track of. (Estimates of the form ‖T̃αf‖q � ‖f‖p are interesting
also, but all of the essential issues already appear in the case q = p.)

Let us consider how the operator T̃α behaves on some examples. When we
studied the Hardy-Littlewood-Sobolev inequality, the key examples were character-
istic functions of balls. So let us consider the case f = χBr

for various radii r. We
have

(15.7) T̃αχBr
(x) =

∫
Br

K̃α(x − y)dy =

∫
Br

[1 + |x − y|]−α
cos |x − y|dy.

Even in this case, it’s not trivial to estimate |T̃αχBr
(x)|, because of the can-

cellation in the integral. The easiest case to understand is the case of small r, say
r = 1/100. In this case, we see that at most points x, the sign of cos |x − y| is
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constant for y ∈ Br, and | cos(x − y)| ∼ 1 for y ∈ Br. At such a point x, we get

|T̃αχBr
(x)| ∼

∫
Br

[1 + |x − y|]−α
dy ∼ |K̃α(x)|.

If we define f1 := χB1/100
, then for most x, |T̃αf1(x)| ∼ |K̃α(x)|. For any p,

we have ‖f1‖p ∼ 1. On the other hand,
∫
|T̃αf1|p ∼

∫
Rn(1 + |x|)−αp is finite if and

only if αp > n.
Considering r < 1/100 doesn’t give any new information. Now we turn to

larger scales r � 1. For a function supported on a ball of large radius r, there is
a cleverer choice than χBr

. Suppose that we want to make T̃αf(0) large. Let us
write it out as an integral:

T̃αf(0) =

∫
Rn

f(y)[1 + |y|]−α cos |y|dy.

If we choose f carefully, then all the contributions in the integral are positive,
instead of cancelling each other. This motivates defining

f2 := χBr
Sign(cos |y|).

Here f2 also depends on r, and it will be interesting for large r → ∞. We have
‖f2‖p = rn/p. We also have

|T̃αf2(0)| =

∫
Br

[1 + |y|]−α| cos |y||dy ∼ rn−α.

In fact, for all |x| < 1/100, we have |T̃αf2(x)| ∼ rn−α. This requires a little more
thought, and we state it as an exercise.

Exercise 15.7. Suppose that r ≥ 1. For all |x| < 1/100, prove that |T̃αf2(x)| ∼
rn−α. Here is some intuition why this bound is true. If we write out the definition
of T̃α and the definition of f2, we get

T̃αf2(x) =

∫
f2(y)K̃α(x − y)dy =

∫
Br

Sign(cos |y|)[1 + |x − y|]−α cos |x − y|dy.

We reorganize this last expression so that all the possibly negative terms are
at the end:

=

∫
Br

[1 + |x − y|]−α| cos |x − y|| Sign(cos |y|) Sign(cos |y − x|)dy.

The integrand is positive as long as Sign(cos |y|) = Sign(cos |y − x|). Since
x < 1/100 is small, this equality holds for almost all y. Therefore, morally, our
integral should be similar to∫

Br

[1 + |x − y|]−α| cos |x − y||dy ∼
∫
Br

[1 + |x − y|]−αdy ∼ rn−α.

The exercise is to make this intuition rigorous.

Using the last exercise, we see that ‖T̃αf2‖p � rn−α. We saw above that

‖f2‖p ∼ rn/p. Therefore ‖T̃αf2‖p � ‖f2‖p if and only if n/p ≥ n − α.
Combining the information we got from the example f1 and the example f2,

we have the following proposition.
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Proposition 15.25. If ‖T̃αf‖p � ‖f‖p for the examples above, f1 and f2, then

n

α
< p ≤ n

n − α
.

Exercise 15.8. There is a slightly stronger version of the example f2. Define
f3 = χBr

K̃n−α. Estimate ‖T̃αf3‖p and ‖f3‖p, and check that if ‖T̃αf2‖p � ‖f2‖p
(for all r), then n/p > n−α. Therefore, the estimate on p in Proposition 15.25 can
be improved to n

α < p < n
n−α .

The kernel K̃α is spherically symmetric. So far we have been considering T̃αf =
f ∗K̃α for spherically symmetric functions f . This might seem natural, but it turns
out that functions f that are far from spherically symmetric play an important role.

The next function we consider is an oscillating function supported on a long
thin tube. This function plays a crucial role in the theory, and it explains why long
thin tubes should be relevant to studying T̃α.

Let T be a cylinder of length L >> 1 and radius (1/1000)L1/2. The cylinder
may point in any direction. Let vT be a unit vector parallel to the axis of the
cylinder. Let fT be the function

fT (x) := χT (x)ei(vT ·x).

Let T+ denote the cylinder we get by translating T by 10LvT . We are going
to study the behavior of T̃αfT on T+.

Proposition 15.26. Fix a dimension n ≥ 2. For all L sufficiently large, the
following holds. If fT and T+ are defined as above, then for every x ∈ T+ we have

|T̃αfT (x)| � L
n+1
2 −α.

As a corollary, we get new information about the possible bounds of the form
‖T̃αf‖p � ‖f‖p.

Corollary 15.27. If α < n+1
2 , then for every p ∈ [1,∞], as L → ∞,

‖T̃αfT ‖p
‖fT ‖p

→ ∞.

So the operator T̃α does not obey any Lp estimate of the form ‖T̃αf‖p � ‖f‖p.

Proof. Notice that T+ has the same size as T . The function fT has size ∼ 1
and support on T . If α < n+1

2 , then the function T̃αfT has size >> 1 on T+. So

‖T̃αfT ‖p ∼ L
n+1
2 −α‖fT ‖p. �

Before the proof of Proposition 15.26, we give some intuition. Consider a point
x in T+.

T̃αfT (x) =

∫
T

|x − y|α cos |x − y|ei(vt·y)dy.

Now the key point is that the oscillations of ei(vt·y) and the oscillations of cos |x−y|
are in sync on T . Without any real loss of generality, we can choose coordinates
so that x = 0. To get some intuition how ei(vt·y) and cos |x − y| = cos |y| interact,
we visualize the set where ei(vt·y) is equal to 1 and the set where cos |y| = 1, and
we will see that these two sets are close to each other. We first consider the set
where eivt·y is equal to 1. The set {y|eivt·y = 1} = {y|vt · y ∈ 2πZ} is a union
of parallel planes, perpendicular to vT , with spacing 2π between them. The set
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{y| cos |y| = 1} = {y||y| ∈ 2πZ} is a union of concentric spheres around x = 0 with
spacing 2π between them. We illustrate these planes and spheres in Figure 15.1.
As long as T is narrow enough, the spheres and planes nearly coincide inside of
T . We will make this idea quantitative in the proof below, using the Pythagorean
theorem.

x = 0
T

vT

Figure 15.1. Oscillations of cos |y| are in sync with eivt·y on T .

Proof of Proposition 15.26. Recall that x ∈ T+ and

(15.8) T̃αfT (x) =

∫
T

|x − y|α cos |x − y|ei(vt·y)dy.

We decompose the vector x−y into a component parallel to vT and a component
perpendicular to vT . Because of the geometry of T and T+, the vt component of
x−y has length ≥ 5L, and the perpendicular component has length ≤ (1/1000)L1/2.
By the Pythagorean theorem, we have

(vt · x − vt · y)2 ≤ |x − y|2 ≤ (vt · x − vt · y)2 + 10−6L.

Since |vt · x − vt · y| ≥ 5L, we see that∣∣|x − y| − |vt · x − vt · y|
∣∣ ≤ 10−6.

Since | cos a − cos b| ≤ |a − b|, and since cos b = cos(−b), we see that∣∣ cos |x − y| − cos(vt · x − vt · y)
∣∣ ≤ 10−6.

Plugging this estimate into Equation 15.8, we get

T̃αfT (x) =

∫
T

|x − y|α cos(vt · x − vt · y)ei(vt·y)dy + small error,
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where

|small error| ≤ 10−6

∫
T

|x − y|αdy.

Expanding cos a = 1
2 (eia + e−ia), we get

T̃αfT (x) =
1

2
eivt·x

∫
T

|x − y|−αdy +
1

2
e−ivt·x

∫
T

|x − y|−αe2ivt·ydy + small error.

The first integral is the main term. We see that it dominates the small error.
The second term has a lot of cancellation in it (at least for L large), and so it’s
not hard to check that the first term also dominates the second term. Therefore,

|T̃αfT (x)| ∼
∫
T
|x−y|−αdy. The volume of T is ∼ L

n+1
2 , and |x−y| ∼ L for y ∈ T ,

and so

|T̃αfT (x)| ∼
∫
T

|x − y|−αdy ∼ L
n+1
2 −α.

�

This type of example, an oscillating function supported on a long thin tube,
plays an important role for studying several linear operators in Fourier analysis and
partial differential equations. For instance, there are similar examples connected
to the wave equation. In this book, we won’t discuss the mathematics of the wave
equation, but we spend a paragraph trying to describe in words how such examples
might occur for sound waves.

Imagine an airplane traveling at the speed of sound. The path of the airplane
in space-time is like a long thin tube. The engine of the plane vibrates, making
sound waves, and these sound waves travel at the same speed as the airplane. At
each moment of time, the airplane experiences the sound waves that the engine
generated at every previous moment of time. Because of this effect, the airplane
experiences dramatically stronger sound waves than it would have felt at a lower
or higher speed. (This accumulation of waves is one of the engineering challenges
associated with airplanes reaching the speed of sound.) Even if the airplane turns
off the engine and coasts at the speed of sound, it will continue to experience strong
sound waves for some time, since the sound waves generated by the engine when
it was on will still be moving with the airplane. If we consider the air pressure
as a function of space and time, then we will see high amplitude vibrations in the
region near the path of the airplane - a long thin tube. There is a linear operator
W that has input f , the forces generating sound waves - in this case the engine
- and has output Wf , the resulting air pressure. In our case, the action of the
engine, modeled by a function f , is supported on a tube in space time, around the
path of the airplane, stopping at a certain time t0 when the engine is turned off.
The air pressure, Wf , experiences strong vibrations on a longer tube, extending
after the engine has been turned off. This situation is analogous to Proposition
15.26. So although the operator T̃α is not an accurate model for sound waves, the
mathematical issues in understanding it are similar to those in the wave equation.
See [Ta1] and the references there for more introduction to these issues.

We now return to our operators T̃α. Because of the tube example, we saw that
for α < n+1

2 , there are no Lp estimates for T̃α. For α ≥ n+1
2 , all the examples

we have seen so far obey the inequality ‖T̃αf‖p � ‖f‖p for all p in the range
n
α < p < n

n−α .
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We now focus on the case α = n+1
2 . Fourier anaysts worked hard on this case

from the 1930’s through the 1960’s. Until the early 70’s, it was generally believed
that ‖T̃n+1

2
f‖p � ‖f‖p for all p in the range (n

α , n
n−α ) = ( 2n

n+1 , 2n
n−1 ), although

mathematicians could only prove the inequality in the very special case p = 2.
In the early 70’s, Fefferman gave a counterexample, showing that the inequality
‖T̃n+1

2
f‖p � ‖f‖p is false for all p �= 2 ([Fef]). This counterexample is one of the

most surprising and interesting in the theory of linear operators.

Theorem 15.28. ([Fef]) ‖T̃n+1
2

f‖p � ‖f‖p is false for all p �= 2.

Proof. We will prove the theorem for p > 2, and then indicate how to modify
the argument to deal with p < 2.

The main idea of the construction is to let f be a sum of many functions fTi

where the Ti are long thin tubes arranged according to Besicovitch’s construction.
The geometry of the interesecting tubes will influence the Lp norms of f and T̃n+1

2
f .

We define f =
∑

i fTi
where Ti are tubes of length L and radius 1

1000L1/2, and
v(Ti) is a unit vector pointing in the direction of Ti. As above, we define each fT
by:

fT (x) := χT (x)ei(vT ·x).

Since T̃α is linear, we have

T̃αf =
∑
i

T̃αfTi
.

Using Besicovitch’s construction, we can arrange that the tubes Ti are disjoint
and yet the tubes T+

i intersect heavily. We essentially proved this in two dimensions
in Corollary 15.24 above. The result can easily be generalized to higher dimensions.

Theorem 15.29. (Besicovitch, 1920’s) Fix a dimension n ≥ 2. For any L ≥ 1,
there is a finite set of disjoint tubes Ti (with length L and radius ∼ (1/1000)L1/2),
with the property that

| ∪i T+
i | = μ(L)−1| ∪i Ti|,

where μ(L) � logL
log logL → ∞.

Proof sketch. Starting with Corollary 15.24, switch the roles of Rj and R+
j

and rescale the rectangles so that they have dimensions (1/1000)L1/2×L. In higher
dimensions, just thicken each two-dimensional rectangle Rj to an n-dimensional
tube Tj . �

We define f =
∑

i fTi
where {Ti} is the set of tubes coming from this theorem,

illustrated in Figure 15.2. We now want to estimate ‖f‖p and ‖T̃n+1
2

f‖p. We

can easily determine ‖f‖p. Recall that |fTi
(x)| = χTi

(x). Since the tubes Ti are
disjoint, we get

‖f‖pLp =
∑
i

|Ti|.

Next we want to prove a lower bound for ‖T̃n+1
2

f‖p. We first give a heuristic

argument, and then make it rigorous. By Proposition 15.26, we know that for all
x ∈ T+

i ,

|T̃n+1
2

fTi
(x)| � 1.
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Figure 15.2. Tubes Ti (left) are disjoint. Tubes T+
i (right) over-

lap heavily in Besicovitch construction. Arrows point from Ti

to T+
i .

A typical point in X = ∪iT
+
i lies in � μ(L) different tubes T+

i . Therefore,∑
i T̃n+1

2
fTi

(x) includes � μ(L) summands of norm � 1. Recall that the summands

are complex numbers that can point in any direction. How big do we expect the sum
to be? There could well be cancellation, so it’s not actually reasonable to expect
|
∑

i T̃n+1
2

fTi
(x)| ∼

∑
i |T̃n+1

2
fTi

(x)|. An important reference point is the sum of

random numbers. If ai is a finite list of complex numbers, and we consider the sum∑
i ±ai with random signs, then with high probability |

∑
i ±ai| ∼ (

∑
i |ai|2)1/2.

We will state a more precise version of this inequality in a moment. Unless we
especially craft fTi

to avoid it, it is reasonable to expect this type of square root
cancellation. So at a typical point x ∈ ∪iT

+
i , we expect

|
∑
i

T̃n+1
2

fTi
(x)| ∼

(∑
i

|T̃n+1
2

fTi
(x)|2

)1/2

� μ(L)1/2.

Therefore, as a heuristic, we expect

‖T̃n+1
2

f‖pp =

∫ (∑
i

T̃n+1
2

fTi

)p

� μ(L)p/2| ∪i T+
i | ∼ μ(L)

p
2−1

∑
i

|Ti|.

Since, ‖f‖pLp =
∑

i |Ti|, we get ‖T̃n+1
2

f‖pp � μ(L)
p
2−1‖f‖pLp , and so for all p > 2,

‖T̃n+1
2

f‖p
‖f‖p

→ ∞.

Now we start to make this argument rigorous. To get rigorous lower bounds,
it is convenient to introduce random signs. We define

fran =
∑
i

±fTi
,

where the ± signs are selected at random. Now we consider the average value of
‖fran‖p and the average value of ‖T̃n+1

2
fran‖p. Regardless of the signs, we have

‖fran‖p =
∑

i |Ti|.
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Proposition 15.30. (Khintchin) If gi are any functions, and g =
∑

i ±gi
with random signs, then for any 1 ≤ p < ∞, the average value of ‖g‖p is ∼p

‖(
∑

i |gi|2)1/2‖p.

(See [Wo3] for a proof of the inequality. We only use an easy direction of the
inequality which is proven in Exercise 15.9.)

In particular, the average value of ‖T̃n+1
2

fran‖p = ‖
∑

i ±T̃n+1
2

fTi
‖p is

∼

⎛
⎝∫ (∑

i

|T̃n+1
2

fTi
|2
)p/2

⎞
⎠

1/p

.

Since |T̃n+1
2

fTi
| � 1 on T+

i , we get

∫ (∑
i

|T̃n+1
2

fTi
|2
)p/2

�
∫

(
∑
i

χT+
i

)p/2.

The average value of (
∑

i χT+
i

) on ∪iT
+
i is μ(L). Using Holder’s inequality, we

see that ∫
(
∑
i

χT+
i

)p/2 � μ(L)p/2| ∪i T+
i | ∼ μ(L)

p−2
2

∑
i

|T+
i |.

Combining these inequalities, we see that the average value of ‖T̃n+1
2

fran‖p is

� μ(L)
p−2
2p ‖fran‖p.

Since p > 2, and μ(L) → ∞, we see that there is no inequality of the form

‖T̃n+1
2

f‖p � ‖f‖p.
�

We make some brief comments on the case p < 2. In this case, we choose the
tubes Ti so that Ti overlap a lot and T+

i are disjoint. We again take f = fran =∑
i ±fTi

. In this case, we see immediately that ‖T̃n+1
2

fran‖pp �
∑

i |Ti|. On the

other hand, each point in ∪iTi typically lies in μ(L) different tubes Ti. Therefore,
we typically expect |fran(x)| ∼ μ(L)1/2 for x ∈ ∪iTi, and hence

‖fran‖pp � μ(L)p/2| ∪i Ti| ∼ μ(L)
p−2
2

∑
i

|Ti|.

Since p < 2, μ(L)
p−2
2 → 0, and we see that ‖T̃n+1

2
fran‖p is (usually) far bigger

than ‖fran‖p. As above this argument can be made rigorous using Khintchin’s
inequality.

Exercise 15.9. Khintchin’s inequality says that if gi are any functions, and
g =

∑
i ±gi with random signs, then for any 1 ≤ p < ∞, the average value of ‖g‖p

is ∼p ‖(
∑

i |gi|2)1/2‖p. In our proof of Theorem 15.28, we only actually used one
direction of this inequality. Assuming p > 2, prove that

Avgchoice of signs

∫ ∣∣∣∣∣
∑
i

±gi

∣∣∣∣∣
p

≥
∫ (∑

i

|gi|2
)p/2

.
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Finally we come to the case α > n+1
2 . In this case, determing all the Lp esti-

mates for the operator T̃α is a major open problem of harmonic analysis. Working
with slightly different operators, Bochner and Riesz made a conjecture about these
bounds in the 1930’s.

Conjecture 15.31. Suppose that n > α > n+1
2 and n

α < p < n
n−α . Then the

operator T̃α obeys the estimate ‖T̃αf‖p � ‖f‖p.

For α > n+1
2 , the tube examples and the Besicovitch construction are not

as dangerous. By Proposition 15.26, if x ∈ T+, then |T̃αfT (x)| ∼ L
n+1
2 −α. For

comparison, |fT | = 1 on T . So when α > n+1
2 , we get a damping effect: |T̃αfT | on

T+ is smaller than |fT | on T by a power of L. The Besicovitch construction gives
a compression by a factor μ(L) on the order of log L, which is not strong enough to
overcome this polynomial damping. However, if there were a generalization of the
Besicovitch construction with compression factor at least Lγ for some γ > 0, then
using this construction in the setup fran =

∑
i ±fTi

would disprove Conjecture
15.31. In other words, Conjecture 15.31 implies the tube doubling conjecture,
Conjecture 15.19.

The theme of this chapter is the interplay between analysis, geometry, and com-
binatorics on Euclidean space. Earlier, we studied the Hardy-Littlewood-Sobolev
operator Tα, and we saw that the Lp estimates for Tα are closely related to esti-
mates about the intersection patterns of balls in Euclidean space. Then we turned
to the Bochner-Riesz operators, T̃α, and we saw that the Lp estimates for T̃α are
closely related to estimates about the intersection patterns of tubes in Euclidean
space.

These problems about intersection patterns of tubes in Euclidean space are
difficult open problems. In the early 90’s, Bourgain made some partial progress
on the Kakeya problem and used it to prove new results about oscillatory integral
operators like T̃α. The best known results about T̃α depend on our partial progress
about the intersection patterns of tubes. We turn to quantitative estimates about
tubes in the next section.

15.5.1. Curvature in Fourier analysis. The issues we described in this
section play a role in many problems in Fourier analysis. We won’t try to discuss
all of these problems in this chapter, but there is one other problem I would like to
at least mention because it has played such an important role in the development
of the field. This problem is the restriction problem raised by Stein in the late 60’s
cf. [St].

A basic problem in Fourier analysis is to determine all of the Lp inequalities
that the Fourier transform obeys: to find all the inequalities of the form

(15.9) ‖f̂‖Lq(Rn) ≤ C‖f‖Lp(Rn).

This problem was solved in the early 20th century. The Hausdorff-Young inequal-
ities give all of the inequalities of this form – see the first lecture in [Ta2] for
details.

The restriction problem concerns a generalization of this problem where we
replace Lq(Rn) on the left-hand side with the Lq norm on a surface S ⊂ Rn, such
as the unit sphere. If S ⊂ Rn is a submanifold, and f : S → C is a function, then
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we can define the Lq norm of f on S by

‖f‖Lq(S) :=

(∫
S

|f |qdvolS

)1/q

.

For a given surface S in Rn, the restriction problem asks to find all the inequalities
of the form

(15.10) ‖f̂‖Lq(S) ≤ C‖f‖Lp(Rn).

Stein discovered several interesting things about this question. One important
discovery is that the shape of the surface S matters. The unit sphere Sn−1 ⊂ Rn

obeys qualitatively different inequalities from a flat (n− 1)-dimensional disk in Rn.
In particular the curvature of S plays an important role: when a surface is more
curved, it obeys stronger inequalities.

At the time, it was counterintuitive to imagine there could be any interesting
inequalities of this kind at all. Here is the issue. If p = 1, then it is easy to check

that ‖f̂‖L∞ ≤ ‖f‖1. This follows just from applying the triangle inequality to the
definition of the Fourier transform:

|f̂(ω)| =

∣∣∣∣
∫
Rn

f(x)eiωxdx

∣∣∣∣ ≤
∫
Rn

|f(x)|dx.

Therefore, for any set S, we have the inequality ‖f̂‖L∞(S) ≤ ‖f‖L1(Rn). If S is

compact, like the unit sphere, we get ‖f̂‖Lq(S) ≤ C(q, n)‖f‖L1(Rn) for any q. The

restriction question becomes interesting for p > 1. If p > 1, then ‖f̂‖L∞ is not

bounded by ‖f‖Lp . If S consists of a single point, ω0, then ‖f̂‖Lq(S) = |f̂(ω0)|
for all q. So when S is a single point, and p > 1, then there are no inequalities
of the form in Equation 15.10. Moreover, if S is an k-dimensional flat disk, with
1 ≤ k ≤ n−1, and p > 1, then there are still no inequalities of the form in Equation
15.10. Based on these examples, it seemed plausible that there are no non-trivial
inequalities of the form 15.10 at all. But it turns out that the situation is different
when the surface S is curved, and then there are some inequalities with p > 1.

When the surface S is the unit sphere, Stein made a conjecture about all the
restriction inequalities of the form in Equation 15.10, and he proved some non-trivial
cases. The 2-dimensional case of this conjecture was proven by Fefferman in [Fef2].
It turns out that the restriction conjecture has a lot in common with the Bochner-
Riesz conjecture that we discussed above. For instance, the restriction conjecture
is connected to the Kakeya conjecture. Building on the work on the restriction
problem by Stein and Fefferman, Carleson and Sjolin proved the 2-dimensional
case of the Bochner-Riesz conjecture. In dimensions three and higher, all of these
conjectures are wide open and look very difficult.

It is not clear how much polynomial arguments can contribute to understanding
these problems. The problems are certainly not resolved, and there are serious
obstacles to adapting the proof of finite field Kakeya to this setting, as we will
discuss more below. On the other hand, polynomial methods have played a role
in some recent results about this circle of problems. For example, the best currest
estimate for the restriction problem in dimension three is based on polynomial
partitioning [Gu5].

For an introduction to the restriction problem and the Kakeya problem, a good
reference is Tao’s lecture notes [Ta2]. For a discussion of the connection between
the restriction problem and polynomial partitioning, see Lecture 3 of [Gu6].
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We have now given some introduction to the connection between Kakeya-type
problems and oscillatory integrals. In the rest of the chapter, we leave oscillatory
integrals behind and focus on estimates for Kakeya-type problems.

15.6. Quantitative bounds for the Kakeya problem

In this section, we explore some quantitative lower bounds on the size of a
Kakeya set ∪iTi. In the last section, we discussed how quantitative estimates about
tubes are related to quantitative estimates about oscillatory integral operators. We
have seen Besicovitch’s example of a Kakeya set in two dimensions with | ∪i Ti| �
log logN
logN N2. In two dimensions, we will see that this example is essentially sharp. In

higher dimensions, it is a major open problem whether the Besicovitch construction
is essentially the best possible one. We will only prove some much weaker bounds.
The methods that we discuss here are parallel to the methods we discussed for the
finite field Kakeya problem in Section 3.1.

Proposition 15.32. If {Ti} is a Kakeya set of tubes in R2 (with width 1 and
length N), then

| ∪i Ti| � (log N)−1N2.

Proof. The directions v(Ti) are approximately evenly distributed on the unit
circle. Therefore, we can number the tubes Ti so that

|v(Ti) − v(Tj)| ∼
|i − j|

N
.

In that case, the area of Ti ∩ Tj is bounded above

|Ti ∩ Tj | � |v(Ti) − v(Tj)|−1 � N |i − j|−1.

We can use this information to control
∫

(
∑

i χTi
)2:∫ (

N∑
i=1

χTi

)2

=

N∑
i,j=1

∫
χTi

χTj
�

N∑
i,j=1

N |i − j|−1 ∼ (log N)N2.

On the other hand, if K = ∪iTi is small, then
∫

(
∑

i χTi
)
2

is forced to be large.
We can estimate this effect by using the Cauchy-Schwarz inequality.

N2 ∼
∫
K

(
∑
i

χTi
) · 1 ≤ |K|1/2

(∫
(
∑
i

χTi
)2

)1/2

� |K|1/2(N2 log N)1/2.

Rearranging this inequality, we get the lower bound

| ∪i Ti| = |K| � N2(log N)−1.

�
Remark. This proof takes advantage of a connection between the size of ∪iTi

and the L2 norm of
∑

χTi
. For a Kakeya set of tubes in n dimensions, we always

have ‖
∑

i χTi
‖L1 ∼ Nn. If | ∪i Ti| is much smaller than Nn, then for any p > 1,∫

(
∑

i χTi
)p is forced to be much larger than Nn. Partly for this reason, analysts are

interested in estimating the Lp norms ‖
∑

i χTi
‖Lp . Moreover, in the connections

with linear operators that we described in the last section, these Lp norms are more
relevant than the volume of ∪iTi.

One relevant example for the Lp estimates is the example when all the tubes of
the Kakeya set are centered at the origin. In this case,

∑
i χTi

has size ∼ Nn−1 on a
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unit ball around the origin. For p > n
n−1 this peak on the unit ball is the dominant

contribution to ‖
∑

i χTi
‖Lp . Depending on the value of p either this example or

the Besicovitch example give the largest known value of ‖
∑

i χTi
‖Lp . The following

conjecture implies that these examples are essentially the worst possible:

Conjecture 15.33. (Lp-Kakeya conjecture) Suppose that Ti is a Kakeya set
of tubes in Rn, and suppose that T 0

i is a Kakeya set of tubes all centered at the
origin. For any p > n

n−1 ,

‖
∑
i

χTi
‖Lp � ‖

∑
i

χT 0
i
‖Lp .

Exercise 15.10. Check that the Lp version of the Kakeya conjecture implies
the Kakeya conjecture, Conjecture 15.21.

Using the same argument as in the proof of Proposition 15.32, one can check
that in any dimension n, the Lp Kakeya conjecture holds for p = 2:

(15.11) ‖
∑
i

χTi
‖L2 � ‖

∑
i

χT 0
i
‖L2 .

In dimension n ≥ 3, however, this estimate does not lead to sharp bounds for
| ∪i Ti|.

Exercise 15.11. Using Inequality 15.11, check that for all n ≥ 3, if Ti is a
Kakeya set of tubes, then | ∪i Ti| � N2.

The bush argument is a simple argument that gives a much better bound for
large values of n.

Proposition 15.34. Suppose that {Ti} is a Kakeya set of tubes in Rn. Then

| ∪i Ti| � N
n+1
2 .

Proof. Let K = ∪iTi. By the pigeon-hole principle, there must be a point
x ∈ K that lies in at least

∑
i |Ti||K|−1 ∼ Nn|K|−1 different tubes Ti. Consider

the union of all the tubes Ti containing the point x. This set of tubes is called the
bush through x.

Far away from x, these tubes are morally disjoint from each other. Because
the angle between any two tubes is � 1/N , a point y outside of B(x, N/4) can lie
in � 1 different tubes in the bush through x. For each tube Ti in the bush through
x, |Ti \ B(x, N/4)| � N . Therefore, the union of the tubes in the bush has volume

� Nn

|K|N.

Since the union of tubes in the bush is part of K, we get

|K| � Nn+1|K|−1.

Solving for |K| yields |K| � N
n+1
2 .

�

The bush argument gives a better estimate than the L2 argument for n ≥ 4.
On the other hand, the L2 argument gives a better estimate when n = 2. (For
n = 3, both arguments give | ∪i Ti| � N2.) The hairbrush method, invented by
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Tom Wolff, combines these two methods in a clever way to give a better estimate.
It leads to the bound

|
∑
i

Ti| � N
n+2
2 .

We described the finite field version of the hairbrush argument in Section 2.4. It
could be an interesting project for the reader to try to generalize this discussion to
tubes in Rn.

Mathematicians have tried hard to improve these estimates, and it seems to be
very difficult to achieve sharp bounds. In the late 90’s, Bourgain introduced a new
approach to this problem using combinatorial number theory. This new approach
led to much better bounds for large n. It was developed further by Katz and Tao.
For large n, Katz and Tao [KatTar] prove that | ∪i Ti| � Nαn for α = .59.... We
don’t discuss the number theory approach to Kakeya here. For an introduction to
these ideas, see [Lab], [Ta1], or [D2].

In three dimensions, the hairbrush argument gives the bound |∪Ti| � N
5
2 . This

bound has been quite difficult to improve. Combining the combinatorial number
theory tools with other interesting ideas, Katz, Laba, and Tao, under a small extra
assumption about the tubes Ti, improved the bound to N

5
2+ε for some small ε > 0.

This result was published in the Annals of Math. It remains the best result in three
dimensions at the present.

15.7. The polynomial method and the Kakeya problem

The finite field Kakeya problem was introduced by Wolff in the late 90’s. Before
Dvir’s work, essentially the same estimates were known for the original Kakeya
problem and the finite field Kakeya problem, although there were small technical
differences in some of the proofs. It came as a real shock to the community when
Dvir completely solved the finite field Kakeya problem in a couple pages [D].

It is not yet clear how much the polynomial method can say about problems
in harmonic analysis like the Kakeya problem or the Bochner-Riesz conjecture. It’s
not clear whether this short proof over finite fields is a crucial clue or a red herring.
People have tried hard to adapt the proof to Euclidean space, and there are some
serious difficulties. On the other hand, there have been some small successes where
the polynomial method has led to harmonic analysis estimates that are slightly
stronger than what we can prove without polynomials.

In this section, we describe some of the difficulties of adapting the polynomial
method to the Kakeya problem for tubes, but we will also see that polynomials do
tell us something about Kakeya sets.

To get started, let us make a high-level sketch of the proof of the finite field
Kakeya conjecture from Section 2.4. Suppose that K ⊂ Fn

q is a Kakeya set. We
consider a polynomial P of minimal degree that vanishes on K. First we estimate
the degree of P . If |K| is much smaller than qn, then we see that Deg P ≤ q/2.
Now by the vanishing lemma, if P vanishes on a line l ⊂ Fn

q , then P must also
vanish at the point at infinity corresponding to l. But then P would vanish at too
many places, giving a contradiction.

Suppose now that {Ti} is a Kakeya set of tubes in Rn. Each tube is a cylinder
of radius 1 and length N , and the angle between any two tubes is � 1/N , and the
number of tubes is ∼ Nn−1. We let K := ∪iTi. Let us suppose that |K| ∼ Nn−γ

for some γ > 0.
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How can we imitate the proof of the finite field Kakeya conjecture? There is
no (non-zero) polynomial P that vanishes on the entire set K, because K contains
an open ball. If we take a finite set of points in K, we could find a polynomial
that vanishes on that set of points. For example, we might consider a unit lattice
and look at the set of all the unit cubes in the lattice that intersect K. We let
Q(K) denote this set of cubes. The number of such unit cubes is ∼ |K| ∼ Nn−γ .
We could let P be a minimal degree polynomial that vanishes at the center of
each of these cubes. By parameter counting, we get Deg P � Nn−γ . Each tube
would contain ∼ N points where P vanishes, and N is much larger than Deg P .
However, it is not clear how to make use of this. For almost all the tubes Ti, these
∼ N points in Z(P ) do not perfectly line up along a line, so we cannot apply the
vanishing lemma.

The key difficulty in adapting the proof of finite field Kakeya is in the step with
the vanishing lemma. If a polynomial P vanishes at more than Deg P points on a
line l, then P must vanish on the whole line l, including points very far away from
the initial points. This is a very strong result, and it plays a crucial role in the
polynomial method: a polynomial that vanishes at some points is forced to vanish
somewhere else. In the situation above, we know that P vanishes at ∼ N points
of Ti, and these N points are roughly spaced in a row along Ti with a distance
of ∼ 1 between consecutive points. Recall that v(Ti) denotes a unit vector in the
direction of Ti. Suppose that T+

i is defined to be the translation of Ti by Nv(Ti).
When I first started working on the problem, I was hoping to prove that P vanishes
at many evenly spaced points along T+

i . But this doesn’t have to happen. The
variety Z(P ) can hug a tube Ti for a long way and then turn sharply away. This
is illustrated in Figure 15.3. For an example of an algebraic curve that makes a
sharp turn, consider the polynomial curve in two variables defined by y = xD. For
0 ≤ x ≤ 1 − D−1/2, this curve closely hugs the x-axis. But around x = 1, the
curve turns sharply and hugs the line x = 1 instead. Just because the polynomial
P vanishes at many points along Ti, it doesn’t seem to force P to vanish anywhere
far from Ti. So a crucial part of the polynomial method breaks down here.

Ti T i 
+

T i  
+Ti Z(P )

Z(P )

Figure 15.3. The top scenario works well for polynomial meth-
ods, but the bottom scenario can happen too.

It is easy to construct an algebraic surface Z(P ) that vanishes at many evenly
spaced points along one tube Ti, but barely intersects the translated tube T+

i . It’s
not so easy to imagine an algebraic surface Z(P ) that does the same to all the tubes
Ti in a hypothetical Kakeya set. It may be possible to attack the Kakeya problem
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by proving that an algebraic surface Z(P ) cannot bend too sharply in too many
places, in terms of the degree of P .

Even simple problems about sharp bending of algebraic surfaces turn out to be
rather hard. For example, when I taught a course on the polynomial question, I
raised the question how sharply a degree D algebraic curve in the plane can bend.
We can make this precise as follows. We say that a polynomial P ∈ PolyD(R2)
makes an ε-sharp right-angled turn at zero if

• P (x1, x2) > 0 if (x1, x2) ∈ [ε, 1]2,
• P (x1, x2) < 0 if (x1, x2) ∈ [−1,−ε]×[−1, 1] or (x1, x2) ∈ [−1, 1]×[−1,−ε].

P < 0

y

x

0

0

ε

ε

−ε

−ε

P > 0

Figure 15.4

Define ε(D) to be the infimal value of ε so that some polynomial P ∈ PolyD(R2)
makes an ε-sharp right-angled turn at 0. It turns out to be hard just to estimate
the asymptotic behavior of ε(D) as D → ∞. If D is even, then the function
P (x1, x2) = 1 − (1 − x1)

D − (1 − x2)
D makes an ε-sharp turn for ε ∼ 1/D. I

conjectured that this example is asymptotically sharp in the sense that ε(D) ∼ 1/D.
In [Z], Zhang constructed examples showing that ε(D) � e−cD for some constant
c > 0, showing that my conjecture was badly wrong. In the other direction, he

proved that ε(D) � e−CD2

for some constant C. These bounds give a fairly precise
picture of the asymptotics of ε(D). Zhang’s example shows that algebraic curves
can bend surprisingly fast, and it tends to make me pessimistic about controlling
the behavior of Z(P ) on the shifted tubes T+

i .
One part of the difficulty in working with tubes is that a finite set of points

is a very thin subset of the n-dimensional tube Ti. We can get some additional
leverage by applying the polynomial ham sandwich theorem. In the rest of this
section, we explore in a heuristic way what the polynomial ham sandwich theorem
can tell us about Kakeya sets. In the next section, we will use these ideas prove a
precise theorem.
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Using the polynomial ham sandwich theorem, we can find a non-zero polyno-
mial P so that Z(P ) bisects each cube Q ∈ Q(K), and with

Deg P � |Q(K)|1/n � N1− γ
n .

If Z(P ) bisects a unit cube Q, then Voln−1 Z(P ) ∩ Q � 1, and so we know
that Z(P )∩Q has a substantial surface area instead of just knowing that Z(P )∩Q
contains the point at the center of Q.

Consider one of the tubes, Ti. We let Di be an orthogonal cross-section of Ti,
and for every x ∈ Di we let 
x be the line through x parallel to Ti. For almost
every choice of x ∈ Di, we have

(15.12) |
x ∩ Z(P )| ≤ Deg(P ) � N1− γ
n .

On the other hand, the tube Ti contains ∼ N cubes of Q(K), and Z(P ) bisects
each of them. Let Q(Ti) ⊂ Q(K) be the set of cubes of Q(K) that intersect Ti.
They are disjoint, so we get an estimate for the average: for almost every x ∈ Di,

AvgQ∈Q(Ti) |
x ∩ Z(P ) ∩ Q| � N−1 Deg(P ) � N− γ
n .

Since this holds for almost every x ∈ Di, it also holds when we average over
x ∈ Di. So we get

AvgQ∈Q(Ti),x∈Di
|
x ∩ Z(P ) ∩ Q| � N− γ

n .

For a typical cube Q ∈ Q(Ti), we know that Z(P ) bisects Q, and so Voln−1 Z(P )
∩ Q � 1, and yet

Avgx∈Di
|Z(P ) ∩ Q ∩ 
x| � N−γ/n � 1.

This is only possible if the surface Z(P ) ∩ Q is approximately parallel to the
tube Ti! Figure 15.5 illustrates what we have learned about how Z(P ) intersects a
tube T .

T

T

Z(P)

Z(P)

Figure 15.5. The top picture is an impossible picture of how
Z(P ) intersects T . The bottom picture is a more realistic picture
of how Z(P ) may intersect T . Note here that Z(P ) is usually
almost tangent to the direction of T .

This observation has interesting consequences for the structure of a Kakeya set.
We noticed that for a typical cube Q ∈ Q(Ti), the tube Ti is approximately parallel
to the surface Z(P ) ∩ Q. But there are many different tubes Tj of our Kakeya set
that intersect a typical cube Q! By the argument above, almost all of these tubes
are approximately parallel to the surface Z(P ) ∩ Q. Therefore, there must be a
hyperplane π(Q), and the tubes Tj intersecting Q must usually be almost tangent
to π(Q).
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This is a surprising structure, called planiness. Without any experience, we
might expect that the different tubes Tj intersecting a cube Q would point in a
complicated set of directions on the unit sphere. Suprisingly, they need to concen-
trate near to a plane.

Planiness was first discovered by Katz, Laba, and Tao, in the paper [KLT].
Planiness was one of the observations/tools that allowed them to prove that a
Kakeya set of tubes in R3 (with mild additional hypotheses) has volume at least
N2.5+ε. Later, Bennett, Carbery, and Tao proved stronger and more general plani-
ness estimates in the paper [BCT]. The polynomial method gives a third approach
to planiness, explained in [Gu3].

To end this section, we return to the vanishing lemma in the context of tubes.
Recall that the original vanishing lemma says that if a polynomial P vanishes at
> Deg P points on a line l, then P vanishes on the whole line. This result does not
seem to generalize from lines to tubes in any nice way. But let us consider a weak
corollary of the vanishing lemma.

Corollary 15.35. Suppose that P vanishes at some points x1, ..., xM along
a line l. Let v be a vector parallel to l. If M > Deg P , then ∇vP (xi) = 0 for
i = 1, ..., M . In other words, Z(P ) is tangent to l at the points x1, ..., xM .

The discussion above and the pictures in Figure 15.5 show that this weak
corollary of the vanishing lemma does generalize to tubes in a fairly nice way.

This weak vanishing lemma, Corollary 15.35, is all that we actually used in the
proof of the joints theorem in Section 2.5. In the next section, we will use these
ideas to prove a version of the joints theorem for tubes.

15.8. A joints theorem for tubes

During the book, we have met many theorems about the incidence patterns of
lines in space. Each of these questions can be adapted to a question about long
thin tubes instead of lines. In many cases, the tube version is wide open. But for
the joints problem, there is a version for tubes that has a nice proof using the ideas
from the last section.

Theorem 15.36. ([BCT], [Gu3]) Suppose that 
j,a are lines in Rn for 1 ≤ j ≤
n and 1 ≤ a ≤ A, where each line 
j,a makes an angle of at most (100n)−1 with the
xj-axis. Let Tj,a be the infinite cylinder with radius 1 centered on 
j,a.

Let I be the set of points which lie in one cylinder for each value of j = 1...n.
In equations

I := ∩n
j=1(∪A

a=1Tj,a).

Then the volume of I is � A
n

n−1 .

This theorem is analogous to the joints theorem. Each point of I is like a
“joint” of the tubes Tj,a. So the volume of I is analogous to the number of joints.
If a point x lies in one line for each value of j = 1...n, then x is a joint for the set
of lines 
j,a. The joints theorem says that the number of joints is � A

n
n−1 . This

theorem says that the volume of I obeys the same estimate, generalizing the joints
theorem to tubes.

If the tubes Tj,a are parallel to the xj-axis, then this estimate follows from the
Loomis-Whitney inequality, Theorem 15.1. The projection of I to any coordinate
hyperplane lies in the union of A unit balls, and so for each j = 1, ..., n we get
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|πj(I)| � A. Theorem 15.1 then gives |I| � A
n

n−1 . So Theorem 15.36 can be
thought of as a generalization of the Loomis-Whitney inequality where the tubes
are allowed to tilt a few degrees.

Bennett, Carbery, and Tao proved a very slightly weaker version of Theorem
15.36 in [BCT]. They showed that for any ε > 0, |I| ≤ C(n, ε)A

n
n−1+ε. Their

proof was based on a monotonicity formula for the heat equation, and it involved
looking at the problem at multiple scales.

We will prove Theorem 15.36 using the polynomial ham sandwich theorem.
This approach gives the estimate I ≤ C(n)A

n
n−1 , which is sharp up to a constant

factor. This estimate is only very slightly stronger than what we can prove without
polynomials, but it still indicates that polynomials have something interesting to
contribute to studying the intersection patterns of tubes in Euclidean space.

The proof also involves the idea of the directed volume of a surface. Suppose
S is a smooth hypersurface in Rn. For each x ∈ S, let N(x) denote a unit normal
vector to the surface S at the point x. If v is a unit vector, we define the directed
volume of S perpendicular to V by the formula

VS(v) :=

∫
S

|N · v|dvolS .

Notice that if the tangent plane of S is perpendicular to v, we have |N · v| = 1,
and if the tangent plane contains v, we have |N · v| = 0. For example, we consider
the directed volume of the unit circle in the direction v = (0, 1). The directed
volume of an arc of the upper semi-circle in direction v is exactly the change in the
x-coordinate over the arc. Therefore, the directed volume of the whole upper semi
circle is 2, and the directed volume of the whole circle is 4.

The computation for the circle generalizes as follows. Let π be the orthogonal
projection from Rn to v⊥ ⊂ Rn.

Lemma 15.37. VS(v) =
∫
v⊥ |S ∩ π−1(y)|dvol(y).

As a corollary, we can immediately estimate the directed volume of a degree d
variety in a cylinder T .

Lemma 15.38. (Cylinder estimate) Let T be an infinite cylinder in Rn of radius
r. Let v be a unit vector parallel to the axis of T . Let Z(P ) be the vanishing set
of a polynomial P .

Then VZ(P )∩T (v) � rn−1deg(P ).

Proof. Let π be the projection from T to the cross-section v⊥ ∩ T . This
cross-section is just an (n-1)-dimensional ball of radius r. For almost every y in
this ball, |π−1(y) ∩ Z(P )| ≤ Deg(P ). By the last lemma, VZ(P )∩T (v) is bounded

by Deg(P ) times the volume of the cross-section, which is ∼ rn−1. �

Lemma 15.39. If S is a hypersurface in Rn, and v1, ..., vn are unit vectors and
the angle from vj to the xj-axis is ≤ (100n)−1, then V oln−1S ≤ 2

∑
j VS(vj).

Proof. At a given point of S with normal vector N , we have to prove that∑
j |N · vj | ≥ 1/2. If ej are the coordinate vectors, then for any unit vector N we

have ∑
j

|N · ej | ≥
∑
j

|N · ej |2 = 1.
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The vectors vj are very close to ej , and so we get∑
j

|N · vj | ≥
∑
j

|N · ej | −
∑
j

|vj − ej | ≥ 1 − 1

100
≥ 1/2.

Now ∑
j

VS(vj) =

∫
S

⎛
⎝∑

j

|N(x) · vj |

⎞
⎠ dvolS ≥ (1/2) VolS.

�

Now we can prove Theorem 15.36.

Proof. Consider the unit cubical lattice. Let Q1, ..., QV be all the unit cubes
in the lattice which intersect the set I. We will prove V � A

n
n−1 .

Let P be a non-zero polynomial so that Z(P ) bisects each cube Q1, ..., QV and
Deg P � V 1/n. This bisection requires a certain amount of area, therefore:

V oln−1Z(P ) ∩ Qi � 1.

Since Qi intersects I, Qi must intersect ∪aTj,a for each j. For each cube Qi,
for each j, we let Tj(Qi) be one of the tubes Tj,a that intersects Qi. Let vj,i be the
direction of the tube Tj(Qi). By Lemma 15.39, we get

n∑
j=1

VZ(P )∩Qi
(vj,i) � V oln−1Z(P ) ∩ Qi � 1.

For each cube Qi, choose one direction j(Qi) so that VZ(P )∩Qi
(vj,i) � 1. Then

assign the cube Qi to the tube Tj(Qi). Each cube is now assigned to a tube. We
have V cubes and nA tubes, so one of the tubes has � V/A cubes assigned to it.
Let T be this tube, and let v be its direction. We have � V/A cubes Qi obeying
the following conditions:

• The cube Qi intersects T .
• VZ(P )∩Qi

(v) � 1.

Let T̃ be a wider cylinder with radius 2n and with the same central axis as T .
If Qi intersects T , then it lies in T̃ . Therefore, we have

V/A � VZ(P )∩T̃ (v).

On the other hand, the cylinder estimate, Lemma 15.38, gives

VZ(P )∩T̃ (v) � V 1/n.

Combining these inequalities we get V/A � V 1/n, and rearranging we get

V � A
n

n−1 . �

15.9. Hermitian varieties

In this section, we describe an example of a set of complex tubes in C3 with
a remarkable intersection pattern. A complex line segment in Cn of length L is
defined to be the intersection of a complex line l ⊂ Cn with a ball B(z, L) for
some point z ∈ l. A complex tube of radius δ and length 1 is defined to be the
δ-neighborhood of a complex line segment of length 1. Geometrically, a complex
tube of radius δ and length 1 in Cn looks approximately like a pancake of the form
B2n−2(δ) × B2(1).
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We will consider a set of complex tubes Ti ⊂ C3 of radius δ and length 1. We
are interested in sets of tubes that overlap a great deal in the sense that | ∪i Ti| is
much smaller than

∑
i |Ti|. One boring way that this could happen is that all the

tubes Ti could be miniscule perturbations of a single tube. More generally, many
tubes Ti could pack into a tube of radius w and length 1 for some δ ≤ w ≤ 1. We
could easily get compression if such a tube T (w) contained a set of our tubes Ti

with ∑
Ti⊂T (w)

|Ti| � |T (w)|.

The volume of a tube of radius w and length 1 in C3 is ∼ w4. Therefore, we
will be interested in sets of tubes Ti so that

(15.13) Any tube of radius w and length 1 contains � (w/δ)4 tubes Ti.

Another way that the tubes Ti could overlap a lot is that many tubes could
cluster into a small neighborhood of a plane. If π is a plane, then the volume of
Nw(π) ∩ B(1) is ∼ w2. Therefore, we will be interested in sets of tubes Ti so that
for any complex 2-plane π ⊂ C3, and any δ < w < 1,

(15.14) the number of tubes Ti in the slab Nw(π) ∩ B(1) is � δ−2(w/δ)2.

Under these conditions, it is not easy to imagine an example where | ∪i Ti| �∑
i |Ti|, but it can happen.

Theorem 15.40. ([KLT]) There exists a set of δ−4 complex tubes Ti obeying
Conditions 15.13 and 15.14, with

| ∪i Ti| � δ ∼ δ
∑
i

|Ti|.

The union ∪iTi contains ∼ δ−5 disjoint δ cubes, each cube lies in ∼ δ−1 tubes
Ti, and each Ti intersects ∼ δ−2 cubes.

The example in [KLT] is based on the Heisenberg variety. Steve Kleiman
explained to me that there are similar examples based on Hermitian varieties, which
were studied in algebraic geometry by Bose and Chakravarti [BC]). In Section 3.2,
we studied Hermitian varieties in finite fields, and in this section, we study the
analogous varieties over C.

It is interesting to contrast this theorem with our results about the intersection
patterns of complex lines in C3. In the exercises, we showed the following esti-
mate about complex lines – see Exercise 11.4 for an approach using flat points and
Exercise 13.4 for an approach using ruled surfaces.

Theorem 15.41. Suppose that L is a set of N2 lines in C3 with at most N
lines in any plane. Suppose that S is a set of points in C3 so that each line of L
contains at least N points of S. Then |S| � N3.

Comparing Theorem 15.40 and Theorem 15.41, we see that the incidence ge-
ometry of thin tubes in C3 is very different from the incidence geometry of lines in
C3. (In this comparison, δ−2 plays the role of N .)
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This example shows that it is complicated to try to adapt theorems about lines
to theorems about thin tubes. Some results generalize from lines to thin tubes and
some do not. In Section 15.8, we saw that the joints theorem generalizes to thin
tubes in a nice way. But the Hermitian variety shows that Theorem 15.41 fails to
generalize to thin tubes.

For many other problems about the incidence geometry of lines, we don’t have
a good understanding of what happens for thin tubes. The Szemerédi-Trotter
theorem is an important example, which was studied by Wolff [Wo2], Katz-Tao
[KT2], and Bourgain [Bou] . Building on the previous work, the paper [Bou]
proves a very interesting estimate about the Szemerédi-Trotter problem for thin
tubes, but this estimate is far from sharp, and we do not have anything like a
complete understanding.

Theorem 15.40 is also relevant for the Kakeya problem. We can make a complex
analogue of the Kakeya problem in the following way. We say that the angle
between two 1-dimensional subspaces V1, V2 ⊂ C3 is at most δ if NδV1 ⊃ V2∩B(1).
(Exercise: it would be equivalent to say that NδV2 ⊃ V1 ∩ B(1).) We say that the
angle between two tubes is ≥ δ if the angle between the subspaces tangent to the
central axes of the tubes is ≥ δ. A Kakeya set of tubes of radius δ and length 1
in Cn is a set of δ−(2n−2) tubes where the angle between any two tubes is � δ. It
is straightforward to check that a Kakeya set of tubes in C3 obeys the conditions
15.13 and 15.14, and there are similar conditions in any dimension n. The complex
Kakeya conjecture says that for any Kakeya set of tubes in Cn, and any ε > 0,
| ∪i Ti| ≥ c(n, ε)δε.

The configuration of tubes coming from the Hermitian variety or the Heisenberg
group is not a Kakeya set of tubes. It contains many parallel tubes. But this set
of tubes does obey the interesting conditions 15.13 and 15.14. Many arguments
about Kakeya sets in R3 only really used these two conditions: in particular, the
hairbrush argument only used these two conditions. In the paper [KLT], Katz,
Laba, and Tao proved a Kakeya estimate in R3 that improved on the bound from
the hairbrush argument, although only by a small margin. In order to improve the
hairbrush bound, they had to use some hypothesis that is obeyed by a Kakeya set
of tubes in R3 but not obeyed by the tubes from Theorem 15.40. This means either
using that the tubes are real instead of complex, and/or using that they point in
different directions instead of just using Conditions 15.13 and 15.14. The paper
[KLT] figured out how to exploit this information to get improved estimates for
the size of a Kakeya set.

Now we turn to the proof of Theorem 15.40. We will prove a slightly weaker
result, where the estimate in Condition 15.14 is weaker by a factor (log δ−1). The
construction is based on an interesting variety called the Hermitian variety. It is
the complex analogue of the Hermitian varieties over finite fields that we discussed
in Section 3.2. The most direct analogue of the Hermitian variety over finite fields
would be given by the equation |z1|2 + |z2|2 + |z3|2 = 1. This variety is just a
5-dimensional (real) sphere in C3. It is compact and so it does not contain any
lines. By modifying the signs on the left-hand side, we get an interesting variety
that contains many lines. We define the variety H as follows:

H := {(z1, z2, z3) ∈ C3 so that |z1|2 + |z2|2 − |z3|2 = 1}.
(The set H is not a complex algebraic variety in C3, but we can think of it as a
real algebraic hypersurface in R6.)
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The set H has a lot symmetries and it contains a lot of lines. First we describe
the symmetries. We define a (non-standard) Hermitian inner product on C3 by

(v, w)H := v1w̄1 + v2w̄2 − v3w̄3.

Notice that H = {z ∈ C3|(z, z)H = 1}. The group U(2, 1) ⊂ GL(3,C) is defined to
be the set of complex-linear isomorphisms of C3 that preserve this inner product.
In other words

U(2, 1) := {M ∈ GL(3,C)|(Mv, Mw)H = (v, w)H for all v, w ∈ C3}.
The group U(2, 1) acts on H and we will see in the next exercise that it acts

transitively. This shows that H has a lot of symmetry.
The group U(2, 1) has a lot in common with the standard unitary group U(3)

corresponding to the standard Hermitian inner product on C3. For instance, there
are many orthonormal bases, described in the following exercise.

Exercise 15.12. Suppose that v ∈ C3 with (v, v)H = 1. Then there is a basis
v1 = v, v2, v3 of C3 with (vi, vj)H = δij . (In other words, (vi, vj)H is equal to 1 if
i = j and equal to zero if i �= j.)

As a corollary, U(2, 1) acts transitively on H. For any v ∈ H, there is a matrix
M ∈ U(2, 1) so that M(1, 0, 0) = v. To find M , we let v1, v2, v3 be the basis defined
in the first part of the problem, and we let M be the matrix with columns v1, v2,
and v3. We then check that M ∈ U(2, 1) and M(1, 0, 0) = v.

Next we study the complex lines in H. Since U(2, 1) acts transitively on H,
it suffices to study the complex lines in H through the point (1, 0, 0). Notice that
H ∩ {z1 = 1} is the set defined by the following equations:

z1 = 1; |z2|2 = |z3|2.
This set contains many complex lines: all the complex lines of the form z1 =

1, z3 = αz2, for any α ∈ C with |α| = 1.
Conversely, these lines are all of the lines through (1, 0, 0) contained in H.

Suppose that l is a complex line with (1, 0, 0) ⊂ l ⊂ H. We identify C3 with R6 and
use coordinates xj , yj on R6 with zj = xj + iyj . Now we can think of l as a real 2-
plane in the real 5-manifold H. The (real) tangent space to H at (1, 0, 0) is the space
x1 = 1. Therefore, l lies in the real hyperplane x1 = 1. But since l is a complex
line, we can parametrize it by a map C → C3 with t → (a1t + b1, ..., a3t + b3). We
see that the real part of a1t+b1 = 1 for all t ∈ C. But this is only possible if a1 = 0
and b1 = 1. So we conclude that the line l must lie in the complex 2-plane z1 = 1.

This finishes our description of the lines in H through (1, 0, 0). We restate it
as a lemma.

Lemma 15.42. The set of complex lines l with (1, 0, 0) ∈ l ⊂ H is parametrized
by the unit circle S1 ⊂ C. For each α ∈ S1, we define a line lα by

z1 = 1; z2 = αz3.

The set of complex lines l with (1, 0, 0) ∈ l ⊂ H is {lα}α∈S1 .

We now construct the set of tubes Ti by thickening some of the lines in H.
First, we choose a δ-separated set of points a ∈ S1. The number of points a is
∼ δ−1. We consider the lines la defined above. Next we use the action of U(2, 1)
to translate these lines so that they go through other points of H. We let zb be
a set of δ-separated points in H ∩ B(2). The number of points zb is ∼ δ−5. For
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each zb, we choose a matrix Mb ∈ U(2, 1) so that Mb(1, 0, 0) = zb. Then we define
lab = Mb(la). The line lab lies in H and contains the point zb. We let Tab be the
δ-neighborhood of lab ∩ B(2).

We have now defined ∼ δ−6 tubes Tab. Not all these tubes are really distinct.
Define two tubes to be equivalent if each one is contained in the δ-neighborhood of
the other. We keep only one tube from each equivalence class, and we let Ti be the
resulting set of tubes.

We can now estimate the number of tubes Ti. For each point zb, the angle
between any two tubes Tab is � δ, and therefore, there are � δ−1 inequivalent
tubes Tab though zb. Because of the description of the lines in H in Lemma 15.42,
there are at most � δ−1 inequivalent tubes Ti that intersect (1, 0, 0). Because of the
symmetries of H, there are at most � δ−1 inequivalent tubes Ti that pass through
any point in H ∩B(2). Therefore, there are ∼ δ−1 tubes Ti that pass through each
point zb. A little more generally, we can cover H ∩ B(2) with ∼ δ−5 δ-cubes Qb

(one around each point z(b)), and each δ-cube intersects ∼ δ−1 tubes Ti. Since
each tube Ti intersects ∼ δ−2 of these cubes, we see that the number of tubes Ti is
∼ δ−4.

To complete the proof of Theorem 15.40, we have to check that the tubes Ti

obey Conditions 15.13 and 15.14 – that they don’t cluster into a thicker tube or
into a planar slab. We begin by checking Condition 15.13.

Let T (w) be a tube of radius w and length 1, for some δ < w < 1. First we
consider T (w) ∩ Nδ(H). Since H is a real hypersurface of low degree, this set has
volume at most δw3, and so it can be covered by ∼ δ−2(w/δ)3 δ-cubes Qb. Each of
these cubes lies in ∼ δ−1 tubes from our set Ti. These δ−1 tubes point in a range of
directions, described in Lemma 15.42. The number of tubes Ti through a cube Qb

that make an angle � w with a given fixed direction is � (w/δ). Therefore, each
cube Qb lies in � w/δ tubes Ti ⊂ T (w). Since each tube Ti ⊂ T (w) contains ∼ δ−2

cubes Qb ⊂ T (w), we see that the number of tubes Ti ⊂ T (w) is at most

δ2 · δ−2(w/δ)3 · (w/δ) ∼ (w/δ)4.

This proves Condition 15.13.
Next we discuss Condition 15.14: the tubes Ti do not cluster in a planar slab.

If π is a (complex) 2-plane in C3 then the heart of the matter is an estimate for
the volume of Nδ(π) ∩ Nδ(H) ∩ B(2). We will prove the following bound.

(15.15) |Nδ(π) ∩ Nδ(H) ∩ B(2)| � δ3 log(δ−1).

Let us take a moment to process the expression δ3 log(δ−1). The volume of
Nδ(π) ∩ B(2) is ∼ δ2. If H were a real 5-plane transverse to the real 4-plane π,
then the intersection would have volume ∼ δ3. On the other hand, if H were a
real 5-plane containing π, then the intersection would be all of Nδ(π) ∩ B(2), with
volume around δ2. The factor log(δ−1) is not really necessary in Equation 15.15,
but the factor is small and it allows a simpler proof.

This estimate easily implies estimates for thicker slabs. If δ < w < 1, then
a slab of the form Nw(π) ∩ B(2) can be covered by ∼ (w/δ)2 slabs of the form
Nδ(π) ∩ B(2). Therefore, for any w in the range δ < w < 1, we get the estimate

(15.16) |Nw(π) ∩ Nδ(H) ∩ B(2)| � w2δ log(δ−1).

From the estimate 15.16, we see that |Nw(π) ∩ Nδ(H) ∩ B(2)| can be covered
by ∼ w2δ−5 log(δ−1) δ-cubes. Each of these cubes lies in � δ−1 tubes Ti ⊂ Nw(π),
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and each tube Ti contains δ−2 cubes. Therefore, the number of tubes Ti ⊂ Nw(π)
is � w2δ−4 log(δ−1). Up to the log factor, this is the bound in Condition 15.14. It
just remains to check the volume estimate in Equation 15.15.

To prove this estimate, we prove general bounds about the volume of the set
where a degree 2 polynomial is small. Here is the general question we will consider.
Suppose that P is a degree 2 polynomial on Rn. We let |P | denote the maximum
of the norms of the coefficients of P . If we normalize so that |P | ∼ 1, what is
the maximum possible volume of {x ∈ Bn(1) so that |P (x)| ≤ δ}? For many
polynomials P , this volume is � δ, but there is an exception. If P (x) = x2

1, then
the condition |P (x)| ≤ δ is equivalent to |x1| ≤ δ1/2. In this case, the set has
volume ∼ δ1/2. More generally, if P is the square of a linear polynomial, we get a
volume of ∼ δ1/2. This is the only way to get a volume near δ1/2.

Proposition 15.43. Suppose that P ∈ Poly2(R
n) has |P | ∼ 1 and suppose

that for any P1 ∈ Poly1(R
n), |P − P 2

1 | � 1. Then for any 0 < δ < 1/2,

|{x ∈ Bn(1) so that |P (x)| < δ}| � δ(log δ−1).

The expression δ(log δ−1) is sharp in this inequality, as we can see from the
example P (x1, x2) = x2

1 − x2
2. For any 1 ≤ j ≤ (log δ−1), the rectangle defined by

|x1| ∼ 2−j , |x2| ∼ 2jδ lies in the set where |P (x)| ≤ δ. There are ∼ log δ−1 such
rectangles, they are disjoint, and each one has area ∼ δ.

Proof. To prove the proposition, we build up to it from simple cases. The
first simple case is the polynomial in one variable P (x) = λx2 + b. If |λ| ∼ 1, then
we claim that

|{x ∈ [−1, 1] so that |P (x)| ≤ δ}| � min(|b|−1/2δ, δ1/2).

If |b| ≤ 2δ, then we have the condition |λx2| ≤ 3δ, and so |x| � δ1/2. If |b| > 2δ,
then we proceed using the fundamental theorem of calculus. If |P (x)| is small, then
x must be close to ±λ−1/2|b|1/2. In this region |P ′(x)| = |2λx| ∼ |b|1/2. Therefore,
P (x) changes by δ over an interval of length ∼ |b|−1/2δ.

If we know that |b| ∼ 1, then the left-hand side is � δ. On the other hand, if
we don’t know anything about b, then the left-hand side is � δ1/2.

The second simple case is a polynomial in two variables P (x1, x2) = λ1x
2
1 +

λ2x
2
2 + b, with |λ1|, |λ2| ∼ 1 and |b| � 1. In this case, we claim that∣∣{(x1, x2) ∈ B2(1) so that |P (x)| ≤ δ}

∣∣ � δ log(δ−1).

We organize the set on the left according to the order of magnitude of λ2x
2
2 +b.

For 1 ≤ j ≤ log δ−1, we define

Sj := {x2 ∈ [−1, 1] so that |λ2x
2
2 + b| ≤ 2−j .

Since |λ2| ∼ 1, the first simple case tells us that |Sj | � 2−j/2.
Suppose x2 ∈ Sj but x2 /∈ Sj+1, we have |λ2x

2
2 + b| ∼ 2−j . Since |λ1| ∼ 1, the

first simple case tells us that

|{x1 ∈ [−1, 1] so that |P (x1, x2)| ≤ δ}| � 2j/2δ.

Therefore, the area we want to bound is at most

log δ−1∑
j=1

2j/2δ|Sj |.
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Plugging in our estimate |Sj | � 2−j/2, we get the desired bound∣∣{(x1, x2) ∈ B2(1) so that |P (x)| ≤ δ}
∣∣ � δ log(δ−1).

Now we are ready to tackle the general case. After making a rotation of the
coordinates, we can assume that the second-order part of P is diagonal:

P (x) =
n∑

i=1

λix
2
i +

n∑
i=1

bixi + c.

The norm |P | is not exactly invariant under rotation of the coordinates, but
it is straightforward to check that it is approximately invariant, so we still have
|P | ∼ 1.

We order the coordinates so that |λ1| ≥ |λ2| ≥ ... If two of the λ’s are ∼ 1, then
we can reduce the problem to our second simple case. For any fixed (x3, ..., xn) ∈
B(1), we can bound the volume of {(x1, x2) ∈ B(1) so that |P (x)| ≤ δ} by the
second simple case, because after translating (x1, x2) by a vector of norm � 1, this
set is equivalent to a set of the form

{(y1, y2) ∈ B(C) so that |λ1y
2
1 + λ2y

2
2 + b′| ≤ δ}.

Next suppose that |λ1| ∼ 1, but the other λi are all close to zero. By translating
in the x1-direction, we can assume that b1 = 0.

If |bj | ∼ 1 for some j ≥ 2, then we proceed as follows. Without loss of generality,
we can assume that bj > 0. Since λj is almost zero, ∂jP (x) ∼ 1 for x ∈ [−1, 1]n.
Therefore, for any values of x1, ..., xj−1, xj+1, ..., xn in [−1, 1], we get the bound

|{xj ∈ [−1, 1] so that |P (x)| ≤ δ}| � δ.

This gives the desired bound in this scenario.
We continue to suppose that |λ1| ∼ 1, that the other λi are close to zero, and

that b1 = 0. If |bj | is close to zero for all j, then we must have |c| ∼ 1, because
P (x) cannot be too close to the polynomial λ1x

2
1, which is a square. Now, for each

(x2, ..., xn) ∈ Bn−1(1) the equation |P (x)| ≤ δ expands out to |λ1x
2
1 + c′| ≤ δ for

|c′| ∼ 1. The set of x1 satisfying the inequality has length � δ which again gives a
good bound. This finishes the case where exactly one λi has norm ∼ 1.

Finally, the case where all λi are close to zero is fairly easy. If all |λi| and
all |bi| are close to zero, then we must have |c| ∼ 1, and the set of solutions
{x ∈ Bn(1) so that |P (x)| ≤ δ} is just empty.

Suppose that for some i, λi is close to zero, but bi is far from zero. Without
loss of generality, suppose that i = 1 and suppose that b1 > 0, and so b1 ∼ 1. Then
∂1P (x) ∼ 1 for all x ∈ [−1, 1]n. Therefore, for any (x2, ..., xn) ∈ B(1),

|{x1 ∈ [−1, 1] so that |P (x)| ≤ δ}| � δ.

This gives the required bound in this case.
�

Now we apply this Proposition to understand the size of Nδ(π)∩Nδ(H)∩B(2).
Suppose that the plane π is given by the equation

z3 = a1z1 + a2z2 + b,
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where a1, a2, b ∈ C, and also suppose that |a1|, |a2|, |b| � 1. An arbitrary plane π
that passes through B(2) can be written in this form after possible exchanging the
coordinates. The argument that we will make applies equally well if the variable
on the left-hand side is z1 or z2.

If z ∈ Nδ(π), then we have

(15.17) |z3 − a1z1 − a2z2 − b| ≤ Cδ.

Also, if z ∈ Nδ(H) ∩ B(2), we have

(15.18)
∣∣|z3|2 − |z1|2 − |z2|2 + 1

∣∣ ≤ Cδ.

This inequality requires a little explanation. Let F (z1, z2, z3) = |z1|2 + |z2|2 −
|z3|2, so that H is just {z ∈ C3 so that F (z) = 1}. We view F as a function from R6

to R. The gradient of F has a simple formula, from which we see that ∇F (z) = 0
only at z = 0. Here is the formula:

∇F (z) = (∂x1
F, ∂y1

F, ∂x2
F, ∂y2

F, ∂x3
F, ∂y3

F ) = (2x1, 2y1, 2x2, 2y2,−2x3,−2y3).

Since 0 /∈ H, we have |∇F (z)| ∼ 1 for z ∈ H∩B(2). Therefore, for all z ∈ B(2),
|F (z)| ∼ Dist(z, H). So for all z ∈ Nδ(H)∩B(2), we have

∣∣|z3|2 − |z1|2 − |z2|2 − 1
∣∣

= |F (z)| ≤ Cδ.
We now combine Equations 15.17 and 15.18. Suppose (z1, z2, z3) ∈ Nδ(π) ∩

Nδ(H) ∩ B(2). By Equation 15.17

|z3|2 = |a1z1 + a2z2 + b|2 + O(δ).

But by Equation 15.18, we have

|z3|2 = |z1|2 + |z2|2 − 1 + O(δ).

Hence we get an inequality about z1, z2:

(15.19) |a1z1 + a2z2 + b|2 = |z1|2 + |z2|2 − 1 + O(δ).

We let X denote the set of (z1, z2) ∈ B(2) obeying this inequality. We will
prove that |X| � δ log(δ−1). This bound implies Equation 15.15: if (z1, z2, z3) ∈
Nδ(π)∩Nδ(H)∩B(2), then (z1, z2) ∈ X, and for any (z1, z2) ∈ X, the set of z3 ∈ C

so that (z1, z2, z3) ∈ Nδ(π) lies is a disk of radius � δ.
To see that |X| � δ log(δ−1), we will apply Proposition 15.43. The set X is

defined by the inequality

|P (x1, y1, x2, y2)| ≤ Cδ,

where

P (x1, y1, x2, y2) = |a1z1 + a2z2 + b|2 − |z1|2 − |z2|2 + 1.

Expanding out zi in terms of xi and yi, we see that P is a degree 2 polynomial
with |P | � 1. To apply Proposition 15.43, we just have to check that for any degree
1 polynomial P1, |P − P 2

1 | � 1. This is not hard to check by expanding out P a
little bit. We focus on the degree 2 terms of P . The degree 2 part of P is

(|a1|2 − 1)|z1|2 + (|a2|2 − 1)|z2|2 + 2�(a1ā2z1z̄2).

When we expand in terms of xi, yi, we see that

|zi|2 = x2
i + y2

i ,

and

z1z̄2 = (x1x2 + y1y2) + i(−x1y2 + x2y1).
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Therefore, the real part of a1ā2z1z̄2 has the form

�(a1ā2z1z̄2) = b1(x1x2 + y1y2) + b2(−x1y2 + x2y1).

If |a1|, |a2| ∼ 1, then (b1, b2) ∼ 1 also.
Now we can check that P is not too close to a square. If (|a1|2 − 1) � 1,

then P has large x2
1 and y2

1 coefficients but thex1y1 coefficient of P is zero, and so
|P − P 2

1 | � 1. Similarly if (|a2|2 − 1) is not too small. So we are left with the case
that |a1| and |a2| are very close to 1. In this case, the x2

i and y2
i coefficients of P

are all small, but some of the other coefficients have size ∼ 1. This also guarantees
that |P − P 2

1 | � 1. If P1 has a significant coefficient in front of one of the degree 1
terms, say cx2, then the x2

2-coefficient of P 2
1 will be ∼ 1, much different from the

x2
2-coefficient of P . But if all the degree 1 coefficients of P1 are small, then all the

degree 2 coefficients of P 2
1 will also be small, and so |P − P 2

1 | � 1 in that case as
well.

Therefore, P obeys the hypotheses of Proposition 15.43, and we get the desired
bound |X| � δ log(δ−1). This finishes the proof of our slightly weaker version of
Theorem 15.40.

Exercise 15.13. The Hermitian variety has been studied a lot in complex
differential geometry. One interesting property is that it contains no 2-dimensional
complex submanifolds - not even very small ones. Every complex manifold is locally
the graph of a holomorphic function. So consider the graph of a holomorphic
function f ,

z3 = f(z1, z2),

where f is defined for (z1, z2) in an open set Ω ⊂ C2. If the graph of f lies in H,
then we get the equation

|z1|2 + |z2|2 − |f(z1, z2)|2 = 1.

Show that no holomorphic function obeys this equation.
Hint: differentiate the equation and use the fact that f is holomorphic. It may

be helpful to recall the definition of ∂j and ∂̄j in complex analysis:

∂j :=
1

2
(∂xj

− i∂yj
),

∂̄j =
1

2
(∂xj

+ i∂yj
).

For example, ∂jzj = 1, and ∂̄jzj = 0. Similarly, ∂j z̄j = 0 and ∂̄j z̄j = 1. A
function f is holomorphic if and only if ∂̄jf = 0 for all j. The operators ∂j and
∂̄j obey the Leibniz formula. They also behave nicely with respect to complex
conjugation: for any function f ,

∂jf = ∂̄j f̄ .



CHAPTER 16

The polynomial method in number theory

In the early 20th century, Thue made an important breakthrough in the study
of diophantine equations. The arguments we have explored in this book have a lot
of similarities to his argument from 1909. In this chapter, we will prove Thue’s
theorem about diophantine equations and note the parallels to other arguments in
the book. Here is the statement of the theorem.

Theorem 16.1. (Thue) Suppose P ∈ Z[x, y] is a homogeneous polynomial
with degree ≥ 3 which is irreducible over Z. If A is any integer, then the equation
P (x, y) = A has only finitely many integer solutions.

This theorem is important because it applies to a much more general class
of diophantine equations than any previous theorem. Also the method of proof
influenced a lot of later work in number theory, including diophantine equations,
transcendental number theory, and some work on exponential sums. There is a
third reason that I think the theorem is important, which I will explain in the next
section.

The proof of this theorem is the main topic of the chapter, but before we turn
to the proof we take some time to put the result in context.

16.1. Naive guesses about diophantine equations

Suppose that P is a polynomial of degree d in n variables, with integer coeffi-
cients. Let us consider the equation P (x) = 0. We would like to make an educated
guess about the number of solutions of this equation. The total number of solutions
may be infinite, and in this case, it’s interesting to try to estimate the number of
solutions in a given size range. To be precise, let us try to estimate the size of the
set

{x ∈ Zn so that P (x) = 0 and 2s ≤ |x| < 2s+1}.

We note that if |x| ∼ 2s, then |P (x)| � 2sd. Just based on this simple ob-
servation, we can make a primitive probabilistic model: For each x with 2s ≤
|x| < 2s+1, let P̃ (x) be a random integer in the range [−2ds, 2ds]. The number
of x ∈ Zn with 2s ≤ |x| < 2s+1 is ∼ 2ns. Therefore, the expected size of the set

{x ∈ Zn so that P̃ (x) = 0 and } is ∼ 2ns/2ds = 2(n−d)s. If the polynomial P “be-
haved randomly”, then the number of solutions to P (x) = 0 with |x| ∼ 2s would
be ∼ 2(n−d)s. This suggests the following naive conjectures.

Naive conjecture 1. Suppose that P is a polynomial in n variables with
integer coefficients. If Deg P = d ≤ n, then the equation P (x) = 0 has infinitely
many integer solutions, and the number of solutions of size ∼ 2s is ∼ 2(n−d)s.
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Naive conjecture 2. Suppose that P is a polynomial in n variables with
integer coefficients. If Deg P > n, then the equation P (x) = 0 has only finitely
many integer solutions.

These conjectures are both false, but they still offer a useful perspective. Let
us give some counterexamples using polynomials in two variables.

Consider the equation 2x + 2y − 1 = 0. Our model predicts it should have
many solutions, but it has none because the left-hand side is always even but the
right-hand side is always odd. Therefore, Naive Conjecture 1 is false. Now we turn
to naive conjecture 2, which is more closely related to Thue’s work.

We consider the equation (x − y)9 − 1 = 0. It has degree 10, so our model
predicts that it should have only finitely many solutions, but it has infinitely many
solutions, because every solution of x − y = 1 is a solution. This shows that Naive
Conjecture 2 is false. The polynomial (x − y)9 − 1 is reducible over the complex
numbers, and one of the factors is x−y−1, which is a polynomial of degree 1. But
Naive Conjecture 2 is false also for irreducible polynomials.

Here is a subtler counterexample to Naive Conjecture 2. Consider a polynomial
map from R to R2 with integer coefficients, for example:

φ(t) = (t2 + 1, t3 + t + 1).

As we saw in Exercise 6.2, the image of such a polynomial map lies in the zero set
of a polynomial of two variables: P (x, y) = 0. Moreover, we can arrange that P has
integer coefficients. In this case, the equation P (x, y) = 0 will have infinitely many
integer solutions, because for every integer t, φ(t) will be an integer solution of the
equation P (x, y) = 0. The degree of P can be made arbitrarily large by choosing
φ(t) in a complicated way. Also, if we choose the polynomial P with lowest possible
degree vanishing on the image of φ, then P will be irreducible.

In spite of these counterexamples, the naive conjectures above are true in many
cases. In particular, Thue’s theorem says that Naive Conjecture 2 is true for poly-
nomials in two variables of the form P (x, y) = A if A is an integer and P is a
homogeneous polynomial which is irreducible over Z. As far as I know, Thue’s
theorem was the first major result confirming this probabilistic intuition. This is
the third reason I think Thue’s theorem is important.

To end this section, we briefly discuss the condition that P is irreducible over
Z. Recall that a polynomial P ∈ Z[x, y] is reducible over Z if P = P1 · P2 where
P1, P2 ∈ Z[x, y] and each Pi has degree at least 1. If P (x, y) is reducible over Z,
then the equation P (x, y) = A actually becomes much easier to understand. We
give a sense of the reducible case by describing two examples.

Our first example is the equation

(16.1) (x3 − 2y3)(x − 3y) = 12.

If (x, y) ∈ Z2 solve this equation, then there must be integers a and b with ab = 12
so that

(16.2) x3 − 2y3 = a, x − 3y = b.

There are only finitely many choices for (a, b). For each choice of (a, b), there are
only finitely many complex solutions (x, y) to Equation 16.2. So we see that there
are only finitely many integer solutions to Equation 16.1. And we could also use
this argument to systematically find them all.
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In our second example, P (x, y) is a power of another polynomial. Suppose that
P1(x, y) is homogeneous and irreducible over Z and consider the equation

(16.3) P1(x, y)10 = 210.

This equation is equivalent to the equation P1(x, y) = ±2. So this second example
reduces to a simpler equation. If the degree of P1 is at least 3, then Thue’s theorem
implies that there are only finitely many solutions. (In the next section, we will
study an example where the degree of P1 is 2.)

16.2. Parabolas, hyperbolas, and high degree curves

To keep building our intuition, we now study the integer solutions to some
simple diophantine equations. We start by comparing the parabola

y − 2x2 = 1,

with the hyperbola

y2 − 2x2 = 1.

We will see that both the parabola and the hyperbola have infinitely many
integer points, but we will also see that they are distributed very differently: the
integer points on the hyperbola are much sparser than the integer points on the
parabola. For any integer x, the point (x, 2x2 + 1) lies in the parabola. Therefore,
the parabola contains ∼ N1/2 integer points (x, y) with |x|, |y| ≤ N . This is far
more integer points than predicted by the naive conjectures in the last section. On
the other hand, we will show that the hyperbola obeys the naive conjectures from
the last section.

For any integer s ≥ 0, define

Sols := {(x, y) ∈ Z2 so that y2 − 2x2 = 1 and 20s ≤ |x| ≤ 20s+1}.

The set Sols is the set of integer points on the hyperbola at scale 20s. The number
of points in Sols is controlled by the following proposition:

Proposition 16.2. For every integer s ≥ 0,

| Sols | ∼ 1.

(We used 20s instead of 2s in the definition of Sols so that we will be able to
prove that Sols contains at least one point for every s ≥ 0.)

We are most interested in the upper bound in this Proposition, which shows that
the hyperbola has far fewer integer points than the parabola. The key observation
is that for any integer point on the hyperbola, y/x is very close to

√
2 or to −

√
2.

We will focus on solutions where x, y > 0, so that y/x is very close to
√

2. We make
this precise in the following lemma:

Lemma 16.3. If x and y are positive integers with y2 − 2x2 = 1, then∣∣∣y
x
−
√

2
∣∣∣ ≤ |x|−2.

Proof. Starting with y2 − 2x2 = 1 and dividing by x2, we get∣∣∣( y

x
)2 − 2

∣∣∣ ≤ |x|−2.
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Now we factor the left-hand side to get∣∣∣y
x
−
√

2
∣∣∣ · ∣∣∣y

x
+
√

2
∣∣∣ ≤ |x|−2.

Since x, y > 0 we have | yx +
√

2| > 1. �

If (x, y) ∈ Sols, then the ratio y/x lies in an interval around
√

2 of length
∼ 20−2s. Next, we will show that all these ratios are different.

Lemma 16.4. If (x, y) ∈ Z2 and y2 − 2x2 = 1, then gcd(x, y) = 1.

Proof. If a divides both x and y, then a divides y2 − 2x2 = 1. �

Finally, if (x1, y1) and (x2, y2) are in Sols, then the ratios y1/x1 and y2/x2

cannot be too close together.

Lemma 16.5. If (x1, y1), (x2, y2) ∈ Sols, then∣∣∣∣ y1x1
− y2

x2

∣∣∣∣ � 20−2s.

Proof. By the previous lemma, y1/x1 and y2/x2 are in lowest terms, and so
the left-hand side is non-zero. We write the left-hand side as∣∣∣∣y1x2 − y2x1

x1x2

∣∣∣∣ .
Since the left-hand side is non-zero, it must be at least 1

x1x2
. Since |x1|, |x2| ≤ 20s+1,

1

x1x2
≥ [20s+1]−2 � 20−2s.

�

We can now prove the upper bound on | Sols |. We have | Sols | different points
(x, y) ∈ Sols, and so we get | Sols | different ratios y/x. These ratios are all contained

in an interval around
√

2 of length ∼ 20−2s, and the distance between any two ratios
is at least ∼ 20−2s. Therefore, | Sols | � 1.

Geometrically, the difference between the parabola and the hyperbola is that
the hyperbola has asymptotic lines, y = ±

√
2x. Because of these asymptotic lines,

for any point (x, y) on the hyperbola with |x| large, y/x is close to ±
√

2. On the
other hand, the parabola does not have asymptotic lines, and so we don’t get the
same amount of control over the ratio y/x for points in the parabola.

Finding integer points on the hyperbola y2 − 2x2 = 1 is also based on the
observation that y/x should be close to

√
2. We consider the continued fraction

expansion of
√

2. The first few terms are 1, 3
2 , 7

5 , 17
12 , ... Every other term in this

continued fraction expansion corresponds to an integer solution of y2 − 2x2 = 1.
The second term gives us 32−2 ·22 = 1, and the fourth term gives us 172−2 ·122 =
289− 2 · 144 = 1. The other terms give solutions to y2 − 2x2 = −1. The continued
fraction expansion can be defined recursively by setting x1 = y1 = 1, x2 = 3, y2 = 2,
and then defining

xn+1 = 2xn + xn−1; yn+1 = 2yn + yn−1.

Exercise 16.1. With xn and yn defined as above, show that

y2
n − 2x2

n = (−1)n.
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This exercise finishes the proof of Proposition 16.2.
The argument for the hyperbola also gives us a certain amount of insight into

higher-degree curves. For instance, let us consider the curve

yd − 2xd = 1,

for some degree d ≥ 3. For positive integer solutions to this equation y/x is close
to 21/d, and the distance | yx − 21/d| is much smaller than for a hyperbola. We state
this estimate as a lemma.

Lemma 16.6. If x, y > 0 are integers and yd − 2xd = 1, then∣∣∣y
x
− 21/d

∣∣∣ � |x|−d.

The proof of this Lemma is essentially the same as the proof of Lemma 16.3, so
we omit the details. Now let (x1, y1), (x2, y2), ... be all the pairs of positive integers
obeying yd − 2xd = 1, ordered so that x1 < x2 < .... Lemma 16.6 leads to some
interesting estimates about the behavior of xj .

Proposition 16.7. For d ≥ 3, we have

xj � xd−1
j−1 .

Therefore, the number of positive integer solutions (x, y) with x < N is �
log log N .

Recall that the equation y2 − 2x2 = 1 has ∼ log N positive integer solutions
(x, y) with x < N . So Proposition 16.7 shows that the curve y3 − 2x3 = 1 has
far fewer integer points than the curve y2 − 2x2 = 1. (For simplicity, we discussed
positive integer points in the statement of Proposition 16.7, but similar arguments
apply if x or y is negative.)

Proof of Proposition 16.7. If yd − 2xd = 1, then gcd(x, y) = 1. Therefore,
yj/xj are all fractions in lowest terms. Since | yj

xj
− 21/d| � |xj |−d, we see that∣∣∣∣ yjxj

− yj−1

xj−1

∣∣∣∣ � x−d
j−1.

On the other hand, the left-hand side is a non-zero fraction with denominator
xj−1xj , and so

1

xj−1xj
� x−d

j−1.

Rearranging, we get xj � xd−1
j−1 . This gives the desired bound on xj . Next, we

would like to iterate this inequality to estimate xj . There must be some j0 so that

for all j ≥ j0, we have xj ≥ x
3/2
j−1. Also xj0 ≥ 2. Therefore,

xj ≥ 2(
3
2 )

j−j0
.

If xj ≤ N , then we see that j − j0 � log log N . Also j0 is independent of N ,
and so we get j � log log N . �

Proposition 16.7 shows that for d ≥ 3, the curve yd − 2xd = 1 contains far
fewer integer points than the hyperbola y2 − 2x2 = 1. It shows that the number
of integer points on yd − 2xd = 1 with |(x, y)| ≤ N is � log log N . But this
bound is not sharp. Thue’s theorem shows that the number of integer points on
the curve is finite, consistent with our probabilistic intuition from the last section.
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Thue’s theorem is subtler than the argument we have seen so far. In particular, it
takes a new idea to rule out the possibility that there are infinitely many solutions
(x1, y1), (x2, y2), ... at wildly different scales. We will see how Thue did this using
a version of the polynomial method.

Exercise 16.2. Suppose that P (x, y) is a polynomial with integer coefficients
with degree d ≥ 2. Suppose that P has no terms of degree d − 1, so what we can
write P (x, y) = Pd(x, y) + P≤d−2(x, y), where Pd is homogeneous of degree d and
P≤d−2 has degree at most d− 2. Suppose that Pd is irreducible over Z. Prove that
the zero set of P contains � log N integer points of size ≤ |N |.

16.3. Diophantine approximation

We saw in the last section that for any integer solution to yd − 2xd = 1, the
ratio y/x must be a very good rational approximation to 21/d. In order to prove
Theorem 16.1, Thue proved a general theorem about rational approximations of
algebraic numbers. His theorem states that there are only finitely many “very
good” rational approximations to an algebraic number.

Before stating Thue’s theorem, we discuss some simpler results about diophan-
tine approximation in order to put it in perspective. The question we will investigate
is the following: given a real number β and a parameter s > 0, how many rational
numbers p

q obey the inequality ∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−s.

When s = 2, there are infinitely many solutions to this inequality for any
irrational number β.

Proposition 16.8. (Dirichlet) For any irrational real number β, there are
infinitely many solutions to the diophantine inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−2.

Proof. For any real number x, let 〈x〉 ∈ [0, 1) be the fractional part of x.
Let Q be any number, and consider the sequence of numbers 〈β〉, 〈2β〉, ..., 〈Qβ〉 in
[0, 1). Since there are Q of these numbers, it must be possible to find two of them
within a distance 1/Q. In other words, we can choose 1 ≤ q1 < q2 ≤ Q so that the
distance from 〈q1β〉 to 〈q2β〉 is at most 1/Q. This implies that

|〈(q2 − q1)β〉| ≤ 1/Q.

We let q = q2 − q1. The last inequality implies that there is some integer p so
that

|qβ − p| ≤ 1/Q.

Dividing by q ≤ Q, we see that∣∣∣∣β − p

q

∣∣∣∣ ≤ 1

qQ
≤ q−2.

By increasing Q, we get infinitely many solutions to the diophantine inequality∣∣∣β − p
q

∣∣∣ ≤ |q|−2. �
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On the other hand, for s > 2, almost every real number β admits only a finite

number of solutions to the inequality
∣∣∣β − p

q

∣∣∣ ≤ |q|−s. This result is a standard

exercise in measure theory.

Exercise 16.3. Let Ds be the set of numbers β ∈ R so that there are infinitely
many rational solutions to the diophantine inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−s.

Prove that for any s > 2, the set Ds has measure zero.

Dirichlet’s result and this exercise together give a good understanding of what
happens for a “typical” real number. But it can be much harder to understand
what happens for any particular number, such as π or 21/3. In this book, we
won’t discuss π, but the example of β = 21/3 will be very important for us. The
first estimate about diophantine approximation of algebraic numbers was given by
Liouville in the 1840’s.

Proposition 16.9. (Liouville) If β is an irrational algebraic number of degree
d ≥ 2 and p

q is a rational number, then

|β − p

q
| ≥ c(β)|q|−d.

Proof. Suppose that Q is a minimal degree polynomial with integer coeffi-
cients obeying Q(β) = 0. By Taylor’s theorem, for all z in the interval |β − z| ≤ 1,
we have an inequality of the form

|Q(z)| ≤ C(β)|β − z|,
for some constant C(β). (The value of C(β) depends on the size of |Q′| and |Q′′|
on the interval |β − z| ≤ 1.)

Now we consider a rational number p/q with |β − (p/q)| ≤ 1. By the last
indented equation, we know that

|Q(p/q)| ≤ C(β)

∣∣∣∣β − p

q

∣∣∣∣ .
On the other hand, since Q is a polynomial with integer coefficients of degree
d, we know that Q(p/q) is a rational number with denominator qd. Therefore,
either Q(p/q) = 0 or else |Q(p/q)| ≥ |q|−d. Since Q is the minimal degree integer
polynomial vanishing at β, it turns out that Q(p/q) cannot be zero. This follows
from Gauss’s Lemma, and we indicate the proof in Exercise 16.7 below. Therefore
|Q(p/q)| ≥ |q|−d, and so we get

|q|−d ≤ C(β)

∣∣∣∣β − p

q

∣∣∣∣ .
This finishes the proof of the Proposition. (We remark that the constant c(β)

works out to C(β)−1, which depends on the size of |Q′| and |Q′′| near β.)
�

For d = 2, Liouville’s inequality and Dirichlet’s proposition match each other
closely: there are infinitely many solutions to |β − (p/q)| ≤ |q|−2 but no solutions
to |β − (p/q)| ≤ c(β)|q|−2. But for d = 3, Liouville’s inequality and Dirichlet’s
proposition do not match each other so closely. There are infinitely many solutions
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to |β − (p/q)| ≤ |q|−s when s = 2, and Liouville implies that there are only finitely
many solutions when s > 3. But what about 2 < s ≤ 3? Recall that for almost
every real number β, there are only finitely many solutions to |β − (p/q)| ≤ |q|−s

for any s > 2. But what happens for β = 21/3?
(It might be worth remarking here that there is a good way to gather experi-

mental numerical evidence about this question. The method of continued fractions
gives an efficient algorithm to compute the best rational approximations p/q of a
number β with q ≤ Q. Before computers, it was already practical to find the best
rational approximations to 21/3 with denominator up to, say, 1020.)

In the early 1900’s, Thue proved a theorem on diophantine approximation that
strengthens Liouville’s inequality. As a corollary, this theorem implies Theorem
16.1 on diophantine equations.

Theorem 16.10. Suppose that β is an algebraic number of degree d ≥ 3, and
suppose that s > d+2

2 . Then there are only finitely many rational numbers p/q that
satisfy the inequality ∣∣∣∣β − p

q

∣∣∣∣ ≤ q−s.

For instance, if d = 3 and s > 2.5, then this theorem implies that there are
only finitely many solutions to the inequality |β − (p/q)| ≤ q−s. The range of
s in Theorem 16.10 is not sharp, but the important point is that it improves on
Liouville’s estimate. As we will see even a tiny improvement on Liouville’s estimate
is enough to prove Theorem 16.1, and so even a tiny improvement is very interesting.

Let us see how Theorem 16.10 implies that some diophantine equations have
only finitely many solutions. We begin with the equation yd − 2xd = 1, for d ≥ 3,
because the proof is particularly simple. As we observed in the last section, any
solution to this equation has gcd(x, y) = 1 and obeys the inequality |21/d−(y/x)| ≤
Cdx

−d. So integer solutions correspond to rational numbers that are very good
approximations of 21/d. Theorem 16.10 implies that there exists an exponent s < d
so that there are only finitely many rational numbers obey |21/d − (y/x)| ≤ |x|−s.
For instance, we can take s = d−(1/10). Now suppose that the equation yd−2xd =
1 has infinitely many solutions. With finitely many exceptions, they must all obey:

|x|−s ≤ |21/d − (y/x)| ≤ Cd|x|−d.

Since s < d, these inequalities give a bound on |x|: |x| ≤ C
1

d−s

d . For any fixed

x, it is elementary to see that the equation yd − 2xd = 1 has only finitely many
solutions in y. Therefore, we see that the equation yd − 2xd = 1 has only finitely
many solutions in total.

Essentially the same argument applies in the general setting of Theorem 16.1.

Proof of Theorem 16.1 using Theorem 16.10. Suppose that P (x, y) is a
homogenous polynomial of degree d ≥ 3 which is irreducible over Z. We consider
solutions to the equation P (x, y) = A.

We expand P (x, y) =
∑

j=0d ajx
d−jyj . Dividing on both sides by xd we see

that
∣∣∣∑d

j=0 aj(y/x)j
∣∣∣ = |Ax−d|. We define Q(z) =

∑d
j=0 ajz

j , so that we can write:

(16.4) |Q(y/x)| = |A||x|−d.
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So we see that if (x, y) is an integer solution to P (x, y) = A with |x| large, then
|Q(y/x)| is small. We will use this to show that y/x must lie near to one of the
roots of Q. Let βj be the roots of Q.

Since Q is irreducible over the integers, each root appears with multiplicity 1,
and so Q′(βj) �= 0. We include a proof of this fact in Exercise 16.8 at the end of
the chapter.

Now let us argue more precisely that if (x, y) is an integer solution to P (x, y) =
A with |x| large, then y/x must be close to one of the roots of Q. We choose some
small number δ > 0 so that for z in the interval of length δ centered at each root
βj , we have the inequality

(16.5) (1/2)|Q′(βj)||z − βj | ≤ |Q(z)| ≤ 2|Q′(βj)||z − βj |.

If y/x is not in any of these δ-intervals, then we get a lower bound for |Q(y/x)|,
and hence an upper bound for |x|. So there are only finitely many solutions where
y/x is not in any of these δ-intervals.

Fix a root βj , and consider solutions (x, y) so that y/x lies in the δ-neighborhood
centered at βj . It suffices to show that there are only finitely many such solutions.
Combining equation 16.4 and equation 16.5, we see that

(1/2)|Q′(βj)|
∣∣∣βj −

y

x

∣∣∣ ≤ |A||x|−d ≤ 2|Q′(βj)||βj −
y

x
|.

In particular, we see that |βj − (y/x)| � |x|−d. Since d ≥ 3, we can again

choose s in the range d+2
2 < s < d. By Thue’s diophantine approximation theorem,

Theorem 16.10, we know that there are only finitely many solutions to the inequality
|βj − (y/x)| ≤ |x|−s. So with finitely many exceptions, we get the inequalities

|x|−s <
∣∣∣βj −

y

x

∣∣∣ ≤ C|x|−d.

In this equation, the constant C depends on A and on |Q′(βj)|, but not on |x|.
Since d > s, these inequalities give us an upper bound on |x|. But there are only
finitely many solutions with |x| below this bound. �

It is also interesting to consider the best exponent s in Theorem 16.10. As we
discussed above, for almost every real number β, and for every s > 2, there are
only finitely many solutions to the inequality |β − (p/q)| ≤ |q|−s. Based on this
observation, one might hope that Theorem 16.10 holds for all s > 2. This turns
out to be true, and it was proven by Roth in the 1950s ([Ro]). Roth’s proof builds
on Thue’s method but also introduces some important new ideas.

The theorems of Thue and Roth also say something about diophantine equa-
tions involving non-homogeneous polynomials. We explore this in the following
exercise.

Exercise 16.4. Using Theorem 16.10, show that the following diophantine
equation has only finitely many integer solutions:

y9 − 2x9 − 3x + y − 2 = 0.
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Suppose d ≥ 3. Suppose that Pd(x, y) is a homogeneous polynomial of degree
d with integer coefficients which is irreducible over Z. Suppose that Q(x, y) is a
(not necessarily homogenenous) polynomial with integer coefficients and degree at
most d − 3. Using Roth’s theorem, show that the following diophantine equation
has only finitely many integer solutions:

Pd(x, y) = Q(x, y).

16.4. Outline of Thue’s proof

In this section we outline the proof of Theorem 16.10. We explain how the
method extends the ideas from Liouville’s proof. We also explain an analogy be-
tween Thue’s proof and other arguments we have seen, such as the proof of finite
field Nikodym.

Let us start by recalling the outline of Liouville’s proof. Suppose that β is an
algebraic number of degree d. By definition, this means that β is the root of a
degree d polynomial Q with integer coefficients. If p/q is a rational number close to
β, then by Taylor’s theorem |Q(p/q)| � |β − (p/q)|. On the other hand, Q(p/q) is
a rational number with denominator qd, and so it cannot be too small. Therefore,
|β−(p/q)| cannot be too small either. In rough terms, the polynomial Q “protects”
β from rational approximations because Q(β) = 0 but |Q(p/q)| cannot be too small.

Thue had the idea to use other polynomials besides Q to protect β. Other poly-
nomials in one variable don’t lead to any new estimate, but Thue had the remarkable
idea to use polynomials in two variables. If P (x1, x2) ∈ Z[x1, x2] is a polynomial
that vanishes (maybe along with some derivatives) at (β, β), then P can “protect”
β from pairs of rational approximations (p1/q1, p2/q2). To prove that there are only
finitely many rational solutions to the inequality |β − (p/q)| ≤ |q|−2.6, this method
requires infinitely many different auxiliary polynomials P (x1, x2) ∈ Z[x1, x2] which
vanish at (β, β) to different orders. We will always make the convention that
q2 > q1. It turns out that if q2 has size roughly qm1 , then it is helpful to use a
polynomial P with degree 1 in the x2 variable and degree roughly m in the x1

variable, chosen so that P (β, β) = 0 and so that ∂j
1P (β, β) = 0 for 1 ≤ j ≤ m − 1.

Finding these auxiliary polynomials P is one of the interesting parts of the story.
Thue carefully by hand crafted this infinite sequence of polynomials P (x1, x2). He
was able to construct the desired polynomials by hand when β is a dth root of a
rational number. He became stuck trying to generalize his method to other algebraic
numbers, because he didn’t know how to construct the auxiliary polynomials. At a
certain point, Thue gave up trying to craft the polynomials he needed and instead,
he proved that they must exist by counting parameters.

At the 1974 ICM, Schmidt gave a lecture [Schm] on Thue’s work and its
influence in number theory. He wrote,

The idea of asserting the existence of certain polynomials rather than explicitly
con- structing them is the essential new idea in Thue’s work. As Siegel [1970] points
out, a study of Thue’s papers reveals that Thue first tried hard to construct the
polynomials explicitly (and he actually could do so in case βd is rational).

This idea of finding an auxiliary polynomial P by counting parameters has a
similar flavor to the parameter counting argument that we used in the proof of
finite field Nikodym and throughout the book. Let us now review in outline the
proof of finite field Nikodym and make a parallel outline of the proof of Theorem
16.10.
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Outline of the proof of finite field Nikodym: Suppose that N is a small Nikodym
set in Fn.

(1) Find a non-zero polynomial P with controlled degree that vanishes on N .
(Use parameter counting.)

(2) Because N is a Nikodym set, the polynomial P must also vanish at many
other points. (Vanishing lemma.)

(3) The polynomial P vanishes at too many points, so it must be zero. Con-
tradiction.

Here is the outline of the proof of Theorem 16.10. Suppose that the algebraic
number β has two very good rational approximations r1 = p1/q1 and r2 = p2/q2.

(1) Find a non-zero polynomial P ∈ Z[x1, x2] with controlled degree and co-
efficients that vanishes to high order at (β, β). (Use parameter counting.)

(2) Because r1 and r2 are good approximations of β, the polynomial must
also vanish to high order at (r1, r2).

(3) The polynomial P vanishes too much at (r1, r2), and so it must be zero.
Contradiction.

We’ve talked a lot about the first step. To end this outline, let us say a little
about steps 2 and 3.

Step 2 follows by Taylor’s theorem. Since P vanishes to high order at (β, β), and
since (r1, r2) is very close to (β, β), Taylor’s theorem implies that P (r1, r2) is very
small. On the other hand, since P has integer coefficients, P (r1, r2) is a rational

number with denominator at most q
Degx1

P

1 q
Degx2

P

2 . So if P (r1, r2) is sufficiently
small, then P (r1, r2) must be zero. The same argument applies to derivatives of P ,
and so we see that P and many derivatives vanish at (r1, r2).

Step 3 has to do with the size of the coefficients of P . In Step 1, we will
pay attention to the size of the coefficients of P and get a good bound for them.
If a polynomial with small coefficients vanishes at a rational number, then the
denominator of the rational number cannot be too big. For polynomials in one
variable, this is made precise by Gauss’s lemma:

Lemma 16.11. (Gauss) If r = p/q and P ∈ Z[x] satisfies ∂jP (r) = 0 for
j = 0, 1, . . . , 
 − 1, then P (x) = (qx − p)�P1(x) for some P1 ∈ Z[x]. In particular,
the leading coefficient of P has norm at least |q|�.

We will recall the proof below and discuss a modification that applies to polynomials
of two variables. Combining our bounds on the coefficients of P with this analysis,
we will show that either q1 or q2 is bounded by C(β).

This finishes the proof: it shows that β can have at most one very good rational
approximation p/q with q > C(β). It follows immediately that there are only
finitely many very good rational approximations in total.

16.5. Step 1: Parameter counting

If L is a linear map from RM to RN with M > N , then there is a non-zero
x ∈ RM so that Lx = 0. We will need a variation of this result involving an
integer solution x. If L is a linear map from ZM to ZN , given by a matrix with
integer entries, and if M > N , we will prove that there is a non-zero x ∈ ZM so
that Lx = 0. In fact, this follows from the pigeonhole principle by a very short
argument.
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We will also care about the size of the solution x. The argument above leads to
a quantitative bound on the size of the entries of x. We let |x|∞ be the maximum
size of any entry xi of the vector x. Let |L|op be the operator norm of L with respect
to the |...|∞ norms on RM and RN . In other words, |L|op is the best constant in
the inequality

|Lx|∞ ≤ |L|op|x|∞.

Lemma 16.12. (Siegel’s lemma) If L : ZM → ZN is a linear map, given by a
matrix with integer coefficients, with M > N , then there exists a nonzero x ∈ ZM

with |x|∞ ≤ |L|N/(M−N)
op + 1 such that Lx = 0.

Proof. For any S ≥ 0, let us define QM
S := {x ∈ ZM : |xi| ≤ S, i = 1, . . . , M}.

By the definition of operator norm,

L : QM
S → QN

|L|opS .

Now |QM
S | = (2S + 1)M . We want to choose S so that the cardinality of the

domain is greater than the cardinality of the range. In other words, we choose S
so that

(16.6) (2S + 1)M > (2|L|opS + 1)N .

For such a choice of S, the pigeonhole principle guarantees that there are x1, x2 ∈
QM

S so that Lx1 = Lx2. But then L(x1−x2) = 0. On the other hand, |x1−x2|∞ ≤
2S.

Now it just remains to pin down the size of S. This is just a little algebra. To
get inequality 16.6, it suffices to have

(2S + 1)M > (|L|op(2S + 1))N ,

which is equivalent to

2S + 1 > |L|N/(M−N)
op .

We choose S to be the smallest integer obeying the last inequality, and so we
get the bound

2S ≤ |L|N/(M−N)
op + 1.

�

Let us make a remark about the size of the solution x given by Siegel’s lemma
which will be useful for strategy later on. If M = N+1, then the Lemma guarantees
an integer solution x, but the bound on |x|∞ is ∼ |L|Nop. As we increase M , we
get much stronger bounds. For instance, if M = (1.01)N , then our bound on |x|∞
becomes ∼ |L|100op .

Now we will use this parameter counting argument to find an integer polynomial
P (x1, x2) that vanishes at (β, β) to high order, with a bound on the degree of P
and the size of the coefficients of P .

We write |P | for the maximum of the norms of the coefficients of P .

Proposition 16.13. Let β ∈ R be an algebraic number of degree d. Suppose
ε > 0. For any integer sufficiently large integer m, there is a polynomial P ∈



16.5. STEP 1: PARAMETER COUNTING 261

Z[x1, x2] with the form P (x1, x2) = P1(x1)x2 + P0(x1) and with the following
properties:

• ∂j
1P (β, β) = 0 for 0 ≤ j ≤ m − 1.

• Deg P ≤ (1 + ε)(1/2)dm + 2.
• |P | ≤ C(β)m/ε.

Proof. The first step is to formulate this question so that finding P means
finding an integer solution to a list of integer equations. Then we can apply Siegel’s
lemma.

We let D a degree to choose later. We write P1(x) =
∑D

i=0 bix
i and P0(x) =∑D

i=0 aix
i. The coefficients ai and bi define a point in ZM with M = 2D +2 > 2D.

For each 0 ≤ j ≤ m − 1, we will write the equation ∂j
1P (β, β) = 0 in terms of

ai and bi. In order to do this, it’s helpful to first note that

∂j
1x

i
1 = i · (i − 1) · ... · (i − j + 1) · xi−j =

i!

(i − j)!
xi−j .

Plugging this in, for each 0 ≤ j ≤ m − 1, we get the equation

(16.7) 0 = ∂j
1P (β, β) =

∑
i

bi
i!

(i − j)!
βi−j+1 +

∑
i

ai
i!

(i − j)!
βi−j .

We now have a system of m equations for the ai, bi, with real coefficients. The
coefficients are all in the field Q[β], but they are not integers. We will rewrite
these m equations with Q[β] coefficients as a system of dm equations with integer
coefficients.

Since β is an algebraic number of degree d, we know that it satisfies an equation
of the form

Q(β) =

d∑
k=0

qkβ
k = 0,

where qk are integers and qd �= 0. Therefore, βd lies in the Q-span of 1, β, ..., βd−1.
On the other hand, 1, β, ..., βd−1 are linearly independent over Q. Therefore,
1, β, ..., βd−1 form a Q-basis for the field Q[β]. In particular, for any exponent
e ≥ d, we can write

(16.8) βe =
d−1∑
k=0

Ckeβ
k,

where Cke are rational numbers. Plugging this expression into Equation 16.7, for
each 0 ≤ j ≤ m − 1, we get an equation of the form

0 =

d−1∑
k=0

βk

[∑
i

biBijk +
∑
i

aiAijk

]
= 0,

where Aijk and Bijk are rational numbers. Since 1, β, ..., βd−1 are linearly indepen-
dent over Q, this equation is equivalent to the d equations

(16.9)
∑
i

biBijk +
∑
i

aiAijk = 0, for all 0 ≤ k ≤ d − 1.

After multiplying by a large constant to clear the denominators, we get d
equations with integer coefficients for each value of j. In total, our original m
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equations ∂j
1P (β, β) = 0 for j = 0, ..., m − 1 are equivalent to dm integer linear

equations in the coefficients of P .
By Siegel’s lemma, as long as 2D + 2 > dm, we can find a non-zero integer

polynomial P (x1, x2) = P1(x1)x2 + P0(x1) with Deg Pi ≤ D so that ∂j
1P (β, β) = 0

for j = 0, 1, ..., m−1. We can choose D ≤ (1/2)dm+1, and so Deg P ≤ (1/2)dm+2.
This polynomial P obeys the first two conditions in our Proposition.

It remains to estimate the size of the coefficients of P . To do this, we have to
keep track of the size of the coefficients in Equation 16.7, and we have to estimate
the size of the coefficients Cke in Equation 16.8. It takes a little care and playing
with the parameters to get a good bound. Recall that we want to prove the bound
|P | ≤ C(β)m/ε. It’s worth mentioning at this point that a slightly weaker bound
would not be good enough to prove Theorem 16.10 on diophantine approximation:

for example a bound of the form mm or Cm2

would be too big.
Let us return now to Equation 16.7. The coefficients i!

(i−j)! can be quite big.

The number i can be as large as D ∼ m and j ≤ m, so this expression can be
super-exponential in m. However, all the coefficients i!

(i−j)! are divisible by j!,

because
i!

(i − j)!j!
=

(
i

j

)
.

Dividing through by j!, Equation 16.7 becomes:

(16.10) 0 =
1

j!
∂j
1P (β, β) =

D∑
i=0

bi

(
i

j

)
βi−j+1 +

D∑
i=0

ai

(
i

j

)
βi−j .

We will choose D ≤ dm, and so the coefficients
(
i
j

)
obey the bound(

i

j

)
≤ 2i ≤ 2D ≤ C(β)m.

Next we return to the expansion βe =
∑d−1

k=0 Ckeβ
k and examine the size of the

numerators and denominators of Cke.

Lemma 16.14. Suppose Q(β) = 0, where Q ∈ Z[x] with degree Deg(Q) = d
and leading coefficient qd. Then for any e ≥ d, we can write

qedβ
e =

d−1∑
k=0

ckeβ
k,

where cke ∈ Z and |cke| ≤ [2|Q|]e.

Proof. We have 0 = Q(β) =
∑d

k=0 qkβ
k. We do the proof by induction on e,

starting with e = d. For e = d, the equation Q(β) = 0 directly gives

qdβ
d =

d−1∑
k=0

(−qk)β
k. (∗)

If we multiply both sides by qd−1
d , we get a good expansion for the case e = d.

Now we proceed by induction. Suppose that qedβ
e =

∑d−1
k=0 ckeβ

k. Multiplying
by qdβ, we get

qe+1
d βe+1 =

d−1∑
k=0

ckeqdβ
k+1 =

d−1∑
k=1

ck−1,eqdβ
k +

deg(β)−1∑
k=0

cd−1,e(−qk)β
k.
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This formula shows how to write ck,e+1 in terms of ck,e. We see that ck,e are
all integers and that |ck,e+1| ≤ 2|Q|maxk |ck,e|. This gives the required bound for
|ck,e| by induction.

�

Now to convert Equation 16.10 into a set of d integer equations, we use Lemma
16.14 and then multiply by qDd . We get an equation of the form

0 =

d−1∑
k=0

βk

[∑
i

biBijk +
∑
i

aiAijk

]
= 0,

where Aijk and Bijk are integers of size at most D2D[2|Q|]D ≤ C(β)m.

To summarize, we have now converted the equations ∂j
1P (β, β) = 0 for j =

0, ..., m − 1 into a system of md integer equations with coefficients of size at most
C(β)m.

We now apply Siegel’s lemma. The operator norm of the linear operator L is at
most C(β)m. The domain has dimension M = 2D + 2. The target has dimension
N = dm. If we choose D so that M = N + 1 or N + 2, then |P | will turn out to
be too large. This is the purpose of the ε in the degree bound for P . Since m is
assumed to be large enough, we can can choose D so that D ≤ (1+ε)(1/2)dm, and
yet

M = 2D + 2 ≥ (1 +
ε

2
)dm = (1 +

ε

2
)N.

Using Siegel’s lemma, it now follows that we can find a solution P with

|P | ≤ 1 + (C(β)m)
N

M−N ≤ 1 + C(β)2m/ε.

This gives the desired bound on |P | and finishes the proof of the proposition. �

16.6. Step 2: Taylor approximation

Proposition 16.15. Suppose that β is an algebraic number of degree d ≥ 3.
Suppose that s > d+2

2 . There is a small constant c(β, s) > 0 so that the following
holds.

Suppose that r1 = p1/q1 and r2 = p2/q2 obey

|β − ri| ≤ q−s
i .

We assume that q1 < q2, and we let m be the integer so that

qm1 ≤ q2 < qm+1
1 .

Given β and s, we also assume that q1 is sufficiently large and that m is
sufficiently large.

Then there exists a polynomial P ∈ Z[x1, x2], P (x1, x2) = P1(x1)x2 + P0(x1),
so that

• ∂j
1P (r1, r2) = 0 for 0 ≤ j < c(β, s)m.

• |P | ≤ C(β, s)m.
• Deg P ≤ C(β)m.

Proof. We let P be the polynomial given by Proposition 16.13. In this Propo-
sition, we need to choose an ε, and we take

ε = (1/10d)(s − d + 2

2
).
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Proposition 16.13 immediately gives us items 2 and 3 above, and it also tells us
that ∂j

1P (β, β) = 0 for 0 ≤ j ≤ m−1. It just remains to check that ∂j
1P (r1, r2) = 0

for 0 ≤ j ≤ c(β, s)m.
To prove this, we will use Taylor’s theorem to estimate |P (r1, r2)|. We recall

Taylor’s theorem.

Theorem 16.16. If f is a smooth function on an interval, then f(x + h) can
be approximated by its Taylor expansion around x:

f(x + h) =
∑m−1

j=0 (1/j!)∂jf(x)hj + E,
where the error term E is bounded by
|E| ≤ (1/m!) supy∈[x,x+h] |∂mf(y)|hm.

In particular, if f vanishes to high order at x, then f(x + h) will be very close
to f(x).

Corollary 16.17. If Q is a polynomial of one variable, and Q vanishes at x
to order m ≥ 1, and if |h| ≤ 1, then

|Q(x + h)| ≤ C(x)DegQ|Q|hm.

Proof. We have to estimate the size of the coefficients of (1/m!)∂mQ. We
recall that

(1/m!)∂m
x xi =

(
i

m

)
xi−m,

and so the coefficients of (1/m!)∂mQ have norm ≤ 2DegQ|Q|.
Therefore, we get

sup
|y−x|≤1

(1/m!)|∂mQ(y)| ≤ 2DegQ|Q|(Deg Q)(|x| + 1)DegQ ≤ C(x)DegQ|Q|.

Plugging this estimate into Taylor’s theorem finishes the proof. �
We want to use this estimate to bound |P (r1, r2)|. More generally we also want

to bound |∂j
1P (r1, r2)| for the given range of j : 0 ≤ j ≤ c(β, s)m. We will do all

these estimates at the same time. We fix a value of j in the range 0 ≤ j ≤ c(β, s)m,
and we define

P̃ (x1, x2) = (1/j!)∂j
1P (x1, x2).

We note that P̃ still has integer coefficients. Clearly Deg P̃ ≤ Deg P . Also |P̃ |
obeys essentially the same bound as |P |: |P̃ | ≤ 2DegP |P | ≤ C(β, s)m.

Let Q(x) = P̃ (x, β). The polynomial Q vanishes to order (1 − c(β, s))m at
x = β, and |Q| ≤ C(β, s)m.

From the corollary we see that

|P̃ (r1, β)| ≤ C(β, s)m|β − r1|(1−c(β,s))m.

On the other hand, ∂2P̃ is bounded by C(β, s)m in a unit disk around (β, β),
and so

|P̃ (r1, r2) − P̃ (r1, β)| ≤ C(β, s)m|β − r2|.
Combining these, we see that

|P̃ (r1, r2)| ≤ C(β, s)m
[
|β − r1|(1−c(β,s))m + |β − r2|

]
.

Now we can use the assumption that |β − ri| ≤ q−s
i .

|P̃ (r1, r2)| ≤ C(β, s)m
[
q
−s(1−c)m
1 + q−s

2

]
.
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We note that qm1 ≤ q2, and so q−s
2 ≤ q−ms

1 , and so the second term is dominated
by the first term. Therefore, we get

(16.11) |P̃ (r1, r2)| ≤ C(β, s)mq
−(1−c)sm
1 .

On the other hand, P̃ has integer coefficients, and so P̃ (r1, r2) is a rational

number with denominator at most q
Degx1

P

1 q2. By Proposition 16.13, we know that
Deg P ≤ (1 + ε)(1/2)dm. Also, we know that q2 ≤ qm+1

1 . Therefore, we the
denominator of P (r1, r2) is at most

(16.12) q
(1+ε)(d/2)m+m+1
1 .

We now claim that |P̃ (r1, r2)| is so small that it must vanish. Since we have
assumed that q1 is very large compared to C(β, s), we just have to check that the
exponents of q1 in Equation 16.11 is more extreme than the exponent in Equation
16.12. In other words, we have to check that

(1 − c)sm > (1 + ε)(d/2)m + m + 1.

By our definition of ε, s = d+2
2 + 10dε. And so the last equation is equivalent

to

(1 − c)(
d

2
+ 1 + 10dε)m > (

d

2
+ 1 +

d

2
ε)m + 1.

Since we assumed m is large, the final +1 is negligible, and the resulting equa-
tion is true as long as we pick c = c(β, s) sufficiently small comported to ε = ε(β, s).

�

16.7. Step 3: Gauss’s lemma

To finish the proof we want to show that an integer polynomial with small
coefficients cannot vanish at a rational point with a large denominator. We begin
by considering by polynomials of one variable, where Gauss’s lemma gives a sharp
estimate.

Lemma 16.18. (Gauss’s lemma) If r = p/q is a rational number, and if P ∈ Z[x]
satisfies ∂jP (r) = 0 for j = 0, 1, . . . , l − 1, then P (x) = (qx − p)lP1(x) for some
P1 ∈ Z[x].

Proof. The vanishing condition tells us that P (x) = (qx − p)lP2(x) for some
polynomial P2 ∈ R[x]. It remains to show that the coefficients of P2 are integers.
By expanding the equation P (x) = (qx − p)lP2(x), and solving for the coefficients
of P2, we see that the coefficients of P2 must be rational.

Taking out the lowest common denominator, we write P (x) = 1
M (qx−p)lP̃2(x),

for some P̃2 ∈ Z[x] so that there is no prime dividing all the coefficients of P̃2 as

well as M . So MP (x) = (qx−p)lP̃2(x). If M �= ±1, then let s be any prime divisor
of M . Then we get a contradiction modulo s, since qx−p is not 0 mod s as p/q was

already given in lowest terms, and P̃2 is also not 0 mod s. It follows that M = ±1
and hence P1 ∈ Z[x]. �

As a corollary, we see that if P ∈ Z[x] vanishes to order l at a rational point
p/q, then ql divides the leading coefficient of P , and so |P | ≥ ql.
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Now we adapt these ideas to polynomials in two variables.

Proposition 16.19. If P (x1, x2) = P1(x1)x2 + P0(x1) ∈ Z[x1, x2], and (r1, r2)

= (p1/q1, p2/q2) ∈ Q2, and ∂j
1P (r1, r2) = 0 for j = 0, ..., l − 1, and if l ≥ 2, then

|P | ≥ min((2DegP )−1q
l−1
2

1 , q2).

Remark. We need to assume that l ≥ 2 to get any estimate. For instance, the
polynomial P (x1, x2) = 2x1 − x2, vanishes at (r1, 2r1) for any rational number r1.
But |P | = 2, and q1 can be arbitrarily large.

As soon as l ≥ 2, the size of |P | constrains the complexity of the rational point
(r1, r2). It can still happen that one component of r is very complicated, but they
can’t both be very complicated.

Proof. Our assumption is that

∂jP1(r1)r2 + ∂jP0(r1) = 0, 0 ≤ j ≤ l − 1.

Let V (x) be the vector (P1(x), P0(x)). Our assumption is that for 0 ≤ j ≤ l−1,
the derivatives ∂jV (r1) all lie on the line V · (r2, 1) = 0. In particular, any two
of these derivatives are linearly dependent. This tells us that many determinants
vanish. If V and W are two vectors in R2, we write [V, W ] for the 2 × 2 matrix
with first column V and second column W . Therefore,

det[∂j1V, ∂j2V ](r1) = 0, for any 0 ≤ j1, j2 ≤ l − 1.

Because the determinant is multilinear, we have the Leibniz rule ∂ det[V, W ] =
det[∂V, W ] + det[V, ∂W ], which holds for any vector-valued functions V, W : R →
R2. Using this Leibniz rule, we see that

∂j det[V, ∂V ](r1) = 0, for any 0 ≤ j ≤ l − 2.

Now det[V, ∂V ] is a polynomial in one variable with integer coefficients. If this
polynomial is non-zero, then by Gauss’s lemma we conclude that

| det[V, ∂V ]| ≥ ql−1
1 .

Expanding out in terms of P , we have | det[V, ∂V ]| = |∂P0P1 − ∂P1P0| ≤
2(DegP )2|P |2. Therefore, we have |P | ≥ (2DegP )−1q

l−1
2

1 .
The polynomial det[V, ∂V ] may also be identically zero. In this case, the poly-

nomial P must simplify dramatically. One possibility is that P1 is identically zero.
In this case P (x1, x2) = P0(x1), and by the Gauss lemma we have that |P | ≥ ql1. If
P1 is not identically zero, then the derivative of the ratio P0/P1 is identically zero.
(The numerator of this derivative is det[V, ∂V ].) This implies that P0 = AP1 for
some number A, and so

P (x1, x2) = (x2 + A)P1(x1).

This scenario leaves two possibilities. Either r2 + A = 0 or else, ∂j
1P1(r1) = 0

for 0 ≤ j ≤ l − 1. In the second case, Gauss’s lemma implies that |P1| ≥ ql1. In the
first case A = −r2 = −p2/q2. In this case, we can write P in the form

P (x1, x2) = (q2x2 − p2)P̃ (x1),

where a priori P̃ (x1) has rational coefficients. However, the same argument as in the

proof of Gauss’s lemma shows that P̃ actually has integer coefficients. Therefore,
|P | ≥ q2. �
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16.8. Conclusion

We now have all the tools to quickly prove Theorem 16.10. Suppose that β is
an algebraic number of degree d and that s > d+2

2 . We have to show that there are
only finitely many rational solutions to the inequality

|β − p

q
| ≤ q−s.

We give a proof by contradiction. Suppose that there are infinitely many such
rational numbers p/q. Let p1/q1 be one rational solution, where q1 is extremely
large. Then let p2/q2 be another rational solution, with q2 much larger than q1.
We define m to be the integer so that qm1 ≤ q2 < qm+1

1 .
By Proposition 16.15, there is a polynomial P (x1, x2) ∈ Z[x1, x2] of the form

P (x1, x2) = P1(x1)x2 + P0(x1) so that

• ∂j
1P (r1, r2) = 0 for 0 ≤ j ≤ l − 1, with l = c(β, s)m.

• |P | ≤ C(β, s)m.
• Deg P � m.

On the other hand, Proposition 16.19 gives a lower bound for |P |:

|P | ≥ min
(
m−1q

l−1
2

1 , q2

)
≥ m−1q

c(β,s)m
1 .

Comparing the bounds, we see that

m−1q
c(β,s)m
1 ≤ C(β, s)m,

and so
q1 ≤ C(β, s).

Since we were allowed to choose q1 arbitrarily large, this gives a contradiction.

Exercise 16.5. In this exercise, we estimate how sharp Proposition 16.19 is.
Suppose that P ∈ Z[x1, x2] has the form

P (x1, x2) = P1(x1)x2 + P0(x1).

Suppose that r = (r1, r2) ∈ Q2, and suppose that ∂j
1P (r) = 0 for 0 ≤ j ≤ l− 1.

How small can |P | be?
Here are two explicit examples: the polynomial q2x2 − p2 which has |P | ≥ q2,

and the polynomial (q1x1 − p1)
l, which has |P | ≥ ql1.

If l is large and q2 ∼ q
l/2
1 , and if Deg P is on the order of l, then the lower

bound from Proposition 16.19 is approximately |P | � q
l/2
1 . The lower bound is

much smaller than the two explicit examples.
Using parameter counting, prove the following Proposition which shows that

the bound from Proposition 16.19 is fairly sharp.

Proposition 16.20. For any r ∈ Q2, and any l ≥ 0, ε > 0, there is a poly-
nomial P ∈ Z[x1, x2] with the form P (x1, x2) = P1(x1)x2 + P0(x1) obeying the
following conditions.

• ∂j
1P (r) = 0 for j = 0, ..., l − 1.

• |P | ≤ C(ε)l(p1 + q1)
l
2+ε.

• The degree of P is � ε−1
(
l + log‖r1‖ ‖r2‖

)
.

Exercise 16.6. Suppose that α and β are two algebraic numbers. Prove that
α + β is an algebraic number.
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Exercise 16.7. Using Gauss’s lemma, check the following. Suppose that Q
is a polynomial with integer coefficients. If Q vanishes at a rational point p/q,
then Q(x) = (qx − p)Q1(x) where Q1 has integer coefficients. Therefore, if β is an
algebraic number and Q is an integer polynomial of minimal degree vanishing at β,
then Q does not have any rational roots.

Exercise 16.8. Suppose that Q ∈ Z[x] is irreducible over Z, and that β ∈ C

is a root of Q. Then Q′(β) �= 0. In other words, every root of Q has multiplicity 1.
Suppose that β = β1, β2, ..., βd are the Galois conjugates of β in Q̄. Consider

the polynomial

R(x) =

d∏
j=1

(x − βj).

Any symmetric function of the βj is invariant under the action of the Galois
group, and so any symmetric function of the βj is rational. Therefore, R(x) ∈ Q[x].
We multiply R by an integer C to get a polynomial R1(x) ∈ Z[x], and we choose
C so that the gcd of the coefficients of R1 is 1. Note that R1 vanishes at each βj

with multiplicity 1.
Since βj are Galois conjugates of β, we see that Q(βj) = 0 for all j, and so

R1(x) divides Q(x) in the ring Q[x].
Imitating the proof of Lemma 16.18, show that Q(x) = R1(x)Q1(x) where

Q1 ∈ Z[x]. Since Q is irreducible, Q1(x) must be a constant. Therefore Q(x)
vanishes at each βj with multiplicity 1. In particular, Q′(β) �= 0.

Exercise 16.9. In this exercise, we describe another class of examples of dio-
phantine equations P (x, y) = 0 with infinitely many integer solutions, generalizing
the examples at the end of Section 16.1.

Let Γ ⊂ R2 be the curve y2−2x2 = 1. By Proposition 16.2, Γ contains infinitely
many integer points. Now consider a map φ : R2 → R2 where the components, φ1

and φ2, are polynomials with integer coefficients. The map φ sends integer points
to integer points. For many choices of φ, the map φ : R2 → R2 is finite-to-one, and
so the image of φ contains infinitely many integer points.

Prove that the image of φ lies in a curve Z(P ), where P (x, y) is a polynomial
with integer coefficients. Give examples where P is irreducible and has arbitrarily
high degree.

There is a beautiful theorem of Siegel that classifies when a diophantine equa-
tion of two variables, P (x, y) = 0, has infinitely many integer solutions. It is a
little beyond the scope of this book to state Siegel’s theorem, but the rough idea
is that if P (x, y) = 0 has infinitely many solutions, then they must come from a
parametrization like the one at the end of Section 16.1 or the one in Exercise 16.9.
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and practice of combinatorics, 9-12, North-Holland Math. Stud., 60, North-Holland,
Amsterdam, 1982.
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49 József Beck, Inevitable Randomness in Discrete Mathematics, 2009
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This book explains some recent applications of the theory of polynomials and algebraic 
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this story is a short elegant solution of the Kakeya problem for finite fields, which was 

considered a deep and difficult problem in combinatorial geometry. The author also 

discusses in detail various problems in incidence geometry associated to Paul Erdős’s 

famous distinct distances problem in the plane from the 1940s. The proof techniques 

are also connected to error-correcting codes, Fourier analysis, number theory, and 

differential geometry. Although the mathematics discussed in the book is deep and 

far-reaching, it should be accessible to first- and second-year graduate students and 

advanced undergraduates. The book contains approximately 100 exercises that further 

the reader’s understanding of the main themes of the book.

Some of the greatest advances in geometric combinatorics and harmonic analysis in recent 

years have been accomplished using the polynomial method. Larry Guth gives a readable and 

timely exposition of this important topic, which is destined to influence a variety of critical 

developments in combinatorics, harmonic analysis and other areas for many years to come.
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