衛星 SAR 画像分析による 2004・2005 年スマトラ沖地震に伴う隆起沈降域の把握 Uplift and Subsidence Associated with 2004 and 2005 Sumatra Earthquakes Revealed by Satellite SAR Imagery

地理地殻活動研究センター 飛田幹男・今給黎哲郎・水藤 尚・加藤 敏・林 文・村上 亮 Geography and Crustal Dynamics Research Center Mikio TOBITA, Tetsuro IMAKIIRE, Hisashi SUITO, Min KATO, Fumi HAYASHI and Makoto MURAKAMI 測地部 藤原 智 Geodetic Department Satoshi FUJIWARA

要 旨

2004年・2005年スマトラ沖巨大地震を発生させた 総延長 1000km を超える震源域の地殻変動の全体像を 把握するため、光の加色混合法を利用して、人工衛 星搭載合成開口レーダー (SAR) の強度画像から地表 面粗度の変化抽出を行う新しい分析法を開発した. この分析法は,変動量の計測はできないものの,隆起・ 沈降域の分布把握に有効であり,また,津波遡上域 の把握も可能である.他機関が実施した現地調査等 他の観測と矛盾がないことが確認された. SAR 画像 分析の結果,破壊域の範囲,隆起・沈降域が明らか になり、離水・沈水面積が計測された。2004年と 2005年の地震の震源域はそれぞれ 1320km と 350km と推定された.隆起沈降の境界は海溝から145km東 のラインにほぼ一致しており、今回の破壊域でのプ レート間カップリングの深さが一様であると推定さ れる.

1. はじめに

スマトラ沖で2004年と2005年に相次いで発生した 2つの巨大地震によって基大な被害が出た.この地域 では過去にも巨大地震とそれに伴う津波が発生して被 害が出ており、今回の地震に伴って海溝沿いのどの部 分が破壊されたかを把握することで、次の地震がどこ で起こりうるかを推定する材料が得られる.

2004年12月26日に発生した M9.3のスマトラ沖 地震の震源断層の長さは、地震波による解析によっ て当初約1000kmより短いと報告されたが、北部で ゆっくりとした破壊が起こった場合等、実際の破壊 域はより長い可能性がある.プレート運動によって 蓄積された歪エネルギーの解放という観点からは、 地殻変動データから断層運動が起こった領域を推定 することが重要である.

破壊域の広がりを正確に推定する1つの方法は, 地殻変動の分布を調べることである.GPSによる観 測(Vigny et al., 2005, Banerjee et al., 2005) 及びMicroatol1(小型の冠状の珊瑚)の測定(例: Sieh et al., 1999; Zachariasen et al., 2000)に よって,限られた数十箇所の地殻変動及び上下変動 が測定されているが,今回の地震においては,(1) 破壊域が広範囲にわたること,(2)軍事基地が存在 すること,(3)原住民保護のための進入制限がある こと,(4)武装勢力が存在すること,(5)津波で橋・ 道路が破壊されたこと等の理由により,破壊域全体 をカバーする観測は報告されていない.

これらの困難に影響されずに広範囲にわたる地殻 変動の様子を把握するため、人工衛星に搭載された 合成開口レーダー (SAR) センサーが取得した SAR 画

図の	島名	データ取得日(UTC)	人工衛星名	軌道の	入射角	偏波	潮位
番号				飛行方向	(度)		(cm)
5 (a)	Interview	03年10月 4日/05年1月 2日	RADARSAT-1	南行	44	HH/HH	+45/-28
5 (b)	N. Sentinel	03年10月 4日/05年1月 2日	RADARSAT-1	南行	44	HH/HH	+38/-25
5 (c)	S. Sentinel	03年10月 4日/05年1月 2日	RADARSAT-1	南行	44	HH/HH	+36/-24
5 (d)	Simeulue	03年 7月22日/05年2月17日	RADARSAT-1	北行	47	HH/HH	-15/-2
5 (e)	L. Andaman	03年10月 4日/05年1月 2日	RADARSAT-1	南行	44	HH/HH	+35/-23
5 (f)	G. Nicobar	92年12月27日/05年1月12日	ERS-1/ERS-2	南行	23	VV/VV	+24/+3
5 (g)	NW Sumatra	03年 7月22日/05年2月17日	RADARSAT-1	北行	47	HH/HH	-11/+2
6 (a)	Tuangku	05年 2月 4日/05年4月15日	ENVISAT	北行	42	VV/VV	-10/-4
6 (b)	Bangkaru	05年 2月 4日/05年4月15日	ENVISAT	北行	42	VV/VV	-10/-5
6 (c)	Nias	05年 2月 4日/05年4月15日	ENVISAT	北行	42	VV/VV	-10/-5

表-1 人工衛星 SAR データと計算潮位

2つの偏波と2つの潮位はそれぞれ2つのデータ取得日に対応している

像を利用した.2005年3月28日に発生したM8.7の 地震についても同様の分析を行った.

2. 衛星 SAR 画像による海岸線変化及び津波遡上域の分析

2.1 用いたデータ

カナダの RADARSAT-1 衛星に搭載された SAR セン サーが取得したデータ,及び欧州宇宙機関(ESA)の ENVISAT 衛星に搭載された SAR センサー "ASAR"及 び ERS-1 衛星, ERS-2 衛星に搭載された SAR センサー が取得したデータを用いた.これらの SAR センサー が送受信するマイクロ波は,それぞれ,5.30GHz, 5.33GHz,5.30GHz,5.30CHz のCバンド(波長約5.6cm) の周波数帯に属する電磁波である.

合計約 60 シーン分の RAW データを用いた. その 内の主なものについて,表-1に,分析対象となる 島の名称,SAR データの取得日,人工衛星名,軌道 の飛行方向,マイクロ波の入射角,偏波,計算潮位 (NAOTIDE; Matsumoto et al., 2000)を示した.本 研究では,精密な画像の比較を行うために,同一セ ンサーが同一の場所から地震の前後に取得したデー タのみを比較した.偏波と潮位が2つずつ記載され ているが,これらは地震前後の2つのデータ取得 日に対応している.Greate Nicobar 島に関しては, ERS-1 衛星と ERS-2 衛星のデータを使用した. SAR 画像取得時の潮位が異なる場合には,たとえ 地殻変動がなくても海岸線変化が見られるなど,潮 位差は私達の分析法にとって誤差源となる.そこで, 地震前の SAR 画像の観測日時を検索した後,同一観 測角での観測が次に可能な日時を計算し,両日時に おける計算潮位差が小さな場合に,SAR データ取得 の観測要求を出すことを基本とした.

海岸線変化抽出にいたる解析手順は、図-1のと おりである.

図-2 レーダー画像による津波遡上域・海岸線変化抽出の原理

2.2 変化抽出の原理

SAR の観測では、図-2に示したように人工衛星 から斜め下に向かってマイクロ波を照射し、地表か らの反射波を受信する.こうしたマイクロ波の照射 源方向への反射のことを正確には後方散乱というが、 本論では簡明のため反射と呼ぶことにする.反射波 の強度は、地表面の粗度(粗さ)に依存する.波の ない滑らかな海面では、マイクロ波が鏡面反射し衛 星方向への反射がほとんどないため、SAR 画像中、 黒く表される.一方、陸地の粗度は高く、マイクロ 波が反射されるため、SAR 画像中、白く表される. このような SAR 画像の性質を利用して、地表面の粗 度の変化を抽出する.

図-3 海岸線変化と隆起,及び沈降・海岸浸食

図-3に、断層運動による隆起及び沈降が生じた 場合の海岸線変化を模式的に示した.隆起の場合に は、海岸線が海側に移動する.このことを離水とい い、新たに陸地になった海岸を離水海岸という.一方、 沈降の場合には、海岸線が陸側に移動する.このこ とを沈水という.海岸線が陸側に移動し、陸地面積 が減る原因としては、沈降の他、津波による浸食も ある.

図-2には、津波遡上前後の陸の変化も示してある.津波の遡上によって、家屋等の人工構造物や森林等が破壊され粗度が小さくなった場合には、反射波の強度が減少し、SAR 画像上で暗く変化するので抽出が可能である.

さて,地震前後の2つのSAR 画像を比較すること は容易ではあるが,この比較を効率的かつ正確に行 うために次のような分析法を考案した.この分析法 では,光の加色混合の原理を用いる.

図-4 加色混合の原理

光の緑(Green)と青(Blue)を混合すると水色(Cyan) となるが,さらに、この水色と赤(Red)を混合する と白になる(図-4).

SAR 画像は、反射波の強度に応じて、グレースケー ルで表現される(例:図-2,右側の画像).考案し た分析法では、地震前の SAR 画像をグレースケール から赤の濃淡であるレッドスケールに変換する.同 様に、地震後の SAR 画像をグレースケールから水色 の濃淡であるシアンスケールに変換する.これらの、 レッドスケールとシアンスケールを加色混合すると グレースケールが得られる(図-4).

地震前後で地表面の粗度に変化がなければ,この 加色混合によって、グレースケールとなるが、もし、 地震前に陸だったところが地震後、海になった場合 には、赤に黒が加色混合され、赤になる(表-2). 逆に、地震前に海だったところが地震後陸になった 場合には、黒に水色が加色混合され、水色になる(表 -3).

前者の例を示す表-2は、地震前に半島だった地 形が地震による沈降と津波による侵食によって島に なった例である.変化のない陸地部分は、光の加色 混合によって、グレースケールで表されている.陸 域の海岸部で薄い赤の部分はわずかに滑らかになっ た場所で、津波の遡上が原因と考えられる.

	地震前 2003/07/22	地震後 2004/12/31	比較図(色の混合後)
	レーダー画像	レーダー画像	沈水域·津波遡上域分布
元画像			下の画像で海岸付近の赤い(R)ところが,地震 後に沈水した場所である.主な原因は,断層運動 による沈降と津波による浸食が考えられる. 薄い赤の場所は,反射強度が少し減少した場 所であり,津波による破壊・浸食で表面が滑らか に変化したと考えられる.
色変換後の画像			
潮位	-11 cm	−10 cm	

表一2 反射強度変化に注目した海岸変化・津波遡上域分布の抽出.沈水の例.スマトラ島西岸 Sudhen 岬.

表-3 反射強度変化に注目した海岸変化分布の抽出.離水の例.アンダマン諸島北センチネル島.

	地震前 2004/06/03 レーダー画像	地震後 2004/12/30 レーダー画像	比較図(色の混合後) 離水域分布
元画像			下の画像で海岸付近の水色(G+B)のところが, 地震後に離水した場所である. 主な原因は, 断層 運動に伴う隆起と考えられる.
色変換後の画像			
潮位	88 cm	25 cm	

3. 分析結果

飛田・水藤 (2005a), 飛田・水藤 (2005b), Tobita 他 (2006) で,分析結果の一部を速報的に報告したが, ここでは,その後の分析結果も合わせて報告する.

3.1 2004年12月26日の地震に伴う海岸線変化

図-5に2004年の地震に伴う海岸線変化分析結 果の一部を示す.アンダマン諸島の西側に位置する インタビュー島(図-5(a)),北センチネル島(b), 南センチネル島(c)では,明らかに隆起が見られる. 北センチネル島での隆起による離水は顕著で,海岸 線から垂直に測った離水距離は最大1.6kmである. アンダマン諸島では、南アンダマン島の一部を除 いてほぼ全域にわたって隆起が見られた(図-7参 照).特に、西側で離水量が大きく、島全体が東向き に傾斜するような変動が見られる.

シムルエ島(図-5(d))では,最大300m(離水 距離)離水した.大ニコバル島(図-5(f))は,特 に西岸の沈降が大きく,西向きの傾動が見られる. 最大600m(沈水距離)沈水した.

スマトラ島北部西岸(図-5(g))は,沈降が見られる.最大沈水距離は600m,津波の最大遡上距離は4500mと計測された.

図-5 2004年の地震時に生じた海岸線変化を SAR 画像分析によりとらえた例. (a) インタビュー島, (b) 北センチネル 島, (c) 南センチネル島, (d) シムルエ島, (e) 小アンダマン島, (f) 大ニコバル島, (g) スマトラ北西部

3.2 2005年3月28日の地震に伴う海岸線変化

図-6に2005年の地震に伴う海岸線変化を示す. 赤で示した部分は,地震後に反射強度が減少した地 域であり,バニャ(Banyak)諸島トゥアンク(Tuangku) 島に分布している(図-6(a)).水色で示した部分 は,地震後に反射強度が増加した地域であり,バニャ 諸島バンカル(Bangkaru)島(図-6(b))及びニア ス島の北西岸(図-6(c))に分布している.これら は,地震の断層運動により生じた地盤の隆起・沈降 を示していると考えられる.

ニアス島北西岸には,最大約1kmの離水海岸,及び, 長さ約1.5kmの島が出現した.一方,トゥアンク島 の海岸は,最大約100m沈水(水没)した.

図-6 2005年の地震による海岸線変化. ENVISAT SAR を使用. (a)トゥアンク島, (b) バンカル島, (c) ニアス島, (d) 総括図

ニアス島の北西海岸での隆起は他にも報告例があるが、「約10の島(最大長径1.5km)が新たに出現したこと」の報告は私達のものが最初である.

図-6(d)で、矢印中の「UP」は隆起,「DN」は沈 降を表す.バニャ諸島の西側の島バンカル島が隆起 なのに対し、東側のトゥアンク島は沈降しており、 バニャ諸島は全体的に東へ傾動した.これら2つの 島の間に隆起と沈降の境界線がある.この境界線は、 上下変動がゼロの線であり、傾動の軸とも考えられ る.Caltech Tectonics Observatoryの研究グルー プではこの線を"pivot line"と呼んでおり、これ にならい本論でも、隆起・沈降の境界線をピボット ラインと呼ぶ.

なお、図-6の分析結果作成に使用した SAR デー タ取得時の計算潮位にはわずか6 cmの差しかない(表 -1)ため、潮位差に起因した誤差は小さい.また、 場所による計算潮位差も1 cm 程度しかなく、この誤 差も同様に小さい.

3.3 上下変動の全体像

図-7にSAR 画像分析によって抽出した 2004 年の 地震に伴う海岸線変化の分布をまとめた.バニャ諸 島とニアス島を含む緑色の楕円内に,2005 年の地震 による海岸線変化を加えた.図-7には、図-5,6 で示さなかった島々の情報も含めた.分析結果は, 水色,暗い水色,赤色,暗い赤色,オレンジ色の5 色の丸(●)を海岸部に配置することで示した.こ れまでの例と同様,水色は海岸線が海側に移動した 離水を示し,赤色は海岸線が陸側に移動した沈水及 び侵食を示している.変動がない場所はオレンジ色, 隆起・沈降の可能性がある場所は暗い水色・暗い赤 色で示した.SAR 画像分析を行わなかった場所には, こうした●を配置していない.

スンダ海溝から東に145kmのラインをオレンジ色 で描画した.このラインは都合良く隆起域と沈降域 を分割する.140kmや150kmでは都合が悪いことか ら判断して,145kmという数字の誤差は±3km程度 と考えられる.スンダ海溝の線は,Bird (2003)に よるものである.なお,USGSが1998年に発表した プレート境界データの場合,スンダ海溝の位置と形 状はBird (2003)と比べて最大48km異なるが,これ を元に等距離線を描いても隆起沈降域の分割がうま くいかない.USGSのデータは1987年の古い資料を 基に作成されており,やはり新しいデータほど,より 正確であるといえる.図-7のラインはGISで精密に 描画したものだが,当初画像ソフトで描いたラインよ り正確に,隆起沈降域を分割することができた.

図-7 SAR 画像分析によって抽出した 2004 年・2005 年 の地震に伴う海岸線変化の総括図. 2005 年分は図 右下の緑色線楕円内. それ以外は, 2004 年分. ス ンダ海溝から東に 145km の位置にオレンジ色の線 を描画した. スンダ海溝の位置は Bird (2003) に よる.

3.4 陸地面積変化

GIS ソフトウェアを利用して,海岸線変化により 生じた陸地面積の変化量を計測した.この結果を表 -4に示す.最初の5行が2004年の地震によるもの, 次の3行が2005年の地震による面積変化を示してい る.

スンダ海溝に近い震源断層の真上の島々では,島 が隆起・離水することで,新たな土地約144km²が生 まれた.一方,海溝からもう少し離れた島々では, 沈降及び海岸浸食によって,海岸線が陸側に移動し て,合計約33km²の土地を失った.

表-4 2004年・2005年の地震による陸地面積の変化

	沈水面積(km)↓	離水面積(km [°])↑		
島名	(面積減少)	(面積増加)	島の面積(km [®])	割合(%)
アンダマン諸島	-	114.3	6,408.0	1.78
北センチネル島	-	15.2	59.7	25.46
大ニコバル島	15.9	-	1,045.1	1.52
スマトラ島(アチェ)	15.7		55,390.0(アチェ州)	0.03
シムルエ島	-	9.2	1,844.0	0.50
ニアス島	-	19.1	5,625.0	0.34
バンカル島	-	1.3	-	-
トゥアング島	1.1	-	-	-
合計	32.7	143.9		

上の5島は2004年,下の3島は2005年の地震による面積変化

4. 断層モデル

4.1 2004年の地震の断層モデル

表-5 2004年の地震の断層パラメータ

断層	緯度	経度	深さ	長さ	幅	走向	傾斜	すべり角	すべり量	Max
番号	(deg)	(deg)	(km)	(km)	(km)	(deg)	(deg)	(deg)	(m)	IVI W
1	2.40	95.40	10.	400.	120.	325.	8.0	100.0	12.0	8.76
2	5.50	93.28	10.	200.	90.	342.	8.0	90.0	9.0	8.39
3	7.30	92.72	10.	250.	100.	344.	8.0	100.0	11.0	8.54
4	9.60	92.05	10.	200.	100.	3.5	8.0	105.0	6.0	8.30
5	11.65	92.15	10.	270.	100.	17.	8.0	120.0	5.0	8.34

津波の数値シミュレーションで使用されている 断層モデルの中から,海洋研究開発機構(JAMSTEC) (http://www.jamstec.go.jp/jamstec-j/sumatra/3 _2/Fig1.html)の断層モデルを参考にして、5枚の 断層面を想定した.続いてSAR画像から得られた隆 起沈降の分布(図-7)に整合するように、断層の 位置,走向,すべり角、断層の長さ,幅を調整した. 深さ及び傾斜角は山中氏(東京大学地震研)の結果 を用いている.すべり量は断層面1,2によるすべり の合計がモーメントマグニチュードMw=8.8となるよ うに調整して、次に全断層のすべりの合計がMw=9.0 となるように残りの断層面のすべり量を調整した (図-8,表-5).

4.2 2005年の地震の断層モデル

八木氏(筑波大学)の断層パラメータを参考に、 SAR 画像から得た隆起沈降境界線に整合するように 断層位置、長さ、幅を調整し、計算された上下成分 (色と等高線)と水平成分(黒のベクトル)を図ー 9に示した.すべり量はモーメントマグニチュード Mw=8.7となるように調整した(表-6).

図-9 2005 年地震の断層モデルによる上下変動量と水平 変動ベクトル

							-		
緯度	経度	深さ	長さ	幅	走向	傾斜	すべり角	すべり量	Max
(deg)	(deg)	(km)	(km)	(km)	(deg)	(deg)	(deg)	(m)	WW
0.25	97.60	10.	350.	120.	329.	14.	115.	11.5	8.71

表-6 2005年の地震の断層パラメータ

5. 他の観測との比較

使用した SAR 画像分析法の妥当性を検証するため, 他の観測との比較を行った.

写真-1 2004 年の地震時に隆起し死んだ小型環状珊瑚. シムルエ島北西部. Caltech Tectonics Observatory の Kerry Sieh 教授撮影.

図-10 (a) Caltech Tectonics Observatoryによる 2004
年の地震時の隆起(水色)・沈降(赤色)量を
筆者がグラフ化したもの.(b) SAR 分析画像にだ
図.(c) 300mにわたって離水した海岸.シムル
工島北西部.同研究室のKerry Sieh 教授がへ
リコプターから撮影.写真撮影位置を(b)に橙
色で示した.

写真-1は、地震によって95cm隆起した小型環状 珊瑚(microatoll)に子供達がのっているシムルエ 島北西部の写真である.これを撮影したカリフォルニ ア工科大学テクトニクス研究室(Caltech Tectonics Observatory) ケリー・シー(Kerry Sieh) 教授及び 同僚の話によると、図-5(d) と図-6(c) に見られる シムルエ島北西部とニアス島北西部の隆起はほとんどが 珊瑚礁または珊瑚起源の砂浜であるという.

同研究室では、現地でヘリコプターや船をチャー ターし、海岸で珊瑚礁の測量を実施することで、隆 起量・沈降量を測定している(Meltzner, 2006).図 -10(a)は彼らによる2004年の地震時の隆起(水色)・ 沈降(赤色)量を筆者がグラフ化したものである. 図-10(b)はSAR分析画像に彼らが測定した隆起量 を水色の数字で書き込んだ図である.図-10(c)は、 300 mにわたって離水したシムルエ島北西部海岸の 写真である.以上から、私達の分析結果と彼らの測 定は矛盾することがなく、極めて良い一致が認めら れる.

図-5(d)を見たケリー教授から、「水色のリボン はまさに現地で見てきた離水域と驚くほどよく一致 している」というコメントをいただいた.また、図 -6(c)を見た同研究室のRichard Briggs氏は、「上 下変動の分布が全体として把握できるので、現地調 査の前にSAR分析画像が提供されれば、計画を立て るのに有効.SAR画像による隆起沈降域の分析結果 は細かいところまで現地調査と良く一致している.」 と評価してくれた.

図-11は同研究室のAron Meltzner氏がヘリコプ ターから撮影した写真と私達のSAR分析画像である. SAR 画像(c)と写真(e)は同一の場所であり,非常 に良く整合している.写真は現地の状況(砂洲であ ること)を詳細に表しているが,SAR 画像では長径 の変化が定量的に把握できる.また,SAR 画像(d) と写真(f)はどちらも Bawa 島のもので,板状珊瑚が 隆起して海岸線が変化したことがわかる.

最大 600 mの沈水距離が計測された(図-5(g)) スマトラ島北部西海岸では、その原因に沈降が含ま れるかどうかについては、私達の結果からは断定が 難しいが、この場所を調査した日本及び米国の研究 者は、海の中に椰子の木が生えている様子などから、 沈降があったと報告している.

大ニコバル島最南端にあるインディラポイント灯台が 約4m沈降したという地震前後の写真付きの報告があり (http://cires.colorado.edu/~bilham/IndonesiAndaman 2004_files/IndiraPointSubsidence.htm), 図-5(f) の結果と矛盾しない.

以上のように、私達の SAR 画像分析法はこうした 他の直接的な観測結果と矛盾しないことが確認され た.

 図-11 2005年の地震時に隆起したニアス島西岸・ヒ ナコ諸島. (a)のニアス島西岸とヒナコ諸島の 部分を拡大したSAR分析画像が(b). (b)の内, ニアス島西岸の小島とヒナコ諸島バワ島のSAR 分析画像を拡大したのが(c)と(d). (e)と(f)の 写真はCaltech Tectonics ObservatoryのAron Meltzner氏がヘリコプターから撮影したもの. ただし、写真(f)の左下は海岸で撮影した板状珊 瑚. (a)~(d)の水色部分が隆起による離水海岸 を示す.

6. 考察

まず、本研究から推察される断層破壊域について 議論する.2004年地震の断層の南端はシムルエ島の 北部である (図-7,8). 一方, 北端はアンダマン 諸島北端のランドフォール(Landfall;インド領)島 より北側でココ (Coco; ミャンマー領) 島より南側 である. 少なくともプレパリス島(Preparis Is.;ミャ ンマー領)より南であることは間違いない.なぜな ら,図-7の海岸線変化総括図に示したように、ラ ンドフォール島では明確に隆起が見られるのに対し, ココ島では沈降の可能性があり,一方,その北側の プレパリス島では上下変動が見られないからである. 図-8の断層モデルの第5断層のすべり角はインド オーストラリアプレートのプレート運動方向がスン ダ海溝に対し斜めになっていることもあり,120度(表 -5)で、右横ずれ成分が含まれ、このため第5断 層の北側には沈降域が現れる.この沈降域にココ島 が位置すると考えると説明が自然である. このよう に2004年地震の破壊域は、シムルエ島北部から北に 約1320kmもの総延長を持ち、初期の地震波による解 析や津波の解析結果よりも長い距離が破壊されたこ とが判明した.当初ミャンマー領まで延長している ことも予想されたが、ミャンマー領ココ島は断層運 動によるわずかな沈降は見られたものの断層はココ 島までは達していないことがわかった.

2005年の地震による断層破壊域の総延長は,SAR 画像分析と調和する断層モデルによれば,約350km と推定された.2004年と2005年の2つの地震によ る断層破壊域の総延長は,1670kmと推定され,誤差 を考慮しても少なくとも1600km以上の総延長をもつ ことが明らかになった.

図-8,9からわかるように今回動いた断層におい ては、断層の上端から下端に向かって4分の3程の 位置に隆起と沈降の境界が位置するので、SAR 画像 分析結果は断層の下端の位置を主に拘束する.逆断 層であるため断層の上端付近は隆起が見られ、下端 あるいは下端より東側では沈降となる.これらから、 顕著な隆起が見られたアンダマン諸島の西岸やシム ルエ島北部は断層の真上だったことがわかる.

次に、スンダ海溝から145km 東の線(図-7中オ レンジ色の線)を境に西側で隆起、東側で沈降の傾 向がみられたことに関して議論する.このような傾 向はどのようなプレート間相互作用で説明できるで あろうか.図-12はプレート沈み込み境界におけ る地震時の隆起と沈降の様子を表す模式図である. 陸側のプレートの下に沈み込む海側のプレートに引 きずられて下向きに変形した陸側のプレート先端部 (黒; "BEFORE")が跳ね上がって(赤; "AFTER") 地震を発生させる際、図のように隆起と沈降が生じ る.震源断層の上端部付近の島では隆起,下端部付 近の島では沈降となる. この図で隆起と沈降が入れ 替わる場所がピボットラインに相当するが,今回の 地震では,この位置がスンダ海溝から東に約145km に位置すると考えられる. 約1600kmにわたる破壊域 全体で,ピボットラインが145kmのラインにほぼ一 致していることから,今回の破壊域では,プレート 間カップリングの深さが一様であると考えられる.

アンダマン諸島,シムルエ島,ニアス島,バンカ ル島が、図-12に示したように震源断層の真上に位 置していたと考えれば、東向きの傾動が説明できる. 同様に、大ニコバル島、スマトラ島西岸が震源断層 の下端よりも陸側に位置していたと考えれば、西向 きの傾動が説明できる.

図-12 プレート沈み込み境界における地震時の隆起と 沈降.沈み込むプレートに引きずられて下向き に変形した上側のプレート先端部が跳ね上がっ て地震を発生させる.このとき、図のように隆 起と沈降が生じる.断層の上端部付近の島では 隆起,下端部付近の島では沈降となる.隆起と 沈降の境界がピボットライン位置となる.

私達の SAR 画像分析法では、上下変動のセンス(隆 起か沈降か)だけしか把握できず、上下変動量の計 測はできない.しかし、次のような長所がある.

- 1) 雲や昼夜に影響されず,確実に画像が取得できるため,災害前後の有効な画像が得られる可能性が高い.光学画像中の雲は地表を遮蔽するだけでなく,雲の影が変化抽出を困難にしている.
- 2) 1シーンの観測面積が大きいため、災害の全体 像を把握するのに適している.
- 3)同一衛星位置から撮影した画像が多く、災害前後の画像比較が容易・正確である.光学画像の場合には、異なる衛星位置から異なる時刻に画像取得が行われることが多く、自動での変化抽出が困難である.一方 SAR は自らマイクロ波を発射するアクティブセンサーであり安定した画像データが取得される.
- 4)サーチ機能を有する.例えば,新島出現の様子 が自動的に抽出できる.現地調査計画にも有効で ある.

今回用いた衛星 SAR 画像分析法を今後用いる機会 が想定されるため、本研究から得られた教訓を以下 にまとめておきたい.

- 1) SAR の入射角は大きい方が良い.入射角が 30 度 より小さい場合には、小さな波浪からの反射波を 受信してしまい、海と陸の区別がつきにくく海岸 線の抽出が困難である.
- 2) SARの偏波は、W(垂直偏波で送信したマイク ロ波を垂直偏波で受信)よりHH(水平偏波で送信 したマイクロ波を水平偏波で受信)が良い.水平 偏波の方が海面で鏡面反射しやすく、海岸線の抽 出が容易である.偏光サングラスと同様の原理で ある.ただし、偏光と偏波は振動方向が垂直の関 係に定義されている.
- 3) SRTM (スペースシャトル地形データ) と衛星画 像など異なる性質のデータを比較することは,非 常に困難かつ不正確である.
- 4) SRTM は地表面でなく Canopy(枝葉最上部)の標 高を計測したデータセットであるから,隆起沈降 量を定量的に求めるのには適さない.
- 5) Lバンド干渉 SAR が必要である. 今回の SAR デー タ解析の当初目標は,干渉 SAR による地殻変動量 計測であったが,適用が困難であった. 理由は,L バンドの SAR 衛星データは入手できないからであ る. Lバンド SAR なら植生があっても干渉可能で ある. また,フリンジレートが低いので,地殻変 動量が大きくても計測可能である. さらに,Phase Unwrapping もしやすい (藤原・飛田, 1999;飛田, 2003).

9. まとめ

2004年・2005年の巨大地震を発生させた震源域の 地殻変動の全体像を把握するため,光の加色混合法 を利用して,人工衛星 SAR の強度画像から地表面粗 度の変化抽出を行う新しい分析法を開発した.この 分析法は,変動量の計測はできないものの,離水・ 沈水域がどこに分布しているかを把握するのに有効 であり,また,津波遡上域の把握も可能である.また, 現地調査等他の観測と比較して,矛盾がないことが 確認された.

SAR 画像分析の結果,破壊域の範囲,隆起・沈降 域,主な場所の離水面積・沈水面積が明らかになっ た.2004年及び2005年の地震の震源域はそれぞれ 1320km 及び350km,合計1670kmと推定された.

約 1600km にわたる破壊域全体で, ピボットライン が海溝から 145km 東のラインにほぼ一致しているこ とから,今回の破壊域では,プレート間カップリン グの深さが一様であると考えられる.また,島々の 隆起と沈降及び傾動の方向については,プレート沈 み込み境界におけるプレート間相互作用モデルによ りピボットラインとの位置関係で説明できる.

既存の断層モデルを SAR 画像分析による隆起沈降 域に整合するように修正することによって,新たな 断層モデルを作成した.

謝 辞

研究遂行上,ご指導をいただいた海津優,熊木洋太, 津澤正晴,宇根寛各氏に感謝いたします.

参考文献

- Banerjee, P., F. F. Pollitz, and R. Bürgmann (2005): The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science, 308, 1769-1772.
- Bird, P. (2003): An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems, 4(3), 1027, doi:10.1029/2001GC000252.
- 藤原智,飛田幹男(1999):地殻変動検出のための干渉 SAR 画像作成技術,日本測地学会誌,第45巻, 283-295.
- Matsumoto, K., T. Takanezawa, and M. Ooe (2000):Ocean Tide Models Developed by Assimilating TOPEX/ POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, Journal of Oceanography, 56, 567-581.
- Meltzner, A. J., K. Sieh, M. Abrams, D. C. Agnew, K. W. Hudnut, J. P. Avouac, and D. H. Natawidjaja (2006): Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004, J. Geophys. Res., Res., doi:10.1029/2005JB003891.
- Sieh, K., S. N. Ward, D. Natawidjaja, and B. W. Suwargadi (1999):Crustal deformation at the Sumatran subduction zone revealed by coral rings, Geophys. Res. Lett., 26, 3141-3144.
- 飛田幹男(2003): 合成開口レーダー干渉法の高度化と地殻変動解析への応用,測地学会誌,49,1-23.
- 飛田幹男,水藤尚(2005a):人工衛星画像を用いた海岸線変化抽出による 2004 年スマトラ沖地震・インド洋 津波に伴う隆起・沈降域の把握,地震予知連絡会会報,第74巻,580-585.
- 飛田幹男,水藤尚(2005b):衛星レーダー画像を用いた海岸線変化抽出による2005年3月28日スマトラ沖地 震に伴う隆起・沈降域の把握,地震予知連絡会会報,第74巻,586-588.
- Tobita, M., H. Suito, T. Imakiire, M. Kato, S. Fujiwara, and M. Murakami (2006): Outline of vertical

displacement of the 2004 and 2005 Sumatra earthquakes revealed by satellite radar imagery, Earth Planets Space, Vol. 58 (No. 1), e1-e4.

- Vigny, C., W. J. Simons, S. Abu, R. Bamphenyu, C. Satirapod, N. Choosakul, C. Subarya, A. Socquet, K. Omar, H. Z. Abidin, and B. A. Ambrosius (2005): Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, Nature, 436, 201-206.
- Zachariasen, J., K. Sieh, F. W. Taylor, and W. S. Hantoro (2000): Modern vertical deformation above coral microatolls, Bull. Seism. Soc. Am., 90, 897-913.