ベーシック数学

第39回

箱ひげ図

講師

湯浅 弘一

身近にあることは?

前回は中央値について学習しました。

例えば、5人の所持金が300円、300円、300円、300円、900円だとします。

この場合の中央値は、金額を小さい順に並べたときの真ん中の値ですから、300円です。

また、1 人目から 4 人目までは 300 円となっていて、300 円の人が一番多いことがわかります。

5人目の900円は、データ全体で見ると外れ値であることもわかりますね。

中央値の方が、平均値よりデータのばらつきがわかります。

ちなみにこの 5人の平均金額は 420円。

1人目から4人目までの300円が平均以下ということになります。

平均以上が 1 人だけ。変な感じがしますよね。

簡単にいえば、中央値を求めることでデータ全体の散らばり具合がわかり、平均値を求めることで、 すべてのデータをたいらにしたときの値がわかるのです。

確認しましょう

問題 1

次の5個のデータの中央値を求めなさい。

5, 6, 8, 10, 13

【考え方】

5個のデータですから,

真ん中のデータは小さい方から3番目であり、大きい方から3番目にあたります。

よって、中央値は8です。

	_
このページ掲載の文章・画像の無断転載及び商用利用を固く禁じます	0

問題	2
----	---

次の 6 個のデータの中央値を求めなさい。 5, 6, 8, 10, 13, 19

【考え方】

6個のデータですから、真ん中のデータは存在しません。

5, 6, 8, 10, 13, 19

上のように、真ん中にデータがないのです。

このような場合には・・・

5, 6, 8, 10, 13, 19

中央を挟む2つの数の平均をとります。

この場合は

$$\frac{8+10}{2}=9$$

となります。

よって、中央値は9です。

-
.
·····-
·····-
-

問題3

次の 11 個のデータの四分位数を求めなさい。 2, 3, 5, 8, 10, 11, 12, 14, 17, 20, 34

【考え方】

データを小さい順に並べたとき 4 等分する位置にくる値を<mark>四分位数</mark>といいます。 求め方は以下の通り!

- (1)全体のデータの中央値を求め、これを第2四分位数とする。
- (2) (1) を除いて、小さい方を下位、大きい方を上位とする。
- (3) (2) の下位の中央値を第1四分位数、上位の中央値を第3四分位数とする。

この問題の場合は・・・

(1)第2四分位数(中央値)は11

2, 3, 5, 8, 10, (11) 12, 14, 17, 20, 34

(2) 下位と上位に分ける

(3) 下位の中央値が第1四分位数なので5、上位の中央値が第3四分位数なので17

2,	3, 5,	8,	10,	11	12,	14,	17,	20,	34
	下位	17					上位		

······
-
-

このページ掲載の文章・画像の無断転載及び商用利用を固く禁じます。

問題4

次の 11 個のデータの四分位数を求めなさい。 3, 5, 8, 10, 11, 12, 14, 17, 20

【考え方】

まず、3、5、8、10、11、12、14、17、20の中央値を求めます。 9個のデータの真ん中は小さい方から5番目、大きい方からも5番目ですから、11。 次に、上位と下位を考えます。

下位の中央値は、下位の真ん中にデータがないので

$$\frac{5+8}{2} = 6.5$$

6.5 が第1四分位数です。

上位の中央値は、上位の真ん中にデータがないので

$$\frac{14+17}{2} = 15.5$$

15.5 が第3四分位数です。

	-
-	
-	
•	
•	
•	

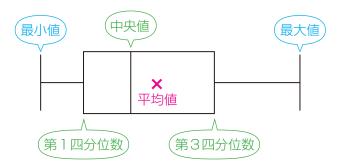
問題5

以下の9個のデータを箱ひげ図で表しなさい。 1, 4, 7, 8, 9, 13, 15, 20, 23

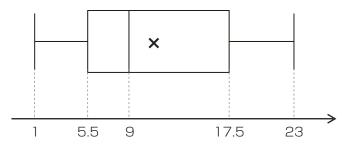
【考え方】

第2四分位数は9、

第1四分位数は
$$\frac{4+7}{2} = 5.5$$


第3四分位数は
$$\frac{15+20}{2}$$
 = 17.5

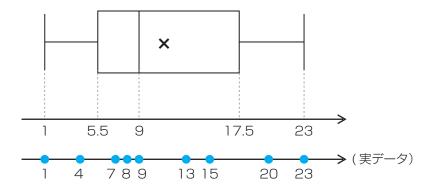
これを以下のようにして箱ひげ図で表しましょう。


ひげの左端が最小値、右端を最大値にします。

そして、箱の左端が第1四分位数。箱の右端が第3四分位数。

さらに、中央値 (第2四分位数)を入れ、最後に平均値を×で入れます。

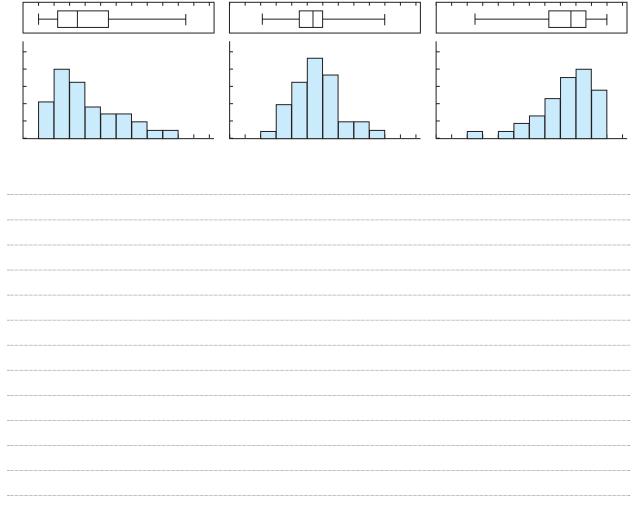
この問題の箱ひげ図は以下のようになります。



このページ掲載の文章・画像の無断転載及び商用利用を固く禁じます。

さて、箱ひげ図から何がわかるのでしょうか?

幅が広いほど1つ1つのデータの間が開いていて、幅が狭いほどデータが集まっているということがわかります。


先ほどの問題で、箱ひげ図と実際のデータを比較してみましょう。

(参考)

以下は箱ひげ図とヒストグラムの対応を表しています。

ヒストグラムのようにデータの分布を詳しく表せませんが、箱ひげ図からもおおよその分布を知ることができます。

このページ掲載の文章・画像の無断転載及び商用利用を固く禁じます。