
How JavaScript Works

How JavaScript Works

Douglas Crockford

Front Matter

Did I hear you right, did I hear you sayin’

that you’re gonna make a copy of a game

without payin’? Come on, guys, I thought

you knew better. Don’t copy that floppy.

MC Double Def DP

How JavaScript Works

Douglas Crockford

Copyright ©2018 Douglas Crockford

ISBN-13 978-1-94-981500-9 Paperback.

ISBN-13 978-1-94-981501-6 Hardcover.

ISBN-13 978-1-94-981502-3 EPUB.

The computer programs in this book are in the Public Domain. The programs are

provided "as is", without warranty of any kind, express or implied, including but not

limited to the warranties of merchantability, fitness for a particular purpose and

noninfringement. In no event shall the author or publisher be liable for any claim,

damages or other liability, whether in an action of contract, tort or otherwise, arising

from, out of or in connection with the programs or the use or other dealings in the

programs. Please use the programs for good, not evil.

The publisher offers excellent discounts on this book when ordered in quantity for

bulk purchases or special sales which may include customized covers. For more

information, please contact sales@virgule-solidus.com.

QA76.73.J39

005.2762

Chapter List

Raindrops on roses and whiskers on kittens.

Not Maria Augusta von Trapp

{"number": 0, "chapter": "Read Me First!"),

{"number": 1, "chapter": "How Names Work"),

{"number": 2, "chapter": "How Numbers Work"),

{"number": 3, "chapter": "How Big Integers Work"),

{"number": 4, "chapter": "How Big Floating Point Works"},

{"number": 5, "chapter": "How Big Rationals Work"),

{"number": 6, "chapter": "How Booleans Work"),

{"number": 7, "chapter": "How Arrays Work"),

{"number": 8, "chapter": "How Objects Work"),

{"number": 9, "chapter": "How Strings Work"),

{"number": 10, "chapter": "How Bottom Values Work"),

{"number": 11, "chapter": "How Statements Work"),

{"number": 12, "chapter": "How Functions Work"),

{"number": 13, "chapter": "How Generators Work"),

{"number": 14, "chapter": "How Exceptions Work"),

{"number": 15, "chapter": "How Programs Work"),

{"number": 16, "chapter": "How this Works"},

{"number": 17, "chapter": "How Classfree Works"},

{"number": 18, "chapter": "How Tail Calls Work"),

{"number": 19, "chapter": "How Purity Works"},

{"number": 20, "chapter": "How Eventual Programming Works"},

{"number": 21, "chapter": "How Date Works"},

{"number": 22, "chapter": "How JSON Works"},

{"number": 23, "chapter": "How Testing Works"},

{"number": 24, "chapter": "How Optimizing Works"},

{"number": 25, "chapter": "How Transpiling Works"},

{"number": 26, "chapter": "How Tokenizing Works"},

{"number": 27, "chapter": "How Parsing Works"},

{"number": 28, "chapter": "How Code Generation Works"},

{"number": 29, "chapter": "How Runtimes Work"),

{"number": 30, "chapter": "How Wat! Works"},

{"number": 31, "chapter": "How This Book Works"}

Chapter 0

Read Me First!

○○○○○

Few images invoke the mysteries and

ultimate certainties of a sequence of random

events as well as that of the proverbial

monkey at a typewriter.

George Marsaglia

JavaScript is not very pretty, but it works.

This book is for people who have had some experience with JavaScript, and want to

have a better, deeper understanding of how it works and how to use it well. It is also

for experienced programmers who are looking to understand the workings of another

language.

This book is not for beginners. I hope to someday write a book for beginners. This is

not that book. This is not a light book. If you skim it, you will likely get nothing from

it.

This book is not about JavaScript engines or virtual machines. It is about the lan

guage itself and the things every programmer should know about it. This book is a

radical reappraisal of JavaScript, how it works, how it could be made better, and how

it can be better used. It is about how to think about JavaScript and how to think in

JavaScript. I am going to pretend that the current version of the language is the only

version. I am not going to waste your time by showing how things worked in ES1 or

ES3 or ES5. That does not matter. The focus is on how JavaScript works for us now.

This book is not comprehensive. There are large, complex chunks of the language that

will be dismissed without a word. If I fail to mention your most favorite feature, that

is most likely because that feature is crap. I will not be paying much attention to

syntax. I am assuming that you already know how to write an if statement. If you

need assistance with those sorts of details, ask JSLint. jslint.com

There are some useful parts of the language that I will spend little time on, such as

most of the methods in the primordial prototypes. There are excellent online reference

materials for that. My favorite resource is Mozilla Foundation.

developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

An important goal in programming language design is to produce a clean, logical

language that composes well and is free of weird corner cases. JavaScript came

nowhere close to meeting that goal. It gets worse with each revision as more fea

0.1 Read Me First!

tures are agglutinated. The language is full of weird corner and edge cases. This book

illuminates only a few of those corners, just to show that there are monsters there.

Stay away from the corners and edges. Do not go into the dark. Stay in the part of

the language that is simple and clean. Everything you need to write good programs is

there.

Ten years ago I wrote a cranky little pamphlet about JavaScript. The premise was

unusual, that whilst JavaScript was obviously a mess, there was buried deep inside

of it a very good language. By avoiding the bad parts, you could write good programs.

This was quite at odds with the opinion of some programming experts that mastery

can only be demonstrated by exploiting all of a language’s features. They believed

strongly, without any need of proof, that features exist for the demonstration of

mastery, so there are no bad features.

That opinion still seems to dominate even though it is deeply wrong. True mastery is

shown by writing good programs that are readable, maintainable, and free of error. If

you ever feel the need to show off, try doing that. Being a humble programmer, I am

always looking at myself and my work, seeking to improve my skills. I have learned

the hard way that optimizing for feature exploitation is counterproductive.

This is my most powerful tool for improving a programming language:

If a feature is sometimes useful and sometimes dangerous and if there is a

better option then always use the better option.

So armed, I am always looking to make the language I use smaller and better, to avoid

if I can the features that are more likely to create bugs. I am still refining my ideas

about what is good practice and what is not. This book represents my latest thinking

about JavaScript. I am able to write about JavaScript’s good parts only because Java

Script has good parts. Compared to a decade ago, I think less of the language is good,

but I think that good part is better.

JavaScript has become the most important programming language in the world. That

is at least partly my fault. Sorry. The issuing of new editions of the ECMAScript

standard has not repaired JavaScript’s deep problems, and sometimes creates new

problems. A standards committee has limited power to repair a language. They have

almost limitless power to grow the language, increasing its complexity and weirdness.

They also have the power to not make things worse, but where is the fun in that?

Aging programming languages suffer from a bad plastic surgery addiction. They are

desperately injecting new features in the fevered hope of remaining popular, or at

least fashionable. Feature bloat is as big and as deep of a problem as code bloat. I

think that we should instead praise JavaScript’s inner beauty.

I also recommend that you get the ECMAScript standard. It can be tough reading, but

it is free. www.ecma-international.org/publications/standards/Ecma-262.htm

Reading the ECMAScript standard literally changed my life. Like most people, I

started writing JavaScript without first bothering to learn it well. I found the lan

guage to be faulty, confusing, and irritating. It wasn’t until I got around to reading

the ECMAScript standard for myself that I discovered JavaScript’s brilliance.

Read Me First! 0.2

Heresy

This book about a programming language will make some people angry. I am a

harbinger of the next paradigm, and that is threatening to the keepers of the old

paradigm. I am used to this. I was attacked when I discovered that JavaScript has

good parts, which turned out to be the first important discovery of the 21st century.

I was attacked when I discovered JSON, which is now the world’s best loved data

interchange format.

Communities form around shared beliefs, and communities can provide benefits to

their members even when those beliefs are wrong. Communities can feel threatened

when those beliefs are questioned. I am a heretic. I value the pursuit of truth over the

benefits of community. That is offensive to some people.

I am just a programmer who is trying to figure out the best way to write programs. I

might be wrong, but I am working really hard to get it right. Many of the patterns of

thought in our profession were cemented in the FORTRAN era. I think it is time that

we move beyond that. Change is hard, even in the most innovative of professions.

If you are offended by heresy, then put this book back on the shelf and walk away.

Code

All of the code in this book is in the Public Domain. You are free to use it for any

purpose, but please do not use it for evil. Try to do some good with it if that is at all

possible.

I strongly recommend that you do not copy and paste code that you do not understand,

even mine. This seems to have become a standard practice, but it is dangerous and

reckless. It is not nearly as stupid as installing packages that you haven’t even looked

at, but it is still really bad. Given the current state of the art, the most important

security filter is your brain. Use it. This is important.

I make no claim that the programs presented in this book are perfect. I do claim that

the programs I am writing now are better than what I was writing ten years ago.

I work hard at trying to get better at this. I am hoping that I live long enough to

finally get it right. I hope that you do, too. In the meantime, erratums for this book

can be found at the book’s website. In Latin, the plural of erratum is errata as is

done with second declension neuter nouns in the nominative case. But I am writing

in Modern English, and in Modern English we should be forming plural nouns by

appending -s, or in cases of excess sibilance, -es. So, yes, erratums. Given a choice

between progress and tradition, I am going with progress informed by the lessons of

history. That is how things are made better. howjavascriptworks.com/erratums

Please report my many blunders to erratum@howjavascriptworks.com.

Next

This book is about JavaScript, but I sometimes talk about The Next Language, the

language that will replace JavaScript. I have to believe that there will be a language

after JavaScript, because if JavaScript is the last language, that would be really sad.

We must find a way to the next language, if only for our kids. They deserve a better

legacy than JavaScript.

I believe that children are our future. And also robots.

0.3 Read Me First!

The next paradigm will be globally distributed, secure, eventual programming. The

Internet demands this. Nearly all of our current programming languages, including

JavaScript, are still firmly rooted in the old paradigm of local, insecure, sequential

programming. I see JavaScript as a transitional language. Adoption of the best

practices in JavaScript will be good preparation for understanding the next paradigm.

English

The word for 1 is misspelled. I use the corrected spelling wun. The pronunciation of

one does not conform to any of the standard or special rules of English pronunciation.

And having the word for 1 start with the letter that looks like 0 is a bug.

The spelling of wun is unfamiliar to you so it might feel wrong. I am doing this

intentionally to give you practice with the idea that a bad feeling about something

unfamiliar is not proof that it is wrong.

This is how spelling reform happens. For example, some cat decides that it really

would be better if through were spelled thru because it does not make sense that

half of the letters in a popular word be silent, being wildly inefficient and putting

an unnecessary burden on students of the language. Spelling reform is a struggle

between tradition and reason, and sometimes, reason wins. I feel the same way about

programming languages. So if wun makes more sense to you than one, then please

join me in the effort.

When normal people talk about ranges, like 1 to 10, the range is understood to end

with 10. But programmers often mean to to exclude the 10. This confusion is due to

the common programming practice of numbering from 0 instead of 1. So I use to to

mean what programmers usually mean by to, and thru to mean what normal people

mean by to. So 0 to 3 mean the range including 012 whilst 0 thru 3 mean the range

including 0 1 2 3. To implies < less
than

and thru implies <= less than
or

equal.

And whilst on the subject of whilst, in this book about programming, while is used

for discussion of iteration. When discussing concurrency or simultaneity I use whilst

which I take to mean while at the same time.

Both cannot and can not are acceptable spellings, but cannot is much more

popular. Hasnot is not acceptable whilst has not is. And willnot is not acceptable

whilst will not is. That is why I can not use cannot. But if I am in a great hurry, I

can still can’t.

To my many friends for whom English is not your first language: Welcome. Thank

you for reading my book. Perhaps unfairly, English has become the language of the

Internet and of Software Development. Your ability to read the primary document

ation directly is an important and valuable skill. I deeply respect that.

Read Me First! 0.4

Examples

I use regular expressions. Unfortunately, regular expressions are extremely cryptic

and confusing. I will attempt to mitigate that a bit by pumping lots of whitespace into

them. JavaScript does not allow that whitespace, so when you see

const number_pattern = /

^

(-? \d+)

(?: \. (\d*))?

(?:

[e E]

([+ \-]? \d+)

)?

$

/;

be aware that it should be written all smushed together as

const number_pattern = /^(-?\d+)(?:\.(\d*))?(?:[eE]([+\-]?\d+))?$/;

I do not want to subject you to such unprintable ugliness, so I insert the whitespace.

In many of the chapters I will show examples of JavaScript expressions. I do that by

using a special expression statement that ends not with a ; semicolon but instead with

//slash slash followed by the result of the expression.

// An example of examples

3 + 4 === 7 // true

NaN === NaN // false

typeof NaN // "number"

typeof null // "object"

0.1 + 0.2 === 0.3 // false

3472073 ** 7 + 4627011 ** 7 === 4710868 ** 7 // true

Before the end, all will be explained.

Chapter 1

How Names Work

○○○○●

You know my name.

John Lennon and

Paul McCartney

JavaScript wants you to give names (or identifiers) to your variables, properties, and

sometimes, functions. JavaScript puts no limit on the length of variables names, so

be generous. As much as possible, let your programs tell their own stories. Do not use

cryptic names.

I was first taught programming by mathematicians and then I went to work for

a company that made computers that were programmed in BASIC. At that time,

BASIC variable names were a single uppercase letter and an optional digit, like A1.

I developed a very bad habit of using wun letter variable names. Decades later, I

am still struggling with that. Wunce something wrong gets into your head, it can

be really hard to fix it. We should never stop trying to get smarter. Mathematicians

like notations that are cryptic and terse. We have learned the very hard way that

programming should strive to be literate and self explanatory. Programming is not

mathematics. It is a different sort of art.

Start all of your names with a letter, and end them with a letter. JavaScript allows

names to start with _ underbar or $ dollar sign or to end with _ underbar or $ dollar sign or

a digit. JavaScript allows a lot of things that you really should not do. These tricks

should be reserved for code generators and macro processors. Humans should do

better.

A beginning or ending _ underbar is sometimes intended to indicate a public property

or a global variable that would have been private if the program had been written

correctly. So, a dangling _ underbar is a flag indicating that the coder is incompetent.

The $ dollar sign was added to the language for use by code generators, transpilers,

and macro processors, so that they could generate names that were guaranteed to not

collide with yours. If you are not a program, leave the $ dollar sign alone.

A trailing digit in a name is usually an indication that the programmer failed to give

enough thought to the name.

I give my ordinal variables names like thing_nr. I give my cardinal variables names

like nr_things.

1.1 How Names Work

It is good to have names containing multiple words, but there is little agreement on

how to do that since spaces are not allowed inside of names. There is wun school

that insists on the use of camel case, where the first letter of words are capitalized

to indicate the word boundaries. There is another school that insists that _ underbar

should be used in place of space to show the word boundaries. There is a third school

that just runs all the words together, losing the word boundaries. The schools are

unable to agree on the best practice. This argument has been going on for years and

years and does not appear to be approaching any kind of consensus. That is because

all of the schools are wrong.

The correct answer is to use spaces to separate the words. Programming languages

currently do not allow this because compilers in the 1950s had to run in a very

small number of kilowords, and spaces in names were considered an unaffordable

luxury. FORTRAN actually pulled it off, allowing names to contain spaces, but later

languages did not follow that good example, even though later languages (including

JavaScript) followed FORTRAN’s very bad examples of using = equal sign as the

assignment operator and requiring (left paren and) right paren around the condition of

an IF instead of requiring { left
brace and } right

brace around the consequence.

I am hoping that the next language does the right thing and allows names to contain

spaces to improve readability. We measure memory in gigabytes, so language

designers are now free to invent better languages. Until then, use _ underbar in

multiword names. That will be the easiest transition to the next language.

All names in JavaScript should start with a lowercase letter. This is because of a

problem with JavaScript’s new operator. If a function invocation is prefixed with new,

then the function is called as a constructor, otherwise the function is called as a

function. The functionality of constructors and functions can be quite different. Errors

can result from calling a constructor the wrong way. Making this more confusing,

constructors and functions look exactly the same, so there is no automatic way to

detect problems due to a missing or superfluous new. So we have a convention: All

constructor functions should start with an uppercase letter and nothing else should

ever start with an uppercase letter. That gives us a visual indication that could help to

identify an error.

My solution to this problem is more reliable: never use new. That eliminates the need

to have names that start with an uppercase letter. I still recommend avoiding initial

caps in this language because there are an awful lot of awful programs out there that

still use new, increasing daily.

Reserved Words

This is JavaScript’s reserved word list:

arguments await break case catch class const continue debugger default delete

do else enum eval export extends false finally for function if implements

import in Infinity instanceof interface let NaN new null package private

protected public return static super switch this throw true try typeof

undefined var void while with yield

Memorize that list. It is important. None of those words should be used as variable

names or parameter names. JavaScript’s rules about reserved words are surprisingly

complex, so there might be some exceptional cases where a few of those words can be

used. But even in those weird cases, don’t.

How Names Work 1.2

The use of reserved words is another misfeature that has its roots in the memory

shortages of the 1950s and 1960s. Having reserved words in a language could make

things easier for a compiler, allowing it to save a few bytes. Moore’s Law has

obliterated those shortages, but that constrained mode of thinking persists. Reserved

words are obviously a bad thing for programmers. Have you memorized the reserved

word list yet? There might be a word that perfectly describes your variable, but it has

already been allocated to a lousy feature that you never use, or that might not ever be

implemented. Reserved words are also bad for language designers because the brittle

reserved word strategy makes it very difficult to add new features to a popular lan

guage in a clean, straightforward way. I am hoping that the next language does not

stoop to using reserved words.

Chapter 2

How Numbers Work

○○○●○

Look up the number.

John Lennon and Paul McCartney

Computers are machines that manipulate numbers. That is fundamentally all that

computers can do. They seem to do that really well. We can map other kinds of

information onto numbers. Computers now mediate virtually all human activity.

JavaScript’s numbers were inspired by the real numbers, but they are not real

numbers. Many of our mathematical understandings and intuitions can be applied

to JavaScript numbers, but not completely or consistently. In order to write good

programs in JavaScript, we must understand how its numbers work.

JavaScript has a single number type called number. It was borrowed from the IEEE

Standard for Floating-Point Arithmetic (IEEE 754) which was initally developed for

Intel’s iAPX-432 processor. The 432 contained many brilliant ideas, way too many.

The 432’s architecture became so complex that it failed to achieve its goals. They

lost sight of the best idea, simplicity. Many good ideas died with the 432. The 432’s

floating-point unit was salvaged and sold as the 8087, a math co-processor for the

8086. It became standard equipment on Pentium and AMD64 chips.

JavaScript is often criticized for having only wun number type, but this is actually

wun of its greatest strengths. Programmers are more productive if they do not have to

waste time selecting from a confusion of similar types with the risk of obscure failures

from choosing the wrong wun. Type conversion errors are avoided. The overflow errors

caused by the int types are avoided. JavaScript integers are far more reliable than

Java ints because overflow can not occur.

JavaScript: 2147483647 + 1 // 2147483648 exactly right

Java: 2147483647 + 1 // -2147483648 maximally wrong

How can we have confidence in the correctness of programs that are built on a number

system that can go wildly wrong at any time without warning? The int types do not

prevent errors, they cause them.

The idea behind floating point is a simple wun: Represent a number as two numbers.

The first number (sometimes called the coefficient, significand, fraction, or mantissa)

contains the digits. The second number (called the exponent) identifies where the

decimal point (or binary point) should be inserted in the first number. Implemen

tations of floating point can be quite complex. The complexity comes from the need to

make the best use of the limited number of bits in a fixed format.

2.1 How Numbers Work

JavaScript does not use the entire IEEE 754 standard. It uses a subset of the subset

that Java uses. JavaScript’s number is very closely related to Java’s double. It is a 64

bit binary floating point type. A number contains a sign bit, 11 exponent bits, and 53

significand bits. Some clever encoding allows those 65 bits to be packed into a 64 bit

word.

IEEE 754, like many floating point systems before it, chose a system with a basis of

2. The first number is split into two parts—the sign and the significand. The sign

is placed in the most significant of the 64 bits. It is 1 if the number is negative.

The significand is placed in the least significant bits. It normally represents a binary

fraction in the range

0.5 <= significand < 1.0

In that form, the most significant bit is always a 1. Since that bit is always a 1, it does

not need to be stored in the number. This yields the bonus bit.

The second number is the exponent. It fills the space between the sign and the

significand. The value of a number would be

sign * significand * (2 ** exponent)

but there are other complications. The exponent is represented as a biased signed

magnitude integer. This allows comparisons to be made pretending that the number

is a 64 bit integer. That could provide a significant performance benefit, which was

important fifty years ago. The exponent can also encode NaN and Infinity and the

subnormals, a special form for representing very small numbers and zero.

Zero

There is no zero but zero. In a correct system, there is only wun zero. The IEEE

754 standard contains two zeros: 0 and -0. JavaScript bravely works hard to hide

this abomination from you, and nearly always succeeds. You can safely ignore the

existence of -0 except in these cases:

(1 / 0) === (1 / -0) // false

Object.is(0, -0) // false

I do not recommend that you ever divide anything by zero. I do not recommend that

you ever use Object.is().

Number Literals

There are 18437736874454810627 immutable number objects built into JavaScript,

each uniquely representing a number. A number literal produces a reference to

the number object that most closely matches the value of the literal. Sometimes

it will be exact. In some cases it can be off by as much as

9.9792015476735990582818635651842e+291.

A number literal for an integer is simply a sequence of decimal digits. It is also

possible to form literals for integers in different bases by use of a radix prefix. All of

these literals produce references to 2018:

binary: 0b11111100010octal: 0o3742

decimal: 2018.00

hexadecimal: 0x7E2

How Numbers Work 2.2

JavaScript allows the radix specifier letter to be in uppercase, but putting uppercase

letter O in a number literal is certain to cause confusion.

Decimal number literals may contain a decimal point. Very large or very small

numbers may be compactly written with e, which multiplies the number by a power

of ten. So, 6.022140857747475e23 is short for (6.022140857747475 * (10 ** 23)) and

6.626070040818182e-34 is short for (6.626070040818182 * (10 ** -34)).

Infinity is a value that represents all numbers that are too large to be represented.

Do not confuse Infinity with ∞. In mathematics, ∞ is not a value. It is a metaphor.

NaN is a special value that represents numbers that are not numbers. NaN stands for

Not a Number, which is confusing because the typeof operator correctly reports that

the type of NaN is "number".

NaN can be the result of a failed string to number conversion. Instead of an exception

being raised or the program halting, the NaN value is given. The arithmetic operators

produce NaN when NaN is wun of their inputs.

The worst thing about NaN is that NaN is not equal to itself. This is an IEEE 754

abomination that JavaScript does not hide. The test for NaN is different than the test

for equality for all other number values. This can be a hazard when writing tests. If

the expected value is NaN, then the test always fails, even when the actual value is NaN.

To test if a value is NaN or not NaN, use Number.isNaN(value). Number.isFinite(value)

returns false if value is NaN or Infinity or -Infinity.

Number

Number (not number, the initial uppercase N is significant) is a function that can make

numbers. Numbers in JavaScript are immutable objects. The typeof operator returns

"number" (the initial lowercase n is significant) when given a number. You should

never use the new prefix with the Number function. It does not do what you might think

it should do.

const good_example = Number("432");

const bad_example = new Number("432");

typeof good_example // "number"

typeof bad_example // "object"

good_example === bad_example // false

Number is also a container of some constants. These constants can provide insight into

the workings of numbers.

Number.EPSILON is exactly 2.220446049250313080847263336181640625e-16. It is the

smallest positive number that, when added to 1, produces a sum that is larger than

1. Adding any positive number that is less than Number.EPSILON to 1 produces a sum

that is exactly 1. It should seem absurd that adding a number that is not 0 to 1 yields

1. This is not due to a bug or design error in JavaScript. All fixed size floating point

systems have such weirdness, including IEEE 754. It is a reasonable tradeoff.

Number.MAX_SAFE_INTEGER is exactly 9007199254740991, or about 9 quadrillion in the

modern illion idiom. JavaScript does not have or need an integer type because its

number type can exactly represent all of the integers up to Number.MAX_SAFE_INTEGER.

JavaScript has 54 bit signed integers within its number type.

2.3 How Numbers Work

Adding 1 to an integer that is larger than Number.MAX_SAFE_INTEGER has the same effect

as adding 0 to that large number. JavaScript is capable of exact integer arithmetic

so long as all of the values and results and intermediate results are integers that lie

between -Number.MAX_SAFE_INTEGER and Number.MAX_SAFE_INTEGER. Within that range,

conventional mathematical reasoning can hold. The Associative Law and Distributed

Law are in effect. Outside of that range, things are more chaotic. For example, the

order in which you add a sequence of numbers can change the sum. So, ((0.1

+ 0.2) + 0.3) produces a larger result than (0.1 + (0.2 + 0.3)). Number

.isSafeInteger(number) returns true if the number is in the safe range.

Number.isInteger(number) returns true if the number is an integer in the safe range

or if it is above the safe range. All numbers greater than Number.MAX_SAFE_INTEGER are

considered to be integers. Some of them are exactly correct. Most of them are not.

Number.MAX_VALUE contains the largest number that JavaScript can represent. It is

exactly Number.MAX_SAFE_INTEGER * 2 ** 971 or

17976931348623157081452742373170435679807056752584499659891747680315726078002853

87605895586327668781715404589535143824642343213268894641827684675467035375169860

49910576551282076245490090389328944075868508455133942304583236903222948165808559

332123348274797826204144723168738177180919299881250404026184124858368

which is 1 followed by 308 digits. Most of that is phantom significance. These numbers

can provide 15.9 digits of significance. The trailing 292 digits are an illusion caused

by base 2 beating against base 10.

Adding any positive safe integer to Number.MAX_VALUE produces a sum that is also

Number.MAX_VALUE. It is likely that if a program produces a result that is Number

.MAX_VALUE then the program is in error. Any result that exceeds Number

.MAX_SAFE_INTEGER is suspect. The IEEE 754 standard promises the potential of

enormous range, but without extraordinary care, it is more likely to lead to mistakes.

Number.MIN_VALUE is the smallest number that can be represented that is larger than

zero. It is exactly equal to 2 ** -1074 or

4.940656458412465441765687928682213723650598026143247644255856825006755072702087

51865299836361635992379796564695445717730926656710355939796398774796010781878126

30071319031140452784581716784898210368871863605699873072305000638740915356498438

73124733972731696151400317153853980741262385655911710266585566867681870395603106

24931945271591492455329305456544401127480129709999541931989409080416563324524757

14786901472678015935523861155013480352649347201937902681071074917033322268447533

35720832431936092382893458368060106011506169809753078342277318329247904982524730

7763759272478746560847782037344696995336470179726777175851256605511991315048911014510378627381672509558373897335989936648099411642057026370902792427675445652290

87538682506419718265533447265625e-324

All positive numbers that are smaller than Number.MIN_VALUE are indistinguishable

from zero. Note that the significand of Number.MIN_VALUE contains only a single bit in

the least significant position. That lonely bit produces a lot of phantom significance.

Number.prototype is an object that all numbers inherit from. Number.prototype

contains a set of methods. Unfortunately, it is not a very useful set of methods.

How Numbers Work 2.4

Prefix operators:

Operators

+ to number The + plus
sign prefix operator converts its operand into

- negate

typeof type of

Infix operators:

+ plus sign

- minus sign

* asterisk

/ slash

% percent

** asterisk asterisk

a number. If the conversion fails, then it produces NaN.

The Number function is preferred because it is more

explicit.

The - minus sign prefix operator changes the sign of its

operand. Number literals in JavaScript do not have

signs. In expressions like (-1), the - minus
sign is an

operator, not part of the number literal.

If the operand is a number, then it produces the

string "number", even if the operand is NaN.

addition Unfortunately, the + plus
sign

operator is

also used by strings to do concatenation.

This overloading creates a hazard. If

either operand is a string, it converts the

other operand to a string and

concatenates them. Unfortunately, there

is no other way in this language to do

addition, so you must be careful. The

Number function can be helpful in

assuring that the operands to the + plus

sign infix operator are in fact numbers so

that addition will be performed.

subtraction

multiplication

division This is not an integer division. If you

divide an integer by another integer, you

might get a fractional result: 5 / 2

yields 2.5, not 2.

remainder JavaScript does not have a modulo

operator. Instead it has a remainder

operator. I think modulo is the more

useful. The result of remainder takes its

sign from the dividend. The result of

modulo takes its sign from the divisor.

-5 % 2 is -1.

exponentiation JavaScript adopted FORTRAN’s double

asterisk to give the language a quaint,

old timey look.

2.5 How Numbers Work

Bitwise Operators

JavaScript has a set of bitwise operators similar to those found in C and other

languages. They all operate on JavaScript numbers by converting them to signed 32

bit ints, performing the bitwise operation, and then converting back to JavaScript

numbers. It would have been better if they acted on 54 bit safe integers, but they do

not, so the 22 high order bits can be lost without warning.

In some languages, a shift might be used instead of a multiply or divide, or a bitwise

and might be used as a modulo operator. If you do that in this language, you may be

discarding the 22 most significant bits. In some cases you can get away with that. In

some cases you can not.

This is why the bitwise operators are used less often in JavaScript than in other

languages. But even when they are not used, they are a syntactic hazard. & ampersand

and | vertical bar could be confused with && ampersand ampersand and || vertical bar vertical bar.

<< less than less than and >> greater than greater than could be confused with < less than and

> greater
than. It is not obvious to me why >> greater

than greater
than is the right shift that

does sign extension and >>> greater
than

greater
than

greater than
is not. In C, sign extension

was determined by the type. In Java, sign extension was determined by the operator.

JavaScript copied Java’s bad choice. Be careful out there.

The only bitwise unary operator is ~ tilde,
bitwise not.

The bitwise binary operators:

& ampersand bitwise and

| vertical bar bitwise or

^ circumflex bitwise exclusive or

<< less than less than left shift

>>> greater than greater than greater than right shift

>> greater than greater than right shift sign extended

The Math Object

The Math object contains an important set of functions that should have been built into

Number. This is another example of Java being a bad influence.

In addition to the trigonometric and logarithmic functions, it contains practical

functions that should have been provided as operators.

Math.floor and Math.trunc both produce an integer from a number. Math.floor gives

the smaller integer, and Math.trunc gives the integer closer to zero. Which wun you

use depends on what you want to happen to negative numbers.

Math.floor(-2.5) // -3

Math.trunc(-2.5) // -2

Math.min and Math.max return the smallest or the largest of the arguments.

Math.random returns a number between 0 and 1. It is suitable for games, but not for

cryptographic applications or casino games.

How Numbers Work 2.6

The Monster

JavaScript does not provide tools for deconstructing a number into its components,

but we can easily write such a tool in JavaScript. We can then see a number’s true

nature.

I am going to be using a coefficient instead of a significand because I want to

work entirely in integer space where things can be clear and exact. The fractional

significand requires much more explanation.

function deconstruct(number) {

This function deconstructs a number, reducing it to its components: a sign, an integer

coefficient, and an exponent, such that

number = sign * coefficient * (2 ** exponent)

let sign = 1;

let coefficient = number;

let exponent = 0;

Remove the sign from the coefficient.

if (coefficient < 0) {

coefficient = -coefficient;

sign = -1;

}

if (Number.isFinite(number) && number !== 0) {

Reduce the coefficient: We can obtain the exponent by dividing the number by two

until it goes to zero. We add the number of divisions to -1128, which is the exponent

of Number.MIN_VALUE minus the number of bits in the significand minus the bonus bit.

exponent = -1128;

let reduction = coefficient;

while (reduction !== 0) {

This loop is guaranteed to reach zero. Each division will decrement the exponent of

the reduction. When the exponent is so small that it can not be decremented, then the

internal subnormal significand will be shifted right instead. Ultimately, all of the bits

will be shifted out.

exponent += 1;

reduction /= 2;

}

Reduce the exponent: When the exponent is zero, the number can be viewed as an

integer. If the exponent is not zero, then adjust to correct the coefficient.

reduction = exponent;

while (reduction > 0) {

coefficient /= 2;

reduction -= 1;

}

while (reduction < 0) {

coefficient *= 2;

reduction += 1;

}

}

2.7 How Numbers Work

Return an object containing the three components and the original number.

return {

sign,

coefficient,

exponent,

number

};

}

Now that we are equipped, we can look directly at the beast.

When we deconstruct Number.MAX_SAFE_INTEGER, we get

{

"sign": 1,

"coefficient": 9007199254740991,

"exponent": 0,

"number": 9007199254740991

}

Number.MAX_SAFE_INTEGER is the largest number that fits in a signed 54 bit integer.

When we deconstruct 1, we get

{

"sign": 1,

"coefficient": 9007199254740992,

"exponent": -53,

"number": 1

}

Notice that 1 * 9007199254740992 * (2 ** -53) is 1.

Now let’s try a tricky wun: 0.1. A tenth. A dime.

{

"sign": 1,

"coefficient": 7205759403792794,

"exponent": -56,

"number": 0.1

}

When you do the math, 1 * 7205759403792794 * 2 ** -56 is not 0.1. It is exactly

0.1000000000000000055511151231257827021181583404541015625.

It is well known that JavaScript is bad at handling decimal fractions, particularly

money. When you enter 0.1 or most other decimal fractions into your program,

JavaScript is unable to accurately represent that value, so it aliases, substituting a

value that it can represent.

When you type a decimal point into your program, or read in a data value with a

decimal point, it is likely that you are introducing a small error into your program.

Sometimes the errors are so small that they are not noticed. Sometimes the errors

cancel each other out, but sometimes the errors accumulate.

How Numbers Work 2.8

When we deconstruct 0.3, we get a different result than when we deconstruct 0.1 +

0.2.

{

"sign": 1,

"coefficient": 5404319552844595,

"exponent": -54,

"number": 0.3

}

{

"sign": 1,

"coefficient": 5404319552844596,

"exponent": -54,

"number": 0.30000000000000004

}

Note that neither 0.299999999999999988897769753748434595763683319091796875 nor

0.3000000000000000444089209850062616169452667236328125 is actually equal to 0.3.

Let’s look at wun more example. When we deconstruct 100 / 3, we get

{

"sign": 1,

"coefficient": 9382499223688534,

"exponent": -48,

"number": 33.333333333333336

}

Notice that JavaScript says that the number is 33.333333333333336. The final 6 is

an indication that JavaScript is unable to understand the correct answer, or even

a reasonable answer. But the truth is much worse. JavaScript actually thinks the

answer is exactly 33.33333333333333570180911920033395290374755859375.

Floating point systems come with functions that convert between the internal binary

representation and the external decimal representation that humans insist on using.

Those functions are designed to hide the truth to the extent that it is possible to hide

it. There is real concern that if we were forced to constantly experience the truth of

IEEE 754, we would rebel and demand something more suitable. And on a practical

basis, we don’t want to see that noise in our results, and we don’t want to show that

noise to our clients. It would make us look incompetent. It is easier if we all pretend

that everything is fine.

The first users of binary floating point were mathematicians and scientists. The

mathematicians understood well that computers, being finite devices, can not exactly

represent the real numbers, so they relied on numerical analysis techniques to tease

useful results from finite systems. The scientists were doing work on experimental

data, which is noisy, so the inexactness of binary floating point was not a significant

problem. But early business users rejected binary floating point because their

customers, and the law, demand exact decimal values. When you are counting money,

you are legally required to get the right sum.

That was over a half century ago. Since then, we seem to have forgotten about the

tradeoffs that come with binary floating point. We should have moved onto something

better by now. It is inexcusable that in the 21th century, we can not reliably add 0.1 to

0.2 to get 0.3. I am hopeful that the language that replaces JavaScript will possess a

single number type that can exactly express the decimal fractions. Such a system still

2.9 How Numbers Work

can not exactly represent the real numbers. No finite system can. But it could exactly

represent the numbers that are most important to humanity: the numbers that are

made of decimal digits.

In the meantime, try to work as much as possible in the safe integer range. I recom

mend converting all money values into cents, where they can be exactly processed as

integers. The danger in that approach is in the interaction with code or systems that

do not also do that. Such interface errors could produce results that are a hundred

times too large or too small. That would be very bad indeed. Perhaps inflation will

save us here by making cents too worthless to bother with.

When you do work outside of the safe integer set, numbers containing a . decimal point or

an e decimal exponent might not be exactly the truth. Adding numbers of similar magni

tudes produces less error than adding numbers of different magnitudes. That is why

totalling of subtotals is more accurate than totalling of individual values.

Chapter 3

How Big Integers Work

○○○●●

He say five, I say six. He say eight, I say

nine. He say ten, I say eleven. I no stop for

nothing. I bid ’em up. I go higher, higher,

higher.

Chico Marx

Wun of the popular complaints about JavaScript is that it does not have 64 bit

ints. An int64 type could hold exact integers as large as 9223372036854775807, which

is three digits more than you can get with JavaScript numbers with their paltry

Number.MAX_SAFE_INTEGER of 9007199254740991.

There are problems with the idea that we should just inject a new number type. This

appears to not be a problem at all. Other languages have multiple number types. Why

shouldn’t JavaScript be more like the other languages?

When you have a language with wun number type, adding another is an act of

violence. There is a big loss of simplicity and a large new potential for bug formation.

Every type declaration and every type conversion is a potential error.

There is also the question: Is 64 bits enough? Perhaps we should be looking at 72 bits,

or 96 bits, or 128 bits, or 256 bits. Whatever number you choose, there is an equally

good argument that the number should be even higher.

I think it was a mistake to add big integers to the language. It should instead be a

library. Most users of the language do not need them, and they do not solve the biggest

problem that the current numbers have. With a little programming, there is no need

to mutilate the language. We can do exact integer arithmetic in any bit allocation just

with JavaScript the way it is. There are many ways to do it. The implementation I am

presenting here was not optimized for speed or smallness, but was instead optimized

for explainability. I want to present a complete library, but not consume too many

pages in presenting it.

I am going to keep big integers in arrays. Arrays are a good choice because they can

come in any size. (Strings could also be a good choice, where each character is treated

as an unsigned 16 bit integer.) Each element of the array contains a number that

holds some of the big integer’s bits. An important design question is How many bits

per element? The largest possible answer is 53, the size of a positive safe integer. The

language provides motivation to make it 32 or less because that allows use of the

3.1 How Big Integers Work

bitwise operators. If our word size is larger than 32 bits, then the bitwise operators

can not be used and the implementation gets more complicated.

But even 32 is too large if we consider the needs of multiplication and division.

In implementing big integer multiplication and division, we want to make use of

JavaScript’s multiplication operator, which is only accurate to 53 bits. That means

that our word size should be no more than half that. I chose 24 bits. I could have gone

with 26, but I like 24 because it is rounder. (My first program ran on a Control Data

Corporation 3150, a 24 bit mainframe.) We call these 24 bit units megadigits because

they can represent over a million times the number of values that an ordinary digit

can represent.

I chose a signed magnitude representation. The zeroth element of the array contains

the sign of the number, either "+" or "-". The wunth element contains the least

significant megadigits. The last element contains the most significant megadigits. So

9000000000000000000 would look like this:

["+", 8650752, 7098594, 31974]

That is not very pretty, but it works because

9000000000000000000 = 8650752 + ((7098594 + (31974 * 16777216)) * 16777216)

I made constants and functions to make it easier to get to the internal features of the

big integer.

const radix = 16777216;

const radix_squared = radix * radix;

const log2_radix = 24;

const plus = "+";

const minus = "-";

const sign = 0;

const least = 1;

function last(array) {

return array[array.length - 1];

}

function next_to_last(array) {

return array[array.length - 2];

}

We make some constants. We don’t really need these, but they make the code read a

little better.

const zero = Object.freeze([plus]);

const wun = Object.freeze([plus, 1]);

const two = Object.freeze([plus, 2]);

const ten = Object.freeze([plus, 10]);

const negative_wun = Object.freeze([minus, 1]);

We need predicate functions to detect big integers and negative big integers.

function is_big_integer(big) {

return Array.isArray(big) && (big[sign] === plus || big[sign] === minus);

}

function is_negative(big) {

return Array.isArray(big) && big[sign] === minus;

}

How Big Integers Work 3.2

function is_positive(big) {

return Array.isArray(big) && big[sign] === plus;

}

function is_zero(big) {

return !Array.isArray(big) || big.length < 2;

}

The mint function removes the last words from the array if they are zero. It substitutes

wun of the constants if there is a match. If there is not a match, it freezes the array.

An implementation could claim to be faster in some cases if it allows modification of

the arrays, but it would also be less pure and likely to be buggier. Our big integers are

immutable, just as JavaScript’s numbers are.

function mint(proto_big_integer) {

Mint a big integer number from a proto big integer. Delete leading zero megadigits.

Substitute a popular constant if possible.

while (last(proto_big_integer) === 0) {

proto_big_integer.length -= 1;

}

if (proto_big_integer.length <= 1) {

return zero;

}

if (proto_big_integer[sign] === plus) {

if (proto_big_integer.length === 2) {

if (proto_big_integer[least] === 1) {

return wun;

}

if (proto_big_integer[least] === 2) {

return two;}

if (proto_big_integer[least] === 10) {

return ten;

}

}

} else if (proto_big_integer.length === 2) {

if (proto_big_integer[least] === 1) {

return negative_wun;

}

}

return Object.freeze(proto_big_integer);

}

Our first practical functions are negation, absolute value, and sign extraction.

function neg(big) {

if (is_zero(big)) {

return zero;

}

let negation = big.slice();

negation[sign] = (

is_negative(big)? plus

: minus

);

return mint(negation);

3.3 How Big Integers Work

}

function abs(big) {

return (

is_zero(big)? zero

: (

is_negative(big)? neg(big)

: big

)

);

}

function signum(big) {

return (

is_zero(big)? zero

: (

is_negative(big)? negative_wun

: wun

)

);

}

The eq function determines if two big integers contain the same bits.

function eq(comparahend, comparator) {

return comparahend === comparator || (

comparahend.length === comparator.length&& comparahend.every(function (element, element_nr) {

return element === comparator[element_nr];

})

);

}

The abs_lt function determines if the absolute value of a big integer is less than the

absolute value of another big integer. The lt function determines if the signed value

of a big integer is less than the signed value of another. These functions must work a

little harder if the two big integers have the same length. They could work less hard

if there were a version of reduce that could go in reverse and also quit early.

function abs_lt(comparahend, comparator) {

return (

Ignoring the sign, the number with more megadigits is the larger. If the two numbers

contain the same number of megadigits, then we must examine each pair.

comparahend.length === comparator.length? comparahend.reduce(function (reduction, element, element_nr) {

if (element_nr !== sign) {

const other = comparator[element_nr];

if (element !== other) {

return element < other;

}

}

return reduction;

How Big Integers Work 3.4

},

false

)

: comparahend.length < comparator.length);

}

function lt(comparahend, comparator) {

return (

comparahend[sign] !== comparator[sign]

? is_negative(comparahend)

: (

is_negative(comparahend)

? abs_lt(comparator, comparahend)

: abs_lt(comparahend, comparator)

)

);

}

When you have lt, you can easily make the other comparisons by complementing and

swapping:

function ge(a, b) {

return !lt(a, b);

}

function gt(a, b) {

return lt(b, a);

}

function le(a, b) {

return !lt(b, a);

}

Now we make the bitwise functions. Each of our big integers contains bits. We assume

that signs are not relevent for bitwise operations, so signs are ignored on input, and

"+" on output.

Our first bitwise functions are and, or, and xor. The and function wants to process the

shorter array. The and function does not care about the excess words in the longer

array. The excess words are anded with zero and disappear. The or and xor functions

want to work on the longer array.

function and(a, b) {

Make a the shorter array.

if (a.length > b.length) {

[a, b] = [b, a];

}

return mint(a.map(function (element, element_nr) {

return (

element_nr === sign

? plus

: element & b[element_nr]

);

}));

3.5 How Big Integers Work

}

function or(a, b) {

Make a the longer array.

if (a. length - b. length) {

[a, b] = [b, al;

}

return mint(a.map(function (element, element_nr) {

return (

element_nr === sign

2 plus

: element (bDelement_nrl || 0)

);

}));

}

function xDr(a, b) {

Make a the longer array.

if (a. length - b. length) {

[a, b] = [b, al;

}

return mint(a.map(function (element, element_nr) {

return (

element_nr === sign

2 plus

: element (bDelement_nrl || 0)

);

}));

}

Some of our functions take a small integer as an argument. The int function makes it

easy to handle both numbers and big integers.

function int(big) {

let result;

if (typeof big === "number") {

if (Number. is Safelnteger(big)) {

return big;

}

} else if (is_big_integer(big)) {

if (big. length & 2) {

return 0;

}

if (big. length === 2) {

return (

is_negative(big)

2 -big[least]

: big[least]

);

}

if (big. length === 3) {

result = bigſleast + 1] + radix + big[least];

return (

is_negative(big)

2 – result

How Big Integers Work 3.6

}

: result

);

}

if (big.length === 4) {

result = (

big[least + 2] * radix_squared

+ big[least + 1] * radix

+ big[least]

);

if (Number.isSafeInteger(result)) {

return (

is_negative(big)? -result

: result

);

}

}

}

The shift_down function downsizes numbers by deleting the least significant bits.

This can make the big integer smaller. It is like dividing by a power of two. This

operation is usually known as right shift (>>>) which is confusing because it uses the

greater than symbol to make numbers smaller. The numbering of bits is a completely

arbitrary thing, so the notion that bits grow from right to left is confusing. We are

making values from arrays, which are generally thought to grow from left to right,

so we grow from right to left and left to right at the same time. Also, some writing

systems are left to right, and others are right to left, so the naturality of left and right

are not universal. The Endian Problem has its roots in this confusion. Shifting right

and left is less precise than downsizing and upsizing.

If the shift count is a multiple of 24, then shifting is easy. Otherwise, we need to

realign all of the bits.

function shift_down(big, places) {

if (is_zero(big)) {

return zero;

}

places = int(places);

if (Number.isSafeInteger(places)) {

if (places === 0) {

return abs(big);

}

if (places < 0) {

return shift_up(big, -places);

}

let skip = Math.floor(places / log2_radix);

places -= skip * log2_radix;

if (skip + 1 >= big.length) {

return zero;

}

big = (

skip > 0

? mint(zero.concat(big.slice(skip + 1)))

: big

);

if (places === 0) {

3.7 How Big Integers Work

}

return big;

}

return mint(big.map(function (element, element_nr) {

if (element_nr === sign) {

return plus;

}

return ((radix - 1) & (

(element >> places)

| ((big[element_nr + 1] || 0) << (log2_radix - places))

));

}));

}

The shift_up function upsizes numbers by inserting zeros at the least significant end.

It is like multiplying by a power of two. This can make the big integer larger. In most

systems, bits may be lost when they are shifted past the capacity of numbers, but in

this system, capacity is unlimited so no bits are lost.

function shift_up(big, places) {

}

if (is_zero(big)) {

return zero;

}

places = int(places);

if (Number.isSafeInteger(places)) {

if (places === 0) {

return abs(big);

}

if (places < 0) {

return shift_down(big, -places);

}

let blanks = Math.floor(places / log2_radix);

let result = new Array(blanks + 1).fill(0);

result[sign] = plus;

places -= blanks * log2_radix;

if (places === 0) {

return mint(result.concat(big.slice(least)));

}

let carry = big.reduce(function (accumulator, element, element_nr) {

if (element_nr === sign) {

return 0;

}

result.push(((element << places) | accumulator) & (radix - 1));

return element >> (log2_radix - places);

}, 0);

if (carry > 0) {

result.push(carry);

}

return mint(result);

}

We would like to have a not function that complements all of the bits, but we have no

limit on the number of bits, so it isn’t clear how many bits should be flipped. So we

have a mask function that makes a big integer of some specific number of 1 bits. We

can then use mask and xor to make not, but not must be told the size of the bit field.

function mask(nr_bits) {

How Big Integers Work 3.8

Make a string of 1 bits.

nr_bits = int(nr_bits);

if (nr_bits !== undefined && nr_bits >= 0) {

let mega = Math.floor(nr_bits / log2_radix);

let result = new Array(mega + 1).fill(radix - 1);

result[sign] = plus;

let leftover = nr_bits - (mega * log2_radix);

if (leftover > 0) {

result.push((1 << leftover) - 1);

}

return mint(result);

}

}

function not(a, nr_bits) {

return xor(a, mask(nr_bits));}

The random function makes a big random integer. It takes the number of bits to

generate, and an optional random generator function that returns a number between

0 and 1. If you do not pass in a random generator function, it uses Math.random, which

is fine for most purposes, but not for cryptographic applications.

function random(nr_bits, random = Math.random) {

Make a string of random bits. If you are concerned with security, you can pass in a

stronger random number generator.

First make a string of 1 bits.

const wuns = mask(nr_bits);if (wuns !== undefined) {

For each megadigit, get a random number between 0.0 and 1.0. Take some upper bits

and some lower bits and xor them together. Then and it to the megadigit and put it

into the new number.

return mint(wuns.map(function (element, element_nr) {

if (element_nr === sign) {

return plus;

}

const bits = random();

return ((bits * radix_squared) ^ (bits * radix)) & element;

}));

}

}

We do addition the same way you did in school, except we are using radix 16777216

instead of radix 10. We use closure to make the carry available to the adder.

function add(augend, addend) {

if (is_zero(augend)) {

return addend;

}

if (is_zero(addend)) {

return augend;

}

If the signs are different, then turn this into a subtraction problem.

3.9 How Big Integers Work

if (augend[sign] !== addend[sign]) {

return sub(augend, neg(addend));

}

The signs are the same. Add all the bits, giving the result the same sign. We can add

numbers of different lengths. We give .map the longer wun, and use the || operator to

replace nonexistant elements with zeros.

if (augend.length < addend.length) {

[addend, augend] = [augend, addend];

}

let carry = 0;

let result = augend.map(function (element, element_nr) {

if (element_nr !== sign) {

element += (addend[element_nr] || 0) + carry;

if (element >= radix) {

carry = 1;

element -= radix;

} else {

carry = 0;

}

}

return element;

});

If the number overflowed, then append another element to contain the carry.

if (carry > 0) {

result.push(carry);

}

return mint(result);

}

Subtraction is similarly straight forward.

function sub(minuend, subtrahend) {

if (is_zero(subtrahend)) {

return minuend;

}

if (is_zero(minuend)) {

return neg(subtrahend);

}

let minuend_sign = minuend[sign];

If the signs are different, turn this into an addition problem.

if (minuend_sign !== subtrahend[sign]) {

return add(minuend, neg(subtrahend));

}

Subtract the smaller from the larger.

if (abs_lt(minuend, subtrahend)) {

[subtrahend, minuend] = [minuend, subtrahend];

minuend_sign = (

minuend_sign === minus

? plus

: minus

);

}

let borrow = 0;

How Big Integers Work 3.10

return mint(minuend.map(function (element, element_nr) {

if (element_nr === sign) {

return minuend_sign;

}

let diff = element - ((subtrahend[element_nr] || 0) + borrow);

if (diff < 0) {

diff += 16777216;

borrow = 1;

} else {

borrow = 0;

}

return diff;

}));

}

Multiplication is slightly more complicated. We use nested forEach functions because

we must multiply every element of multiplicand with every element of multiplier.

Each of those products can be 48 bits, but an element can only hold 24 bits, so the

overflow must be carried.

function mul(multiplicand, multiplier) {

if (is_zero(multiplicand) || is_zero(multiplier)) {

return zero;

}

The sign of the result will be positive if the signs match.

let result = [

multiplicand[sign] === multiplier[sign]

? plus

: minus

];

Multiply each element of multiplicand by each element of multiplier, propagating the

carry.

multiplicand.forEach(function (

multiplicand_element,

multiplicand_element_nr

) {

if (multiplicand_element_nr !== sign) {

let carry = 0;

multiplier.forEach(function (

multiplier_element,multiplier_element_nr

) {

if (multiplier_element_nr !== sign) {

let at = (

multiplicand_element_nr + multiplier_element_nr - 1

);

let product = (

(multiplicand_element * multiplier_element)+ (result[at] || 0)

+ carry

);

result[at] = product & 16777215;

carry = Math.floor(product / radix);

}

});

3.11 How Big Integers Work

if (carry > 0) {

result[multiplicand_element_nr + multiplier.length - 1] = carry;

}

}

});

return mint(result);

}

The divrem function performs division, returning both the quotient and the

remainder. For convenience, we also provide a div function that returns only the

quotient.

function divrem(dividend, divisor) {

if (is_zero(dividend) || abs_lt(dividend, divisor)) {

return [zero, dividend];

}

if (is_zero(divisor)) {

return undefined;

}

Make the operands positive.

let quotient_is_negative = dividend[sign] !== divisor[sign];

let remainder_is_negative = dividend[sign] === minus;

let remainder = dividend;

dividend = abs(dividend);

divisor = abs(divisor);

We do long division just like you did in school. We estimate the next digit of the

quotient. We subtract the divisor times that estimate from the dividend, and then

we go again. We are using base 16777216 instead of base 10, and we are being more

systematic in predicting the next digit of the quotent.

In order to improve our predictions, we first mint the divisor. We shift it left until

its most significant bit is 1. We also shift the dividend by the same amount. See

Algorithm 4.3.1D in The Art of Computer Programming.

To determine the shift count, we find the number of leading zero bits. The clz32

function counts in a field of 32 bits, but we are only concerned with a field of 24 bits,

so we subtract 8.

let shift = Math.clz32(last(divisor)) - 8;

dividend = shift_up(dividend, shift);

divisor = shift_up(divisor, shift);

let place = dividend.length - divisor.length;let dividend_prefix = last(dividend);

let divisor_prefix = last(divisor);

if (dividend_prefix < divisor_prefix) {

dividend_prefix = (dividend_prefix * radix) + next_to_last(dividend);} else {

place += 1;

}

divisor = shift_up(divisor, (place - 1) * 24);

let quotient = new Array(place + 1).fill(0);

quotient[sign] = plus;

while (true) {

How Big Integers Work 3.12

The estimate will not be too small, but it might be too large. If it is too large then

subtracting the product of the estimate and the divisor from the dividend produces a

negative. When that happens, make the estimate smaller and try again.

let estimated = Math.floor(dividend_prefix / divisor_prefix);

if (estimated > 0) {

while (true) {

let trial = sub(dividend, mul(divisor, [plus, estimated]));

if (!is_negative(trial)) {

dividend = trial;

break;

}

estimated -= 1;

}

}

The corrected estimate is stored in the quotient. If that was the final place, then move

on.

quotient[place] = estimated;

place -= 1;

if (place === 0) {

break;

}

Prepare for the next place. Update dividend_prefix with the first two words of the

remaining dividend, and scale down the divisor.

if (is_zero(dividend)) {

break;

}

dividend_prefix = last(dividend) * radix + next_to_last(dividend);divisor = shift_down(divisor, 24);

}

Fix the remainder.

quotient = mint(quotient);

remainder = shift_down(dividend, shift);

return [

(

quotient_is_negative

? neg(quotient)

: quotient

),

(

remainder_is_negative

? neg(remainder)

: remainder

)

];

}

function div(dividend, divisor) {

let temp = divrem(dividend, divisor);

if (temp) {

return temp[0];

}

}

3.13 How Big Integers Work

Raising an integer to an integer power is easy using the square and multiply method.

function power(big, exponent) {

let exp = int(exponent);

if (exp === 0) {

return wun;

}

if (is_zero(big)) {

return zero;

}

if (exp === undefined || exp < 0) {

return undefined;

}

let result = wun;

while (true) {

if ((exp & 1) !== 0) {

result = mul(result, big);

}

exp = Math.floor(exp / 2);

if (exp < 1) {

break;

}

big = mul(big, big);

}

return mint(result);

}

We will use the gcd function to reduce fractions.

function gcd(a, b) {

a = abs(a);

b = abs(b);

while (!is_zero(b)) {

let [ignore, remainder] = divrem(a, b);

a = b;

b = remainder;

}

return a;

}

We need functions for converting numbers and strings into big integers and back

again. When converting to and from strings, we want to support decimal notation

obviously, but we also want to support binary, octal, hexadecimal, Base32, and Base32

checksums. You can find more information about Base32 at crockford.com/wrmg

/base32.html.

The digitset string allows us to map numbers to characters. The charset object maps

characters to numbers. Hexadecimal, decimal, octal, and binary can use a subset of

the same character mapping.

const digitset = "0123456789ABCDEFGHJKMNPQRSTVWXYZ*~$=U";

const charset = (function (object) {

digitset.split("").forEach(function (element, element_nr) {

object[element] = element_nr;

});

return Object.freeze(object);

}(Object.create(null)));

How Big Integers Work 3.14

The make function takes a number or a string and an optional radix, and returns a big

integer. These conversions are exact for all integer values.

function make(value, radix_2_37) {

The make function returns a big integer. The value parameter is a string and an

optional radix, or an integer, or a big_integer.

let result;

if (typeof value === "string") {

let radish;

if (radix_2_37 === undefined) {

radix_2_37 = 10;

radish = ten;

} else {

if (

!Number.isInteger(radix_2_37)

|| radix_2_37 < 2

|| radix_2_37 > 37

) {

}

radish = make(radix_2_37);

return undefined;

}

result = zero;

let good = false;

let negative = false;

if (value.toUpperCase().split("").every(

function (element, element_nr) {

let digit = charset[element];

if (digit !== undefined && digit < radix_2_37) {

result = add(mul(result, radish), [plus, digit]);

good = true;

return true;

}

if (element_nr === sign) {

if (element === plus) {

return true;

}

if (element === minus) {

negative = true;

return true;

}

}

return digit === "_";

}

) && good) {

if (negative) {

result = neg(result);

}

return mint(result);

}

return undefined;

}

if (Number.isInteger(value)) {

let whole = Math.abs(value);

result = [(

value < 0

3.15 How Big Integers Work

2 minus

: plus

)];

while (whole >= radix) {

let quotient = Math. floor(whole / radix);

result. push(whole - (quotient * radix));

whole = quotient;

}

if (whole > 0) {

result. push(whole);

}

return mint(result);

}

if (Array. isArray(value)) {

return mint(value);

}

}

The number function converts a big integer to a JavaScript number. The conversion is

exact if the value is in the safe integer range.

function number(big) {

let value = 0;

let the sign = 1;

let factor = 1;

big. forEach(function (element, element_nr) {

if (element_nr === 0) {

if (element === minus) {

the sign = -1;

}

} else {

value += element * factor;

factor *= radix;

}

});

return the sign + value;

}

The string function converts a big integer into a string. The conversion is exact.

function string(a, radix_2_thru_37 = 10) {

if (is zero(a)) {

return "0";

}

radix_2_thru_37 = int(radix_2_thru–37);

if (

! Number. isSafelnteger(radix_2_thru_37)

| radix_2_thru_37 × 2

| radix_2_thru_37 > 37

) {

return undefined;

}

const radish = make(radix_2_thru_37);

const the sign = (

aſsign] === minus

2 in iſ

How Big Integers Work 3.16

a = abs(a);

let digits = [];

while (!is_zero(a)) {

let [quotient, remainder] = divrem(a, radish);

digits.push(digitset[number(remainder)]);

a = quotient;

}

digits.push(the_sign);

return digits.reverse().join("");

}

The population count function counts the number of 1 bits in a big integer. This can

be used to compute the Hamming distance.

function population_32(int32) {

Produce the total count of 1 bits in a 32 bit integer.

Count 16 pairs of bits, producing 16 two bit counts (0, 1, or 2). For each pair, we

subtract the higher bit from the pair, which converts the two bits into a count.

// HL - H = count

// 00 - 0 = 00

// 01 - 0 = 01

// 10 - 1 = 01

// 11 - 1 = 10

int32 -= (int32 >>> 1) & 0x55555555;

Combine 8 pairs of two bit counts, producing 8 four bit counts, ranging from 0 thru 4.

int32 = (int32 & 0x33333333) + ((int32 >>> 2) & 0x33333333);

Combine 4 pairs of four bit counts, producing 4 eight bit counts, ranging from 0 thru 8.

Overflow into neighbor counts is no longer possible, so we only need a single masking

operation after the addition.

int32 = (int32 + (int32 >>> 4)) & 0x0F0F0F0F;

Combine 2 pairs of eight bit counts, producing 2 sixteen bit counts, ranging from 0

thru 16.

int32 = (int32 + (int32 >>> 8)) & 0x001F001F;

Finally, combine the 2 sixteen bit counts, producing a number ranging number from

0 thru 32.

return (int32 + (int32 >>> 16)) & 0x0000003F;

}

function population(big) {

Count the total number of 1 bits.

return big.reduce(function (reduction, element, element_nr) {

return reduction + (

element_nr === sign

? 0

: population_32(element)

);

},

0

3.17 How Big Integers Work

);

}

function significant_bits(big) {

Count the total number of bits excluding leading zeros.

return (

big.length > 1

? make((big.length - 2) * log2_radix + (32 - Math.clz32(last(big)))): zero

);

}

Finally, all of this goodness is exported as a module.

export default Object.freeze({abs,

abs_lt,

add,

and,

div,

divrem,

eq,

gcd,

is_big_integer,

is_negative,

is_positive,

is_zero,

lt,

make,

mask,

mul,

neg,

not,

number,

or,

population,

power,

random,

shift_down,shift_up,significant_bits,

signum,

string,

sub,

ten,

two,

wun,

xor,

zero

});

You can access the big integer object in your module by importing it.

import big_integer from "./big_integer.js";

Chapter 4

How Big Floating Point Works

○○●○○

Don’t be a hero, young man.

There’s no percentage in it.

Harlan Potter

A big integer system can solve many problems, but it is obviously constrained to just

integers, and there are some problems that integers can not solve. So let’s build a

big floating point system. A floating point system is concerned with three numbers, a

coefficient, an exponent, and a basis. The three numbers determine a value.

value = coefficient * (basis ** exponent)

The IEEE 754 format that JavaScript uses for its numbers has a basis of 2. This

provides the benefit that hardware implementations in the 1950s were feasible.

Moore’s Law has eliminated the constraints that made 2 the only reasonable basis, so

let’s consider other possibilities.

Our Big Integer package has an affinity for 2 ** 24. If we made 16777216 our basis,

then some alignment operations would simply insert or delete elements from the

array. That could provide very good performance. And it is consistent with the very

popular practice of trading away correctness for performance.

I think the basis should be 10. If the basis is 10, then all decimal fractions can be

represented exactly. That is important because most humans use decimal fractions,

so a floating point system with a basis of 10 would be good for humanity.

Big integers are an ideal representation of the coefficient. Most of the weirdness of

floating point systems is due to size constraints. If size is unbounded, there is little

weirdness. Since weirdness can cause bugs, it is good to get rid of it when we can.

We could also use big integers for the exponent, but that would be overkill.

JavaScript’s numbers will be just fine. We would exhaust our gigabytes of memory

long before Number.MAX_SAFE_INTEGER becomes a constraint.

We represent big floating point numbers as objects with coefficient and exponent

properties.

Armed with big integers, floating point really isn’t very complicated.

import big_integer from "./big_integer.js";

The is_big_float function is used to identify a big float object.

4.1 How Big Floating Point Works

function is_big_float(big) {

return (

typeof big === "object"

&& big_integer.is_big_integer(big.coefficient)

&& Number.isSafeInteger(big.exponent));

}

function is_negative(big) {

return big_integer.is_negative(big.coefficient);

}

function is_positive(big) {

return big_integer.is_positive(big.coefficient);

}

function is_zero(big) {

return big_integer.is_zero(big.coefficient);

}

A single zero value represents all zeros.

const zero = Object.create(null);

zero.coefficient = big_integer.zero;zero.exponent = 0;

Object.freeze(zero);

function make_big_float(coefficient, exponent) {

if (big_integer.is_zero(coefficient)) {

return zero;

}

const new_big_float = Object.create(null);

new_big_float.coefficient = coefficient;

new_big_float.exponent = exponent;

return Object.freeze(new_big_float);

}

const big_integer_ten_million = big_integer.make(10000000);

The number function converts a big floating point number into a JavaScript number.

The conversion is not guaranteed to be exact if the number is outside of the safe

integer zone. We also try to make sense out of other types.

How Big Floating Point Works 4.2

function number(a) {

const result = (

is_big_float(a)

? (

a.exponent === 0

? big_integer.number(a.coefficient)

: big_integer.number(a.coefficient) * (10 ** a.exponent)

)

: (

typeof a === "number"

? a

: (

big_integer.is_big_integer(a)

? big_integer.number(a): Number(a)

)

)

);

return (

Number.isFinite(result)

? result

: undefined

);

}

We need an absolute value function and a negation function.

function neg(a) {

return make_big_float(big_integer.neg(a.coefficient), a.exponent);

}

function abs(a) {

return (

is_negative(a)

? neg(a)

: a

);

}

Addition and subtraction are really easy: We just add the coefficients together, but

only if the exponents are equal. If the exponents are not equal, we must make them

conform. Because addition and subtraction are so similar, I made a function that

makes the add and sub functions. If you pass big_integer.add into conform_op, you get

the floating point add function. If you pass big_integer.sub into conform_op, you get

the floating point sub function.

4.3 How Big Floating Point Works

function conform_op(op) {

return function (a, b) {

const differential = a.exponent - b.exponent;

return (

differential === 0

? make_big_float(op(a.coefficient, b.coefficient), a.exponent)

: (

differential > 0

? make_big_float(

op(

big_integer.mul(a.coefficient,

big_integer.power(big_integer.ten, differential)

),

b.coefficient

),

b.exponent

)

: make_big_float(

op(

a.coefficient,

big_integer.mul(b.coefficient,

big_integer.power(big_integer.ten, -differential)

)

),

a.exponent

)

)

);

};

}

const add = conform_op(big_integer.add);

const sub = conform_op(big_integer.sub);

Multiplication is even easier. We just multiply the coefficients and add the exponents.

function mul(multiplicand, multiplier) {

return make_big_float(

big_integer.mul(multiplicand.coefficient, multiplier.coefficient),

multiplicand.exponent + multiplier.exponent

);

}

The difficulty with division is knowing when to stop. Stopping is easy with integer

division. You stop when you run out of digits. It is also easy with fixed size floating

point. You stop when you run out of bits, but using big integers, there is no limit. We

could continue to divide until we get an exact result, but there is no guarantee that

such a result is ever attainable. So we will leave it up to the programmer. The div

function takes an optional third argument which is the precision of the result. You

indicate a decimal place. The units position is zero. Fractional positions are negative.

The division returns at least as many decimal places as you specify. The default is -4,

which is four digits after the decimal point.

How Big Floating Point Works 4.4

function div(dividend, divisor, precision = -4) {

if (is_zero(dividend)) {

return zero;

}

if (is_zero(divisor)) {

return undefined;

}

let {coefficient, exponent} = dividend;

exponent -= divisor.exponent;

Scale the coefficient to the desired precision.

if (typeof precision !== "number") {

precision = number(precision);

}

if (exponent > precision) {

coefficient = big_integer.mul(coefficient,

big_integer.power(big_integer.ten, exponent - precision)

);

exponent = precision;

}

let remainder;

[coefficient, remainder] = big_integer.divrem(coefficient,

divisor.coefficient

);

Round the result if necessary.

if (!big_integer.abs_lt(big_integer.add(remainder, remainder),

divisor.coefficient

)) {

coefficient = big_integer.add(coefficient,

big_integer.signum(dividend.coefficient)

);

}

return make_big_float(coefficient, exponent);

}

A big floating point number is normalized if the exponent is as close to zero as possible

without losing significance.

function normalize(a) {

let {coefficient, exponent} = a;

if (coefficient.length < 2)

return zero;

{

}

If the exponent is zero, it is already normal.

if (exponent !== 0) {

If the exponent is positive, multiply the coefficient by 10 ** exponent.

if (exponent > 0) {

coefficient = big_integer.mul(coefficient,

big_integer.power(big_integer.ten, exponent)

4.5 How Big Floating Point Works

);

exponent = 0;

} else {

let quotient;

let remainder;

While the exponent is negative, if the coefficient is divisible by ten, then we do the

division and add 1 to the exponent.

To help this go a little faster, we first try units of ten million, reducing 7 zeros at a

time.

while (exponent <= -7 && (coefficient[1] & 127) === 0) {

[quotient, remainder] = big_integer.divrem(coefficient,

big_integer_ten_million

);

if (remainder !== big_integer.zero) {

break;

}

coefficient = quotient;

exponent += 7;

}

while (exponent < 0 && (coefficient[1] & 1) === 0) {

[quotient, remainder] = big_integer.divrem(coefficient,

big_integer.ten);

if (remainder !== big_integer.zero) {

break;

}

coefficient = quotient;

exponent += 1;

}

}

}

return make_big_float(coefficient, exponent);

}

The make function takes a big integer, or a string, or a JavaScript number, and

converts it into big floating point. The conversion is exact. Note that if the argument

is a JavaScript number that is erroneous, such as 0.1, then the result will be equally

erroneous.

How Big Floating Point Works 4.6

const number_pattern = /

A

(–? \d:)

(?: \, (\dº))?

(?: e (–? \d:))?

$

/;

// Capturing groups

// [1] int

// [2] frac

// [3] exp

function make(a, b) {

// (big_integer)

// (big_integer, exponent)

// (string)

// (string, radix)

// (number)

if (big_integer. is big_integer(a)) {

return make big_float(a, b || 0);

}

if (typeof a === "string") {

if (Number. isSafelnteger(b)) {

return make(big_integer. make(a, b), 0);

}

let parts = a. match(number_pattern);

if (parts) {

let frac = parts[2] || "";

return make (

big_integer. make(parts[1] + frac),

(Number(parts[3]) || 0) – frac. length

);

}

}

If a is a number, then we deconstruct it into its basis 2 exponent and coefficient, and

then reconstruct as a precise big float.

if (typeof a === "number" && Number. isFinite(a)) {

if (a === 0) {

return zero;

}

let {sign, coefficient, exponent} = deconstruct(a);

if (sign & 0) {

coefficient = -coefficient;

}

coefficient = big_integer. make(coefficient);

If the exponent is negative, then we can divide by 2 ** abs(exponent).

if (exponent < 0) {

return normalize(div(

make(coefficient, 0),

make(big_integer. power(big_integer. two, -exponent), 0),

4.7 How Big Floating Point Works

b

));

}

If the exponent is greater than zero, then we can multiply the coefficient by 2 **

exponent.

if (exponent > 0) {

coefficient = big_integer.mul(coefficient,

big_integer.power(big_integer.two, exponent)

);

exponent = 0;

}

return make(coefficient, exponent);

}

if (is_big_float(a)) {

return a;

}

}

The string function converts a big floating point number into a string. The conversion

is exact. Most of the work involves inserting the decimal point and zero filling. A

similar function for binary floating point would be vastly more complicated.

function string(a, radix) {

if (is_zero(a)) {

return "0";

}

if (is_big_float(radix)) {

radix = normalize(radix);

return (

(radix && radix.exponent === 0)

? big_integer.string(integer(a).coefficient, radix.coefficient)

: undefined

);

}

a = normalize(a);

let s = big_integer.string(big_integer.abs(a.coefficient));

if (a.exponent < 0) {

let point = s.length + a.exponent;

if (point <= 0) {

s = "0".repeat(1 - point) + s;

point = 1;

}

s = s.slice(0, point) +

"."} else if (a.exponent > 0) {

s += "0".repeat(a.exponent);

+ s.slice(point);

}

if (big_integer.is_negative(a.coefficient)) {

s = "-" + s;

}

return s;

}

There are two popular conventions for representing the decimal point: . period and

, comma. Most countries use wun or the other. Within the borders of a country, it does

not matter which. Both work well. But it is a hazard to international communication

How Big Floating Point Works 4.8

because 1,024 can have two very different interpretations. I predict that we will

ultimately settle on . period
as the international standard because programming

languages use . period
and ultimitely most information flows thru our programs writ

ten in those languages.

The scientific function converts a big floating point number into a string with the e

notation.

function scientific(a) {

if (is_zero(a)) {

return "0";

}

a = normalize(a);

let s = big_integer.string(big_integer.abs(a.coefficient));

let e = a.exponent + s.length - 1;

if (s.length > 1) {

s = s.slice(0, 1) + "." + s.slice(1);

}

if (e !== 0) {

s += "e" + e;

}

if (big_integer.is_negative(a.coefficient)) {

s = "-" + s;

}

return s;

}

Finally, all of this goodness is exported as a module.

export default Object.freeze({abs,

add,

div,

eq,

fraction,

integer,

is_big_float,

is_negative,

is_positive,

is_zero,

lt,

make,

mul,

neg,

normalize,

number,

scientific,

string,

sub,

zero

});

This is a library that is suitable for calculators, financial processing, or any other

activity that requires correctness with decimal fractions. At this stage it is pretty

minimal, but it could be enhanced with all of the functions and operators you could

ever need.

4.9 How Big Floating Point Works

I used this library to expose the truth in Chapter 2. Whilst it is very powerful, I think

a more conventional fixed size decimal floating point type would be better suited to

most applications. The problem with JavaScript’s number type isn’t its limited range

or precision. The problem is that it can not accurately represent the numbers that are

most interesting to humanity: the numbers made of decimal digits. So something like

DEC64 would be a better choice for the next language. www.DEC64.com

Neither binary floating point nor decimal floating point can exactly represent things

like 100/3. We will consider that problem next.

Chapter 5

How Big Rationals Work

○○●○●

I only took the regular course. Reeling and

Writhing, of course, to begin with, and then

the different branches of Arithmetic—

Ambition, Distraction, Uglification, and

Derision.

The Mock Turtle

A rational number is a number that can be expressed as the ratio of two integers. If

the two integers are big integers, this can be a very nice representation of numbers. It

can exactly express everything that binary floating point can. It can exactly express

everything that decimal floating point can. And it can exactly express all of the

rational numbers that the other representations can not.

A rational system is concerned with two numbers, a numerator, and a denominator.

The two numbers determine a value.

value = numerator / denominator

Our rational values are objects with numerator and denominator properties that are

both big integers. The sign of the value is determined by the sign of the numerator.

The denominator may not be negative.

This is a very nice way to do arithmetic. We can build an implementation on top of big

integers.

import big_integer from "./big_integer.js";

We start with some predicate functions.

function is_big_rational(a) {

return (

typeof a === "object"

&& big_integer.is_big_integer(a.numerator)

&& big_integer.is_big_integer(a.denominator)

);

}

function is_integer(a) {

return (

big_integer.eq(big_integer.wun, a.denominator)

|| big_integer.is_zero(big_integer.divrem(a.numerator, a.denominator)[1]

5.1 How Big Rationals Work

)

);

}

function is_negative(a) {

return big_integer.is_negative(a.numerator);

}

These are constants that I found useful. We could easily make more.

function make_big_rational(numerator, denominator) {

const new_big_rational = Object.create(null);

new_big_rational.numerator = numerator;

new_big_rational.denominator = denominator;

return Object.freeze(new_big_rational);

}

const zero = make_big_rational(big_integer.zero, big_integer.wun);

const wun = make_big_rational(big_integer.wun, big_integer.wun);

const two = make_big_rational(big_integer.two, big_integer.wun);

We need an absolute value function and negation function. By convention, the sign is

in the numerator. The denominator is always positive.

function neg(a) {

return make(big_integer.neg(a.numerator), a.denominator);

}

function abs(a) {

return (

is_negative(a)

? neg(a)

: a

);

}

Addition and subtraction are really easy. If the denominators are equal, we can add or

subtract the numerators. Otherwise, we do two multiplies, an addition, and another

multiplication because

(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d)

Since addition and subtraction are so similar, I made a function that makes the add

and sub functions.

function conform_op(op) {

return function (a, b) {

try {

if (big_integer.eq(a.denominator, b.denominator)) {

return make(op(a.numerator, b.numerator),

a.denominator

);

}

return normalize(make(op(

big_integer.mul(a.numerator, b.denominator),

big_integer.mul(b.numerator, a.denominator)

),

big_integer.mul(a.denominator, b.denominator)

));

How Big Rationals Work 5.2

catch (ignore) {

}}

};

}

const add = conform_op(big_integer.add);const sub = conform_op(big_integer.sub);

We can increment a rational number by adding the denominator to the numerator.

function inc(a) {

return make(big_integer.add(a.numerator, a.denominator),

a.denominator

);

}

function dec(a) {

return make(big_integer.sub(a.numerator, a.denominator),

a.denominator

);

}

Multiplication is easy. We just multiply the numerators and the denominators.

Division is just multiplication with the second argument inverted. In a rational

system, we rarely have to do long division. We just make the denominator bigger.

function mul(multiplicand, multiplier) {

return make(big_integer.mul(multiplicand.numerator, multiplier.numerator),big_integer.mul(multiplicand.denominator, multiplier.denominator)

);

}

function div(a, b) {

return make(big_integer.mul(a.numerator, b.denominator),

big_integer.mul(a.denominator, b.numerator)

);

}

function remainder(a, b) {

const quotient = div(normalize(a), normalize(b));

return make(big_integer.divrem(quotient.numerator, quotient.denominator)[1]

);

}

function reciprocal(a) {

return make(a.denominator, a.numerator);

}

function integer(a) {

return (

a.denominator === wun

? a

: make(big_integer.div(a.numerator, a.denominator), big_integer.wun)

5.3 How Big Rationals Work

);

}

function fraction(a) {

return sub(a, integer(a));

}

Our normalize function reduces the fraction so that there are no common factors.

Factoring of large numbers is a hard problem. Fortunately, we do not need to factor

in order to reduce. We just need to find the greatest common divisor, which then is

divided out.

It is never necessary to normalize. The value is not changed by normalizing. The

big integers inside the rational object might be made smaller, which might reduce

memory consumption (which is rarely important) and might speed up subsequent

arithmetic operations.

function normalize(a) {

Normalize a big rational by dividing the two components by their greatest common

divisor. If their gcd is 1, then the number was already normalized.

let {numerator, denominator} = a;

if (big_integer.eq(big_integer.wun, denominator)) {

return a;

}

let g_c_d = big_integer.gcd(numerator, denominator);

return (

big_integer.eq(big_integer.wun, g_c_d)

? a

: make(big_integer.div(numerator, g_c_d),

big_integer.div(denominator, g_c_d)

)

);

}

We do not need to normalize in order to determine if two values are equal. If

a / b = c / d

then

a * d = b * c

even if they are not normalized.

function eq(comparahend, comparator) {

return (

comparahend === comparator

? true

: (

big_integer.eq(comparahend.denominator, comparator.denominator)

? big_integer.eq(comparahend.numerator, comparator.numerator): big_integer.eq(big_integer.mul(comparahend.numerator, comparator.denominator),

big_integer.mul(comparator.numerator, comparahend.denominator)

)

)

);

}

How Big Rationals Work 5.4

function lt(comparahend, comparator) {

return (

is_negative(comparahend) !== is_negative(comparator)

? is_negative(comparator)

: is_negative(sub(comparahend, comparator))

);

}

The make function takes a pair of things and makes an object containing a numerator

and a denominator. The conversion is exact.

It takes wun or two big integers. It also takes strings like "33 1/3" and "98.6" and

properly converts them. It also takes any finite JavaScript number and makes it

rational with no additional loss.

const number_pattern = /

^

(-?)

(?:

(\d+)

(?:

(?:

\u0020 (\d+)

)?

\/

(\d+)

|

(?:

\. (\d*)

)?

(?:

e (-? \d+)

)?

)

|

\. (\d+)

)

$

/;

function make(numerator, denominator) {

If there are two arguments, both will be converted to big integers. The return value is

an object containing the numerator and the denominator.

If called with 1 argument, we will try to make sense of that argument. If the argument

is a string, we will try to parse it as a mixed fraction or as a decimal literal. If the

argument is a number, we will deconstruct it. Otherwise, we will assume that the

missing argument was a 1.

if (denominator !== undefined) {

Make a rational number from a numerator and a denominator. You may pass in big

integers, integers, or strings.

numerator = big_integer.make(numerator);

If the numerator is zero, we do not care about the denominator.

5.5 How Big Rationals Work

if (big_integer.zero === numerator) {

return zero;

}

denominator = big_integer.make(denominator);

if (

!big_integer.is_big_integer(numerator)

|| !big_integer.is_big_integer(denominator)

|| big_integer.zero === denominator

) {

return undefined;

}

If the denominator is negative, move the sign to the numerator.

if (big_integer.is_negative(denominator)) {

numerator = big_integer.neg(numerator);

denominator = big_integer.abs(denominator);

}

return make_big_rational(numerator, denominator);

}

Is the argument a string? If so, try to parse it.

if (typeof numerator === "string") {

let parts = numerator.match(number_pattern);

if (!parts) {

return undefined;

}

// Capturing groups:

// [1] sign

// [2] integer

// [3] top

// [4] bottom

// [5] frac

// [6] exp

// [7] naked frac

if (parts[7]) {

return make(big_integer.make(parts[1] + parts[7]),

big_integer.power(big_integer.ten, parts[7].length));

}

if (parts[4]) {

let bottom = big_integer.make(parts[4]);

if (parts[3]) {

return make(big_integer.add(big_integer.mul(big_integer.make(parts[1] + parts[2]),

bottom

),

big_integer.make(parts[3])),

bottom

);

}

return make(parts[1] + parts[2], bottom);

How Big Rationals Work 5.6

}

let frac = parts[5] || "";

let exp = (Number(parts[6]) || 0) - frac.length;

if (exp < 0) {

return make(parts[1] + parts[2] + frac,

big_integer.power(big_integer.ten, -exp)

);

}

return make(big_integer.mul(big_integer.make(parts[1] + parts[2] + parts[5]),

big_integer.power(big_integer.ten, exp)

),

big_integer.wun);

}

Is the argument a number? If so, deconstruct it and reconstruct it.

if (typeof numerator === "number" && !Number.isSafeInteger(numerator)) {

let {sign, coefficient, exponent} = deconstruct(numerator);

if (sign < 0) {

coefficient = -coefficient;

}

coefficient = big_integer.make(coefficient);

if (exponent >= 0) {

return make(big_integer.mul(coefficient,

big_integer.power(big_integer.two, exponent)

),

big_integer.wun);

}

return normalize(make(coefficient,

big_integer.power(big_integer.two, -exponent)

));

}

return make(numerator, big_integer.wun);

}

The number function converts a big rational into a JavaScript number. The conversion

is not guaranteed to be exact if the value is outside of the safe integer zone.

function number(a) {

return big_integer.number(a.numerator) / big_integer.number(a.demoninator);

}

The string function converts a big rational into a string. The conversion is exact.

function string(a, nr_places) {

if (a === zero) {

return "0";

}

let {numerator, denominator} = normalize(a);

Divide the numerator by the demominator. If there was no remainder, then we have

our result.

5.7 How Big Rationals Work

let [quotient, remains] = big_integer.divrem(numerator, denominator);

let result = big_integer.string(quotient);

if (remains !== big_integer.zero) {

If nr_places was provided, then the result will be in the decimal format. We scale the

remains by a power of ten and do an integer division. If the residue is not less than

half the denominator, then round up.

remains = big_integer.abs(remains);

if (nr_places !== undefined) {

let [fractus, residue] = big_integer.divrem(big_integer.mul(remains,

big_integer.power(big_integer.ten, nr_places)

),

denominator

);

if (!big_integer.abs_lt(big_integer.mul(residue, big_integer.two),

denominator

)) {

fractus = big_integer.add(fractus, big_integer.wun);

}

result += "." + big_integer.string(fractus).padStart(big_integer.number(nr_places),"0"

);

} else {

The result will be in mixed fraction form.

result = (

(

result === "0"

? ""

: result + " "

big_integer.string(remains)

"/"

big_integer.string(denominator)

)+

++

);

}

}

return result;

}

All of this goodness is exported as a module.

export default Object.freeze({abs,

add,

dec,

div,

eq,

fraction,

inc,

integer,

is_big_rational,

is_integer,

How Big Rationals Work 5.8

is_negative,

lt,

make,

mul,

neg,

normalize,

number,

wun,

reciprocal,

remainder,

string,

sub,

two,

zero

});

You can access the big rational object in your module by importing it.

import big_rational from "./big_rational.js";

This rational library is small, simple, slow, and surprisingly powerful. It still can not

exactly represent pi or the square root of two, but it can come as close as you desire.

For example,

const pi = big_rational.make("3141592653589793238462643383279502884197169399375105820974944592307816406",

"100"

);

const sqrt_two = big_rational.make("1414213562373095048801688724209698078569671875376948073176679737990732478",

"100"

);

That is good to 72 decimal places. If you need more, you can have more. As precision

goes up, performance goes down. We are often too quick to trade away correctness for

performance.

With this library you can perform computations in JavaScript that it has been said

can not be done in JavaScript. So there is no real need to add new number types to

JavaScript. Anything we need to do we can do with the language as it is.

It comes with some inconvenience. You must write big_rational.add(a, b) instead

of a + b. I don’t think that is a big deal, particularly if you are more concerned

with good results than with typing time. Syntax is way overrated. But if you really

need syntactic support, a transpiler could easily rewrite a pretty language into

big_rational calls.

Chapter 6

How Booleans Work

○○●●○

Truth is truth. You can’t have opinions

about truth.

Peter Schickele

The boolean type was named after George Boole, an English mathematician who

developed a system of algebraic logic. Claude Shannon adapted Boole’s system for the

design of digital circuits. That is why we call computer circuits logic.

The boolean type contains only two values, true and false. Boolean values are usually

generated by the comparison operators; manipulated by the logical operators; and

consumed by the ternary operator and the condition part of the if, do, for, and while

statements.

The typeof operator returns "boolean" when its operand is true or false.

Relational Operators

=== equal sign equal sign equal sign
equal

!== exclamation point equal
sign

equal sign not equal

< less than less than

<= less than equal sign less than or equal

> greater than greater than

>= greater than equal sign greater than or equal

It is deeply unfortunate that the equality operator is === equal
sign

equal sign equal sign and

not = equal
sign. It is even more unfortunate that the not equal operator is !== exclamation

point
equal

sign
equal

sign and not ≠ not
equal sign. All of these operators do pretty much what

you would expect, except there is also plenty of nonsense. Here are some examples of

nonsense:

undefined < null // false

undefined > null // false

undefined === null // false

NaN === NaN // false

NaN !== NaN // true

6.1 How Booleans Work

"11" < "2" // true

"2" < 5 // true

5 < "11" // true

=== equal sign equal sign equal sign and !== exclamation point equal sign equal sign generally do the

right thing except when both operands are NaN. === equal
sign

equal sign
equal sign and

!== exclamation point equal sign equal sign can be used to determine if a value is null or

undefined or any value other than NaN. To test if x is NaN, always use Number.isNaN(x).

=== equal sign
equal sign

equal
sign should not be used to test for the completion of a loop

unless the induction variable is in the safe integer range. Even then, it is safer to use

>= greater than equal sign.

< less than and <= less than equal sign and > greater than and >= greater than equal sign generally do

the right thing when both operands are strings or when both operands are numbers.

In most other cases, the result is nonsense. Avoid mixing types when doing

comparisons. JavaScript does not prohibit mixing types in that way, so you need to

bring your own discipline.

JavaScript also has some comparison operators that are even less reliable. I

recommend never using == equal sign equal sign (and != exclamation point equal sign).
They do

type coersion before doing the comparison, and so are likely to produce false positives

(and false negatives). Always use === equal sign equal sign equal sign (and !== exclamation point

equal
sign equal

sign) instead. Always.

Boolish

JavaScript has a lovely boolean type but does not make good use of it. These are the

positions in a program where the booleans do the most good:

• the condition position of an if statement

• the condition position of a while statement

• the condition position of a for statement

• the condition position of a do statement

• the operand of the ! exclamation
point operator

• both operands of the &&
ampersand

ampersand operator

• both operands of the || vertical bar
vertical bar

operator

• the first operand of the ? question
mark : colon ternary operator

• the return value of the function argument to the Array methods filter, find,

findIndex, indexOf

In a well designed language, only boolean values would be allowed in those positions.

JavaScript instead allows any type in all of those positions. All values in the language

are members of the boolish type. All values in the boolish type are either truthy or

falsy.

How Booleans Work 6.2

The falsy values are

• false

• null

• undefined

• "" (the empty string)

• 0

• NaN

All other values are truthy, including empty objects, empty arrays, and strings that

might look falsy, like "false" and "0".

The falsy values often act like false, but most of them are not, strictly speaking,

false. The truthy values often act like true, but most of them are not true. This

boolishness was a mistake, but it was not an accident. It was done intentionally in

order to permit idioms of the C language in JavaScript.

C is an inadequately typed language. It uses a single value to represent 0, FALSE, NULL,

end of string, and other things. They are all the same to C. So in the condition position

of an if statement, C is looking to see if the expression is 0 or not. There is a style of

C programming that exploits that by making the conditions terse.

JavaScript has a sound boolean type, but boolishness tosses much of the value away.

A condition should be either true or false. Any other value should be an error, ideally

a compile time error. That is not the case in JavaScript. Conditional expressions can

be as terse and cryptic as in C. Values that accidentally fall into condition position are

not flagged as errors. Instead, they can send the program offin unexpected directions.

The Java language requires that conditions be booleans, and so eliminates a class of

errors. I wish that JavaScript had done that too.

I recommend that you write programs as though JavaScript had been designed

correctly. Use booleans in all conditions. If you write in the style of a better language,

you will write better programs.

Logical Operators

The logical operators are also subject to boolishness.

! exclamation point logical not If the operand is truthy then the result

is false. If the operand is falsy then

the result is true.

&& ampersand ampersand logical and If the first operand is falsy, then the

result is the first operand and the

second operand is not evaluated. If the

first operand is truthy, then the result

is the second operand.

|| vertical bar
vertical bar logical or If the first operand is truthy, then the

result is the first operand and the

second operand is not evaluated. If the

first operand is falsy, then the result is

the second operand.

6.3 How Booleans Work

Not!

Logical expressions can get complicated. There are formal transformations that can

simplify them. Unfortunately, boolishness and NaN can cause formal transformations

to produce errors.

It is usually wise to simplify double negatives. In a logical system,

!!p === p

That is only true in JavaScript when p is a boolean. If p is of any other type, then !!p

is equal to Boolean(p), not necessarily p.

Some of the comparison operators have opposites, so < is the opposite of >=, and > is

the opposite of <=. So it should be possible to simplify !(a < b) as a >= b because

!(a === b) === (a !== b)

!(a <= b) === (a > b)

!(a > b) === (a <= b)

!(a >= b) === (a < b)

If either a or b is NaN, then the code transformation fails. This is because comparing

any number to NaN produces a result of false, regardless of the comparison operator.

So,

7 < NaN // false

NaN < 7 // false

!(7 < NaN) === 7 >= NaN // false

It might make sense if NaN were smaller than all other numbers or if comparing a

number to NaN would raise an exception. JavaScript instead implements nonsense.

The only meaningful operation on NaN is Number.isNaN(NaN). Avoid NaN in all other

contexts.

The De Morgan Laws can be helpful in simplfying logical expressions. I use them

frequently:

!(p && q) === !p || !q

!(p || q) === !p && !q

The laws are sound in JavaScript as long as p and q were not corrupted with nonsense.

Boolish values should be avoided. Use booleans instead.

Chapter 7

How Arrays Work

○○●●●

Everything is numbered here.

The monster is Zero.

The Controller of Planet X

The array is the most venerable data structure. An array is a contiguous section of

memory, divided into equal size chunks, each associated with and quickly accessed

with an integer. JavaScript failed to include arrays in its first release. That omission

was barely noticed because JavaScript’s objects are so powerful. Ignoring performance

issues, objects can do everything that arrays can do.

That is still the case. Any string can be used to index into an array. JavaScript’s

arrays are really objects. In today’s JavaScript, arrays slightly differ from objects in

four ways:

• Arrays have a magical length property. An array’s length is not necessarily

the number of elements in the array. It is instead the highest integer ordinal

plus 1. This supports the pretense that JavaScript’s arrays are truly arrays,

allowing a JavaScript array to be processed using the same archaic for

statement that you might find in a half century old C program.

• Arrays inherit from Array.prototype which contains a much better collection

of methods than Object.prototype.

• Arrays are produced using array literals, not object literals. Array literals are

syntactically much simpler: [left
bracket and] right

bracket surrounding zero or

more expressions separated with , comma.

• JSON treats arrays and objects very differently even though JavaScript mostly

treats them as the same.

JavaScript is itself confused about arrays. When given an array, the typeof operator

returns the string "object", which is obviously wrong. You should instead use the

Array.isArray(value) function to determine if a value is an array.

const what_is_it = new Array(1000);

typeof what_is_it // "object"

Array.isArray(what_is_it) // true

7.1 How Arrays Work

Origin

Since the invention of counting, people have started numbering with whatever word

they used to indicate 1. In the mid 1960s, a small but influential group of

programmers determined that we should instead be starting with 0. Today virtually

all programmers begin numbering with 0. The rest of humanity, including most of the

mathematicians, still start with 1. Mathematicians usually label the origin as 0, but

most label the first member of an ordered set as 1. How they do this is still a mystery.

There is an efficiency argument for starting at 0, but it is so weak as to be worthless.

Similary, there is a correctness argument that says that starting at 0 causes fewer

off-by-wun errors, but that is also suspect. It seems that there should be a good reason

for why programmers count differently than everywun else. Perhaps wun day we will

discover why.

The place where this affects JavaScript is in the numbering of the elements of arrays,

and to a lesser extent, in the numbering of the characters in a string. The idea

that arrays should be processed wun element at a time goes back at least as far as

FORTRAN. A more modern idea is to process arrays functionally. This simplifies code

by eliminating explicit loop management and it creates the potential for distributing

the work over multiple processors.

A well written program in a well designed language should not care if arrays start

at 0 or 1. I would not accuse JavaScript of being a well designed language, but it

is a significant improvement over FORTRAN, and in fact, by stepping away from

the FORTRAN model, we do not usually need to care about how the elements are

numbered.

Sometimes we do need to care. The word first becomes problematic because of its

association with wun so instead I use zeroth. It makes my origin clear.

[0] zeroth 0th

[1] wunth 1th

[2] twoth 2th

[3] threeth 3th

Moving on from those, fourth, fifth, and sixth seem ambiguous, but by the time we

have counted past the smallest integers, it should be clear what the origin was.

Initialization

There are two ways to make a new array.

• array literal

• new Array(integer)

let my_little_array = new Array(10).fill(0);

// my_little_array is [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

let same_thing = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

my_little_array === same_thing // false

How Arrays Work 7.2

Note that my_little_array and same_thing are exactly the same. They are also two

separate, unique values. Unlike strings, but like objects, identical arrays are only

equal if they are actually the same array.

Stacks and Queues

Arrays have methods that act on an array as a stack. The pop method removes and

returns the last element of the array. The push method appends a new element to the

array.

Stacks are often used in interpreters and calculators.

function make_binary_op(func) {

return function (my_little_array) {

let wunth = my_little_array.pop();let zeroth = my_little_array.pop();my_little_array.push(func(zeroth, wunth));

return my_little_array;

};

}

let addop = make_binary_op(function (zeroth, wunth) {

return zeroth + wunth;

});

let mulop = make_binary_op(function (zeroth, wunth) {

return zeroth * wunth;

});

let my_little_stack = []; // my_little_stack is []

my_little_stack.push(3); // my_little_stack is [3]

my_little_stack.push(5); // my_little_stack is [3, 5]

my_little_stack.push(7); // my_little_stack is [3, 5, 7]

mulop(my_little_stack); // my_little_stack is [3, 35]

addop(my_little_stack); // my_little_stack is [38]

let answer = my_little_stack.pop(); // my_little_stack is [], answer is 38

The shift method is similar to the pop method, except that it removes and returns

the zeroth element instead of the last. The weirdly named unshift method is like push

except that it prepends the new element at the front of the array, not at the end. The

shift and unshift methods can be much slower than pop and push, especially if the

array is large. Using shift and push together makes a queue, where you append new

items to the back and ultimately harvest them from the front.

Searching

JavaScript provides methods for searching thru an array. The indexOf method takes a

value that it compares to each of the elements of the array starting at the beginning.

If your value matches an element, it stops its search and returns the ordinal of the

element.

If it fails to find a match, it returns -1. Note that this is a type error that is waiting

to happen because -1 is a number, much like every other number. If you use the

return value of indexOf without first explicitly checking for -1, then the computation it

contributes to could go wrong without warning. JavaScript has many bottom values.

Wun of those should have been used instead.

7.3 How Arrays Work

The lastIndexOf function is similar to indexOf except that it starts at the end of the

array and searches backward. It also uses -1 as the failure code.

The includes function is similar to indexOf except that it returns true if the value is

found, and false if it is not found.

Reducing

The reduce method reduces an array to a single value. It takes a function that takes

two arguments. The reduce method calls that function with pairs of values, over and

over again, until there is just a single value that is the result.

There are two ways to design a reduce method. Wun way is to have it call the function

for every element of the array. An initial value must be provided to get things started.

function add(reduction, element) {

return reduction + element;

}

let my_little_array = [3, 5, 7, 11];

let total = my_little_array.reduce(add, 0); // total is 26

For each element, the reduction value is passed to add, along with the current array

element. We explicitly pass in the 0 which is the initial reduction value. The add

function sees

(0, 3) // 3

(3, 5) // 8

(8, 7) // 15

(15, 11) // 26

Each value that add returns becomes the reduction on the next call to add.

The initial reduction will not always be 0. If we pass a multiply function to reduce,

then the initial reduction should be 1. If we pass Math.max to reduce, the initial

reduction should be -Infinity. This creates a hazard: You need to be careful in

selecting the initial reduction value.

The other way to design reduce is to not require an initial reduction value. Instead,

the function is called wun less time. The first time it is called, it receives the zeroth

and wunth elements. The zeroth element becomes the initial reduction value.

total = my_little_array.reduce(add); // 26

Now the add function sees

(3, 5) // 8

(8, 7) // 15

(15, 11) // 26

The function is called wun fewer time, and there is no error possible in selecting the

wrong initial reduction value.

The thing that JavaScript did that is kind of brilliant is that its reduce method works

either way. If you pass in the initial reduction value, then the function is called for

every element. If you do not pass in an initial reduction value, then your function

is not called for the zeroth element. Instead, the first element is used as the initial

reduction value. So both of the examples above of reduce add work.

How Arrays Work 7.4

The reduceRight function works the same way, except that it begins at the end of the

array. I wish it had been named reduce_reverse.

I used reduce to compute the check digit of the ISBN number of this book.

function isbn_13_check_digit(isbn_12) {

const string_of_digits = isbn_12.replace(/-/g, "");

if (string_of_digits.length === 12) {

const check = string_of_digits.split("").reduce(

function (reduction, digit, digit_nr) {

return reduction + (

digit_nr % 2 === 0

? Number(digit)

: Number(digit) * 3

);

},

0

) % 10;

return (

check > 0

? 10 - check

: check

);

}

}

isbn_13_check_digit("978-1-94-981500") // 9

Iterating

Wun of the most common operations on arrays is to do something to each element.

Historically this was done with the for statement. JavaScript offers a more modern

approach.

The forEach method takes an array and a function. It calls that function for each

element of the array. The function can have three parameters: element, element_nr,

and array. The element parameter is an element of the array. The element_nr

parameter is the ordinal of the element, which can be handy if there is another array

in the computation and you need to coordinate. The array parameter was a mistake

and should not be there. It is an invitation to modify the array that is being processed,

which is usually a bad thing.

Unfortunately, there is not a method that can process the array in the reverse order

(like reduceRight can). There is a reverse method that could be called first, but

reverse is a destructive method that can not be used on frozen arrays.

The forEach method ignores the return value of the function it calls. Interesting

methods can be made by paying attention to the return value.

The every method looks at the return value. If it is falsy, the every method

stops processing and returns false. If it is truthy, the every method

continues processing. If the every method reaches the end of the array, it

returns true.

The some method is so similar to the every method that it isn’t clear why it

should even be in the language. If the function’s return value is truthy,

the some method stops processing and returns true. If it is falsy, the some

7.5 How Arrays Work

method continues processing. If the some method reaches the end of the

array, it returns false.

The find method is like the some method, except that instead of returning

true or false, it returns the element that was being processed when the

function returned something truthy.

The findIndex method is like the find method, except that instead of

returning the element, it returns the ordinal of the element that was

being processed when the function returned something truthy.

The filter method is also like the find method, except it always processes to

the end, and it returns an array collecting all of the elements for which

the function returned a truthy value. So find returns the first match. The

filter method returns all of the matches.

The map method is like the forEach method, except that it collects all of the

return values and returns them in a new array. The map method is an

ideal way of doing transformations by creating a new array that is a

refinement or amplification of the original.

These methods are a better way of processing arrays without resorting to for loops.

But the set of methods is incomplete.

forEach and find are able to exit early. (The exiting forms of forEach are every and

some.) map, reduce, and filter do not have the option of exiting early.

The reduce method has the option of working backwards with reduceRight, but

forEach, map, filter, and find do not have the option of working backwards.

These omissions are used as justification for not abolishing the for statement.

Sorting

JavaScript has a sort method. Unfortunately, it has some problems.

It sorts in place, modifying the array it sorts. That means it is not possible to sort a

frozen array, and it is not safe to sort a shared array.

let my_little_array = ["unicorns", "rainbows", "butterflies", "monsters"];

my_little_array.sort()// my_little_array is ["butterflies", "monsters", "rainbows", "unicorns"]

Its default comparison function wants to arrange values as strings, even if they are

numbers. For example,

let my_little_array = [11, 2, 23, 13, 3, 5, 17, 7, 29, 19];

my_little_array.sort();// my_little_array is [11, 13, 17, 19, 2, 23, 29, 3, 5, 7]

That isn’t just terribly inefficient, it is also terribly wrong. Fortunately, we can

mitigate this by passing a comparison function to sort. The function is given two

elements. It is expected to return a negative number if the first element should come

first, a positive number if the second element should come first, or a zero if the

comparison function can not tell.

This comparison function could sort an array of numbers correctly (as long as all of

the elements are finite numbers):

How Arrays Work 7.6

function compare(first, second) {

return first - second;

}

If you want to compare numbers that are not finite (like NaN and Infinity) then your

compare function will have to work harder.

Next on the list of problems with the sort function is the lack of stability. A sort is

stable if elements that are equalish (your compare function returns zero) retain their

original relative order. JavaScript does not guarantee stability. This is not a concern

when sorting an array of strings or an array of numbers. It can be a concern when

sorting an array of objects or an array of arrays. A complex sort might want to sort by

last name, and when last names are the same, sort by first name. Wun way to do that

would be to first sort by first name, and then sort again by last name. But that does

not work because the sort is not stable, and the information added by the first name

sort may be lost.

We can mitigate that by using a more complex comparison function. To make that

easier, we make a factory that makes comparison functions.

function refine(collection, path) {

Take an array or object and a path in the form of an array of strings, and return the

value at the end of the path. If there is no value, return undefined.

return path.reduce(function (refinement, element) {

try {

return refinement[element];

} catch (ignore) {}

},

collection

);

}

function by(...keys) {

This factory creates a comparison function to help in sorting an array of objects or an

array of arrays. The arguments are wun or more strings or integers that will identify

the properties or elements to compare. If the first argument sees a tie, then try the

second, and then the third...

Convert each key into an array of strings.

const paths = keys.map(function (element) {

return element.toString().split(".");

});

Compare each pair of values until finding a mismatch. If there is no mismatch then

the two values are equal.

return function compare(first, second) {

let first_value;

let second_value;if (paths.every(function (path) {

first_value = refine(first, path);

second_value = refine(second, path);

return first_value === second_value;

7.7 How Arrays Work

})) {

return 0;

}

If the two values are of the same type, then we can compare the two values. If the

types are not the same, then we need some policy to cope with the weirdness. Our

simple policy here is to compare the names of the types, so boolean & number < string

< undefined. (It might be better to fail instead of sorting disagreeable types.)

return (

(

typeof first_value === typeof second_value

2 first_value < second_value

: typeof first_value < typeof second_value

);

};

}

Example:

let people = [

{first: "Frank", last: "Farkel"),

{first: "Fanny", last: "Farkel"),

{first: "Sparkle", last: "Farkel"),

{first: "Charcoal", last: "Farkel"),

{first: "Mark", last: "Farkel"),

{first: "Simon", last: "Farkel"),

{first: "Gar", last: "Farkel"),

{first: "Ferd", last: "Berfel").

l;

people. sort(by("last", "first"));

// [

// {"first": "Ferd", "last": "Berfel"),

// {"first": "Charcoal", "last": "Farkel"),

// {"first": "Fanny", "last": "Farkel"),

// {"first": "Frank", "last": "Farkel"),

// {"first": "Gar", "last": "Farkel"),

// {"first": "Mark", "last": "Farkel"),

// {"first": "Simon", "last": "Farkel"),

// {"first": "Sparkle", "last": "Farkel").

How Arrays Work 7.8

Potpourri

The concat method takes two or more arrays and concatenates them together to make

a new array.

let part_zero = ["unicorns", "rainbows"];

let part_wun = ["butterflies", "monsters"];

let whole = part_zero.concat(part_wun);

// whole is ["unicorns", "rainbows", "butterflies", "monsters"]

The join method takes an array of strings and a separator string. It makes a big

string that combines everything. Use an empty string as the separator if you don’t

want separation. This is the inverse of the string split method.

let string = whole.join(" & ");

// string is "unicorns & rainbows & butterflies & monsters"

The reverse method moves the elements around in an array so that they are in the

opposite order. This is destructive, like the sort function.

whole.reverse();

// whole is ["monsters", "butterflies", "rainbows", "unicorns"]

The slice method can make a copy of an array, or a copy of a part of an array. The

zeroth parameter determines at what ordinal to start. The wunth parameter is the

zeroth parameter plus the number of elements to copy. If the wunth parameter is

omitted, all of the remaining elements are copied.

let element_nr = whole.indexOf("butterflies");

let good_parts;

if (element_nr !== -1) {

good_parts = whole.slice(element_nr);

}

// good_parts is ["butterflies", "rainbows", "unicorns"]

7.9 How Arrays Work

Pure and Impure

Some of the array methods are pure, not changing their inputs. Some of them are not.

Some of them should have been pure, but are not. Some by their nature can not be

pure, but are still valuable.

When coping with the pure/impure duality, it is important to know what is pure and

what is not.

Pure methods:

concat

every

filter

find

findIndex

forEach

indexOf

join

lastIndexOf

map

reduce

reduceRight

slice

some

Impure methods:

fill

pop

push

shift

splice

unshift

Impure methods that should have been pure:

reversesort

Chapter 8

How Objects Work

○●○○○

Have gratitude for the things you’re

discarding. By giving gratitude, you’re

giving closure to the relationship with that

object, and by doing so, it becomes a lot

easier to let go.

Marie Kondo

JavaScript overloads the word object. This is a language in which everything (except

the two bottom values, null and undefined) is an object. But usually, especially in this

chapter, object means something more specific.

JavaScript’s primary data structure is called object. An object is a container of

properties (or members). Each property has a name and a value. The name is a string.

The value can be of any type. In other languages, this type of object might be called

a hash table, map, record, struct, associative array, dictionary, or in some very rude

languages, a dict.

A new object can be created with an object literal. An object literal creates a value

that can be stored in a variable or object or array, or passed to a function, or returned

from a function.

An object literal is delimited by { left
brace

and } right
brace. Nestled inside can be zero or

more properties, separated with , comma. A property can be:

• A string followed by : colon followed by an expression. The property’s name is

the string. The property’s value is the value of the expression.

• A name followed by : colon followed by an expression. The property’s name

is the name converted into a string. The property’s value is the value of the

expression.

• A name. The property’s name is the name converted into a string. The

property’s value is the value of the variable or parameter having the same

name.

• A name followed by a parameter list wrapped in (left
paren

and) right
paren

followed by a function body wrapped in { left
brace and } right

brace. This is a

contraction for a name followed by a colon followed by a function expression.

This allows for omitting : function which, given the loss of clarity, hardly

seems worth it.

8.1 How Objects Work

So, for example,

let bar = "a long rod or rigid piece of wood or metal";

let my_little_object = {

"0/0": 0,

foo: bar,

bar,

my_little_method() {

return "So small.";

}

};

We can access a property of an object by using the dot notation with a name.

my_little_object.foo === my_little_object.bar // true

We can also access a property of an object using the bracket notation. We can use the

bracket notation to access a property whose name is not a valid identifier. We can also

use the bracket notation to access computed property names. The expression in the

brackets is evaluated and converted into a string if necessary.

my_little_object["0/0"] === 0 // true

If we ask for a name with the dot or the bracket that can not be found in the object,

then the bottom value undefined is provided instead. Asking for a non-existent or

missing property is not considered an error. It is a normal operation that produces

undefined.

my_little_object.rainbow // undefined

my_little_object[0] // undefined

New properties may be added to an object by assignment. The values of existing

properties may also be replaced by assignment.

39;

"slightly frilly or fancy";

my_little_object.agemy_little_object.foo

=

=

I recommend not storing undefined in objects. JavaScript allows it, and correctly gives

back the undefined value, but it is the same undefined that means that the property

is missing. This is a source of confusion that can easily be avoided. I wish that storing

undefined would cause the property to be removed, but it does not. A property can be

removed by the delete operator.

delete my_little_object["0/0"];

Sophisticated data structures can be built out of objects because references to objects

can be stored in objects. All sorts of graphs and cyclic structures can be constructed.

There is no limit on the depth of nesting, but don’t go crazy.

When the typeof operator is given an object, it gives the string "object".

typeof my_little_object === "object" // true

Case

The matching of keys is case sensitive. So my_little_object.cat is not the same

property as my_little_object.Cat or my_little_object.CAT. The === operator

determines the string matching of property names.

How Objects Work 8.2

Copy

The Object.assign function can copy the properties from an object to another. You can

make a copy of an object by assigning to an empty object.

let my_copy = Object.assign({}, my_little_object);

my_copy.bar // "a long rod or rigid piece of wood or metal"

my_copy.age // 39

my_copy.age += 1;

my_copy.age // 40

delete my_copy.age;

my_copy.age // undefined

An object can be assigned material from many objects. In this way, a complex object

can be constructed by the assembling of material from simpler objects.

Inheritance

In JavaScript, an object can be made that inherits from another object. This is a

very different style of inheritance than is practiced in languages that have tightly

coupled programmatic structures like classes. In JavaScript, it is the data that is

coupled, which can significantly reduce the brittleness that can seize an application

architecture.

Object.create(prototype) takes an existing object and returns a new object that

inherits from the existing object. The existing object is the new object’s prototype. Any

object can be the prototype of a new object. An object that inherits from a prototype

can also be the prototype of newer objects. There is no limit on the length of a

prototype chain, but it is wise to keep them short.

If there is an attempt to access a missing property, before returning undefined, the

system first goes to the prototype, and then its prototype, and so on. If a same named

property is found in the prototype chain, then that is given as though it had been

found in the object of interest.

When assigning to an object, only the top-most object is changed. No changes are

made to objects on the prototype chain.

let my_clone = Object.create(my_little_object);

my_clone.bar // "a long rod or rigid piece of wood or metal"

my_clone.age // 39

my_clone.age += 1;

my_clone.age // 40

delete my_clone.age;

my_clone.age // 39

The most popular use of prototypes is as a place to store functions. JavaScript itself

does this. When an object is made with an object literal, that object inherits from

Object.prototype. Similarly, arrays inherit methods from Array.prototype. Numbers

inherit methods from Number.prototype. Strings inherit methods from String

.prototype. Even functions inherit methods from Function.prototype. The array and

string methods are pretty useful, but the methods in Object.prototype are mostly

useless.

Because we have inheritance, we now have two types of properties: own properties

that live in the top-most object, and inherited properties that live in the prototype

chain. Most of the time they work just the same. Sometimes you need to know if

8.3 How Objects Work

the property is truly the object’s own. Most objects inherit a hasOwnProperty(string)

function, but unfortunately, it has a reliability hazard. It takes a string and returns

true if the object contains a property with that name and if the property is not

inherited. Unfortunately, if the object has a property named hasOwnProperty, it will

be called instead of the Object.prototype.hasOwnProperty method. That could cause

a failure or other confusion. It would have been better had hasOwnProperty been an

operator so that the state of an object could not cause the call to hasOwnProperty to

fail. It would have been even better still if there were no inherited properties, which

would make this troublesome method unnecessary.

my_little_object.hasOwnProperty("bar") // true

my_copy.hasOwnProperty("bar") // true

my_clone.hasOwnProperty("bar") // false

my_clone.hasOwnProperty = 7;

my_clone.hasOwnProperty("bar") // EXCEPTION!

If you have a property named hasOwnProperty, then you can not use the inherited

hasOwnProperty method. You will be calling the own property instead.

Object.prototype.toString shares the same failure risk. But even when it works, it is

a disappointment.

my_clone.toString // "[object Object]"

You don’t need to be told that your object is an object. You probably already knew

that. You want to be shown what it contains. If you want to convert an object into a

string, JSON.stringify does a much better job.

The advantage of Object.create(prototype) over Object.assign(Object.create({}),prototype) is that less memory is used. In most cases, the savings are not significant.

Prototypes can add weirdness without adding much benefit.

There is also a problem with unintended inheritance. You might want to use an

object as you would use a hash table, but the object inherits names like "toString",

"constructor", and other names that might be implementation dependent. These

could potentially be confused with your properties.

Fortunately, Object.create(null) makes an object that inherits nothing. There is no

confusion over inherited properties or unintended inheritance. There is nothing in

the object except what you explicitly put into it. I am now making frequent use of

Object.create(null).

Keys

The Object.keys(object) function can take all of the names of the own (but not

inherited) properties in an object and return them as an array of strings. This allows

you to use the array methods to process the properties of an object.

The strings in the array will be in the order in which they were inserted. If you need

them in a different order, you can use the Array sort method.

How Objects Work 8.4

Freeze

Object.freeze(object) can take an object and freeze it, making it immutable.

Immutability can lead to more reliable systems. Wunce an object is constructed to

your liking, it can be frozen, which guarantees that it can not be damaged or tampered

with. This is not a deep freeze. Only the top level object is frozen.

Immutable objects might someday have valuable performance characteristics. If it is

known that an object can never change, then a powerful set of optimizations become

available to the language implementation.

Immutable objects have excellent security properties. This is important because

current industry practices encourage the installation of untrustworthy code into our

systems. Immutability might someday help that to become a safe practice. With

immutability, we can give objects good interfaces with which to defend themselves.

Object.freeze(object) and the const statement do two very different things.

Object.freeze operates on values. const operates on variables. If you put a mutable

object in a const variable, you can still mutate the object, but you can not replace the

object with a different value. If you put an immutable object in an ordinary variable,

you can not change the object, but you can assign a different value to the variable.

Object.freeze(my_copy);

const my_little_constant = my_little_object;

my_little_constant.foo = 7; // allowed

my_little_constant = 7; // SYNTAX ERROR!

my_copy.foo = 7; // EXCEPTION!

my_copy = 7; // allowed

Prototypes And Freezing Do Not Mix

Wun use of prototypes is the creation of light copies of objects. We might have an

object full of data. We want another object that is the same but with wun of the

properties changed. We can do that with Object.create, as we have seen. This will

save some time on the creation of the new object, but the retrieval of the properties

might cost a little more because of looking thru the prototype chain.

Unfortunately, this does not work if the prototype is frozen. If a property in a

prototype is immutable, then the instances can not have their own versions of that

property. In some functional programming styles we want all objects to be frozen for

the reliability benefits that come from immutability. So instead of making a copy to

realize a change, it would have been nice if we could make an instance that inherits

from the frozen prototype, update the instance, and then freeze the instance. But

that just does not work. Updating the instance raises an exception. It also slows

down the insertion of new properties in general. Whenever a new property is inserted,

the whole prototype chain must be searched for that key to determine that there

is not an immutable property in an ancestor. This search can be avoided by using

Object.create(null) to make your objects.

8.5 How Objects Work

WeakMap

Wun of the design errors in JavaScript is that the names of properties in objects must

be strings. There are situations when you want to use an object or an array as a

key. Unfortunately, JavaScript objects do the wrong thing in that case, converting the

key object into a key string using the toString method, which we already saw is a

disappointment.

Instead of giving us an object that works correctly for all keys, JavaScript gives us a

second type of object called a WeakMap that allows objects as keys, but not strings,

and with a completely different interface.

Object WeakMapobject = Object.create(null); weakmap = new WeakMap();

object[key] weakmap.get(key)

object[key] = value; weakmap.set(key, value);

delete object[key]; weakmap.delete(key);

It does not make sense that these two things which do the same thing are so

syntactically different. It also does not make sense that these two things are not wun

thing. Instead of a thing that allows only strings as keys and another thing that allows

only objects as keys, there should have been a single thing that allows strings and

objects as keys.

In spite of that, WeakMap is brilliant. Here are two examples of its use.

We want to put a secret property on an object. In order to access the secret property,

you need access to the object and to the secret key. You can not access the property

unless you have both. We can do this with a WeakMap. We treat the WeakMap as the

secret key.

const secret_key = new WeakMap();

secret_key.set(object, secret);

secret = secret_key.get(object);

You must have access to both the object and the secret key in order to recover

the secret. A nice thing about this technique is that we can effectively add secret

properties to frozen objects.

We want to be able to give an object to some code that might do something useful for

us, like catalog it or store it for later retrieval, but we do not want to also give that

code the capability to alter the object or call any of its methods. In the real world, we

want to allow a valet to park the car, but not empty the glove box and trunk or sell

the car. The honor system can work for people in the real world, but not for code in a

computer network.

So we make a device called a sealer. We give an object to a sealer and it returns a

box that can not be opened. That box can be given to a valet. To recover the original

object, give the box to the matching unsealer. We can easily make these functions

using WeakMap.

How Objects Work 8.6

function sealer_factory() {

const weakmap = new WeakMap();

return {

sealer(object) {

const box = Object.freeze(Object.create(null));

weakmap.set(box, object);

return box;

},

unsealer(box) {

return weakmap.get(box);

}

};

}

The weakMap does not allow inspection of its contents. You can not get a value from

it unless you also hold the key. WeakMap interacts well with JavaScript’s garbage

collector. If there are no copies of a key still in existence, then that key’s property in

the weakmap is automatically deleted. This can help avoid memory leaks.

JavaScript also has a similar thing called Map, but Map does not have the security

and memory leak protection that WeakMap has. And whilst WeakMap is a terrible

name, Map is even more confusing. It has no connection to the Array map method, and

it could be confused with a cartography function. That is why I do not recommend

Map. But I like WeakMap and the Array map function.

JavaScript has a thing called Symbol that can do wun of the things that WeakMap

can do. I do not recommend Symbol because it is unnecessary. I am looking to simplify

by eliminating the excessive features that I don’t need.

Chapter 9

How Strings Work

○●○○●

Not fair! Not fair! It isn’t fair, my precious,

is it, to ask us what it’s got in its nassty

little pocketses?

Gollum

Computers are good at manipulating bit patterns. Humans are not. Strings bridge the

gap between computers and humans. The mapping of characters onto integers was

wun of the important advances in the development of digital computers. It was the

first important step forward in the development of user interfaces.

We do not know why we call this type string. Why do we not call it text instead? No

wun knows. A JavaScript string does not resemble a piece of string. We can talk about

a string of characters, but we can as easily talk about a string of statements, or a string

of bits, or even a string of failures. In the real world, we do not concatenate strings.

We tie strings.

Foundation

A string is an immutable array of 16 bit unsigned integers ranging from 0 thru

65535. A string may be made with the String.fromCharCode function, which takes

any number of numbers. The elements of a string can be accessed with charCodeAt.

Elements may not be changed because strings are always frozen. Strings, like arrays,

have a length property.

const my_little_array = [99, 111, 114, 110];

const my_little_string = String.fromCharCode(...my_little_array);my_little_string.charCodeAt(0) === 99 // true

my_little_string.length // 4

typeof my_little_string // "string"

The bracket notation can be used to obtain individual values from a string, but it does

not deliver a number as an array would. Instead it returns a new string with a length

of 1 whose content is the number.

my_little_string[0] === my_little_array[0] // false

my_little_string[0] === String.fromCharCode(99) // true

String.prototype contains methods that act on strings. The concat and slice methods

work very much like the array methods. But the indexOf method works very

9.1 How Strings Work

differently. The argument to indexOf is a string, not a number. It attempts to match

all of the elements in the argument in sequence with elements in the first string.

my_little_string.indexOf(String.fromCharCode(111, 114)) // 1

my_little_string.indexOf(String.fromCharCode(111, 110)) // -1

The methods startsWith, endsWith, and includes are just wrappers around indexOf

and lastIndexOf.

Strings containing similar contents are considered to be equal by the === operator.

Similar arrays are only equal when they are the same array.

my_little_array === my_little_array // true

my_little_array === [99, 111, 114, 110] // false

my_little_string === String.fromCharCode(99, 111, 114, 110) // true

The equality of strings is a very powerful feature. It eliminates the need for a symbol

type because similar strings are considered to be the same object. This is not true in

lesser languages like Java.

Unicode

JavaScript allows all 65536 of the 16 bit patterns as elements of strings. However,

the usual practice is to consider each element to be a character, and the Unicode

standard determines the encoding of characters. JavaScript has a lot of syntactic and

methodic support for Unicode. The Unicode standard declares that some codes are not

characters and should not be used. JavaScript does not care. It allows all 16 bit codes.

If you intended to have your systems interact with systems that are written in lesser

languages, then you should not abuse Unicode.

String literals are written by surrounding zero or more Unicode characters with

"double quote. ('single quote can also be used, but is not recommended because it is

unnecessary.) Each character is represented as a 16 bit element.

The + plus
sign

operator is used to do concatenation. We have already seen that + is also

used to do addition. If you intend to do concatenation, then you need to assure that

at least wun of the operands is a string. Wun way to do that is to make wun of the

operands a string literal. Another way is to pass a value to the String function.

my_little_string === "corn" // true

"uni" + my_little_string // "unicorn"

3 + 4 // 7

String(3) + 4 // 34

3 + String(4) // 34

A string literal must fit entirely on wun line. The \backslash is used as an escapement

character that allows for including "double
quote, \backslash, and line break in string

literals.

Brackets can be used to retrieve characters from a string. The representation of a

character is a string with a length of 1. There is no character type. A character can be

represented as a number or a string.

Many languages do have a character type, and it is usually abbreviated as char, but

there does not seem to be a standard pronounciation. I have heard it spoken as car,

care, chair, char, and share.

How Strings Work 9.2

All strings are frozen when they are created. Wunce made, a string can not be

changed. Smaller pieces can be copied from strings. Each piece is a new string. New

strings can be made by concatenating strings together.

const mess = "monster";

const the_four = "uni" + my_little_string + " rainbow butterfly " + mess;

// the_four is "unicorn rainbow butterfly monster"

const first = the_four.slice(0, 7); // first is "unicorn"

const last = the_four.slice(-7); // last is "monster"

const parts = the_four.split(" "); // parts is [

// "unicorn"

// "rainbow"

// "butterfly"

// "monster"

//]

parts[2][0] === "b" // true

"*".repeat(5) // "*****"

parts[1].padStart(10, "/") // "///rainbow"

More Unicode

Unicode’s original goal was to represent all of the world’s living languages in 16

bits. Its charter later changed to represent all of the world’s languages in 21 bits.

Unfortunately, JavaScript was designed during Unicode’s 16 bit phase.

Unicode takes JavaScript’s character and breaks it into two new terms: code unit and

code point. A code unit is wun of those 16 bit characters. A code point is the number

that corresponds to a character. A code point is formed from 1 or more code units.

Unicode defines 1,114,112 code points, divided into 17 planes of 65,536 code points.

The original plane is now called the Basic Multilingual Plane (BMP). The remaining

16 planes are the supplementary planes. JavaScript can easily use the characters in

the BMP because that is where a code point can be identified with a single code unit.

The supplemental characters are more difficult.

JavaScript accesses the supplemental characters by use of surrogate pairs. A

surrogate pair is formed by two special code units. There are 1024 high surrogate code

units, and 1024 low surrogate code units. The high surrogate code units have lower

codes than the low surrogate code units.

0xD800 thru 0xDBFF high surrogate code units

0xDC00 thru 0xDFFF low surrogate code units

When properly paired, each surrogate code unit contributes 10 bits to form a 20 bit

offset, to which 65,536 is added to form the code point. (The addition was to eliminate

confusion caused by having two different sequences of code units that could produce

the same code point. I think this solution caused more confusion than it avoided.

A simpler solution would have been to make it illegal to use a surrogate pair to

represent a code point in the BMP. This would have yielded a 20 bit character set

instead of a 21 bit character set.)

Consider the code point U+1F4A9 (or 128169 in decimal). We subtract 65,536 which

yields 62,633 or 0xF4A9. The high 10 bits are 0x03D. The low 10 bits are 0x0A9. We add

0xD800 to the high bits, and 0xDC00 to the low bits, and we get a surrogate pair. So

9.3 How Strings Work

JavaScript stores U+1F4A9 as U+D83D U+DCA9. From JavaScript’s point of view,

U+1F4A9 is two 16 bit characters. It will display as a single character if the operating

system is competent. JavaScript is mostly unaware of the supplemental planes, but it

is not overtly hostile to them.

There are two ways to write the code point U+1F4A9 with escapement in a string

literal.

"\uD83D\uDCA9" === "\u{1F4A9}" // true

They both produce the same string having a length of 2.

There is a String.fromCodePoint function that can make surrogate pairs.

String.fromCharCode(55357, 56489) === String.fromCodePoint(128169) // true

The codePointAt method is similar to charCodeAt except that it may also look at the

next character, and if they form a surrogate pair, it returns a supplemental code point.

"\uD83D\uDCA9".codePointAt(0) // 128169

Most of the characters that people need for global communication can be found in

the BMP, so the surrogate stuff is not usually needed. Even so, the supplemental

characters can appear at any time, so your program should be expecting them.

Unicode contains combining and modifying characters that add accents and other

modifications to letters. It also contains characters that control the writing direction

and other services. Sometimes these can get complicated, so that two strings that

appear to contain the same characters might not be equal. Unicode has normalization

rules that specify the order in which things must appear, and when base characters

with modifiers should be replaced with composite characters. Humans are not bound

by those rules, so you might have to deal with denormal material. JavaScript wraps

the normalization rules in a normalize method.

const combining_diaeresis = "\u0308";

const u_diaeresis = "u" + combining_diaeresis;

const umlaut_u = "\u00FC";

u_diaeresis === umlaut_u // false

u_diaeresis.normalize() === umlaut_u.normalize() // true

Unicode contains many duplicates and lookalikes, so it is still possible to have strings

that look the same but are not equal, even after normalization. This is a source of

confusion and it is a security hazard.

Template String Literals

Templating is a very popular practice in the development of web applications. Since

the web browser’s DOM API is so misfeatured and error prone, the prevailing practice

is to instead build HTML views using templating. Whilst this can be much easier

than rassling the DOM, it is also the cause of XSS and other web security failures.

JavaScript’s template string literals were intended to provide support for templating

whilst mitigating the security problems, and sometimes partly succeed.

Template string literals are string literals that can span multiple lines. The ` grave

accent (also known as backtick) is used as the delimiter.

How Strings Work 9.4

const old_form = (

"Can you"

+ "\nbelieve how"

+ "\nincredibly"

+ "\nlong this"

+ "\nstring literal"

+ "\nis?"

);

const new_form = `Can you

believe how

incredibly

long this

string literal

is?`;

old_form === new_form // true

Does the new form offer a significant advantage over the old form? There is a small

notational advantage, but it comes at a cost: The largest syntactic structures in

the language are delimited by the lightest optical character on the keyboard. The

potential for errors is large. Also, a visual ambiguity is added. Is there a space after

incredibly? With the old form, the answer is clearly no.

In most cases, long form textual material should not be stored in programs. It should

instead be maintained with an appropriate tool, like a text editor or a JSON editor

or a database tool, and then accessed by the program as a resource bundle. The new

syntax is encouraging a bad practice.

It is very common to use strings to record human language. Such texts usually

need to be translated to serve the global audience. We do not want to maintain a

separate version of each program file in every language. We want to have a single

version of each program file that can receive localized text. The new form makes this

more difficult because it restricts the ways that template strings can be provided to

programs.

The benefit of the new syntax is that it provides interpolation. Valid expressions can

be placed inside of ${ dollar
sign

left
brace } right

brace inside a template string literal. The

expressions are evaluated, converted into a strings, and inserted.

let fear = "monsters";

const old_way = "The only thing we have to fear is " + fear + ".";

const new_way = `The only thing we have to fear is ${fear}.`;old_way === new_way // true

The danger with both ways is that the content could be something nasty, like

fear = "<script src=https://themostevilserverintheworld.com/malware.js>";

The web provides lots of opportunities for enabling malicious material. Templating

seems to increase vulnerability. Most templating tools provide mechanisms for

mitigating the dangers, but still allow exploits to occur. And the worst, like template

string literals with interpolation, are unsafe by default.

9.5 How Strings Work

The mitigation affordance in this case is a special kind of function, called a tag

function. Preceding a template string literal with a function expression causes the

function to be called with the template string and the values of the expressions as its

arguments. The idea is that the tag function is given all of the pieces which it then

properly filters, encodes, assembles, and returns.

The dump function is a tag function that just returns all of the input material in a

human readable form.

function dump(strings, ...values) {

return JSON.stringify({

strings,

values

}, undefined, 4);

}

const what = "ram";

const where = "rama lama ding dong";

`Who put the ${what} in the ${where}?`

// "Who put the ram in the rama lama ding dong?"

const result = dump`Who put the ${what} in the ${where}?`;

// The result is `{

// "strings": [

// "Who put the ",

// " in the ",

// "?"

//],

// "values": [

// "ram",

// "rama lama ding dong"

//]

// }`

It is odd that the strings are passed together as an array, but the values are passed

as individual arguments. Tag functions can mitigate XSS and other security hazards

if they are constructed properly, and if the tag functions are actually used. But again,

it is unsafe by default.

Template string literals added a lot of new syntax, mechanism, and complexity to the

language. They encourage bad practices, but they do provide some benefit in providing

large string literals.

Regular Expressions

These string methods can take regular expression objects as arguments: match,

replace, search, split. The regular expression objects can also contain their own

methods: exec, test.

Regular expression objects perform pattern matching on strings. Regular expressions

are bafflingly terse, but powerfully expressive. As powerful as they are, there are

many things that they can not do. Regular expression objects are not powerful enough

to parse JSON text, for example. This is because JSON parsing requires some sort of

a pushdown store to deal with the nested structures. Regular expression objects do

How Strings Work 9.6

not have pushdown stores. Regular expression objects are capable of breaking JSON

text into tokens, which could significantly simplify the task of making a JSON parser.

Tokenization

Compilers tokenize source programs as a part of the compilation. There are other

programs that also rely on tokenization, including editors, code decorators, static

analyzers, macro processors, and minifiers. Highly interactive programs, like editors,

need to tokenize quickly. Unfortunately, JavaScript is a very difficult language to

tokenize.

This is due to the interaction between regular expression literals and automatic

semicolon insertion. This causes ambiguities that make programs difficult to inter

pret. For example,

return /a/i; // return a regular expression object

return b.return /a/i; // return ((b.return) / a) / i

This shows that it is not possible in general to correctly tokenize JavaScript programs

without simultaneously doing a full parse.

This gets much worse with the template string literals. An expression can be

embedded inside of a literal. Another template string literal can be nested inside of

that expression. This can go to any depth. The expressions can also contain regular

expression literals and strings that contain backticks. It can be very difficult to

determine if a backtick is closing the current literal or opening a nested literal. It can

be very difficult to determine what the structure of a thing is.

`${`${"\"}`"}`}`It gets even worse. Those expressions can also contain functions that can contain

regular expression literals and missing semicolons and more template string literals.

Tools like editors will assume that programs are well behaved. There is a subset of

JavaScript that can be tokenized without also doing a full parse. If you go crazy with

this stuff, you should expect to see your tools fail.

I hope that the next language will be trivial to tokenize. In the meantime, I

recommend not using interpolation with template string literals.

Fulfill

Let’s consider an alternative to template string interpolation: a function called

fulfill. It takes a string that may contain symbolic variables, and an object or an

array containing values that should replace the symbolic variables. It can also take

either a function or an object of functions that can encode the replacements.

A potential problem with template strings is that everything that is in scope is

available for inclusion. That is very convenient but it is also a security hazard. The

fulfill function only has access to the container of values that you explicitly pass

to it, so it is safer. The default encoder removes characters that are known to be

hazardous in some contexts, so in an HTML context, it is safe by default, unlike

template strings which are unsafe by default. But like template string interpolation,

it may be unsafe if you misuse the encoders.

9.7 How Strings Work

The string can come from any source, such as a JSON payload or a string literal. It

does not need to be colocated in the JavaScript file. This better suits the needs of

localized applications.

A symbolic variable is wrapped in { left brace } right
brace. It can not contain any spaces

or braces. It can contain a path, and optionally a colon followed by the name of an

encoding. A path is wun or more names or numbers, separated by . period.

{a.very.long.path:hexify}

The container is an object or array that holds the values that will replace the symbolic

variables. It can contain nested objects and arrays. The values will be found with the

path. If the replacement value is a function, it is called and its return value is the

replacement value. The container itself can be a function. It is called, passing the path

and encoding to get the replacement value.

The replacement value can then be transformed by an encoder. This is primarily to

mitigate the security problems that come with templating, but it can have other uses.

The optional encoder argument can be an object containing encoder functions. The

encoding part of a symbolic variable chooses wun of the encoders. If the encoder object

does not have a matching function, then the original symbolic variable is not replaced.

The encoder argument can also be an encoder function that is called with all of the

symbolic variables. An encoder function is passed the replacement candidate, the

path, and the encoding. If it does not return a string or a number, then the original

symbolic variable is not replaced.

If a symbolic variable does not specify an encoding, then the "" encoding is assumed.

A path contains a number that corresponds to an element in the values array, or the

name of a property in the values object. The path can contain dots so that properties

from nested objects and arrays can be found.

Symbolic variables are only replaced if they are well formed, and if there is a

replacement value, and if the encoding is specified and implemented correctly. If

anything is not right, then the symbolic variable is left in place. Literal braces can be

placed in the string without need for escapement. If they are not part of a symbolic

variable, they are left alone.

const example = fulfill("{greeting}, {my.place:upper}! :{",

{

greeting: "Hello",

my: {

fabulous: "Unicorn",

insect: "Butterfly",

place: "World"

},

phenomenon : "Rainbow"

},

{

upper: function upper(string) {

return string.toUpperCase();

},

"": function identity(string) {

return string;

How Strings Work 9.8

}

}

); // example is "Hello, WORLD! :{"

The entityify function makes text safe for insertion into HTML.

function entityify(text) {

return text.replace(/&/g,

"&"

).replace(/</g,

"<").replace(/>/g,

">").replace(/\\/g,

"\"

).replace(

/"/g,

"""

);

}

We now fill a template with dangerous data.

const template = "<p>Lucky {name.first} {name.last} won ${amount}.</p>";

const person = {

first: "Da5id",

last: "<script src=https://enemy.evil/pwn.js/>"};

// Now we call the fulfill function.

fulfill(template,

{

name: person,

amount: 10

},

entityify)

// "<p>Lucky Da5id <script src=enemy.evil/pwn.js/> won $10.</p>"

The entityify encoder rendered the evil script tag harmless to HTML.

And now I will show you the code I used to prepare the chapter list of the book you are

reading right now!

The chapter list is in the form of a JSON text. There are literal braces in the templates

but that presents no problem. It shows nested calls to fulfill that avoid the lexical

complexity of nested template strings.

const chapter_names = [

"Read Me First!",

"How Names Work",

"How Numbers Work",

"How Big Integers Work",

9.9 How Strings Work

"How Big Floating Point Works",

"How Big Rationals Work",

"How Booleans Work",

"How Arrays Work",

"How Objects Work",

"How Strings Work",

"How Bottom Values Work",

"How Statements Work",

"How Functions Work",

"How Generators Work",

"How Exceptions Work",

"How Programs Work",

"How this Works",

"How Class Free Works"

"How Tail Calls Work",

"How Purity Works",

"How Eventual Programming Works",

"How Date Works",

"How JSON Works",

"How Testing Works",

"How Optimizing Works",

"How Transpiling Works",

"How Tokenizing Works",

"How Parsing Works",

"How Code Generation Works",

"How Runtimes Work",

"How Wat! Works",

"How This Book Works"

];

const chapter_list = "<div>[</div>{chapters}<div>]</div>";

const chapter_list_item = `{comma}

{"number": {index}, "chapter": "{chapter}"}`;

fulfill(chapter_list,

{

chapters: chapter_names.map(function (chapter, chapter_nr) {

return fulfill(chapter_list_item,

{

chapter,

index: chapter_nr,

comma: (chapter_nr > 0)

? ","

: ""

}

).join("");

})

},

entityify) // See the Chapter List at the front of this book

The fulfill function is not very big.

const rx_delete_default = /[< > & % " \\]/g;

const rx_syntactic_variable = /

\{

(

How Strings Work 9.10

[^ { } : \s]+

)

(?:

:

(

[^ { } : \s]+

)

)?

\}

/g;

// Capturing groups:

// [0] original (symbolic variable wrapped in braces)

// [1] path

// [2] encoding

function default_encoder(replacement) {

return String(replacement).replace(rx_delete_default, "");

}

export default Object.freeze(function fulfill(string,

container,

encoder = default_encoder

) {

The fulfill function takes a string containing symbolic variables, a generator

function or an object or array containing values to replace the symbolic variables,

and an optional encoder function or object of encoder functions. The default encoder

removes all angle brackets.

Most of the work is done by the string replace method that finds the symbolic

variables, presenting them as the original substring, a path string, and an optional

encoding string.

return string.replace(

rx_syntactic_variable,

function (original, path, encoding = "") {

try {

Use the path to obtain a single replacement from the container of values. The path

contains wun or more names (or numbers) separated by periods.

let replacement = (

typeof container === "function"

? container

: path.split(".").reduce(

function (refinement, element) {

return refinement[element];

},

container

)

);

If the replacement value is a function, call it to obtain a replacement value.

if (typeof replacement === "function") {

replacement = replacement(path, encoding);

}

9.11 How Strings Work

If an encoder object was provided, call wun of its functions. If the encoder is a function,

call it.

replacement = (

typeof encoder === "object"

? encoder[encoding]

: encoder

)(replacement, path, encoding);

If the replacement is a number or boolean, convert it to a string.

if (

typeof replacement === "number"

|| typeof replacement === "boolean"

) {

}

If the replacement is a string, then do the substitution. Otherwise, leave the symbolic

variable in its original state.

replacement = String(replacement);

return (

typeof replacement === "string"

? replacement

: original

);

If anything goes wrong, then leave the symbolic variable in its original state.

} catch (ignore) {

return original;

}

}

);

});

Chapter 10

How Bottom Values Work

○●○●○

You’re romance,

you’re the steppes of Russia

You’re the pants,

on a Roxy usher

I’m a broken doll, a fol-de-rol, a blop

But if, baby, I’m the bottom

you’re the top!

Cole Porter

Bottom values are special values that indicate the end of a recursive data structure

or the absence of a value. In programming languages, bottom values can have names

like nil, none, nothing, and null.

JavaScript has two bottom values: null and undefined. The NaN value could also be

considered to be a bottom value, indicating the absence of a number. The abundance

of bottom values should be regarded as a design error.

null and undefined are the only values in JavaScript that are not objects in the vague

sense. Attempting to get a property value from them raises an exception.

In some ways null and undefined are very similar to each other, but in some ways they

behave differently. They are partially, but not completely interchangable. Having two

things that can be seen as the same thing but that sometimes act differently is a

source of confusion. Time is wasted in trying to decide which to use when, and those

groundless theories lead to even more confusion, and confusion leads to bugs.

We can make better programs if we eliminate wun of them. We can not eliminate wun

from the language, but we can profitably eliminate wun from our own programs. We

should eliminate null and use undefined exclusively.

Ordinarily, when forced to choose between two words, I tend to prefer the shorter

wun. null has a known meaning in the context of programming and data structures,

and undefined has not. Furthermore, undefined is a confusing name. It does not mean

what mathematicians mean by undefined. It does not even mean what programmers

mean by undefined.

So given that null seems to be a more suitable name, why do I prefer undefined?

I prefer undefined because undefined is the value that JavaScript itself uses. If

you define a variable using let or var and do not explicitly initialize it, JavaScript

10.1 How Bottom Values Work

implicitly initializes it with undefined, which is confusing because the newly defined

variable has undefined as its value. If you do not pass enough arguments into a

function, the extra parameters are set to undefined. If you get the value of a property

of an object and the object lacks that property, it gives undefined. If you get an element

of an array that the array lacks, it gives undefined.

The only place I use null is in using Object.create(null) to create a new empty

object. A specification error forbids the use of Object.create() and Object.create(

undefined).

null and undefined can be tested for with the equality operator.

function stringify_bottom(my_little_bottom) {

if (my_little_bottom === undefined) {

return "undefined";

}

if (my_little_bottom === null) {

return "null";

}

if (Number.isNaN(my_little_bottom)) {

return "NaN";

}

}

You may sometimes see old-timers writing (typeof my_little_bottom ===

"undefined"), which also works. But (typeof my_little_bottom === "null") fails

because typeof null returns "object", not "null". This is bad because (typeof

my_little_object === "object") gives a false positive when my_little_object is null,

leading to the error that the test was intended to prevent. This is another reason to

avoid using null.

undefined is strictly better to use than null, but it also suffers from the path problem.

You recall that the value of missing properties is undefined, which would be a good

thing if undefined were a frozen empty object, but it is not. undefined is not an object,

so attempting to get a property from it raises an exception. This makes it tricky to

write path expressions. For example,

my_little_first_name = my_little_person.name.first;

throws an exception if my_little_person does not have a name property or if

my_little_person is undefined. So you can not think of a chain of . dot and [] subscript

as a path. You must think of it as a sequence of individual operations, any wun of

which might fail. This has led to code like:

my_little_first_name = (

my_little_person

&& my_little_person.name&& my_little_person.name.first

);

The && logical
and operator is used to avoid evaluating the stuff to the right if the stuff

to the left is falsy. That is big and ugly and slow, but it avoids the exceptions, and

usually does what

my_little_first_name = my_little_person.name.first;

would do if undefined worked like an object and not like an anti-object.

Chapter 11

How Statements Work

○●○●●

When I nod my head, you hit it with a

hammer.

Bullwinkle J. Moose

We can sort most programming languages into two classes: expression languages

and statement languages. A statement language has statements and expressions. An

expression language has only expressions. The proponents of expression languages

have a body of theory that argues that expression languages are vastly superior.

There does not appear to be much theory to justify statement languages. Even so, all

of the popular languages, including JavaScript, are statement languages.

Early programs were simply lists of instructions, sometimes resembling sentences,

even ending with a period in some languages. Unfortunately, periods were confused

with decimal points, so in later languages the statement ending characters became

semicolons.

Structured programming destroyed the idea of simple lists of statements, allowing

lists of statements to be nested in other statements. ALGOL 60 was wun of the first

languages of the structured generation, having BEGIN and END to delimit blocks of

statements. BCPL introduced { left
brace and } right

brace to replace BEGIN and END. This

bit of sixties fashion has remained in vogue for many decades.

Declaration

JavaScript has three statements that are used to declare variables in a function or

a module: let, function, and const. There is also an obsolete statement, var, that is

used with Internet Explorer, an unloved web browser.

Let’s talk about let. The let statement declares a new variable in the current scope.

Every block (a string of statements wrapped in { left
brace and } right

brace)
creates a

scope. Variables declared in a scope are not visible outside of the scope. The let state

ment also allows, but does not require, initialization. If a variable is not initialized,

it is given the default value undefined. A let statement is allowed to declare several

variables at wunce, but I recommend declaring each variable in its own let statement.

This improves readability and ease of maintenance.

The let statement also allows destructuring. This is a tricky bit of syntax that defines

and initializes multiple variables with the contents of an object or array. So

11.1 How Statements Work

let {huey, dewey, louie} = my_little_object;

is a shorthand for

let huey = my_little_object.huey;

let dewey = my_little_object.dewey;let louie = my_little_object.louie;Similarly,

let [zeroth, wunth, twoth] = my_little_array;

is a shorthand for

let zeroth = my_little_array[0];

let wunth = my_little_array[1];

let twoth = my_little_array[2];

Destructuring is not an important feature but it can improve some patterns. It is also

easily misused. There are syntactic affordances for renaming and default values but

they introduce too much visual complexity.

The function declaration creates a function object and a variable to contain it.

Unfortunately, it has the same syntax as function expressions which is a source of

confusion.

function my_little_function() {

return "So small.";

}

is a shorthand for

let my_little_function = undefined;

my_little_function = function my_little_function() {

return "So small.";

};

Notice that the function declaration does not end in a semicolon, but the let and

assignment statements do.

The function declaration gets hoisted. The pieces are removed from where you placed

the declaration and moved to the top of the function body or module. All of the let

statements created by function declarations get hoisted to the top, followed by all of

the assignments of function objects to those variables.

That is why a function declaration should not be placed in a block. It is good to put

a function declaration in a function body or a module, but it is bad to put a function

declaration in an if statement, switch statement, while statement, do statement, or

for statement. Functions will be discussed in Chapter 12.

The const statement is like the let statement but with two important differences:

the initialization is required, not optional, and the variable may not be assigned to

later. When I have a choice, I prefer to use const because it encourages greater purity

(Chapter 19).

The word const is obviously short for constant. That word is troublesome because

it implies permanence or timelessness. A const is an ephemeral thing that may

disappear when the function returns. It may have a different value each time the

program is run or the function is called. Also be aware that if the value of a const

is a mutable value like an unfrozen object or unfrozen array, then the value can be

How Statements Work 11.2

assigned to whilst the variable can not be assigned to. Object.freeze works on values,

not on variables, and const works on variables, not on values. It is important to

understand the difference between variables and values: variables contain references

to values. Values never contain variables.

let my_littlewhitespace_variable = {};

const my_little_constant = my_littlewhitespace_variable;

my_little_constant.butterfly = "free"; // {butterfly: "free"}

Object.freeze(my_littlewhitespace_variable);

my_little_constant.monster = "free"; // FAIL!

my_little_constant.monster // undefined

my_little_constant.butterfly // "free"

my_littlewhitespace_variable = Math.PI; // my_littlewhitespace_variable is

approximately π

my_little_constant = Math.PI; // FAIL!

Expression

JavaScript allows any expression to appear in statement position. This is a sloppy

but-popular practice in language design. JavaScript has three expression types that

make sense in statement position: assignments, invocations, and delete. Unfor

tunately, all other expression types are also allowed in statement position which

degrades a compiler’s ability to identify errors.

An assignment statement replaces the reference in a variable, or modifies a mutable

object or array. An assignment statement contains four parts.

0. An lvalue, an expression that receives the value. It can be a variable or an

expression that produces an object or array value and a refinement: a . period

followed by a property name, or a [left bracket followed by an expression that

produces a property name or an element number followed by a]right bracket.

1. An assignment operator:

= assignment

+= add assignment

-= subtract assignment

*= multiply assignment

/= divide assignment

%= remainder assignment

**= exponentiation assignment

>>>= shift right assignment

>>= shift right sign extended assignment

<<= shift left assignment

&= bitwise and assignment

|= bitwise or assignment

^= bitwise xor assignment

2. An expression, whose value will be stored.

3. A ; semicolon.

I do not recommend use of the increment operators ++ plus plus or -- minus minus. They

were created in antiquity for doing pointer arithmetic. We have since discovered

that pointer arithmetic is harmful, so modern languages no longer allow it. The last

11.3 How Statements Work

popular language to boast of having pointer arithmetic was C++, a language so bad

that it was named after ++ plus plus.

We got rid of pointer arithmetic, but we are still stuck with ++. Now it adds 1 to

something. Why do we think we need a different syntactic form to add 1 than to add

every other value? How does that make any sense?

The answer is: It does not make any sense.

Making matters worse, ++ has a pre-increment form and a post-increment form. It

is very easy to get them reversed, and that can be very difficult to debug. And ++

has been implicated in buffer overrun errors and other security failures. We should

discard features that are unnecessary and hazardous.

Expression statements are impure. Assignment statements and delete are obviously

causing mutation. An invocation that discards the return value relies on side-effects.

The expression statement is the only statement that does not start with an identifying

keyword. This syntactic optimization encourages impurity.

Branching

JavaScript has two branching statements, if and switch, which is either wun too

many or two too many.

I do not recommend use of switch, an unholy hybrid of C. A. R. Hoare’s case statement

and FORTRAN’s computed goto statement. There is nothing that can be written with

the switch statement that can not be written (usually more compactly) with the if

statement. The switch statement offers an implicit switch variable, but suffers from

a fallthru hazard that can lead to errors and bad practices. And there is the stylistic

problem: Should a case be aligned with the switch or should it be indented? There

does not seem to be a correct answer.

An object can be used as an alternative to the switch statement. Fill an object with

functions that implement the behavior for each case. The value matching the case

variable is the key.

const my_little_result = my_little_object[case_expression]();

Your case_expression selects wun of the functions from your object, which can then be

called. If the case_expression does not match wun of your functions, an exception is

raised for you.

Unfortunately, this form also comes with a potential security hazard because of the

binding of this. There will be more of this in Chapter 16.

The if statement is strictly better than the switch statement. Its else is not a state

ment, it is a clause, so it should not be indented like a statement. The else should be

placed on the same line as the } right
brace

that closed the previous block.

JavaScript expects the condition part to be a boolish value. I think that was a mistake.

JavaScript should have insisted on a boolean. I recommend that you provide booleans

even though the language invites you to be sloppier.

The else if form allows the if statement to replace the switch statement without

wildly indenting across the screen. It can be misused which can lead to confusing

control flows. The else if form should only be used in case-like constructions. If an

else clause starts with an if, it might be better to not use else if and instead put the

How Statements Work 11.4

if in the else block. The else if form should not be used if the previous block ended

in a disruption.

When writing in a pure functional style, it can be better to use the ternary operator.

The ternary operator is often misused, which has given it a bad reputation. Wrap the

entire ternary expression in parens. Put a line break after the open paren and align

the condition and the two consequences.

let my_little_value = (

is_mythical

? (

is_scary

? "monster"

: "unicorn"

)

: (

is_insect

? "butterfly"

: "rainbow"

)

);

Looping

JavaScript has three looping statements, for, while, and do, which is either two too

many or three too many.

The for statement is a descendant of FORTRAN’s DO statement. Both were used to

process arrays wun element at a time, pushing most of the work of managing the

induction variable onto the programmer. We should instead be using array methods

like forEach that manage the induction variable automatically. I expect that in future

versions of the language, the array methods, when given pure functions to apply to

the elements, will be able to do most of the work in parallel. Incompetent programs

using the for statement will still be processing the elements wun at a time.

I found when teaching programming to beginners that the three-part control

(initialization; condition; increment) was baffling. It is not obvious what the clauses

are or why they are in that particular order, and there are no syntactic affordances to

make it easy to discover or remember.

I do not recommend using the for statement.

The while statement and the do statement are both used for general looping. They

are very different syntactically, but operationally the only difference is that the while

statement checks its condition at the top of the loop and the do statement checks its

condition at the bottom. It is weird that a large visual difference has such a small

operational difference.

11.5 How Statements Work

I find that many of my loops do not want to break exclusively at the top or bottom.

They usually want to break in the middle. So many of my loops have this shape:

while (true) {

// do some work

if (are_we_done) {

break;

}

// do some more work

}

The best way to write loops is to use tail recursion (Chapter 18).

Disruption

JavaScript has four disruptive statements that alter the control flow, and none of

them are goto! They are break, continue, throw, and return.

The break statement is used to leave a loop. It could also be used to leave a switch

statement if we used a switch statement, but that gets complicated if a switch state

ment is in a loop.

The continue statement is a goto statement that jumps to the top of a loop. I have

never seen a program that contained continue that was not improved by its removal.

The throw statement raises an exception (Chapter 14).

My favorite of the disruptive statements is return. It ends the execution of a function

and designates the return value. There is a school that teaches that a function should

have only wun return statement. I have never seen any evidence that shows that that

teaching is beneficial. I think it makes more sense to have a function return when it

knows it needs to, and not have to first funnel down to a unique exit point.

JavaScript does not have a goto statement, but it does allow all statements to have

labels. I think that was a mistake. Statements should not need labels.

Potpourri

The throw statement, the try statement, and the catch clause will be discussed in

Chapter 14.

The import and export statements will be discussed in Chapter 15.

The debugger statement may cause a suspension of execution, similar to reaching

a breakpoint. The debugger statement should only be used during development. It

should be removed before moving a program into production.

How Statements Work 11.6

Punctuation

JavaScript allows if and else and the looping statements to take either a single state

ment or a block. Always use a block, even if the block contains a single statement.

This makes the code more resilient. It will be easier to improve the code without

introducing errors into it. Do not be setting syntactic traps in your code that might

trip up your teammates. Code as if it is important that the code always works well.

The expression statements, the do statement, the disruptive statements, and the

debugger statement are all concluded with a ; semicolon. JavaScript has a misfeature

called Automatic Semicolon Insertion that was intended to make coding easier for

beginners by allowing them to leave the ; semicolon
out. Unfortunately, it can fail in bad

ways, so write like a professional. It would have been better if JavaScript had been

designed with a semicolon-free grammar, but it wasn’t, so do not pretend that it was.

That confusion can cause errors.

If a statement is too long to fit on a line, then it needs to be broken. I break after a (left

parenthesis, [left bracket, or { left brace. The matching) right parenthesis,] right bracket, or } right

brace
starts a new line at the same indentation as the line that began the break. The

material in between will be indented four spaces.

Chapter 12

How Functions Work

○●●○○

The fact is that, if proper procedures were

available, everybody would use them; the

advantages in their use in program

construction are, in practice, overwhelming.

Ian F. Currie

The first programs were called routines. A routine was a list of orders (or

instructions). A routine was loaded into a machine along with some data, and in time,

with some luck, an answer was output.

It was observed that it was difficult to manage a routine as a single list. Some

sequences of orders might appear in multiple routines, or might appear multiple times

in the same routine. So subroutinues were invented. A set of useful subroutines could

be collected into a library. Each subroutine would be given a call number, similar to

the call number on a library book. (Names were an extravagance.)

Grace Murray Hopper developed a routine called A-0. It was the first compiler. It

would take a list of orders and call numbers and a tape containing a library of

subroutines. It would find the subroutines that corresponded to the call numbers,

and compile them into a new program. The sense of compile was the literary sense:

producing a work by assembling information from other sources. This gave us many

terms of art that are still used today: assembler, compiler, library, source, and most

importantly, call. We call for a subroutine as we might call for a book in a library. We

do not commence or activate a subroutine. We call for it. Grace Murray Hopper helped

establish much of the jargon in our profession. It is because of Grace Murray Hopper

that we call these machines computers and not electronic brains. It is because of Grace

Murray Hopper that I am proud to call myself a programmer.

It was observed that subroutines were related to mathematical functions. FORTRAN

II had a SUBROUTINE declaration and a CALL statement for activating them, and it also

had a FUNCTION declaration that could return a result that could contribute a value to

an expression.

The C language unified the subroutine and the function, all informally called

functions. C did not use a descriptive keyword. JavaScript does: function.

The function operator makes function objects. The function operator takes a para

meter list and a body. A body is a block of statements.

12.1 How Functions Work

Each name in the parameter list is a variable that is initialized by an expression

from the argument list. Each name can optionally be followed by = equal sign
and an

expression. If the value of the argument is undefined, then the value of the expression

is used instead.

function make_set(array, value = true) {

// Make an object by taking property names from an array of strings.

const object = Object.create(null);

array.forEach(function (name) {

object[name] = value;

});

return object;

}

A function object is called with an argument list containing zero or more expressions,

separated by commas. Each of those expressions is evaluated and bound to a para

meter of the function.

The argument list and parameter list do not have to have the same length. Excess

arguments are ignored. Missing arguments give the undefined value.

The ... ellipsis operator is allowed in argument lists and parameter lists. In argument

lists it is called spread. It takes an array and spreads it out so that each element of the

array is treated as a separate argument. In parameter lists it is called rest. All of the

rest of the arguments are packed into an array that is bound to that parameter name.

The rest parameter must be the last parameter in the parameter list. This allows a

function to handle a variable number of arguments.

function curry(func, ...zeroth) {

return function (...wunth) {

return func(...zeroth, ...wunth);

};

}

When a function is called, an activation object is created. The activation object is not

visible to you. It is a hidden data structure that holds the information and bindings

that the function needs to execute, and the return address of the activation of the

calling function.

In languages like C, activation objects are allocated on a stack. They are deallocated

(or popped off) when the function returns. JavaScript does this differently. JavaScript

allocates activation objects on a heap, like ordinary objects. Activation objects are not

automatically deactivated when functions return. Instead, the activation object can

survive as long as there is a reference to it. Activation objects are garbage collected

like ordinary objects.

The activation object contains:

• A reference to the function object.

• A reference to the activation object of the caller. This is used by return to give

control back.

• Resumption information that is used to continue execution after a call. This

is usually the address of an instruction that is immediately after a function

call.

How Functions Work 12.2

• The parameters of the function, initialized with the arguments.

• The variables of the function, initialized with undefined.

• Temporary variables that the function uses to evaluate complex expressions.

• this, which might be a reference to the object of interest if the function object

was called as a method.

A function object is like ordinary mutable objects in that it can be a container of

properties. This is not a good thing. Ideally, function objects should be immutable

objects. In some security scenarios, shared mutable function objects can be used to

facilitate collusion.

A function object has a prototype property. This is used in the (not recommended)

pseudoclassical model. The prototype property contains a reference to an object that

contains a constructor property that contains a reference back to the function object,

and a delegation link to Object.prototype. There will be more about this in Chapter

16.

A function object has a delegation link to Function.prototype. By this link, a function

object inherits the unnecessary methods apply and call.

A function object also contains two hidden properties.

• A reference to the function’s executable code.

• A reference to the activation object that was active at the time the function

object was created. This is what makes closure possible. A function can use

that hidden property to access the variables of the function that created it.

The term free variable is sometimes used to describe the variables that a function uses

that were declared outside of the function. The term bound variable is sometimes used

to describe the variables that were declared inside of the function including the para

meters.

Functions can be nested. When an inner function object is created it contains a

reference to the activation object of the outer function that created it.

This mechanism, a function object holding a reference to the activation object of the

outer function, is called closure. It is the most important discovery so far in the history

of programming languages. It was discovered in the Scheme language. It reached the

mainstream with JavaScript. It is what makes JavaScript an interesting language.

Without it, JavaScript would just be a steaming pile of good intentions, blunders, and

classes.

Chapter 13

How Generators Work

○●●○●

The present day composers refuse to die.

Edgard Varèse

JavaScript introduced a feature in ES6 called generators. They were added during

a time when the standards process suffered from serious Python envy. I can not

recommend using ES6 generators for several reasons.

What the code does is very different from how the code looks. They look like ordinary

functions, but they work very differently. They produce a function object that

produces an object that contains a next method that is made of the function* body.

It has a yield operator that resembles a return statement, but it doesn’t produce

the expected value. Instead it produces an object that contains a value property that

contains the expected value. A tiny * asterisk can cause huge changes in behavior.

They can have very complex control flow. We learned in the Structured Revolution

that control flows should be straight forward and predictable. Generators can have

complicated control flows because generators can be suspended and resumed. They

can also have confusing interactions with finally and return.

They encourage use of loops. As we move away from objects and toward functions, we

should be moving away from loops. These generators instead require more loops. Most

generators contain a loop with a yield in the middle of it to produce the values. Most

users of that generator use a for loop to consume them. That is two loops where none

are needed.

Generators use a clumsy OOP interface. The factory produces an object, and the

generator produces an object. (In a functional design, the factory produces a gener

ator function, and the generator function produces a value. The functional design is

simpler, cleaner, and easier to use.)

And finally, worst of all, ES6 generators are unnecessary. I do not recommend using

features when there are better options available.

13.1 How Generators Work

This is an example of ES6 generators:

function* counter() {

let count = 0;

while (true) {

count += 1;

yield count;

}

}

const gen = counter();

gen.next().value // 1

gen.next().value // 2

gen.next().value // 3

This is what I recommend you do instead:

function counter() {

let count = 0;

return function counter_generator() {

count += 1;

return count;

};

}

const gen = counter();

gen() // 1

gen() // 2

gen() // 3

So instead of writing something that looks like a function that yields a value but is

actually a function that returns an object that contains a next method that yields an

object that contains a value property that contains a value, simply write a function

that returns a function that returns a value.

A Better Way

Generators are a really good thing to have. So let’s do it right. We start with a function

that returns a function. The outer function is a factory. The inner function is a gener

ator. This is the general pattern:

function factory(factory’s parameters) {

Initialization of the generator's state

return function generator(generator's parameters) {

update the state

return value;

};

}

Of course, there can be many variations. The state of the generator is held securely in

the factory’s variables.

How Generators Work 13.2

The simplest useful instance of this pattern is the constant factory. It takes a value,

and returns a generator that always returns that value.

function constant(value) {

return function constant_generator() {

return value;

};

}

A more useful example is the integer factory. It returns a generator that returns the

next integer in a sequence each time it is called. At the end of the sequence it returns

undefined. We use undefined as the sentinel that communicates the end of a sequence.

function integer(from = 0, to = Number.MAX_SAFE_INTEGER, step = 1) {

return function () {

if (from < to) {

const result = from;

from += step;

return result;

}

};

}

The element factory takes an array and returns a generator that returns an element

of that array each time it is called. It returns undefined when there are no more

elements. The factory can take an optional second argument: a generator that

produces the element numbers that are used to retrieve the elements. By default, it

retrieves all of the elements in order.

function element(array, gen = integer(0, array.length)) {

return function element_generator(...args) {

const element_nr = gen(...args);

if (element_nr !== undefined) {

return array[element_nr];

}

};

}

The property factory does the same thing for objects. It returns each property of the

object in the form of an array containing the key and the value. It returns undefined

when there are no more properties. The factory can take an optional second argument:

a generator that produces the keys that are used to retrieve the properties. By default,

it retrieves all of the own properties in insertion order.

function property(object, gen = element(Object.keys(object))) {

return function property_generator(...args) {

const key = gen(...args);

if (key !== undefined) {

return [key, object[key]];

}

};

}

The collect factory takes a generator and an array. It returns a generator that works

exactly like the generator it receives except that it also appends the interesting return

values to the array. All of the arguments that are passed to the new function are

passed to the old wun.

13.3 How Generators Work

function collect(generator, array) {

return function collect_generator(...args) {

const value = generator(...args);if (value !== undefined) {

array.push(value);

}

return value;

};

}

We can use the repeat function as a driver. It receives a function and calls it until

it returns undefined. This is the only loop we need. We could write it with a do

statement, but I prefer to write it with tail recursion (Chapter 18).

function repeat(generator) {

if (generator() !== undefined) {

return repeat(generator);

}

}

We can use collect to capture data.

const my_array = [];

repeat(collect(integer(0, 7), my_array)); // my_array is [0, 1, 2, 3, 4, 5, 6]

We could join repeat and collect together to make harvest. The harvest function is

not a factory or a generator, but it takes a generator as its argument.

function harvest(generator) {

const array = [];

repeat(collect(generator, array));

return array;

}

const result = harvest(integer(0, 7)); // result is [0, 1, 2, 3, 4, 5, 6]

The limit factory takes a function and returns a function that can be used only a

limited number of times. When the count is exhausted, the new function does nothing

but return undefined. The second argument to the factory is the number of times the

new function may be called.

function limit(generator, count = 1) {

return function (...args) {

if (count >= 1) {

count -= 1;

return generator(...args);}

};

}

The limit factory can be used with any function. For example, if you pass a function

that grants wishes and 3 to limit, you get a function that grants 3 wishes.

The filter function takes a generator and a predicate function. A predicate function

is a function that returns true or false. It returns a new generator that works like the

old wun except that it only delivers the values for which the predicate returns true.

function filter(generator, predicate) {

return function filter_generator(...args) {

const value = generator(...args);

How Generators Work 13.4

if (value !== undefined && !predicate(value)) {

return filter_generator(...args);}

return value;

};

}

const my_third_array = harvest(filter(

integer(0, 42),

function divisible_by_three(value) {

return (value % 3) === 0;

}

));

// my_third_array is [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39]

The concat factory can take two or more generators and concatenate them together to

make a generator that combines their sequences. It takes values from the first gener

ator until it produces undefined. It then switches to the next generator. The concat

factory uses the element factory that we saw earlier to smartly work thru the gener

ators.

function concat(...generators) {

const next = element(generators);

let generator = next();

return function concat_generator(...args) {

if (generator !== undefined) {

const value = generator(...args);if (value === undefined) {

generator = next();

return concat_generator(...args);

}

return value;

}

};

}

The join factory takes a function and wun or more generators and returns a new

generator. Each time the new generator is called, it calls all of the old generators and

pass their results to the function. You can use join with repeat to do all of the things

you used to do with for of. The function argument to join does the work of the block.

The join factory can work with multiple generator streams at wunce.

function join(func, ...gens) {

return function join_generator() {

return func(...gens.map(function (gen) {

return gen();

}));

};

}

We can use all of this to make a map function that works like the array map method. It

takes a function and an array, and returns a new array where each element contains

the result of calling the function with each element of the array.

function map(array, func) {

return harvest(join(func, element(array)));

}

13.5 How Generators Work

The objectify factory gives us another way to construct data objects.

function objectify(...names) {

return function objectify_constructor(...values) {

const object = Object.create(null);

names.forEach(function (name, name_nr) {

object[name] = values[name_nr];

});

return object;

};

}

let date_marry_kill = objectify("date", "marry", "kill");

let my_little_object = date_marry_kill("butterfly", "unicorn", "monster");

// {date: "butterfly", marry: "unicorn", kill: "monster"}

Generators live at the frontier between pure and impure functions. The generators

made by the constant factory are pure, but most generators are impeccably impure.

Generators can be stateful, but they keep their state hidden in the closure of the

factory. The state can only be updated by calling the generator. They are free of the

side effects that plague most impure functions. This allows generators to compose

really well.

It is good to make as much of our programs as pure as possible. Programs that interact

with the universe can not be completely pure because the universe is not pure. How

do we know what can be pure and what must be impure? Generators can show us a

way.

Chapter 14

How Exceptions Work

○●●●○

No! Try not. Do, or do not.

There is no try.

Yoda

Programmers are optimists. There is often an implicit assumption in our programs

that everything will always go right, but even an optimist knows that sometimes

things can go wrong.

There is a possibility that the function we call might fail in an unexpected way. This

is especially a concern when using code from third parties. Wun of the dimensions

of coupling is failure modes. So what should happen when it fails? Should the whole

program fail? Should we try calling the function again and hope for a better outcome?

And how should the failure be communicated?

The most popular approach to this problem is exception handling which attempts to

free us to program optimistically. We do not have to check for obscure error codes in

every return value. We do not have to poll a global defcon register to find out if the

program has become unstable. Instead we assume that everything works correctly.

If something unexpected happens, the current activity will stop and our exception

handler will determine what the program will do next.

JavaScript’s exception management was inspired by Java. Java’s exception

management was inspired by C++. C++ is a language without adequate memory

management, so when something goes wrong, every function in the call chain needs to

explicitly release any memory that it had allocated. JavaScript has very good memory

management, but it assumes the implications of C++’s faulty memory model.

A failure is signalled with the throw statement. C++ would have had a raise

statement like the Ada language, but the word raise had already been used in C

libraries, so C++ instead reserved a word that no wun had ever wanted to use.

JavaScript allows you to throw any value. It is common to throw something made by

the Error constructor, but that is not required. You can throw literally anything. In

C++ and Java, the exception object is the macguffin. In well written JavaScript, the

exception object is superfluous.

throw "That does not compute.";

14.1 How Exceptions Work

The try statement attaches an exception handler to a block. The exception handler

is packaged as a catch clause. It is allowed wun parameter, which is how it receives

whatever it was that throw threw.

try {

here_goes_nothing();

} catch {

console.log("fail: here_goes_nothing");

}

If anything raises an exception in the try, then the catch clause runs.

The design of try allows very fine-grained exception management. Every statement

in a function could have its own try and its own catch. It even allows try statements

to contain try statements. And even worse, it allows catch clauses to contain try

statements, and try statements and catch clauses can contain throw statements. A

function should not contain more than wun try.

Unwinding

An important goal that exception management managed to keep is that it does not

impose a performance penalty on correctly running programs. A performance hit

might occur when an exception is raised, but that should happen rarely, and even

then it is not significantly expensive.

The JavaScript compiler produces a catchmap for every function that it compiles. The

catchmap maps instruction locations in the function body to the catch that handles

those locations. The catchmap is not used during normal program execution.

When a throw statement is executed, raising an exception, the catchmap for the

current function is consulted. If there is a designated catch clause, then it gets control

and execution resumes from there.

If there is not a designated catch clause, then we look at the caller. The caller is now

the current function, and the statement that invoked the previous function is now the

location of the failure. The catchmap is again consulted. If there is a designated catch

clause, then it gets control and execution resumes from there.

And so it goes, down the virtual call stack, until a catch clause is found. When the call

stack is empty, we have an uncaught exception.

It is a simple and elegant mechanism. It allows a style of programming that puts most

focus on success without totally ignoring failure. But it is easily misused.

Ordinary Exceptions

The most popular misuse of exceptions is to use them to communicate normal results.

For example, given a function that reads a file, a file not found error should not be an

exception. It is a normal occurence. Exceptions should only be used for problems that

should not be anticipated.

The Java language encourages misuse of exceptions as a way to get around problems

in its type system. A Java method can only return a single type of result, so exceptions

are used as an alternate channel to return the ordinary results that the type system

does not allow. This can lead to several catch clauses attached to a single try block. It

can be confusing because the ordinary results get jumbled up with the real exceptions.

How Exceptions Work 14.2

It resembles a FORTRAN assigned GOTO statement, in which a variable contains the

address of the destination of the jump. The catch clauses must be properly ordered to

make sure the right clause is selected. Selection is not based on any type of equality,

as with the switch statement, but is instead based on the typecasting rules, which are

themselves an abomination. Any type system that requires explicit casting is broken.

The control paths are dictated by the method that created the exception object. That

creates a tight coupling between the thrower and the catcher that works against clean

modular design.

There can be a great many paths thru this tangle, which can make the job of

releasing allocated resources quite challenging. So the finally clause was added

to help mitigate this. The finally clause is a parameterless function that is called

implicitly from every exit point of the try and each of the catch clauses.

JavaScript, on the other hand, provides a much cleaner approach. If the try was

successful, then we obtained either a good result or a good explanation. JavaScript’s

type system is flexible enough to handle all expected cases.

If something truly unexpected happens, then the catch clause starts and an alternate

story begins, either shutting things down or starting things over. We go with Plan A.

If that succeeds, we are good. If it fails, we go straight to Plan B.

try {

plan_a();

} catch {

plan_b();

}

Reasoning about error recovery is difficult, and testing it is even more difficult. So

we should go with the pattern that is simple and reliable. Make all of the expected

outcomes into return values. Save the exceptions for the exceptions.

The problem is that there are a lot of programs that were developed by people who

were damaged by their experience with those other languages. They use throw when

they should return. They make complex catch clauses that attempt to solve insolvable

problems and maintain unmaintainable invariants. And they use finally, which

JavaScript has but does not need, to try to clean up their mess.

Eventuality

Exceptions work by unwinding the stack. Thrown values are communicated to

function invocations that are lower on the stack. In eventual programming, the stack

is emptied after each turn. Time travel is not available for transmitting a thrown

value to an activation that no longer exists. Exceptions have limited usefulness. They

can only report local problems in the current time frame. We will explore this in

Chapter 20.

14.3 How Exceptions Work

Security

There is an important model of security that limits the destructive power of functions

by giving them only the references they need to do their work and nothing more.

Exceptions, as currently practiced, provide a channel thru which two untrusted

functions can collude.

It goes like this: Thing 1 and Thing 2 are two packages that we carelessly installed

on our server. By doing so we are taking a terrible risk, but we consider it to be an

acceptable risk because Thing 1 and Thing 2 are sometimes useful. We give Thing

1 access to a network socket. We give Thing 2 access to our private key. If they are

unable to communicate with each other, we are fine.

Thing 1 needs to have something decrypted as part of its usefulness, but we do not

want it to communicate directly with Thing 2. So we create a trusted intermediary

function. We allow Thing 1 to call the intermediary. The intermediary calls Thing 2.

Thing 2 returns a value to the intermediary. The intermediary inspects the return

value, verifies that it is the expected plaintext, and returns it to Thing 1.

If Thing 2 instead does this:

throw top_secret.private_key;

and if the intermediary does not catch it, or catches and throws it again (a terrible

practice that C++ made popular), then Thing 1 can catch the private key and can

transmit it to the bad guys. There was collusion.

Reliability

When something goes seriously wrong, what can a program be expected to do about

it? A function calls another with an expectation that it is going to work. But suppose

it does not work. The exception object tells the function that an argument was out of

range, or that an object was immutable, or some other mistake was made. It is not

reasonable to expect, at our current level of technology, that the function can take

corrective action.

The details in the exception object might be important and useful for the programmer

to know. That information is instead delivered to a function that can make no good

use of it. We have corrupted the information flow. That information should be sent to

the programmer, perhaps in the form of a journal entry. Instead it is sent down the

call stack, where it can be misunderstood and forgotten. Exceptions have caused us to

misdesign our systems. The exception mechanism itself is causing unreliability.

Chapter 15

How Programs Work

○●●●●

Greetings, programs!

Kevin Flynn

JavaScript is delivered to the execution site in source form. JavaScript’s first job was

to add some interactivity to web pages. Since HTML is a text format, it was decided

to embed JavaScript in web pages as source text. This is fairly unusual. Programs in

most other languages are delivered to the execution site in each particular machine’s

instruction code, or in a more portable format such as a byte-coded instruction stream

that will be fed to an interpreter or code generator.

A JavaScript engine at the execution site compiles the JavaScript source code,

producing machine code or interpreted code or both. This makes JavaScript a very

portable language. Programs have no dependence on the architecture of the

underlying machine. A single version of a JavaScript program can run on any

JavaScript engine, regardless of what lies beneath.

The JavaScript compiler can quickly and easily verify some important security

properties of a program: it can assure that the program can not compute memory

addresses or jump to restricted locations or violate type restrictions. Java attempts to

do something similar with its bytecode verifier, but it is not as fast or as easy or as

certain.

Some of the syntactic features of JavaScript make parsing unnecessarily difficult.

Even so, JavaScript engines are able to compile, load, and launch much faster than

Java can load and launch from .jar files.

JavaScript is distributed in source units. A source unit is usually a .js file, but it

could also be a source string from a JSON object, or a source text from a database or

source management system.

In web browsers in olden times, source units were parts of a page, like the contents of

a <script> tag or an inline event handler. In the following example, alert("Hi"); is a

source unit.

It is now accepted that embedding JavaScript source units into an HTML page is a

bad practice. It is bad for design because there is no separation between presentation

and behavior. It is bad for performance because code in a page can not be gzipped

or cached. It is very bad for security because it enables the poorly named Cross

15.1 How Programs Work

Site Scripting (XSS) attacks. W3C’s Content Security Policy (CSP) should be used

consistently to prevent all use of inline source.

A source unit is treated like the body of a function with no parameters. It is compiled

as a function and then invoked. It may cause function objects to be created, and

possibly executed.

That could be the end of the program. But in JavaScript it is typical for a source unit

to register to receive events or messages, or to export a function that another source

unit might use. JavaScript does not demand that programs be written this way, but

this is a great way to write programs and JavaScript supports this style better than

most languages.

(Historical note: Inline event handlers worked a little differently. The source unit was

still treated as a function body, but the event handler function this created was not

invoked immediately. Instead it was bound to a DOM node, and it was invoked as

events were fired.)

Primordials

There are objects and functions that are made available automatically to every source

unit. We have already seen some of these, such as Number, Math, Array, Object, and

String. There are many more, all provided by the ECMAScript Standard. In addition,

the host environment (for example, the browser or Node.js) may add many more. All

of this stuff can be used by all of the functions in your source unit.

Global

In the ancient browser programming model, all variable declarations outside of a

function were added to the page scope, also known as the global scope (was that

grandiose or what?). That scope also contained the variables window and self that

contained references to the page scope. All of the variables in the page scope were

visible to all of the source units on that page.

This was a bad thing. It encouraged a style of programming that exploited shared

global variables. This resulted in programs that were brittle and buggy. It caused

unexpected errors when two independent source units accidentally used the same

variable name. And it caused terrible security problems. It is what fuels the XSS

exploits.

Global variables are evil.

Fortunately, things are much better now.

How Programs Work 15.2

Module

It is better to have all variable declarations outside of a function be added to the

module scope, which is only visible to all of the functions in the source unit. This is a

good thing because it leads to stronger designs, greater safety, and better security.

Cooperation with other source units is now explicit, using the import and export

statements. These statements can be used to make good programs. They can also be

used to make bad programs. I focus on the good.

By exporting, a module is making an exportation available to other modules. A

module should export wun thing, typically a function or an object full of functions.

The exportation may be consumed by several other modules, so it is a good idea to

freeze the exportation to prevent accidents or cross contamination. An exportation is

an interface. Interfaces should be simple and clean.

The source unit’s code body is only executed wunce, which means that all of the

importers share the same exportation. This can be a problem if the exportation is

stateful and each importer is expecting something pristine and unshared. In that

case, export a factory function that can make the pristine and unshared instances.

The export statement does not make the instances.

The export statement looks like this:

export default exportation;

It is really unfortunate that that default word is there stinking things up. The

exportation expression is the frozen object or function that you are exporting.

Importing allows your source unit to receive a function or an object from another

source unit. You choose the name of the new variable that you want to receive the

import. You also specify the supplier with a "double
quote

string literal containing some

sort of name or address that your system can use to locate the source unit, and if

necessary, read it, compile it, load it, invoke it, and deliver its exportation.

You can think of the import statement as a special const statement that gets its

initialization value from some other place. It looks like this:

import name from string literal;

I recommend having a single export, but you can use as many import statements as

you need. Put your imports at the top of the file and your export at the bottom.

15.3 How Programs Work

Cohesion and Coupling

Good programming at the micro level depends on good coding conventions that help

increase the visual distance between good code and bad so that the errors are easier

to spot.

Good programming at the macro level depends on good module design.

Good modules have strong cohesion. That means that all of the elements are related

and working together to accomplish a specific thing. Bad modules have weak cohesion,

often from poor organization and trying to do too much. JavaScript’s functions can be

powerful here because we can pass in a function to take care of specific details that

the module should not be concerned with.

Good modules are loosely coupled. You should only need limited knowledge of a

module’s interface in order to make good use of it. You should not need details

of its implementation. A good module hides its implementation. A leaky module

invites tight coupling. JavaScript offers many invitations for tight coupling. Mutually

dependent modules are very tightly coupled indeed. That is nearly as bad and as

grandiose as global variables.

Make your module interfaces simple and clean. Minimize dependencies. Good

architecture is necessary to give programs enough structure to be able to grow large

without collapsing into a puddle of confusion.

The concepts of cohesion and coupling were introduced in two excellent books:

• Reliable Software Through Composite Design. Glenford Myers. John Wiley &

Sons, 1975.

• Structured Design. Edward Yourdon and Larry L. Constantine. Yourdon

Press, 1979.

Both books came out before Object Oriented Programming became a thing so they

went out of fashion and have been largely forgotten. But their teachings about strong

cohension and loose coupling are still true and important.

Chapter 16

How this Works

●○○○○

I invented the term Object-Oriented, and I

can tell you I did not have C++ in mind.

Alan Kay

The Self language was a dialect of Smalltalk that replaced classes with prototypes.

An object could inherit directly from another object. The classical model suffers from

brittleness and bloat due to the tight coupling of classes via extends. Self’s prototypes

were a brilliant simplification. The prototypal model is lighter and more expressive.

JavaScript implements a weird variation of the prototypal model.

When an object is created, a prototype can be designated that holds some or all of the

new object’s contents.

const new_object = Object.create(old_object);

Objects are just containers of properties, and prototypes are just objects. Methods are

just functions that are stored in objects.

If we try to retrieve the value of a property that an object does not have, the result is

the undefined value. However, if the object has a prototype (as new_object has above)

then the result is the value of the prototype’s property. If that also fails, and if the

prototype has a prototype, then the result is the value of the prototypes’s prototype’s

property. And down and down it goes.

It is possible for many objects to share a prototype. Those objects could be viewed as

instances of a class, but they are really just individual objects that happen to share a

prototype.

The most common use of prototypes is as a place to store methods. Similar objects

would likely all have similar methods, so there might be a memory savings if the

methods are put in a single shared prototype and not in every object.

How does a function in a prototype know which object to work on? This is where this

comes in.

Syntactically, a method call is a ternary operation using . dot and ()
invoke

or []
subscript

and ()
invoke. The three sub-expressions in the ternary expression are:

16.1 How this Works

• The object of interest.

• The method name.

• The argument list.

The object and its prototype chain are searched for the named method. If a function

is not found, an exception is raised. This is a very good thing. This encourages use

of polymorphism. You shouldn’t care about an object’s heredity. You should only care

about its abilities. If an object lacks the ability, then it raises an exception. If the

object has the ability, we use it, not caring how it was acquired.

If a function is found, then it is called with the argument list. The function also

receives this as an implied parameter bound to the object of interest.

If a method contains an inner function, the inner function does not get access to this

because inner functions are called as functions, and only method calls get the this

binding.

old_object.bud = function bud() {

const that = this;

// lou can not see bud's this, but lou can see bud's that.

function lou() {

do_it_to(that);

}

lou();

};

this binding only works on method calls, so

new_object.bud();succeeds, but

const funky = new_object.bud;funky();

does not. Here funky contains a reference to the same function as new_object.bud, but

funky is called as a function, so there is no this binding.

this is also peculiar in that it is bound dynamically. All other variables are bound

statically. This is a source of confusion.

function pubsub() {

// The pubsub factory makes a publish/subscribe object. Code that gets

// access to the object can subscribe a function that receives

// publications, and can publish stuff that will be delivered to all of

// the subscribers.

// The subscribers array is used to hold the subscriber functions. It is

// hidden from the outside by the pubsub function’s scope.

const subscribers = [];

return {

subscribe: function (subscriber) {

subscribers.push(subscriber);

},

publish: function (publication) {

How this Works 16.2

const length = subscribers.length;

for (let i = 0; i < length; i += 1) {

subscribers[i](publication);

}

}

};

}

A subscriber function gets a this binding to the subscribers array because

subscribers[i](publication);

is a method call. It might not look like a method call, but it is. It gives every subscriber

function access to the subscribers array, which could allow a subscriber to do very

bad things, like delete all of the other subscribers or intercept or alter their messages.

my_pubsub.subscribe(function (publication) {

this.length = 0;

});

this can be a security and reliability hazard. When a function is stored into an array

and later called, it is given this which is bound to the array. If we do not intend for

functions to have access to the array, which we usually don’t, then there is a new

opportunity for things to go wrong.

The publish function can be repaired by replacing the for with forEach.

publish: function (publication) {

subscribers.forEach(function (subscriber) {

subscriber(publication);

}

}

All variables are statically bound, which is good. Only this is dynamically bound,

which means that the caller of the function, not the maker of the function, determines

its binding. This deviation is a source of confusion.

A function object has two prototype properties. It has its delegation link to

Function.prototype. And it also contains a prototype property that contains a

reference to an object that is used as the prototype of objects constructed by the

function when it is called with the new prefix.

A constructor call is written by placing the new prefix in front of a function call. This

is what the new prefix does:

• Make a this value with Object.create(function.prototype)• Call the function with this bound to the new object.

• If the function does not return an object, force it to return this.

A sort of inheritance is possible by using the Object.assign function to copy methods

from wun prototype to another. A much more common practice is to replace a function

object’s prototype property with an object constructed by another constructor.

Since every function is a potential constructor, it is difficult to know at any instant if

a call should use a new prefix. Even worse, there is no warning when it is required but

forgotten.

16.3 How this Works

This is why we have a convention: Functions that are intended to be called as

constructors with the new prefix must be named with initial caps. Nothing else should

be written with initial caps.

JavaScript also has more conventional looking class syntax that was designed

specifically for developers who do not know nor ever will know how JavaScript works.

It allows transfer of skills from lesser languages with no new learning.

The class syntax, despite its looks, does not implement classes. It is just syntactic

sugar on top of the pseudoclassical constructor weirdness. It preserves the very worst

aspect of the classical model, extends, which tightly couples classes together. That

tight coupling causes brittleness and faulty designs.

This Free

In 2007, there were several research projects that were trying to develop a secure

subset of JavaScript. Wun of the biggest problems was the managing of this. In a

method call, this is bound to the object of interest, which is sometimes good thing.

But if that same function object is called as a function, then this could be bound to

the global object, which was a very bad thing.

My solution to this problem was to outlaw this entirely. My argument was that this

is problematic and unnecessary. If we remove this from the language, the language is

still Turing Complete. So I began programming in a this-free dialect to get a sense of

how painful it would be to give this up.

I was very surprised to discover that it was easier, not harder, and my programs were

smaller and better.

That is why I recommend the elimination of this. You will be a better, happier

programmer if you can learn to do without this. I am not taking anything away from

you. I am offering you a way to live better by writing better programs.

The coders using class will go to their graves never knowing how miserable they were.

this is not a good thing.

This is a demonstrative pronoun. Just having this in the language makes the

language harder to talk about. It is like pair programming with Abbott and Costello.

Chapter 17

How Class Free Works

●○○○●

And you think you’re so clever and classless

and free

John Lennon

Wun of the key insights in the development of Object Oriented Programming was the

model of how the parts of a program communicate with each other. Think of a method

name and its arguments as a message. Calling the method sends the message to the

object. Each object has its own behavior that is triggered when it receives particular

messages. The sender assumes that the receiver knows what to do with the message.

Wun of the things that falls out of this is polymorphism. Every object that recognizes

a particular message is eligible to receive that message. What happens next depends

on the specialization of the object. This is a really powerful idea.

Unfortunately, we have become distracted by inheritance. Inheritance is a powerful

code reuse pattern. Code reuse is important because it allows us to reduce the amount

of effort to develop a program. Inheritance builds on the idea of same as except. We

can say that some object or class of objects is the same as some other object or class

of objects except for some important differences. This works really well when things

are simple. It should be remembered that modern OOP began with Smalltalk, a

programming language for children. As things get complicated, inheritance becomes

problematic. Inheritance causes the tight coupling of classes. A change in wun class

can cause dependent classes to fail. Classes tend to be bad modules.

We also see too much attention placed on the properties and not on the objects. There

is an over emphasis on getter and setter methods for each individual property, or in

the worst designs, the properties are public and can be changed without the object’s

awareness. It is possible to practice good design, where the properties are hidden

and the methods process transactions and not just property mutation, but it does not

happen often enough.

There is also an overdependence on types. Types were a feature of FORTRAN and

later languages where it was a convenience for the compiler writer. Since then, a

mythology has grown up about types, with extravagant claims that types protect

programs from errors. Despite devotion to types, errors still manage to happen every

day.

Types get credit and deserve credit for the bugs that are found early by the compiler.

The sooner a bug is found, the less it costs. But if the program is tested properly, all

17.1 How Class Free Works

of those bugs are found very quickly. So the bugs that types identify are the low value

bugs.

Types are not blamed for the bugs they fail to find, the expensive bugs. And types

do not get blamed for the problems they cause by requiring circumvention. Types can

induce us to embrace cryptic, intricate, and dubious coding practices.

Types are like weight loss diets. A diet gets credit for the weight that is lost. A diet

is not blamed when the weight goes back on and increases. And a diet is not blamed

for the misery or health problems it causes. Diets give us faith that we can attain a

healthy weight and still eat unhealthy food.

Classical inheritance allows us to think that we are writing good programs whilst we

continue to create more bugs and crufty legacies. If you ignore the negatives, types

look like a big win. The benefits are real. But if you look at types systematically, the

cost exceeds the benefit.

Constructor

In Chapter 13, we worked with factories (functions that return functions). We can

now do something similar with constructors (functions that return objects containing

functions).

We start by making a counter_constructor that is similar to the counter generator. It

has two methods: up and down.

function counter_constructor() {

let counter = 0;

function up() {

counter += 1;

return counter;

}

function down() {

counter -= 1;

return counter;

}

return Object.freeze({up,

down

});

}

The object that is returned is frozen. The object can not be damaged or corrupted. The

object has state. The counter variable is the object’s private property. It can only be

accessed thru the methods. And we do not have to use this.

This is important. The interface of the object is its methods and only its methods. The

object has a very hard shell. This gives us the best kind of encapsulation. There is no

direct access to the data. This is good modular design.

A constructor is a function that returns an object. The constructor’s parameters

and variables become the private properties of the object. There are no public data

properties. The constructor’s inner functions become the object’s methods. They close

How Class Free Works 17.2

over the private properties. The methods that go into the frozen object are the public

methods.

The methods should implement transactions. For example, suppose we have a person

object. We might want support for changing the person’s address. We should not do

this by having a separate set of functions for changing each individual item in the

address. Instead we should have a single method that takes an object literal that can

describe all of the parts of the address that need to change.

Wun of the brilliant ideas in JavaScript is the object literal. It is a pleasant and

expressive syntax for clustering information. By making methods that consume and

produce data objects, we can reduce the number of methods, increasing object

integrity.

So we have two types of objects:

• Hard objects containing only methods. These objects defend the integrity of

the data held in closure. They give us polymorphism and encapsulation.

• Soft data objects containing only data. These have no behavior. They are just

convenient collections that can be manipulated by functions.

Wun view of OOP is that we started with the adding of procedures to COBOL records

to provide behavior. I think the mingling of methods and data properties was an

important step forward, but it should not have been the last step.

You should include a toJSON method if the hard object needs to be stringified.

Otherwise, JSON.stringify sees it as an empty object, ignoring the methods and the

hidden data (Chapter 22).

Constructor Parameters

I wunce wrote a constructor that took ten arguments. It was very difficult to use

because no wun could remember the order. Later we noticed that no wun made good

use of the twoth argument. I wanted to remove it from the parameter list but that

would break all of the code that we had already developed.

Had I been smart, I would have had the constructor take a single object as its

parameter. This would usually be from an object literal, but it could also come from

other sources, such as a JSON payload.

This would have provided many benefits:

• The key strings makes the code self-documenting. It is easier to read the code

because the code tells you what each argument at the call site is.

• The arguments can be in any order.

• New arguments can be added in the future without breaking existing code.

• Obsolete parameters can be ignored.

The most common use of a parameter is to initialize a private property. We can do it

like this.

17.3 How Class Free Works

function my_little_constructor(spec) {

let {

name, mana_cost, colors, type, supertypes, types, subtypes, text,

flavor, power, toughness, loyalty, timeshifted, hand, life

} = spec;

This creates and initializes 15 private variables using same named properties from

spec. If spec does not contain a matching property, then the new variable is initialized

with undefined. That gives us the ability to fill in missing values with defaults.

Composition

JavaScript is so expressively powerful that you can write in the classical paradigm

even though it is not a classical language. JavaScript also lets us do something better.

We can work with functional composition. So instead of same as except we can get a

little bit of this and a little bit of that. This is the general form of a constructor:

function my_little_constructor(spec) {

let {member} = spec;

const reuse = other_constructor(spec);

const method = function () {

// It can use spec, member, reuse, method

};

return Object.freeze({method,

goodness: reuse.goodness

});

}

Your constructor can call as many other constructors as you need to get access to the

state management and behavior that they provide. We can even pass the same spec

object to them. When we document our spec parameters, we list the properties that

my_little_constructor needs, and the properties that the other constructors need.

In some cases we can simply add some of the methods we acquired to the frozen object.

In other cases, we have our new methods call the acquired methods. This accom

plishes code reuse similar to inheritance, but without the tight coupling. Calling a

function is the original code reuse pattern, and it is still the best.

Size

This approach to object construction uses more memory than the prototypal approach

because every hard object contains all of the object’s methods, whilst a prototypal

object contains a reference to a prototype containing the methods. Is the difference

in memory consumption significant? No, not in proportion to recent improvements in

memory capacity. We used to count memory in kilos. We now count memory in gigas.

The difference is in the noise.

The differences may be mitigated by the improvements in modularity. Emphasis on

transactions over properties tends to reduce the number of methods whilst improving

cohesion.

The classical model is a wun size fits all model. Every object must be an instance of a

class. JavaScript frees us from that restriction. Not all objects need hardness.

How Class Free Works 17.4

For example, I don’t think it makes sense that points have to be hard objects with

methods. A point can just be a simple container of two or three numbers. Points get

passed to functions that can do the projection or interpolation or whatever it is we do

with points. That can be much more productive than subclassing points to give them

specific behaviors. Let the functions do the work.

Chapter 18

How Tail Calls Work

●○○●○

There comes a time in the affairs of man

when he must take the bull by the tail and

face the situation.

W. C. Fields

We depend on optimizations in our systems to make our programs go faster. An

optimization is a breaking of the rules, but breaking them in such a way that the

breakage is not observable. An optimization is not allowed to change a good program

into a bad wun. Optimizations are not allowed to inject bugs.

The most important of the optimizations not only does not inject new bugs, it

eliminates a class of bugs from good programs, enabling new paradigms of

programming. I am talking about The Tail Call Optimization. Some experts consider

this optimization to be so important that we should not trivialize it by calling it an

optimization. They call it Proper Tail Calls. Any other way of implementing tail calls

is improper.

I prefer to call it an optimization because most coders put little importance on

propriety but they love optimizations even when they have no substantive effect. I

want them to want this feature.

A tail call happens when the last thing a function does is return the result of calling

a function. In the following example, continuize is a factory that takes any type of

function and returns a hero function. The hero calls any, and passes the return value

to the continuation function.

function continuize(any) {

return function hero(continuation, ...args) {

return continuation(any(...args)); // <-- a tail call

};

}

When a function returns the result of calling a function, we call that call a tail call. It

is a shame that we call that call a tail call and not a return call.

The tail call optimization is a simple wun, but it has big implications. Using

traditional instruction sets as a metaphor, the code generated for continuize might

include these machine instructions:

call continuation # call the continuation function

return # return to the function that called hero

18.1 How Tail Calls Work

The call instruction pushes the address of the next instruction (which in this case

happens to be the return instruction) onto the call stack. It then transfers control

to the function whose address is in the register labelled as continuation. When

the continuation function is done, it pops the address of the return from the stack

and jumps to it. The return instruction will again pop the stack and jump to the

instruction after the instruction that called hero.

The optimization replaces those two instructions with a single instruction:

jump continuation # go to the continuation function

Now we do not push the address of the return instruction onto the call stack. The

continuation function returns to the function that called hero, not hero itself. A tail

call is like a goto with arguments, but without any of the dangers of the goto that led

to its elimination.

So it appears that the optimization saved wun instruction, a push, and a pop. That

does not seem like a big deal. To better understand the benefit, let’s look at how calls

actually work in JavaScript. When you call a function, these things happen:

• Evaluate the argument expressions.

• Create an activation object of sufficient size to hold all of the function’s

parameters and variables.

• Store a reference to the function object that is being called in the new

activation object.

• Store the values from the arguments into parameters in the new activation

object. Missing arguments are treated as undefined. Excess arguments are

ignored.

• Store undefined into all of the variables in the new activation object.

• Set the next instruction field in the activation to indicate the instruction

immediately after the call.

• Set the caller field in the new activation to the current activation. There is

not actually a call stack. Instead, there is a linked list of activations.

• Make the new activation the current activation.

• Begin execution of the called function.

The optimization acts a little differently.

• Evaluate the argument expressions.

• If the current activation is large enough,

• Use the current activation object as the new activation object.

Otherwise,

• Create an activation object of sufficient size to hold all of the

function’s parameters and variables.

• Copy the caller field from the current activation object to the new

activation object.

• Make the new activation object the current activation.

• Store a reference to the function object that is being called in the new

activation object.

How Tail Calls Work 18.2

• Store the values from the arguments into parameters in the new activation

object. Missing arguments are treated as undefined. Excess arguments are

ignored.

• Store undefined into all of the variables in the new activation object.

• Begin execution of the called function.

The important difference is that if the activation object is big enough, and it usually

is, then we do not need to allocate another. We can reuse the current activation object

now. Call stack chains are not long, usually on the order of a few hundred, so it makes

sense for implementations to always allocate activation objects in a single maxy size

when tail calls are imminent. The reduction of time in memory allocation and garbage

collection can be significant. But there is more.

With tail call optimization, recursive functions can become as fast as loops. This is

important from a functional perspective because loops are inherently impure. Purity

comes with recursion. With this optimization, the performance argument against

recursion is defeated.

This is the general structure of a loop.

while (true) {

do some stuff

if (done) {

break;

}

do more stuff

}

A tail recursive function might be like this

(function loop() {

do some stuff

if (done) {

return;

}

do more stuff

return loop(); // <-- tail call

}());

That demonstrates a correspondence between loops and recursive functions.

Recursive functions will generally be more elegant, passing updated state in

parameters and return values instead of using assignment.

We can now have recursion go to any depth without fear of memory exhaustion or

synthetic stack overflow errors. So good recursive functions will now work correctly.

Proper Tail Calls isn’t a feature, it’s a bug fix. The standard requires the

implementation of this optimization because it is important to prevent the failure of

good programs.

18.3 How Tail Calls Work

Tail Position

A call is a tail call if the value a function returns is returned. So

return (

typeof any === "function"

? any() // <-- tail call

: undefined

);

is a tail call. Return expressions made of && logical
and and || logical

or can also be tail

calls, but

return 1 + any(); // <-- not a tail call

is not a tail call. The last thing the function did was return the result of an addition.

any(); // <-- not a tail call

return;

That was not a tail call because it is returning undefined, not the return value of a

function.

const value = any(); // <-- not a tail call

return value;

That was also not a tail call because it is returning the contents of value. We know

that the value of value is the result of any(), but the call was not in tail position.

Recursion in general is not a tail call.

function factorial(n) {

if (n < 2) {

return 1;

}

return n * factorial(n - 1); // <-- not a tail call

}

The recursive call to factorial is not in tail position so it generates an activation

record on each iteration, but we can move the call to tail position:

function factorial(n, result = 1) {

if (n < 2) {

return result;

}

return factorial(n - 1, n * result); // <-- tail call

}

This version will be optimized. The recursive calls will not generate activation objects.

Instead they jump to the top of the function. It uses arguments instead of assignment

to refresh the parameters.

Returning a new function object is not a tail call...

return function () {}; // <-- not a tail call

unless you immediately invoke the new function object.

return (function () {}()); // <-- tail call

How Tail Calls Work 18.4

Exclusions

There are situations where the optimization must be cancelled to protect good

programs from going bad.

A tail call inside of a try block can not be optimized. The optimization would save time

and memory by not linking the activation object for this invocation into the call stack.

But try might send control back to this invocation’s catch, and in order for that to

happen, the activation object must not be optimized away. This is another good reason

to avoid misuse of exceptions.

If this function creates a new function object that has any free variables, then the

new function object must have access to the activation object of its creator, so the

activation object must not be optimized away.

Continuation Passing Style

In Continuation Passing Style, functions take an additional continuation parameter,

which is a function that receives the result. The continuize factory at the top of this

chapter can turn any function into a function that also takes a continuation. In this

style, a continuation is a function that represents the continuation of the program.

The flow of the program is always going forward, rarely needing to revisit previous

states. It is a very effective tool for managing eventuality. It has uses in transpiling

and other applications. It is only possible with the tail call optimization.

Debugging

The elimination of activations in the call stack can make debugging more difficult

because you can no longer see all of the steps that led to the current predicament,

but a good debugger can mitigate that by offering a mode in which it copies the state

of each activation object and always retains a small set of the most recent. This does

not interfere with the benefits of the optimization, but still allows inspection of the

traditional stack trace.

Chapter 19

How Purity Works

●○○●●

The price of purity is purists.

Calvin Trillin

Functional programming is defined sensibly as programming with functions.

Unfortunately, it is an ambiguous definition. It could mean programming with

mathematical functions, which map domains of values to ranges of values. Or it could

mean programming with software functions, which in most programming languages

means parameterized strings of statements.

The mathematical functions are considered to be more pure than the software kind.

Purity is corrupted by mutation. A pure function does not cause mutation. A pure

function is not influenced by mutation. A pure function’s result is determined only by

its inputs. It performs no action other than to provide an output. A given input always

produces the same output.

JavaScript, on the other hand, seems like a celebration of mutation. Assignment

operators are the principle mutation devices, and JavaScript has 15 of them, or 17 if

you count the dreaded ++ and -- twice, which you should:

= assignment

+= add assignment

-= subtract assignment

*= multiply assignment

/= divide assignment

%= remainder assignment

**= exponentiation assignment

>>>= shift right assignment

>>= shift right sign extended assignment

<<= shift left assignment

&= bitwise and assignment

|= bitwise or assignment

^= bitwise xor assignment

++ pre-increment

++ post-increment

-- pre-decrement

-- post-decrement

Like most mainstream languages, JavaScript loves the slop, preferring mutation to

clarity. JavaScript chose to give = equal
sign to mutation (impurity), not to equality

(purity).

19.1 How Purity Works

The Blessings of Purity

Purity comes with some valuable benefits.

Purity usually implies excellent modularity. Pure functions have extremely strong

cohesion. Everything in the function is there to help provide a single result. There is

nothing else happening on the side that could weaken cohesion. Pure functions have

extremely loose coupling. A pure function depends only on its inputs. The making of

good modules can be very difficult, but with purity, good modularity comes for free.

Pure functions can be much easier to test. Since they depend only on their arguments,

there is no need to mock, fake, or stub. Wunce we have seen a pure function return

the correct output from an input, we know that no mutation in the environment can

ever cause the pure function to return any other value. The bugs that seem to go away

when you turn the power off and on are due to impurity.

Pure functions are very composable. Since they have no side effects and no external

dependencies or influences, it is easy to assemble them into larger, more complex

functions that can be pure and composable as well.

Someday purity will provide huge increases in performance. Purity provides an

excellent solution to the reliability and performance problems that plague threads. In

multi-threaded systems, if two threads attempt to access the same section of memory

at the same time, then a race may occur that can result in data corruption or system

failure. Such races can be very difficult to diagnose. Mutual exclusion can mitigate

races, but it can also cause delays, deadlocks, and system failures.

Pure functions can make threads safe and efficient. Since pure functions cause no

mutation, memory sharing creates no risk. An array map method, given a pure

function, could distribute the array’s elements over all of the available cores. The

computation could proceed very quickly. Performance improvements could be linear.

The more cores, the faster it goes. There is a large class of programs that could

significantly benefit.

There are always lots of silly features that are being considered for inclusion into

JavaScript. A lot of them get in. They are all distractions. The parallelization of pure

functions is the wun we need.

Getting Pure

There are clearly enormous benefits that come with purity. So can we add purity to

the language? No. Purity is not a feature that can be added. It is like reliability and

security. We can not add reliability to a system. Instead we must remove unreliability.

We can not add security. We must remove insecurity. And we can not add purity. We

must remove the impurities. The impurities are the corruptions that deviate from the

mathematical model of functions.

ECMA is powerless to remove the bad parts from JavaScript, which is why the

number of bad parts keeps increasing, but you can simply stop using the badness. We

can make the language pure for ourselves by bringing more discipline to the process.

If we decide to never use an impure feature, then that feature can no longer sap and

impurify the essence of our function bodies.

So let’s do a quick survey of the impurities of the language.

How Purity Works 19.2

Obviously, we must purge all of the assignment operators, as well as the var and let

statements. We can keep the const statement. It creates and initializes a variable, but

does not allow it to be mutated.

We must get rid of the operators and methods that modify objects, including the

delete operator and methods like Object.assign. We must also get rid of the array

mutating methods like splice and sort. The array sort method could have been a

pure function, but its implementation modifies the original array, so out it goes.

We must get rid of getters and setters. The setters are obviously instruments of

mutation, and both exist for creating side effects. All side effects are corruptions and

must be eliminated.

The RegExp exec method mutates the lastIndex property, so it goes. It could have

been designed better, but it wasn’t.

The purpose of the for statement is to mutate the induction variable, so it has to go.

We should get rid of while and do as well. Tail recursion is the purest form of iteration.

We must get rid of the Date constructor. Every time we call it, we get a different value.

That is not pure. We should also get rid of Math.random. You never know what value it

is going to give you.

We must get rid of the users. Every interaction with a human can return a different

result. Humans are not pure.

And finally, we must get rid of the network. The Lambda Calculus has no way of

expressing information that exists on wun machine and not on another. Similary, the

Universal Turing Machine does not have WiFi connectivity.

The Problem With The Universe

The universe is not pure. The universe is eventual, fully distributed, and highly

parallel. Our programming model should embrace this truth. If our programs are to

interact with the universe, particularly with the universe’s human agents, then some

parts of our programs may have to be impure.

We should try to make our programs as pure as possible because the benefits of purity

are real. Objects are still valuable even though they have state, and state is only

interesting if it is changeable. We should design our objects so that the changing of

their state is disciplined and tightly controlled.

Continuum

Purity would be easier to reason about if it were binary: A function is either pure or

impure. Unfortunately, it is more complicated than that. There are a number of ways

that we can think about purity.

Mutation is impure, but ultimately, even the purest systems have some impurity

under the hood. A functional system is always creating new activation objects, and

the business of moving objects from available memory to active memory and back

again requires mutation. That is not a bad thing. Generally, we want as much stuff as

possible to be pure, and the stuff that is not pure should be hidden.

The generators of Chapter 13 and the objects of Chapter 17 hide their state well. Code

on the outside can only change the state thru the discipline imposed by the generator

19.3 How Purity Works

function and by the methods. The generators and objects can not be mutated by

external assignment. They are not completely pure, but they are a significant

improvement over the other patterns of OOP. They are examples of how we can

manage the purity frontier.

Wun definition of purity is freedom from assignment and other mutators. So is this

pure?

function repeat(generator) {

if (generator() !== undefined) {

return repeat(generator);

}

}

The repeat function takes a generator function and calls it until it returns undefined.

It is pure of body, but not of spirit. It commits no impure acts of its own, but it enables

the impurity of the generator. Many higher order functions are in this middle ground.

It is possible for a function to do assignment and still be considered pure. If a function

declares local variables, and uses loops and assignments to modify those variables,

then it might look impure. But we could give such a function to the parallel map

function and it will work just fine. It is pure of spirit but not of body. Viewed as a

black box, it is pure. It is only impure if we look inside.

So there is a continuum of purity, with mathematical functions on top, and then

functions that are pure enough for parallel application, then pure higher order

functions, then stateful higher order functions, and then the miles of slop that pollute

the web: the classical, the procedural, and at the very bottom, everything using global

variables.

Chapter 20

How Eventual Programming Works

●○●○○

Moe! Larry! The cheese!

Jerome Lester Horwitz

In the beginning there was sequential programming. The first computers were just

automatic calculators. You would feed a computer some data and a routine, and it

would execute the orders, wun at a time, until it produced a result and halted. This

wun-at-a-time execution model worked well for calculation and bulk data processing.

The first programming languages were developed during the sequential era. Those

languages were so influential that most modern languages are still firmly rooted in

the sequential paradigm. The old paradigm did not anticipate what our programs do

now, making programming of modern systems unnecessarily difficult, unreliable, and

insecure.

A typical feature of sequential languages is blocking input and output. When a

program attempts to read from a file or from the network, it is blocked until the input

operation finishes. This made sense for FORTRAN. A program would block when it

needed to read data from cards in the card reader. The program had nothing to do

until the data was ready, so blocking was not a problem. Most modern languages still

implement the FORTRAN I/O model. JavaScript does not. JavaScript’s first job was

to interact with humans, so it instead favors a better model. JavaScript is less stuck

in the sequential model than most other languages.

Concurrency

The sequential model broke down when computers started interacting with people,

and then with other computers. That required concurrent programming, the ability to

do multiple things at wunce.

Homogeneous concurrency provides support for many similar operations happening

at the same time. We saw an example of this with array methods that take pure

functions, processing every element of the array at wunce.

Heterogeneous concurrency supports the cooperation of specialized processes that

each has a different responsibility, but that all work together as a team. The difficulty

is to make sure that the team members do not act like The Three Stooges. This is a

real concern. Stooge behavior is an inevitable consequence of bad architecture. Nyuck

nyuck.

20.1 How Eventual Programming Works

Threads

Threads are wun of the oldest heterogeneous concurrency mechanisms, and are still

widely used. Threads are (real or virtual) CPUs that all run at the same time whilst

sharing the same memory. Threads work well when running pure functions. If the

functions are not pure, then the stooges come out.

Here we see two threads, Moe and Larry, that share a variable. Moe adds 1 to the

variable and Larry adds 2. As you would expect, the result is 3.

Moe Larry variable

0

variable += 1 1

variable += 2 3

In this trial, Moe mutated first. It could also happen that Larry is first to mutate. In

this particular case, it does not matter who wins the race because the operations are

commutative. If Larry used *=
asterisk equal

sign instead of += plus sign
equal

sign then the

result would depend on the race. There are other outcomes that are more problematic.

Looking at this code at a lower level, the += plus sign
equal

sign assignment statement

could be compiled into three simple machine instructions: load, add, and store.

Moe Larry variable

0

load variable 0

add 1 load variable 0

store variable add 2 1

store variable 2

This demonstrates a read-modify-write race. Moe and Larry both fetch the variable

whilst its state is 0. They both add to the value they fetched, and then they both

store their sums. This time, Moe’s modification is overwritten. Another time, Larry’s

modification is overwritten. Perhaps most of the time, Moe and Larry do not both fetch

the same value, so the code usually works correctly.

It is possible for that code to run correctly, but it is also possible that it does not. It is

difficult to see the potential error in these two extremely simple wun line programs.

In complex programs, these errors can hide very well.

Computational load can change the interleaving of instructions. The code might work

correctly during development and testing, but fail in production. Or it might run

well all year and then fail in December. Temporal bugs in threads are the worst,

most expensive of all bugs. When the behavior of a program can be influenced by

cosmic randomness, reproduction of error conditions can be virtually impossible. Type

checking does not find them. Tests do not find them. The errors might occur very

infrequently, which makes them extremely difficult to debug, or to have confidence

that the fix did not make things worse.

The dangers of thread races can be mitigated by means of mutual exclusion, which

can lock critical sections of memory, blocking the threads, preventing them from

executing when there is contention. The operation of the locks can be computationally

How Eventual Programming Works 20.2

expensive. There might be a blocked thread that is not able to release its locks. This is

called deadlock, another failure mode that is difficult to prevent, replicate, or repair.

The biggest design error in Java (and many similar languages) was that it could not

decide if it wanted to be a systems language or an application language. Because it

tried to be both, it requires the use of threads in applications, which is inexcusable.

Threads in operating systems can be a necessary evil. Threads in applications are just

evil. Fortunately, JavaScript does not use threads in this way. There is a better way

to get concurrency.

Eventual Programming

An eventual function is a function that returns immediately, possibly before the work

that is requested of it is finished. The result will be communicated eventually in the

future thru a callback function or message send, but not as an immediate return

value.

Eventuality provides a way of managing lots of activity without exposing applications

to threads. In fact, there are systems that have application threads that depend on

eventuality to manage their user interfaces just because it is an easier and more

reliable way of dealing with events over time. Eventual programming is built on two

ideas: callback functions and a processing loop.

A callback function is a function that will be called in the future when something

interesting happens, such as:

• A message has arrived.

• Some work has finished.

• A human has communicated with the program.

• A sensor has observed something.

• Time has passed.

• Something has gone wrong.

A callback function is passed to a function that is starting or monitoring an activity. In

more primitive systems, the callback function is attached to an object that represents

an activity. In web browsers, a callback function can be attached to a DOM node by

assigning the callback to a particular property of the DOM node...

my_little_dom_node.onclick = callback function;

or by calling an event registration method on the object.

my_little_dom_node.addEventListener("click", callback function, false);

Both forms work. When the user clicks on a particular DOM node, the callback

function (aka event handler) is called, probably performing some useful action in

response to the event.

The other idea in eventual programming is the processing loop, also known as the

event loop or the message loop. The processing loop takes the highest priority event

or message from a queue, and calls the callback function that is registered to receive

the event or message. The callback function runs to completion. The callback does

not need to bother with memory locks or mutual exclusion. The callback is not

20.3 How Eventual Programming Works

interrupted, so there is no chance of races. When the callback function returns, the

processing loop takes the next thing from the queue, and on it goes. It is a very reliable

programming model.

The processing loop maintains a queue, known as the event queue or message queue,

that holds incoming events or messages. The events or messages can be originated

by callback functions as part of their responses. More likely, the events or messages

come from ancillary threads that are managing the user inputs, the network, the

I/O system, and interprocess communication. The way to communicate with the main

thread where your JavaScript program runs is with the queue. Mutual exclusion is

limited to this wun point of contact, so eventual systems tend to be very efficient and

reliable.

A surprising benefit of this model is that JavaScript programs in the web browser are

remarkably resilient. When you open a debugger and then go surf the web, you see

an almost constant stream of exceptions and failures. This might be because many

web developers are not very good at what they do. And yet, most everything seems to

work.

In systems with threads, if wun thread has an exception, its stack gets unwound. That

thread might now be in an inconsistent state relative to the other threads, which could

lead to cascading thread failure.

JavaScript uses a single thread. Most of its vital state is in the closure of its functions,

not on the stack. So things tend to keep running. As long as there is a button that

works, users can still make progress, unaware of the multitude of errors that are

happening behind the scenes.

The Law of Turns

Each iteration of the processing loop is called a turn, which comes from games like

Chess and Poker, where at any moment only wun player is allowed to play. The player

makes a move, and having moved, the player’s turn ends and, while the game is

unfinished, another player’s turn begins.

Games have rules, and the eventual model has rules: The Law of Turns.

Never wait. Never block. Finish fast.

The Law of Turns applies to callback functions that the processing loop calls, and to

every function that they call, directly and indirectly. A function is not allowed to loop

while waiting for something to happen. A function is not allowed to block the main

thread. In the web browser, functions like alert are not allowed. In Node.js, functions

whose names contain the malodorous -Sync suffix are not allowed. A function that

takes a long time to do its work is not allowed.

Violations of the The Law of Turns turn a high performance eventual system into

a very low performance system. Violations cause delays not just for the current

How Eventual Programming Works 20.4

callback, but for everything in the queue. These delays can accumulate, which can

cause the queue to grow longer. The system is no longer fast and responsive.

So any violating function must either be corrected or isolated in a separate process.

A process is like a thread that does not share its memory. So it is reasonable for a

callback to send some work to a process, and for that process to send a message when

it has completed. The message goes into the queue and is eventually delivered.

JavaScript does not know about processes. Processes are services that can be provided

by systems in which JavaScript runs. Processes are an important part of the eventual

model, so it is likely that processes will be a first-class feature of the next language.

Trouble In Serverland

JavaScript was created for event loops and it performs really well. Unfortunately,

message loops have been more of a struggle. This is because the nature of the work

that a server does is quite different. In the browser, most of a program’s work is

responding to UI events. An event handler is called, it does some work, updates the

display, and is done.

The typical workflow for a server is much more complex. A message receiver or

handler is called, which may need to communicate with other systems, possibly

located on other machines, before it can transmit its response. Sometimes what it

learns from wun system must be communicated to another. These operations can

be in long chains. And the results of interacting with the other systems will be

communicated with callbacks. There is an elegant programming solution to this, but

first let’s look at three popular mistakes.

The first mistake is called Callback Hell. This is a pattern in which each callback

function contains the code to request the next unit of work. That request provides a

callback that also requests another unit of work, and so on. Programs written this

way are difficult to read, difficult to maintain, and brittle.

The second mistake is called Promises. In their original form, promises were brilliant.

They were created to support the development of secure, distributed programs.

Unfortunately, when promises migrated to JavaScript, they lost all of their new

paradigm features. All that is left is an awkward control flow mechanism. Promises

were not designed to manage local control flow, which is why they do not do it

very well. They are definitely an improvement over callback hell, but they are not

satisfactual.

The third mistake is called Async Await. It is a pair of keywords that are used to

decorate ordinary sequential code and magically transform it into eventual code. It is

similar to ES6 generators in that the code you write is quite different than the code

you get. To its credit, it masks much of the disappointment of promises. The thing

that is most liked about async await is that you can continue to write in the style of

the old paradigm. That is also the biggest problem with it.

The new paradigm is important. Understanding the new paradigm can be difficult

because it is new, but that is how we make progress. Async await gives us a way to be

productive without actually making progress. Its users are writing code that they do

not fully understand. That is never a good thing. A growing problem is coders who are

putting the async and await decorators everywhere. Because they do not understand

20.5 How Eventual Programming Works

what they do, they do not understand how to use them well. We should not be trying

to deny or hide the next paradigm. We should be embracing it.

Something that all three mistakes have in common is the tight coupling of logic

and control flow. That yields poor cohesion because too many disparate activities are

pasted together. It is better to separate them.

Requestors

We should design modularly. Each unit of work, which might be making a request

of some server or database or launching a process, should be a separate function. A

function that just performs a unit of work has strong cohesion. These functions also

take a callback function as their first argument. When the unit of work is completed,

the result is passed to the callback. This reduces dependence on other code, giving

us loose coupling. This is a good modular design practice that helps us in the new

paradigm.

We use the word requestor to describe a function that takes a callback and performs a

unit of work that might not be completed until a future turn.

function my_little_requestor(callback, value)

A callback function takes two arguments: value and reason. value is the requestor’s

result, or undefined if the requestor failed. The optional reason can be used to

document failures.

function my_little_callback(value, reason)

A requestor function may optionally return a cancel function. This function can be

called to cancel the work for any reason. It is not an undo. It is only intended to stop

unnecessary work. So if a requestor starts an expensive operation on another server,

and if the operation is no longer required, then calling the requestor’s cancel function

might send a cease message to the server.

function my_little_cancel(reason)

Requestor Factories

Much of your work is making factories that take arguments and return requestors.

This factory is a simple wrapper that can take any wun argument function and return

a requestor.

function requestorize(unary) {

return function requestor(callback, value) {

try {

return callback(unary(value));

} catch (exception) {

return callback(undefined, exception);

}

};

}

This factory makes a requestor that can read a file on Node.js.

function read_file(directory, encoding = "utf-8") {

return function read_file_requestor(callback, value) {

return fs.readFile(

directory + value,

How Eventual Programming Works 20.6

encoding,

function (err, data) {

return (

err

? callback(undefined, err)

: callback(data)

);

}

);

};

}

The most interesting factories make requestors that communicate with other services

in dialogs that may extend over many turns. They can take this form:

function factory(service_address, arguments) {

// The factory function returns a requestor function that can do a unit of work.

return function requestor(callback, value) {

// It starts the work in a 'try' block just in case the function that sends the

// message to the worker service fails.

try {

// When the requestor function is called, it sends a message to the service,

// telling it to start work. When a result is obtained, it will be delivered

// by the 'callback' function. In this example, we assume that the message

// system will send its result using the '(result, exception)' convention.

send_message(

callback,

service_address,

start,

value,

arguments

);

} catch (exception) {

// If an exception is caught, we signal failure.

return callback(undefined, exception);

}

// We are allowed to return a 'cancel' function that will attempt to cancel

// the request when the result is no longer needed.

return function cancel(reason) {

return send_message(

undefined,

service_address,

stop,

reason

);

20.7 How Eventual Programming Works

};

};

}

Parseq

I developed the Parseq library to manage the flow between requestor functions. The

Parseq factories package arrays of your requestor functions together with a control

flow: parallel, sequence, fallback, or race. Each factory returns a new requestor. This

makes requestors highly composable.

The Parseq library can deal with time limits. It might be that some work must be

completed in 100 milliseconds. If it is late, then we should consider the work a failure

and go on to an alternate response. This is something that is very difficult to do using

any of the three mistakes. Using Parseq, all you have to do is specify a time limit in

milliseconds.

parseq.sequence(

requestor_array,

milliseconds

)

The sequence factory takes an array of requestor functions and an optional time limit

and returns a requestor that causes each of the requestors in the array to be called.

The value passed to the new requestor is passed to the zeroth requestor in the array.

The value it produces is passed to the wunth requestor. In this way, values flow from

requestor to requestor. The result of the last requestor is the result of the sequence.

parseq.parallel(required_array,optional_array,milliseconds,

time_option,

throttle

)

The parallel factory starts all of its requestors at wunce. It does not add parallelism

to JavaScript. Instead, it allows JavaScript to exploit the natural parallelism of the

universe. This allows for spreading the computational load onto many servers. This

can provide a huge performance advantage. If we process all of the requestors in

parallel, the time taken is the time of the slowest requestor, not the total time of all of

the requestors. This is an important optimization.

The parallel factory should only be used when the requestors have no

interdependence. All of the requestors are given the same value. The result is an array

containing the results of all of the requestors. In that way it resembles the array map

method.

The parallel factory can take two arrays of requestors. The first array contains the

required requestors. All of the required requestors must complete successfully for the

How Eventual Programming Works 20.8

parallel operation to succeed. The second array contains the optional requestors. They

may fail without causing the parallel operation to fail.

A time limit in milliseconds can be provided. It determines how much time the

required requestors have to complete their work. The time option parameter

determines how the time limit affects the optional requestors.

time_option Effectundefined The optional requestors must finish before the required

requestors finish. The required requestors must finish

before the time limit, if there is wun.

true The required requestors and the optional requestors must

all finish before the time limit.

false The required requestors have no time limit. The optional

requestors must finish before the required requestors

finish and the time limit, whichever is later.

By default, all of the requestors are started at wunce. Unfortunately, this can

overwhelm badly designed systems. So there is an optional throttle that limits the

number of requestors that are active at wunce.

parseq.fallback(

requestor_array,

milliseconds

)

The fallback factory is like the sequence factory, but it is successful when any of the

requestors has a successful result. If a requestor fails, it just tries the next wun. A

fallback fails if every requestor fails.

parseq.race(requestor_array,

milliseconds,

throttle

)

The race factory is like the parallel factory, but it declares success on the first

successful requestor result. If wun requestor succeeds, then the race succeeds.

Example:

let getWeather = parseq.fallback([

fetch("weather", localCache),

fetch("weather", localDB),

fetch("weather", remoteDB)

]);

let getAds = parseq.race([getAd(adnet.klikHaus),

getAd(adnet.inUFace),

getAd(adnet.trackPipe)

20.9 How Eventual Programming Works

]);

let getNav = parseq.sequence([

getUserRecord,

getPreference,

getCustomNav

]);

let getStuff = parseq.parallel([getNav, getAds, getMessageOfTheDay],[getWeather, getHoroscope, getGossip],

500,

true

);

Exceptions

Exceptions are too weak to deal with failures happening over many turns. An

exception can unwind a stack, but nothing in a stack survives from turn to turn.

Exceptions do not have the power to communicate to a future turn that something

failed in an earlier turn, nor can exceptions travel back in time to the origin of the

failing request.

A factory is allowed to throw an exception because the caller of the factory is still on

the stack. Requestors are never allowed to throw exceptions because there is nothing

on the stack to catch them. Requestors must not allow stray exceptions to escape. All

exceptions must be caught and passed to the callback function as a reason.

Parseq Implementation

Let’s look at the implementation of Parseq. It is not very big. It contains four public

functions and four private functions.

The first private function is make_reason. It makes an error object.

function make_reason(factory_name, excuse, evidence) {

Make a reason object. These are used for exceptions and cancellations. They are made

from Error objects.

const reason = new Error("parseq." + factory_name + (

excuse === undefined

? ""

: ": " + excuse

));

reason.evidence = evidence;

return reason;

}

A callback is a function with two parameters.

function check_callback(callback, factory_name) {

if (typeof callback !== "function" || callback.length !== 2) {

throw make_reason(factory_name, "Not a callback.", callback);

}

}

Make sure that all of the elements in an array are requestor functions.

How Eventual Programming Works 20.10

function check_requestor_array(requestor_array, factory_name) {

A requestor array contains only requestors. A requestor is a function that takes wun

or two arguments: callback and optionally initial_value.

if (

!Array.isArray(requestor_array)

|| requestor_array.length < 1

|| requestor_array.some(function (requestor) {

return (

typeof requestor !== "function"

|| requestor.length < 1

|| requestor.length > 2

);

})

) {

throw make_reason(

factory_name,

"Bad requestors array.",

requestor_array

);

}

}

The run function is the heart of Parseq. It launches the requestors and manages

timing, cancellation, and throttling.

function run(

factory_name,

requestor_array,

initial_value,

action,

timeout,

time_limit,

throttle = 0

) {

The run function does the work that is common to all of the Parseq factories. It takes

the name of the factory, an array of requestors, an initial value, an action callback, a

timeout callback, a time limit in milliseconds, and a throttle.

If all goes well, we call all of the requestor functions in the array. Each of them might

return a cancel function that is kept in the cancel_array.

let cancel_array = new Array(requestor_array.length);let next_number = 0;

let timer_id;

We need cancel and start_requestor functions.

function cancel(reason = make_reason(factory_name, "Cancel.")) {

Stop all unfinished business. This can be called when a requestor fails. It can also

be called when a requestor succeeds, such as race stopping its losers, or parallel

stopping the unfinished optionals.

If a timer is running, stop it.

20.11 How Eventual Programming Works

if (timer_id !== undefined) {

clearTimeout(timer_id);

timer_id = undefined;

}

If anything is still going, cancel it.

if (cancel_array !== undefined) {

cancel_array.forEach(function (cancel) {

try {

if (typeof cancel === "function") {

return cancel(reason);

}

} catch (ignore) {}

});

cancel_array = undefined;

}

}

function start_requestor(value) {

The start_requestor function is not recursive, exactly. It does not directly call itself,

but it does return a function that might call start_requestor.

Start the execution of a requestor, if there are any still waiting.

if (

cancel_array !== undefined

&& next_number < requestor_array.length

) {

Each requestor has a number.

let number = next_number;

next_number += 1;

Call the next requestor, passing in a callback function, saving the cancel function that

the requestor might return.

const requestor = requestor_array[number];

try {

cancel_array[number] = requestor(

function start_requestor_callback(value, reason) {

This callback function is called by the requestor when it is done. If we are no longer

running, then this call is ignored. For example, it might be a result that is sent back

after the time limit has expired. This callback function can only be called wunce.

if (

cancel_array !== undefined

&& number !== undefined

) {

We no longer need the cancel associated with this requestor.

cancel_array[number] = undefined;

Call the action function to let the requestor know what happened.

action(value, reason, number);

Clear number so this callback can not be used again.

number = undefined;

How Eventual Programming Works 20.12

If there are any requestors that are still waiting to start, then start the next wun. If

the next requestor is in a sequence, then it gets the most recent value. The others get

the initial_value.

return start_requestor(

factory_name === "sequence"

? value

: initial_value

);

}

},

value

);

Requestors are required to report their failure thru the callback. They are not allowed

to throw exceptions. If we happen to catch wun, it is treated as a failure.

} catch (exception) {

action(undefined, exception, number);

number = undefined;

start_requestor(value);

}

}

}

With the cancel and the start_requestor functions in hand, we can now get to work.

If a timeout was requested, start the timer.

if (time_limit !== undefined) {

if (typeof time_limit === "number" && time_limit >= 0) {

if (time_limit > 0) {

timer_id = setTimeout(timeout, time_limit);

}

} else {

throw make_reason(factory_name, "Bad time limit.",

}

time_limit);

}

If we are doing race or parallel, we want to start all of the requestors at wunce.

However, if there is a throttle in place then we start as many as the throttle allows,

and then as each requestor finishes, another is started.

The sequence and fallback factories set throttle to 1 because they process wun at a

time and always start another requestor when the previous requestor finishes.

if (!Number.isSafeInteger(throttle) || throttle < 0) {

throw make_reason(factory_name, "Bad throttle.", throttle);

}

let repeat = Math.min(throttle || Infinity, requestor_array.length);while (repeat > 0) {

setTimeout(start_requestor, 0, initial_value);

repeat -= 1;

}

We return cancel which allows the requestor to cancel this work.

return cancel;

}

And now, the four public functions:

20.13 How Eventual Programming Works

The parallel function is the most complicated because of the array of optional

requestors.

function parallel(required_array,optional_array,

time_limit,

time_option,

throttle,

factory_name = "parallel"

) {

The parallel factory is the most complex of these factories. It can take a second array

of requestors that get a more forgiving failure policy. It returns a requestor that

produces an array of values.

let number_of_required;

let requestor_array;

There are four cases because required_array and optional_array can both be empty.

if (required_array === undefined || required_array.length === 0) {

number_of_required = 0;

if (optional_array === undefined || optional_array.length === 0) {

If both are empty, then there is probably a mistake.

throw make_reason(

factory_name,

"Missing requestor array.",

required_array);

}

If there is only optional_array, then it is the requestor_array.

requestor_array = optional_array;

time_option = true;

} else {

If there is only required_array, then it is the requestor_array.

number_of_required = required_array.length;

if (optional_array === undefined || optional_array.length === 0) {

requestor_array = required_array;time_option = undefined;

If both arrays are provided, we concatenate them together.

} else {

requestor_array = required_array.concat(optional_array);

if (time_option !== undefined && typeof time_option !== "boolean") {

throw make_reason(factory_name,

"Bad time_option.",time_option

);

}

}

}

We check the array and return the requestor.

How Eventual Programming Works 20.14

check_requestor_array(requestor_array, factory_name);

return function parallel_requestor(callback, initial_value) {

check_callback(callback, factory_name);

let number_of_pending = requestor_array.length;let number_of_pending_required = number_of_required;

let results = [];

run gets it started.

let cancel = run(

factory_name,

requestor_array,

initial_value,

function parallel_action(value, reason, number) {

The action function gets the result of each requestor in the array. parallel wants to

return an array of all of the values it sees.

results[number] = value;

number_of_pending -= 1;

If the requestor was wun of the requireds, make sure it was successful. If it failed,

then the parallel operation fails. If an optionals requestor fails, we can still continue.

if (number < number_of_required) {

number_of_pending_required -= 1;

if (value === undefined) {

cancel(reason);

callback(undefined, reason);

callback = undefined;

return;

}

}

If all have been processed, or if the requireds have all succeeded and we do not have a

time_option, then we are done.

if (

number_of_pending < 1

||(time_option === undefined

&& number_of_pending_required < 1

)

) {

cancel(make_reason(factory_name, "Optional."));

callback(

factory_name === "sequence"

? results.pop(): results

);

callback = undefined;

}

},

function parallel_timeout() {

When the timer fires, work stops unless we were under the false time option. The

false time option puts no time limits on the requireds, allowing the optionals to run

until the requireds finish or the time expires, whichever happens last.

20.15 How Eventual Programming Works

const reason = make_reason(factory_name,

"Timeout.",

time_limit

);

if (time_option === false) {

time_option = undefined;

if (number_of_pending_required < 1) {

cancel(reason);

callback(results);

}

} else {

Time has expired. If all of the requireds were successful, then the parallel operation

is successful.

cancel(reason);

if (number_of_pending_required < 1) {

callback(results);

} else {

callback(undefined, reason);

}

callback = undefined;

}

},

time_limit,

throttle

);

return cancel;

};

}

The race function is much simpler than parallel because it does not need to

accumulate all of the results. It only needs a single result.

function race(requestor_array, time_limit, throttle) {

The race factory returns a requestor that starts all of the requestors in

requestor_array at wunce. The first success wins.

const factory_name = (

throttle === 1

? "fallback"

: "race"

);

check_requestor_array(requestor_array, factory_name);

return function race_requestor(callback, initial_value) {

check_callback(callback, factory_name);

let number_of_pending = requestor_array.length;let cancel = run(

factory_name,

requestor_array,

initial_value,

function race_action(value, reason, number) {

number_of_pending -= 1;

We have a winner. Cancel the losers and pass the value to the callback.

How Eventual Programming Works 20.16

if (value !== undefined) {

cancel(make_reason(factory_name, "Loser.", number));

callback(value);

callback = undefined;

}

There was no winner. Signal a failure.

if (number_of_pending < 1) {

cancel(reason);

callback(undefined, reason);

callback = undefined;

}

},

function race_timeout() {

let reason = make_reason(factory_name,

"Timeout.",

time_limit

);

cancel(reason);

callback(undefined, reason);

callback = undefined;

},

time_limit,

throttle

);

return cancel;

};

}

A fallback is just a throttled race.

function fallback(requestor_array, time_limit) {

The fallback factory returns a requestor that tries each requestor in requestor_array,

wun at a time, until it finds a successful wun.

return race(requestor_array, time_limit, 1);

}

A sequence is just a throttled parallel with propagated values.

function sequence(requestor_array, time_limit) {

A sequence runs each requestor in order, passing results to the next, as long as they

are all successful. A sequence is a throttled parallel.

return parallel(requestor_array,

undefined,

time_limit,

undefined,

1,

"sequence"

);

}

You can access Parseq in your module by importing it.

import parseq from "./parseq.js";

20.17 How Eventual Programming Works

English

Edsger Dijkstra was wun of the first to recognize the problems with threads in 1962.

He worked out the first mutual exclusion mechanism, semaphores. A semaphore was

implemented as two functions, P and V. P would attempt to lock the critical section,

blocking the caller if it is already locked. V would release the lock, allowing a waiting

thread to lock the critical section and run.

Per Brinch Hansen and C. A. R. Hoare integrated semaphores into classes to make

monitors, a syntactic form that was hoped to provide greater convenience and error

resistance.

The Java language did a similar thing called synchronized. It used a synchronized

keyword to decorate code that needed semaphores inserted. Unfortunately, the word

they selected does not make sense.

Synchronous means to exist at the same time or to be using the same clock. Musicians

in an orchestra are synchronized because they are all playing to the conductor’s beat.

When Java was created, the designers looked for a word that had something to do

with time. Unfortunately, they did not look hard enough.

When Microsoft was looking to add deeply wrong-headed eventual support to C#, they

looked to Java, taking a wrong word and making it wronger by giving it an a- prefix

to create an opposite. async makes no sense.

Most programmers have little training or experience with concurrent programming.

Simultaneous management of multiple streams of activity is unfamiliar and strange.

Giving them jargon that is fundamentally wrong does not make this easier. It is the

uninformed leading the even less informed.

Chapter 21

How Date Works

●○●○●

When you open the door, will your mystery

date be a dream, or a dud?

Milton Bradley

Our calendar maps the movement of the sun and the moon onto the steady passage

of time, but it was designed long before we discovered how the Solar System works.

It has been patched many times, but never completely repaired. Our misshapen

calendar was imposed on larger and larger communities by means of conquest and

commerce. Ultimately it was imposed on the global community without first

correcting it or replacing it with a more suitable design. It works, and the whole world

runs on it, but it could be better.

Our modern calendar is based on the Roman calendar which originally had ten

months and a bonus winter season that held the year’s leftover days. March (named

for Mars, the god of war) was the first month. December (which means the tenth

month) was the tenth month. The winter season was replaced by two new months,

January and February. Days were sometimes stolen from February and used to

extend other months for political purposes. The calendar drifted a day every four

years or so because the number of the days in a year is not an integer. (It was not

Rome’s fault that the number of days in a tropical year is not an integer.) They

attempted to expediently realign their calendar by declaring January the first month.

December (which still means the tenth month) became the twelfth month.

Julius established the standard of adding a leap day to February every four years.

This reduced the seasonal drift, but did not completely eliminate it. Gregory

standardized a better leap year algorithm, but a simpler, more accurate algorithm

was never adopted. The Gregorian algorithm:

Add a leap day in years divisible by 4, unless they are also divisible by 100,

but add the leap day anyway if the year is divisible by 400.

That yields an average year of 365.2425 days, which is fairly close to the tropical year,

about 365.242188792 days.

There is a better algorithm:

Add a leap day in years divisible by 4, unless they are also divisible by 128.

21.1 How Date Works

That yields a year of 365.2421875 which is much closer to the tropical year. The

incorporation of two powers of 2 in the algorithm seems to me as a programmer to be

miraculous, although I would be much more impressed if it exactly matched the real

year. If the number of days in a year were an integer, I might think that there could

possibly be some truth in the idea of Intelligent Design.

The next year in which the 4|100|400 and 4|128 algorithms disagree is 2048. We

should standardize the 4|128 algorithm before then.

The leap day used to be added at the end of the year. Unfortunately, when January

became the first month, they did not move the leap day from February to December

(which still means the tenth month).

Minutes and seconds are zero origin values, which is great, and they are both modulo

60, which is not so great. Hours are zero origin, but the 12 hour clock replaces 0 with

12, which is bizarre.

(If I could, I would instead have a 10 hour day, where an hour is 100 minutes,

and a minute is 100 seconds. My second would be slightly shorter, being 86.4%

of the present second. The tempo of the seconds would be a nice adagio, a gentle

improvement in the pace of life over the current largo.)

Months and days are wun origin values because they were standardized before zero

was discovered. Months are modulo 12. The Romans attempted to make months

modulo 10, but they could not make it work. Days per month are modulo 30 or 31 or

28 or 29, depending on the month and year. Years were wun origin, but the current

numbering of years was adopted many centuries after the Common Era epoch, so we

can safely ignore that inconvenience.

The Date Function

The weirdness in the standards for timekeeping are a hazard for programs that

must process time. Java’s Date class provided support for dates. It should have

been a simple thing, but it was very complex, demonstrating wun of the worst

design patterns of classical programming. JavaScript could have done something

significantly better, but instead it just copied Java’s very bad example.

Today’s JavaScript Date objects come with an awful lot of methods. Most of them are

just getters and setters.

How Date Works 21.2

setDategetDategetDay setFullYeargetFullYear setHours toDateString

toISOString

toJSON

getHours setMillisecondsgetMilliseconds setMinutesgetMinutes setMonthgetMonth setSecondsgetSeconds setTimegetTime setUTCDategetTimezoneOffset setUTCFullYear toLocaleDateString

toLocaleString

toLocaleTimeString

toString

toTimeString

toUTCString

getUTCDate setUTCHours

getUTCDay setUTCMilliseconds

getUTCFullYear setUTCMinutes

getUTCHours setUTCMonth

getUTCMilliseconds setUTCSeconds

getUTCMinutes setYear

getUTCMonth

getUTCSeconds

getYear

There is a getDate method that returns the day of the month from a date object. You

can see immediately that the word Date has two very different meanings in the same

method. Compounding the confounding, there is also a getDay method, which returns

the day of the week.

The getMonth method corrects the month to be zero origin because programmers like

to act on things that are zero origin. So getMonth returns a number between 0 and 11.

The getDate method does not correct the day, so it returns a number between 1 and

31. This loose inconsistency is a source of errors.

The getYear and setYear methods do not work correctly after 1999 and should not be

used. Java was released in 1995 and contained date methods that would fail in 2000.

Had they not heard of the Y2K problem? Or did they doubt that Java would survive in

the market long enough for that to matter? We may never know. What we do know is

that Java inexplicably survived, and that JavaScript made exactly the same mistake.

Always use getFullYear and setFullYear instead.

Date demonstrates a very bad practice in classical programming. An object should

encapsulate something. Interactions with objects should be transactions and other

high level activities. Date is exposing a very low level view with getters and setters for

each individual component of time. This approach does not use the objects well.

ISO 8601

The new Date constructor can take a string that represents a date and produce

an object for that date. Unfortunately, the ECMAScript standard does not specify

what the parsing and recognition rules are, so according to the standard, it is not

guaranteed to work.

Except for ISO dates.

ISO 8601 is an international standard for the representation of dates and times.

JavaScript is required to correctly parse ISO dates like 2018-11-06. Putting the

most significant stuff first and the least significant stuff last makes so much sense,

certainly more sense than the US standard 11/06/2018. For example, we can sort ISO

date strings.

21.3 How Date Works

A Different Approach

It is of course much too late to do the right thing. JavaScript should not have copied

Java. That is always a mistake. Much of what is wrong in JavaScript came from Java.

If doing the right thing were an option, this is what I would propose:

There should be three representations of a date:

• The number of milliseconds since the epoch.

• A data object that can contain these properties:

year

month

day

hour

minute

second

zone

week

weekday

• A string in some standard format.

We do not need classical Date objects with methods. We just need simple functions to

do conversion between the three representations.

Date.now() returns the current time as a number. This function already

exists. JavaScript makes this function available to all code, but I think

it should be a privilege that is only given to trusted code. A piece of

impure malicious code could use Date.now() or Math.random() to alter its

behavior, allowing it to avoid detection.

Date.object() would take either a number or a string and return an object

containing the information that can be extracted. When the argument is

a string, there could be additional optional arguments that determine the

time zone and the formatting standard that drives the parse.

Date.string() would take a number or a data object and an optional

formatting standard and time zone, and return a human readable string

representation of the time.

Date.number() would take a data object or string and an optional formatting

standard and time zone, and return the number representation of the

time.

This approach would be much simpler, much easier to use, more error resistant, and

(not that it matters any more) Y2K ready. It is just wun impure function and three

pure functions instead of that big pile of low level impure methods. Java could not do

this because it lacked JavaScript’s lovely object literals. I don’t know why JavaScript

doesn’t do this. I hope that the next language will.

The epoch used by JavaScript is the Unix epoch: 1970-01-01. There are 32 bit Unix

systems that will fail in 2038 when the bits are all used up and the clock overflows. It

turns out that 32 bits are not enough for running a system clock at seconds resolution.

How Date Works 21.4

I would prefer to use 0000-01-01 as the epoch. JavaScript numbers will not fail to

accumulate milliseconds until the year 285426. We will either devise a better calendar

by then, or we will be extinct. Have a nice day.

Chapter 22

How JSON Works

●○●●○

For the payload format, XML has to be the

mainstay, not because it’s technically

wonderful, but because of the extraordinary

breadth of adoption that it has succeeded in

achieving. This is where the JSON (or

YAML) folks are really missing the point by

proudly pointing to the technical

advantages of their format: any damn fool

could produce a better data format than

XML.

James Clark

Here, for the first time in print, I tell the true story of the origin of the world’s best

loved data interchange format.

Discovery

JSON was discovered in 2001 in a shed behind Chip Morningstar’s house. Chip and

I had started a company to develop a platform for single page web applications.

Our pitch was that with a good JavaScript library (that I wrote) and an efficient

and scalable session server (that Chip wrote) it was possible to produce web pages

that worked as well as installable applications. Or better, because our platform also

supported multiuser collaboration, which is something the web hasn’t caught up to

yet.

I am still really impressed with Chip’s session server. He has reimplemented it many

times over the years. The most recent iteration is called Elko. elkoserver.org

The only thing wrong with Elko is that it is written in Java. My dream is that

someday soon somewun will pay Chip to do it wunce again, but this time in Java

Script. That would put us way ahead of where we are right now with Node.js. We

would get better security, better scalability, and support for a broader range of

applications.

Back to the shed. We needed a way of sending information between the browser

and the server. At that time, the software industry had completely committed to

XML. Giants like Microsoft, IBM, Oracle, Sun, HP, and others had decided that the

22.1 How JSON Works

next generation of software was going to be built on XML, and their satellites and

customers were falling in line.

We wanted to exchange data between programs written in two different languages.

We looked at XML and decided it was a poor fit for our problem. The usage pattern

with XML was that you first send a query to the server, which responded with an XML

document. Then to get the data, you make further queries of the XML document. Why

can’t the server just send the data in a form that our programs could immediately

use? Our data simply did not look like documents.

There were a lot of improved XML variants and replacements available at the time,

but none of them were getting any traction. We thought about rolling our own. And

then I had an epiphany. We could use JavaScript object literals. They were built into

JavaScript, so it was really convenient on the JavaScript side. And the subset we

needed was not difficult to parse on the Java side. It was certainly less effort than

XML.

We wanted our platform to work with both Microsoft’s Internet Explorer and

Netscape Navigator. That was really difficult because both companies were inventing

their own features. There was little commonality. Microsoft added an XMLHttpRequest

function that could be used for communication with the server. Unfortunately,

Netscape had nothing like it, so we could not use it.

Both browsers had JavaScript (ES3) and both had framesets. So we used those

together to forge a communication channel. This was the first JSON message sent to

a browser:

<html><head><script>

document.domain = "fudco.com";

parent.session.receive({to: "session", do: "test", text: "Hello world"});

</script></head></html>

A web page contained an invisible frame that could be navigated. Doing a POST on the

hidden frame sent a message to the server. The server responded by transmitting a

document that contained a script that called the receive method of the session object

in the main frame. We had to alter document.domain to enable inter-frame communica

tion. The JavaScript compiler parsed the message.

I wish I could tell you that the first message was delivered successfully, but it failed.

It failed because of ES3’s terrible reserved word policy. These were the reserved words

at that time:

abstract boolean break byte case catch char class const continue debugger

default delete do double else enum export extends false final finally float for

function goto if implements import in instanceof int interface long native new

null package private protected public return short static super switch

synchronized this throw throws transient true try typeof var void volatile

while with

The ES3 reserved word policy said that none of those words could be used as variable

names, or as parameter names, or as property names in dot position, or as property

names in object literals. The message contained a do property, so the script had a

syntax error and did not run.

I am happy to report that this was corrected in ES5. The reserved word list was

shortened, and the restrictions on property names were eliminated, but in 2001 we

How JSON Works 22.2

had to put quotes around "do" to make it work. Chip put the reserved word list into

his encoder, and we had no more problems with that.

We discovered that a string containing the character sequence </less
than

slash could

cause failure. That was because the browser assumed that it was the closing of the

script tag, so JavaScript would not receive the entire payload, resulting in a syntax

error. Our workaround was to escape the slash. The browser was happy with <\/less

than backslash slash.

We called it JSML (rhymes with dismal). Later we learned that there was some Java

thing using those initials, so we quickly picked a replacement name: JSON.

JSON worked really well for communicating between JavaScript and Java. We also

used it for interserver communication. We made the first JSON database.

Standardization

We had a difficult time selling the concept of JSON to our customers. They told us

that they could not use it because they had already committed to XML. They told us

that they could not use it because it was not a standard. I told them it was a standard,

it was a subset of ECMA-262. They told us that that was not a standard. So I decided

to become a standards body.

I bought the domain json.org and set to work formalizing JSON. Up until that time,

JSON existed as a gentleman’s agreement between Chip, me, and JavaScript. In

formulating the standard, I had to make some decisions. My guiding principles were

to keep it textual, minimal, and a subset of JavaScript.

The minimal principle was critically important. Standards should be simple and

complete. The less we have to agree to, the more easily we can interoperate. The

subset of JavaScript principle was very effective in preventing me from adding lots of

cute and unnecessary features.

JavaScript allows strings to be quoted with both 'single quote and "double quote.
The min

imal principle taught that we did not need both.

I decided to require quotes around property names. I did not want to put the ES3

reserved word list into the standard because it looked really stupid. The inevitable

question would be Why? and the answer would be Because JavaScript. We were trying

to convince people to develop their applications in JavaScript, so I did not want the

JSON standard to shine a light on JavaScript’s bad parts. If we quote all the names,

then the issue does not come up. It also simplified the specification because What is

a letter? had become a very complicated question because of internationalization. So

all of those issues are avoided as well. A property name can be any string. Easy. This

also made JSON more Python-like, which I thought would help drive adoption.

I added comments because they were allowed by the subset of JavaScript principle

and I thought they would be cute. Then I saw some early adopters putting parsing

instructions in the comments. That would break interoperability, which was the

whole point.

As more JSON codecs were developed for other languages, I noticed that about half

of the work in developing a JSON parser was handling the comments. This wasn’t

because the comments were complicated, but because the rest of JSON was so simple.

Comments were slowing down adoption.

22.3 How JSON Works

Then I was approached by the YAML community. JSON was accidentally similar to a

subset of YAML. If we both made some changes, JSON could be a proper subset. Wun

of the points of contention was the comments.

JSON was really about connecting programs written in different languages thru the

network. Comments are always ignored, so when they are used, they degrade network

performance. Comments were superfluous and an attractive nuisance so I removed

them.

If you really need comments, there are a couple of ways to do it. Just pipe your com

mented text thru a minifier like jsmin. Unfortunately, this solution is not suitable for

coders who lack the skills to script a simple pipe.

The other solution is to formalize the comments and put them in the JSON structure.

If the comments are critically important, then they should be given names so they can

be properly retained and processed.

I failed in my goal to make JSON a proper subset of JavaScript. Unicode has a pair of

invisible control characters, PSparagraph separator and LS line separator for the benefit of

old school word processing systems. JavaScript treats them as line ending characters,

just like CR
carriage return

and LF line feed. I missed that, so JSON allows them in strings.

Fortunately, PS and LS are rarely used. I am not aware of any problems that came

from this. ES5 added a built-in JSON parser that handles PS and LS, repairing the

incompatibility.

There are some characters in Unicode that Unicode says are not characters. There are

Unicode zealots who insist that JSON should not allow the magritte characters. JSON

does not care. JSON is a medium, not an enforcer. It is up to the receiver to decide

what to do about the characters that are not characters. JSON does not guarantee

that everything will be meaningful to every receiver. If a sender and receiver are

capable of having a shared understanding, then that shared understanding can be

expressed in JSON.

I wanted to make JSON independent of IEEE 754. Java and JavaScript both use

IEEE 754 binary floating point, but JSON does not care. JSON can enable

communication between languages with different number representations. So binary

floating point languages can exchange data with BCD languages, and big decimal

floating point languages can interact with languages that have a wacky internal

representation in which three digits are packed into 10 bit fields. JSON can survive

the obsolescence of IEEE 754.

I excluded Infinity and NaN because their presence in data indicates an error, and we

should not put bad data on the wire. We should not propagate bad data. That is an

extremely bad practice.

I included both e and E as decimal exponent markers, a violation of the minimal

principle. I should have excluded E. I should have also excluded + after the e.

I included null because computer scientists seem to like it. JSON does not attach a

meaning to null. That is for the users of JSON to decide. JSON does not specify any

behavior. It only specifies a format, a simple grammar for data.

I created a wun page website that described JSON in three ways: A McKeeman Form

grammar, railroad diagrams, and informal English. I hoped that a reader would

understand at least wun of those.

How JSON Works 22.4

I did not acquire a trademark for JSON or its logo. I did not put a copyright notice on

the page. I wanted to make the JSON standard as free and unencumbered as possible.

I did not want to make money off of JSON. I just wanted to be allowed to use it.

I began to get requests to add links to codecs in various languages to the json.org site,

which I did. Nearly all of them are open and free. I also received donations of transla

tions of the page. Wun benefit of the simplicity of JSON was that the page is easy to

translate.

In 2006, I wrote Informational RFC 4627 for IETF for the purpose of assigning a

MIME type to JSON. I was hoping to get text/json for you, but the best they were

willing to give us was application/json which was very disappointing.

Given the success of JSON, I think IETF should make json a first class media type so

that people can register MIME types like json/geo and json/money.

In 2013, I wrote ECMA-404, which was adopted by ISO as ISO/IEC 21778. JSON had

become so important that other standards needed to cite it, and they needed a more

formal citation than my web page.

Why JSON Works

JSON was intended to allow programs written in different languages to communicate

effectively. This is a difficult problem because the details in the representation of

values and data structures in languages can be quite complex. So my approach in

designing JSON was to focus on the commonalities.

Languages vary widely in their representations of numbers, but all can agree that a

number can be represented as a string of base 10 digits, possibly with a decimal point

in it, and possibly with a decimal exponent. Some languages have an integer type,

some (like JavaScript) do not. JSON says that we can all make the best sense we can

of a string of digits.

Languages have different ideas about strings and character sets. A language might

have an internal representation that is UTF-16 (like JavaScript), or UTF-32, or

UTF-8 or ASCII or Half ASCII or EBCDIC. JSON does not care. We make the most

sense we can from a string of characters from the wire, and turn them into reasonable

local representations.

All languages have some data structure that is a linear sequence of values. The details

can be wildly different, but all languages, with the aid of a JSON decoder, can make

sense of a series of values separated by commas wrapped in brackets. Zero origin

languages can exchange data with wun origin languages.

Most languages have some sort of data structure that associates names with values.

The details can be wildly different, but all languages, with the aid of a JSON decoder,

can make sense of a series of named values separated by commas wrapped in braces.

And that is enough. By finding the intersection of all programming languages,

programs written in all of the languages can communicate with each other. The critics

said that it could not work. And yet it works.

22.5 How JSON Works

Influences

I was able to recognize the portability of object literals because of my experience

with two other languages. The LISP language has a textual representation called s

expressions that is used for both programs and data. The Rebol language also uses

the same textual representation for programs and data, but with much richer syntax.

It is very natural in Rebol to use that textual representation to serialize data for

transmission. I applied that same idea to JavaScript.

I was not the first person to use JavaScript as a data encoding. It was discovered

independently by many people, the first as early as 1996. I was the wun who tried to

promote it as a standard.

Three languages, JavaScript, Python, and Newtonscript, were all designed about the

same time, and all had similar syntax for creating data structures. Next OpenStep

Property Lists were created a little earlier with a similar notation.

In the comfort of our Post-XML world, JSON looks like it was inevitable. But as it was

unfolding, that was far from certain.

The JSON Object

JavaScript supports JSON with two functions in the JSON object. The functions are

called parse and stringify and that is entirely my fault. I chose parse following the

bad example of the Date function, which we have already seen is deeply flawed. I chose

stringify because toString did not seem right. I should have called the functions

decode and encode.

JSON.parse(text, reviver)

The parse function takes a JSON text and decodes it into JavaScript data. The

optional reviver function can make transformations. It is given a key and a value, and

it returns the desired value for that key.

For example, you might make a reviver that turns date strings into date objects. If a

key ends with _date or if the value is a string in ISO date format, then replace the

value with a Date object made from the value. JSON does not formally contain dates,

but dates can conveniently be encoded as strings and then turned into date objects on

the other side.

const rx_iso_date = /

^ \d{4} - \d{2} - \d{2}

(?:

T \d{2} : \d{2} : \d{2}

(?:

\. \d*

)? Z

)? $

/;

How JSON Works 22.6

const result = JSON.parse(text, function (key, value) {

return (

typeof value === "string" && (

key.endsWith("_date")|| rx_iso_date.match(value)

)

? new Date(value)

: value

);

});

JSON.stringify(value, replacer, space)

The stringify function takes a value and encodes it into a JSON text. The optional

replacer function can make transformations. It is given a key and a value, and it

returns the desired value for that key.

For example, if we want to automatically convert Date objects into ISO strings, we

could provide a replacer function. The result of the replacer function is passed to

JSON.stringify and that result is included in the text.

const json_text = JSON.stringify(my_little_object, function (key, value) {

return (

value instanceof Date

? value.toISOString()

: value

);

});

(It turns out that we do not need to do this because Date.prototype.toJSON already

does it automatically. See toJSON below.)

The replacer argument can also be an array of strings. Only the properties with names

in the array are included in the text. This is a whitelist that can filter out properties

that are not interesting at the moment. This should have been a separate argument

and not an overloading of the replacer function.

The JSON format allows whitespace in JSON text to make it more human readable.

By default, JSON.stringify adds no whitespace so that the text is compact for

transmission. If the space parameter is used, then line breaks and indentations are

inserted. The correct value for space is 4. Obviously. I should have made it a boolean.

toJSON()

Any object is allowed to have a toJSON method that is called by JSON.stringify when

the object is stringified. This is how class free objects can have a JSON representa

tion. A class free object, containing only functions, would ordinarily stringify like an

empty object. But if it has a toJSON method, then it stringifies as the return value of

toJSON would.

Date objects inherit a toJSON method that encodes date objects as ISO strings.

22.7 How JSON Works

Security Implications

The first users of JSON used JavaScript’s eval function (or its equivalent) to decode

JSON text. There are inherent dangers in the eval function, but in this case the

potentially dangerous text was coming from the same server that provided the HTML

and all of the scripts, so the security of it was no worse than the web in general.

That changed when the practice of loading JSON from other servers with script tags

became popular. Scripts are evaluated by eval, and there was no guarantee of any

kind that the payload was nice JSON and not an XSS attack. It was convenient and

irresponsible.

JSON text should never be built by concatenation because a piece of malicious string

could contain quote and backslash characters that could cause misinterpretation of

the text. JSON text should always be made with encoders like JSON.stringify or

similar tools that do not permit those sorts of confusions.

This is why the result of toJSON and the result of the replacer function are processed

by JSON.stringify. If the return values of those functions were inserted as is into the

text, then those functions could be tricked into facilitating string confusions. It would

have been better if strings did not start and end with the same character, but they do.

That gives us another reason to code wisely.

McKeeman Form

McKeeman Form is a notation for expressing grammars. It was proposed by Bill

McKeeman of Dartmouth College. It is a simplified Backus-Naur Form with

significant whitespace and minimal use of metacharacters. I like it because it is fully

minimally adequate.

We can express the grammar of McKeeman Form in McKeeman Form.

A grammar is a list of one or more rules.

grammar

rules

The Unicode code point U+0020 is used as the space. The Unicode code point U+000A is

used as the newline.

space

'0020'

newline

'000A'

A name is a sequence of letters or _ underbar.

name

letter

letter name

letter

'a' . 'z'

'A' . 'Z'

'_'

An indentation is four spaces.

How JSON Works 22.8

indentation

space space space space

Each of the rules is separated by a newline. A rule has a name on one line, with

alternatives indented below it.

rules

rule

rule newline rules

rule

name newline nothing alternatives

If the first line after the name of a rule is "", then the rule may match nothing.

nothing

""

indentation '"' '"' newline

Each alternative is indented on its own line. Each alternative contains items followed

by a newline.

alternatives

alternative

alternative alternatives

alternative

indentation items newline

The items are separated by spaces. An item is a literal or the name of a rule.

items

item

item space items

item

literal

name

literal

singleton

range exclude

'"' characters '"'

Any single Unicode code point except the 32 control codes may be placed within the

single quotes. The hexcode of any Unicode code point may also be placed within the

single quotes. A hexcode can contain 4, 5, or 6 hexadecimal digits.

singleton

''' codepoint '''

codepoint

' ' . '10FFFF'

hexcode

hexcode

"10" hex hex hex hex

hex hex hex hex hex

hex hex hex hex

22.9 How JSON Works

hex

'0' . '9'

'A' . 'F'

A range is specified as a singleton, a . period,
and another singleton. Literal ranges can

optionally be followed by - minus
sign and characters to be excluded.

range

singleton space '.' space singleton

exclude

""

space '-' space singleton exclude

space '-' space range exclude

A character wrapped in "double quote
can be any of the Unicode code points except the

32 control codes and "double quote. The definition of character shows an example of a

codepoint range and exclude.

characters

character

character characters

character

' ' . '10FFFF' - '"'

JSON Grammar

This is the JSON grammar in McKeeman Form.

json

element

value

object

array

string

number

"true"

"false"

"null"

object

'{' ws '}'

'{' members '}'

members

member

member ',' members

member

ws string ws ':' element

array

'[' ws ']'

'[' elements ']'

How JSON Works 22.10

elements

element

element ',' elements

element

ws value ws

string

'"' characters '"'

characters

""

character characters

character

'0020' . '10FFFF' - '"' - '\'

'\' escape

escape

'"'

'\'

'/'

'b'

'f'

'n'

'r'

't'

'u' hex hex hex hex

hex

digit

'A' . 'F'

'a' . 'f'

number

integer fraction exponent

integer

digit

wunnine digits

'-' digit

'-' wunnine digits

digits

digit

digit digits

digit

'0'

wunnine

wunnine

'1' . '9'

22.11 How JSON Works

fraction

""

'.' digits

exponent

""

'E' sign digits

'e' sign digits

sign

""

'+'

'-'

ws

""

'0020' ws

'000D' ws

'000A' ws

'0009' ws

Advice To Data Interchange Standard Designers

I did not intend that JSON be the last data interchange standard. JSON was designed

for a specific purpose, and it fit that purpose really well. It is now being used

successfully for many other purposes. For some purposes, there should be better

alternatives. So if you are going to design the next standard, I offer some advice.

0. Please Don’t Break JSON.

The best thing I did with JSON was to not give it a version number. If you give some

thing a 1.0, you know there will be a 1.1 and a 1.2, and everything is crap until it is

3.0.

JSON has only wun standard version. There is no way to change JSON without

breaking everything. That avoids the versioning hell problems that are the painful

and embarrassing side effects of incremental agility and perpetual beta. Every layer

in the stack is subject to change except the JSON layer. JSON will always be the way

it is right now. It is stable. I can not think of any feature that is more valuable than

that.

1. Make It Significantly Better.

I have seen many proposals that want to add wun particular feature to JSON. The

problem with that is that there will then be two standards that are mostly but not

fully compatible with each other. That creates a Compatibility Tax on the users of

both standards that is collected in the form of failures and configuration problems.

Add enough real value to the new standard to compensate for the tax. Do not make

trivial or cosmetic changes. Make it substantive and totally worth it.

How JSON Works 22.12

2. Give It A Better Name.

I have seen a lot of proposals that take the JSON name and stick a letter or digit on

the side. Don’t do that. Give it a better name. A large part of the job of programming

is making up good names for things. Show us what you can do.

The worst thing about JSON is the name. It stands for JavaScript Object Notation.

JS is for JavaScript. The problem with the JS part is that it confuses people. There

are people who think that JSON is a JavaScript thing that only works for JavaScript.

There are people who think that JSON is defined by the ECMAScript standard, which

is wrong because JSON is defined by ECMA-404, the JSON standard. And there is

still the old Java ≠ JavaScript confusion.

We included JavaScript in the name because we wanted to give credit to its source.

We were not trying to ride on JavaScript’s coattails. In 2001, JavaScript was the

world’s most hated programming language. JavaScript was hated by everywun who

liked Java, C#, PHP, Python, Ruby, Perl, C++, and on and on. Not only that, Java

Script was hated by almost everywun who used JavaScript. The Advent of the Gospel

of the Good Parts had not yet come to pass.

O is for Object. In JavaScript, an object is an informal collection of name:value pairs,

and JSON adopted that usage. In other languages, object means an instance of a

brittle class hierarchy. From that perspective, JSON would be expected to be an object

serialization format, which it is not. JSON is a data serialization format. So there is

that confusion.

N is for Notation. I don’t have a problem with notation. If you want to call your format

a notation, knock yourself out.

Chapter 23

How Testing Works

●○●●●

Program testing can be used to show the

presence of bugs, but never to show their

absence!

Edsger Dijkstra

Computer programs are the most complicated things that humans make. Nothing else

is made up of as many intricate parts that must all fit together and work together

perfectly. A finished program must be perfect in every aspect, for all inputs, for all

states, for all conditions, for all time. The contract we have with the computer is that

if we give it a program that is not absolutely perfect, then the computer has license

to do the worst possible thing at the worst possible time, and it is not the computer’s

fault. It is your fault.

We have no test for perfection. We can prove that a program contains defects, but

there is no test that can prove that a program is free of defects. This failure of testing

motivated work on Proofs of Correctness. The idea was that a program would be

developed with mathematical proofs of its perfection. This was regarded as the most

important outstanding problem in Computer Science, and unfortunately, it was never

solved. The proofs were going to be much more complex than the programs they were

attempting to prove. The complexity was overwhelming.

Robin Milner and others proposed that type soundness might be a more practical

alternative to proofs. Types are more easily integrated into programs than proofs.

Milner famously said that well typed programs can not “go wrong”. But in languages

with good type systems, like Haskell, and languages with terrible type systems, like

C++ and Java, programs still go wrong. Maybe someday types will pay off. They

haven’t yet.

So with the failure of proofs and types, we put programs into production that we know

are not perfect, hoping that we will find and correct the errors before anywun finds

out. That is crazy. That is the state of the art.

There must be a better way. But if there is, no wun has found it yet.

So that brings us back to testing. Testing, when done well, can identify defects and

then give us confidence that the defects were corrected. Even when testing is done

well, it still can not prove the absence of bugs. And testing is not always done well.

23.1 How Testing Works

In the late 1970s and early 1980s, Atari sold more software to more people than any

other company on Earth. Most of that software was burned into ROM (read only

memory) chips. Errors in ROM could not be corrected. You had to trash them and

make new chips. Atari made a home computer that had an operating system in ROM.

I was really impressed with that. What amazing confidence they must have in their

programming to risk putting that stuff into ROM. How did they do it?

I took a job as a researcher at Atari’s corporate lab. This allowed me to find out how

Atari did it. This was their secret: They would try the stuff out, and if it seemed to

work, they would send it to the factory. They were lucky. Their luck ran out when

executives decided that the E.T. game did not need more testing. The company did

not survive that decision.

Programs at that time were much smaller and simpler. If a program is only a few

kilobytes, then careful coding and careful testing could yield good results. Today’s

programs are enormous. No person can understand it all. How can we be sure that

something that is too complex to understand is correct?

Bugs

Bugs were discovered by Thomas Alva Edison. He was developing his phonograph, a

device that recorded and reproduced sound with a stylus on a sheet of foil wrapped

around a spinning cylinder. His prototype made a chirp on every revolution as the

stylus crossed the edge of the foil sheet. Edison mentioned to a reporter that he had

been up all night trying to get the bug out of the phonograph.

The word stuck. There have been lots of stories over the years about crazy inventors

who would strike it rich wunce they got the last bugs out of their inventions.

There is a famous story of a moth that got caught in a relay in the Harvard Mark II.

Grace Murray Hopper taped the moth into her log book, with the caption First actual

case of bug being found. This was not the first bug, but it might have been the first

bug caused by an insect. Most of our bugs are still caused by humans, although there

is justifiable excitement about the bug making potential of artificial intelligence.

We must try to eliminate as much confusion from our programs as possible. When we

expect a program to do wun thing and it then some does something else, that shows

that we are confused about the program. We must make our programs as simple and

clean as possible to reduce confusion. Bug is another word for confusion. Eliminating

confusion is more productive than testing.

Bloat

Wun of the biggest problems in software development is software obesity, or bloat.

Programs are just too big. This can be due to undisciplined feature selection, but it

is more often a consequence of bad architecture. Inheritance is a popular code reuse

pattern, but it does not work very well, so copy-and-paste is often used instead. There

is an overreliance on libraries, platforms, and packages that are all tightly coupled to

many other libraries, platforms, and packages. Bloating can be a side effect of agile

development practices. Development teams are enlarged to help manage the bloat,

but large teams cause even more bloat.

Bloat causes security problems by increasing the attack surface and giving bugs more

places to hide. Bloated systems are much more difficult to test adequately.

How Testing Works 23.2

Caching can mitigate some of the symptoms of bloat in the web browser, but unfortu

nately, web browsers are not very good at caching. There are tools like lazy loaders

and tree shakers that attempt to delay or remove some of the unnecessary code, but

by treating the symptoms, they can stimulate more bloating.

The best way to deal with bloat is to not let it happen in the first place. Make software

leanness a priority in design and implementation. Avoid adoption of packages that are

bloated and tools that encourage bloat. Avoid classes. Employ smaller, better trained

development teams. And actively practice code removal. Reserve some development

cycles for the removal of unnecessary code and the retiring of problematic packages.

Celebrate when the number of lines of code in a project goes down. Adopt The

Principle of Least Big.

Features have a benefit, but they also have a cost. If we fail to account for the cost, we

will pay for it with bloating.

TDD

I like Test Driven Development as a methodology. I hate Test Driven Development as

a religion. TDD Zealots have told me that sloppy, error-prone code is allowed, even

encouraged under TDD. It is assumed that the tests will find all of the bugs, so there

is no need for a disciplined coding style.

This is how a good practice turns into a very bad practice. The truth is that tests can

not be depended on to find all of the bugs. We should be investing in bug avoidance.

Good coding practices are a cheap investment in quality. My own coding style has

changed over the years as I observe the ways that bugs form and the ways I can

mitigate that.

I received a bug report for JSLint from a zealot. He included a function that JSLint

rejected. He said that JSLint must be wrong because the function passed its unit

tests. A casual inspection found that JSLint was correct. JSLint had found a bug in a

regular expression that the tests had not found. The tests contained errors. The false

negatives always get fixed quickly but the false positives are immortal. Those tests

give us false confidence, not quality. What tests the tests?

Unit tests are very effective in low level code. For example, the Big Integer library in

Chapter 3 is low level, having little dependence on anything else. I wrote lots of unit

tests for it, and those tests were a big help in the development of the library.

Unit tests become less effective as we climb up the pile. As the dependencies increase,

the tests become less meaningful. The cost of test making goes up because of the need

to develop stubs, mocks, and fakes. (I hear developers wasting time arguing about

whether something is a fake or a mock.) And as we ascend, the complexity moves from

the components to the connections between the components.

As purity goes down, bugs go up, but unit tests do not test purity. If there is poor

modularity, bugs are more likely, but unit tests do not test modularity. As time

passes, the code becomes bloated, but unit tests do not test for bloat. At the limit, we

are testing the fakes and mocks and not the program. I am not saying that unit tests

are bad. I am saying that they are not sufficient. We write more and more tests that

find fewer and fewer bugs. In addiction, this effect is called tolerance.

23.3 How Testing Works

It sounds hopeless, but testing is necessary. Good and careful design and coding are

critically important, but are not enough. We still have to test effectively. Test we

must.

You Shall Not Pass

Most testing libraries support calls like this:

assertEquals("add 3 + 4", 7, add(3, 4));

It allows me to have a good feeling about having written a test, but is it realistic to

think that a single addition is likely to find a subtle error in the add function? A great

many tests are required over a much greater range of values, but who would want to

write all of those tests? Also, this form can not test eventual programs. It can only test

functions that are strictly sequential.

That is why I wrote a testing library called JSCheck that was inspired by a Haskell

tool called QuickCheck. JSCheck does case generation, automatically producing lots

of randomized trials. JSCheck also supports eventual programming for testing server

and browser applications.

jsc.claim(name, predicate, signature, classifier)

The most important function provided by JSCheck is the claim function. A claim is an

assertion about your program.

The name is a descriptive string that is used in reports.

The predicate is a function that delivers true if the program is working correctly. The

predicate function takes a verdict callback function that is used to deliver the result of

each trial. The remaining arguments are determined by the signature argument.

The signature is an array of generator functions that produces the arguments for the

predicate function. These generators are easily made with the specifiers provided by

JSCheck.

The classifier function is optional. It can be used to reject trials that are not valid. It

can also classify trials to make patterns easier to evaluate.

jsc.check(configuration)

You make as many claims as you want, and then you call the jsc.check function to

check that all of the claims are good.

The jsc.check function takes a configuration object that can contain any of these

properties:

time_limit: in milliseconds. There are three possible outcomes to every trial:

PASS, FAIL, and LOST. Any trials that do not deliver a verdict before the

time expires are considered LOST. In some situations, getting the right

answer too late is indistinguishable from failure.

on_pass: a callback for each passing trial.

on_fail: a callback for each failing trial.

How Testing Works 23.4

on_lost: a callback for each trial that failed to deliver a verdict.

on_report: a callback for a report.

on_result: a callback for a summary.

nr_trials: the number of trials that will be performed for each claim.

detail: the level of detail in the report.

0. There will be no report.

There will be a minimal report, showing the pass score of each claim.

The individual cases that fail will be reported.

The classification summaries will also be reported.

1.

2.

3.

4. All cases will be reported.

Instead of testing each function in the Big Integer library individually, I designed

tests that included several functions working together. For example, the demorgan test

used random, mask, xor, or, and, and eq. JSCheck produces random integers that are

used to make random big integers that are applied with the DeMorgan Law.

jsc.claim(

"demorgan",

function (verdict, n) {

// !(a && b) === !a || !b

let a = big_integer.random(n);let b = big_integer.random(n);let mask = big_integer.mask(n);let left = big_integer.xor(mask, big_integer.and(a, b));

let right = big_integer.or(

big_integer.xor(mask, a),

big_integer.xor(mask, b)

);

return verdict(big_integer.eq(left, right));

},

[jsc.integer()]

);

I made a generator that produced big integers for some of my tests. The specifiers

provided by JSCheck are very powerful, but they know nothing of big integers, so I

made my own.

function bigint(max_nr_bits) {

return function () {

let nr_bits = Math.floor(Math.random() * max_nr_bits);let result = big_integer.random(nr_bits);return (

Math.random() < 0.5

? big_integer.neg(result): result

);

}

}

I test multiplication and division together. I provide a classifier function to reject

trials that would divide by zero.

23.5 How Testing Works

jsc.claim(

"mul & div",

function (verdict, a, b) {

let product = big_integer.mul(a, b);

return verdict(big_integer.eq(a, big_integer.div(product, b)));

},

[bigint(99), bigint(99)],

function classifier(a, b) {

if (!big_integer.is_zero(b)) {

}

}

return "";

);

I tested multiplication and division together again, but this time incorporating

remainders. The classifier emits the signs of the two values, producing the classific

ations "--", "-+", "+-", and "++". That helped in isolating bugs that were due to sign

handling.

jsc.claim("div & mul & remainder", function (verdict, a, b) {

let [quotient, remainder] = big_integer.divrem(a, b);

return verdict(big_integer.eq(a,

big_integer.add(big_integer.mul(quotient, b), remainder)

));

}, [bigint(99), bigint(99)], function classifier(a, b) {

if (!big_integer.is_zero(b)) {

return a[0] + b[0];

}

});

I built tests around identities. For example, adding 1 to a string of n 1 bits should have

the same result as 2 ** n.

jsc.claim("exp & mask", function (verdict, n) {

return verdict(

big_integer.eq(big_integer.add(big_integer.mask(n), big_integer.wun),big_integer.power(big_integer.two, n)

)

);

}, [jsc.integer(100)]);

Here is another identity: (1 << n) - 1 should be n 1 bits.

jsc.claim("mask & shift_up", function (verdict, n) {

return verdict(big_integer.eq(big_integer.sub(big_integer.shift_up(big_integer.wun, n),

big_integer.wun),

big_integer.mask(n)));

}, [jsc.integer(0, 96)]);

I constructed a large set of tests like those. This style of testing gives me much more

confidence than I can get from 3 + 4.

How Testing Works 23.6

JSCheck

This is the implementation of JSCheck. The most interesting parts of it are the speci

fiers that can produce the test data. Most of them are composable in interesting ways

because the specifiers pass values thru the resolve function. The resolve function

returns its argument unless the argument is a function.

function resolve(value, ...rest) {

The resolve function takes a value. If that value is a function, then it is called to

produce the return value. Otherwise, the value is the return value.

return (

typeof value === "function"

? value(...rest): value

);

}

You might remember literal as constant from Chapter 13. It escapes functions, so

that you can have a function passed to all of the trials.

function literal(value) {

return function () {

return value;

};

}

The boolean specifier produces a generator that makes booleans.

function boolean(bias = 0.5) {

A signature can contain a boolean specification. An optional bias parameter can be

provided. If the bias is 0.25, then approximately a quarter of the booleans produced

will be true.

bias = resolve(bias);

return function () {

return Math.random() < bias;

};

}

The number specifier, not surprisingly, produces numbers in a range.

function number(from = 1, to = 0) {

from = Number(resolve(from));to = Number(resolve(to));if (from > to) {

[from, to] = [to, from];

}

const difference = to - from;

return function () {

return Math.random() * difference + from;

};

}

The wun_of specifier takes an array of values and generators, and returns a generator

that randomly returns those values. The wun_of specifier can optionally take an array

of weights that can bias the selection.

function wun_of(array, weights) {

23.7 How Testing Works

The wun_of specifier has two signatures.

// wun_of(array)

// Wun element is taken from the array and resolved.

// The elements are selected randomly with equal probabilities.

// wun_of(array, weights)

// The two arguments are both arrays with equal lengths.

// The larger a weight, the more likely an element will be selected.

if (

!Array.isArray(array)

|| array.length < 1

|| (

weights !== undefined

&& (!Array.isArray(weights) || array.length !== weights.length)

)

) {

throw new Error("JSCheck wun_of");

}

if (weights === undefined) {

return function () {

return resolve(array[Math.floor(Math.random() * array.length)]);

};

}

const total = weights.reduce(function (a, b) {

return a + b;});

let base = 0;

const list = weights.map(function (value) {

base += value;

return base / total;

});

return function () {

let x = Math.random();

return resolve(array[list.findIndex(function (element) {

return element >= x;

})]);

};

}

The sequence specifier takes an array of values and generators, and returns a gener

ator that returns those values in order.

function sequence(seq) {

seq = resolve(seq);if (!Array.isArray(seq)) {

throw "JSCheck sequence";

}

let element_nr = -1;

return function () {

element_nr += 1;

if (element_nr >= seq.length) {

element_nr = 0;

}

return resolve(seq[element_nr]);

};

}

How Testing Works 23.8

The falsy specifier returns a generator that returns the falsy values.

const bottom = [false, null, undefined, "", 0, NaN];

function falsy() {

return wun_of(bottom);

}

The integer specifier returns a generator that returns integers in a selected range.

If a range is not specified, then it returns a generator that returns random prime

numbers under a thousand.

const primes = [

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229,

233, 239, 241, 251, 257, 263, 269, 271, 277, 281,

283, 293, 307, 311, 313, 317, 331, 337, 347, 349,

353, 359, 367, 373, 379, 383, 389, 397, 401, 409,

419, 421, 431, 433, 439, 443, 449, 457, 461, 463,

467, 479, 487, 491, 499, 503, 509, 521, 523, 541,

547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647, 653, 659,

661, 673, 677, 683, 691, 701, 709, 719, 727, 733,

739, 743, 751, 757, 761, 769, 773, 787, 797, 809,

811, 821, 823, 827, 829, 839, 853, 857, 859, 863,

877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997

];

function integer_value(value, default_value) {

value = resolve(value);

return (

typeof value === "number"

? Math.floor(value)

: (

typeof value === "string"

? value.charCodeAt(0)

: default_value

)

);

}

function integer(i, j) {

if (i === undefined) {

return wun_of(primes);

}

i = integer_value(i, 1);

if (j === undefined) {

j = i;

i = 1;

} else {

j = integer_value(j, 1);

}

if (i > j) {

[i, j] = [j, i];

23.9 How Testing Works

}

return function () {

return Math.floor(Math.random() * (j + 1 - i) + i);

};

}

The character specifier returns a generator that returns characters. If it is passed an

integer or two, the generator makes characters whose code points are in that range.

If it is passed two strings, it returns characters in the range made from the first code

point of each string. If it is passed wun string, it returns characters from that string.

The default is to return ASCII characters.

function character(i, j) {

if (i === undefined) {

return character(32, 126);

}

if (typeof i === "string") {

return (

j === undefined

? wun_of(i.split(""))

: character(i.codePointAt(0), j.codePointAt(0))

);

}

const ji = integer(i, j);

return function () {

return String.fromCodePoint(ji());

};

}

The array specifier returns a generator that returns arrays.

function array(first, value) {

if (Array.isArray(first)) {

return function () {

return first.map(resolve);

};

}

if (first === undefined) {

first = integer(4);

}

if (value === undefined) {

value = integer();

}

return function () {

const dimension = resolve(first);

const result = new Array(dimension).fill(value);

return (

typeof value === "function"

? result.map(resolve)

: result

);

};

}

If the argument is an array of values and generators, then the result is an array

containing values and the results of the generators.

How Testing Works 23.10

let my_little_array_specifier = jsc.array([

jsc.integer(),

jsc.number(100),

jsc.string(8, jsc.character("A", "Z"))

])

my_little_array_specifier() // [179, 21.228644298389554, "TJFJPLQA"]

my_little_array_specifier() // [797, 57.05485427752137, "CWQDVXWY"]

my_little_array_specifier() // [941, 91.98980208020657, "QVMGNVXK"]

my_little_array_specifier() // [11, 87.07735128700733, "GXBSVLKJ"]

Otherwise, it produces an array of values. You can supply a dimension or a gener

ator that produces integers. You can also supply a value, or a generator of values. The

default is random prime numbers.

let my_other_little_array_specifier = jsc.array(4);

my_other_little_array_specifier() // [659, 383, 991, 821]

my_other_little_array_specifier() // [479, 701, 47, 601]

my_other_little_array_specifier() // [389, 271, 113, 263]

my_other_little_array_specifier() // [251, 557, 547, 197]

The string specifier returns a generator that returns strings. The default is to make

strings of ASCII characters.

function string(...parameters) {

const length = parameters.length;

if (length === 0) {

return string(integer(10), character());

}

return function () {

let pieces = [];

let parameter_nr = 0;

let value;

while (true) {

value = resolve(parameters[parameter_nr]);

parameter_nr += 1;

if (value === undefined) {

break;

}

if (

Number.isSafeInteger(value)

&& value >= 0

&& parameters[parameter_nr] !== undefined

) {

pieces = pieces.concat(

new Array(value).fill(parameters[parameter_nr]).map(resolve));

parameter_nr += 1;

} else {

pieces.push(String(value));

}

}

return pieces.join("");

};

}

23.11 How Testing Works

It can also take values and generators and concatenate the results together.

let my_little_3_letter_word_specifier = jsc.string(

jsc.sequence(["c", "d", "f"]),

jsc.sequence(["a", "o", "i", "e"]),

jsc.sequence(["t", "g", "n", "s", "l"])

)]);

my_little_3_letter_word_specifier() // "cat"

my_little_3_letter_word_specifier() // "dog"

my_little_3_letter_word_specifier() // "fin"

my_little_3_letter_word_specifier() // "ces"

If a parameter produces an integer followed by a string value, it can be used as a

length.

let my_little_ssn_specifier = jsc.string(

3, jsc.character("0", "9"),

"-",

2, jsc.character("0", "9"),

"-",

4, jsc.character("0", "9")

);

my_little_ssn_specifier() // "231-89-2167"

my_little_ssn_specifier() // "706-32-0392"

my_little_ssn_specifier() // "931-89-4315"

my_little_ssn_specifier() // "636-20-3790"

The any specifier returns a generator that returns random values of various types.

const misc = [

true, Infinity, -Infinity, falsy(), Math.PI, Math.E, Number.EPSILON

];

function any() {

return wun_of([integer(), number(), string(), wun_of(misc)]);

}

The object specifier returns a generator that returns objects. The default is to make

small objects with random keys and random values.

function object(subject, value) {

if (subject === undefined) {

subject = integer(1, 4);

}

return function () {

let result = {};

const keys = resolve(subject);

if (typeof keys === "number") {

const text = string();

const gen = any();

let i = 0;

while (i < keys) {

result[text()] = gen();

i += 1;

}

return result;

}

if (value === undefined) {

How Testing Works
23. 12

if (keys && typeof keys === "object") {

Object. keys(subject). forEach(function (key) {

result[key] = resolve(keys[key]);

});

return result;

}

} else {

const values = resolve (value);

if (Array. isArray(keys)) {

keys. forEach(function (key, key_nr) {

result[key] = resolve((

Array. iSArray(values)

2 values[key_nr 74 values. length]

: value

), key_nr);

});

return result;

};

}

If it is given an array of names and a value, it makes an object using those names as

property names, giving the properties the value. For example, we can supply an array

containing 3 thru 6 names, where the names are 4 lower case letters, and the values

are booleans.

let my little constructor = jsc. object(

jsc. array(

jsc. integer.(3, 6),

jsc. string(4, jsc. character ("a", "z"))

)

jsc. boolean()

);

my little_constructor()

// ("hiyt": false, "rodf": true, "bfxf": false, "ygat": false, "hwde": false|}

my little_constructor()

// ("hwbh": true, "ndjt": false, "chsn": true, "faag": true, "hvme": true}

my little_constructor()

// ("qedz": false, "udyp": true, "ewes": true}

my little_constructor()

// ("igko": true, "txem": true, "yadl": false, "avwz": true}

If it is given an object, it produces an object having the same property names.

let my little_other_constructor = jsc. object({

left: jsc. integer(640),

top: jsc. integer (480),

color: jsc. wun of(["black", "white", "red", "blue",

});

my little_other_constructor() // ("left": 305, "top":

my little_other_constructor() // ("left": 162, "top":

my little_other_constructor() // ("left": 110, "top":

my little_other_constructor() // ("left": 610, "top":

"green" y "gray"])

360, "color": "gray").

366, "color": "blue"}

5, "color": "blue"}

61, "color": "green").

23.13 How Testing Works

It is possible to compose lots of test data. But if there is some shape of data that is not

easily made by composing these specifiers, you can easily make your own. It is just a

function that returns a function.

We now get into the workings of JSCheck.

The crunch function crunches the numbers and prepares the reports.

const ctp = "{name}: {class}{cases} cases tested, {pass} pass{fail}{lost}\n";

function crunch(detail, cases, serials) {

Go thru all of the cases. Gather the lost cases. Produce a detailed report and a

summary.

let class_fail;

let class_pass;

let class_lost;

let case_nr = 0;

let lines = "";

let losses = [];

let next_case;

let now_claim;

let nr_class = 0;

let nr_fail;

let nr_lost;

let nr_pass;

let report = "";

let the_case;

let the_class;

let total_fail = 0;

let total_lost = 0;

let total_pass = 0;

function generate_line(type, level) {

if (detail >= level) {

lines += fulfill(" {type} [{serial}] {classification}{args}\n",

{

type,

serial: the_case.serial,

classification: the_case.classification,

args: JSON.stringify(

the_case.args

).replace(/^\[/,

"("

).replace(/\]$/,")"

)

}

);

}

}

function generate_class(key) {

if (detail >= 3 || class_fail[key] || class_lost[key]) {

How Testing Works
23. 14

report += fulfill(

" {key} pass {pass}{fail}{lost}\n",

{

key,

pass: class_pass[key],

fail: (

class_fail[key]

2 " fail " + class_fail[key]

),

lost: (

class_lost[key]

2 " lost " + class_lost[key]

}

if (cases) {

while (true) {

next_case = cases[serials[case_nr]];

case_nr += 1;

if (! next_case || (next_case. claim l== now claim)) {

if (now claim) {

if (detail ×- 1) {

report += fulfill(

Ctp,

name: the case. name,

class: (

nr class

7 nr class + " classifications,

),

cases: nr pass + nr fail + nr lost,

pass: nr pass,

fail: (

nr fail

2 ", " + nr fail + " fail"

),

lost: (

nr lost

2 ", " + nr lost + " lost"

)

}

);

if (detail -- 2) {

Object. keys(

class_pass

). sort(). forEach(

generate_class

);

report += lines;

23. 15 How Testing Works

}

}

total fail += nr fail;

total lost += nr lost;

total_pass += nr pass;

}

if (! next_case) {

break;

}

nr class = 0;

nr fail

nr lost

nr pass =

class_pass = {};

class_fail = {};

class_lost = {};

lines = ;

}

the case = next_case;

now claim = the case. claim;

the class = the case. classification;

if (the class && typeof class_pass[the class]] == "number") {

class_pass[the class] = 0;

class_fail[the class] = 0;

class_lost[the class] = 0;

nr class += 1;

}

if (the case. pass === true) {

if (the class) {

class_pass[the class] += 1;

}

if (detail X= 4) {

generate_line("Pass", 4);

}

nr pass += 1;

} else if (the case. pass === false) {

if (the class) {

class_fail[the class] += 1;

}

generate_line("FAIL", 2);

nr fail += 1;

} else {

if (the class) {

class_lost[the class] += 1;

}

generate_line("LOST", 2);

lossesſnr_lost] = the case;

nr lost += 1;

}

}

report += fulfill (

"\n"Total pass {pass}{fail}{lost}\n",

{

pass: total_pass,

fail: (

total fail

2 ", fail " + total_fail

How Testing Works 23.16

: ""

),

lost: (

total_lost? ", lost " + total_lost

: ""

)

}

);

}

return {losses, report, summary: {

pass: total_pass,

fail: total_fail,

lost: total_lost,

total: total_pass + total_fail + total_lost,ok: total_lost === 0 && total_fail === 0 && total_pass > 0

}};

}

The module exports a constructor that returns a jsc object. A jsc object is stateful

because it holds the claims to be tested, so every user should get a fresh instance.

The reject value is used to identify trials that should be rejected.

const reject = Object.freeze({});

We export a jsc_constructor function. The check and claim functions are stateful, so

they are created in here. I am freezing the constructor because I enjoy freezing things.

export default Object.freeze(function jsc_constructor() {

let all_claims = [];

The check function is what does the work.

function check(configuration) {

let the_claims = all_claims;

all_claims = [];

let nr_trials = (

configuration.nr_trials === undefined

? 100

: configuration.nr_trials

);

function go(on, report) {

Invoke a callback function.

try {

return configuration[on](report);

} catch (ignore) {}

}

The check function checks all claims. The results are provided to callback functions.

let cases = {};

let all_started = false;

let nr_pending = 0;

let serials = [];

let timeout_id;

function finish() {

23.17 How Testing Works

if (timeout_id) {

clearTimeout(timeout_id);

}

const {

losses,

summary,

report

} = crunch(

(

configuration.detail === undefined

? 3

: configuration.detail),

cases,

serials

);

losses.forEach(function (the_case) {

go("on_lost", the_case);

});

go("on_result", summary);

go("on_report", report);

cases = undefined;

}

function register(serial, value) {

This function is used by a claim function to register a new case, and it is used by a

case to report a verdict. The two uses are correlated by the serial number.

If the cases object is gone, then all late arriving lost results should be ignored.

if (cases) {

let the_case = cases[serial];

If the serial number has not been seen, then register a new case. The case is added to

the cases collection. The serial number is added to the serials collection. The number

of pending cases is increased.

if (the_case === undefined) {

value.serial = serial;

cases[serial] = value;

serials.push(serial);

nr_pending += 1;

} else {

An existing case now gets its verdict. If it unexpectedly already has a result, then

throw an exception. Each case should have only wun result.

if (

the_case.pass !== undefined

|| typeof value !== "boolean"

) {

throw the_case;

}

If the result is a boolean, then the case is updated and sent to on_pass or on_fail.

if (value === true) {

the_case.pass = true;

go("on_pass", the_case);

How Testing Works 23.18

} else {

the_case.pass = false;

go("on_fail", the_case);

}

This case is no longer pending. If all of the cases have been generated and given

results, then finish.

nr_pending -= 1;

if (nr_pending <= 0 && all_started) {

finish();

}

}

}

return value;

}

let unique = 0;

Process each claim.

the_claims.forEach(function (a_claim) {

let at_most = nr_trials * 10;

let case_nr = 0;

let attempt_nr = 0;

Loop over the generation and testing of cases.

while (case_nr < nr_trials && attempt_nr < at_most) {

if (a_claim(register, unique) !== reject) {

case_nr += 1;

unique += 1;

}

attempt_nr += 1;

}

});

All of the case predicates have been called.

all_started = true;

If all of the cases have returned verdicts, then generate the report.

if (nr_pending <= 0) {

finish();

Otherwise, start the timer.

} else if (configuration.time_limit !== undefined) {

timeout_id = setTimeout(finish, configuration.time_limit);}

}

The claim function is used to file each claim. All of the claims are checked at wunce

when the check function is called. A claim consists of

• A descriptive name that is displayed in the report.

• A predicate function that exercises the claim and returns true if the claim

holds.

• A function signature array that specifies the types and values for the

predicate function.

23.19 How Testing Works

• An optional classifier function that takes values produced by the signature

and that returns a string for classifying the trials, or undefined if the

predicate should not be given this set of generated arguments.

function claim(name, predicate, signature, classifier) {

A function is deposited in the set of all claims.

if (!Array.isArray(signature)) {

signature = [signature];

}

function the_claim(register, serial) {

let args = signature.map(resolve);

let classification = "";

If a classifier function was provided, then use it to obtain a classification. If the

classification is not a string, then reject the case.

if (classifier !== undefined) {

classification = classifier(...args);if (typeof classification !== "string") {

return reject;

}

}

Create a verdict function that wraps the register function.

let verdict = function (result) {

return register(serial, result);

};

Register an object that represents this trial.

register(serial, {

args,

claim: the_claim,

classification,

classifier,

name,

predicate,

serial,

signature,

verdict

});

Call the predicate, giving it the verdict function and all of the case arguments. The

predicate must use the verdict callback to signal the result of the case.

return predicate(verdict, ...args);

}

all_claims.push(the_claim);

}

Finally, we construct the instance and return it.

return Object.freeze({

The Specifiers:

How Testing Works 23.20

any,

array,

boolean,

character,

falsy,

integer,

literal,

number,

object,

wun_of,

sequence,

string,

The Main Functions:

check,

claim

});

});

Ecomcon

If a file has strong dependencies on other code, I want to put the tests of those

relationships in the same file. The only way to determine that module A plays well

with module B and module C is to run them all together in context.

I developed a simple tool called ecomcon (Enable Comments Conditionally). I can put

testing and metering into the source code in the form of tagged comments.

//tag code

A tag can be any word, like test. It can be followed by some JavaScript code.

Normally, these comments are just comments, so they are ignored. They are removed

by minification. The ecomcon function can enable them, removing the //slash slash and

the tag, leaving the JavaScript code that can now be executed.

We can produce a special build with lots of runtime checking and logging and analysis.

It allows access to variables that would ordinarily be hidden in function scopes. It can

monitor values as they flow in and out. It can test the program’s integrity, assuring

that critical resources have not been corrupted.

The comments can also act as documentation as they expose and exercise the

internals of the file and its operations.

function ecomcon(source_string, tag_array)

The tag_array contains strings to enable as tags.

The ecomcon function is pretty simple.

const rx_crlf = /\n

|

\r \n?

/;

const rx_ecomcon = /

23. 21 How Testing Works

\/\/

([a-z A-Z 0–9 J4)

\u00207

(. .)

$

/;

// Capturing groups:

// [1] The enabled comment tag

// [2] The rest of the line

const rx_tag = /

[a-z A-Z 0–9 14

$

/;

export default Object. freeze(function ecomCon(source_string, tag array) {

const tag = Object. create(null);

tag array. forEach(

function (string) {

if (! rx_tag. test(string)) {

throw new Error("ecomCon: " + string);

}

tagſstring] = true;

}

);

return source_string. split(rx_crlf). map(

function (line) {

const array = line. match(rx_ecomCon);

return (

Array. is Array(array)

2 (

tagſarray[1]] === true

2 array[2] + "\n"

)

: line + "\n"

);

}

). join("");

});

Chapter 24

How Optimizing Works

●●○○○

More computing sins are committed in the

name of efficiency (without necessarily

achieving it) than for any other single

reason — including blind stupidity.

William Wulf

The first several generations of computers were, by modern standards, quite slow.

Since getting a correct answer too late can be indistinguishable from failing to get

an answer, performance optimization became a deeply ingrained obsession in

programming.

Today’s devices are much faster. So it would seem that performance is no longer a

concern. And for most applications, it is not. We have more processors than we need,

and most of those processors are idle much of the time. We have enormous excess

capacity.

Some things still are not fast enough. Sometimes that is because the scale of a

problem grows faster than capacity. The big data keeps getting bigger. Even at

the scale of human interaction, which is where JavaScript dominates, we can still

experience slowness.

When we take too long to deliver responses to people, they get irritated, and then they

get frustrated, and then they get angry. If we are trying to create satisfaction and

loyalty, then our systems must be responsive.

So it is still necessary to be concerned about performance, but we need to deal with it

properly. Optimization can easily make things worse.

It is widely believed that every little optimization helps because all of those saved

nanoseconds add up. This is not true. We should only optimize where we can get a

significant improvement. Insignificant optimizations are a waste of time. The whole

point to optimization is to save time. So we need to optimize our optimizing.

24.1 How Optimizing Works

Measurement

Computer programming is also known as Computer Science and Software Engin

eering. These are aspirational titles. We do not have enough understanding of this

yet to truly do science and engineering. We do not have theory to answer the most

important questions in the management of a software project: How many bugs are

left, and how long will it take to fix them?

Too much of our art is unquantifiable but we can measure performance. We can

execute a program, and observe how much time it took. Those numbers can help us

better understand our systems, or they can confuse us.

A very common practice is to take two language features, put them both into loops,

and then measure the loops. The faster loop tells us which feature to use. This can be

problematic.

The result might be meaningless. Are we testing the performance of the feature, or

are we testing the ability of the engine to optimize that feature when you isolate it

and run it in a loop a million times? Is this result portable? Will other engines perform

the same way? And more importantly, will future engines perform the same way?

The result might be insignificant. In context, in a real program, there might not

be an observable difference. So we might be wasting time by basing decisions on

meaningless data.

We should instead be choosing the features that gives us programs that are readable

and maintainable. It does not help us if it is fast and also broken.

Measure Again

Carpenters have a proverb: Measure twice, cut wunce. It looks like it could easily

be optimized: Measure wunce and cut. The extra care reduces mistakes, avoiding the

wasting of time and materials. It is a big win.

Programmers should use this proverb: Measure, then cut, then measure again.

Before making an optimization, we should first measure the performance of the code

we want to optimize. We do this to establish a baseline and to demonstrate that the

code is slowing down the whole program. If the code is not hot, then we should look

elsewhere. Then we carefully optimize the code. Then we measure again. If the new

code does not perform significantly better than the baseline, then we back out the

change. It failed to deliver the expected improvement. We do not check in failures.

Most optimizations add complexity to the code by adding alternate paths and

removing generality. This makes the code bigger, harder to maintain, and harder to

test adequately. We might consider this to be worth it if we obtain a significant speed

up. If there is not a significant speed up, then we can call the change a bug. It is

causing a reduction in code quality with little or no compensating benefit. Clean code

is easier to reason about and maintain. We should be reluctant to give that up.

Most of the code has a negligible impact on performance. It is a waste of time to be

optimizing the code that is not slowing the program down.

How Optimizing Works 24.2

Time Suck

It is rarely the case that fiddling with code makes it faster because fiddling does not

address the underlying cause of the slowness. These are some of the biggest time

sucks:

Failure to parallelize: Parseq allows us to take advantage of the inherent

parallelism of the universe to make our stuff go faster. If we instead

make everything go sequentially, we give that up. At scale, parallel beats

sequential.

Violating the Law of Turns: When we block the processing loop, that adds

delays to everything that happens in the future until the queue finally

becomes empty. The accumulation of delays can prevent the queue from

ever becoming empty.

Weak cohesiveness: If our modules do not have high cohesion, then it is likely

that they are doing things that we might not need done. Unnecessary

work slows things down.

Tight coupling: When modules are tightly coupled, we give up locality. That

can lead to excessively chatty protocols that add network latency to every

processing step.

Wrong algorithm: A casually constructed O(n log n) function can easily out

perform a finely crafted, ingeniously optimized O(n2) function when n is

large. When n is small it usually does not matter which is faster.

Thrashing: This used to be a problem in virtual memory systems, and we can

still see it in web caches. There is so much junk flowing from the web thru

the cache that useful things get flushed out before they can be reused.

Bloat: When the code is big and bloated, it is unlikely that we fully

understand what it is doing. It may be doing much more work than

necessary. Don’t focus on execution speed; focus instead on code size.

Other people’s code: Your code probably relies on other packages, libraries,

platforms, browsers, servers, and operating systems. I do not know what

you have to run with, but I am confident that fiddling with your code will

not make their code run any faster. If your code executed in zero time,

most web users would not observe much of a difference.

24.3 How Optimizing Works

Language

Perhaps the best optimization investment is in the language engine. Optimizations

installed there benefit all of the users of the language. That liberates us to focus on

writing high quality programs. The engine mechanics will make them fast.

The first JavaScript engines were optimized for time-to-market. Not surprisingly,

they were not very fast, which contributed to the story that JavaScript was just a toy

language.

Even so, JavaScript was adequately fast for most web applications. Most of the

performance problems in the browser were due to misuse of the network, loading

assets sequentially instead of pipelining. And there was the DOM API, which was

extremely inefficient. The DOM is not part of JavaScript, but JavaScript was blamed

for the DOM’s performance. And as bad as the DOM was, most web applications ran

adequately. The execution speed of JavaScript was rarely a factor.

Since then, the JavaScript engines have gotten quite fast, but it is complicated. All of

the easy optimizations have been done. From this point on, things get more and more

complicated. There are optimizations that will definitely speed up programs at scale,

but that have the cost of increasing start up time. That is wun of those times when

people can get irritated, frustrated, and angry.

So they play a very complicated game in which they start fast with slow code, and then

optimize in response to the program’s behavior. So far they have been very good at

playing this game, but it is hard. They can not make everything faster. So it becomes

a betting game. They optimize the things they imagine will provide the most benefit

to the noisiest developers.

As the language gets more complex, the game gets even harder. The monsters only

grow in number. They never diminish. Ultimately, the complexity will be over

whelming and the game will be over. A simpler, cleaner, more regular language would

be much easier to optimize.

There is also a nasty feedback loop. The engines make certain features faster. Coders

discover that and make heavy use of those features. That establishes a pattern of

usage that the mechanics observe and are influenced by. This loop is driving the

investments in optimization, but is not necessarily trending in the direction of opti

mizing good programs.

Chapter 25

How Transpiling Works

●●○○●

I’m not the wun.

Neo

An increasingly important role for JavaScript is as a compilation target. Transpiling

is a specialized form of compiling in which wun programming language is transformed

into another, often JavaScript. This treats JavaScript as a portable executable format,

leveraging JavaScript’s universality and stability. JavaScript has become the virtual

machine of the web. We had always thought that Java’s JVM would be the VM of the

web, but it turns out that it’s JavaScript. JavaScript is strictly more portable and fast

enough to tokenize and parse as minified source.

Sometimes the source language is a JavaScript dialect, sometimes it is another

existing language, and sometimes it is an entirely new language that was designed

specifically for transpilation.

There are many reasons to build a transpiler.

Experimentation: Transpilers are an ideal way to construct and test experi

mental languages and features. Ideas can be tested in JavaScript with

much less time and effort.

Specialization: Transpilers can be used to implement little languages that are

designed for very specific purposes. Such languages can reduce the opera

tional burden of repetitive tasks.

Legacy: Transpilers provide a way of protecting investments in languages

that are not popular enough to enjoy JavaScript’s reach. By transpiling

into JavaScript, old programs could potentially run everywhere. You do

not need to understand how JavaScript works in order to use JavaScript.

(Not understanding what you are doing is not a good thing.)

Fashion: Coders can be addicted to fashion. Transpiling makes it possible to

festoon programs with groovy syntax.

Early access: The rate at which new language features get standardized,

implemented, and ubiquitously deployed is slow and uncertain. Trans

piling can sometimes make features immediately available by trans

lating next edition JavaScript into current edition JavaScript. Those

features are usually fashionable, not critical. But sometimes fashion can

not wait.

25.1 How Transpiling Works

Security: JavaScript has many inherent security weaknesses. A transpiler

can mitigate that by removing problematic features whilst adding

runtime checking and indirection to keep potentially malicious programs

in check.

Performance: Developments like ASM.js and Web Assembly attempt to gain

an execution advantage by removing from JavaScript everything that is

good.

Transpilers should never be used in production. I like transpilers for their utility in

education and research, but short-sighted concessions to fashion and mode-of-the-past

thinking can have big consequences a few years later. My advice is to write excellent

JavaScript programs.

Neo

Neo is a transpiled language. In the following chapters, I will show how Neo is

implemented in the following stages: Tokenization, Parsing, Code Generation, and

Runtime.

Neo is an educational language. It is intended to help transition to the next language

by correcting some of JavaScript’s biggest mistakes and by removing the features that

are most strongly rooted in the old paradigm. In particular, the C syntax is removed.

It can be hard to look to the future when you are stuck in the seventies.

Neo is a lot like JavaScript, but is also significantly different. Some of the differences

are superficial. Some of the differences are very deep:

• There are no reserved words.

• Names can have spaces. Names can end with a ? question
mark.

• Comments are made with the # octothorpe. A comment ends at the end of a line.

• Neo is semicolon free with meaningful whitespace. Long statements can be

broken after (left paren, [left bracket, { left brace, ƒ florin.

• Neo has fewer precedence levels. Operator precedence reduces the need for

parenthesis, but if there are too many precedence levels, it can be difficult to

remember them all, which causes errors. These are the levels, from weakest

to strongest:

0. ? ! ternary | | default

1. /\ logical and \/ logical or

2. = equals ≠ not equals < less than > greater than

≤ less than or equals ≥ greater than or equals

3. ~ concatenate ≈ concatenate with space

4. + add - subtract << minimum >> maximum

5. * multiply / divide

6. . refine [] subscript () invoke

• null unifies null, undefined, and NaN into a single object, eliminating the

confusion about which to use when. null is an empty immutable object.

Getting a property from null does not fail, it just produces null, so path

expressions work. Attempts to modify or call null will fail.

How Transpiling Works 25.2

• There are no prefix operators. Instead there are unary functions. The

superficial difference is that functions require parens, whilst parens are op

tional with operators. Functions are more flexible, so we are eliminating a

source of confusion by going exclusively with functions. I am keeping the

other operators. If I replace all of the operators with functions, then there is

a strong likelihood that I will end up accidentally reinventing LISP. Which

would not be a bad thing.

• Neo has wun number type: Big Decimal. That means that decimal arithmetic

can be exact. Every number value that JavaScript can represent exactly

is also included. Because numbers are big, there is no need for MIN_VALUE,

EPSILON, MAX_SAFE_INTEGER, MAX_VALUE, nor Infinity.

0.1 + 0.2 = 0.3 # true at last

• A sequence of characters is called a text.

• Neo has a data type called record that unifies JavaScript’s objects and

weakmaps. We are free now to use the term object to include all of the types

in the language. A record does not inherit. A record is a container of fields.

A field has a key that can be a text, record, or array. A field has a value that

can be any value except null. Changing the value of a field to null deletes the

field from the record.

• Arrays are made with array literals and with the array(dimension) function

that makes a new array, sets the length, and initializes the elements to null.

The subscripts are non-negative integers that are less than the dimension.

Attempting to store outside of that range causes a failure. An array may be

appended to with a special form of let that also increases the dimension by 1.

def my little array: array(10)

let my little array[10]: 666 # FAIL

let my little array[]: 555

my little array[0] # null

my little array[10] # 555

length(my little array) # 11

• The stone function replaces the Object.freeze function, doing a deep freeze.

The problem with freeze is that it creates an expectation of unfreeze or thaw.

There is no coming back from petrification.

• The ternary operator uses ? and !. The condition must be a boolean.

call (

my hero = "monster"

? blood curdling scream

! (

my hero = "butterfly" \/ my hero = "unicorn"

? do not make a sound

! sing like a rainbow

)

)()

• The short-circuiting logical operators are /\solidus reverse solidus for and, and

\/reverse solidus solidus for or. Logical not is a unary function. If /\, \/, and not

are given non-boolean values, they fail.

25.3 How Transpiling Works

• These unary arithmetic functions are included: abs, fraction, integer, and

neg. They are unary functions, not operators. Note that - minus
sign for nega

tion only works with number literals.

• The + plus sign operator does addition, not concatenation. The other arithmetic

operators are - minus sign for subtraction, * asterisk for multiplication, /solidus for

division, >> greater
than

greater
than for maximum, << less than

less
than for minimum,

• The ~ tilde operator does concatenation. The ≈ double tilde operator does

concatenation with a separating space.

"Hello" ~ "World" # "HelloWorld"

"Hello" ≈ "World" # "Hello World"

"Hello" ≈ "" # "Hello"

"Hello" ≈ null # null

They attempt to coerce their operands into texts.

• The bitwise functions operate on integers of any size: bit mask, bit shift up,

bit shift down, bit and, bit or, and bit xor.

• The typeof operator is replaced with these predicate functions: array?,

boolean?, function?, number?, record?, text?.

• The Number.isInteger and Number.isSafeInteger functions are replaced with

the integer? function.

• The Object.isFrozen function is replaced with the stone? function.

• The char function takes a code point and returns a text.

• The code function takes a text and returns the first code point.

• The length function takes an array or text, and returns the number of ele

ments or characters.

• The array function makes an array. How it does that depends on its argu

ment.

• If the argument is a non-negative integer, then make an array of that

dimension. If another argument is provided:

• If null, all of the elements are initialized to null.

• If a function, then the function is called to produce

initialization values for the elements.

• Otherwise it provides the initialization value for the ele

ments.

• If the argument is an array and the next argument is a function, then

map the array.

• If the argument is an array, then make a shallow copy of the array.

Additional arguments can give the starting and ending positions for

copying a portion of the array.

• If the argument is a record, then make an array of the text keys.

• If the argument is a text and if there is a second argument, then the

second argument is used to split the text into an array of texts.

• The number function takes a text and returns a number. It can take an

optional radix.

• The record function makes a record. How it does that depends on its argu

ment.

How Transpiling Works 25.4

• If the argument is an array, then use the elements of the array as

keys. The values depend on the other argument:

• If null, all of the values are true. This is sometimes called a

set.

• If an array, then its elements are the values. The arrays

should have the same length.

• If a function, then it is used to generate the values.

• Otherwise, the argument is used as the initial value of all of

the fields.

• If the argument is a record, then make a shallow copy of the record,

copying only the text keys. If there is another argument that is an

array of keys, then only those keys are copied.

• If the argument is null, then make an empty record.

• The text function makes a text. How it does that depends on its argument.

• If a number, it converts to a text. It can take an optional radix.

• If an array, it concatenates all of the elements together. Another

argument can provide separator text.

• If a text, two additional arguments can specify a subtext.

Unfortunately, those arguments specify code units. Ideally, a text

should be represented internally as UTF-32. We will have to wait

until the next language for that.

• Function objects are made with the ƒflorin operator. There are two forms:

ƒ parameter list (expression)

ƒ parameter list {

function body

}

• A parameter list is a , comma separated list of names and optional defaults

and ... ellipsis. Functions are anonymous. To give functions names, use the

def statement. Function objects are immutable.

• A function expression returns the value of the expression. A function body

must explicitly return a value.

• The default operator is |expression|. If the expression or parameter

immediately to the left has a value of null, then the expression wrapped in

vertical bars on the right is evaluated to produce a default value. It is short

circuiting.

• The ... ellipsis is similar to JavaScript’s except that it is always placed after

the array term, not before...

def continuize: ƒ any (

ƒ callback, arguments... (callback(any(arguments...))))

• Using ƒ florin as a prefix before an operator produces a functino, allowing the

use of the operator as an ordinary function. So ƒ+ makes a binary add func

tion that can be passed to a reduce function to make sums. ƒ+(3, 4) returns

7.

25.5 How Transpiling Works

ƒ≥ƒ/\ and ƒ\/ or ƒ= equals ƒ≠ not equals ƒ< less than greater than or equal ƒ> greater

than ƒ≤ less than or equal ƒ~ concatenate ƒ≈ concatenate space ƒ+ add ƒ- subtract

ƒ>> max ƒ<< min ƒ* multiply ƒ/divide ƒ[] get ƒ() resolve ƒ?! ternary

ƒ|| default

• A function can be called as a method. For example:

my little function.method(x, y)

does the same thing as

my little function("method", [x, y])

This simple mechanism makes it possible to use a function as a proxy to a

record.

• The def statement replaces the const statement.

• The var statement declares variables.

• The let statement can change the value of a variable, or a field of a record, or

an element of an array. The let statement is the only place where mutation is

allowed. There are no assignment operators. I can not eliminate assignment,

but I can constrain it.

def pi: 3.14159265358979323846264338327950288419716939937510582097494459

var counter: 0

let counter: counter + 1

• There is no block scope because there are no blocks. There is function scope.

• The call statement allows for calling a function and ignoring its return value.

call my little impure side effect causer()

• Neo has if and else. It also has else if as a replacement for the switch state

ment. If the condition expression does not produce a boolean, then it fails.

There are no falsy values.

if my hero = "monster"

call blood curdling scream()

else if my hero = "butterfly" \/ my hero = "unicorn"

call do not make a sound()

else

call sing like a rainbow()

• The loop statement replaces the do, for, and while statements. I want to

discourage looping. The loop is a simple infinite loop. Use break or return to

exit. Loops can not have labels. Loops may be nested. New functions can not

be made in loops.

• Exceptions are replaced with failures. A function can have a failure handler.

There is no try.

def my little function: ƒ x the unknown {

return risky operation(x the unknown)

failure

call launch all missiles()

return null

}

• The fail statement signals a failure. It does not take an exception object or

any other sort of message. If a reason for the failure must be communicated,

then log it some other way before the fail.

How Transpiling Works 25.6

• A module can have several import statements:

import name: text literal

• A module can have wun export statement:

export expression

Example

This is the reduce reverse function in Neo. It allows an early exit, and it goes

backwards. It takes 3 arguments: array, callback function, and initial value. The

callback function is given 4 values: the current value of the reduction, the current

array element, the index number of the current element, and an exit function. If the

callback function wants to stop early, it returns the result of calling the exit function

with the final value.

def reduce reverse: ƒ array, callback function, initial value {

#

#

#

Reduce an array to a single value.

If an initial value is not provided, then the zeroth element is used

and the first iteration is skipped.

var element nr: length(array)

var reduction: initial value

if reduction = null

let element nr: element nr - 1

let reduction: array[element nr]

The callback function gets an exit function that it can call

to stop the operation.

def exit: ƒ final value {

let element nr: 0

return final value

}

Loop until the array is exhausted or an early exit is requested.

On each iteration, call the callback function with the next increment.

loop

let element nr: element nr - 1

if element nr < 0

break

let reduction: callback function(

reduction

array[element nr]

element nr

exit

)

return reduction

}

25.7 How Transpiling Works

The Next Language

Neo is not the next language. It is not even a complete language. It is missing a lot of

essential stuff. That is not in itself a serious problem because we know that it is easy

to add stuff to a language.

Neo is missing JSON support. No serious 21th Century language can be lacking built

in JSON encoding and decoding.

Neo is missing some form of textual pattern matching. JavaScript uses regular

expressions for that purpose. The next language should support context-free

languages with a less cryptic notation.

The next language should have better Unicode support. For example, there should

be some form of split that knows about combining characters, splitting a text into

glyphs.

The next language should use UTF-32 as its internal character representation. This

might seem wildly extravagant. I remember when 8 bits for a character was

considered an extravagance. That was when memories were measured in kilobytes.

Today memories are measured in gigabytes. Memories have become so large that the

size of a character is in the noise. With UTF-32, the difference between code units and

code points vanishes, making it easier to write programs that operate correctly inter

nationally.

The next language should have direct support for blobs. Some data wants to be big

and messy and nicely wrapped and mysterious.

The next language should have better support for eventual programming, including a

processing loop and a mechanism for message dispatch and ordered delivery.

The next language should have better support for secure networking.

The next language should have support for process management: launching, com

municating, and destroying. It should be possible to link processes together into

suicide pacts. If wun fails, they all fail, creating an opportunity to start them up again

in a fresh state.

The next language should have support for the parallel processing of pure functions.

CPUs are not getting faster, but they are more plentiful. Ultimately, the greatest per

formance improvements come from parallelism.

Neo is not the next language, but it can help us to not be afraid of the next paradigm.

Next we build Neo.

Chapter 26

How Tokenizing Works

●●○●○

Never send a human to do a machine’s job.

Agent Smith

The first step in processing a program is to break it into tokens. A token is made from

a sequence of characters that form a meaningful feature of the source, such as a name,

punctuator, number literal, or text literal. We make a token object for each token in

the program.

We use regular expressions to break source text into lines, and to break lines into

tokens.

const rx_unicode_escapement = /

\\ u \{ ([0-9 A-F]{4,6}) \}

/g;

rx_crfl matches linefeed, carriage return, and carriage return linefeed. We are still

messing with device codes for mid 20th Century electromechanical teletype machines.

const rx_crlf = /\n

|

\r \n?

/;

rx_token matches a Neo token: comment, name, number, string, punctuator.

const rx_token = /

(\u0020+)

|

(# .*)

|

(

[a-z A-Z]

(?:

\u0020 [a-z A-Z]

|

[0-9 a-z A-Z]

)*

\??

)

|

(

-? \d+

26.1 How Tokenizing Works

(?: \, \d:)?

(?: e \-? \d:)?

)

|

(in

(?:

| [a " \\ |

\\

(?:

| [n r " \\ |

) u \{ [0–9 A–F]{4,6} \}

)#

)

|

(

|

\. (?: \, \.)?

|

\/ \\?

|

\\ \/?

> >2

|

< 3?

|

| \D \]?

|

\{ \}?

[() } \] . , ; 2 l ; ~ & = z < 2 & | + \- * } f $ G * ' ']

/y;

// Capture Group

// [1] Whitespace

// [2] Comment

// [3] Alphameric

// [4] Number

// [5] String

// [6] Punctuator

We export a tokenizer factory.

export default Object. freeze(function tokenize(source, comment = false) {

tokenize takes a source and produces from it an array of token objects. If the source

is not an array, then it is split into lines at the carriage return/linefeed. If comment is

true then comments are included as token objects. The parser does not want to see

comments, but a software tool might.

const lines = (

Array. isArray(source)

2 source

How Tokenizing Works 26.2

: source.split(rx_crlf)

);

let line_nr = 0;

let line = lines[0];

rx_token.lastIndex = 0;

The factory returns a generator that breaks the lines into token objects. The token

objects contain an id, coordinates, and other information. Whitespace is not tokenized.

Each time the token generator is called, it produces the next token.

return function token_generator() {

if (line === undefined) {

return;

}

let column_nr = rx_token.lastIndex;

if (column_nr >= line.length) {

rx_token.lastIndex = 0;

line_nr += 1;

line = lines[line_nr];

return (

line === undefined

? undefined

: token_generator()

);

}

let captives = rx_token.exec(line);

Nothing matched.

if (!captives) {

return {

id: "(error)",

line_nr,

column_nr,string: line.slice(column_nr)

};

}

Whitespace matched.

if (captives[1]) {

return token_generator();

}

A comment matched.

if (captives[2]) {

return (

comment

? {

id: "(comment)",

comment: captives[2],

line_nr,

column_nr,column_to: rx_token.lastIndex

}

: token_generator()

);

}

26.3 How Tokenizing Works

A name matched.

if (captives[3]) {

return {

id: captives[3],

alphameric: true,

line_nr,

column nr.,

column to : rx_token. lastIndex

};

}

A number literal matched.

if (captives[4]) {

return {

id: "(number)",

readonly: true,

number: big_float. normalize(big_float. make(captives[4])),

text: captives[4],

line_nr,

column nr.,

column to : rx_token. lastIndex

};

}

A text literal matched.

if (captives[5]) {

We use replace to convert \uſxxxxxx} to a codepoint and JSON. parse to process the

remaining escapes and remove the quotes.

return {

id: "(text)",

readonly: true,

text: JSON. parse (captives.[5]. replace(

rx_unicode_escapement,

function (ignore, code) {

return String. fromCodePoint(parselnt(code, 16));

}

)),

line_nr,

column nr.,

column to : rx_token. lastIndex

};

}

A punctuator matched.

if (captives[6]) {

return {

id: captives[6],

line_nr,

column nr.,

column to : rx_token. lastIndex

Chapter 27

How Parsing Works

●●○●●

Some believed we lacked the programming

language to describe your perfect world. But

I believe that, as a species, human beings

define their reality thru suffering and

misery.

Agent Smith

In parsing, we weave the stream of token objects into a tree. During the parsing

operation we also look for errors in the source. The token objects are augmented with

new properties. The most important are the zeroth, wunth, and twoth properties. They

give the tree structure. For example, the two operands of an addition are kept in the

zeroth and wunth properties of a + token. An if token keeps the condition expression

in zeroth, the then clause in wunth, and the else clause in twoth. There will be other

properties as well. We will discover them as we go along.

We report errors with the error function. We could have it keep a list of errors and

continue, but I want to stop after the first error. When I am in development mode,

I want an error to move my editor’s cursor to the next problem. When I am in build

mode, I am looking for a pass or a fail, not a list.

let the_error;

function error(zeroth, wunth) {

the_error = {

id: "(error)",

zeroth,

wunth

};

throw "fail";

}

The primordial object contains the objects that are built into the language. This

includes constants like true and functions like neg. The primordial object is made with

Object.create(null) because I do not want the prototype chain polluting the object.

For example, Object.prototype contains a valueOf method, but I do not want to inherit

it because it could give the appearance of adding a primordial valueOf to the language.

const primordial = (function (ids) {

const result = Object.create(null);

ids.forEach(function (id) {

27.1 How Parsing Works

result[id] = Object.freeze({id,

alphameric: true,

readonly: true

});

});

return Object.freeze(result);

}([

"abs", "array", "array?", "bit and", "bit mask", "bit or", "bit shift down",

"bit shift up", "bit xor", "boolean?", "char", "code", "false", "fraction",

"function?", "integer", "integer?", "length", "neg", "not", "number",

"number?", "null", "record", "record?", "stone", "stone?", "text", "text?",

"true"

]));

The readonly property blocks the let statement.

Three tokens will always be visible as we advance thru the stream.

The generator function supplies a stream of token objects. Three tokens are visible as

prev_token, token, and next_token. The advance function uses the generator to cycle

thru all of the token objects, skipping over the comments.

let the_token_generator;

let prev_token;

let token;

let next_token;

let now_function; // The function currently being processed.

let loop; // An array of loop exit status.

const the_end = Object.freeze({id: "(end)",

precedence: 0,

column_nr: 0,

column_to: 0,

line_nr: 0

});

The advance function advances to the next token. Its companion, the prelude function,

tries to split the current token into two tokens.

function advance(id) {

Advance to the next token using the token generator. If an id is supplied, make sure

that the current token matches that id.

if (id !== undefined && id !== token.id) {

return error(token, "expected '" + id + "'");

}

prev_token = token;

token = next_token;

next_token = the_token_generator() || the_end;

}

function prelude() {

If token contains a space, split it, putting the first part in prev_token. Otherwise,

advance.

How Parsing Works 27.2

if (token.alphameric) {

let space_at = token.id.indexOf(" ");

if (space_at > 0) {

prev_token = {

id: token.id.slice(0, space_at),

alphameric: true,

line_nr: token.line_nr,

column_nr: token.column_nr,

column_to: token.column_nr + space_at};

token.id = token.id.slice(space_at + 1);

token.column_nr = token.column_nr + space_at + 1;

return;

}

}

return advance();

}

Whitespace is significant in this language. A line break can signal the end of a

statement or element. Indentation can signal the end of a clause. These functions help

to manage that.

let indentation;

function indent() {

indentation += 4;

}

function outdent() {

indentation -= 4;

}

function at_indentation() {

if (token.column_nr !== indentation) {

return error(token, "expected at " + indentation);

}

}

function is_line_break() {

return token.line_nr !== prev_token.line_nr;}

function same_line() {

if (is_line_break()) {

return error(token, "unexpected linebreak");

}

}

function line_check(open) {

return (

open

? at_indentation()

: same_line()

);

}

The register function declares a new variable in a function’s scope. The lookup

function finds a variable in the most relevant scope.

27.3 How Parsing Works

function register(the_token, readonly = false) {

Add a variable to the current scope.

if (now_function.scope[the_token.id] !== undefined) {

error(the_token, "already defined");

}

the_token.readonly = readonly;

the_token.origin = now_function;

now_function.scope[the_token.id] = the_token;

}

function lookup(id) {

Look for the definition in the current scope.

let definition = now_function.scope[id];

If that fails, search the ancestor scopes.

if (definition === undefined) {

let parent = now_function.parent;

while (parent !== undefined) {

definition = parent.scope[id];

if (definition !== undefined) {

break;

}

parent = parent.parent;

}

If that fails, search the primordials.

if (definition === undefined) {

definition = primordial[id];

}

Remember that the current function used this definition.

if (definition !== undefined) {

now_function.scope[id] = definition;

}

}

return definition;

}

The origin property captures the function that created the variable. The scope

property holds all of the variables created or used in a function. The parent property

points to the function that created this function.

Three objects contain the functions that are used to parse the features of the lang

uage: statements, prefixes, and suffixes.

The parse_statement, parse_prefix, and parse_suffix objects contain functions that

do the specialized parsing. We are using Object.create(null) to make them because

we do not want any of the debris from Object.prototype getting dredged up here.

const parse_statement = Object.create(null);

const parse_prefix = Object.create(null);

const parse_suffix = Object.create(null);

The expression function (and its helper, argument_expression) is the heart of this

parser. An expression can be viewed as having two parts: A left part and an optional

How Parsing Works 27.4

right part. The left part is a literal, variable, or prefix thing. The right part is a suffix

operator that might be followed by another expression. If there is a suffix on the right

and if it has greater precedence, then the left part is passed to the right part’s parser,

producing a new left part. The right part’s parser will probably call expression again

itself, possibly with a different precedence.

Expressions can be open or closed. If closed, the expression must fit entirely on the

same line. Open expressions should start at the proper indentation and may have a

line break before the suffix.

function argument_expression(precedence = 0, open = false) {

The expression function is the heart of this parser. It uses a technique called Top

Down Operator Precedence.

It takes an optional open parameter that allows tolerance of certain line breaks. If

open is true, we expect the token to be at the indentation point.

let definition;

let left;

let the_token = token;

Is the token a number literal or text literal?

if (the_token.id === "(number)" || the_token.id === "(text)") {

advance();

left = the_token;

Is the token alphameric?

} else if (the_token.alphameric === true) {

definition = lookup(the_token.id);if (definition === undefined) {

return error(the_token, "expected a variable");

}

left = definition;

advance();

} else {

The token might be a prefix thing: (, [, {, ƒ.

definition = parse_prefix[the_token.id];

if (definition === undefined) {

return error(the_token, "expected a variable");

}

advance();

left = definition.parser(the_token);

}

We have the left part. Is there a suffix operator on the right? Does precedence allow

consuming that operator? If so, combine the left and right to form a new left.

while (true) {

the_token = token;

definition = parse_suffix[the_token.id];

if (

token.column_nr < indentation

|| (!open && is_line_break())

|| definition === undefined

|| definition.precedence <= precedence

) {

27.5 How Parsing Works

break;

}

line_check(open && is_line_break());

advance();

the_token.class = "suffix";

left = definition.parser(left, the_token);

}

After going zero or more times around the loop, we can return the parse tree of the

expression.

return left;

}

function expression(precedence, open = false) {

Expressions do a whitespace check that argument expressions do not need.

line_check(open);

return argument_expression(precedence, open);

}

The precedence property determines how the suffix operator is parsed. The parser

property is a function for parsing a prefix or suffix. The class property is "suffix",

"statement", or undefined.

Let’s look at a simple suffix operator. The . dot
parser is passed the expression on the

left and the . dot token. It verifies that the left expression is valid. It verifies that the

current token is a name. Then it assembles them into the . dot token and returns it.

function parse_dot(left, the_dot) {

The expression on the left must be a variable or an expression that can return an

object (excluding object literals).

if (

!left.alphameric

&& left.id !== "."

&& (left.id !== "[" || left.wunth === undefined)

&& left.id !== "("

) {

return error(token, "expected a variable");

}

let the_name = token;

if (the_name.alphameric !== true) {

return error(the_name, "expected a field name");

}

the_dot.zeroth = left;

the_dot.wunth = the_name;

same_line();

advance();

return the_dot;

}

The []
subscript

parser is a little more interesting. It is passed the expression on the

left and the [left bracket token. It verifies that the left expression is valid. It then calls

expression to get the thing in the brackets. If there was a line break after the [left

bracket it is an open expression. It advances past the closing] right
bracket.

How Parsing Works 27.6

function parse_subscript(left, the_bracket) {

if (

!left.alphameric

&& left.id !== "."

&& (left.id !== "[" || left.wunth === undefined)

&& left.id !== "("

) {

return error(token, "expected a variable");

}

the_bracket.zeroth = left;

if (is_line_break()) {

indent();

the_bracket.wunth = expression(0, true);

outdent();

at_indentation();

} else {

the_bracket.wunth = expression();

same_line();

}

advance("]");

return the_bracket;

}

The ellipsis parser is not packaged like the other suffix operators because it is

allowed in only three places: Parameter lists, argument lists, and array literals. It is

not allowed anywhere else, so we treat it as a special case.

function ellipsis(left) {

if (token.id === "...") {

const the_ellipsis = token;

same_line();

advance("...");

the_ellipsis.zeroth = left;

return the_ellipsis;

}

return left;

}

The ()
invocation

parser parses function calls. It calls argument_expression for each

argument. An open form invocation lists the arguments vertically without commas.

function parse_invocation(left, the_paren) {

// function invocation:

// expression

// expression...

const args = [];

if (token.id === ")") {

same_line();

} else {

const open = is_line_break();

if (open) {

indent();

}

while (true) {

line_check(open);

args.push(ellipsis(argument_expression()));

27.7 How Parsing Works

}

The suffix function builds the parse_suffix array. It takes an operator and a

precedence and an optional parser. It can provide a default parser function that works

if (token. id === ")" || token === the end) {

break;

}

if (! Open) {

same line();

advance(", ");

}

}

if (Open) {

outdent();

at indentation();

} else {

same line();

}

}

advance(")");

the paren. zeroth = left;

the paren. Wunth = args;

return the paren;

for most of the operators.

function suffix(

) {

id,

precedence,

optional_parser = function infix(left, the token) {

the token. zeroth = left;

the token. Wunth = expression(precedence);

return the token;

}

Make an infix or suffix operator.

const the symbol = Object. create(null);

the symbol. id = id;

the symbol. precedence = precedence;

the symbol. parser = optional_parser;

parse_suffixDid] = Object. freeze(the symbol);

}

suffix("|", 111, function parse_default(left, the bar) {

the bar. zeroth = left;

the bar. Wunth = expression(112);

advance("|");

return the bar;

});

suffix("?", 111, function then else(left, the then) {

});

the then. zeroth = left;

the then. Wunth = expression();

advance(" !");

the then. twoth = expression();

return the then;

suffix("/\\", 222);

How Parsing Works 27.8

suffix("\\/", 222);

suffix("~", 444);

suffix("≈", 444);

suffix("+", 555);

suffix("-", 555);

suffix("<<", 555);

suffix(">>", 555);

suffix("*", 666);

suffix("/", 666);

suffix(".", 777, parse_dot);

suffix("[", 777, parse_subscript);

suffix("(", 777, parse_invocation);

We treat the relational operators a little differently to guard against a < b ≤ c errors.

const rel_op = Object.create(null);

function relational(operator) {

rel_op[operator] = true;

return suffix(operator, 333, function (left, the_token) {

the_token.zeroth = left;

the_token.wunth = expression(333);

if (rel_op[token.id] === true) {

return error(token, "unexpected relational operator");

}

return the_token;

});

}

relational("=");

relational("≠");relational("<");

relational(">");

relational("≤");relational("≥");

The prefix function builds the parse_prefix array. Notice that (left paren and [left

bracket are also in the parse_suffix array. That is not a problem. There is no ambiguity.

Prefix operators do not need precedence.

function prefix(id, parser) {

const the_symbol = Object.create(null);

the_symbol.id = id;

the_symbol.parser = parser;

parse_prefix[id] = Object.freeze(the_symbol);

}

prefix("(", function (ignore) {

let result;

if (is_line_break()) {

indent();

result = expression(0, true);

outdent();

at_indentation();

} else {

result = expression(0);

same_line();

}

27.9 How Parsing Works

advance(")");return result;

});

The array literal parser calls the expression function for each element. An element

can be any expression, optionally followed by ... dot dot
dot. There are three ways to

write an array literal:

Empty: [left
bracket] right

bracket,
an array with a length of zero.

Closed: The entire literal on the same line, comma separated.

Open: Line break after [left bracket, increase indentation,] right
bracket restores

the previous indentation, expressions separated by , comma or ; semicolon

and/or line break.

The ; semicolon makes two dimensional arrays.

[[2, 7, 6], [9, 5, 1], [4, 3, 8]]

can be written as

[2, 7, 6; 9, 5, 1; 4, 3, 8]

prefix("[", function arrayliteral(the_bracket) {

let matrix = [];

let array = [];

if (!is_line_break()) {

while (true) {

array.push(ellipsis(expression()));

if (token.id === ",") {

same_line();

advance(",");} else if (

token.id === ";"

&& array.length > 0

&& next_token !== "]"

) {

same_line();

advance(";");

matrix.push(array);

array = [];

} else {

break;

}

}

same_line();

} else {

indent();

while (true) {

array.push(ellipsis(expression(0, is_line_break())));

if (token.id === "]" || token === the_end) {

break;

}

if (token.id === ";") {

if (array.length === 0 || next_token.id === "]") {

break;

}

same_line();

How Parsing Works 27. 10

advance(";");

matrix. push(array);

array = [];

} else if (token. id === "," || 1 is line break()) {

same line();

advance(", ");

}

}

outdent();

if (token. column nr == indentation) {

return error(token, "expected at " + indentation);

}

}

advance("I");

if (matrix. length > 0) {

matrix. push(array);

the bracket. zeroth = matrix;

} else {

the bracket. zeroth = array;

}

return the bracket;

});

prefix("[]", function emptyarrayliteral (the brackets) {

return the brackets;

});

The record literal parser recognizes 4 forms of fields.

• variable

" name: expression

"string": expression

• [expression]: expression

prefix("{", function recordliteral (the brace) {

const properties = [];

let key;

let value;

const open = the brace. line_nr == token. line_nr;

if (Open) {

indent();

while (true) {

line_check(Open);

if (token. id === "[") {

advance("[");

key = expression();

advance("I");

same line();

advance(":");

value = expression();

} else {

key = token;

advance();

if (key. alphameric === true) {

if (token. id === ":") {

27. 11 How Parsing Works

same line();

advance(":");

value = expression();

} else {

value = lookup(key. id);

if (value === undefined) {

return error(key, "expected a variable");

}

}

key = key. id;

} else if (key. id === "(text)") {

key = key. text;

same line();

advance(":");

value = expression();

} else {

return error(key, "expected a key");

}

}

properties. push(ſ

zeroth: key,

Wunth: value

});

if (token. column nr 3 indentation || token. id === "3") {

break;

}

if (! open) {

same line();

advance(", ");

}

}

if (Open) {

outdent();

at indentation();

} else {

same line();

}

advance("}");

the brace. zeroth = properties;

return the brace;

});

prefix("{}", function emptyrecordliteral (the braces) {

return the braces;

});

The function literal parser makes new functions. It also gives access to functinos. The

name came to me whilst I was mistyping.

const functino = (function make set(array, value = true) {

const object = Object. create(null);

array. forEach(function (element) {

object[element] = value;

});

return Object. freeze(object);

}([
"?" y in | n y "/\\" y "\\/" y " – " y "z" "2" ">" y ">" "2" y

"...", "s", "...", "—", ">>", "<<" *...", +/-, "[", *(""y

How Parsing Works 27.12

]));

prefix("ƒ", function function_literal(the_function) {

If the ƒ is followed by a suffix operator, then produce the corresponding functino.

const the_operator = token;

if (

functino[token.id] === true

&& (the_operator.id !== "(" || next_token.id === ")")

) {

advance();

if (the_operator.id === "(") {

same_line();

advance(")");} else if (the_operator.id === "[") {

same_line();

advance("]");} else if (the_operator.id === "?") {

same_line();

advance("!");} else if (the_operator.id === "|") {

same_line();

advance("|");

}

the_function.zeroth = the_operator.id;return the_function;

}

Set up the new function.

if (loop.length > 0) {

return error(the_function, "Do not make functions in loops.");

}

the_function.scope = Object.create(null);

the_function.parent = now_function;

now_function = the_function;

// Function parameters come in 3 forms.

// name

// name | default |

// name...

The parameter list can be open or closed.

const parameters = [];

if (token.alphameric === true) {

let open = is_line_break();

if (open) {

indent();

}

while (true) {

line_check(open);

let the_parameter = token;

register(the_parameter);

advance();

if (token.id === "...") {

parameters.push(ellipsis(the_parameter));

break;

27. 13 How Parsing Works

}

if (token. id === "|") {

advance("|");

parameters. push(parse_suffixſ

} else {

parameters. push(the parameter);

I(the parameter, prev_token));

}

if (Open) {

if (token. id === ",") {

return error(token, "unexpected ', '");

}

if (token. alphameric l == true) {

break;

}

} else {

if (token. id l == ",") {

break;

}

same line();

advance(", ");

if (token. alphameric l == true) {

return error(token, "expected another parameter");

}

}

}

if (Open) {

outdent();

at indentation();

} else {

same line();

}

}

the function. zeroth = parameters;

A function can have a (return expression) or a (function body}.

Parse the return expression.

if (token. id === "(") {

advance("(");

if (is line_break()) {

indent();

the function. Wunth = expression(0, true);

outdent();

at indentation();

} else {

the function. Wunth = expression();

same line();

}

advance(")");

} else {

Parse the function body. The body must contain an explicit return. There is no implicit

return by falling thru the bottom.

advance("ſ");

indent();

the function. Wunth = statements();

How Parsing Works 27.14

if (the_function.wunth.return !== true) {

return error(prev_token, "missing explicit 'return'");

}

Parse the failure handler.

if (token.id === "failure") {

outdent();

at_indentation();

advance("failure");

indent();

the_function.twoth = statements();

if (the_function.twoth.return !== true) {

return error(prev_token, "missing explicit 'return'");

}

}

outdent();

at_indentation();

advance("}");}

now_function = the_function.parent;

return the_function;

});

The statements function parses statements, returning an array of statement tokens.

It uses the prelude function to split the verb from the token, if necessary.

function statements() {

const statement_list = [];

let the_statement;

while (true) {

if (

token === the_end

|| token.column_nr < indentation

|| token.alphameric !== true

|| token.id.startsWith("export")

) {

break;

}

at_indentation();

prelude();

let parser = parse_statement[prev_token.id];

if (parser === undefined) {

return error(prev_token, "expected a statement");

}

prev_token.class = "statement";

the_statement = parser(prev_token);

statement_list.push(the_statement);

if (the_statement.disrupt === true) {

if (token.column_nr === indentation) {

return error(token, "unreachable");

}

break;

}

}

if (statement_list.length === 0) {

if (!token.id.startsWith("export")) {

return error(token, "expected a statement");

27.15 How Parsing Works

}

} else {

statement_list.disrupt = the_statement.disrupt;

statement_list.return = the_statement.return;

}

return statement_list;

}

The disrupt property marks statements and statement lists that break or return. The

return property marks statements and statement lists that return.

The break statement breaks out of a loop. The parser is passed the break token. It sets

the exit condition of the current loop.

parse_statement.break = function (the_break) {

if (loop.length === 0) {

return error(the_break,}

loop[loop.length - 1] = "break";

the_break.disrupt = true;

return the_break;

"'break' wants to be in a loop.");

};

The call statement calls a function and ignores the return value. This is to identify

calls that are happening solely for their side effects.

parse_statement.call = function (the_call) {

the_call.zeroth = expression();

if (the_call.zeroth.id !== "(") {

return error(the_call, "expected a function invocation");

}

return the_call;

};

The def statement registers read only variables.

parse_statement.def = function (the_def) {

if (!token.alphameric) {

return error(token, "expected a name.");

}

same_line();

the_def.zeroth = token;

register(token, true);

advance();

same_line();

advance(":");

the_def.wunth = expression();

return the_def;

};

The fail statement is the riskiest experiment in Neo. Exception mechanisms in most

languages have been corrupted into communications channels. The fail statement

attempts to repair that.

parse_statement.fail = function (the_fail) {

the_fail.disrupt = true;

return the_fail;

};

How Parsing Works 27.16

The if statement has an optional else clause or else if statement. If both branches

disrupt or return, then the if statement itself disrupts or returns.

parse_statement.if = function if_statement(the_if) {

the_if.zeroth = expression();

indent();

the_if.wunth = statements();

outdent();

if (token.column_nr === indentation) {

if (token.id === "else") {

advance("else");

indent();

the_if.twoth = statements();

outdent();

the_if.disrupt = the_if.wunth.disrupt && the_if.twoth.disrupt;

the_if.return = the_if.wunth.return && the_if.twoth.return;

} else if (token.id.startsWith("else if ")) {

prelude();

prelude();

the_if.twoth = if_statement(prev_token);

the_if.disrupt = the_if.wunth.disrupt && the_if.twoth.disrupt;

the_if.return = the_if.wunth.return && the_if.twoth.return;

}

}

return the_if;

};

The let statement is Neo’s assignment statement. The left side is not an ordinary

expression. It is a more limited thing called an lvalue. An lvalue can be a variable (var

not def), or an expression that finds a field or element.

parse_statement.let = function (the_let) {

The let statement is the only place where mutation is allowed.

The next token must be a name.

same_line();

const name = token;

advance();

const id = name.id;let left = lookup(id);

if (left === undefined) {

return error(name, "expected a variable");

}

let readonly = left.readonly;

Now we consider the suffix operators [] . [and {.

while (true) {

if (token === the_end) {

break;

}

same_line();

A [] in this position indicates an array append operation.

if (token.id === "[]") {

readonly = false;

token.zeroth = left;

left = token;

27, 17 How Parsing Works

same line();

advance("[]");

break;

}

if (token. id === ".") {

readonly = false;

advance(".");

left = parse_dot(left, prev_token);

3 else if (token. id === "[") {

readonly = false;

advance("[");

left = parse_subscript(left, prev_token);

3 else if (token. id === "(") {

readonly = false;

advance("(");

left = parse invocation(left, prev_token);

if (token. id === ":") {

return error(left, "assignment to the result of a function");

}

} else {

break;

}

}

advance(":");

if (readonly) {

return error(left, "assignment to a constant");

}

the let.zeroth = left;

the let. Wunth = expression();

A [] in this position indicates an array pop operation.

if (token. id === "[]" && left. id == "[]" && (

the let. Wunth. alphameric === true

|| the let.wunth. id === "."

|| the let.wunth. id === "["

|| the let.wunth. id === "("

)) {

token. zeroth = the let. Wunth;

the let. Wunth = token;

same line();

advance("[]");

}

return the let;

};

The loop statement keeps a stack for dealing with nested loops. The entries in the

stack are the exit conditions of the loops. If there is no explicit exit, a stack's status

is "infinite". If the only exit is a return statement, its status is "return". If the loop

exits with a break statement, its status is "break". For this purpose, fail is not an

explicit exit condition.

parse_statement. loop = function (the loop) {

indent();

loop. push("infinite");

the loop. zeroth = statements();

const exit = loop. pop();

if (exit === "infinite") {

How Parsing Works 27.18

};

return error(the_loop, "A loop wants a 'break'.");

}

if (exit === "return") {

the_loop.disrupt = true;

the_loop.return = true;

}

outdent();

return the_loop;

The return statement changes the status of "infinite" loops to "return";

parse_statement.return = function (the_return) {

};

try {

if (now_function.parent === undefined) {

return error(the_return, "'return' wants to be in a function.");

}

loop.forEach(function (element, element_nr) {

if (element === "infinite") {

loop[element_nr] = "return";

}

});

if (is_line_break()) {

return error(the_return, "'return' wants a return value.");

}

the_return.zeroth = expression();

if (token === "}") {

return error(the_return, "Misplaced 'return'.");

}

the_return.disrupt = true;

the_return.return = true;

return the_return;

} catch (ignore) {

}

return the_error;

The var statement declares a variable that can be assigned to with the let statement.

If the variable is not explicitly initialized, its initial value is null.

parse_statement.var = function (the_var) {

if (!token.alphameric) {

}

return error(token, "expected a name.");

same_line();

the_var.zeroth = token;

register(token);advance();

if (token.id === ":") {

}

same_line();

advance(":");the_var.wunth = expression();

return the_var;

};

27.19 How Parsing Works

Object.freeze(parse_prefix);

Object.freeze(parse_suffix);

Object.freeze(parse_statement);

The import and export statements are not included in parse_statement because their

placement in the source is restricted. All of the import statements must be placed

before any other statements. Only wun export statement is allowed, and it is the last

statement.

function parse_import(the_import) {

same_line();

register(token, true);

the_import.zeroth = token;

advance();

same_line();

advance(":");

same_line();

the_import.wunth = token;

advance("(text)");

the_import.class = "statement";

return the_import;

}

function parse_export(the_export) {

the_export.zeroth = expression();

the_export.class = "statement";

return the_export;

}

We export a single parse function. It takes a token generator and returns a tree. We

do not need to make a constructor because parse does not retain any state between

calls.

export default function parse(token_generator) {

try {

indentation = 0;

loop = [];

the_token_generator = token_generator;

next_token = the_end;

const program = {

id: "",

scope: Object.create(null)

};

now_function = program;

advance();

advance();

let the_statements = [];

while (token.id.startsWith("import ")) {

at_indentation();

prelude();

the_statements.push(parse_import(prev_token));

}

the_statements = the_statements.concat(statements());

if (token.id.startsWith("export")) {

at_indentation();

prelude();

the_statements.push(parse_export(prev_token));

}

How Parsing Works 27.20

if (token !== the_end) {

return error(token, "unexpected");

}

program.zeroth = the_statements;

return program;

} catch (ignore) {

return the_error;

}

};

Chapter 28

How Code Generation Works

●●●○○

You have to let it all go, Neo.

Fear, doubt, and disbelief

Free your mind.

Morpheus

The next step is to take the tree that the parser wove and transform it into an

executable form. This is called code generation, but it is really a transformation.

We have many choices of target language. We could produce machine code, or code for

a virtual machine, or for another programming language. With a suitable runtime, we

could target C, but we are going to target JavaScript.

JavaScript is a surprisingly good target language. It provides excellent (and invisible)

memory management, which is often the most difficult aspect in bringing up a new

language. Generating code for a real machine can require management of a limited

register set. JavaScript allows you to have all of the variables you want. Objects are a

very versatile data structure. JavaScript should get more praise for its objects.

We start by making some sets. We need sets of things that produce boolean values,

and JavaScript reserved words.

function make_set(array, value = true) {

const object = Object.create(null);

array.forEach(function (element) {

object[element] = value;

});

return $NEO.stone(object);

}

const boolean_operator = make_set([

"array?", "boolean?", "function?", "integer?", "not", "number?", "record?",

"stone?", "text?", "true", "=", "≠", "<", ">", "≤", "≥", "/\\", "\\/"

]);

const reserved = make_set([

"arguments", "await", "break", "case", "catch", "class", "const",

"continue", "debugger", "default", "delete", "do", "else", "enum", "eval",

"export", "extends", "false", "finally", "for", "function", "if",

"implements", "import", "in", "Infinity", "instanceof", "interface", "let",

"NaN", "new", "null", "package", "private", "protected", "public", "return",

28.1 How Code Generation Works

"static", "super", "switch", "this", "throw", "true", "try", "typeof",

"undefined", "var", "void", "while", "with", "yield"

]);

The primordial object contains mappings of things from Neo primordial space to

JavaScript space. Some go to the Neo run time and some go to JavaScript.

const primordial = $NEO.stone({

"abs": "$NEO.abs","array": "$NEO.array",

"array?": "Array.isArray",

"bit and": "$NEO.bitand",

"bit mask": "$NEO.bitmask",

"bit or": "$NEO.bitor",

"bit shift down": "$NEO.bitdown",

"bit shift up": "$NEO.bitup",

"bit xor": "$NEO.bitxor",

"boolean?": "$NEO.boolean_",

"char": "$NEO.char",

"code": "$NEO.code",

"false": "false",

"fraction": "$NEO.fraction",

"function?": "$NEO.function_",

"integer": "$NEO.integer",

"integer?": "$NEO.integer_",

"length": "$NEO.length",

"neg": "$NEO.neg","not": "$NEO.not","null": "undefined",

"number": "$NEO.make",

"number?": "$NEO.is_big_float",

"record": "$NEO.record",

"record?": "$NEO.record_",

"stone": "$NEO.stone",

"stone?": "Object.isFrozen",

"text": "$NEO.text",

"text?": "$NEO.text_",

"true": "true"

});

Whitespace is much less important in JavaScript than it is in Neo, so we could

produce extremely ugly code and JavaScript would not mind. I think there is too

much ugliness in the world. When we have the opportunity to make things better, we

should, even if no wun notices.

let indentation;

function indent() {

indentation += 4;

}

function outdent() {

indentation -= 4;

}

function begin() {

At the beginning of each line we emit a line break and padding.

How Code Generation Works 28.2

return "\n" + " ".repeat(indentation);

}

let front_matter;

let operator_transform;

let statement_transform;

let unique;

The naming conventions in Neo and JavaScript are not fully compatible. Neo permits

spaces and question marks, and JavaScript does not. So we mangle Neo names if

necessary to make them into legal JavaScript names. Neo allows all words, but

JavaScript reserves some words. When you use a JavaScript reserved word in Neo,

we prepend a dollar sign to the word when we move it to JavaScript space. We convert

big decimal floating point numbers into a form that resembles number literals so that

programs are more readable.

const rx_space_question = / [\u0020 ?]/g;

function mangle(name) {

JavaScript does not allow space or ? in identifiers, so we replace them with _. We give

reserved words a $ prefix.

So what me worry? becomes what_me_worry_, and class becomes $class.

return (

reserved[name] === true

? "$" + name

: name.replace(rx_space_question, "_")

);

}

const rx_minus_point = / [\- .] /g;

function numgle(number) {

We make big decimal literals look as natural as possible by making them into

constants. A constant name start with $. A - or . is replaced with _.

So, 1 becomes $1, 98.6 becomes $98_6, and -1.011e-5 becomes $_1_011e_5.

const text = big_float.string(number.number);const name = "$" + text.replace(rx_minus_point, "_");

if (unique[name] !== true) {

unique[name] = true;

front_matter.push("const " + name + " = $NEO.number(\"" + text + "\");\n"

);

}

return name;

}

Most of our code generator is just some simple functions that convert tokens back

into text. They call each other to textualize all of the pieces. We start with op which

takes an operator token. It gets the operator’s transform. Many of the operators

follow a simple pattern, so their transformers are strings. If the token has operands

attached, then a function call is composed. For operators that do not fit that pattern,

the transform is a function that takes the token and returns a string.

28.3 How Code Generation Works

function op(thing) {

const transform = operator_transform[thing.id];

return (

typeof transform === "string"

? (

thing.zeroth === undefined

? transform

: transform + "(" + expression(thing.zeroth) + (

thing.wunth === undefined

? ""

: ", " + expression(thing.wunth)) + ")"

)

: transform(thing)

);

}

The expression function handles general expression tokens.

function expression(thing) {

if (thing.id === "(number)") {

return numgle(thing);

}

if (thing.id === "(text)") {

return JSON.stringify(thing.text);

}

if (thing.alphameric) {

return (

thing.origin === undefined

? primordial[thing.id]: mangle(thing.id));

}

return op(thing);

}

This function makes array literals.

function array_literal(array) {

return "[" + array.map(function (element) {

return (

Array.isArray(element)

? array_literal(element): expression(element)

);

}).join(", ") + "]";

}

Neo record literals produce objects without prototypes. Empty records are made with

Object.create(null). The fields are made by assignment. We wrap the assignments in

an immediately invoked function expression. {[foo bear]: 12.3, two part} produces

(function (o) {

$NEO.set(o, foo_bear, $12_3);

o["two part"] = two_part;

}(Object.create(null)))

In record literals, variable names are mangled, but field names are not.

How Code Generation Works 28.4

function record_literal(array) {

indent();

const padding = begin();

const string = "(function (o) {" + array.map(function (element) {

return padding + (

typeof element.zeroth === "string"

? (

"o["

+ JSON.stringify(element.zeroth)

+ "] = "

+ expression(element.wunth)

+ ";"

)

: (

"$NEO.set(o, "

+ expression(element.zeroth)

+ ", "

+ expression(element.wunth)+ ");"

)

);

}).join("") + padding + "return o;";

outdent();

return string + begin() + "}(Object.create(null)))";

}

Neo is not a boolish language. There are places where it expects to be given boolean

values, such as the condition part of an if statement. If Neo is given a value that is

not a boolean, then it must fail. In order to get this behavior in JavaScript, we may

have to wrap such values with the assert_boolean function.

function assert_boolean(thing) {

const string = expression(thing);

return (

(

boolean_operator[thing.id] === true

|| (

thing.zeroth !== undefined

&& thing.zeroth.origin === undefined

&& boolean_operator[thing.zeroth.id])

)

? string

: "$NEO.assert_boolean(" + string + ")"

);

}

We can stringify arrays of statement tokens and wrap them in blocks.

function statements(array) {

const padding = begin();

return array.map(function (statement) {

return padding + statement_transform[statement.id](statement);}).join("");

}

function block(array) {

indent();

28.5 How Code Generation Works

const string = statements(array);outdent();

return "{" + string + begin() + "}";

}

The statement_transform object contains the transform functions for all of the

statements. Most of the statements are very simple. The if statement is complicated

because there are 3 forms: no else, with else, and with else if. The let statement is

the only place where mutation happens. It must deal with the [] operator that pushes

on the left and pops on the right, and it deals with lvalues.

statement_transform = $NEO.stone({

break: function (ignore) {

return "break;";},

call: function (thing) {

return expression(thing.zeroth) + ";";

},

def: function (thing) {

return (

"var " + expression(thing.zeroth)+ " = " + expression(thing.wunth) + ";"

);

},

export: function (thing) {

const exportation = expression(thing.zeroth);return "export default " + (

exportation.startsWith("$NEO.stone(")? exportation

: "$NEO.stone(" + exportation + ")"

) + ";";

},

fail: function () {

return "throw $NEO.fail(\"fail\");";

},

if: function if_statement(thing) {

return (

"if ("

+ assert_boolean(thing.zeroth)+ ") "

+ block(thing.wunth)+ (

thing.twoth === undefined

? ""

: " else " + (

thing.twoth.id === "if"

? if_statement(thing.twoth): block(thing.twoth))

)

);

},

import: function (thing) {

return (

"import " + expression(thing.zeroth)+ " from " + expression(thing.wunth) +

";"

);

How Code Generation Works 28.6

},

let: function (thing) {

const right = (

thing. Wunth. id === "[I]"

2 expression(thing. Wunth. zeroth) +

: expression(thing. Wunth)

. pop(); "

);

if (thing. zeroth. id === "[I]") {

return expression(thing. zeroth. zeroth) + "... push(" + right + "); ";

}

if (thing. zeroth. id === ".") {

return (

"$NED.set(" + expression(thing. zeroth. zeroth)

+ ", " + JSON. stringify(thing. zeroth. Wunth. id)

", " + right + ");"

);

}

if (thing. zeroth. id === "[") {

return (

"$NED.set(" + expression(thing. zeroth. zeroth)

+ ", " + expression(thing. zeroth. Wunth)

", " + right + ");"

);

}

return expression(thing. zeroth) + " = " + right + ";";

},

loop: function (thing) {

return "while (true) " + block(thing. zeroth);

},

return: function (thing) {

return "return " + expression(thing. zeroth) + ";";

},

var: function (thing) {

return "var " + expression(thing. zeroth) + (

thing. Wunth === undefined

2 II . It

y

in n in in

= " + expression(thing. Wunth) + ";

);

}

});

A functino is a built in function that is accessed by putting a f prefix on an operator.

const functino = $NED. stone(ſ

"?": "$NED. ternary",

"|": "$NED. default",

"/\\": "$NED. and",
"\\/" : In $NED - Dr." y

"="; "$NED. eq",

"z": "$NED.ne",

"<": "$NED. lt",

">": "$NED. ge",

">": "$NED.gt",

"<": "$NED. le",

"~": "$NED. cat",

"&": "$NED. cats",

"+": "$NED. add",

"—": "$NED. sub",

28.7 How Code Generation Works

">>": "$NED. max",

"<<": "$NED. min",

"+": "$NED. mul",

"/": "$NED. div",

"[". "$NED. get",

"(": "$NED. resolve"

});

The Operator_transform object contains all of the operator transforms.

operator transform = $NED. stone(ſ

"?": function (thing) {

indent();

let padding = beginſ);

let string = (

"(" + padding + assert_boolean(thing. zeroth)

+ padding + "? " + expression(thing. Wunth)

+ padding + " : " + expression(thing. twoth)

);

outdent();

return string + begin() + ")";

},

"/\\": function (thing) {

return (

"(" + assert_boolean(thing. zeroth)

+ " && " + assert_boolean(thing. Wunth)
+ in)"

);

},

"\\/": function (thing) {

return (

"(" + assert_boolean(thing. zeroth)

+ " || " + assert_boolean(thing. Wunth)

... ")"

);

}

.

": "$NED. eq",

"$NED. ne",

"$NED. lt",

: "$NED. ge",

": "$NED.gt",

": "$NED. le",

"~": "$NED. cat",

"&": "$NED. cats",

"+": "$NED. add",

"—": "$NED. sub",

">>": "$NED. max",

"<<": "$NED. min",

"+": "$NED. mul",

"/": "$NED. div",

"|": function (thing) {

~

return (

"(function (0) {"

+ "return (0 === undefined) 2 "

+ expression(thing. Wunth) + " : _0);}("

+ expression(thing. zeroth) + "))"

);

How Code Generation Works 28.8

"...": function (thing) {

return + expression(thing. zeroth);

},

"...": function (thing) {

return (

"$NED.get(" + expression(thing. zeroth)

+ ", \"" + thing. Wunth. id + "\")"

);

},

"[": function (thing) {

if (thing. Wunth === undefined) {

return array_literal (thing. zeroth);

}

return (

"$NED.get(" + expression(thing. zeroth)

+ ", " + expression(thing. Wunth) + ")"

);

},

"{": function (thing) {

return record_literal (thing. zeroth);

},

"(": function (thing) {

return (

expression(thing. zeroth) + "("

+ thing. Wunth. map(expression). join(", ") + ")"

);

},

"[...]". "[]",

"{}": "Object. create(null)",

"f": function (thing) {

if (typeof thing. zeroth === "string") {

return functinoſthing. zeroth];

}

return "$NED. stone(function (" + thing. zeroth. map(function (param) {

if (param. id === ". . . ") {

return ". . . " + mangle(param. zeroth. id);

}

if (param. id === "|") {

return (

mangle(param. zeroth. id) + " = " + expression(param. Wunth)

);

}

return mangle(param. id);

}). join(", ") + ") " + (

Array. isArray(thing. Wunth)

2 block(thing. Wunth)

: "{return " + expression(thing. Wunth) + "; }"

) + ")";

}

});

It exports a code generator function that takes a tree and returns a JavaScript source

program.

export default $NED. stone(function codegen(tree) {

front_matter = [

"import $NED from \"../neo. runtime.js\"\n"

l;

28.9 How Code Generation Works

indentation = 0;

unique = Object.create(null);

const bulk = statements(tree.zeroth);return front_matter.join("") + bulk;

});

Example

This function is similar to the map method, but it also works with multiple arrays,

scalars, and generators.

export ƒ function, arguments... {

if length(arguments) = 0

return null

var index: 0

def result: []

var stop: false

def prepare arguments: ƒ argument {

def candidate: (

array?(argument)

? argument[index]

! (

function?(argument)

? argument(index)! argument

)

)

if candidate = null

let stop: true

return candidate

}

loop

var processed: array(arguments, prepare arguments)

if stop

break

let result[]: function(processed...)let index: index + 1

return result

}

This is the .js that was produced by codegen(parse(tokenize(neo_source))):

import $NEO from "./neo.runtime.js";

const $0 = $NEO.number("0");

const $1 = $NEO.number("1");

export default $NEO.stone(function ($function, ...$arguments) {

if ($NEO.eq($NEO.length($arguments), $0)) {

return undefined;

}

var index = $0;

var result = [];

var stop = false;

var prepare_arguments = $NEO.stone(function (argument) {

var candidate = (

Array.isArray(argument)

How Code Generation Works 28. 10

2 $NED. get (argument, index)

: (

$NED. function_(argument)

2 argument(index)

: argument

)

);

if ($NED. eq(candidate, undefined)) {

stop = true;

}

return candidate;

});

while (true) {

var processed = $NED. array($arguments, prepare arguments);

if ($NED. assert_boolean(stop)) {

break;

}

result. push($function(. . . processed));

index = $NED. add(index, $1);

}

return result;

});

And then...

import do: "example/do. neo"

var result: do(fir, [1, 2, 3], [5, 4, 3])

result is [6, 6, 6]

let result: do(f/, 60, [1, 2, 3, 4, 5, 6].)

result is [60, 30, 20, 15, 12, 10]

which transpiles to...

import $NED from "../neo. runtime. js"

const $1 = $NED. number("1");

const $2 = $NED. number("2");

const $3 = $NED. number("3");

const $5 = $NED. number("5");

const $4 = $NED. number("4");

const $60 = $NED. number("60");

const $6 = $NED. number("6");

import $do from "example/do. neo";

var result = $do($NED. add, $60, [$1, $2, $3], [$5, $4, $3]);

result = $do($NED. div, $60, [$1, $2, $3, $4, $5, $6]);

Chapter 29

How Runtimes Work

●●●○●

I know why you’re here, Neo. I know what

you’ve been doing... why you hardly sleep,

why you live alone, and why night after

night, you sit by your computer.

Trinity

A runtime is software that supports the execution of programs. Part of JavaScript’s

popularity as a transcompilation target is due to the the quality of the runtime

support it provides. If the semantics of the source language differ from the target,

then some specialized runtime support must be added. The form of the Neo-in

JavaScript runtime is an object containing functions that aid in execution.

Neo’s two biggest semantic improvements are a better number type and a better

object. The number type was developed in Chapter 4. Neo records unify objects and

weakmaps. To summarize:

• A key can be a text, a record, or an array. Only the text keys can be

enumerated with the array function.

• A value of null deletes a field.

• Path expressions with missing objects do not fail. They just produce null.

• Arrays only accept integers as keys and enforce their bounds.

We start with a centralized fail function.

function fail(what = "fail") {

throw new Error(what);

}

The only stateful variable in this file is weakmap_of_weakmaps. It binds weakmaps to

records. Most records will not need weakmaps, but those that do get their weakmaps

from weakmap_of_weakmaps.

The get function retrieves the value of a field from a record or an element from

an array. It also implements call-a-function-as-a-method by returning a function. If

things go wrong for any reason, the null object is returned, which JavaScript knows

as undefined.

29.1 How Runtimes Work

let weakmap_of_weakmaps = new WeakMap();

function get(container, key) {

try {

if (Array.isArray(container) || typeof container === "string") {

const element_nr = big_float.number(key);

return (

Number.isSafeInteger(element_nr)

? container[(element_nr >= 0

? element_nr

: container.length + element_nr

)]

: undefined

);

}

if (typeof container === "object") {

if (big_float.is_big_float(key)) {

key = big_float.string(key);

}

return (

typeof key === "string"

? container[key]

: weakmap_of_weakmaps.get(container).get(key));

}

if (typeof container === "function") {

return function (...rest) {

return container(key, rest);

};

}

} catch (ignore) {

}

}

The get function can be accessed as the ƒ[] functino.

The set function is the way to add, update, or delete a field of a record, or update an

element of an array. If anything goes wrong, it fails. The get function is very forgiving.

The set function is not.

function set(container, key, value) {

if (Object.isFrozen(container)) {

return fail("set");

}

if (Array.isArray(container)) {

Arrays use only big float for keys.

let element_nr = big_float.number(key);

if (!Number.isSafeInteger(element_nr)) {

return fail("set");

}

Negative indexes are aliases, so that [-1] sets the last element.

if (element_nr < 0) {

element_nr = container.length + element_nr;

}

How Runtimes Work 29.2

The key must be in the allocated range of the array.

if (element_nr < 0 || element_nr >= container.length) {

return fail("set");

}

container[element_nr] = value;

} else {

if (big_float.is_big_float(key)) {

key = big_float.string(key);

}

If the key is a string, then it is an object update.

if (typeof key === "string") {

if (value === undefined) {

delete container[key];

} else {

container[key] = value;

}

} else {

Otherwise, this is a weakmap update. There will be a weakmap associated with each

record with object keys. Note that typeof key !== "object" is false when key is an

array.

if (typeof key !== "object") {

return fail("set");

}

let weakmap = weakmap_of_weakmaps.get(container);

If there is not yet a weakmap associated with this container, then make wun.

if (weakmap === undefined) {

if (value === undefined) {

return;

}

weakmap = new WeakMap();

weakmap_of_weakmaps.set(container, weakmap);

}

Update the weakmap.

if (value === undefined) {

weakmap.delete(key);

} else {

weakmap.set(key, value);

}

}

}

}

There is a group of functions that make arrays, numbers, records, and texts.

function array(zeroth, wunth, ...rest) {

The array function does the work of new Array, array.fill, array.slice, Object.keys,string.split, and more.

if (big_float.is_big_float(zeroth)) {

const dimension = big_float.number(zeroth);

if (!Number.isSafeInteger(dimension) || dimension < 0) {

return fail("array");

29.3 How Runtimes Work

}

let newness = new Array(dimension);

return (

(wunth === undefined || dimension === 0)

2 newness

: (

typeof Wunth === "function"

2 newness. map(wunth)

: newness. fill (wunth)

)

);

}

if (Array. isArray(zeroth)) {

if (typeof Wunth === "function") {

return zeroth. map(Wunth);

}

return zeroth. slice(big_float. number(wunth), big_float. number(rest[0]));

}

if (typeof zeroth === "object") {

return Object. keys(zeroth);

}

if (typeof zeroth === "string") {

return zeroth. split(wunth || "");

}

return fail("array");

}

function number(a, b) {

return (

typeof a === "string"

2 big_float. make (a, b)

: (

typeof a === "boolean"

2 big_float. make (Number(a))

: (

big_float. is big_float(a)

2 a

: undefined

)

)

);

}

function record(zeroth, Wunth) {

const newness = Object. create(null);

if (zeroth === undefined) {

return newness;

}

if (Array. isArray(zeroth)) {

if (Wunth === undefined) {

wunth = true;

}

zeroth. forEach(function (element, element_nr) {

set(

newness,

element,

(

How Runtimes Work 29.4

Array. isArray(wunth)

2 Wunthſelement_nr]

: (

typeof Wunth === "function"

2 wunthſ element)

: Wunth

)

)

);

});

return newness;

}

if (typeof zeroth === "object") {

if (Wunth === undefined) {

return Object. assign(newness, zeroth);

}

if (typeof Wunth === "object") {

return Object. assign(newness, zeroth, Wunth);

}

if (Array. isArray(wunth)) {

Wunth. forEach(function (key) {

let value = zerothſkey];

if (value l== undefined) {

newness[key] = value;

}

});

return newness;

}

}

return fail("record");

}

function text(zeroth, Wunth, twoth) {

if (typeof zeroth === "string") {

return (zeroth. slice(big_float. number(wunth), big_float. number (twoth)));

}

if (big_float. is big_float(zeroth)) {

return big_float. string(zeroth, Wunth);

}

if (Array. isArray(zeroth)) {

let separator = wunth;

if (typeof Wunth l == "string") {

if (wunth l == undefined) {

return fail("string");

}

separator = "";

}

return zeroth. join(separator);

}

if (typeof zeroth === "boolean") {

return String(zeroth);

}

}

stone is a deep freeze.

29.5 How Runtimes Work

function stone(object) {

if (!Object.isFrozen(object)) {

object = Object.freeze(object);

if (typeof object === "object") {

if (Array.isArray(object)) {

object.forEach(stone);

} else {

Object.keys(object).forEach(function (key) {

stone(object[key]);

});

}

}

}

return object;

}

There is a group of predicate functions that are used to identify the types of things.

function boolean_(any) {

return typeof any === "boolean";

}

function function_(any) {

return typeof any === "function";

}

function integer_(any) {

return (

big_float.is_big_float(any)

&& big_float.normalize(any).exponent === 0

);

}

function number_(any) {

return big_float.is_big_float(any);

}

function record_(any) {

return (

any !== null

&& typeof any === "object"

&& !big_float.is_big_float(any)

);

}

function text_(any) {

return typeof any === "string";

}

There is a group of logical functions. These are the functino versions. They are not

short-circuiting. Only the operator versions are able to lazily evaluate their operands.

function assert_boolean(boolean) {

return (

typeof boolean === "boolean"

? boolean

: fail("boolean")

);

How Runtimes Work 29. 6

}

function and(zeroth, Wunth) {

return assert_boolean(zeroth) && assert_boolean(wunth);

}

function or(zeroth, Wunth) {

return assert_boolean(zeroth) || assert_boolean(wunth);

}

function not(boolean) {

return lassert_boolean(boolean);

}

function ternary(zeroth, Wunth, twoth) {

return (

assert_boolean(zeroth)

2 Wunth

: tWDth

);

}

function default function(zeroth, Wunth) {

return (

zeroth === undefined

2 Wunth

: Zer0th

);

}

There is a group of relational operators.

function eq(zeroth, Wunth) {

return zeroth === Wunth || (

big_float. is big_float(zeroth)

&& big_float. is big_float(Wunth)

&& big_float. eq(zeroth, Wunth)

);

}

function lt(zeroth, Wunth) {

return (

zeroth === undefined

2 false

: (

Wunth === undefined

2 true

(

(

big_float. is big_float(zeroth)

&& big_float. is big_float(Wunth)

)

2 big_float. lt(zeroth, Wunth)

: (

(typeof zeroth === typeof wunth && (

typeof zeroth === "string"

|| typeof zeroth === "number"

))

29.7 How Runtimes Work

2 Zer0th & Wunth

: fail("lt")

);

}

function ge(zeroth, Wunth) {

return llt(zeroth, Wunth);

}

function gt(zeroth, Wunth) {

return lt(wunth, zeroth);

}

function le(zeroth, Wunth) {

return llt (wunth, zeroth);

}

function ne(zeroth, Wunth) {

return leg(wunth, zeroth);

}

There is a group of arithmetic operators.

function add(a, b) {

return (

(big_float. is big_float(a) && big_float.

2 big_float. add(a, b)

: undefined

);

}

function sub(a, b) {

return (

(big_float. is big_float(a) && big_float.

2 big_float. sub(a, b)

: undefined

);

}

function mul(a, b) {

return (

(big_float. is big_float(a) && big_float.

2 big_float. mul(a, b)

: undefined

);

}

function div(a, b) {

return (

(big_float. is big_float(a) && big_float.

2 big_float. div(a, b)

: undefined

is_big_float(b))

is_big_float(b))

is_big_float(b))

is_big_float(b))

How Runtimes Work 29.8

function max(a, b) {

return (

lt(b, a.)

2 a

: b

);

}

function min(a, b) {

return (

lt(a, b)

2 a

: b

);

}

function abs(a) {

return (

big_float. is big_float(a)

2 big_float. abs(a)

: undefined

);

}

function fraction(a) {

return (

big_float. is big_float(a)

2 big_float. fraction(a)

: undefined

);

}

function integer(a) {

return (

big_float. is big_float(a)

2 big_float. integer(a)

: undefined

);

}

function neg(a) {

return (

big_float. is big_float(a)

2 big_float.neg(a)

: undefined

);

}

There is a group of bitwise functions. The work is done by big_integer.

function bitand(a, b) {

return big_float. make (

big_integer. and (

big_float. integer(a). coefficient,

big_float. integer(b). coefficient

),

big_integer. Wun

);

29.9 How Runtimes Work

}

function bitdown (a, nr bits) {

return big_float. make (

big_integer. shift down(

big_float. integer(a). coefficient,

big_float. number(nr bits)

),

big_integer. Wun

);

}

function bitmask(nr bits) {

return big_float. make(big_integer. mask(big_float. number(nr bits)));

}

function bitor(a, b) {

return big_float. make (

big_integer. Dr(

big_float. integer(a). coefficient,

big_float. integer(b). coefficient

),

big_integer. Wun

);

}

function bitup(a, nr bits) {

return big_float. make (

big_integer. shift up(

big_float. integer(a). coefficient,

big_float. number(nr bits)

),

big_integer. Wun

);

}

function bitxor(a, b) {

return big_float. make (

big_integer. xDr.(

big_float. integer(a). coefficient,

big_float. integer(b). coefficient

) y

big_integer. Wun

);

}

You might remember the f() functino from JSCheck.

function resolve (value, ... rest) {

return (

typeof value === "function"

2 value(... rest)

: value

);

How Runtimes Work 29.10

There are two concatenation operators. They both return null if either argument is

null. Otherwise, they attempt to coerce their arguments to texts. The ƒ≈ functino

includes a space separator if both operands are not the empty text.

function cat(zeroth, wunth) {

zeroth = text(zeroth);

wunth = text(wunth);

if (typeof zeroth === "string" && typeof wunth === "string") {

return zeroth + wunth;

}

}

function cats(zeroth, wunth) {

zeroth = text(zeroth);

wunth = text(wunth);

if (typeof zeroth === "string" && typeof wunth === "string") {

return (

zeroth === ""

? wunth

: (

wunth === ""

? zeroth

: zeroth + " " + wunth

)

);

}

}

And then the miscellaneous functions.

function char(any) {

return String.fromCodePoint(big_float.number(any));}

function code(any) {

return big_float.make(any.codePointAt(0));

}

function length(linear) {

return (

(Array.isArray(linear) || typeof linear === "string")

? big_float.make(linear.length)

: undefined

);

}

All of that goodness is packed into a runtime object.

export default stone({

abs,

add,

and,

array,

assert_boolean,

bitand,

bitdown,

bitmask,

bitor,

bitup,

29.11 How Runtimes Work

});

bitxor,

boolean_,

cat,

cats,

char,

code,

default: default_function,

div,

eq,

fail,

fraction,

function_,

ge,

get,

gt,

integer,

integer_,

le,

length,

max,

min,

mul,

ne,

neg,

not,

number,

number_,

or,

record,

record_,

resolve,

set,

stone,

sub,

ternary,

text,

text_

Chapter 30

How Wat! Works

●●●●○

Enough making fun of languages that suck.

Let’s talk about JavaScript.

Gary Bernhardt

On January 12, 2012, at the CodeMash conference in a Sandusky, Ohio indoor water

park, Gary Bernhardt presented a lightning talk titled Wat.

Bernhardt displayed some of the absurd anomalies in Ruby and JavaScript. After

each example he showed a funny picture that was captioned with "WAT". The crowd

loved it. It is a classic bit. Wat has become The Aristocrats of JavaScript.

The video of his brief performance is still accessable somehow on the internet. Many

imitators have gone on to produce similar shows. Some simply repeated Bernhardt’s

material, some have expanded the act, adding new gags. Some were able to get

genuine laughter from the audience, as Bernhardt did. Some merely stank up the

room.

I have tried in this book to avoid most of the bad parts of JavaScript, but in this

chapter we are going to pull the monster’s pants down. I am going to show you some

of the gags from Wat and similar talks and explain how they work. This is not going

to be funny or even pleasant.

Many of the jokes are due to the type coercion algorithms behind JavaScript’s ==
equal

sign
equal

sign and + plus sign operators. The type coercion rules are complex,

unmemorable, and in some cases, as you will see, wrong. That is why I recommend

against use of ==
equal

sign
equal sign.

It implements ECMAScript’s Abstract Equality

Comparison Algorithm. It is a can of worms that is not worth opening. Always use

=== equal sign equal sign equal sign instead. Always.

Some people do not like === equal sign
equal

sign
equal

sign because it looks 50% stupider

than == equal
sign equal sign which is itself twice as stupid as = equal

sign. Nevertheless, the

correct equality operator in JavaScript is === equal
sign equal sign

equal sign. Avoid == equal

sign equal sign, the incorrect equality operator.

I can not give similar advice about avoiding + plus
sign because + plus

sign is the only

practical way to add numbers. So enjoy the worms.

"" == false // true

[] == false // true

null == false // false

undefined == false // false

30.1 How Wat! Works

The empty string is a falsy value, so a sloppy equals operator might want to conflate

it with false. An empty array is not falsy, yet it also compares to false. And null and

undefined are falsy values, but neither compares to false.

WAT!

[] == [] // false

[] == ![] // true

Two empty arrays are not the same object, so they are not equal. But the second line

is surprising. It appears that JavaScript is a language in which x and not x can be

equal to each other, which would be a seriously laughable incompetence. This is what

is happening:

An empty array is truthy, so ![] is false. The sloppy equals operator wants to

compare [] and false as numbers even though neither is a number. The empty array

is coerced to empty string which is coerced to zero. And false is also coerced to zero.

Zero equals zero, so the answer is true.

WAT!

[] + [] // ""

[] + {} // "[object Object]"

{} + {} // "[object Object][object Object]"

All of these cases should produce NaN. This is what NaN is for. Instead, because the

values are not numbers, + plus sign wants to concatenate them. First it has to coerce

them to strings. The Array.prototype.toString() method converts an empty array to

an empty string. It would be better if it acted like JSON.stringify() and returned "[]".

The worthless Object.prototype.toString() method renders the objects as "[object

Object]". Then those strings get concatenated together.

WAT!

9999999999999999 // 10000000000000000

1e23 + 2e23 === 3e23 // false

Most of the integers above Number.MAX_SAFE_INTEGER can not be represented exactly.

WAT!

"2" < 5 // true

5 < "11" // true

"11" < "2" // true

Comparing values of different types should raise an exception. Instead, JavaScript

attempts to coerce the values so that a comparison can be made. The coercion rules

can break transitivity.

WAT!

1 < 2 < 3 // true

3 > 2 > 1 // false

These cases should have been syntax errors because the language does not want to

handle them correctly. In the first case, 1 and 2 are compared, producing true. Then

true and 3 are compared. true is coerced to 1. 1 is less than 3, so it is true. So it

accidentally gives the right answer. An error that sometimes gives the right answer

can easily avoid detection by testing.

How Wat! Works 30.2

In the second case, 3 and 2 are compared, producing true. Then true and 1 are

compared. true is coerced to 1. 1 is not less than 1, so it gives false.

WAT!

1 // "21"

- 1 // 1

The other arithmetic operators also do type coercion, but they use very different rules

than + plus sign uses. You should manage your types correctly to avoid this sloppiness.

Do not do arithmetic on strings. That is what numbers are for.

WAT!

Math.min() > Math.max() // true

"2"

"2"

+

These functions are sloppy. When passed nothing, they should return undefined or NaN

or perhaps raise an exception. Instead, Math.min() returns Infinity, and Math.max()

returns -Infinity.

WAT!

Math instanceof Math // throws exception

NaN instanceof NaN // throws exception

"wat" instanceof String // false

Use of instanceof in Java is usually evidence of a failure to understand how to use

polymorphism. JavaScript’s instanceof is not the same as Java’s. I do not recommend

use of instanceof in any language.

WAT!

isNaN("this string is not NaN") // true

The global isNaN and isFinite functions are broken. Use Number.isNaN and

Number.isFinite instead.

WAT!

((name) => [name])("wat") // ["wat"]

((name) => {name})("wat") // undefined

The first case shows an example of a fat arrow (or fart) function. Farts are an abbre

viated way of writing functions. The thing to the left of the fart is a parameter list.

The thing to the right of the fart is an expression. The value of the expression is the

return value of the function. You do not need to type function or return. In this case

the return value is an array containing the function’s argument. This is good.

The second case should reasonably return {name: "wat"}, not undefined.

Unfortunately, JavaScript assumes that a left brace after a fart is a block, not an

object literal. This block contains a variable name. Automatic semicolon insertion

deposits a semicolon after the name, turning it into a useless expression statement

that does nothing. Lacking a return statement, the function returns the default return

value, undefined.

This is why I recommend avoiding farts. They are also easily confused with the

comparison operators <= and >=. The small typing convenience is just not worth it.

WAT!

30.3 How Wat! Works

function first(w, a, t) {

return {

w,

a,

t

};

}

first("wat", "wat", "wat"); // {w: "wat", a: "wat", t: "wat"}

function second(w, a, t) {

return

{w, a, t};

}

second("wat", "wat", "wat"); // undefined

The first return statement works as expected, returning a new object.

The second return statement differs only in its whitespace, and yet it returns

undefined. Automatic semicolon insertion inserted a semicolon after return. The left

brace of the object literal is now in statement position where it is treated as a block.

The block contains a useless expression statement. In expression position, comma is

an operator, not a separator, so this code does not produce a syntax error.

Automatic semicolon insertion is not a feature. It is a hazard. It was added to the

language specifically for beginners who might not be sure where to put the semicolon.

You should rely on automatic semicolon insertion when you want it to appear that

your code was written by a beginner.

WAT!

Chapter 31

How This Book Works

●●●●●

I only ask to be free. The butterflies are

free.

Harold Skimpole

Include

To help put the book together, I made an eventual include function. I used it to

assemble the individual chapter files into wun big book file. I used it to insert

the executable JavaScript source code into the chapters. And I used it to assemble

JavaScript code fragments together into the .js files that are available at github.com/

douglascrockford.

include(callback, string, get_inclusion, max_depth)

The include function replaces @include expressions in a string with other strings. If

there are no @include expressions, then the original string is the result.

Your callback(result) function is eventually given the processed result string.

Your string may contain zero or more @include expressions.

@include "key"

There is a space between the @include and the opening "double quote. Each @include

expression is replaced with the inclusion string associated with the key if possible. A

key (which could be a filename) is wrapped in parens.

Your get_inclusion(callback, key) function takes a key string and eventually passes

the resulting inclusion string to callback(inclusion). Your get_inclusion function

could access a file system, database, source control system, content manager, or JSON

Object. If inclusions are coming from files, and if the environment is Node.js, then

your get_inclusion function could look like this:

function my_little_get_inclusion(callback, key) {

return (

(key[0] >= "a" && key[0] <= "z")

? fs.readFile(key, "utf8", function (ignore, data) {

return callback(data);

})

31.1 How This Book Works

: callback()

);

}

If somehow an include package went rogue (as managed packages are known to do),

it could not cause much damage with my_little_get_inclusion, but it could cause an

enormous amount of damage if it had direct access to fs.

An inclusion string may contain more @include expressions. The max_depth argument

limits the recursion depth to prevent infinite include loops.

This is the implementation:

const rx_include = /

@include \u0020 " ([^ " @]+) "

/;

// Capturing groups:

// [0] The whole '@include' expression

// [1] The key

export default Object.freeze(function include(callback,

string,

get_inclusion,

max_depth = 4

) {

The include function does not need direct access to or knowledge of the file system

or the database or anything else because that capability is passed in as your

get_inclusion function. That makes the include function versatile and trustworthy.

Nothing is returned. The result is communicated eventually through the callback.

let object_of_matching;

let result = "";

The minion and its assistants do all of the work. The main minion searches for

@include expressions and calls the get_inclusion function with its findings. The

assistant_minion makes a recursive call to include to process the inclusion. The

junior_assistant_minion appends the processed inclusion to the result.

function minion() {

If there is no more string to scan, deliver the result.

if (string === "") {

return callback(result);

}

Try matching the regular expression against the remaining string.

object_of_matching = rx_include.exec(string);

If there is no match, then our work is done.

if (!object_of_matching) {

return callback(result + string);

}

The characters to the left of the expression are part of the result. Remove that scanned

material from the string.

How This Book Works 31.2

result += string.slice(0, object_of_matching.index);string = string.slice(object_of_matching.index + object_of_matching[0].length);

Call the get_inclusion function to obtain the replacement string, passing the

assistant_minion and the key.

return get_inclusion(

assistant_minion,

object_of_matching[1]

);

}

function junior_assistant_minion(processed_inclusion) {

Take the inclusion that was processed by include and append it to the result. Then

call minion to begin the search for the next @include expression.

result += processed_inclusion;

return minion();

}

function assistant_minion(inclusion) {

If get_inclusion did not deliver a string, then add the @include expression to the

result, effectively leaving that part of the string unchanged.

if (typeof inclusion !== "string") {

result += object_of_matching[0];

return minion();

}

The inclusion might contain its own @include expressions, so we call include to

process those, passing the junior_assistant_minion that adds the processed inclusion

to the result. The max_depth is reduced to guard against infinte recursion.

return include(junior_assistant_minion,

inclusion,

get_inclusion,

max_depth - 1

);

}

Those are the minions. Now back to include. If we are out of our depth, then call the

callback.

if (max_depth <= 0) {

callback(string);

} else {

The include function makes the three minion functions and calls the main minion.

minion();

}

});

31.3 How This Book Works

Colophon

Century Schoolbook is a transitional serif typeface designed by Morris Fuller Benton

(1919). It was based on Century Roman by Linn Boyd Benton (1894), his father. New

Century Schoolbook was wun of a small handful of typefaces that were included in

Apple’s LaserWriter Plus. Because of the limited available of typefaces at the time,

Century Schoolbook was heavily used. As a result of that overexposure, it was thought

to be ordinary, uninteresting, and boring. It is now a century old, and it is still very

readable and brilliant.

The section titles use Daley Bold, which I designed for this book. It is based on Susan

Kare’s Chicago 12, the original Macintosh system font. Those first menu bars and

drop downs and buttons and dialogs were set in Chicago 12. It was the most visible

part of the introduction of modern user interfaces to the mainstream. To get rid of the

bitmap jaggies, I borrowed an idea from ITC Machine, designed by Ronne Bonder and

Tom Carnase (1970), using straight lines instead of curves.

The code font is Programma, which I designed for this book. It borrows (steals) ideas

from Microgramma by Aldo Novarese and Alessandro Butti (1952), Inconsolata by

Raph Levien, and Twentieth Century by Sol Hess (1959).

The Portable Document File that was used to print this book was processed by Prince

12. www.princexml.com

The cover was designed by Jim Cokas.

This book is published by Virgule-Solidus. Virgule is a latin word meaning slash.

Solidus is a latin word meaning slash. //slash slash is an important component of the

World Wide Web’s URLs and is the beginning of a comment in JavaScript and many

other languages.

Acknowledgements

I wish to thank Edwin Aoki, Vladimir Bacvanski, Leonardo Bonacci, George Boole,

Dennis Cline, Rolando Dimaandal, Bill Franz, Louis Gottlieb, Bob Hablutzel, Grace

Murray Hopper, Matthew Johnson, Alan Karp, Gottried Leibniz, Håkon Wium Lie,

Linda Merry, Jeff Meyer, Chip Morningstar, Евгений Орехов, Ben Pardo, Claude

Shannon, Steve Souders, Tehuti, and most of all, Professor Lisa von Drake.

Post Credits Section

I have experienced these paradigm shifts in my career as a programmer:

• High Level Languages.

• Structured Programming.

• Object Oriented Programming.

• Functional Programming.

The biggest beneficiaries of each of these advances were the programmers who were

now able to accomplish more and better work with less effort. The biggest opponents

of those advances were those same programmers. They met the new paradigms with

suspicion, discomfort, and disbelief. They used their intelligence and experience to

craft arguments that felt convincing, but which in hindsight were simply wrong. They

How This Book Works 31.4

were successful using the old paradigm and were unwilling to accept the new wun. It

can be very difficult to tell the difference between the new paradigm and a really bad

idea.

Each of the shifts took over twenty years to be widely adopted. Functional

Programming took twice that. The reason it takes so long is that we do not change

minds. We have to wait for a generation of programmers to retire or die before we can

get critical mass on the next paradigm.

Max Planck observed a similar thing in Physics, which is now known as Planck’s

Principle. He wrote:

A new scientific truth does not triumph by convincing its opponents and

making them see the light, but rather because its opponents eventually die,

and a new generation grows up that is familiar with it.

He also said it more concisely:

Science advances wun funeral at a time.

I think it should be obvious by now that the next paradigm is Distributed Eventual

Programming. This is not a new idea. It goes back at least to the discovery of the

Actor Model (1973). We have made some steps forward since that, but we have also

made mistakes with things like remote procedure calls that try to do the distributed

thing while holding onto the sequential programming model. I think the reason that

JavaScript is interesting is that it was specifically created to do Distributed Eventual

Programming. Being developed in ten days, it did not get everything right. It is also a

multiparadigm language that encourages retention of the old paradigm. And since its

creation, champions of the old paradigm have been trying to drag JavaScript back to

its FORTRAN roots.

Wun More Thing

All through this material, you probably noticed the strange spelling of wun. It might

have distracted you, confused you, or annoyed you. The arguments against the use

of that spelling are traditional. It is not what we are used to. It is not how we were

taught. It is not what we know. That is all true, but given the conventions of English

pronounciation, wun should be the correct spelling. It is a bug fix.

Our emotional reaction to wun is the same as our emotional reaction to a new

paradigm.

The secret to adopting a new paradigm before dying is to experience it. That is

easier to do in Programming than in Physics because all you have to do is write good

programs. I can talk about making a function that returns a function, and you can

understand those words and so think you understand what that is about. But in fact,

you can not understand it until you experience it. Write lots of functions that return

functions. Write lots of functions that make tail calls. You will get to the point where

it stops being unnatural. You can not get there by reading about it or talking about

it. If you write well in JavaScript, JavaScript will teach you. If you write badly in

JavaScript, JavaScript will punish you. But you already knew that.

Perhaps in my next book we will do something about the spelling of two.

Notes

Music is the silence between the notes.

Claude Debussy

	Front Cover
	Front Matter (Did I hear you right, did I hear you sayin’ that you’re gonna make a copy of a game without payin’? Come on, guys, I thought you knew better. Don’t copy that floppy. -- MC Double Def DP)
	Chapter List (Raindrops on roses and whiskers on kittens. -- Not Maria Augusta von Trapp)
	0: Read Me First! (Few images invoke the mysteries and ultimate certainties of a sequence of random events as well as that of the proverbial monkey at a typewriter. -- George Marsaglia)
	1: How Names Work (You know my name. -- John Lennon and Paul McCartney)
	2: How Numbers Work (Look up the number. -- John Lennon and Paul McCartney)
	3: How Big Integers Work (He say five, I say six. He say eight, I say nine. He say ten, I say eleven. I no stop for nothing. I bid’em up. I go higher, higher, higher. -- Chico Marx)
	4: How Big Floating Point Works (Don’t be a hero, young man. There’s no percentage in it. -- Harlan Potter)
	5: How Big Rationals Work (I only took the regular course. Reeling and Writhing, of course, to begin with, and then the different branches of Arithmetic — Ambition, Distraction, Uglification, and Derision. -- The Mock Turtle)
	6: How Booleans Work (Truth is truth. You can’t have opinions about truth. -- Peter Schickele)
	7: How Arrays Work (Everything is numbered here. The monster is Zero. -- The Controller of Planet X)
	8: How Objects Work (Have gratitude for the things you’re discarding. By giving gratitude, you’re giving closure to the relationship with that object, and by doing so, it becomes a lot easier to let go. -- Marie Kondo)
	9: How Strings Work (Not fair! Not fair! It isn’t fair, my precious, is it, to ask us what it’s got in its nassty little pocketses? -- Gollum)
	10: How Bottom Values Work (You’re romance, you’re the steppes of Russia You’re the pants, on a Roxy usher I’m a broken doll, a fol-de-rol, a blop But if, baby, I’m the bottom you’re the top! -- Cole Porter)
	11: How Statements Work (When I nod my head, you hit it with a hammer. -- Bullwinkle J. Moose)
	12: How Functions Work (The fact is that, if proper procedures were available, everybody would use them; the advantages in their use in program construction are, in practice, overwhelming. -- Ian F. Currie)
	13: How Generators Work (The present day composers refuse to die. -- Edgard Varése)
	14: How Exceptions Work (No! Try not. Do, or do not. There is no try. -- Yoda)
	15: How Programs Work (Greetings, programs! -- Kevin Flynn)
	16: How this Works (I invented the term Object-Oriented, and I can tell you I did not have C++ in mind. -- Alan Kay)
	17: How Class Free Works (And you think you’re so clever and classless and free. -- John Lennon)
	18: How Tail Calls Work (There comes a time in the affairs of man when he must take the bull by the tail and face the situation. -- W. C. Fields)
	19: How Purity Works (The price of purity is purists. -- Calvin Trillin)
	20: How Eventual Programming Works (Moe! Larry! The cheese! -- Jerome Lester Horwitz)
	21: How Date Works (When you open the door, will your mystery date be a dream, or a dud? -- Milton Bradley)
	22: How JSON Works (For the payload format, XML has to be the mainstay, not because it’s technically wonderful, but because of the extraordinary breadth of adoption that it has succeeded in achieving. This is where the JSON (or YAML) folks are really missing the point by proudly pointing to the technical advantages of their format: any damn fool could produce a better data format than XML. -- James Clark)
	23: How Testing Works (Program testing can be used to show the presence of bugs, but never to show their absence! -- Edsger Dijkstra)
	24: How Optimizing Works (More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason ? including blind stupidity. -- William Wulf)
	25: How Transpiling Works (I’m not the wun. -- Neo)
	26: How Tokenizing Works (Never send a human to do a machine’s job. -- Agent Smith)
	27: How Parsing Works (Some believed we lacked the programming language to describe your perfect world. But I believe that, as a species, human beings define their reality thru suffering and misery. -- Agent Smith)
	28: How Code Generation Works (You have to let it all go, Neo. Fear, doubt, and disbelief Free your mind. -- Morpheus)
	29: How Runtimes Work (I know why you?re here, Neo. I know what you?ve been doing... why you hardly sleep, why you live alone, and why night after night, you sit by your computer. -- Trinity)
	30: How Wat! Works (Enough making fun of languages that suck. Let’s talk about JavaScript. -- Gary Bernhardt)
	31: How This Book Works (I only ask to be free. The butterflies are free. -- Harold Skimpole)
	Notes (Music is the silence between the notes.-- Claude Debussy)

