xenial (5) systemd.netdev.5.gz

Provided by: systemd_229-4ubuntu4_amd64 bug

NAME

       systemd.netdev - Virtual Network Device configuration

SYNOPSIS

       netdev.netdev

DESCRIPTION

       Network setup is performed by systemd-networkd(8).

       Virtual Network Device files must have the extension .netdev; other extensions are
       ignored. Virtual network devices are created as soon as networkd is started. If a netdev
       with the specified name already exists, networkd will use that as-is rather than create
       its own. Note that the settings of the pre-existing netdev will not be changed by
       networkd.

       The .netdev files are read from the files located in the system network directory
       /lib/systemd/network, the volatile runtime network directory /run/systemd/network and the
       local administration network directory /etc/systemd/network. All configuration files are
       collectively sorted and processed in lexical order, regardless of the directories in which
       they live. However, files with identical filenames replace each other. Files in /etc have
       the highest priority, files in /run take precedence over files with the same name in /lib.
       This can be used to override a system-supplied configuration file with a local file if
       needed. As a special case, an empty file (file size 0) or symlink with the same name
       pointing to /dev/null disables the configuration file entirely (it is "masked").

SUPPORTED NETDEV KINDS

       The following kinds of virtual network devices may be configured in .netdev files:

       Table 1. Supported kinds of virtual network devices
       ┌──────────┬──────────────────────────────────┐
       │KindDescription                      │
       ├──────────┼──────────────────────────────────┤
       │bond      │ A bond device is an aggregation  │
       │          │ of all its slave devices. See    │
       │          │ Linux Ethernet Bonding Driver    │
       │          │ HOWTO[1] for details.Local       │
       │          │ configuration                    │
       ├──────────┼──────────────────────────────────┤
       │bridge    │ A bridge device is a software    │
       │          │ switch, and each of its slave    │
       │          │ devices and the bridge itself    │
       │          │ are ports of the switch.         │
       ├──────────┼──────────────────────────────────┤
       │dummy     │ A dummy device drops all packets │
       │          │ sent to it.                      │
       ├──────────┼──────────────────────────────────┤
       │gre       │ A Level 3 GRE tunnel over IPv4.  │
       │          │ See RFC 2784[2] for details.     │
       ├──────────┼──────────────────────────────────┤
       │gretap    │ A Level 2 GRE tunnel over IPv4.  │
       ├──────────┼──────────────────────────────────┤
       │ip6gre    │ A Level 3 GRE tunnel over IPv6.  │
       ├──────────┼──────────────────────────────────┤
       │ip6tnl    │ An IPv4 or IPv6 tunnel over IPv6 │
       ├──────────┼──────────────────────────────────┤
       │ip6gretap │ An Level 2 GRE tunnel over IPv6. │
       ├──────────┼──────────────────────────────────┤
       │ipip      │ An IPv4 over IPv4 tunnel.        │
       ├──────────┼──────────────────────────────────┤
       │ipvlan    │ An ipvlan device is a stacked    │
       │          │ device which receives packets    │
       │          │ from its underlying device based │
       │          │ on IP address filtering.         │
       ├──────────┼──────────────────────────────────┤
       │macvlan   │ A macvlan device is a stacked    │
       │          │ device which receives packets    │
       │          │ from its underlying device based │
       │          │ on MAC address filtering.        │
       ├──────────┼──────────────────────────────────┤
       │macvtap   │ A macvtap device is a stacked    │
       │          │ device which receives packets    │
       │          │ from its underlying device based │
       │          │ on MAC address filtering.        │
       ├──────────┼──────────────────────────────────┤
       │sit       │ An IPv6 over IPv4 tunnel.        │
       ├──────────┼──────────────────────────────────┤
       │tap       │ A persistent Level 2 tunnel      │
       │          │ between a network device and a   │
       │          │ device node.                     │
       ├──────────┼──────────────────────────────────┤
       │tun       │ A persistent Level 3 tunnel      │
       │          │ between a network device and a   │
       │          │ device node.                     │
       ├──────────┼──────────────────────────────────┤
       │veth      │ An Ethernet tunnel between a     │
       │          │ pair of network devices.         │
       ├──────────┼──────────────────────────────────┤
       │vlan      │ A VLAN is a stacked device which │
       │          │ receives packets from its        │
       │          │ underlying device based on VLAN  │
       │          │ tagging. See IEEE 802.1Q[3] for  │
       │          │ details.                         │
       ├──────────┼──────────────────────────────────┤
       │vti       │ An IPv4 over IPSec tunnel.       │
       ├──────────┼──────────────────────────────────┤
       │vti6      │ An IPv6 over IPSec tunnel.       │
       ├──────────┼──────────────────────────────────┤
       │vxlan     │ A virtual extensible LAN         │
       │          │ (vxlan), for connecting Cloud    │
       │          │ computing deployments.           │
       └──────────┴──────────────────────────────────┘

[MATCH] SECTION OPTIONS

       A virtual network device is only created if the "[Match]" section matches the current
       environment, or if the section is empty. The following keys are accepted:

       Host=
           Matches against the hostname or machine ID of the host. See "ConditionHost=" in
           systemd.unit(5) for details.

       Virtualization=
           Checks whether the system is executed in a virtualized environment and optionally test
           whether it is a specific implementation. See "ConditionVirtualization=" in
           systemd.unit(5) for details.

       KernelCommandLine=
           Checks whether a specific kernel command line option is set (or if prefixed with the
           exclamation mark unset). See "ConditionKernelCommandLine=" in systemd.unit(5) for
           details.

       Architecture=
           Checks whether the system is running on a specific architecture. See
           "ConditionArchitecture=" in systemd.unit(5) for details.

[NETDEV] SECTION OPTIONS

       The "[NetDev]" section accepts the following keys:

       Description=
           A free-form description of the netdev.

       Name=
           The interface name used when creating the netdev. This option is compulsory.

       Kind=
           The netdev kind. This option is compulsory. See the "Supported netdev kinds" section
           for the valid keys.

       MTUBytes=
           The maximum transmission unit in bytes to set for the device. The usual suffixes K, M,
           G, are supported and are understood to the base of 1024. This key is not currently
           supported for "tun" or "tap" devices.

       MACAddress=
           The MAC address to use for the device. If none is given, one is generated based on the
           interface name and the machine-id(5). This key is not currently supported for "tun" or
           "tap" devices.

[BRIDGE] SECTION OPTIONS

       The "[Bridge]" section only applies for netdevs of kind "bridge", and accepts the
       following keys:

       HelloTimeSec=
           HelloTimeSec specifies the number of seconds between two hello packets sent out by the
           root bridge and the designated bridges. Hello packets are used to communicate
           information about the topology throughout the entire bridged local area network.

       MaxAgeSec=
           MaxAgeSec specifies the number of seconds of maximum message age. If the last seen
           (received) hello packet is more than this number of seconds old, the bridge in
           question will start the takeover procedure in attempt to become the Root Bridge
           itself.

       ForwardDelaySec=
           ForwardDelaySec specifies the number of seconds spent in each of the Listening and
           Learning states before the Forwarding state is entered.

[VLAN] SECTION OPTIONS

       The "[VLAN]" section only applies for netdevs of kind "vlan", and accepts the following
       key:

       Id=
           The VLAN ID to use. An integer in the range 0–4094. This option is compulsory.

[MACVLAN] SECTION OPTIONS

       The "[MACVLAN]" section only applies for netdevs of kind "macvlan", and accepts the
       following key:

       Mode=
           The MACVLAN mode to use. The supported options are "private", "vepa", "bridge", and
           "passthru".

[MACVTAP] SECTION OPTIONS

       The "[MACVTAP]" section applies for netdevs of kind "macvtap" and accepts the same key as
       "[MACVLAN]."

[IPVLAN] SECTION OPTIONS

       The "[IPVLAN]" section only applies for netdevs of kind "ipvlan", and accepts the
       following key:

       Mode=
           The IPVLAN mode to use. The supported options are "L2" and "L3".

[VXLAN] SECTION OPTIONS

       The "[VXLAN]" section only applies for netdevs of kind "vxlan", and accepts the following
       keys:

       Id=
           The VXLAN ID to use.

       Group=
           An assigned multicast group IP address.

       TOS=
           The Type Of Service byte value for a vxlan interface.

       TTL=
           A fixed Time To Live N on Virtual eXtensible Local Area Network packets. N is a number
           in the range 1–255. 0 is a special value meaning that packets inherit the TTL value.

       MacLearning=
           A boolean. When true, enables dynamic MAC learning to discover remote MAC addresses.

       FDBAgeingSec=
           The lifetime of Forwarding Database entry learnt by the kernel, in seconds.

       MaximumFDBEntries=
           Configures maximum number of FDB entries.

       ARPProxy=
           A boolean. When true, enables ARP proxying.

       L2MissNotification=
           A boolean. When true, enables netlink LLADDR miss notifications.

       L3MissNotification=
           A boolean. When true, enables netlink IP address miss notifications.

       RouteShortCircuit=
           A boolean. When true, route short circuiting is turned on.

       UDPCheckSum=
           A boolean. When true, transmitting UDP checksums when doing VXLAN/IPv4 is turned on.

       UDP6ZeroChecksumTx=
           A boolean. When true, sending zero checksums in VXLAN/IPv6 is turned on.

       UDP6ZeroCheckSumRx=
           A boolean. When true, receiving zero checksums in VXLAN/IPv6 is turned on.

       GroupPolicyExtension=
           A boolean. When true, it enables Group Policy VXLAN extension security label mechanism
           across network peers based on VXLAN. For details about the Group Policy VXLAN, see the
           VXLAN Group Policy[4] document. Defaults to false.

       DestinationPort=
           Configures the default destination UDP port on a per-device basis. If destination port
           is not specified then Linux kernel default will be used. Set destination port 4789 to
           get the IANA assigned value, and destination port 0 to get default values.

       PortRange=
           Configures VXLAN port range. VXLAN bases source UDP port based on flow to help the
           receiver to be able to load balance based on outer header flow. It restricts the port
           range to the normal UDP local ports, and allows overriding via configuration.

[TUNNEL] SECTION OPTIONS

       The "[Tunnel]" section only applies for netdevs of kind "ipip", "sit", "gre", "gretap",
       "ip6gre", "ip6gretap", "vti", "vti6", and "ip6tnl" and accepts the following keys:

       Local=
           A static local address for tunneled packets. It must be an address on another
           interface of this host.

       Remote=
           The remote endpoint of the tunnel.

       TOS=
           The Type Of Service byte value for a tunnel interface. For details about the TOS, see
           the Type of Service in the Internet Protocol Suite[5] document.

       TTL=
           A fixed Time To Live N on tunneled packets. N is a number in the range 1–255. 0 is a
           special value meaning that packets inherit the TTL value. The default value for IPv4
           tunnels is: inherit. The default value for IPv6 tunnels is 64.

       DiscoverPathMTU=
           A boolean. When true, enables Path MTU Discovery on the tunnel.

       IPv6FlowLabel=
           Configures the 20-bit flow label (see RFC 6437[6]) field in the IPv6 header (see RFC
           2460[7]), which is used by a node to label packets of a flow. It is only used for IPv6
           tunnels. A flow label of zero is used to indicate packets that have not been labeled.
           It can be configured to a value in the range 0–0xFFFFF, or be set to "inherit", in
           which case the original flowlabel is used.

       CopyDSCP=
           A boolean. When true, the Differentiated Service Code Point (DSCP) field will be
           copied to the inner header from outer header during the decapsulation of an IPv6
           tunnel packet. DSCP is a field in an IP packet that enables different levels of
           service to be assigned to network traffic. Defaults to "no".

       EncapsulationLimit=
           The Tunnel Encapsulation Limit option specifies how many additional levels of
           encapsulation are permitted to be prepended to the packet. For example, a Tunnel
           Encapsulation Limit option containing a limit value of zero means that a packet
           carrying that option may not enter another tunnel before exiting the current tunnel.
           (see RFC 2473[8]). The valid range is 0–255 and "none". Defaults to 4.

       Mode=
           An "ip6tnl" tunnel can be in one of three modes "ip6ip6" for IPv6 over IPv6, "ipip6"
           for IPv4 over IPv6 or "any" for either.

[PEER] SECTION OPTIONS

       The "[Peer]" section only applies for netdevs of kind "veth" and accepts the following
       keys:

       Name=
           The interface name used when creating the netdev. This option is compulsory.

       MACAddress=
           The peer MACAddress, if not set, it is generated in the same way as the MAC address of
           the main interface.

[TUN] SECTION OPTIONS

       The "[Tun]" section only applies for netdevs of kind "tun", and accepts the following
       keys:

       OneQueue=
           Takes a boolean argument. Configures whether all packets are queued at the device
           (enabled), or a fixed number of packets are queued at the device and the rest at the
           "qdisc". Defaults to "no".

       MultiQueue=
           Takes a boolean argument. Configures whether to use multiple file descriptors (queues)
           to parallelize packets sending and receiving. Defaults to "no".

       PacketInfo=
           Takes a boolean argument. Configures whether packets should be prepended with four
           extra bytes (two flag bytes and two protocol bytes). If disabled, it indicates that
           the packets will be pure IP packets. Defaults to "no".

       VNetHeader=
           Takes a boolean argument. Configures IFF_VNET_HDR flag for a tap device. It allows
           sending and receiving larger Generic Segmentation Offload (GSO) packets. This may
           increase throughput significantly. Defaults to "no".

       User=
           User to grant access to the /dev/net/tun device.

       Group=
           Group to grant access to the /dev/net/tun device.

[TAP] SECTION OPTIONS

       The "[Tap]" section only applies for netdevs of kind "tap", and accepts the same keys as
       the "[Tun]" section.

[BOND] SECTION OPTIONS

       The "[Bond]" section accepts the following key:

       Mode=
           Specifies one of the bonding policies. The default is "balance-rr" (round robin).
           Possible values are "balance-rr", "active-backup", "balance-xor", "broadcast",
           "802.3ad", "balance-tlb", and "balance-alb".

       TransmitHashPolicy=
           Selects the transmit hash policy to use for slave selection in balance-xor, 802.3ad,
           and tlb modes. Possible values are "layer2", "layer3+4", "layer2+3", "encap2+3",
           "802.3ad", and "encap3+4".

       LACPTransmitRate=
           Specifies the rate with which link partner transmits Link Aggregation Control Protocol
           Data Unit packets in 802.3ad mode. Possible values are "slow", which requests partner
           to transmit LACPDUs every 30 seconds, and "fast", which requests partner to transmit
           LACPDUs every second. The default value is "slow".

       MIIMonitorSec=
           Specifies the frequency that Media Independent Interface link monitoring will occur. A
           value of zero disables MII link monitoring. This value is rounded down to the nearest
           millisecond. The default value is 0.

       UpDelaySec=
           Specifies the delay before a link is enabled after a link up status has been detected.
           This value is rounded down to a multiple of MIIMonitorSec. The default value is 0.

       DownDelaySec=
           Specifies the delay before a link is disabled after a link down status has been
           detected. This value is rounded down to a multiple of MIIMonitorSec. The default value
           is 0.

       LearnPacketIntervalSec=
           Specifies the number of seconds between instances where the bonding driver sends
           learning packets to each slave peer switch. The valid range is 1–0x7fffffff; the
           default value is 1. This option has an effect only for the balance-tlb and balance-alb
           modes.

       AdSelect=
           Specifies the 802.3ad aggregation selection logic to use. Possible values are
           "stable", "bandwidth" and "count".

       FailOverMACPolicy=
           Specifies whether the active-backup mode should set all slaves to the same MAC address
           at the time of enslavement or, when enabled, to perform special handling of the bond's
           MAC address in accordance with the selected policy. The default policy is none.
           Possible values are "none", "active" and "follow".

       ARPValidate=
           Specifies whether or not ARP probes and replies should be validated in any mode that
           supports ARP monitoring, or whether non-ARP traffic should be filtered (disregarded)
           for link monitoring purposes. Possible values are "none", "active", "backup" and
           "all".

       ARPIntervalSec=
           Specifies the ARP link monitoring frequency in milliseconds. A value of 0 disables ARP
           monitoring. The default value is 0.

       ARPIPTargets=
           Specifies the IP addresses to use as ARP monitoring peers when ARPIntervalSec is
           greater than 0. These are the targets of the ARP request sent to determine the health
           of the link to the targets. Specify these values in IPv4 dotted decimal format. At
           least one IP address must be given for ARP monitoring to function. The maximum number
           of targets that can be specified is 16. The default value is no IP addresses.

       ARPAllTargets=
           Specifies the quantity of ARPIPTargets that must be reachable in order for the ARP
           monitor to consider a slave as being up. This option affects only active-backup mode
           for slaves with ARPValidate enabled. Possible values are "any" and "all".

       PrimaryReselectPolicy=
           Specifies the reselection policy for the primary slave. This affects how the primary
           slave is chosen to become the active slave when failure of the active slave or
           recovery of the primary slave occurs. This option is designed to prevent flip-flopping
           between the primary slave and other slaves. Possible values are "always", "better" and
           "failure".

       ResendIGMP=
           Specifies the number of IGMP membership reports to be issued after a failover event.
           One membership report is issued immediately after the failover, subsequent packets are
           sent in each 200ms interval. The valid range is 0–255. Defaults to 1. A value of 0
           prevents the IGMP membership report from being issued in response to the failover
           event.

       PacketsPerSlave=
           Specify the number of packets to transmit through a slave before moving to the next
           one. When set to 0, then a slave is chosen at random. The valid range is 0–65535.
           Defaults to 1. This option only has effect when in balance-rr mode.

       GratuitousARP=
           Specify the number of peer notifications (gratuitous ARPs and unsolicited IPv6
           Neighbor Advertisements) to be issued after a failover event. As soon as the link is
           up on the new slave, a peer notification is sent on the bonding device and each VLAN
           sub-device. This is repeated at each link monitor interval (ARPIntervalSec or
           MIIMonitorSec, whichever is active) if the number is greater than 1. The valid range
           is 0–255. The default value is 1. These options affect only the active-backup mode.

       AllSlavesActive=
           A boolean. Specifies that duplicate frames (received on inactive ports) should be
           dropped when false, or delivered when true. Normally, bonding will drop duplicate
           frames (received on inactive ports), which is desirable for most users. But there are
           some times it is nice to allow duplicate frames to be delivered. The default value is
           false (drop duplicate frames received on inactive ports).

       MinLinks=
           Specifies the minimum number of links that must be active before asserting carrier.
           The default value is 0.

       For more detail information see Linux Ethernet Bonding Driver HOWTO[1]

EXAMPLE

       Example 1. /etc/systemd/network/25-bridge.netdev

           [NetDev]
           Name=bridge0
           Kind=bridge

       Example 2. /etc/systemd/network/25-vlan1.netdev

           [Match]
           Virtualization=no

           [NetDev]
           Name=vlan1
           Kind=vlan

           [VLAN]
           Id=1

       Example 3. /etc/systemd/network/25-ipip.netdev

           [NetDev]
           Name=ipip-tun
           Kind=ipip
           MTUBytes=1480

           [Tunnel]
           Local=192.168.223.238
           Remote=192.169.224.239
           TTL=64

       Example 4. /etc/systemd/network/25-tap.netdev

           [NetDev]
           Name=tap-test
           Kind=tap

           [Tap]
           MultiQueue=true
           PacketInfo=true

       Example 5. /etc/systemd/network/25-sit.netdev

           [NetDev]
           Name=sit-tun
           Kind=sit
           MTUBytes=1480

           [Tunnel]
           Local=10.65.223.238
           Remote=10.65.223.239

       Example 6. /etc/systemd/network/25-gre.netdev

           [NetDev]
           Name=gre-tun
           Kind=gre
           MTUBytes=1480

           [Tunnel]
           Local=10.65.223.238
           Remote=10.65.223.239

       Example 7. /etc/systemd/network/25-vti.netdev

           [NetDev]
           Name=vti-tun
           Kind=vti
           MTUBytes=1480

           [Tunnel]
           Local=10.65.223.238
           Remote=10.65.223.239

       Example 8. /etc/systemd/network/25-veth.netdev

           [NetDev]
           Name=veth-test
           Kind=veth

           [Peer]
           Name=veth-peer

       Example 9. /etc/systemd/network/25-bond.netdev

           [NetDev]
           Name=bond1
           Kind=bond

           [Bond]
           Mode=802.3ad
           TransmitHashPolicy=layer3+4
           MIIMonitorSec=1s
           LACPTransmitRate=fast

       Example 10. /etc/systemd/network/25-dummy.netdev

           [NetDev]
           Name=dummy-test
           Kind=dummy
           MACAddress=12:34:56:78:9a:bc

SEE ALSO

       systemd(1), systemd-networkd(8), systemd.link(5), systemd.network(5)

NOTES

        1. Linux Ethernet Bonding Driver HOWTO
           https://www.kernel.org/doc/Documentation/networking/bonding.txt

        2. RFC 2784
           https://tools.ietf.org/html/rfc2784

        3. IEEE 802.1Q
           http://www.ieee802.org/1/pages/802.1Q.html

        4. VXLAN Group Policy
           https://tools.ietf.org/html/draft-smith-vxlan-group-policy

        5. Type of Service in the Internet Protocol Suite
           http://tools.ietf.org/html/rfc1349

        6. RFC 6437
           https://tools.ietf.org/html/rfc6437

        7. RFC 2460
           https://tools.ietf.org/html/rfc2460

        8. RFC 2473
           https://tools.ietf.org/html/rfc2473#section-4.1.1