Machine Learning A-Z: Download Practice Datasets

Published by SuperDataScience Team

Monday Dec 03, 2018

Header Background Pattern

Greetings

Welcome to the data repository for the Machine Learning course by Kirill Eremenko and Hadelin de Ponteves. The datasets and other supplementary materials are below. Enjoy!


Part 0: Welcome to the Course

Section 1. Welcome to the course!


Part 1: Data Preprocessing

Section 2. Welcome to Part 1! 

Section 3. Data Preprocessing in Python

Section 4. Data Preprocessing in R


Part 2: Regression

Section 5. Welcome to Part 2!

Section 6. Simple Linear Regression

Section 7. Multiple Linear Regression

Section 8. Polynomial Regression

Section 9. Support Vector Regression (SVR)

Section 10. Decision Tree Regression

Section 11. Random Forest Regression

Section 12. Evaluating Regression Models Performance

Section 13. Regularization Methods

Section 14. Sections Recap


Part 3: Classification

Section 15. Welcome to Part 3!

Section 16. Logistic Regression

Section 17. K-Nearest Neighbors (K-NN)

Section 18. Support Vector Machine (SVM)

Section 19. Kernel SVM

Section 20. Naive Bayes

Section 21. Decision Tree Classification

Section 22. Random Forest Classification

Section 23. Evaluating Classification Models Performance


Part 4: Clustering

Section 24. Welcome to part 4!

Section 25. K-Means Clustering

Section 26. Hierarchical Clustering


Part 5: Association Rule Learning

Section 27. Welcome to part 5!

Section 28. Apriori

Section 29. Eclat


Part 6: Reinforcement Learning

Section 30. Welcome to the part 6!

Section 31. Upper Confidence Bound (UCB)

Section 32. Thompson Sampling


Part 7: Natural Language Processing

Section 33. Natural Language Processing Algorithms


Part 8: Deep Learning

Section 34. Welcome to Part 8!

Section 35. Artificial Neural Networks (ANN)

Section 36. Convolutional Neural Networks (CNN)


Part 9: Dimensionality Reduction

Section 37. Welcome to Part 9!

Section 38. Principal Component Analysis (PCA)

Section 39. Linear Discriminant Analysis (LDA)

Section 40. Kernel PCA


Part 10: Model Selection

Section 41. Welcome to Part 10!

Section 42: Model Selection

Section 43: XGBoost