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Abstract 

 

While advanced digital music systems such as compact disk players and MP3 have become the standard 

in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound 

quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles 

involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue 

version from the original source. However, while some perceive this media as reproducing a more 

authentic quality then its digital counterpart, there is an absence a safe playback system. Contact with the 

stylus provided by a standard turntable causes significant wear on the record (or phonograph) over time, 

eventually rendering it useless. Couple this with the historic value and an abundance of such vinyl media, 

and the need for a non-contact playback system becomes evident. This paper describes a non-contact 

method of playback for vinyl records which uses reconstruction of microscopic images of the grooves 

rather than physical contact with the stylus. 
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1 Introduction 
Since a vinyl record is an analogue recording, many claim that the application of a sample rate when 

making digital recordings for CDs and DVDs results in too great a loss in sound quality. Natural sound 

waves are analogue by definition. A digital recording takes snapshots of the analogue signal at a certain 

sample rate and measures each snapshot with a certain accuracy. For CDs the sample rate is 44.1 kHz 

(44,100 times per second at 16-bit). The sample rate for DVD audio is 96 kHz or 192 kHz for High-

Definition DVD (HD –DVD). A digital recording, however, cannot capture the complete sound wave; 

at best it is a close approximation and many claim that, although high quality, it still cannot fully 

reproduce the fidelity of sound that vinyl records can. Figure 1 illustrates the application of a sample 

rate upon a simple sound wave. Sounds that have fast transitions, such as drum beats or a trumpet's 

tone, will be distorted because they change too quickly for the sample rate. Historical recordings 

archived for posterity are often fragile with owners not wanting to risk the use of conventional stylus 

playback. The development of a non-contact player that carefully reconstructs a restored image of the 

original analogue groove would not only remove this risk, but it would make safe playback possible for 

records that are severely damaged. Normally the downside of playing an analogue signal is the fact that 

all noise and other imperfections are also heard. So, if there is a period of silence on a record you hear 

background noise. With the proposed system any background noise that was present could be removed 

since the optical player would detect this noise in advance and simply ignore it. 

 

 
 

Figure 1:   Comparison of CD and DVD sample rates upon an analogue waveform 
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1.1 Conventional playback methods for vinyl records 

The first method of recording sound was the phonograph created by Thomas Edison in 1877. He used a 

mechanism consisting of a needle and collection horn to store an analogue wave mechanically by 

cutting a waveform directly onto a cylindrical sheet of tin. The use of flat records with a spiral groove 

was an improvement on Edison’s machine by Emil Berliner in 1887. The stereo evolution of this 

method - High Fidelity (Hi Fi) - didn’t lose popularity until compact disks revolutionised the consumer 

market in the early 1980’s. Only the most advanced digital systems can rival its fidelity. At 

microscopic level this groove resembles an undulating track with varying width. A turntable stylus 

follows these undulations along the groove towards the centre thus following the waveform along the 

way.  Records skip when the bass information is too loud and the stylus is thrown into a neighbouring 

section of the groove. Vocal sibilance and sudden loud symbol crashes can also cause a rapid increase 

in frequency so the stylus faces a pronounced ‘S’ effect in the groove that could potentially cause it to 

skip. The traditional method of a diamond shaped stylus running along a V-shaped groove also applies 

constant weight and pressure to the groove and results in a increase in temperature causing further 

damage. A system that views the waveform up close without any contact would completely remove 

this problem. Skipping of grooves would be eliminated along with unwanted background noise, 

scratches and distortion from tiny particles.  

 

1.2 Assumptions 

The terms LP record (LP, 33, or 33-1/3 rpm record), EP, 16-2/3 rpm record (16), 45 rpm record (45), 

and 78 rpm record (78) all refer to different phonographs for playback on a turntable system. The rpm 

designator refers to the rotational speed in revolutions per minute. They are often made of polyvinyl 

chloride (PVC), hence the term vinyl record. For the purposes of this study, monaural signals only are 

processed, i.e. vinyl 78rpm records.  The groove may be viewed clearly in two dimensions so image 

acquisition may be performed more easily. Since most historic recording are stored on 78s that are now 

considered antiques, it makes sense to restrict this study to that media. 

 

1.3 Evaluation of Existing Non-Contact Systems 

The main technology currently using a method for non-contact playing of vinyl records is the Japanese 

ELP corporation’s laser turntable   [ELP, 2003]. This impressive system can play grooved, analogue 

33.3, 45 or 78 RPM discs by illuminating the walls of each groove with five laser beams [Smart, 2003]. 

In essence, to play the sound, a laser views the image by reflecting back the amplitudes of the 

waveform. At a basic price over US$10,000 it will hardly ease into the mass production market. In fact 

to play 78s it requires the advanced model with extra sensors to monitor speed.  The laser of the basic 

model cannot accurately track the groove at such speed without the risk of intermittent pauses 

throughout playback. The cost of the advanced model is almost twice the basic price plus additional 

costs for the patching of scratches and noise. Any noise, damage or dirt will be picked up as the laser 

cannot overcome serious flaws on the disk.  If the disk is slightly bent or warped in any way, the laser 

turntable will reject it. It works best with black records rather than coloured or vinyl with added 

graphics. The system was invented by Robert E. Stoddard, a graduate student at Stanford University in 

1986 [USPO, 1986]. The dual beam model was patented in 1989 [USPO, 1989]. 

 

The same result could be achieved by a microscopic imaging system at a fraction of the cost. Since the 

objective is to play the sound data without contact with a stylus, a microscopic imaging camera could 

be used to replace the stylus. The added advantage of this method is that an image could easily be 

enhanced to smooth out noise at source and overcome damage. Ofer Springer proposed the idea of the 

virtual gramophone [Springer, 2002]. Springer’s system scans the record as an image and applies a 

virtual needle following the groove spiral form. P. Olsson’s Swedish team developed this to use digital 

signal processing methods such as FIRWiener filtering and spectral subtraction to reduce noise levels 

[Olsson et al., 2003]. These two systems however only used a basic scanner, limiting the resolution to a 

maximum of 2400dpi or 10 _mper pixel. At this resolution, quantisation noise is high because the 

maximum lateral travel of the groove is limited. Fadeyev and Haber’s 2D method reconstructs 

mechanically recorded sound by image processing [Fadeyev and Haber, 2003]. The resolution was 

much higher due to the use micro-photography. Baozhang Tian proposed a 3D scene reconstruction 

method using optical flow methods to generate a virtual 3D image of the entire groove valley [Tian, 

Bannon, 2006]. But as we shall see, quality results can be achieved by processing 2D images of the 2D 

sound signals from 78rpm records.   



  

2 Specification of Proposed Methods 
The objective of this system is a process for optical playing of vinyl records (for the purposes of this 

system, 78rpm phonographs will be used) by reconstructing a restored image of the original analogue. 

The surface reconstruction will be two dimensional as that is all that is necessary in the case of 78s. 

Image analysis techniques will be used to stitch together a longitudinal image of the overall groove 

There are four stages of implementation in order to achieve this. This section will briefly describe each 

of those stages in sequence and the problems encountered at each and how they are overcome.  The 

four main sections in this playback process are: 

 

(i) Image collection      

(ii) Stitching of overlapped Images  

(iii) Groove tracking   

(iv) Waveform creation from the tracked groove and sound file creation. 

 

The following chart indicates the flow of each phase. 
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Figure 2: Stages in development of optical playback process 

 

2.1 Image Collection Phase – Stage 1 
Perhaps the most important and significant stage in the process is the image collection phase. If proper 

images of high quality are not collected initially it will be inevitable that further problems will occur in 

the stitching and groove tracking phases. Potential hazards to the collection of data will now be 

explored so that they may be foreseen and overcome in advance. Figure 3 illustrates how the images 

are retrieved using a computer microscope and a stepper motor to turn the record. The stepper motor 

takes the place of a turntable and is connected to the record in such a manner that any partial rotations 

cause it to move in discrete steps.  

 

For each step the motor takes (the exact distance of which is controlled by software), the microscope 

will in turn take an image of a small section of the groove. On subsequent movements, the stepper 

motor will position the next section of the groove for imaging and the microscope will take further 

pictures. Each image is saved in bitmap format and converted to greyscale to optimise the stitching 

algorithm at a later stage by keeping the images as simple as possible.  

 

 

Figure 3:  Image Collection Stage 
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One of the most important factors in maintaining consistency of image quality is to ensure that the 

microscope remains in focus. Any tiny variation in the record from its level position will move the lens 

slightly out of focus. That is, the focal length (distance between the record and microscope lens) will 

increase or decrease. For this reason, a focus detection algorithm is incorporated so as to warn the user 

when re-focusing is required. A second motor may be added to automatically readjust the focus, which 

would slightly add to the system’s cost. Warped or slightly bent disks will also gain from this feature as 

they are prone to going out of focus. 

 

Figure 4 shows a set of a sample images maintaining a consistency of three groove sections per frame 

all to be stitched together into a panoramic view. There is a deliberate overlap - most evident in 

pictures (c) and (d). This overlap can easily be controlled by the stepper motor which acts as the 

turntable. It is incorporated to aid the stitching process and to ensure that the correct panoramic image 

has been obtained. 

 

 

                   
          

                    (a)                                   (b)                                     (c)                                 (d) 

Figure 4:   Sample set of microscopic groove images (x200 Magnification) 

Approximately 60 to 100 slightly overlapping images will be required to capture one revolution of a 

78rpm groove. A simple algorithm to detect de-focus is added to automatically pause the image 

collection phase and re-adjust microscope focal length using a second stepper motor before resuming 

image taking. The MilShaf ltd stepper control motor that was used used has a minimum shift capability 

of 0.25° [MilShaf SMC].  This means it takes exactly 60 images (6° x 60 = 360°) to capture one 

complete revolution of a groove image i.e. it will take 24 steps of the stepper motor before the 

microscope should take the next image. 

 

 1 step = 0.25° =>  1 Image shift                =   24 steps        =     0.25° * 24      =    6° 

 Frame width  =  320 pixels => Pixel shift per step       =  320 / 24         =     13 pixels 

                                                           

This high level of accuracy meant that the potential overlap can be set to within 13 pixels. Although the 

6° movement will be the same throughout the collection process, the above calculations only consider 

the outer circumference of the record. A revolution of the groove will become smaller as it gets closer 

to the centre of the record. The angular speed of vinyl is constant, so the speed of the needle at the 

center is lower than at the outside. Therefore the information density is lower on the outside. So it is 

beneficial if there is a lot of overlap towards the center. The overlap can always be changed as the 

central grooves are captured to better contribute towards capturing the higher density data there more 

accurately. In the case of a 6° set of steps at the outer circumference, the image will perform a 13 pixel 

shift. Take this outer circumference as being radius r, the radius of the record, as the centre approaches 

the radius will become r’. To obtain the number of pixels for a 6° set of steps at radius r‘ the following 

equations are formed. 

 

(a) Circumference  *  %movement = 13  at  radius r 

(b) Circumference *  %movement  is unknown at  radius r’ 

(a) (2Πr)   *  (a/360)  = 13 

(b) (2Πr’) * (a/360)   =  pixel movement at r ‘              where a is the movement in degrees  

 

Dividing (a) by (b) gives r/r’  = 13/ pixel movement at r ‘    =>  pixel movement at r ‘ = (13r’)/r 

 

Image collection was performed using oVWF.ocx,  a Video for Windows ActiveX control that required 

no external interaction or use of a DLL. It could easily be incorporated into our software providing the 

required versatility in taking images. It was created by Ofer LaOr, director of Design by Vision  [LaOr 

1997]. This control has all the convenience of any ActiveX control and can easily be used in the 

Microsoft suite of programming languages. It can prompt dialogs to allow you to change the settings of 



  

the bitmap being imaged (i.e. 16 colour, 256 colour etc).  Hence our need to obtain greyscale images 

was met. 

 

2.1.1 Overcoming Potential Hazards in Image Collection 
 

(a) Image drift: In a sample containing three grooves as in Figure 5, one of the grooves would often 

move to the top of the video window after several shots were taken and eventually go out of sight 

as illustrated in Figure 6(b). This was due to the way in which the record was first centred upon the 

turntable. Any tiny variation off-centre at this level of magnification would be noticed. However, 

even if the geometric centre of the record is chosen with perfect accuracy, the spiral centre cut onto 

the groove may be slightly different  

 

(b) De-Focus: Figure 5(b) is clearly not as sharp as Figure 5(a). This is only after 25 frames have been 

taken in a particular set. The focal length (the distance between the record and microscope lens) 

would increase or decrease due to a slightly unlevelled record causing the image to go out of focus. 

A simple algorithm to give a deterministic value for focus is used based on the contrast of images.  

 

                      
 

            (a)                                              (b) 

Figure 5: Contrast within frames is used to gauge the focus level 

 

Since the image is converted to greyscale, every pixel has a value between 0 and 255. The deterministic 

value obtained is the average contrast per adjacent pixel of any image. Converting these values to a 

percentage value between 0 and 1, will allow us to apply the algorithm. For example consider the 

following 3 by 4 bitmap matrix A: 

A   

















34333231

24232221

14131211

aaaa

aaaa

aaaa
 

 

The absolute row-contrast differences may be determined by: 

 

   























||||||

||||||

||||||

343333323231

242323222221

141313121211

aaaaaa

aaaaaa

aaaaaa
  

 

It is possible to approximate the row contrast R, by calculating the sum of these absolute differences.  

The absolute column-contrast differences may be determined by: 

 














||||||||

||||||||

3424332332223121

2414231322122111

aaaaaaaa

aaaaaaaa
 

 

It is possible to approximate the column contrast C, by calculating the sum of these absolute 

differences.  

 

Total Contrast = R + C 

 

If this is applied to the initial frame to get a focus standard, and further applied to all adjacent elements 

of a bitmap matrix, the average contrast per pixel can be used as the deterministic coefficient for 

determining whether or not an image is in focus. 

 

2.2 Image Stitching – Stage 2 

Stitching of the images collected from Stage 1 is based on determining the exact positions where 

frames overlap. Image mosaics are collections of overlapping images that are transformed in order to 



  

result in a complete image of a wide angle scene. Two frames at a time were stitched together to build 

up the mosaic image. The simplest algorithm in stitching simple images together is the least squares 

algorithm which determines a set of overlap errors for various overlapping positions. The position with 

the lowest error will be taken as the point where the two images overlap. These positions will then be 

saved in a text file in order to reproduce the stitched image at any time. For every subsequent pair of 

images, the overlap positions will thus be recorded. Baozhang Tian suggests a similar method of image 

acquisition involving complex use of surface orientation analysis to record the image [Tian, Bannon, 

2007].  Stitching algorithms however provide a more simple approach, since a delay will be present 

anyway in both methods. The images are converted to grayscale in the capture process so we will get a 

bitmap matrix of values between 0 and 255.  The images will be taken under similar lighting conditions 

and will not vary greatly in content.  When dealing with panoramic images, there is usually the source 

position issue to contend with. Our images will be taken from a new point of reference above the vinyl 

record at each instance to suit the microscope as the record moves on the turntable, so this is angular 

distortion is not an issue as illustrated in Figure 6. 

 

Figure 6: Angular positioning problem will not be present 

The stitching algorithm may be defined as follows: 
 

sum = 0 

For all overlapping pixels 

      pixel1 = Numeric pixel value in the first image 

      pixel2 = Corresponding numeric pixel value in the second image 

      sum = sum + (pixel1 - pixel2)² 

 End For 

error = sum / X ,   where X is the total number of overlapping pixels 

 The minimum overlap can be chosen by the user in form that executes the stitching, but essentially 

every test of the least squares algorithm operates in a similar way. A column by column test is 

performed for every overlap beginning with the overlap of the upper midway position of height and 

width of the first frame of a pair.  Frame 2 is then tested at the same column position, but on the next 

row down, and so on, until it overlaps midway with the lower half of frame1. At this point the column 

shift should take place towards the left and the procedure begins again.  It will stop when the column 

position of frame2 reaches the minimum overlap point. The basic process used is outlined below. The 

height and width will be the same for both frames. 

           For column = Width/2 To MinOverlap 

   For row =  (Height + Height/2) To  (Height - Height/2)  

           Perform Least Squares algorithm upon the overlap 

   Next row 

Next column              

 

Two 2D arrays; pic1[ ][ ]  and pic2[ ][ ] are passed to the function image( ) contained within  a file.  

They will contain integer values between 0 and 255 since the images are converted to greyscale. Each 

array is essentially a bitmap matrix of the two frames being stitched together.  

 

 



  

 

Figure 7: Dimensions of two overlapping images  

The values indicated in Figure 7 represent the dimensions processed within the algorithm. The values 

for rm and cm will change continually as the least squares error is determined for each position. The 

values for the number of rows - r, columns - c and the least_overlap field (representing the minimum 

overlap input by the user) are also passed as parameters. The least squares algorithm is conducted 

based on the for every changing values nr to test if the correct stitching position has been found. 

2.2.1 Testing the stitching process 

The Minimum overlap was included for two reasons: 

1. To speed up the stitching process as less positions are tested  

2. In cases where the overlap is small, the summations made by the algorithm are also small. The 

possibility therefore exists that a smaller error in one of these positions will be returned 

instead of the true overlap position. 

Along with the text file containing the top and left positions for overlapping images, a second file is 

created. This is called errorfile.txt and it contains a list of all the errors calculated for every X and Y 

value tested for the pair of overlapping images. It is used to confirm that the correct overlap position 

has in fact been obtained. Graphically viewing this error data (when capturing three grooves per 

frame), reveals that there are usually three possible overlaps to consider, Figure 8.  

 

Figure 8: Potential overlap positions (a) Case 1 (b) Case 2 (c) Case 3 

On observation, case three appears to be the correct version, but a more structured testing approach is 

adopted. A surface plot is generated from the error file containing all error values for the overlaps, at 

each X and Y position. The three potential overlaps can be seen in Figure 8. The x and y co-ordinates 

indicated above correspond to those shown in the images of Figure 9. The lowest error value (z -axis) 

can be seen in the centre surface plot. Note the protruding lower value of the central set of errors. 

According to the graph, this lowest error, in the range of 0 to 200 is to the order of 4 times lower then 

the closest match in either of the other two errors sets which begin at 800. By including a minimum 



  

overlap in the algorithm the number of positions tested can be calculated as follows:  Positions tested = 

240 * (320-minimum overlap) 
 

 

Figure 9: The lowest error value as seen on surface plot. 

2.3 Groove Tracking 

The next stage of the system deals with the tracking of a groove across the stitched images in order to 

create a waveform of sound data. As stated, the record groove is in fact the representation of the sound 

waveform. Our system allows the user to select the first image from which to begin the tracking 

process. The image focus algorithm will determine whether or not this is an appropriate frame to begin 

with.  

 

Figure 10: Groove tracking process 



  

Once the initial frame is loaded the user simply clicks on a pixel slightly above the groove they wish to 

track. The test track button performs the tracking algorithm and displays a sample of exactly which 

range of pixels will be considered. Figure 10 illustrates how this is achieved by displaying the groove 

outline in red. If the user is satisfied with this groove, and the default settings appear to trace it 

accurately, the accept groove button is chosen and a set of text files are generated containing the 

groove information. The upper and lower tracks of the groove. Two ranges of pixel values are 

considered when tracking the groove: 

 

1. Those considered to be in the range of the groove colour (White) 

2. Those considered to be in the range of the non- groove colour (Black) 

 

The default settings for groove/non-groove ranges are based on the first frame that is loaded. Every 

pixel is then compared to this range so the algorithm can make an accurate estimation of which pixels 

belong to the groove. 

 

The ranges for groove/non–groove values may also be chosen manually for better accuracy in the case 

where the defaults are unsatisfactory. This is done by sampling a pixel in a typical position on the 

groove (white) and another which is not part of the groove (black). The focus threshold value may also 

be set by the user by accepting the average contrast per pixel of the selected image as the optimum 

focus value. All other frames will be tested relative to this focus range. 

3 Sound file creation – Stage 4  
The data saved in the waveform.txt file is prepared for transfer to a .wav file.  This file contains a series 

of undulating vertical values (y-axis) along a horizontal plane (x-axis). The graphic of this file may be 

displayed in our system’s software. The minimum vertical value is calculated so that the relative offsets 

from this minimum can be manipulated such that the lowest value becomes 0 and the upper limit of the 

waveform becomes 255.  This is merely a manipulation to enable the file to be placed into a wav file. 

There are several methods of .wav file creation once the waveform has been stored in a text file. There 

are also a number of off-the-shelf packages that will create the image of any sound signal you record 

through a microphone, and allow you to modify the image for playback. Such programs could too be 

incorporated by this system to playback the image of the record groove. The simplest way to ensure the 

correct sound signal has been recorded is to test it by creating a .wav file from the data. There is a 

sampling rate applied but this would merely be for testing purposes only. Many off the shelf products 

will play such waveform once created.   

4 Conclusions 

This paper described a method for non-contact playing of vinyl records by stitching together smaller 

microscopic images of the waveform into one larger panoramic view. This enables playback of the 

waveform from the image rather than through contact with a stylus. Previous attempts did not consider 

the added simplicity involved in restricting the image to a two-dimensional greyscale format. The 

grooves of 78rpm phonographs can be seen clearly in a two-dimensional format with relatively 

inexpensive equipment.   

 

Stitching algorithms, although simpler in approach to computer vision techniques such as optical flow 

and surface orientation, will perform competitively with higher processing speeds. Serious scratches 

and even broken records may be played and enhanced by image manipulation. The laser turntable 

cannot do this and has problems with even slightly warped disks. The disadvantage of this method is in 

the timescale required to fully execute the image stitching process. This renders instant playback 

impossible since the image must first be collected. However, once the image is in fact collected, and a 

mosaic stitched together, virtual real-time playback is possible with added features of noise reduction, 

no skipping and broken segments causing no obstructions. Since all other proposed methods, apart 

from the expensive laser turntable have similar delays in image acquisition, it can be argued that the 

image collection process that is the most paramount to the systems success.  

 

 

 

 



  

The image stitching method proposed in this paper used 2D greyscale microscopic pictures rather than 

a full 3D groove construction which will obtain a large amount of redundant data. Since older 78s 

contain mono signals only, the grooves can be viewed in two dimensions. If a delay is inevitable, then 

the time required for image acquisition in such systems becomes secondary to the quality of images 

taken. 

  

Further enhancements would include ways to more accurately obtain this overall record image while 

minimizing the hazards outlined in sections 2.1.1 above, namely image drift and de-focus.  Image drift 

could be instantly eliminated by using a method of keeping the record stationary and moving the 

microscope instead over it in grid like movements through two by two sections rather than following 

the groove specifically. The fact that no specific groove is followed would mean the image drift 

problem disappears. The same stitching methods could be used to stitch grid sections. This sectioning 

of the image would also give more control and flexibility than one long groove image. The fact that the 

record is stationary would mean that de-focus is less of a problem as zero movement of the disc will 

not create an unlevelled surface (unless of course the disc is warped) and thus focal length should 

remain more or less consistent.  To make real time playback possible while the imaging is taking place 

a system of buffered images might be incorporated where there would only be one initial short delay. 

With the current system, image analysis methods to dismiss the majority of unsuccessful overlaps 

would have to be developed to speed up the process. Essentially however, it does indeed appear 

possible for this system to be used as an inexpensive way to safely transfer the information from rare, 

antique or damaged records so they can be played in analogue form. 
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