design to help people. The machine is designed to help people. GECモデル n (NLP全般に⾔えることだが)何を⽂ 法誤りとするかは分野や⽴場により⼀ 貫しないため,誤りの守備範囲はコー パスのアノテーションの定義に従う n 例えば,現在のGECでは狭義の⽂法誤 り以外にも語彙選択や語の並び替えな ど流暢性に関連する広義の誤りも対象 にしている n この辺りの話は「GECのタスク説明は なぜ難しいか」でも説明されている • 実⽤化もたくさんされている Ø Grammarly1, Ginger2 …など 1. https://app.grammarly.com/ 2. http://www.getginger.jp/
machine is designed to help people. DNNに基づく系列変換モデル(Seq2Seqモデル): Ø ⽂法的に誤った⽂から正しい⽂への機械翻訳(MT) 利点: ü パラレルデータ(誤り⽂, 訂正⽂)さえあればモデルが訓練可能 ü シンプル,かつ⾔語依存のツールが必要ない ü 全ての誤りを訂正可能 ü MTの最先端の研究成果を援⽤可能
et al. (2016); Sakaguchi et al. (2017); Schmaltz et al. (2017); Ji et al. (2017); Grundkiewicz and Junczys-Dowmunt (2018); Junczys-Dowmunt et al. (2018); Lo et al. (2018); Nadejde and Tetreault (2019) CNN Chollampatt and Ng (2018a,b); Hotate et al. (2019); Ge et al. (2019); Chollampatt et al. (2019) Transformer Zhao et al. (2019); Hotate et al. (2020); Zhao and Wang (2020); Lichtarge et al. (2020); Kaneko et al. (2020); Mita et al. (2020); Katsumata and Komachi (2020); Liu et al. (2021); Yuan and Bryant (2021); Rothe et al. (2021); Sun et al. (2021) GAN Raheja and Alikaniotis (2020); Parnow et al. (2021) 系列ラベリング Awasthi et al. (2019); Malmi et al. (2019); Omelianchuk et al. (2020); Stahlberg and Kumar (2020); Parnow et al. (2021) 教師なし/半教師あり Bryant (2018); Stahlberg et a. (2019); Grundkiewicz and Junczys-Dowmunt (2019); Náplava and Straka (2019); Alikaniotis and Raheja (2019); Flachs et al. (2021); Yasunaga et al. (2021
and Yuan (2014); Awasthi et al. (2019); Choe et al. (2019); Grundkiewicz and Junczys-Dowmunt (2019); Kiyono et al. (2019); Qiu et al. (2019); Xu et al. (2019); Zhao et al. (2019); Takahashi et al. (2020); White and Rozovskaya (2020); Yin et al. (2020); Flachs et al. (2021); Koyama et al. (2021) SMT 逆翻訳 Rei et al. (2017) NMT 逆翻訳 Kasewa et al.(2018); Xie et al. (2018); Htut and Tetreault (2019); Kiyono et al. (2019); Koyama et al. (2021) NMT 折り返し翻訳 Lichtarge et al. (2019) 敵対的⽣成 Wang and Zheng (2020); Yin et al. (2020)
et al., 2016; Napoles et al., 2017] Minimal edit:From this scope, social media has shortened our distance. Fluency edit:From this perspective, social media has made the world smaller. Original :From this scope, social media has shorten our distance. Sakaguchi et al. (2016)の提唱: • GECのゴールを「⽂法的に正しい⽂章の作成」から「⺟語話者の流暢さをもつ⽂ 章の作成」へと根本的にシフトすべき Ø Napoles et al. (2017)によりFluency editに対応した評価データ “JFLEG”が提供 され,以後GECの標準的なベンチマークとなった
get certain disease because of genetic changes . People get certain diseases because of genetic changes . People get certain diseases because of genetic mutations . 参照あり評価: 原⽂, システム出⼒, 参照(正解)⽂の3つ組を使って評価 代表的な参照あり評価⼿法: • M2 Scorer [Dahlmeier and Ng, 2012] • GLEU [Napoles et al. 2015, Napoles et al. 2016] • ERRANT [Bryant et al. 2017]
レーベンシュタインを⽤いて原⽂とシステム出⼒のアラインメントを取る際,参 照⽂における編集と最も⻑く⼀致するようなアラインメントを動的に選択 2. True positive (TP), False Positive (FP), False Negative (FN)をカウントすること で適合率(#TP/(#TP+#FP)), 再現率 (#TP/(#TP+#FN)), F値を算出 • Pros: − ⼈間のアラインメントと直感的に合う • Cons: − 部分的なマッチが無視される システム: is eat→has eaten vs. 参照: is eat → has eaten − FPの数が不当に削減される 原⽂: He looked at the cat . vs. システム: He looks at a cat . M2: looked at the → looks at a = 1FP ⼈間: looked → looks, the → a = 2FP 適合率= 1/(1+1) = 0.5 再現率= 1/(1+1) = 0.5 I has eat meal . We have eaten meal . I have eaten meals . 原⽂ システム 参照⽂ CoNLL-2014以来, F0.5 (適合率重視) が⼀般的に⽤いられる
(2016) Grammar+Fluency+Meaning Asano et al. (2017) USim Chosen and Abend. (2018) SOME Yoshimura et al. (2020) Scribendi Score Islam and Magnani. (2021) • ⼈⼿評価スコアと⾃動評価スコアとの相関を測る「メタ評価」により,参照な し評価⼿法の多くは参照あり評価⼿法よりも⼈間との相関が⾼いことが報告さ れている Asano et al. (2017) より
We will discuss about discuss this with you. I want to discuss about discuss of the education. We discuss about discuss about our sales target. n 実際には,訂正漏れのケー スが⼤半であった n ここでは,元の訂正⽂ Yと 英⽂校正の専⾨家によるレ ビュー⽂Yʼとの編集距離を ノイズ量と近似 n ⾒かけ上数値が直感よりも ⾼く出ているのはfluency editの影響も
従来: 系列変換(⾃⼰回帰)モデルの場合 ⼊⼒⽂ : I look in forward hear from you . Iteration1 : I look in forward to hear from you . Iteration2 : I look forward to hearing from you . 予 測 予 測 系列編集(⾮⾃⼰回帰)モデルの場合 I look [NONE] forward to hearing from you . 予測 予測 予測 予測 予測 予測 予測 予測 42
Mariano. 2020. A Crash Course in Automatic Grammatical Error Correction. In Proceedings of the 28th International Conference on Computational Linguistics (COLING): Tutorial Abstracts, pages33‒38. • Wang, Yu, Yuelin Wang, Jie Liu, and Zhuo Liu. 2020. A comprehensive survey of grammar error correction. n アプローチ関連 • Yuan, Zheng and Ted Briscoe. 2016. Grammatical error correction using neural machine translation. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 380‒386. • Xie, Ziang, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y. Ng. 2016. Neural language correction with character-based attention. • Sakaguchi, Keisuke, Matt Post, and Benjamin Van Durme. 2017. Grammatical error correction with neural reinforcement learning. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 366‒372. • Schmaltz, Allen, Yoon Kim, Alexander Rush, and Stuart Shieber. 2017. Adapting sequence models for sentence correction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2807‒2813.
Truong, and Jianfeng Gao. 2017. A nested attention neural hybrid model for grammatical error correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 753‒762. • Grundkiewicz, Roman and Marcin Junczys-Dowmunt. 2018. Near human-level performance in grammatical error correction with hybrid machine translation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 284‒290. • Junczys-Dowmunt, Marcin, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield. 2018. Approaching neural grammatical error correction as a low- resource machine translation task. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 595‒606. • Lo, Yu-Chun, Jhih-Jie Chen, Chingyu Yang, and Jason Chang. 2018. Cool English: a grammatical error correction system based on large learner corpora. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 82‒85. • Nadejde, Maria and Joel Tetreault. 2019. Personalizing grammatical error correction: Adaptation to proficiency level and L1. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 27‒33.
convolutional encoder-decoder neural network for grammatical error correction. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), pages 5755‒5762. • Chollampatt, Shamil and Hwee Tou Ng. 2018b. Neural quality estimation of grammatical error correction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2528‒2539. • Hotate, Kengo, Masahiro Kaneko, Satoru Katsumata, and Mamoru Komachi. 2019. Controlling grammatical error correction using word edit rate. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 149‒154. • Ge, Tao, Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. Automatic grammatical error correction for sequence-to-sequence text generation: An empirical study. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6059‒6064. • Chollampatt, Shamil, Weiqi Wang, and Hwee Tou Ng. 2019. Cross-sentence grammatical error correction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 435‒445. • Zhao, Wei, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. 2019. Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 156‒165.
diverse corrections with local beam search for grammatical error correction. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2132‒2137. • Zhao, Zewei and Houfeng Wang. 2020. Maskgec: Improving neural grammatical error correction via dynamic masking. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):1226‒1233. • Lichtarge, Jared, Chris Alberti, and Shankar Kumar. 2020. Data weighted training strategies for grammatical error correction. Transactions of the Association for Computational Linguistics, 8:634‒646. • Kaneko, Masahiro, Masato Mita, Shun Kiyono, Jun Suzuki, and Kentaro Inui. 2020. Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4248‒4254. • Mita, Masato, Shun Kiyono, Masahiro Kaneko, Jun Suzuki, and Kentaro Inui. 2020. A self-refinement strategy for noise reduction in grammatical error correction. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 267‒280. • Katsumata, Satoru and Mamoru Komachi. 2020. Stronger baselines for grammatical error correction using a pretrained encoder-decoder model. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 827‒832.
Tat-Seng Chua. 2021. Neural quality estimation with multiple hypotheses for grammatical error correction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5441‒5452. • Yuan, Zheng and Christopher Bryant. 2021. Document-level grammatical error correction. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 75‒84. • Rothe, Sascha, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. 2021. A simple recipe for multilingual grammatical error correction. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 702‒707. • Sun, Xin, Tao Ge, Furu Wei, and Houfeng Wang. 2021. Instantaneous grammatical error correction with shallow aggressive decoding. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5937‒5947. • Raheja, Vipul and Dimitris Alikaniotis. 2020. Adversarial Grammatical Error Correction. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3075‒3087. • Parnow, Kevin, Zuchao Li, and Hai Zhao. 2021. Grammatical error correction as GAN-like sequence labeling. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3284‒3290.
Vihari Piratla. 2019. Parallel iterative edit models for local sequence transduction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4260‒4270. • Malmi, Eric, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn. 2019. Encode, tag, realize: High-precision text editing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP), pages 5054‒5065. • Omelianchuk, Kostiantyn, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr Skurzhanskyi. 2020. GECToR ‒ grammatical error correction: Tag, not rewrite. In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 163‒170. • Stahlberg, Felix and Shankar Kumar. 2020. Seq2Edits: Sequence transduction using span-level edit operations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5147‒5159. • Parnow, Kevin, Zuchao Li, and Hai Zhao. 2021. Grammatical error correction as GAN-like sequence labeling. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3284‒3290.
Error Correction without Annotated Training Data. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 247‒253. • Stahlberg, Felix, Christopher Bryant, and Bill Byrne. 2019. Neural Grammatical Error Correction with Finite State Transducers. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4033‒4039. • Grundkiewicz, Roman and Marcin Junczys-Dowmunt. 2019. Minimally-augmented grammatical error correction. In Proceedings of the 5th Workshop on Noisy User- generated Text (W-NUT 2019), pages 357‒363. • Náplava, Jakub and Milan Straka. 2019. Grammatical error correction in low- resource scenarios. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 346‒356. • Alikaniotis, Dimitris and Vipul Raheja. 2019. The unreasonable effectiveness of transformer language models in grammatical error correction. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 127‒133. • Flachs, Simon, Felix Stahlberg, and Shankar Kumar. 2021. Data strategies for low- resource grammatical error correction. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 117‒122.
Language models for unsupervised grammatical error correction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7752‒7763. • Junczys-Dowmunt, Marcin and Roman Grundkiewicz. 2014. The amu system in the conll-2014 shared task: Grammatical error correction by data-intensive and feature-rich statistical machine translation. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 25‒33. n 擬似データ⽣成⼿法関連 • Foster, Jennifer and Oistein Andersen. 2009. GenERRate: Generating errors for use in grammatical error detection. In Proceedings of the Fourth Workshop on Innovative Use of NLP for Building Educational Applications, pages 82‒90. • Felice, Mariano and Zheng Yuan. 2014. Generating artificial errors for grammatical error correction. In Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 116‒126. • Choe, Yo Joong, Jiyeon Ham, Kyubyong Park, and Yeoil Yoon. 2019. A neural grammatical error correction system built on better pre-training and sequential transfer learning. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 213‒227.
Kentaro Inui. 2019. An empirical study of incorporating pseudo data into grammatical error correction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1236‒1242. • Qiu, Mengyang, Xuejiao Chen, Maggie Liu, Krishna Parvathala, Apurva Patil, and Jungyeul Park. 2019. Improving precision of grammatical error correction with a cheat sheet. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 240‒245. • Xu, Shuyao, Jiehao Zhang, Jin Chen, and Long Qin. 2019. Erroneous data generation for grammatical error correction. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 149‒158. • Takahashi, Yujin, Satoru Katsumata, and Mamoru Komachi. 2020. Grammatical error correction using pseudo learner corpus considering learnerʼs error tendency. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 27‒32. • White, Max and Alla Rozovskaya. 2020. A comparative study of synthetic data generation methods for grammatical error correction. In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 198‒208.
2020. On the robustness of language encoders against grammatical errors. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3386‒ 3403. • Koyama, Shota and Takamura, Hiroya and Okazaki, Naoaki. 2021. Various Errors Improve Neural Grammatical Error Correction. In Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation. • Rei, Marek, Mariano Felice, Zheng Yuan, and Ted Briscoe. 2017. Artificial error generation with machine translation and syntactic patterns. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 287‒292. • Kasewa, Sudhanshu, Pontus Stenetorp, and Sebastian Riedel. 2018. Wronging a right: Generating better errors to improve grammatical error detection. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4977‒4983. • Xie, Ziang, Guillaume Genthial, Stanley Xie, Andrew Ng, and Dan Jurafsky. 2018. Noising and denoising natural language: Diverse backtranslation for grammar correction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 619‒628. • Htut, Phu Mon and Joel Tetreault. 2019. The unbearable weight of generating artificial errors for grammatical error correction. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 478‒483.
2021. Comparison of grammatical error correction using back-translation models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 126‒135. • Lichtarge, Jared, Chris Alberti, Shankar Kumar, Noam Shazeer, Niki Parmar, and Simon Tong. 2019. Corpora generation for grammatical error correction. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3291‒3301. • Wang, Lihao and Xiaoqing Zheng. 2020. Improving grammatical error correction models with purpose-built adversarial examples. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2858‒2869. n データセット関連 • Bryant, Christopher and Hwee Tou Ng. 2015. How far are we from fully automatic high quality grammatical error correction? In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 697‒707. • Ge, Tao, Furu Wei, and Ming Zhou. 2018b. Reaching human-level performance in automatic grammatical error correction: An empirical study.
Tetreault, Joel. 2016. Reassessing the Goals of Grammatical Error Correction: Fluency Instead of Grammaticality. Transactions of the Association for Computational Linguistics, Vol 4, pages 169‒182. • Napoles, Courtney, Keisuke Sakaguchi, and Joel Tetreault. 2017. JFLEG: a fluency corpus and benchmark for grammatical error correction. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 229‒234. • Mita, Masato and Mizumoto, Tomoya and Kaneko, Masahiro and Nagata, Ryo and Inui, Kentaro. 2019. Cross-Corpora Evaluation and Analysis of Grammatical Error Correction Models --- Is Single-Corpus Evaluation Enough? Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1, pages 1309‒1314. • Bryant, Christopher, Mariano Felice, Øistein E. Andersen, and Ted Briscoe. 2019. The BEA-2019 shared task on grammatical error correction. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 52‒75. • Sylviane Granger. 1998. The computer learner corpus: A versatile new source of data for SLA research. In Sylviane Granger, editor, Learner English on Computer, pages 3‒18. • 三⽥雅⼈, ⽔本智也, ⾦⼦正弘, 永⽥亮, 乾健太郎. 2021. ⽂法誤り訂正モデルの横断評 価. ⾃然⾔語処理, 28 巻 1 号 p. 160‒182.
2020. Massive Exploration of Pseudo Data for Grammatical Error Correction. In IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2134-2145. • Hagiwara, Masato and Masato Mita. 2020. GitHub typo corpus: A large-scale multilingual dataset of misspellings and grammatical errors. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 6761‒6768. • Zaghouani, Wajdi, Behrang Mohit, Nizar Habash, Ossama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014. Large scale Arabic error annotation: Guidelines and framework. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LRECʼ14). • Alfaifi, Abdullah and Atwell, Eric. 2014. An evaluation of the Arabic error tagset v2. In Proceedings of the AACL, 26‒28. • Lee, Lung-Hao, Yuen-Hsien Tseng, and Li-Ping Chang. 2018. Building a TOCFL learner corpus for Chinese grammatical error diagnosis. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). • Boyd, Adriane. 2018. Using Wikipedia edits in low resource grammatical error correction. In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 79‒84.
Mamoru Komachi. 2020. Construction of an evaluation corpus for grammatical error correction for learners of Japanese as a second language. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 204‒211. • Rozovskaya, Alla and Dan Roth. 2019. Grammar error correction in morphologically rich languages: The case of Russian. Transactions of the Association for Computational Linguistics, 7:1‒17. • Trinh, Viet Anh and Alla Rozovskaya. 2021. New dataset and strong baselines for the grammatical error correction of Russian. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4103‒4111. • Davidson, Sam, Aaron Yamada, Paloma Fernandez Mira, Agustina Carando, Claudia H. Sanchez Gutierrez, and Kenji Sagae. 2020. Developing NLP tools with a new corpus of learner Spanish. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 7238‒7243. • Oleksiy Syvokon and Olena Nahorna. 2021. UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language. • Teodor-Mihai. Cotet, Stefan. Ruseti and Mihai. 2020. Dascalu, Neural Grammatical Error Correction for Romanian. IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 625-631. • Sonawane, Ankur and Vishwakarma, Sujeet Kumar and Srivastava, Bhavana and Kumar Singh, Anil. 2020. Generating Inflectional Errors for Grammatical Error Correction in Hindi. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: Student Research Workshop, pages 165‒171.
2013. Building a large annotated corpus of learner English: The NUS corpus of learner english. In Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 22‒31. • Yannakoudakis, Helen, Ted Briscoe, and Ben Medlock. 2011. A new dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 180‒189. • Mizumoto, Tomoya, Yuta Hayashibe, Mamoru Komachi, Masaaki Nagata, and Yuji Matsumoto. 2012. The effect of learner corpus size in grammatical error correction of ESL writings. In Proceedings of COLING 2012: Posters, pages 863‒ 872. • Tajiri, Toshikazu, Mamoru Komachi, and Yuji Matsumoto. 2012. Tense and aspect error correction for ESL learners using global context. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 198‒202. • Ng, Hwee Tou, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-2013 shared task on grammatical error correction. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 1‒12. • Ng, Hwee Tou, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and Christopher Bryant. 2014. The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 1‒14.
Better evaluation for grammatical error correction. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 568‒572. • Napoles, Courtney, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground truth for grammatical error correction metrics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 588‒593. • Napoles, Courtney, Keisuke Sakaguchi, Matt Post, and Joel R. Tetreault. 2016. GLEU without tuning. CoRR, abs/1605.02592. • Bryant, Christopher, Mariano Felice, and Ted Briscoe. 2017. Automatic annotation and evaluation of error types for grammatical error correction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 793‒805. • Napoles, Courtney, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground truth for grammatical error correction metrics. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 588‒593.
Reference-based Metrics can be Replaced with Reference-less Metrics in Evaluating Grammatical Error Correction Systems. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 343‒348. • Choshen, Leshem and Omri Abend. 2018b. Reference-less measure of faithfulness for grammatical error correction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 124‒129. • Yoshimura, Ryoma, Masahiro Kaneko, Tomoyuki Kajiwara, and Mamoru Komachi. 2020. SOME: Reference-less sub-metrics optimized for manual evaluations of grammatical error correction. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6516‒6522. • Islam, Md Asadul and Magnani, Enrico. 2021. Is this the end of the gold standard? A straightforward reference-less grammatical error correction metric. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3009̶3015. n その他 • Michihiro Yasunaga and Percy Liang. 2021. Break-It- Fix-It: Unsupervised Learning for Program Repair. In International Conference on Machine Learning (ICML).