
Hypertext '87

TR88-013

March 1988

Hypertext Planning Committee

John B. Smith, UNC
Frank Halasz, MCC

Nicole Yankelovich, Brown University
Mayer Schwartz, Tektronix

Stephen F. Weiss, UNC

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

tJI ,

Copyright 1987 Hypertext Planning Committee.
A TextLab Report

All rights reserved.

Hyper TEXT 8 7

SYSTEMS

HYPERTEXT '87

PAPERS

NOVEMBER 13-15, 1987

THE UNVERSITY OF NORTH CAROLINA

CHAPEL HILL, NORTH CAROLINA

co-sponsored by ACM, CS of the IEEE, and UNC Department of Computer Science

With support from ONR, MCC, and NSF

In cooperation with ACM SIGCHI

Copyright 1987 by the Planning Committee for Hypertext '87.

Copying for scholarly purposes is permitted provided that the copies are not
made or distributed for direct commercial advantage.

These papers may be abstracted with credit to the source.

p A P E R S

foREWORD

All for One and One for All ... v
Theodor H. Nelson, Project Xanadu

SessioN lA: SvstEMs I

KMS: A Distributed Hypermedia System for Managing Knowledge in Organizations ... 1
Robert Akscyn, Donald McCracken and Elise Yoder, Knowledge Systems Incorporated

HAM: A General- Purpose Hypertext Abstract Machine ... 21
Brad campbell and Joseph M. Goodman, Tektronix, Incorporated

Turning Ideas into Products: The Guide System ... 33
P .J. Brown, Office Workstations Umited and The University of canterbury

S.ESSION 18: APPLICATI.ONS IN THE HUMANITIES AND MEDICINE

Hypertext and creative Writing .. 41
Jay David Bolter and Michael Joyce, University of North Carolina at Chapel Hill

From the Old to the New: lntergratlng Hypertext Into Traditional Scholarship .. 51
Gregory Crane, Harvard University

Searching for Information In a Hypertext Medical Handbook ... 57
Mark E. Frisse, M.D., Washington University School of Medicine

Hypertext and Pluralism: From Lineal to Non-lineal Thinking ... 67
William 0. Beeman, Kenneth T. Anderson, Gail Bader, James Larkin, Anne P. McClard, Patrick McQuillan and
Mark Shields, Brown University

SESSION 2A: EXPERIENCES AND WRITING

Hypertext Habitats: Experiences of Writers In NoteCards ... 89
Randall H. Trigg and Peggy M. Irish, Xerox Palo Alto Research Center

Comprehending Non-Linear Text: The Role of Discourse Cues and Reading Strategies 109
Davida Charney, The Pennsylvania State University

The Notes Program: A Hypertext Application for Writing from Source Texts ... 121
Christine Neuwirth, David Kaufer, Rick Chimera and Terilyn Gillespie, Carnegie Mellon University

November 1987 Hypertext '87 Papers

SESSION 28: TRANSLATING TEXT INTO HYPERTEXT

Hypenext and the New Oxford English Dictionary .. 143
Darrell R. Raymond and Frank Wm. Tompa, University of Waterloo

Content Oriented Relations Between Text Units- A Structural Model for Hypenexts 155
Rainer Hammwilhner and Ulrich Thiel, University of Constance

SuperBook: An Automauc Tool for Information Exploration- Hypenext? .. 175
Joel R. Remde, Louis M. Gomez and Thomas K. Landauer, Bell Communications Research

INVITED PANEL ON SYSTEMS

User Interface Design for the Hypenles Electronic Encyclopedia .. 189
Ben Schneiderman, The University of Maryland

A Hypenext Writing Environment and Its Cognitive Basts ... 195
John B. Smith, Stephen F. Weiss and Gordon J. Ferguson, University of North Carolina at Chapel Hill

SESSION 3A: ARGUMENTATION

Constraint- Based Hypertext for Argumentatlon .. 215
Paul Smolensky, Brigham Bell, Barbara Fox, Roger King and Clayton Lewis, University of Colorado at Boulder

gtBIS: A Hypenext Tool for Team Design Deliberation .. 247
Jeff Conklin and Michael L. Begeman, Microelectronics and Computer Technology Corporation (MCC)

Exploring Representation Problems Using Hypenext ... 253
Catherine C. Marshall, Xerox Special Information Systems

SESSION 38: SYSTEMS II

Thoth·ll: Hypenext with Explicit semantics .. 269
Georger H. Collier, Bell CommunicaUons Research

The Architecture of Static Hypenexts ... 291
Tim Oren, Apple Computer, Incorporated

Document Examiner: Delivery Interface for Hype next Documents .. 307
Janet H. Walker, Symbolics Incorporated

ii Hypertext '87 Papers November 1987

SESSION 4A: Issues

The Hype In Hypertext: A Critique ... 325
Jet Raskin, Information Appliance

Relatlonally Encoded Unks and the Rhetoric of Hypertext .. 331
George P. Landow, Brown University

Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia Systems •••••••••.•.•..•••••••••.••• 345
Frank G. Halasz, Microelectonics and CompuUng Technology Corporation (MCC)

•oeveloping and Distributing Hypertext Tools: Legallmputs and Parameters .. 367
Henry W. Jones, I II, Esq., Morris, Manning and Martin

SESSION 48: SoFTWARE

Abstraction Mechanisms In Hypertext .. 375
Pankaj K. Garg, University of Southern California

Manipulating Source Code In DynamlcDeslgn ... 397
James Bigelow and Victor Riley, Tektronix, Incorporated

On Designing Intelligent Hypertext Systems for Information Management In Software Engineering 409
Pankaj K. Garg and Walt Scacchi, University of Southern California

A u T H 0 R ' s I N D E X .. 433

•paper not presented.

November 1987 Hypertext '87 Papers iii

.
iv Hypertext '87 Papers November 1987

November 1987

FOREWORD

All for One and One for All

Theodor H. Nelson
Invited Talk

Hypertext, or non-sequential writing with free user movement along links,
is a simple and obvious idea. It is merely the electronification of literary
connections as we already know them.

It took a great length of time to interest people in hypertext (1,2). However,
researchers everywhere are becoming interested in the idea, and indeed we
now see a heartening proliferation of hypertext systems in both prototype
and commercial versions (3).

However, we stand in danger of recapitulating the ongoing disaster of the
computer world: the incompatibilities, not just of equipment and storage
media, but of software and data formats. These have made computers a
terrible mess for users everywhere (4).

Hypertextoffersvastnewpossibilitiesofaccessandclarityofinformationfor
everyone. If the availability of hypertext is to be conditional and
incompatible across systems, this great hope will be dashed.

All for One:
Everything for Any User

Everything should be available to everyone. Any user should be able to
follow origins and links of material across boundaries of documents, servers
and networks; and across boundaries of individual implementations.

One for All:
A Single All-Encompassing Space
for All Documents

There should be a unified environment available to everyone, providing
access to this whole space.

This also means some single unifying mechanism or approach to support all
different types of links, all different types of hypertext, and the appropriate
labelling of typed data of any kind as it is served out to users.

Hypertext '87 Papers v

vi

Project Xanadu has developed a unique software mechanism to organize
storage and network delivery of hypermedia of all types. This consists of a
uniform servicing mechanism for documents, links, successor versions and
material virtually copied from elsewhere. It maintains virtual documents
under constant editorial change, and holds links in place on spans of bytes
regardless of such changes. The Xanadu• storage and delivery program may
be understood as a readdressing system for managing very large bodies of
permanently stored material (whether on erasable disk, CD-ROM, WORM
drives or other media).

Xanadu addressing methods may be used by anyone, and its address space
may include nodes anywhere, owned and controlled by anyone, with
appropriate assignment of compatible addresses. Thus we freely offer this
addressing scheme to all users, with no arrangements necessary.

All for One:
The Possibility of Uniform Service

This offers the possibility of uniform service to any client from all active
servers of permanently-stored materials, under a single service discipline,
with a single connection to a cooperative port.

1 for All:
The Meaning of the Leading Tumbler "1"

The Xanadu addressing scheme (invented by MarkS. Miller, developed for
thispurposebyMarkS.MillerandRogerGregory,anddetailedin(2)and(5))
employs multipart tumblers for the addressing of servers, accounts,
documents, versions and elements. A tumbler is a vector beginning with 1
and having up to four fields. Each field (node, user, document, element) is
a succession of integers separated by points. Subnodes,subusers,
subdocuments are referenced by additional integers within a field. Fields are
separated by zero integer fields, which have arithmetic significance.

The leading digit "1" in tumbler addressing space has a special function: it
represents the entire universe of documents, or docuverse. Its use permits
a uniform arithmetic across the docuverse, and uniform reference to spans
of materials. Metaphysically, the leading 1 refers to a mythical Or-document
from whichall others are descended.

Hypertext '87 Papers November 1987

November 1987

All for 1:
The Meaning of the 1-1 Tumbler Span

Tumbler addressing permits us to refer not just to individual servers,
accounts, documents and elements, but also to spans ranging from one
byteorlinkuptotheentiredocuverse(notlimitedjusttoonedocument).
Spans are referenced by tumbler arithmetic (detailed in (2) and (5)),
designating a starting address tumbler and a difference tumbler, which
specifies a span of the whole tumbler line.

Here again the number 1 has a mystical significance. The starting
address of "1," and a tumbler difference of 1, stand for the entire
docuverse. This furnishes a parsimonious way of referring to
everything, especially in searches- when seeking links to anything
from a given document, or from anything to a given document.

Such unity is often desirable, and here offers us the possibility of a single
free world open to all, both as suppliers and as clients in tomorrow's
hypertext world of knowledge and freedom. ·

BIBLIOGRAPHY

1. Theodor H. Nelson, "The Hypertext." Proceedings International
Documentation Federation, 1965.

2. Theodor H. Nelson, Literary Machines, edition 87.1. Project
Xanadu, 1987.

3. Jeff Conklin, "Hypertext: An Introduction and Survey," Computer,
September 1987, 17-41.

4. Theodor H. Nelson, Computer Lib, second edition; Tempus Books
(Microsoft Press), 1987. Note pages 20-23, "A Field of Rubble."

5. Theodor H. Nelson, "Immense Storage Management." Byte,
January 1988 (forthcoming).

• "Xanadu" is a trade and service mark for hypertext and computer
products and services offered by Project Xanadu, and licensed to
XOC,Inc .

.. However, the Xanadu program for maintaining these connections
and inclusions through editorial operations is still proprietary.

Hypertext '87 Papers vii

viii Hypertext '87 Papers November 1987

Systems I

KMS: A Distributed Hypermedia
System for Managing Knowledge
In Organizations
Robert Akscyn, Donald McCracken, Elise Yoder

Knowledge Systems Incorporated
4750 Old William Penn Hwy, Murrysville, PA 15668

ABSTRACT

KMS is a commercial hypermedia system developed by Knowledge Systems for networks of
heterogeneous workstations. It is designed to support organization-wide collaboration for a broad
range of applications, such as electronic publishing, software engineering, project management,
computer-aided design and on-line documentation. KMS is a successor to the ZOO system
developed at Carnegie Mellon University from 1972 to 1985.

A KMS database consists of screen-sized WYSIWYG workspaces called frames that contain text,
graphics and image items. Single items in frames can be linked to other frames. They may also be
used to invoke programs. The database can be distributed across an indefinite number of file servers
and be as large as available disk space permits. Independently developed KMS databases can be
linked together.

The KMS user interface uses an extreme form of direct manipulation. A single browser/editor is
used to traverse the database and manipulate its contents. Over 85% of the user's interaction is
direct--a single point-and-click designates both object and operation. Running on Sun and Apollo
workstations, KMS accesses and displays frames in less than one second, on average.

This paper describes KMS and how it addresses a number of hypermedia design issues.

INTRODUCTION

For the past six years, we have been developing a commercial hypermedia system (KMS) based on
our previous research with the ZOG system at Carnegie Mellon University. This paper describes
KMS and how it addresses a number of hypermedia design issues, particularly issues concerning
what data model to use. Section I provides some historical background on ZOG and KMS. Section
2 gives an introductory description of KMS. Section 3 describes some hypermedia design issues and
how KMS addresses them. Section 4 concludes by reiterating the importance of the KMS data
model--how it permeates the overall design of the system.

November 1987 Hypertext '87 Papers

1. BACKGROUND

We have been developing hypermedia systems for over a decade, first at Carnegie Mellon U Diversity
with the ZOG Project, and now at Knowledge Systems with the commercial development of our
Knowledge Management System (KMS).

We have been zealous users o{ hypermedia. While developing ZOG and KMS, we used them
extensively for our work--logging over 10,000 person-hours as users, and creating over 50,000
frames (nodes). Throughout this period we have applied what we have learned to iterate the design
of these systems, creating scores of intermediate versions.

Early ZOG efforts at CMU. Work on ZOG began at CMU in 1972. What we now call ZOG-1 was
developed for a summer workshop for researchers in cognitive science. It allowed the participants to
easily interact with one another's simulation programs by providing a uniform menu-selection
interface. After the workshop, ZOG-1 was shelved because the technology used was inadequate (300
baud hard-copy terminals!). Work on ZOG was rekindled in 1975, after Allen Newell and George
Robenson observed the PROMIS system at the University of Vermont. PRO MIS was a menu system
based on rapid-response touch-screen terminals, applied to the task of hospital management
[Schu79]. Newell and Robenson were struck by the qualitative difference of the rapid-response
PROMIS interface over traditional human-computer interfaces, and began an ONR-sponsored
research project to study the general characteristics of large, rapid-response, menu-selection systems.
From 1975 to 1980, the ZOG group developed a series of ZOG versions for PDP-lOs, Vaxes, and
even for an experimental multi-processor machine, C.mmp [Robe81b].

ZOG on the USS CARL VINSON. By 1980 we felt ZOG was sufficiently mature to be tested in
the real worJd. So we embarked on a major ZOG application project7-to build a computer-assisted
management system for the Navy's newest nuclear-powered aircraft carrier, the USS CARL
VINSON. This was a joint project between the ZOG Group at CMU and the officers of the CARL
VINSON. The development phase of the project ended in March, 1983, when the CARL VINSON
left on her first deployment with a distributed ZOG system running on a network of 28 PERQ
worlcstations. ZOG supported four applications:

• On-line policy manual (Ship's Organization and Regnlation Manual)

• Interactive task managment system (for analyzing and tracking complex tasks)

• On-line maintenance manual with interface to videodisk (for weapons elevators)

• Interface to the AirPlan expert system (developed at CMU by McDermott, et.al.)

We continued to work with the crew of the CARL VINSON until the end of the ZOG project in
December 1984. The project and some of the lessons we learned are described in [Newe81],
[Aksc84b] and [Newe85].

Knowledge Systems and KMS. In 1981, at the request of Westinghouse, we formed a company
(now called Knowledge Systems) to develop a commercial version of ZOG. Westinghouse was
interested in applying ZOG technology to the problem of providing operators of nuclear power plants
access to emergency operating procedures. This initial work led to our first commercial version of
ZOG (called KMS) in 1983. Since then we have worked with a number of other organizations to
apply KMS to various large-scale knowledge management tasks.

2 Hypertext '87 Papers November 1987

Applications we have explored. We have found ZOG and KMS to be useful in a surprising number
of applications over the years. At Knowledge Systems we use KMS for almost everything we do
with computers. Below, we list the applications we have explored. More information about these
applications can be found in [Aksc84a], [McCr84], and [Newe81].

• Electronic publishing • Group presentations via large screen projectors
• On-line technical manuals • Financial modelling
• On-line instruction manuals • User interface to videodisk-based materials
• On-line help for other software • User interface to expert systems
• Project management • Software engineering
• Issue analysis • Computer-assisted foreign language translation
• On-line policy manuals • Operating system shell

2. INTRODUCTION TO KMS

Our primary design goal for KMS is to create a general-purpose software environment that helps an
organization manage its knowledge. · We are concerned not only with the productivity of the
individual, but also the productivity of groups--from small workgroups up to an entire organization.
We are especially concerned about the problem of building and maintaining large databases, since
this activity is often the principal bottleneck in many uses of computers.

We are shaping KMS to exploit what we believe will be the dominant architecture for organizational
computing environments of the 1990's: wide-area networks of large-screen, diskless workstations.
We believe networked workstations offer quantum leaps in productivity over what is possible with
today' s personal computers.

In this section, we give a brief overview of the two major components of KMS--its data model (how
knowledge is represented in KMS), and its user interface. Additional details about KMS are woven
into the following section on hypermedia design issues, where we describe how ·KMS addresses
particular design issues.

KMS data model

A KMS database consists of a set of interlinked, screen-sized workspaces. These workspaces, called
frames, may contain any arrangement of text, graphics, and image items. Each individual text item
within a frame can be linked to any other frame. As with ZOG, text items may also activate
programs. These programs may range from atomic KMS operations to lengthy KMS animations
(written in the KMS Action Language}, as well as conventional programs that normally run from the
operating system.

November 1987 Hypertext '87 Papers 3

Frame format. Strong conventions have evolved for the fonnat of flames. These conventions are
illustrated by the example flame in Figure I.

Frame
title

Tree
items

-

Command
items

KMS: A Distributed··-· HypertextConfl

For the past six years, we have been developing a commercial
hypermedia system (KMS) based on our previous research with
the ZOO system at Carnegie Mellon University. This paper
desaibes KMS and how it addresses a nwnber of hypermedia
design issues ...

o I. Background

o 2 Introduction to KMS
o 3. Hypermedia Design Issues

o 4. Conclusion
o Acknowledgements

o References
o @TitlePage

o @Notes

@Draft7

Save Exit Rest Prev Next Home Goto Info Oisp Linear Print ..

Figure 1: Example KMS frame

~ Framename

Frame body

Special items

Every frame has a unique name. This frame name consists of two parts: an alphabetic part and a
numerical part. The alphabetic part is the name of the frameset of which the frame is a member. (A
frameset is the set of flames related to a specific topic as defined by the user, such as an individual
document, software program, or project Users are free to create a new frameset whenever they
create a new flame.) The numerical part of the frame name is provided automatically. The flame
name in the example above is "HypertextConfl".

The frame title is located in the upper left corner of the frame. It provides a short description of the
knowledge contained in the frame. The frame title in the example is "KMS: A Distributed ... ".

Next comes what we call the frame body. For upper-level frames in a hierarchy, the flame body is
usually a short paragraph expanding on the topic described by the frame title. Lower-level frames
usually contain more text, graphics, and images.

Below the frame body are text items called tree items, which are linked to lower-level frames. When
a link is present, an item is displayed with a small circle to its left. The tree items in the example are:

4 Hypertext '87 Papers November 1987

o 1. Background
o 2. Introduction to KMS

o 3. Hypermedia Design Issues
o 4. Conclusion
o Acknowledgements

o References

On the lower right side of the frame are the special items, which begin with the character "@".
Special items are used for miscellaneous purposes such as notes, comments, and document
formatting keywords. As a result, special items have the connotation of being meta-level items.
Special items are linked to other frames where appropriate. The special items in the example are:

o @TitlePage

o @Notes

@Draft7

At the bottom of the KMS window (not actually part of the frame) is a customizable command menu
containing command items. The default menu shown here contains 19 items. These items are used to
invoke programs, from simple KMS operations to complex external programs. Invoking programs is
discussed further in the following section on the "KMS User Interface."

Linked frames. KMS permits a frame to have an unlimited number of linked items, each of which
may be linked to any frame (including itself). This flexibility permits KMS databases to have any
structure the users desire, even a 'bowl of spaghetti' structure. In practice, however, KMS databases
usually have a hierarchical backbone. This backbone is embellished with meta-level constructs in the
form of special items such as user comments, formatting instructions, and cross-reference links. The
use Of hierarchy as the principal organizing paradigm is a strong factor in helping KMS users remain
orieilted.

Figure 2 illustrates a fragment of a KMS database. In this example we show part of·the hierarchy of
frames representing this paper.

November 1987 Hypertext '87 Papers 5

KMS: A Dilltriblloted HypermediaSyitem-
For the p•t lix ~ wo ha\'e been developins a WIIllllef-

c:i-' hypcimediltflteln (KMS) hued on OU£ pmiout
~wilh de ZOO t)'IIOII111CR"DeJie Mellon UDi~Jet-
li.ty. 'I'hilp~perde.tcftbea KMSmihowitaddmlela
number of hJpetmldla delip!. lttueL ••

o I.Bu.kpond

oZ.Jntro4octioniOKMS

o 3.Hypermodiadtlli.pn.-

;. 4.Collcluli.OD.

Aclal.~leda-tt 0 @litieplp

..,_ o @Nota
@o..tt 7

:... ' :... Savo Exit Ratt Ptev Next HOI!Ill Ooto Info DiJp Umar M,

' " ' -
Backp'ound ,_, Iak'odudlon lo KMS ,._, llyperm.edJa dalp IJI:ua -..;;irl8 Co!ldUiiloll ,_,
We hive been. developiDJ hypmnedia I)'JUIJ for II'Ul' I
dec:ade,. fnt at c.tDegieMeDon UDiYonity with lho ZOO
Pro,je<:t, and 11~ at Knowled&ll SfllatPII wi.lh U....

Our priDwy &sip pal for KMS it 10 aNte • aelleQI-
pwpoae llitwan:l envifomncnt lhat help1an orpoi.zmi.OD.
III.MO.Mpiltlmowledp. We.., ~IKI'iOlllywi.lh

In thiJ IKtion wo eiWDiDB a tet of ia111B1 for lhe deal go of
hJpenDedia ~}'Stem~. SoUIII (I a- i~S~~e~~ have bilen
diM::IIIIed iD ConkHD'I flllllm_,.- of lie ~field._

If lfml'll it ODD ce:ntt.Jtfwrul to Ollf upaience, it it IJw
fundamental importance of aayatem.'• 11m. model Qu
experiellce with zoo and KM:S hQ convinced ~ that a.
data model U.Dderlyina an iD~ra:li""- l)'llem 1trongly
dDI!!rmiDea the Jll.tJ.mj of ita IUU iDl=face. We believe
thiJ beca111e we have -~~tie fOIIIlctiYe. illfloence of

o I. Early ~ffortl at OW
Ue podoetivity of the illl.i'lidUIL

o 1. Oat. model 1-

o 2. ZOO 011 the USS CARL VINSON r- o !. IICMS data model
o 2. Utednttlface ilmDII 1M KMS 11m. model 011 an otha: upeclt of KMS.

o 3. Knowled£1l S)'IIDmi and KMS
o 2. KMS _. iDI&Ifa

. o 3. AlllhoJina i-

o "'· Applicati0111 - hii.WJ QJ~i<ml o 4. Multiple uaer-...

o @Pm'l'iowveni•

o @WhlltdomKMSIIOtdo7

@What- thedi.ffenlncetbetween o @ll._lilll'mlnPHTCJ'IPIIl'
KMS and COfiVODlioul hyportelll7

Save ~~ &•t Ptev Next H011111 Ooto Info DiJp Linear ... s.ve Exit Rat Pnv Nen Homa 0oto Info DiJp u-... San~ Exit Rest Piev Ne.lll Home Ooto Info Dilp u-." Saw. Exit Rat Piev Next Home Ooto lnf'o Di1p LU.III'-

'V
KMS dalllmodd ·-A KMS ~ o:cm.i11t of 1 tetof iD!trdlnkod, IQMQo

Iliad~ n-WOibJ*~Uo called)Nrnu, ...

::UA KMS... Confl
~-Por the pill lix)'an-tc- -,.., l.Bdpouad r--,

item~ 2. IDilo 10 KMS

@NoiCI/: 1--' ,
c
I~ S.\'eBl:ltRestPnv-

S.V. Exit Reat Pte" Next Home Oot.o lDfo Dilp u-M.

'v
I KMS u~ lllterl'•ee

_ ..
I

I
U1011 iDIDra:t with 1 KMS ciQbQo tiy 'IIIYiJ&tiDJ' from
frame. to frtme., llllllipuiatioa !he eoolellll of rr~~~~~~~~,

' I
and aeatioa aw fram.e.u. ID. addilion, IUUI C&ll ill'l'ob
KMS.blled utilitie.llo ~· I lOt of frlme.a.M

o I.NI\'i.alli.on

o 2. Manipulllii'IJihe coaleiU of~

0 3. KMS-"-dproJflllll

0 @DmpOolll

@Need JDOJe lbout Kti-

&ve.l!xit Rest Pav Next H011111 Ooto Info Ditp Lillelr ...

Figure 2. Fragment of a KMS database

This diagram shows part of the top levels of the frame
hierarchy in which this paper is represented. Due to lack
of space, we don't show all the cross-reference links,
author's comments, links to old versions, and the other
sorts of peripheral information that accompany any
document under development.

.....
ffi

1i
E
g;?
~

~
2i.

<1.
.....
!?"
x
~
§;
:r:

"'

KMS User Interface

Users interact with a KMS database by 'navigating' from frame to frame, manipulating the contents
of frames, creating new frames, and invoking programs.

Navigation. The central metaphor in KMS is that the database is like a universe of connected spaces
through through which users rapidly travel, like pilots navigating spacecraft in the real universe.
Users navigate from frame to frame by pointing the mouse cursor at an item linked to another frame
and clicking one of the mouse buttons (KMS uses a 3-button mouse). KMS accesses the designated
frame and displays it in the same window in less than one second, on average. Thus, KMS is
replacing the currently displayed frame as though the user had physically travelled to a new location
in the real universe.

Manipulating the contents of frames. A user can directly manipulate the contents of a frame at any
time. This is done by moving the mouse cursor to the desired location on the screen and clicking
buttons on the mouse, or in the case of text input, typing keys on the keyboard. There is no mode
boundary between navigation and editing.

KMS makes use of contextual distinctions so that users can invoke the most frequent operations with
a single point-and-click of the mouse. The location of the cursor (for instance, whether it's in empty
space or inside a text item) determines which functions are available via the mouse buttons. As an
aid to users, the cursor images include text labels indicating which function is currently available on
each button.

Three years of testing this approach shows that users have little trouble knowing what functions the
mous~ buttons perform--they can always read the labels. KMS novices rely heavily on these cursor
labels to learn the system. KMS experts continue to rely on the labeis, but their attention is subli
matedto a perceptual level. Figure 3 illustrates several KMS cursors.

Reduced command set. The move command is an example of how we have tried to streamline the
KMS user interface by unifying multiple operations into a small set of commands. Pointing the
cursor at an object causes the "Move, Copy, Delete" cursor to appear. Clicking the Move button at
this point causes the cursor to latch onto the object. The user can drag the object around--not only
within the current frame, but also across the window boundary into the other frame. In addition,
while in this dragging state, the user can still perform some top-level commands, such as typing text,
moving to other frames, and even creating new frames. This unification eliminates the need for a
clipboard construct and the operations of cutting and pasting.

This single Move operator can perform the KMS equivalents of the following functions in other
computing environments:

• Rearranging text and graphics within a diagram or page

• Moving a text string to another location in text

• Rearranging the order of sections in a document

• Moving data from one file to another

• Moving a directory or file to another directory

November 1987 Hypertext '87 Papers 7

Cursor Context Available Functions

t
When the cursor is Left: Go back to the
not pointing at previous frame

B L R any item on the frame a i e Center: Create line or point
c n o
k e t

Right: Create rectangle

OA X
When cursor is inside Left: Goto frame (if linked)
of a text item (the Create frame (if not)

GMC CMC cursor will only sit Center: Move-latch onto
0 0 p OR r o p in between characters) the item(s) for movement tv y Q v y
o Del a Del Right: Copy the item(s)

if linked if not linked Center & Right: Delete
the item(s)

Figure 3: Several KMS mouse cursor images

Invoking programs. Another category of user interaction is invoking programs by clicking on items
linked to programs. These programs range from simple KMS operations, such as those provided by
the customizable command menu at the bottom of a KMS window, tQ large conventional programs
that normally run from the operating system.

A common function of KMS-based programs is to process a hierarchy of frames. For example, the
program called Linear takes the contents of a hierarchy of frames and paginates it into a linear
document, while automatically creating a table of contents, index, etc. Another program does a text
search through a hierarchy of frames. With this program, a user can first narrow a search down, by
going to the top of the appropriate hierarchy, before invoking the program.

3. HYPERMEDIA DESIGN ISSUES
In this section we examine a set of issues for the design of hypermedia systems. Some of these issues
have been discussed in Conklin's summary of the hypertext field [Conk87], and in papers describing
specific systems, such as Intermedia [Garr87], NoteCards [Hala87], Neptune [Deli86] and TIES
[Shne86]. Other issues on our list haven't received as much discussion in the literature, but they have
become important for the development of ZOO and KMS. We have concentrated on issues that
highlight differences between KMS and other hypermedia systems. The issues are organized into
four categories:

8 Hypertext '87 Papers November 1987

Hypermedia Design Issues

Data Model Issues

1. What is the appropriate data model for a node?
2. What is the best size for a node?

3. What types of nodes should there be?
4. What sort of data object should be used as the source for a link?

S. What sort of data object should be used as the destination of a link?

6. What types of links should there be?

7. Should a link have internal structure?
8. How can data be aggregated into large structures?

User Interface Issues

9. What style of user interface should be used?
10. How should the information in nodes be presented on the display?
11. How should a link source/destination be represented on the display?
12. How fast should the system respond when following a link?

13. How should the system support browsing?
14. Should graphical representations of the node linkage structure be provided?

15. How can disorientation be prevented or reduced?

Authoring Issues

16. How can authoring of large databases be facilitated?
17. How can material from a database be converted to paper form?

Multiple User Issues

18. How can information be jointly authored and shared by multiple users?

19. How can interference between multiple users be prevented?

20. How can access to sensitive data be restticted?

Data Model Issues

[1] What is the appropriate data model for a node?

You will recall that KMS uses a screen-sized, two-dimensional space for a node (called a frame),
containing any arrangement of text, graphics and image items. This capability is flexible enough,
when combined with the ability to link frames together, to allow users to represent a wide variety of
knowledge structures (documents, drawings, programs, etc).

One source of the flexibility of KMS is the way it treats space. Like space in the real world, space in
frames 'exists' whether or not anything occupies it. Thus a frame may be completely empty. This is
distinct from the degenerate way space is represented by most text-oriented programs (e.g., word
processors and mail systems). Space to the left of text is usually some mixture of space characters
and tabs, while space to the right usually has no representation at all.

November 1987 Hypertext '87 Papers 9

The spatial nature of frames is a fundamental feature of KMS that has important implications for the
user.

It helps chunk items. White space provides a visual aid to perceiving the separate items on the
frame. By convention, each individual text item is surrounded by white space, and therefore is easy
to recognize as a separate chunk. In some hypermedia systems, a link is embedded in a larger piece
of text, thus requiring some form of highlighting for the link.

It is easy to reposition items. The space in a frame provides a background on which objects can be
positioned independently of one another, as is the case with graphics programs. Rearranging objects
within a frame (for instance, linked text items representing a document's sections) is a moment's
worlc

It provides room for peripheral items. Empty space in a frame provides a handy place for
peripheral items such as a note or a reviewer's comment about the contents of the frame. In KMS,
creating such items is as simple as moving the cursor to an empty area in the frame and starting to
type. As long as the note or comment is not unduly large, it can happily coexist with the other items
in the frame. In the case of a lengthy note, the bulk of it can be placed on additional linked frames.
(By convention, these items are prefaced with "@", which suppresses them from appearing in the
hardcopy version of the material.)

It maps directly onto white space on paper. We know that white space on paper is a good thing, so
why not in hypermedia? This is especially useful when we want to print out hypermedia-based
material. If the desired white space for the printed version cannot be directly represented, how will it
be supplied? (See also Issue [17].)

It provides a convenient command context. Since space in KMS is an actual construct, it provides
another context for interaction. KMS exploits this context by using it as a means for creating new
objects. Thus, when the cursor is in empty space, the user can directly create new points, lines,
rectangles and text items. The navigation command "Back" is also available when the cursor is in
empty space. In many systems, input in empty space is an error condition!

[2] What is the best size for a node?

KMS fixes the size of a frame to a width of 1140 pixels and a height of 820 pixels. These limits
allow a whole frame to be displayed on most large screen displays, with some room left for window
boundaries and a small message window.

The main reason we limit the size of a frame is to avoid scrolling, which we feel is an inefficient way
to navigate in a database.

[3] What types of nodes should there be?

KMS has only one type of node--the frame. We have not found it necessary to have more than one
type of node because of the generality of frames. Frames can contain any arrangement of text,
graphics, and images. This generality plus the ability to link frames together (especially into
hierarchies) makes it straightforward to represent a broad range of knowledge structures such as
documents, programs, drawings, and conversations.

10 Hypertext '87 Papers November 1987

Implicitly, users can define frame types by placing distinctive data items in the frames and by
developing distinctive frame formats. However, since KMS won't enforce these informal frame
types, any processing of these frames that relies on this 'typing' is subject to error. We think it is a
good tradeoff to accept the possibility of such errors, in return for the simplicity of a single
system-supported node type.

[4] What sort of data object should be used as the source for a link?

The source for a KMS link is an individual text item in a frame. The text of the item describes what
it's linked to. Although the text can range from a single character to a whole paragraph of text, it is
most common to use a single line of text.

Links are not embedded within text as in traditional hypertext. Experimental work with TIES
purports to show the superiority of embedded links over separate links [Shne87]. However, these
results probably do not apply to ZOG and KMS, where the links are always visible on the same
screen as the text, due to the small grain size of the node.

Using individual items as link sources decouples the contents of a frame from the links to other
frames. In systems where links are embedded in text, the phrases in the text must fit into the context
of the material as well as serve as links to other nodes. Also, if the material is to be transformed into
a linear document, the linked phrases must appear in the order required in the document. These
constraints make it more difficult to author the material. In KMS, the links can be treated separately,
and can be given whatever text seems appropriate for them.

[5] What sort of data object should be used as the destination of a link?

The destination for a KMS link is a whole frame. Some hypermedia systems use an individual point
within a node, or a 'region' within a node. We have never felt the need for such a capability within
KMS.

[6] What types of links should there be?

KMS users do not think in terms of links per se, but rather in terms of linked items --that is, items that
are linked to other frames. There are two types of linked items. Tree items have the connotation of
being linked to lower-level frames in a hierarchy, such as a chapter of a book, or a procedure within a
program. Special items are linked to peripheral material, such as comments and cross-references.
These items are simply prefaced with the"@" character, which makes it easy to change the type of a
linked item. The "@" is used by KMS utility programs to distinguish between the two types of
links, especially for the common case of processing a hierarchy of frames.

(7] Should a link have internal structure?

In some systems, links are objects with internal structure which provides more information about the
destination of the link. In KMS a link is not an object, but rather a property of a text item. Thus

November 1987 Hypertext '87 Papers 11

links do not have any internal structure, other than the frame name representing the destination of the
link. We have found that the text of the linked item can provide enough information about the des
tination of the link This avoids the need for mechanisms to view and edit the internal structure of
links. In addition, we feel the rapid response of KMS makes it just as practical to follow the link as it
would be to see a 'preview' of the destination.

[8] How can data be aggregated into larger structures?

In KMS, aggregates can be built from regular frames. The primary way of aggregating data is to
create hierarchies of frames by linking them together via tree items. Since frames can perform the
indexing role normally provided by directories as well as the content-holding function of files, KMS
users need not employ operating system directories as a mean of organizing their work. Users fmd
this approach very natural. Many KMS utility programs are designed to work on hierarchies as input
and create hierarchies as output.

User interface issues

User interface issues have always been a major focus of our work. In fact, we usually referred to
ZOG as a "human-computer interface system." The ZOG Group created a User Studies Laboratory
and conducted detailed studies of ZOG users. Some of this work is reported in [Robe81a],
[Robe81b], and [Yode84]. Both ZOG and KMS are instrumented to collect low-level usage data.
Over the years we have collected data on nearly 400,000 user sessions.

Below we discuss several important user interface issues that apply generally to hypermedia systems:

[9] What style of user interface should be used?

Because of the potential for innovation, we believe that the user interface for a hypermedia system
should be designed from scratch. Consequently, we have attempted to leave behind most of our
biases about user interfaces. Instead of adopting an existing style such as multiple, overlapping
windows on a desktop with pull-down menus and icons, we have tried to completely open up the
design of the user interface. This has proved extremely difficult.

Thus KMS today is the result of slowly unlearning many concepts and assumptions. Mostly, this has
meant learning to do without things that seemed necessary before. We are trying to provide the KMS
user with an environment in which there are few conceptual distinctions. Thus we dispensed with
the distinction between files and directories, use a single node type, and restrict the explicit link types
to just two. Also, we eliminated the mode boundary between navigating and editing, thereby
dispensing with a separate "editor." Users may make changes to a frame at any time; when they leave
the frame, the changes are saved automatically.

We have chosen to develop a user interface for KMS based on the direct manipulation paradigm. We
have also chosen to develop the interface around the capabilities of the three button mouse. By
exploiting every contextual distinction we thought natural, we have developed an interface in which
over 85% of the user's interaction requires just a single point-and-click (i.e., no intermediate menu
selection). As a result, KMS users can interact more than twice as efficiently as with interfaces
dominated by menu selection.

12 Hypertext '8 7 Papers November 1987

[10] How should the information in nodes be presented on the display?

There are two approaches commonly used by other hypermedia systems: (1) Each node in a separate
window, with multiple overlapping windows, perhaps of different sizes; and (2) A single, linear text
display, where each node that is represented is expanded "in place."

KMS's choice is distinctly different: Two nodes, each taking up a full half of the display surface, or,
at the user's option, one node taking up the entire display. There are no other possibilities. When a
user selects an item linked to another frame, the currently displayed frame is replaced by the new
frame. Because KMS can follow a link very quickly, you can think of it as using the time dimension
to keep linked nodes close together, rather than trying to keep them visible on the display at the same
time.

[11] How should a link source/destination be represented on the display?

Some hypermedia systems use various forms of highlighting to represent a link source on the display,
e.g., italics, boldface, color, video-reversing, or a box. Unfortunately this usurps the normal use of
such highlighting by the author.

Systems that use an embedded icon of some kind are prone to clutter. By themselves, icons often do
not provide enough information to enable the user to make a good decision about whether or not to
follow the link. In addition, these icons are often small targets, which require more time to select.

KMS uses whole text items as link sources. A linked item is displayed with a small circle to its left
indicating the existence of a link. Since the text item is normally surrounded by a sea of empty
space, the range or region of the link source is defmed implicitly. nie content of the text item can
provide as much semantic information about the link as is needed. Also the average size of linked
items makes them easy to point to them.

Since KMS links are one-way, and the destination of a link is a whole frame, there is no need to
denote the destination of a link.

[12] How fast should the system respond when following a link?

We believe that fast system response to selecting a link is one of the most important parameters in a
hypermedia system. Even though the average time a user spends at a node will usually be many
seconds, there will be frequent bursts of rapid navigation, when response time becomes critical. Our
experience with a variety of hypermedia systems has shown that the difference between one system
with a response of several seconds and another with sub-second response is so great as to make them
seem qualitatively different. Our design goal for KMS is to be able to access and display a random
frame across a wide-area network in less than .25 seconds on average.

In the early 1970's, researchers at the PROMIS laboratoty produced a hypermedia system capable of
0.25 second reponse 70% of the time, using specialized hardware [Schu79]. Our early versions of
ZOG, created in 1976, ran on DEC time-sharing machines with 1200 baud terminal links and
provided response times of 5 to 10 seconds. When we graduated to 9600 baud around 1979, response
was improved to about 2 or 3 seconds, and it seemed like a major breakthrough for users. Our PERQ
version of ZOG, completed in 1983, gave an average response of about 0. 7 seconds for frames local

November 1987 Hypertext '87 Papers 13

to the machine, and 1.5 seconds for frames accessed over the Ethernet. Users again experienced a
dramatic improvement over the previous version, but they quickly adapted to the new speed and still
hungered for more.

We have also had experience with response speeds at the very fast end of the scale--0.05 to 0.1
seconds. In 1978, as part of the ZOG effon at CMU, we built two special ZOG terminals using a
high-speed vector graphics display, a touch screen, and a fast drum, attached to one of the DEC
PDP-11 processors in the experimental multiprocessor called C.mmp. We were not able to study the
use of this system in any detail, because it had no editor available, it was difficult to download
material from our main working environment on a PDP-10, and the hardware was unreliable. But we
did satisfy ourselves that we had bounded the optimal response time from below. In fact, without
some explicit cue, 0.05 second response may be too fast--we had trouble noticing whether or not the
screen had changed, especially if we blinked at the wrong time!

In making the initial leap from ZOG to KMS, we took a step backward in response speed. This
happened because frames tended to become larger and more complex as we took advantage of larger
bit-mapped displays. Also, we began using a separate me for each frame, for added flexibility.
Fonunately, KMS has benefitted greatly from the faster hardware now available, so that KMS once
again has sub-second average response times.

KMS's responsiveness is mostly a function of the amount of material in the average frame (1 Kbyte),
the graphics performance of the window system, and the speed of the storage device. Interestingly,
frames stored remotely on a file server with a fast disk can often be accessed more quickly than
frames stored locally on a slower disk.

The larger memories now available in workstations (4 Mbytes being typical) have allowed us .to
implement a frame caching mechanism that funher speeds the response by eliminating me accesses
for frames already in the cache. In Figure 4 we show typical response times for KMS running on a
Sun-3/50 with 4 Mbytes of memory, using a locally-attached small disk.

From disk

From cache

Small frame Med. frame Large frame
(- OA Kbytes) (- 1.6 Kbytes) (- 3.5 Kbytes)

0.34 1.02 2.60

0.20 0.28 0.30

Figure 4: Time for KMS to access and display a
frame (in seconds). The average size for KMS
frames is 1 Kbyte.

[13] How should the system support browsing?

We believe that the ability to browse quickly in a hypermedia system is critical to its usability. This is
particularly true oflarger-scale hypermedia databases, where it's necessary to 'travel' longer distances.
Although system response time is an imponant factor for browsing, there are other aspects as well:

14 Hypertext '87 Papers November 1987

Standard frame layout. The conventions for the layout of a frame make it easier for the user to
assimilate the information on the frame. As a result, it takes less time to decide what to do next.

Time user takes to select. On average, linked items are large in size (compared with embedded
icons) and segmented spatially. This reduces the time it takes users to point the cursor at them.

No mode boundary between editing and navigation. The user need not cross a mode boundary in
order to switch between editing and navigating. Navigation and editing commands are simul
taneously available.

Fast backtrack command. Backtracking is a frequent activity--for every movement forward there
tends to be a compensating move back. In KMS, the Back command is available as one of the
buttons of the 'empty space' cursor. The user need only move the cursor to an empty area of the
frame to get into the proper context and click the Back button. On average this takes . 7 seconds to
do, partly because the cursor often doesn't need to be moved. This compares with 1.5 seconds to
click on a menu command (such as the command items at the bottom of a KMS window). This small
difference adds up since the Back command may be used several hundred times per hour. From the
user's perspective, it's not just the time savings, but the reduced mental and physical effort.

[14] Should graphical representations of the node linkage structure
be provided?

Periodically we consider providing additional views in KMS such as a graph of a portion of the
network. But each time we retreat. We believe such views are unnecessary, except perhaps for large,
essentially non-hierarchical structures. Our own experience indicates that our 'mind's eye' sees
KMS ,structures as time-travel through familiar frames, rather than as some graphical representation
of the structure. This view is supported by our ZOG user studies, which revealed that users rarely
made use of the multi-node views that were available. The 'overview-like' nature of frames, plus
being able to travel in the database rapidly--seems to substantially reduce the need for such structures
inKMS.

[15] How can disorientation be prevented or reduced?

The classical hypermedia problem is the "getting lost problem," which becomes more severe as the
database grows larger. However, we have found that getting lost is not much of a problem for KMS
users. KMS has characteristics that help users stay oriented, plus some fearures that help users
re-orient themselves if they do get lost.

Hierarchical backbone. KMS strongly encourages a top-down, stagewise refinement approach to
organizing material in the database. The resulting hierarcl)ical "backbone" in the database helps
users build a coherent mental model of the database. Also, multiple hierarchies can be constructed to
provide alternative paths through the database.

Special navigation commands. KMS provides several commands that let users go directly to
specific locations in the database. The Goto command lets a user go directly to any named frame.
The Home command displays a user's home frame. The Info command displays a frame with links
to KMS documentation and utilities.

November 1987 Hypertext '87 Papers 15

Marking the item just returned from. KMS flags the item linking to the frame from which the user
has just backtracked with a temporary asterisk.

Richer frames. The use of larger frames provides a richer context in which to assimilate knowledge.
Also, since there are fewer frames, less travel is required.

Fast response. The ability to navigate quickly from frame to frame makes exploration less risky for
users, since they can always backtrack quickly to return to a familiar frame.

Authoring Issues

Below we discuss a couple of issues dealing with how hypermedia databases can be created. These
are important because database creation is a severe bottleneck. A user's ability to assimilate infor
mation far outstrips his ability to generate it

[16] How can authoring of large databases be facilitated?

Small databases are of limited interest This poses an economics problem for hYJ'ermedia system
designers to solve. If it's too inconvenient to build a hypermedia database users will avoid doing it.
Listed below are some of the approaches we have taken to encourage the development of large-scale
databases:

Rapid navigation. Users need to be able to move around rapidly in order to get to where they wish
to build. This is also important in the frequent case of moving objects to a different place in the
database.

No editing/navigation mode transition. KMS does not have a mode transition between navigation
and editing (see Issue [9]).

Rapid creation of new frames. To create a frame, all a user has to do is click on an unlinked item.
Typically, the user can be editing a new frame less than two seconds after deciding to create it

Default operand scope. Editing in KMS is dominated by manipulating individual items. Since the
default scope for operations is the whole item pointed to by the cursor, the vast majority of operations
can be invoked directly, without any explicit scope designation.

Implicit saving of changes. Tentative modifications are limited to the currently displayed frames. If
there are any changes to a frame those changes will be automatically saved when the user moves to
another frame. This default works well in practice. Not only does it eliminate most explicit save
invocations, but it reduces the complexity of the user's model of the current state of the system.

Use of schemas. Schemas are chunks of data (e.g., a frame or tree of frames) that contain variable
parts. Schemas can be used to build data objects that have some common parts, simply by copying
the schemas and filling in the variable parts manually. Ramakrishna [Rama81] developed schema
mechanisms for ZOG and studied their use experimentally.

Tools for importing external databases. KMS provides a number of tools for mapping in material
from other sources (e.g. text files and bitmap files).

16 Hypertext '87 Papers November 1987

Support for multiple users. KMS · is a distributed hypermedia system designed to support
simultaneous building of a KMS database by multiple usern. (Please see "Multiple User Issues")

No restriction on the size of the database. KMS databases may be as large as available secondary
memory and may be distributed across any number of workstations and file servers.

Database merging. Independently developed KMS database are easily joined together to form a
single database.

[17] How can material from a database be converted to paper form?

One of the major forces guiding our design efforts has been the desire to create well-formatted
documents from material in tlte database. Since frames provide a local WYSIWYG view, there is a
natural process for paginating tlte material: concatenating the contents of frames from a hierarchy in
depth-first order. This default can be supplemented by additional formatting commands (e.g.,
"@NewPage," "@Figure," etc.) that are placed on frames to specify additional formatting constructs.
Typically, these items, like otlter meta-level items such as notes and comments, are placed off in the
comer to keep them out of the reader's way. This approach is a hybrid between pure WYSIWYG
document systems (in which little structure is represented explicitly) and structured formatting
systems (Scribe and TEX). KMS also offers the flexibility of applying the document formatting
process at any level of a hierarchy of frames, thereby enabling usern to get just the portion of a
docuinent they want

Multiple User Issues

Both,ZOG and KMS have been designed from the beginning to support a community of communi
cating usern, where usern can jointly develop and share data, rather than simply exchange it. Below
we discuss several of the relevant issues.

[18] How can information be jointly authored and shared by multiple users?

KMS provides to a community of useiS a single, logical database, physically distributed across
multiple workstations and file servern on a network. The actual physical location of data can be
completely transparent to the usern--as if they were all useiS on a single time-sharing system, but with
vastly improved response and display bandwidth.

Our first real implementation of a distributed system was the vernion of ZOO running on the PERQ
network on board the USS CARL VINSON, which was completed in 1983. It implemented special
ZOG network servern that managed the locking of individual ZOO frames for modification by one
user at a time. It had a location database, managed by one of the machines designated as the master,
with information about which machine each ZOG frameset was actually located on.

Our current vernion of KMS uses Sun's Network File System (NFS) to provide access to frames that
reside on remote machines. As with ZOG, there is a master f11e server that holds the location of all
frameset. (All file serveiS containing a portion of the KMS database have automatically-maintained
copies of this location information, to be used in case the master is unavailable).

November 1987 Hypertext '87 Papers 17

One of the major benefits of KMS is the ability of multiple users to work simultaneously on a
common project such as proposal or conference paper. Working together on a single document (or
single area of the database}, users can easily see what others have done, make comments, print out
any part of the material at any time, etc. There is no strict coordination concerning the evolution of
the database similar to that required in conventional database systems.

This communal approach makes it possible to communicate electronically in a way quite different
from conventional electronic mail. In KMS, conversations simply 'grow' in some area of the
database, thus preserving their logical structure.

[19] How can interference between multiple users be prevented?

How can we prevent multiple users from losing changes due to interference, yet avoid the ineffi
ciencies of locking users out from making changes for long periods of time? In ZOG, we provided
for the locking and uulocking of a frame when the user entered and exited the editor, respectively. In
KMS, we do not lock frames in this way. Instead, we use a weaker form of concurrency control,
called 'optimistic concurrency control.' We make the optimistic assumption that since frames greatly
outnumber users, a conflict between users editing the same frame is rare.

All 'optimistic concurrency' guarantees is that a KMS user who has successfully saved changes to a
frame cannot subsequently have those changes revoked by another user who had been editing the
same version of the frame. It does not guarantee that if you edit a frame, you will necessarily be able
to save the changes without any problem. At the time you attempt to save your changes, you may be
informed that someone else has already saved changes to the same frame. This means that your
tentative changes cannot be saved, because they would revoke the other user's changes. What KMS
does in this case is to temporarily save your changes in a newly created frame, so that you can then
map them into the new version of the original frame.

Our experience shows this situation rarely occurs since users are normally working in different areas
of the database, even when they are working on the same document (for example, this paper is
represented by over 200 frames). Whenever users find they are 'bumping elbows,' they can cope by
using informal frame 'locking' conventions--namely, by placing a text item on a frame that warns the
other users who come to that frame that editing is in progress. Besides being more personal, this
informal locking can be used to alert others you plan to do some work in this area of the database.

On the face of it, optimistic concurrency control may seem unwise, since it is not a foolproof
mechanism for preventing interference between users. But adopting it allowed us some benefits that
we feel well outweigh its drawbacks. The most important benefit was that it facilitated eliminating
the mode boundary between navigating and editing (see Issue [9]).

[20] How can access to sensitive data be restricted?

To prevent access to sensitive data, KMS implements protection of individual frames. Every frame
has an owner--originally, the person who created it. The owner can protect the frame so that others
may access it but not make any modifications, or so that others can't even access the frame.

18 Hypertext '87 Papers November 1987

An intermediate kind of protection (called annotation access by the Intermedia researchers [Garr87])
seems like a useful capability to add to KMS. It would allow users to add new items to a frame
without allowing them to modify any of the existing items. For now, we generally leave frames
unprotected to allow free annotation, and simply rely on the good will of users to not delete the work
of other users without permission.

4. CONCLUSION

If there is one central theme to our experience, it is the fundamental importance of a system's data
model. Our experience with ZOO and KMS has convinced us that the data model underlying an
interactive system strongly determines the nature of its user interface. We believe this because we
have seen the formative influence of the KMS data model on all other aspects of KMS.

In the case of KMS, the properties of a node--its fixed size, its spatial nature, how links are repre
sented within it, its standard format, etc.--contribute significantly to the global nature of the system
and distinguish it strongly from other hypermedia systems.

Consequently we recommend that interactive systems be developed from the inside out--from the
data model to the user interface--rather than the other way around. This view contrasts sharply with
the philosophy that the user interface should be the dominant system component and thus
standardized across programs. Perhaps hypermedia, with the structural richness it has to offer
human-computer interaction, may eventually overshadow the reigning HCI paradigm, the desktop
interface.

ACI(NOWLEDGMENTS

We wish to acknowledge the contributions of many people over the years. Those who were involved
with ZOO at CMU: Allen Newell, George Robertson, Kamila Robertson, Peter Lieu, Sandy Esch,
Party Nazarek, Marilyn Mantei, Kamesh Ramakrishna, Roy Taylor, Mark Fox and Andy Palay.
Those officers from the USS CARL VINSON who worked with us at CMU: Mark Frost, Paul
Fischbeck, Hal Powell, Russ Shoop, and Rich Anderson. Captain Richard Martin, Cdr. Ted Kral, Lt.
Brian MacKay, and other officers and crew of the USS CARL VINSON. Finally, we would like to
thank the Office of Naval Research for sponsoring the I 0 years of the ZOG Project.

REFERENCES

[Aksc84a] Akscyn, R. and D. McCracken, "The ZOG Approach to Database Management,"
Proceedings of the Trends and Applications Conference: Making Database Work,
Gaithersburg, Maryland, May 1984.

[Aksc84b] Akscyn, R. and D. McCracken, "ZOG and the USS CARL VINSON: Lessons in System
Development," Proceedings of the First /FIP Conference on Human-Computer Interaction
(Interact '84), London, U.K., September 1984.

November 1987 Hypertext '87 Papers 19

[Conk87] Conklin, J., "A Survey ofHypenext," MCC Technical Report STP-356-86, Rev. 1,
February 1987. To appear in IEEE Computer, September 1987.

[Deli86] Delisle, N. and M. Schwanz, "Neptune: A Hypertext System for CAD Applications,"
Proceedings of ACM SIGMOD International Conference on Management of Data,
Washington, D.C., May 1986, pp. 132-143.

[Garr87] Garrett, L., K. Smith and N. Meyrowitz, "Intermedia: Issues, Strategies, and Tactics in the
Design of a Hypermedia Document System," Proceedings of the Conference on
Computer-Supported Cooperative Work, Austin, Texas, December 1986, pp. 163-174.

[Hala87] Halasz, F., T. Moran and R. Trigg, "NoteCards in a Nutshell," Proceedings of the
ACM Conference on Human Factors in Computing Systems, Toronto, Canada, Apri11987.

[Mant82] Mantei, M., A study of Disorientation Behavior in ZOG, PhD thesis, University of
Southern California, 1982.

[McCr84] McCracken, D. and R. Akscyn, "Experience with the ZOG Human-Computer Interface
System," International Journal of Man-Machine Studies, Vol. 21, 1984, pp. 293-310.

[Newe85] Newell, A., "An On-Going Case Study in Technological Innovation," in Advances in
Information Processing in Organizations, Sproull, L. and P. Larkey (eds.), 1985.

[Newe81] Newell, A., D. McCracken, G. Robenson and R. Akscyn, "ZOO and the USS CARL
VINSON," Computer Science Research Review, Carnegie-Mellon University, 1981, pp.
95-118.

[Rama81] Ramakrishna, K., Schematization as an Aid to Organizing ZOG Information Nets,
PhD thesis, Computer Science Department, Carnegie-Mellon University, 1981.

[Robe82] Robenson, C.K. and R. Akscyn, "Experimental Evaluation of Tools for Teaching the
ZOG Frame Editor," Proceedings of the International Conference on Man/Machine
Systems, Manchester, U.K., July 1982.

[Robe8la] Robenson, C.K., D. McCracken and A. Newell, "Experimental Evaluation of the ZOG
Frame Editor," Proceedings of the 7th Canadian Man-Computer Communications Conference,
Waterloo, Ontario, June 1981, pp. 115-123.

[Robe81b] Robenson, G., D. McCracken and A. Newell, "The ZOG Approach to Man-Machine
Communication," International Journal of Man-Machine Studies, 1981.

[Schu79] Schultz, J. and L. Davis, "The technology of PRO MIS," Proceedings of the IEEE,
September 1979, pp. 1237-1244.

[Shne86] Shneiderman, B. and J. Morariu, "The Interactive Encyclopedia System (TIES),"
Department of Computer Science, University of Maryland, College Park, MD, June 1986.

[Shne87] Shneiderman, B., "User Interface Design and Evaluation for an Electronic Encyclopedia,"
Technical Report CS-TR -1819, Department of Computer Science, University of Maryland, March
1987.

[Yode84] Yoder, E., McCracken, D., and R. Akscyn, "Instrumenting a Human-Computer Interface
for Development and Evaluation," Proceedings of the First IFIP Conference on Human
Computer Interaction (Interact '84), London, U.K., September 1984.

20 Hypertext '87 Papers November 1987

HAM: A General-Purpose
Hypertext Abstract Machine
Brad Campbell
Joseph M. Goodman

Tektronix, Inc.
Computer-Aided Software Engineering Division
P.O. Box 4600, M.S. 94·480
Beaverton, Oregon 97076

ABSTRACT

The Hypertext Abstract Machine (HAM) is a general-purpose, transaction-based, server for a

hypertext storage system. The server is designed to handle multiple users in a networked

environment. The storage system consists of a collection of contexts, nodes, links, and attributes

that make up a hypertext graph. This paper demonstrates the HAM's versatility by showing how

duide1 buttons, lntermedia webs, and NoteCards FileBoxes cen be implemented using the HAM's

storage model.

INTRODUCTION

Tektronix' Hypertext Abstract Machine (HAM) is a general-purpose, transaction-based, multi-user server

for a hypertext storage system. The HAM is based on the abstract machine Norm Delisle and Mayer

Schwartz used in their Neptune system developed at Tektronix' Computer Research Laboratory [Deli86].

The HAM is an underlying component of the Tektronix CASE Division's Software Engineering Informa

tion System development effon. Because the HAM is a low-level storage engine, it provides a general and

flexible model that can be used in several different hypertext applications.

The HAM stores all of the information it manages in graphs, or databases, on a host machine's file systems.

Graphs are stored in a centralized area and can be accessed in a distributed environment. If a distributed

file system is shared by a series of machines, the HAM does not reduce the file system's functionality.

Applications normally communicate with the outside world through a common user interface. This inter

face is window-based and highly interactive to provide a suitable environment for a hypertext system.

Figure 1 shows the typical organization of a system using the HAM.

1. Guide is a trademark of OWL lntcmational.Inc.

November 1987 Hypertext '87 Papers 21

USER INTERFACE

APPLICATION TOOLS

HYPERTEXT
ABSTRACT
MACHINE

HOST
FILE SYSTEMS

Figure 1. Generic hypertext system archttecture.

In this paper, we describe the HAM's functionality and discuss how it can be used by potential applica

tions. First, we describe the major features of the HAM and provide an overview of HAM operations. We

then describe possible HAM representations for three hypertext data structures: Guide buttons, Intennedia

webs, and NoteCards FileBoxes.

HAM FEATURES

The HAM storage model is based on five objects: graphs, contexts, nodes, !inks, and attributes. The HAM

maintains history for these objects, allows selective access through a filtering mechanism, and can allow

for access restrictions through a data security mechanism.

HAM Objects

A graph contains contexts, nodes, links, and auributes. These objects are organized hierarchically. The

following paragraphs describe each of the objects.

Graphs. A graph is the highest-level HAM object It normally contains all of the information regarding a

general topic, such as the information for a software project A graph contains one or more contexts.

Contexts. Contexts partition the data within a graph. h;.ch context has one parent context and zero or

more child contexts. When a graph is created, a root context begins the tree. A context does not depend on

information contained in its parent context A context contains zero or more nodes and links.

22 Hypertext '87 Papers November 1987

Nodes. A node contains arbitrary data. This data can be stored as text or as fixed-length binary blocks.

When a node is updated, a new version is created by replacing the previous contents with the new contents.

Previous versions of a node can be retrieved. A node can be an append only node. Updates to an append

only node are appended to its contents. Append only nodes are useful for logging the actions performed by

an application. A node's contents can also be sean;hed for the occurrence of user specified regular expres

sions. Nodes are related by links.

Links. A link defines a relationship between a source node and a destination node and can be followed in

either direction. A cross-context link relates two nodes in different contexts. Cross-eontext links are useful

for sharing data between two contexts. The generality provided by link at.ributes allows application writ

ers to define their own notions of link types or link end-point attachment schemes.

Attributes. Attributes can be attached to contexts, nodes, or links. Attribute values can be strings,

integers, lloating-point numbers, or user-defined types. Attribute/value pairs give semantics to HAM

objects. They can represent application-specific properties of objects or contain information that further

describes an object. Attributes are also used in the predicates that are part of the HAM filters.

Version History

The HAM provides an automatic version history mechanism. The version history for a HAM object is

updated each time that object is modified. Because each access to an object contains a version time, previ

ous versions of objects can be viewed. The HAM also provides operations to destroy undesired versions.

Filters

The HAM provides a filtering mechanism that allows subsets of HAM objects to be extracted from large

graphs. Filters allow the user to specify visibility predicates, which are expressions relating attributes and

their values. HAM filters only return objects that satisfy the predicates. Filters also allow the user to

specify a version time so that earlier versions of a graph can be examined.

The HAM filters the following items:

• Contexts in a graph

• Nodes in a context

• Links in a context

• Instances of a node in specified contexts

November 1987 Hypertext '87 Papers 23

• Instances of a link in specified concexu

• A set of nodes and links in specified con1ex1S based on a specific link ordering

Data Security

The HAM provides security for the data contained in a graph through its access control list (ACL) mechan

ism. Attaching an AO.. to an object is optional. An AO.. entty consists of a user or group name and a set

of permissions. A user is anyone who has access to the graph. A group is a list of users. The available

permissions are access, annotate, update, and destroy.

The permissions associated with an AO.. entty are additive. Access permission allows the user or group to

view the data associaled with the object. Annotate permission allows links to be attached to a node.

Update permission allows the user or group to perform nondestructive updates on an object. Destroy per

mission allows the destruction of an object.

HAM OPERATIONS

To provide a consistent, simple interface, HAM operations are grouped into seven categories. Operations

within a category behave similarly, regardless of the object on which they operate.

Create Operations

Creace operations create new HAM objects. A create operation takes object-dependent data and returns an

object index and a version time. The object index represents a unique identifier for the newly created

object, and the version time denoces the time at which the object was created.

Delete Operations

Delete operations marl< objects as deleted but retain historical information. A delete operation takes an

object index and a version time, and returns a new version time. The object index specifies the unique

identifier for the object being deleted. The returned version time represents the time the object was deleted.

Destroy Operations

Destroy operations free all space required for an object. The object does not have to be deleted to be des

troyed. A destroy operation takes an object index and a version time, and returns a new v~mion time. The

object index specifies the unique identifier for the object being destroyed. The returned version time

represents the r~-ne the object was destroyed.

24 Hypertext '87 Papers November 1987

Change Operations

Change operations modify data associated with an existing object. A change operation takes an object

index, a version time, and object-dependent data. These operations return a version time. The object index

specifies the unique identifier for the object being modified. The returned version time represents the time

tbe object was modified.

Get Operations

Get operations retrieve data from existing objects. A get operation takes an object index and a version

time, and returns the data that existed at the specified time. The object index specifies a unique identifier

for the object from which data is being retrieved. The version time is a time range for the data retrieval.

Filter Operations

Filter (and linearize) operations selectively retrieve information from a graph. A filter operation takes a

predicate, a version time, and a list of attributes. These operations return a list of objects that satisfy the

predicate and a list of requested attributes attached to each object. The version time specifies the time at

which the filter is to sean:h for the information. Each filter operation also has unique parameters in addi

tion to those already specified.

Special Operations

Operations that do not fit into any of these categories are considered special. They include functions such

as sean:hing for strings in node contents, merging contexts, and managing transactions.

EXAMPLE HAM APPLICATIONS

Because the HAM is a general-purpose hypertext engine, it can serve many types of hypertext systems. In

this section, we will model three hypertext structures using the HAM's storage model: Guide buttons,

Intermedia webs, and NoteCards FileBoxes.

Guide Buttons

Guide is a hypertext product developed for the Macintosh2 by OWL International, Inc. of Bellevue, W A

[Guid86]. It is a tool for writing and reading electronic documents. Guide uses buttons to represent links

in a document between the information on the screen and related information. A button is a special area on

2. MaciDlosh ioau.denwlt of Apple Computer, Inc.

November 1987 Hypertext '87 Papers 25

the screen. When a button is selected, by clicking the mouse, Guide follows the link to display the related

infom.ation.

Rep/aceTN!nt buttons replace the button icon displayed on the screen with the information associated with

that buuon. Inquiries are sets of two or more mutually exclusive replacement buttons. Reference bUltOns

display the infonnation associated with the button in a new window. This window remains visible until the

user returns to the document window. Note buttons display infonnation associated with the button in a new

window that disappears when the user releases the mouse button.

To model Guide, the HAM equates a document with a node. The various button relationships are modeled

as links. Link attributes detennine which type of button the link represents. The application uses these link

attributes to detennine which type of window to open when a button is selected.

The button type is stored In the
link attribute LlnkType; Its value
Is Replacement, Inquiry,
Reference, or Note.

All buttons also maintain the link
attributes Name and Document·
Locations.

Name
Owner
Updated
Created

Remember that the submission
deadline Is August 1st.

Deadline
Wilma
July 2, 1987
March 31, 1987

Documentlocation 35

Figure 2. Possible representation for a Guide note button.

Figure 2 shows an example of a note button. The Document Browser contains the text being examined; the

icon withL• the browser represents the note button. The Note Browser contains the note associated with the

note button. The Button Attribute Browser shows the attributes associated with the link representing the

note button, as well as the value of the LinkType attribute.

26 Hypertext '87 Papers November 1987

The button type is stored in the link attributeLink1)'pe; its value is Replacement, Inquiry, Refer

ence, or Note. All buttons also maintain the link atttibutes Name and DocumentLocation. Name

represents the name associated with the button, and DocumentLocation defines the location relative to the

beginning of the document where the button was created. The value of DocumentLocation corresponds to

Guide's location of its button icon. Guide considers the information associated with a button to be an

atomic entity. Therefore. the other end of the link representing the button can point to the entire node that

contains the button's information.

If a replacement button is part of an inquiry, the value of Linlc1)'pe is set to Inquiry. A link that

represents part of an inquiry also has an attribute named Grouping, which contains the identification of a

special node. This node contains the identification of all links (replacement buttons) that make up the

inquiry.

Webs

J NoteCards FlleBoxes I Example Inquiry

Name
Owner
Update
Created
LlnkType

1--------------i Guide But1ons
lntermedla Webs
NoteCards FlleBoxes

Figure 3. Inquiry storage representation.

Example Inquiry
Joo
July 27, 1987
June 27, 1 987
Inquiry

Figure 3 shows the HAM storage model for an inquiry named Example Inquiry. The Storage

Representation window shows the nodes and links involved in the inquiry. In this example, the links have

the same name as their destination nodes. The node Example HAM Applications is the document

node. The nodes Guide Buttons, Intermedia Webs, and Notecards FileBoxes contain

the information associated with the replacement buttons that make up the inquiry. The node Ex;.>mple

Inquiry contains the names of the replacement buttons in the inquiry; its contents are show' in the

Example Inquiry browser. The Button Attribute Browser displays the attributes attached to one of Jle links

involved in the inquiry and shows that the value of the Grouping attribute is Example Inquiry.

November 1987 Hypertext '87 Papers 27

lntermedia Webs

Intermedia, the system developed at the Institute for Research in Information and Scholarship at Brown

University [Garr86, Yank85], is one of the newer and more innovative hypertext systems.

The basic hypertext concepts in Intermedia are very similar to those found in !he HAM. Intermedia uses

the term web to refer to a database that contains both references to a set of documents and the links associ

ated with those documents [Meyr86]. A block is the piece of a document to which a link is anchored and

can be any legitimate selection in the application. The attributes provided by the HAM allow the flexibility

to efficiently model these relationships.

To model an Intermedia web, the HAM represents a web as a collection of nodes and links. A document is

represented as a node. An lntermedia link is equivalent to a HAM link. Blocks are determined by using

link attributes to define the anchor selections for both the source and destination ends of each link.

UNJX3 manual pages4 provide a convenient example of how the HAM can model lntermedia webs. The

manual page for the mail command is used to create a small web of Information.

Each document (manual page) is represented as a HAM node. The web is defined by attaching an attribute

named Web to each link. The value of this attribute contains the name of the web to which the link

belongs. A link filter is applied using the predicate "Web • .mail" to let users view a map of the web.

This filter returns only those nodes that are part of mail.

Figure 4 shows the mail web defined by creating links from the mail command to commands in the manual

page's "SEE ALSO" section.

To define a block, the HAM uses the attribute pairs SourceOffset!SourceExtent and

Destino.tionOffset!DestinationExtent. A block is determined by the value of the attribute pair attached to

the link. For example, the source block of a link is represented by the attributes SourceOffset and Sour

ceExtent. The values of these attributes are integers that contain the byte offset from the beginning of the

node and the length of the block.

Each block is defined by the offset and extent attributes. The offset provides an insertion point for the

block, and the extent determines the end point of the block.

Figure 5 shows the value of the SourceOffset and SourceExtent attributes attached to link BinMail. The

highlighted area shows the block these attributes define.

3. UNIX ia a registered tnldemart of 'T&.T Bell Laboratories.

4. Excerpts from the UNIX Prograrru11ers Manual, Berkeley Distribution, are used for purposes of illusttation.

28 Hypertext '87 Papers November 1987

Source
Offset

November 1987

mall

FILES:

/uartapool/mall,.
.. /mbox
.. /,mallrc
/tmp/R•
/uar/llbtMall.belp•
/uarlllbtMall,rc
M••••a••

SEE ALSO

Source Extent

bin mall

fmt

new•lleeea

mailaddr

The Mall Reference Manual

Figure 4. Mail web.

poat oHice
your old mall
file gtvk'lg lnhlal mall commands
temporary for editor .. cape
help flln
ayat.m Initialization file
temporary for editing mHug ..

aandmall

~
J.Dilfnio~i)(J fmt(t), nowall-(1), allaooo(5),

malladdr(7), Mndmall(8) HAllE

SYNOPSIS
/bin/mall I+ I [~I (peraon] ••
~trntmall [+] (-1 J ..f fiW

DESCRIPTION
Not.: Thla 18 tM old version 7 UNIX
ayatern mall program. The default mall
oomm .. d Ia daacrftMHI k'l mall(1), .nd
Ita binary Ia In the directory IU•Jucb.

Figure 5. Defining a block.

Hypertext '87 Papers 29

NoteCards FlleBoxes

NoteCards is a general-pwpose idea-processing hypertext system developed at Xerox PARC [Hala87].

NoteCards supports the concept of FileBoxes. Every notecard must be stored in one or more FileBoxes. A

FileBox can contain notecards and other FileBoxes. The FileBox structure is arranged as a directed acyclic

graph.

FlleBoxes can be represented in the HAM using nodes, Jinks, and attributes. Both FileBoxes and notecards

lie equivalent to nodes. The model uses a node attribute to determine whether a node is a FileBox or a

notecard. Links show which notecards (or FileBoxes) lie in a particular FileBox. Link attributes deter

mine which links refer to other FileBoxes and notecards. This model allows nodes to reside in more than

one FileBox. The example shown in Figure 6 helps to clarify the NoteCards FileBox model.

flntroduotlon I
f Feata.~re11

I OperaUons

f EJ:ampla HAM Appll~:atlon•

I Conclusion

I Rafarancaa

Nama
Ownor
Updated
Created
NodaTypa

Conolualon
Fred
July 21, 1187
June 14, 1187
NotaCard

Becauaa the Hypertext ANtriOt Machin•
Ill daalgnad • a genarelopurpoea angina.
It 011n be uMd • • ba .. engine for 01Mr
hypertext ayetama.

f varalon Hletory

f Flltara

J Data Security Nama
Owner
Updated
Created
Node Type

F~gure 6. NoteCards representation.

Feature•
Barney
July 21, 1187
June 3, 1187
FlleBox

The FileBox named Hypertext 87 contains all of the FileBoxes and notecards that make up this paper.

As shown in the Features NoteCard Attribute Browser, the Features node is aFileBox. When a

user browses this node, the NoteCards-Iike application examines the nodeType attribute, determines that

the node is a FileBox, and opens a new FileBox browser. The contents of the Features node are links

to all of the FileBoxes and notecards that it contains. Note that References is contained in both File

Boxes.

30 Hypertext '87 Papers November 1987

The Conclusion NoteCard Attribute Browser shows that the Conclusion node is a NoteCard.

When a user browses this node, the application examines the nodeType attribute, determines that the node

is a NoteCard, and opens a NoteCard browser.

CONCLUSION

Because the Hypertext Abstract Machine is designed as a general-purpose hypertext engine, it can be used

as a base engine for other hypertext systems. Most current hypertext systems emphasize the application

and user interface layers. While these layers are very important an appropriate storage model is essential.

We believe the HAM provides such a model.

Although the HAM is not a panacea for hypertext data storage problems, it is an important first step. As

new hypertext applications are developed, we will Jearn more about the data representation problems

hypertext presents. If a storage model standard develops from this wod:, it may lead to the development of

a standard terminology and base engine that could improve immeasurably the progress of hypertext tech

nology.

ACKNOWLEDGEMENTS

We would like to thank Amy Rivero and Rich Davenport for their editing and illustration assistance. We

wish to thank Nonn Delisle and Mayer Schwartz of the Tektronix Computer Research Laboratory for their

helpful comments. We would also like to thank them for their patience during the past year as they helped

us Jearn about hypertext.

REFERENCES

[Deli86] Delisle, Nonnan and M. Schwartz. "Neptune: A Hypertext System for CAD Applications."

Proceedings of ACM SJGMOD '86, Washington, D.C. (May 28-30, 1986): 132-142.

[Garr86] Garrett, N., K. Smith, N. Meyrowitz. "lntennedia: Issues, Strategies, and Tactics in the Design of

a Hypermedia Document System. • Proceedings of the Conference on Computer Supported

Cooperative Work, Austin, TX. (December 3-S, 1986): 163-174.

[Guid86] Guide: Hypertext for the Macimosh Manual. Bellevue. WA: OWL International, Inc., 1986.

[Hala87] Halasz, F., T. Moran, R. Trigg. "NoteCards in a Nutshell." CHI + GI Conference Proceedings,

Toronto, Ontario, Canada. (April 5-9, 1987): 45-52.

[Meyr86] Meyrowitz, N. "Intennedia: The Architecture and Construction of an Object-OrienteJ Hyper

media System and Applications Framework." OOPSLA '86 Proceedings, Portland, Oregon.

November 1987 Hypertext '87 Papers 31

32

(September 29 - October 2, 1986): 18&-201.

[Schw86] Schwartz, Mayer and N. Delisle. "Contexts - A Partitioning Concept for Hypertext." Proceed

ings of IM Conference on Computer Supported Cooperative Work, Austin, TX. (December 3-5,

1986): 147-152.

[Yank85] Yankelovich, N., N. Meyrowitz, A. van Dam. "Reading and Writing the Electronic Book. •

Computer 18, 10 (Oct. 1985): 15-30.

Hypertext '87 Papers November 1987

Turning Ideas into Products:
The Guide System

P.J. Brown

Office Workstations Ltd., 5 Abbeymount Techbase
2 Easter Road, Edinburgh EH7 SAN

Computing Laboratory, The University of Canterbury, Kent CT2 7NF

ABSTRACT
The Guide system is a successful commercial product that originally came out of some ideas of a research pro
ject. Unlike many other hypertext systems, Guide is aimed at naive users and authors in the personal computer
market. This paper evaluates the basic principles of Guide, and describes the interplay between the product
and the continuing hypertext research programme.

INTROOUCTION

Many hypertext systems today are research prototypes that are starting to have their first experimental uses on
real documents. Although s~ome systems are in the field- including Augment, following Engelhart's pioneer
ing ideas (Engelhart, 1963) - most require some sophistication either on the part of users or, more particularly,
authors. In general systems have not reached, and often have not been designed to reach, a mass market. The
Guide system is an exception to this: it has been marketed as a product since Angus! 1986. Members of the

·public who buy Guide not only have to learn how to use the system; they also need to author their own materiaL

There is a danger of popular research areas becoming a bandwagon that is driven by its own momentum rather
than by the needs of real users. A particularly sad example .of this was the 'extensible languages' bandwagon of
the early seventies, which attracted large numbers of able researchers but, after a few years, had disappeared
without trace. Hypertext is currently a popular research area, and we are all keen to make it lead, in due time, to
systems that gain wide acceptance with users. 1bis paper tries to make a contribution towards this by describ
ing research ideas that have fed into a product that has had success in a mass market, and showing how the pro
duct has fed back into research.

HISTORY

I will start with an outline of the history of Guide, and its intended usage.

Guide began as a research project at the University of Kent at Canterbury in 1982. The aim was simple: to
present documents on computer screens. At the time - and it is still largely true - most documents presented
on computer screens were simply reproductions of paper documents. Such documents bad all the disadvantages
of paper, and some extra disadvantages too, such as an inferior image and a physical lack of flexibility. Not
smprisingly, the users preferred paper. The aim of Guide was to break away from the constraint of paper and
rethink from scratch bow best to display documents on screens. In particular it was desired to take advantage of
the high bandwidth of communication between user and computer offered by a graphics woikstation. As a

result, the user should be able to interact closely with a document and tailor it to what be wanted to read.

Note that Guide did not start as a 'hypertext' project. The focus was on an application rather than a mechanism.
In the event the needs of the application have led Guide into including increasingly, more hypertext features.

The first prototype of Guide ran under Unix on the ICLPerq in 1983, and development at the University of Kent

bas continued to focus on UNIX workstations.

November 1987 Hypertext '87 Papers 33

A COMMERCIAL PRODUCT

In 1984, Office Workstations Ltd. (OWL) became interested in Guide, and decided to implement Guide as a
commercial product on the Apple Macintosh. Turning a research prototype into a product requires a good deal
of work, but in essence OWL's changes to Guide were:

•tailoring the user interface to the Macintosh house style.

•adapting Guide to fit in a smaller environment than the expensive workstation for which it had been developed.

•adding some features and cutting a lot out.

The co-operation between OWL and the University has continued successfully since. The purpose of the
University's work, on its UNIX implementation of Guide, is to try out new ideas, and that of OWL to exploit
these ideas- and indeed to enhance them with OWL's own ideas- and to respond to the demands of the
mlllketplace.

In tbis paper I will refer to the two strands of development as UNIX Guide and OWL Guide. The OWL product
is, incidentally, now available on an ffiM PC, and is not confined to the Macintosh.

There has been a tendency for hypertext work to be based on expensive hardware, that precludes its use in any
mass market for at least five years. This was true of the original UNIX Guide and a great achievement of the
OWL work has been to show what can be achieved with more modest hardware. The Guide effort has been re
focussed accordingly, and the resulting discipline has been wholely positive. Features that are profligate with
resources have to be strongly justified.

USERS

A striking impression that comes out of Conklin's (1986) excellent survey of hypertext is the huge diversity of,
on the one hand, hypertext systems and, on the other, potential application areas. Generally we have yet to see
how systems and application areas match up, and in considering how tbis may happen it is useful to evaluate
how programming languages match up with their application areas. The marlcet for programming languages,
being at least thirty years old, is a mature one compared with the hypertext market, and thus there may be les
sons to be learned.

For example, attempts to build the ultimate programming language to cover all applications have failed to pr<r
duce attractive products. The successful programming languages cover a market sector, which may vary from a
wide sector like Fortran's 'scientific computing' to a narrower niche like SNOBOL's 'string manipulation'.
You can, if you are sufficiently determined, use a language outside its intended mlllket: you could use FOR
TRAN to write a payroll program or a string manipulation program. A few of these strayings have been surpris
ingly successful and have pioneered applications that were never in the mind of the original language designers.
The majority have, however, been disasters.

Some programming languages have succeeded because they were there at the right time to exploit new
hardware/software advances. A good example of tbis is BASIC, which exploited interaction and was
sufficiently small to run well on hardware that people could afford. As a result of this head start (and of success
ful design, even though computer scientists may not like it) BASIC has come to dominate a large market sector.

In the field of hypertext systems, different systems began with different applications in mind. Guide started out
with the application of displaying documents ('browsing' if you like), whereas others systems such as Inter
media (Yankelovich et al, 1985) and Textnet (Trigg and Weiser, 1986) had critiquing applications in mind.
Systems are now extending their horizons, and, as with programming languages, you can bend any system to
any application if you try bard enough; we are now learuing where the practical boundaries lie. Certainly Guide
has had its surprises - mainly but not exclusively positive - from the marl<etplace. When there is a failure, a
voice says: 'With these extra two features, Guide would become suitable for a new set of applications'. If the
parallel with programming languages is correct, tbis is a siren voice. Presumably the original designers of
BASIC resisted such siren voices.

34 Hypertext '87 Papers November 1987

CATERING FOR NAIVE USERS

A1; well as finding its application area, a hypertext system needs to determine how much sophistication its users
need. There are, indeed, two classes of user: the end-user, and the author who prepares material for the end

user.
Guide is aimed at naive users, both authors and end-users, as any product aimed at a mass market must be. The
number of systems that claim to be suitable for naive users is probably ten times greater than the number that
really are. However Guide can point to some success in this area, aud I shall now outline the design principles
that led to this.

FUNDAMENTAL MECHANISMS

One way Guide has set ahout catering for naive end-users is by disguising the nature of the underlying data
structures. In many applications the user can be totally unaware that the document he sees on the screen is made
up of a lot of interlinked substructures. In particular the Guide user sees the document as a single scroll, rather
than as lots of separate pieces of material scattered ahout the screen in separate windows, or in separate frames
which appear one at a time on the screen.

The most important mechanism in Guide for exploring documents is the replacement-button. The
replacement-button is a button within the document It is an example of the 'embedded menu' described by
Koved and Schneiderman (1985), and implemented in their TIES system. When selected with the mouse, a
Guide button is replaced in-line by the material linked with that button (as distinct from TIES, which causes a
new frame to replace the current one). Typically the author will present a document initially in summary form,
with replacement-buttons to allow the user to expand the parts of the document that interest him. For readers of

this paper who are unfamiliar with Guide, Fignre 1 shows how a document may initially he presented. The
replacement-buttons are shown in a bold font - the same font as the menu. In Fignre 1 all the replacement
buttons bave the label More, though the author could, if he chose, bave given them different labels. Fignre 2
shows the result of selecting the More replacement-button below 'Malaysia's MMC Metals' in Fignre 1 (a close
look at Fignre 1 will show the cursor pointing at this).

r of rue [dlt Seorch Dis

THE WALL STREET JOURNAL
New York Shares

soan.d 'Z7.S2 points t:la.n:cord 1401 .ee close.
More

LLoyd's of London
thief eltC'Utivt~ JMHotr Ati'V.'f'o.111 tt'itnt4.
More

Malaysia's MMC Metals
vitMn:v fn:~rn the London Mcltl Exthal\(t.
Mo1ED

Scbering-Plough
:rwnt4 • :N:vpn:,ident, L'\d t.dop~4 a. ft.'lit.lDJUllf.dcrur i."l an •Pput.ntn:,po~e"
..U-ovu lWn:)m':l.
Mon

Figure 1: an initial view of a document

November 1987 Hypertext '87 Papers 35

• ot rue Edit seerch

THE WALL STREET JOURNAL
T'UIUSI.f.'!. UJJ.176JC' t. 1••• 1</ II! Jlr>v }&Jr./'' t'""U'&V lN . .UJ JitAIII,.,rnrl

New York Shares
ltO&.rd. 2"1.SZ poJnts 'CI&neol'IS 1~1.88 close •

. More

LLoyd's of London
chief rzel:'lJtiYr. J.wH.trflr.n2J.~V1 sukntd..
Mon
Malaysia's MMC Metals

Figure 2: outcome from Figure 1 when the third More is selected

•

Typically the replacement of a button itself contains further buttons. A reader explores a document by succes
sively expanding buttons, until he reaches the level of detail he wants. He thus tailors the document on the
screen to his reading needs.

Sometimes the reader will wish to go back to a lesser level of detail. He can at any time 'undo' the replacement
of any button previously selected, thus folding the replacement back under its original button. This saves screen
space and generally makes the document more manageable and understandable. As the user sees it, this folding
ntechanism is particularly simple: if anything you see is at too great a level of detail you just point at it and click
the mouse-button; the offending material is then folded back under a button. (Ibis does not work, of course, if
the offending material is at the top level of the document, and thus not part of a button's replacement. However
if the reader cannot understand the initial top level description there really is something wrong - either with
reader or author.)

Before folding occurs, the user gets feedback on what will he folded. Indeed feedback before the event is a
feature of most Guide operations, as it is with much highly interactive software.

By using the replacement-button mechanism, documents can be presented in a form suitable for a wide range of
readers. It would be wrong to clabn, however, that by using these mechanisms it would be possible to produce,
say, a single description of an aero-engine that was understandable by a Ph.D in aeronautics and a ten-year old.
It is nevertheless true that authors can cover a reasonable spectrum of readers with one document, and that each
reader can get what be needs out of it.

Other advantages of this in-line replacement mechanism are:

•it helps, as I have said, to disguise underlying data structures. The reader sees a document in terms of 'magic
buttons' which can be expanded and contracted. He does not need to understand the computer scientist's con
cept of a tree.

•reversing actions is easy, and need not be done in the same order in which they were performed.

•all material is seen in context since it is replaced in-line.

36 Hypertext '87 Papers November 1987

ENHANCING REPLACEMENT-BUTTONS

Obviously replacement-buttons are not by themselves suitable for presenting all types of document. As
described so far, they only cover tree snuctures, though a later section of the paper describes extensions to this.
Guide therefore contains two further facilities concerned with buttons embedded within documents. One is the
inquiry, which enhances the use of replacement-buttons, and the otlier is buttons that complement replacement
buttons by offering out-of-line replacement Examples of the latter are note-buttons in OWL Guide (which
cause the replacement to pop up in a separate window that remains in view only while the mouse-button is held
down) and glossary-buttons in UNIX Guide (which display the replacement in a separate sub-window using a
split-screen approach). Such buttons are shown in a different font from replacement-buttons since their
behaviour, as the user sees them, is different The term poison pill in Figure 1 is an example of this: when this
note-button is selected, an explanation of the jargon term 'poison pill' pops up.

An inquiry consists of one of more replacement-buttons embedded in other text (and/or graphics), e.g.

Is it Red, Green or Blue?

If any of the buttons within an inquiry is selected, the whole inquiry is replaced by the corresponding replace
ment This provides a mechanism for mnlti-way replacement, as the above example suggests, and more gen
erally permits links to have regions rather than points as their source (following the tenuinology of Conklin's
survey). The use of regions allows the author to explore different presentation styles. In particnlar if the inquiry
is a screenfnl of information then Guide can be made to simulate frame-based systems.

A big advantage of the inquiry mechanism is that it gives the author a great deal more flexibility without adding
any significant extra. complication for readers: replacement-buttons within inquiries are used in exactly the same
way as other replacement-buttons, and the reader can be largely unaware of the inquiry mechanism.

FURTHER MECHANISMS

I have argued that replacement-buttons (together with inquiries that contain thi.m) contribute towards making
Guide suitable for naive end-users. There are three other factors, which I believe, also make major contribu
tions.

The first factor is the use of graphics and their close integration with text Names of buttons can, for example,
be graphical rather than textual. This allows many types of information to be presented in a much more attrac
tive and readable way. (Though this paper has my name as author, many of the facilities described are as much
the work of the OWL staff as me. In the case of graphics, the work exclusively came from OWL and I can
claim no credit at all.)

The second factor is minimisation of facilities. If a Guide user needed to have to learn more than (say) five
facilities before using it, then most usexs wonld give up. Guide end-users only need to master four facilities
(though, to be exact, there is a bit of play in this figure since it depends on what you count). These are:

•travelling round the document using the scroll-bar. (On the Macintosh this mechanism will already be familiar
to most users.)

•replacement-buttons.

•note-buttons (or glossary-buttons in UNIX Guide).

•reference-buttons. These, which only apply to OWL Guide, will be described later.

The greatest thrills in the development of Guide occurred when a single simple mechanism was found to replace
several more elaborate ones. The four mechanisms described above have numerous ancestoxs.

The third major factor in making Guide acceptable to naive usexs is its authorship facilities. A fundamental
principle of Guide is that the author is the reader and the reader is the author. The reader (i.e. end-user) can
therefore freely edit the documen~ thus acting as author, and the only way an author can see a document is to
see it as the reader does. Further details of this can be found elsewhere (Brown, 1986), but I certainly believe
that close integration of authors with readexs - a feature certainly not unique to Guide - is a key to success of

November 1987 Hypertext '87 Papers 37

hypertext systems.

Lastly, it must be said that those of us who are techoicians always attribute software's success- if it happens
- to the excellent techoical features. The truth is, of course, that marketing plays a large part, and it is even
possible that success can be in spite of rather than because of technical features: a strong caveat to many of the

comments in this paper.

RELATIONSHIP BETWEEN RESEARCH AND PRODUCT

Up to now, I have described and evaluated those design characteristics of Guide which, I believe, help to make
it successful as a product as well as an interesting research exercise. In the rest of the paper I will explore the

relationship between the research at the University and the product

Researchers like systems built on pure concepts: a single simple approach that covers a variety of needs. Indeed"
I have already described instances of this. Products that are to succeed must temper this intellectual purity by
adding some logically redundant features that users think they need or are familiar with. There are, for example,
a Iot of features that every user would expect to find in a Macintosh application, and would be upset if they were
not there.

A particular instance of this occurs in the different linking mechanisms found in UNIX Guide and OWL Guide.
The latter, to cater for non-hierarchical links, provides a conventional hypertext linking mechauism. This is the
reference-button. When a reference-button is selected, it causes a jump to a different point of the document (or
to a point in a new document). Such links are the essence of hypertext, but nevertheless have their dangers.
Again taking a parallel with programming languages, a link is a 'goto' instruction. As the reader will know,
'goto' instructions flourished during the first fifteen years of the development of programming languages. They

were then revealed to be criminals, and, unlike criminals in the real world, have now been successfully elim-"
inated, at least in professional programs. Their sin was that they made programs structurally unmanageable; the
sin was only revealed during the maintenance stage of very large programs.

Although it is wrong to base arguments solely on analogy, there is a real worry that uncontrolled linkages in
hypertext documents may have a similar effect to gatos. Indeed they are gotos. Documents, like programs,
need to be maintaioed, and doubtless for large documents, as for large programs, maintenance costs will dwarf

all others. It is therefore worth looldng abead to try to find alternative, more structured, approaches to random
gotos.

UNIX Guide has therefore (so far!) eschewed the goto and has instead extended the replacement-button
mechanism to achieve the same purpose. This extended mechauism, the copied-definition mechanism, also
attacks another problem with gotos in documents: if a link says 'see XXX' the interested reader should peruse
XXX and then resume at the current point The problem is that he has, in general, no ~ay of knowing where to

stop reading about XXX and return to the original. This is because the goto does not specify the scope of the
destination. (In a hypertext system where the units are small, this problem is lessened.)

The copied-definition mechauism requires the author to mark as a definition any material that is gone to. A
definition is like a replacement-button but has the added property that the button's replacement can also be used
elsewhere. In any place where the author wished to go to the material associated with the definition, he inserts a
usage-button of the definition. A usage-button, like a definition, behaves to the user as an ordinary
replacement-button. Thus the reader might see:

.•. thus follows (see Lemma 2).

When the user selects the Lemma 2 usage-button, it is replaced in-line by a copy of the definition of Lemma 2.
To him, the usage-button is absolutely identical to a normal replacement-button; he is unaware of the machina
tions going on behind the scenes. The single idea of the 'magic button' is made to encompass both tree-like
hierarchical expansions, and cross-reference mechanisms associated with directed graphs. Moreover the usage
button has the further merit that the user reads its definition in the context in which it is used; the user is not
required to move to a different part of the document or to another window,

38 Hypertext '87 Papers November 1987

This copied-definition mechanism, though both powerful and usable, is pernaps still not suitable for a mass
market product There are problems for authors in distinguishing copies from originals, and there are perfor
mance problems with extremely large documents. Nevertheless, it might well lead to valuable results in the
medium-term future, and provide a further example of seeds of research fruiting in the Guide product

PURITY LOST

The above has described potential feeding of research into product. On the other side, the product has fed
strongly into the research, mainly through the evidence of real users with real applications. I will take one
somewhat lightweight example since it illustrates the clash between reality and the intellectual purity desired by
researchers.

One of the original design principles of UNIX Guide was that, not only shonld there be no gotos within the
document, but there should also he no 'Fmd' comniand (i.e. a command that searches for a given string). The
Fmd command is, after all, a user-controlled goto. More seriously, there is a Jot of wisdom in the statement
'You can only extract information from a database if you know that it is there' (quoted in the ZOG papers
(Akscyn and McCracken, 1984, Robertson eta/, 1981)). Thus users can only use the Fmd command effectively
if they know the name of the word to search for. Given that they will not, in general, know this, it is better to
encourage them to follow the discipline of exploring the document hierarchically through the nse of
replacement-buttons. With this discipline, assuming the author has done a good job with the button names, the
user should he able to find the path to the information he needs. That, then, is the intellectual argument, and it is
certainly not without merit

OWL Guide includes a Fmd command, and there is no doubt that in a real world rather than an ideal one, it is
valuable. An author may for example feed a Guide document to a spelling or style checker, and find he has
made some mistakes. He then needs to find the errant words in the document He may wish to change his ter
minology, replacing all occurrences of one word by another, or he may wish to .find if a document contains any
references to a particular term. UNIX Guide has therefore quietly introduced a Fmd command. The enemy, the
goto, has gained a foot in the camp.

WORK FOR THE FUTURE

Of the software tools constructed by researchers, pernaps 98% never find any serious users outside the research
group that created the tooL The most common reason for failure is that a tool is too complicated to nse. Hyper
text tools have no exemption to this rule, and UNIX Guide would have failed without the feedback from the
0 WL product The biggest problem in hypertext systems; which most of us admit in footnotes towards the end
of papers extolling the virtoes of our systems, is of getting lost This applies both to readers who follow links
set by others, and, worse, to authors who need to create and modify links. There is thus a pervading need for
navigation aids and also for checking aids that verify the validity of links. The need for such aids probably rises
proportionally to the square of the document size.

Guide can certainly suffer from problems of getting lost We like to think that some of the disciplines imposed
by Guide, such as its linear scroll and its replacement-buttons, help to alleviate the problem, but nevertheless the
problem remains. The solution may lie in extending the current scroll-bar to act as a simple map of the current
document, and pernaps in providing more contextual feedback as the user explores a document This is the sub
ject of current research.

A second reason for failure is that a tool is an island to itself and cannot be combined with other tools. Those of
us that expect the whole world to rewrite its documentation to fit the needs of our new hypertext system are
unlikely to have our expectations fulfilled. Instead we must capture existing documents and have some way
even if crude- of automatically imparting structure to it. We must also worl< with existing tools such as spel
ling checkers or encryption programs. This is to some extent a research area but more, I expect, a question of
curbing some of our wilder aspirations so that, following a recurrent theme of this paper, we fit the world as it is
rather than the world as we would like it to be.

November 1987 Hypertext '87 Papers 39

CONCLUSIONS

This paper has described a hypertext system built on a few simple, pemaps even simplistic, principles. The big
gest advantage of this is that Guide is now widely used by real users with real applications. Their feedback will
make it more likely that subsequent, more elaborate, features added to Guide are the right ones.

REFERENCES

Akscyn, R.M. and D.L. McCracken (1984). ZOG and the USS CARL VINSON: lessons in system development,
Carnegie-Mellon Technical Report CMU-CS-84-127.

Brown, P J. (1986). 'A simple mechanism for authorship of dynamic documents' iu J.C. von Vliet {Ed.), Text
processing and docwnent manipulation, Cambridge University Press, pp.34-42.

Engelhart, D.C. (1963). 'A conceptual frameworlc for the augmentation of man's intellect', iu Howerton and
Weeks (Eds.) Vistas in information handling, Vol. 1, Spartan Books, London.

Koved, L. and B. Schneiderman (1986). 'Embedded menus: selecting items iu context', Comm. ACM 29, 4,
pp.312-318.

Robertson, G, D. McCracken and A. New!'Il (1981). 'The ZOG approach to man-machine communication', Int.
J. Man-Machine Studies, 14, pp.461-488.

Trigg, R.H. and M Weiser (1986). 'TEXTNET: A networlc-based approach to text handling', ACM Trans. on
Office Systems, 4, 1, pp.l-23.

Yankelovich, N., N. Meyrowitz and A. van Dam (1985). 'Reading and writing the electronic book', IEEE Com
puter, 18, 10, pp.l5-30.

40 Hypertext '87 Papers November 1987

Applications
in the

Humanities
and Medicine

Hypertext and Creative Writing

Jay David Bolter
Michael Joyce

University of North Carolina
CB# 3145 Murphey Hall
Chapel Hill, North Carolina 27599-3145

ABSTRACT

Among its many uses, hypertext can serve as a medium for a new kind of flexible,

interactive fiction. StoryspaceTM is a hypertext system we have created for authoring

and reading such fiction. Interactive fiction in the computer medium is a continuation of

the modern "tradition" of experimental literature in print. However, the computer

frees both author and reader from restrictions imposed by the printed medium and

therefore allows new experiments in literary structure.

THE IDEA OF INTERACTIVE FICTION
The idea of hyptertext, which seemed daring only a few years, is now emerging as a serious and sensible

way to use the computer for reading and writing. Technical writing and pedagogy (interactive

communication between teachers and students) are obvious and imponant applications for hypenext

systems. But hypenext may in fact apply to the whole range of human literacy, including the writing and

reading of tiCtion. Using hypenext as a vehicle for ficiion is both more and less daring than using it for

technical writing or education. It is more daring because fiction seems frivolous in the pragmatic world of

data processing. It is less daring because fiction, at least modem fiction, is by nature open to experiment,

and being open or open-ended is precisely the quality that hypenext fosters in writing. The point of a

hypenext is that it can change for each reader and for each act of reading. This flexibility can be exploited to

make fiction interactive.

Interactive fiction has already existed for some time in the form of computerized adventure games. In an

adventure game the player has a mythical world to explore -- a dungeon or an enchanted forest or valley.

The computer describes the scene, and the player issues simple commands such as "go ahead", enter the

room", "pick up the dagger'', "get gold," and the like. The goal is to amass treasure and dispatch monsters,

although sometimes the game is more sophisticated, casting the player in the role of a detective who must

November 1987 Hypertext '87 Papers 41

solve a murder or other mystery. Even the simplest of these games is a fictional hypertext. For the

computer is presenting the player with a text, and the player's job is to understand and respond to that text.

Depending upon his response, the computer presents more text and awaits a further response. The player,

then, is an unusually powerful reader, whose decisions determine what text he will next see. Admittedly the

text of the current games is simple-minded, but the method of presentation is not.

This method of presentation can now be applied to serious fiction. A printed novel presents its episodes in

one order, but the computer removes that restriction. Instead of a single siting of paragraphs, the author

lays out a textual space within which his fiction operates. The reader joins in actively constructing the text

by selecting a particular order of episodes at the time of reading. Within each episode, the reader is still

compelled to read what the author has written. But the movement between episodes is determined by the

responses of the reader, his interactions with or intrusions into the text, and the reader's experience of the

fiction depends upon these interactions.

In its simplest form, interactive fiction requires only two elements: episodes and decision points (links)

between episodes. The episodes may be paragraphs of prose or poetry, they may include graphic designs or

pictures as well, and they may be of any length. Their length will establish the rhythm of the story -- how

long the reader remains a conventional reader before he is called on to participate in the selection of the next

episode. At the end of each episode, the author inserts his decision points - a set of links to other episodes

together with a procedure for choosing which link to follow. Each link may require a different response

from the reader or a different condition in the computer system. The reader may answer a question posed in

the text, and there will be one link for each possible response. The computer can also keep track of the

previous episodes the reader has visited, so that he may be barred from visiting one episode before he visits

another. Artificial intelligence experts would not consider such a simple scheme for interactive fiction

worth pursuing. They would argue that we have to ·store knowledge representations in the computer and

write a program that can generate new sentences in response to the reader's replies. In other words, the

program itself would be the author, not simply the medium for delivering what the human author has

written. While this AI strategy is interesting, it is not feasible at present or in the near future. No AI

specialists can tell us how to store a world of knowledge in the computer; nor can their programs generate

sophisticated English prose in response to queries by human users. For the foreseeable future, interactive

fiction can only be a hypertext of prose written by human beings. There is in any case no need to wait for

such breakthroughs in artificial intelligence. Even with the simple matching technique and the tracking of

previously visited episodes, the author can create a fictional space of great flexibility.

Such electronic fiction is not automatic fiction. Since the computer does not create the verbal text, the

locus of creativity remains with the author and the reader. Nor is electtonic fiction necessarily random. for

the author may put any number of restrictions on the reading order. The extent of the reader's choices and

42 Hypertext '87 Papers November 1987

therefore his freedom in examining the literary space depend upon the links that the author creates between

episodes. The reader may have to choose among a few alternatives or may range widely through the work.

The author can reliuquish as much or as little control as he chooses; he has a new literary dimension with

which to work.

STORYSPACE
In collaboration with Professor John B. Smith, we have created a system for interactive fiction called

StoryspaceTM, which implements the scheme of episodes and links mentioned above. (The system is by no

means limited to fiction, although fiction will be the focus of the discussion here.) Storyspace has two

modes: one for the author and one for the reader. The author creates his fiction as a series of textual

episodes, using what we call a structural editor. This editor gives him a graphic or diagrammatic view of

the hypertext he is creating. The reader has a different and more limited view: he sees the contents of each

episode and may then reply by typing a string or pressing a button in order to branch to the next episode.

Storyspace is implemented on the Apple Macintosh computer. This machine provides good graphics for the

editing process. It is also popular and inexpensive, so that fictions created with Storyspace can be widely

distributed.

The author constructs his fiction as a network of units. In the editor, the units appear as boxes on the

screen. The author manipulates the structure by moving, adding, or deleting these boxes. He can also open

each box to type in the text of his fiction. Each episode may be as long or as short as the author wishes:

one word or several paragraphs. The end of each episode should, however, indicate how the reader is to

respond: whether he should answer a question, make a choice, or simply hit return.

To indicate the relationships among these episodes, the author draws links, which appear as arrows on the

screen. These links indicate possible orders of reading for the episodes, in that each arrow points to a

possible next episode.

November 1987 Hypertext '87 Papers 43

44

1 " he cried,
all the

Each link carries with it a condition statement (specified by the author), which must be satisfied in order for

that link to be followed. At present Storyspace recognizes two kinds of conditions. The link may require

that the reader match a string (answer a question) before proceeding. The link may also require that the

reader already have visited a particular episode before proceeding. The author can also specify Boolean

combinations of these conditions.

While the author sees and manipulates a diagram of the evolving structure of his fiction, the reader sees

only the text, not the structure of connecting links. The reader begins in one episode 'designated by the

author as the starting place. He reads the text of that episode and may respond by typing text or pressing an

appropriate button. The system processes the reader's reply simply by checking all the links that lead out of

the current episode. It checks these links in the order of creation and takes the first one whose condition is

satisfied. It then displays the text of the destination episode and awaits a further reader response.

INTERACTIVE FICTION AND THE EXPERIMENTAL TRADITION
Storyspace, then, is a simple system for hypertextual fiction, but even this system permits significant

structural experiments. Its use of episodic branching challenges many conventional ideas about literature. If

the reader is allowed to choose his path through the narrative, then the stability and certainty inherent in a

printed text disappear. There may no longer be one plot, but several, and characters may no longer develop

in a consistent fashion. The structure and rhythm of the text will be different for each reading. Every

element of fiction is subject to electronic fragmentation and recombination. At the same time, by

disrupting the stability of the text, interactive fiction belongs in the tradition of experimental literature (if I

may use this oxymoron) that has marked the twentieth century -- the era of modernism, futurism, Dada,

surrealism, letterism, the nouveau roman, concrete poetry, and other movements of greater or lesser

influence. The experiments of Dada, for example, were aimed at breaking down all structures of established

Hypertext '87 Papers November 1987

art and literature, and in that breakdown some of the Dadists worked in the same spirit as writers and readers

may now work in the electronic medium. Jean Arp wrote that in his poems: "I tore apart sentences, words,

syllables. I tried to break down the language into atoms, in order to approach the creative.• [Gros71, p.l36]

Tristan Tzara proposed a poetics of destruction, when he gave this advice for creating a Dada poem: "To

make a dadist poem. Take a newspaper. Take a pair of scissors. Choose an article as long as you are

planning to make your poem. Cut out the article. Then cut out each of the words that make up this article

and put them in a bag. Shake it gently. Then take out the scraps one after the other in the order in which

they left the bag. Copy conscientiously. The poem will be like you ... " [Gros71, p. 125]

Dada is an early and influential example of the modem will to experiment. The modem attack has often

been aimed at the conventions of the realistic novel, the nineteenth-century novel that told a story with a

clear and cogent rhythm of events, and in the course of their attack modem authors have often found

themselves straining at the conventions and limitations of the printed page. Because the linear-hierarchical

presentation of the printed book was so well suited to the conventions of plot and characters of the realistic

novel,. to attack the form of the novel was also to attack the technology of print that helped to shape that

form. The French often led the way with the nouveau roman and Philip Sollers and the Tel Que! group .

From France and elsewhere, we have had programmed novels and aleatory novels. All these efforts were

instances of subversion: they worked from within, attempting to undercut the conventions of printed

literature while themselves remaining printed books. Subversion is an effective mode of attack precisely

because of this irony -- because in this way the printed novel is made to contain the seeds of its own

destruction, or perhaps deconstruction.

Indeed, much important twentieth century literature may be, and has been, accused of subversion. The

avant-garde movements like Dada were never so radical as they claimed to be; they were instead extensions

or perhaps caricatures of the mainstream. Joyce, Virginia Woolf, Pound, Eliot, and others all participated in

the breakdown of traditions of narrative prose and poetry; breaking with such traditions was the definition

of being modem. Pound and Eliot set about to replace the narrative element in poetry with fragmented

anecdotes or mythical paradigms. Joyce and Woolf called into question the strategy of the novel as a linear

and objective narrative. They devised new ways of structuring their works based upon stream of

consciousness (Woolf) or upon multiple layers of topical and mythical organization (Joyce). All of these

writers were trying to set up new relationships between the moment-by-moment experience of reading a

text and our perception of the organizing and controlling structures of the text. In this sense, hypertextual

fiction is a natural extension of their work, redefining the tradition of modernism for a new medium.

BORGES

One contemporary writer whose work is very suggestive of interactive fiction is the Argentinian Jorge Luis

November 1987 Hypertext '87 Papers 45

46

Borges, whose shon stories called Ficciones are a series of meditations upon writing or more broadly upon

the human capacity to create and comprehend symbols. Borges writes tiny pieces without much plot or

characterization -- pieces that are utterly insignificant by the standards of the nineteenth-century novel.

Often these pieces concern the problem of time and writing: Borges is intrigued by the fact that a frozen

text cannot change to reflect possibilities that unfold in time. "An Examination of the Work of Herben

Quain" is the literary obituary of a writer who tried to liberate his texts from linear reading and static

interpretation. Quain's work April March is nothing less than an interactive fiction. It consists of thirteen

chapters or sections representing nine permutations of the events of three evenings. The novel is therefore

nine novels in one, each with a different tone. Borges tells us the work is a game. He adds that " [w]hoever

reads the sections in chronological order •.. will lose the peculiar savor of this strange book." [Borg62, p.

76] He even gives us a tree diagram of the ternary structure of the work, and another diagram of the binary

structure that Quain later says he should have written.

Borges' longer and more elaborate "Garden of Forking Paths" is a detective story. At its center the story

contains a description of a Chinese novel, a novel that seeks to explain and in its way to defy time. It was

thought that the author Ts'ui Pen had retired from public life with two objects: to write a book and to build

a labyrinthine garden. In fact Ts'ui Pen had only one goal, for the book was the labyrinth. The manuscript

Ts'ui Pen left behind was not, as it seemed, "a shapeless mass of contradictory rough drafts," [Borg62, p.

96] but instead a ramifying tree of all possible events. "The Garden of Forking Paths is an enormous

game, or parable, in which the subject is time." [Borg62, p. 99] Ts'ui Pen "believed in an infinite series of

times, in a dizzily growing, ever spreading network of diverging, converging and parallel times." [Borg62,

p. 100]. In the end "The Garden ofFolking Paths" is no more serious than any of Borges' fantasies. Borges'

point is not to sketch a new philosophy of time, but a critique of writing itself -- to imagine a book that

calls into question the fmite, fiXed character of writing or print. Of course Borges' fiction is also a book,

as he realizes, and therefore subject to the same limitations that he is describing. His understanding of

these limitations may explain why Borges himself only envisions experiments rather than undenaking

them. The Ficciones are themselves conventional pieces of prose, essays or stories meant to be read page

by page. Yet the works he describes, the novels of Quain or the "Garden of Forking Paths," belong in

another writing space altogether. Borges never had available to him an electronic writing space, in which

the text can constitute a network of diverging, converging and parallel times. The literature of exhaustion

in print by no means exhausts the electronic medium. In fact, a number of Borges' pieces suggest

themselves for translation into the computer's writing space. The "Garden of Forking Paths" has been

converted into an interactive fiction by Stuart Moulthrop of Yale University. This Storyspace module

contains a web of over 100 units and 300 connections. Moulthrop has added his own meditions to those of

the Borges' story.

Hypertext '87 Papers November 1987

THE STRUCTURE OF INTERACTIVE FICTION
Like Borges, many experimental writers have concerned themselves with the problem of writing or

printing: their concern is shown by the difficult relationship between the narrator and text and between the

text and its reader. Hypertextual fiction has much in common with these experiments in print. It too will

have to introduce new procedures of reading that violate the reader's expectations of a linear narrative.

(Perhaps the frrst indication that electronic fiction has matured beyond the adventure game will be the

appearance of fictions that are about writing, about capturing experience in writing, and therefore about

themselves.) Electronic writers therefore need conventions, genres, traditions by which their medium can be

governed. They must fmd new ways to maintain a tension between the reader and the text. The source of

that tension will surely be the participation of the reader in making the text. In electronic fiction, the

struggle between author and reader to appropriate the writing space can become visible, as the reader admits

or tries to avoid admitting particular elements into his particular reading of the text. Moreover, electronic

authors will need a new concept of structure. The structure of an electronic fiction will change with each

reading, because the order and number of episodes will change. Authors must therefore learn to conceive of

their text as a structure of structures, and this is a concept that is new in the history of literature.

The temporal character of interactive fiction is also something new. In printed fiction the author is free to

manipulate the time in which his story takes place, and every good author does so. However, the plot, the

author's manipulation of story time, is itself static. Printed fiction is one-dimensional in the sense that we

need only one dimension in order to represent the experience of reading it. The episodes (chapters, sections,

cantos, books, volumes) are realized through time as we read. The links between the episodes are fixed in

the course of writing, and the reader has no obvious and effective way to alter the order of reading. In

electronic fiction multiple links among episodes allow our temporal experience of the plot itself to vary.

Time may be fluid in a printed novel, but the presentation of time is fixed, as the fixed pages of the book

mark the progressive stages of the narrative. The author manipulates words to create a single narrative

structure. The author writes with words, not with structures. The electronic medium permits writing of a

second order, a writing with narrative units, in which the structure of the text becomes truly fluid and

indeed geometric. The author becomes a geometrician or architect of computerized "space" (as computer

memory is in fact called by programmers); he fills his space with a special pattern of episodes and links

that defme a kaleidoscope of possible structures. The success of his work wiii depend upon the poetic

rightness of the way in which the pattern is realized in the act of reading.

Storyspace provides the author with the opportunity to see the structure of his tale and therefore to use the

structural geometry as an aesthetic principle. Because the reader does not see the diagrammed structure of

the text, he is left to gain an intuitive sense of the structure by reading the episodes themselves. He might

have to read the tale many times to understand a structure that changes, in a controlled fashion, with each

November 1987 Hypertext '87 Papers 47

48

reading. Such a reader is like a mathematician who attempts to envision a four-dimensional object by

looking at several projections in three dimensions: each projection is a snapshot, and all the snapshots

must be synthesized to win a sense of the whole, if indeed such a sense is possible. The synthesis of many

readings will be the ultimate experience that the electronic writing offers its readers.

Multiple reading does not necessarily mean multiple plots, although the most obvious way to construct a

hypertextual fiction is by presenting the reader with choices that affect the plot. Hypertext could borrow

from modem literature the techniques of stream of consciousness or multiple points of view as methods of

organization. An electronic author could, for example, create rings of episodes representing the same events

as told by several characters. The technique of telling the same events from different points of view is

familiar from Faulkner's The Sound and the Furv and Darrell's Alexandria Quartet. In exploring these

multiple points of view, the reader of a hypertext can enjoy far more freedom than the reader of a printed

text. He can move back and forth through the episodes, comparing one narrator's version with another.

Even visiting the same episode twice is not mere repetition, because his experience of the narrative will be

affected by the other episodes he has recently read.

Here is an example of a narrative hierarchy composed from the ancient myth of Oedipus, as elaborated by

the Greek playwright Sophocles. The three levels correspond to three points of view from which the story

might be told. The lowest and most confused version takes the perspective of the shepherd who gave the

baby Oedipus away rather than obey the order to kill him. Years later, this kindly shepherd is brought

before Oedipus the king, threatened with torture, and made to reveal what he did with the baby. Then he is

released and left to wonder at the extent of the horror that he has revealed. Oedipus himself provides an

heroic perspective; he is of course most directly affected by the horror of the events. The third and clearest

perspective is the divine view of these view: the story as the god Apollo might tell it. This third

perspective is one that Sophocles himself would never have permitted, for Sophocles' gOds, unlike those of

Euripides, had to remain dignified and remote, their ways inexplicable and terrifying.

Hypertext '87 Papers November 1987

The reader begins at the shepherd's level, and his task is to break into the higher levels representing greater

understand of the events. The divine level is of course harder to reach than the heroic. It is also a detached

view the reader himself may find repellent. Unlike the electronic version of Dungeons and Dragons, the

electronic Oedipus is a game in which winning is not clearly defmed. (One of us, Jay David Bolter, has

discussed the .Oedipus example, other possible geometries, and the idea of interactive fiction as a game in

greater detail elsewhere [Bolt85]).

All electronic literature takes the form of a game, a contest between author and reader. Unlike the static and

· monumental character of printed fiction, hypertextual fiction is characterized by impermanence and a lack of

monumentality. A playful attitude prevails, as it should in any computing task. An interactive fiction is,

after all, a program that the author creates and the reader executes, and any computer -program can go

unexpectedly and ridiculously off track. Fortunately, with most programs, it is possible to restart the

system and try again. The reader of an interactive fiction can return to the starting episode and take another

path. This flexibility of interactive fiction stands in sharp contrast to the solemn rigidity of the printed

book, which cannot change in response to its readers' previous experience. No matter how often the reader

returns to the first chapter of a printed book, he still has only one path to choose. Printed fiction is proud

of its rigidity, and hypenextual fiction, which cannot rival this quality of the printed book, must therefore

draw its aesthetic strength from its capacity for change.

[Storyspace is available to creative writers on an experimental basis. One of us (novelist Michael Joyce) is

currently working on interactive fiction using this system, and his first effort, "Afternoon, a Story" is

available to interested readers. The same methods of editing and presentation can be used for nonfiction and

particularly for teaching. A group working at the University of San Diego under the direction of Professor

Ban Thurber is presently considering an interactive course using Storyspace as an interdisciplinary

introduction to the humanities.]

November 1987 Hypertext '87 Papers 49

50

REFERENCES

[Bolt85] Bolter, Jay David. "The Idea of Literature in the Electronic Age," Topic: A Journal of the Liberal

Am. 39 (Fall, 1985), 23-34.

[Borg62] Borges, Jorge Luis. Ficciones, edited with an introduction by Anthony Kerrigan. New York:

Grove Press, 1962.

[Gros71] Grossman, Manuel L. Dada· Paradox. Mystification. and Ambieuitv in European Literature. New

York: Bobbs-Merrill, 1971.

Hypertext "87 Papers November 1987

From the Old to the New:
Integrating Hypertext into
Traditional Scholarship
Gregory Crane

Co-Director, Perseus Project
Assistant Professor of Classics
Harvard University

ABSTRACT

Hypertext allows academics to structure and manipulate their ideas in a radically new way, but it
should also reinforce traditional scholarly activity. Those designing Hypertext systems that are
intended for the general academic market must be careful to support not only new possibilities,
but those functions with which academics are already familiar. Further, many scholars hope that
their documents will be useful for decades to come. We need standard document architectures
that will separate aparticular Hypertext from the system in which it was designed.

PERSPECTIVE AND PURPOSE OF TALK

This paper differs from that of many in that it is only secondarily interested in the issues of software design.
This talk will outline some of the things that a hypertext system should be able to do if it is going to exert
the widest possible appeal among scholars in the humanities. Rather than addressing those problems that
are most challenging or appealing from a technical point of view, it will pursue those features that many
academics would like to see implemented.

I am, therefore, going to outline a set of priorities which may differ from those of you who are software
designers might assign yourselves. These priorities may seem to you to be distractions, or to pose
problems intellectually less appealing than those which you would normally approach. But if you can
reconcile at least some of these priorities with your own interests, yGlu will expand the basis of your
support, increase the resources at your disposal, and ultimately make greater progress than if you devote all
of your attention to those problems which seem most challenging to you and your immediate colleagues.

My own field bears the elegant name "Classical Philology." I attempt, primarily through the study of texts,
to reconstruct the ancient Greek and Roman world. I happen to be a moderately conservative scholar, but the
materials that I use and the methods that I apply often do not differ markedly from those of my more avant
garde colleagues. We work inductively, examining in considerable detail, a wide variety of texts. Any
statement that we make should derive from a close examination of the primary material. Some literary
critics will discuss a single work or a group of works with little reference to texts by other authors. Others,
me>re historically minded, will incorporate evidence from a wide variety of sources in order to discuss a
single play or poem. Historians will discuss inscriptions as well as texts, anc! students of Greek religion
will dwell heavily upon archaeological material. Whether we are deconstructing a fragment of Sappho, or
writing a commentary on the seventh book of Herodotus, we build our arguments upon textual and visual
materials. Primary sources are precisely that, the material to which all other conclusions are secondary. This
holds true not only for most Classicists, but also for many, if not most, Historians, Literary Critics, or
geoeral students of any period or culture.

Hypertext systems offer substantial promise to such traditional scholars, but software alone is not enough.
An empty hypertext may become a tool for composition or collaboration, but hypertext will not have its
full impact within the academic world until it becomes a medium for publication. Unless contributions to a
given hypertext carty the same weight on a scholarly CV as a traditional paper publication, few scholars are

November 1987 Hypertext '87 Papers 51

52

going to make such contributions, and we will consequently have little material available to us in the new
medium.

On the other hand, a hypertext will only count as a traditional publication when members of a particular
discipline feel that, in order to do their own work, they must use material within that hypertext Even those
who have worked extensively with hypertext systems (such as Professor George Landow of Brown
University) caution that such work is time consuming, and should be left to those who have already
established themselves. Relatively few will, therefore, invest money in hardware and software, or put time
into learning how to use that hardware and software, until they have some compelling reason to do so. We
have, then, a "chicken and egg" problem: we won't develop hypertexts as enthusiastically as we should until
considerable information is already available in some hypertext, but we aren't going to have very much
information until we are already using hypertext systems.

The problem is particularly acute for many traditional scholars. Some disciplines (such as medicine) change
so rapidly that information has a very short useful life. In a relatively few years, all current medical
textbooks will be replaced, and new articles will become old. If the medical world begins to place its
information in a hypertext, all crucial information will, within a few years, be stored in this format.

With many traditional disciplines, however, the rate of change is not nearly so quick. Basic classical texts
and commentaries may be edited once a generation, and this is true for source works in many disciplines.
How often do scholars reedit the wartime papers of Robert E. Lee, or the correspondence of Thomas Paine?
Humanists in particular, even as they argue fiercely among themselves over their methodologies or
conclusions, often assume that the basic material with which they work is relatively stable. Classicists are
in an especially enviable stiuation, because the Thesaurus Linguae Graecae at Irvine has put much of Greek
literature online. But even if all Classicists began using some standard hypertext today, they would have to
wait quite a while before scholars had recreated all of their commentaries and standard reference works in an
electronic form.

The Perseus Project is attempting to break through this barrier. We hope to enter into an electronic
format a critical mass of information about the Classical Greek world. Ultimately w.e plan to enter about
100 megabytes of textual information and 10,000 images. This material, disseminated cheaply on optical
disk, will be accessible to individual students, and will serve as the basis for courses on Greek Art and
Civilization.

Some of the material (such as a 50,000 word dictionary and reference grammar, maps and various images)
will, however, also be useful to professional scholars. If the Perseus databases can become a standard
reference tool, then subsequent contributions to Perseus will become a new means of publication. We
thus plan that Perseus should become, rather than a static resource, a dynamic entity that attracts further
scholarly work and will be updated on perhaps a yearly basis.

The task is, however, forbidding. We must somehow take a heterogeneous selection of material and make it
useable in an electronic format. We must smooth the path from the printed to the electronic medium, so
that documents created in a print environment can be efficiently entered and integrated into a larger
hypertext. Upward compatibility is the real issue, but it is as important for the humanist as for the software
engineer. A trail needs to be blazed which traditional scholars can follow as they carry their information
from the printed text to the electronic medium. This trail will ultimately lead to new tools for storing
scholarly information (such as hypermedia, with resources such as animation and sound supplementing
printed text). But few will follow this path until humbler, but more immediate issues have been addressed.
Few indeed will embrace the new, if they cannot take the old along with them.

TRADITIONAL LINKS

Hypertext appeals to many not because it is so radically new, but because it promises to allow them to do
exactly what they always have done, only better. Scholars have always pursued links that carry them from
text to text to image and back again to text. Even the print-based tools currently available have evolved over
a long period of time to facilitate this process.

Hypertext '87 Papers November 1987

Dictionaries in antiquity were, for example, sorted only according to the frrst letter. With an equivalent
English dictionary, you would know that the word "streetcar" appeared somewhere in the list of words
beginning with "s", but you would have no precise idea of where in that rather lengthy list the word
appeared. Even well into the nineteenth centnry, when German scholars had developed "modem scholarship"
as we know it, references were often vague or imprecise. Author A might refer in only a general way to
some statement made by author B, without even bothering to list the particular work of author B in which
this statement was made. Or a scholar might cite an ancient source, but give no line number, leaving the
reader to thumb through sixty pages of a Greek play for a single quote. The bibliographic and citation
schemes that we, all of us, from Classicist to American Historian, represent a long refined system
developed by generations of academics.

Simple text strings such as "Herodotus 7.132" or "Euripides Medea 335-337" are, therefore, self-standing
links, and have certain advantages. First, they contain valuable information lacking in a more generic kind
of link (e.g., a button that identifies a cross reference, but does not indicate what the cross reference points
to). The object "Herodotus 7", for example, means "the seventh book of the history of Herodotus". Anyone
already familiar with Herodotus knows that this covers the frrst portion of Xerxes' invasion, so the scholar
has some general idea of the context before he or she pursues this link. Likewise, the mere fact that a link
point to Euripides (as opposed to Aeschylus or Plato) may determine whether that link is worth pursuing or
not.

Second, and far more imponant, links such as "Herodotus 7.132" or "Euripides Medea 335-337" are
standard. Whether I am using Gilbert Murray's text of Euripides or the new edition of Diggle, the phrase
"Euripides Medea 335-337" will designate the same passage. Citation systems differ slightly-someone
may abbreviate the reference as "Eur. Med. 335'' or "Euripid. Medea 335." Any system that analyzes such
references would have to recognize many slight variations, and standardizing material will require substantial
editorial effort. Overall, however, standard citation schemes offer a fum foundation on which to build.

Now I realize that there are problems with references of this type, or, perhaps more imponantly, that
references of this type lack problems. Most Greek texts are, in fact, quite stable. It is computationally
straightforward to build tools that will call up passages according to conventional chapter and verse
schemes. Anchival indices can be built up, and the systems that maintain these archives, though they wiii
have to accomodate the periodic addition of new texts, will not have to manage a complex stream of real
time editorial changes.

Someone building up a document of his or her own, or several people collaborating on a project, will have
· to create links dynamically. Nor will they easily be able to create pointers to "line six of paragraph fifteen,"
since the original "paragraph sixteen" could be radically changed or deleted altogether. A system that could
manage X links as Y users performed Z editorial operations on a Hypenext would be extremely powerful,
and effective work has been done in this direction, particularly by the lntermedia Project at Brown.

Still, the humble archival lookup problem confronts many of us every single day. Suppose I read in Walter
Burkert's History of Greek Religion [Burk85:163] the following statements:

As god of wine, Dionysos is a delight to mortals and a giver of joy, polygethes. He
stills all cares and brings sleep and oblivion of daily ills.

I can, of course, simply take these statements at face value, and in some circumstances I would. But if I am
particularly interested in Dionysus or in these aspects of Dionysus, I would examine the three texts cited in
the notes: II. 14.325; Hes. Erga 614; Eur. Bacch. 280-2. I may, of course, fmd that these passages simply
backed up Professor Burkett's statements. But often enough I will find that my view of the primary source
differs from that of the scholarly authority commenting on it: I may decide that Borken had read more into
these passages than I feel proper, or that there is more in these passages than he had seen, or these passages
might suggest something about Dionysus that was entirely new. Such questions lead to answers and more
questions. They provide much of the excitement that many of us find in pursuing scholarship. But such
questions are not limited by purely inteiiectual concerns. Logistics often play far more of a role than we
like to admit.

November 1987 Hypertext '87 Papers 53

54

A single page of Walter Burkert's Greek Religion, for example, contains pointers to more than two dozen
source texts of Greek literature. If I am to assess his conclusions with any thoroughness, I should look at
most, and ideally all, of these texts. The pure mechanics of this task are depressing. Even if I have the
relevant book on a shelf in my office six feet away from my chair, it still takes me about 15 - 20 seconds
to get up, rmd the book, and open to the proper reference. It then takes me another 15 or so seconds to put
the book back on the shelf. Of course, I may spend some time on this passage, but most times I will
probably glance at it briefly, see that it has nothing of any particular interest and move on to the next.
Thus, to check the primary references of a single page, I must, under optimal conditions, spend perhaps ten
or f"Ifteen minutes walking back and forth in my office. Not only is this relatively time consuming, but
visually and intellectually disruptive as I must distract my concentration from the material in front of me so
that I can keep from tripping over the furniture as I cross the room.

Optimal conditions, however, rarely prevail. Less than half of the references on a given page of Burkert's
book, for example, are in my office. Pursuing much of the critical material will force me to walk over to
the library, and then hunt back and forth around the stacks. Here, optimal performance degrades from
seconds to minutes for each lookup, and the overall time required to ponder the evidence for a single page
may swell from minutes to hours. And again, optimal performance is unlikely, as at least some of the
books are liable to be absent from the stacks.

Purely mechanical factors of this type may perhaps not shape the kind of research that I could conduct, but
they certainly shape the kind of work that I actually do conduct. The more time it takes to poke into the
background of a statement, the less I shall do such poking, and the weaker my understanding of the issues
involved will be. My scholarly training urges me to pursue the evidence as far as I possibly can, but the
dull limitations of time and space hold me back and prevent me from pursuing this goal as fully as I would
like. •

A fairly simple system could dramatically improve this situation. It takes about five seconds for me to
select a passage with a mouse and then to pull down and select a menu option. If I could reduce the time
required to pursue any particular link, then not only can I pursue more links, but I will even derive more
pleasure from pursuing links. Thus, in the world of paper, when a scholar works in a major research library,
he or she finds that work becomes not only more efficient, but more stimulating as well. Generally
speaking, the easier it is to answer a question, the more different questions can be asked, and the easier it is
io become intellectually engaged. This is one reason why the expert derives so much more satisfaction than
the novice.

A hypertext system could automate much of the work, allowing the scholar to have flexible access to vast
amounts of data stored on optical media. Clearly, we need the ability to take existing source and reference
material, and to convert this as mechanically as possible into an electronic format But to do this, we frrst
need a standard form in which we may, as efficiently as possible, store this material. Nor is it enough to
observe that a given hypertext system does suppat a document architecture flexible enough to perform such
traditional functions. This has implications for the way hypertext systems are designed. No system is going
to do a good job managing several hundred megabytes of data stored on a compact disk, unless someone has
made sure from early in the design phase that the system would do just that.

A scholarly hypertext system should, therefore, be built on top of an efficient document management
system. This document management system should be able to address texts using canonical citation
systems (e.g. "Herod. 1.38", "Shakespeare Macbeth 3.2.30", "Greek Roman and Byzantine Studies 1987
33-35"). While a hypertext system should be able to manage a certain amount of dynamic information,
much of the source material within the hypertext will be static data, and can thus be stored on inexpensive
optical media.

LONG TERM STANDARDS

Those of us who work with fairly stable source materials look not only backwards, but far into the future as
well. Any text that we edit or any commentary that we write should normally be useful for a generation.

But how are we to develop academic hypertexts, if the tools in the hypertext system tie that information to
a particular software (or even hardware) platform? If we build our commentary around system X, what

Hypertext '87 Papers November 1987

happens when system X becomes obsolescent ten years from now, and the new systems that have taken its
place do not quite provide upward compatibility? Most people who have spent five years building a major
new piece of scholarship do not want to have to keep rewriting it every few years just so that it will fit
some new system or another.

So, even those of us who preach to our colleagues about the bold new electronic world, are reluctant to
design our work for this year's leading hypertext system. We need standards in which we can trust and
around which we can build our work. Until we have defmed the basic kinds of links that will be supported
over the long term, hypertext will be an intellectual siren, luring the curious to an environment that will
ultimately destroy their work.

Of course, we will want to develop sophisticated kinds of links that take full advantage of the electronic
medium. But traditional methods for linking texts, being independent of any particular hardware or software
base, could provide a starting point. Of equal importance, standards built upon such links would be easier
for many scholars to understand. Familiar problems will provide a gradual introduction into the more
general possibilities of hypertext More than one scholar, initially attracted by conventional problems, will
also begin to understand some of the more radical opportunities presented by hypertext.

EXTENSIBILITY: PLATFORMS RATHER THAN CEILINGS

A final suggestion only affects the average scholar indirectly, but its importance cannot be overemphasized.
Some of the links in a hypertext will be implicit and domain specific. These links will require specialized
programming that can only come from someone who understands the discipline in question. A new kind of
scholar will have to meet this particular need, one who is at home with issues of both programming and of
his or her discipline.

Consider, for example, a problem that we face in building a hypertext for Classical Greece. The user will be
able to call up Greek texts, and will have an online Greek-English Dictionary. But Greek morphology can
be very complex, and the intermediate student of Greek will not always realize that the form "enenkontes"
comes from the verb "fero ". Likewise, if a specialist wants to study the underlying idea of the verb "fero,"
he or she will not want to type in the several thousand odd forms that this verb could generate. The user
will want a system that can cope with the idiosyncracies of Greek morphology automatically.

Greek morphology is, however, a non-trivial subject. Not only can a single verb generate thousands of
forms, but each form must obey complicated, but precise rules of accentuation. Futhermore, Greek contains
various dialects, each of which uses different endings and stems. Only someone proficient in the language
could design a system that could cope with all the problems that this language posed. We are, therefore,
building software tools that can cope efficiently with Greek morphology.

On the other hand, there is no reason to build a separate hypertext system just to deal with Greek. We
should be able to write a module for Greek morphology in some general programming language (e.g., C,
Lisp), and then be able to add this function to an existing hypertext system.

Greek morphology may only disturb a narrow group of users, but many users will fmd that their discipline
requires specialized functions not included in any generalized hypertext system. The businessman will need
to incorporate a spread-sheet, while the medical doctor may need access to a decision support system to help
with his or her diagnoses. We, therefore, need a platform on which we can build, rather than a completely
self-contained application. A hypertext is, or should be, a beginning rather than an end.

REFERENCES

[Bwk85] Burkert, Walter, History of Greek Religion, Harvard University Press, 1985.

November 1987 Hypertext '87 Papers 55

56 Hypertext '87 Papers November 1987

Searching for Information in a
Hypertext Medical Handbook

Mark Edwin Frisse, M.D.
Washington U. School of Medicine
660 S. Euclid Avenue
St. Louis, MO. 63110

ABSTRACT
Effective information retrieval from large medical hypertext systems will require a combination of
browsing and full-text document retrieval techniques. Using a prototype hypertext medical
therapeutics handbook, I discuss one approach to information retrieval problems in hypertext. This
approach responds to a query by initially treating each hypertext card as a full-text document. It then
utilizes information about document structure to propagate weights to neighboring cards and pro
duces a ranked list of potential starting points for graphical browsing.

A DYNAMIC HANDBOOK OF MEDICAL THERAPEUTICS

It is early evening in a busy hospital emergency room. A young insulin-dependent diabetic man awaits
treatment His wife states that for the past 3 days he has been experiencing fevers and a productive cough. He
has been "too sick" to manage his diabetes properly. He is allergic to penicillin. On examination, the patient
is comatose, has a fever, and is breathing rapidly. His mouth is dry and blood glucose concentration is
dangerously high. His chest x-ray shows a pattern characteristic of pneumonia, and microsccopic examina
tion of his sputum shows a bacterial cause. "Diabetic coma precipitated by pneumoc;occal pneumonia," his
physician mutters. Immediateactionisrequired. A number of obvious diagnostic tests come to mind: arterial
blood gases, serum electrolytes, sputum cultures. Therapeutic issues quickly follow; intravenous hydration,
electrolyte management, insulin therapy, antimicrobial administration. Having studied extensively, and
having treated several patients with similar conditions in the past, the physician is well aware of the issues
regarding the patient's care, but details are lacking. How much intravenous fluid should be administered within
the next hour? The patient's coma can be explained by his diabetes, but should the physician order a
radiographic study of the patient's brain in orderto eliminate the possiblity of a stroke or tumor? How much
insulin should be administered? Wasn't there a recent review on intravenous insulin therapy in diabetic
ketoacidosis?Ho.wdidthepl\ysician treat the last patient she saw with this disorder? What is the antibiotic
of choice in this penicillin-allergic patient?

This scenario exemplifies the information-management dilemma faced by medical students and practitioners.
Their repertoire of knowledge and skills allows much of their daily professional lives to go by unevent
fully. All too frequently, however, they are confronted with problems for which they have the expertise to
interpret observations, but they lack the detail required for action. The information they require usually resides
somewhere in our vast corpus of biomedical literature, but it usually is difficult to locate and, when found, it
generally is notstmctured in a manner that facilitates solving the specific problem confronted by a medical prac
titioner.

November 1987 Hypertext '87 Papers 57

58

We view the physician's search for expertise and detail as one example of a conversation for action
[Wino86a]. Traditionally, medical conversations have been constrained by the written word and by oral
communication. Medical students, for example, continually record valuable clinical heuristics that they
obtain through conversations with their teachers and colleagues. They often call the notebooks in which they
record these conversations their "peripheral brains. " Although peripheral brains and other conventional
media facilitate medical communication, their limitations impede medical research, teaching, and practice
[Warr8l,Aamc86, Cove85].

The fundamental limitations of "peripheral brain" methods of information-management led Vannevar
Bush to conclude that technical fields required a new medium in which to represent their discourse. He called
this new medium a "memex",anddefmeditas "a device in which an individual stores all his books, records,
and communications, and which is mechanized so that it may be consulted with exceeding speed and
flexibility. It is an enlarged intimate supplement to his memory [Bush45]." Bush's memex is a generalized
notion of the medical student's peripheral brain.

Ataboutthe time Bush was writing his landmarkpaper, the DepartmentofinternalMedicineatWash
ington University published its frrst therapeutics primer for medical students and interns. Unlike
conventional medical textbooks, this primer emphasized specific guidelines for medical diagnosis and
therapy. Over the last several decades, the Washington University Manual of Medical Therapeutics has
evolved from a small, mimeographed document to a 500-page institutional benchmark for patient care
standards in internal medicine [Orla85]. The Manual has become one of medicine's most popular books.
It has been translated into many languages and is used on a daily basis by tens of thousands of students
and physicians throughout the world.

As occurs in other medical peripheral brains, physical limitations force the Manual's editors to compromise
between generalization and detail. As a result, the book often lacks the specific information required to address
unique medical problems.

The Dynamic Medical Handbook Project applies the memex concept to medical information-management
problems. First, we are studying how computer tools can facilitate the work of the Manual's authors and
editors. Our concerns in these areas focus on the use of electronic mail, document-processingprograms, outline
organizers, hypertext systems, and bibliographic-retrieval programs. Second, we are studying how users can
retrieve information from dynamic medical books. To explore this issue, we have examined how to retrieve
information from a prototype hypertext Manual. The remainder of this paper will discuss our work on
facilitating information retrieval from a medical hypertext system.

FROM PAPER TO HYPERTEXT
Prior to writing a hypertext therapeutics handbook de novo, we created a prototype handbOok from existing

chapters of the current Manual. We performed this process in four steps. First, we had to decide how to
partition the conventional document into individual hypertext cards. The hierarchical format of the Manual
simplified partitioning. Each node in the hierarchy is marked by a clearly defined identifier'. The text residing
between any two identifiers easily fit on a single hypertext card. Second, we had to assign a label to each card.
This card label (or equivalently, card title) would be displayed as text in the icons that represented links
to the card. We used the frrst sentence as a label. Third, we had to determine how each new card fit into the
hierarchical structure of the rest of the hypertext handbook. When the immediate ancestor of a new card was
identified, our parser created a "structural" link between the two cards. After these three steps we completed,
we faced the fourth, and most difficult, step -- indexing,

'The idenfiers are, in order, chapters, subchapters, roman numerals, upper case letters, integers, and lower case
letters.

Hypertext '87 Papers November 1987

Indexing and Information Retrieval

How people conceptualize hypertext will affect how they design indexes and information retrieval-methods
for these systems. If they emphasize the relative autonomy of the hypertext card over the semantic relationships
among cards, they will view retrieving information from a hypertext system as similar to retrieving it from a
collection of small documents. If they emphasize the semantic links among cards, they will view retrieving
information from a hypertext system as similar to traversing a directed graph. The small-document approach
emphasizes pattern matching; the graph-traversal approach emphasizes browsing [Xero85, McCr84, Kove85,
Mona87]. We will consider each approach in tum.

TheSmaii-Document Approach
Although a wide variety of techniques are available for indexing and retrieving full-text documents, the
applicability of these techniques to smaller quanta of text is not well-understood [Fox86]. Full-text
document-retrieval methods are quite useful when there are numerous, nonrandomly distributed document
descriptors, but their performance is likely to degrade when they are applied to the small number of strings
present in the typical hypertext card.

In addition to the theoretical limitations, full-text document-retrieval techniques are costly in terms of storage
and computation time, and most available hypertext systems limit their small-document retrieval capabilities
to simple pattern-matching capabilities. NoteCards, for example, allows the user to search for strings both
in card titles and in card property lists. Intermedia employs a variety of filters to search for keywords associated
with individual cards or links.

The Graph-Traversal Approach
The graph-traversal approach is instantiated through active icons on individual cards [Kove86]. A hypertext
user traverses the card network either by directly manipulating card icons or by creating graphical browser cards
containing the same icons. The decision to display a new card is based on the icon labels in the card currently
under examination. The icons reflect either the title of a card or a label representing the semantics of the link.
If an icon is activated, procedures associated with that icon display the card denoted by it. The new card may
contain yet other link icons that can lead to activation of yet other cards.

FINDING INFORMATION IN A DYNAMIC MEDICAL TEXTBOOK
In some situations, the limited information-retrieval capabilities of current hypertext systems are quite
powerful. When the number of cards is small, the domain is restricted, and the semantics of links is well
understood, a combination of simple pattern matching and graphical browsing can be quite effective. Pattern
matching queries will, on average, return to the user only a limited number of candidate cards (Figure 1). To
assess the relevance of these cards, the user must quickly read each of the candidate cards. In restricted domains,
card summary information represented by the link icon is likely to make the contents of the card quite apparent
to the user. In this case, most cards activated by the user will be relevant to the query and browsing generally
will be quite efficient.

There are many situations in which simple pattern matching and graphical browsing are not as effective. First,
if the number of cards is large, a pattern-matching query will, on average, return a number of candidate cards
too large for sequential examination. Second, if the subject-matter domain is less restricted or if the semantics
of the links are not clear, the user will activate many cards that are not relevant to the query.

November 1987 Hypertext '87 Papers 59

60

Third, if the structural and contextual relationships among cards are not maintained, potentially useful cards will
not be discovered by a pattern-matching search. Often, cards do not even mention whatthey are "about," but
assume that the reader understands the context because he has read "earlier" cards. (For example, a card on
disease manifestations might not even mention the disease name, but instead might assume that the reader
wouldn'tread the card unless he had jus tread an ancestor card containing the disease name and other contextual
information.) In examining the Manual, we noted that important keyword terms are distributed throughout
the card hierarchy. For example, a query about the treatment of digitalis-induced heart-beat irregularities
(ventricular arrhythmias) can be accomplished only by traversing the following hierarchy:

Chapter 6 (Heart Failure)
V. (Digitalis)

D. (Digitalis Toxicity ...)
3. (Treatment)

c. (Ventricular Arrhythmias)

Search begins at the chapter level, where the subject matter is declared to be treatment of heart failure.
Digitalis is assigned an entire roman numeral section (V .) because of its importance in treatment of this disorder.
A part of the digitalis discussion is the section on toxicity (D.). This is the setting in which digitalis-induced
ventricular arrhythmias most commonly occur. Beneath this section is a discussion of treatment of digitalis
toxicity (3.), and a part of this treatment is the lowercase section relating specifically to ventricular arrhythmias
(c.).

S1.1V. ENDOTRACHEAL INTUBATION-

IV. Endotracheal intubation and tracheostomy.
Endotracheal tubes are classified by size according to
their internal diameter. Since the resistance to airflow is
proportional to the fourth power of the tube radius, a large
tube (e.g., > no. 8) is preferable to minimize airway
resistance and the work of breathing. A large tube also
easier suctioning and allows passage of the bronchoscope
when indicated.

j S1.1V.A. INDICATIONS. THE MOST COMMONl

j S1.1V.B. ENDOTRACHEAL INTUBATION SHOULD BEl

j S1.1V.C. TRACHEOSTOMY IS INDICATED WHEN\

j S1.1V.D. CUFF CARE IS IMPORTANT WITH BOTH\

I S1.1V.E. PROBLEMS AND COMPLICATIONS I

Figure 1 :A Representative Hypertext Card. The upper portion of the card displays text. Five link icons are located
beneath the text. These link icons show the titles of immediate descendant cards.

We believe that card size, subject-matter domain, link semantics, and card context all must be incorporated into
a set of principles for information from hypertext systems. Considering these concepts, we proposed a series
of heuristic principles about card utilities, and we imlemented these principles in an enhanced version of our
hypertext Manual prototype.

Hypertext '87 Papers November 1987

PRINICPLES OF HYPERTEXT QUERY PROCESSING
Hypertext systems should respond to text-string queries by providing the user with one or more best-guess
siartingpoints for graphical browsing. We believe the following principles increase the probability of selecting
useful siarting-point cards:

I. The utility of a card can be approximated by a computed numeric weight
consisting of two components. The intrinsic component is the value
computed from the number and identity of the query terms contained
within the card. The extrinsic component is the value computed from the
weight of immediate descendant cards.

2. The intrinsic card weight should be proportional to the number of times
each query term occurs in the card and inversely proportional to the
number of cards containing each query term.

3. The extrinsic card-weight component should be inversely proportional to
the number of immediate descendant cards. A card with many immediate
descendant cards but only one query term on one immediate descendant
card, should have a lower weight than does a card with fewer immediate
descendant cards and only one query term on one immediate descendant
card.

4. The optimal starting-point for graphical browsing is the card with the
highest weight. The next most "optimal" siarting card is the card with the
next highest weight that is not a descendent of any card with higher
weights. If the next card is an immediate ancestor of any previously
identified siarting-point card, the ancestor card should assume the
descendan't role as a starting-point card.

The application of these principles led us to develop two enhancements that improved the information-retrieval
capabilities of our prototype hypertext medical handbook. First, we added an inverted index, a stopword list,
and a suffix-stripping algorithm-- methods commonly associated with full-text document-retrieval systems.
This allowed us to associate with each query term some notion of its distribution and frequency relative to
other query terms. Second, we represented the syntactic hierarchical organization of our document with a
specific semantic link type. We used these syntactic relationships to propagate query-generated card weights
through the hypertext document. This explicit representation of syntactic relationships among cards allows us
to identify parent cards that might not contain any search query terms, but which might nevertheless be ideal
starting points because many of their immediate descendant cards contain the query terms.

IMPLEMENTATION OF A HYPERTEXT QUERY PROCESSOR

We used chapters from the current edition of the Manual ofMedical Therapeutics as a substrate for our hypertext
propotype [Orla86). We calculated the intrinsic card weights using a modification of a simple, well-known
algorithm [Salt83). This algorithm assigns term weights to cards as a function both of the frequency of
occurrence of the term in the entire search space and of the number of cards containing the term. The algorithm
assigns a higher weight both to cards containing infrequently used terms and to cards containing several
occurrences of a term not found in many other cards. The formula is as follows:

WEIGHT, = k' FR.EQ, · (log(n) -log(DOCFREQ) + 1)

where WEIGHT;i is the weight component of card i due to term j, k is a constant, FREQ;i is the number of
occurrences oftermj in card i, n is the number of cards in the collection, and DOCFREQi is the number of cards
containing the term j.

November 1987 Hypertext '87 Papers 61

62

The intrinsic card-weight component is combined with the extrinsic component due to weights of immediate
descendant cards using the following formula:

where y is number of immediate descendants of card i and dis an immediate descendant of card i.

This propagation function is called recursively from the leaf cards to the root card. A graphical display of the
search subtree and card weights (Figure 2) serves as a road map for browsing.

0 51 .IV. A.
221 51 . IV . B • -- 76 51 . IV . B • 1 .
76 51 .IV. C.

69 S1.1V.E.~ 145 51.1V.E.t.
69 S1.1V.E.2.

145 51.1V .E.3.
107 St.IV.E. 69 S1.1V.E.4.

0 S1 . IV . E . 5 .
0 51 . IV. E . 6 .

Figure 2: A portion of the search subtree. Card S1.1V. has the highest card weight, because of the presence
of the search query terms both within its own substance and within the substance of 4 descendant cards. This
graphical display can serve as a road map for browsing.

After card weights are calculated and propagated, the program creates a general search card (Figure 3). Links
of type search connect the search card to each card containing one or more instances of any search query terms.
The weights of each card are displayed on the search card in front of the link icons.

Tracheostomy~

(96)1 1St.VI.F.2.b. THERAPY SHOULD INCLUDE APPROPRIATE I

(96)1 ISt.V.G.2.c. IF MANUAL VENTILATION IS DIFFICULT, CHECKI

(96)1 1St.IV.E.6. EROSION INTO THE INNOMINATE ARTERY WITH I

(96) I IS1.1V.E.3. TRACHEOSTOMY TUBE DISLODGEMENT OR CUFF I

(96)1 lst.IV.D. CUFF CARE IS IMPORTANT WITH BOTH I
(96) I ls1.1v.c. TRACHEOSTOMY IS INDICATED WHEN I

(336) nst.IV.E. ENDOTRACHEAL INTUBATION AND TRACHEOSTOMY.!

Figure 3: A search card. The search for the term "tracheostomy" has yields seven cards. The last card has a
higher weight because of weights propagated from immediate descendant cards. Cards that do not contain the
search query terms but that might have high weights because of card-weight propagation are not displayed on
the search card.

If the retrieved cards are distributed throughout a large part of the hierarchy, a search summary card is created
(Figure4). This card contains the four highest-weighted cards that can serve as roots for independent graphical
browsers.

Hypertext '87 Papers November 1987

SummarY"•·>-Tracheostomy""' - ~ ·

(336) j \S1.1V.E. ENDOTRACHEAL INTUBATION AND TRACHEOSTOMY.\

(189)1 IS1. ACUTE RESPIRATORY FAILURE THE MAJOR FUNCTION I
(144)1;~~S~1~.17.V~.E~.~P~R~O~B~L~E~M~S~A~N~D;C~O~M~P~L~I~C~A~TI=O=N~S;I~~~~~
(96)1 \S1.VI.F.2.b. THERAPY SHOULD INCLUDE APPROPRIATE I

Figure 4: A search summary card. The cards containing the term "tracheostomy" are distributed throughout
the hierarchy. After propagation of weights, the most "reasonable" starting points for browsing are displayed.

This procedure gives the user three options for pursuing an answer to a query. First, the user can browse from
a card denoted by an icon on the search summary card. She can browse either by sequentially activating link
icons on successive cards or by creating a graphical browser starting at a selected card. Second, the user can
scan all the icons from the search card. This affords a thorough but less efficient way of examining every card
that contains an instance of any query term. Finally, at any time during a session, the user can reformulate her
initial query on the basis of what she has learned from browsing.

HYPERTEXT AS BELIEF NETWORKS
The placement of a link between two cards is an assertion of belief that the value of information contained in
one card is conditionally dependent upon another. Propagating weights across syntactic links asserts this
conditional dependency. Returning to our heart failure example, the placement of a structural link between "3.
Treatment" and "c. Ventricular Arryhthmias" states if there exists a structural link between "3." and "c.", the
utility of card "3." will in part depend upon the utility of card "c.". In this sense, hypertext systems can be
conceptualized as belief networks [Pear86a], where links serve as constraints to limit the amount of search and
reasoning we must perform to obtain information. This conceptualization might provide a valuable key to the
integration of hypertext systems and artificial intelligence.

FURTHER ENHANCEMENTS TO SEARCH· THE USER INTERFACE
An extensive body of research suggests that computers can surpass conventional texts in many educational
and information-retrieval tasks. Perhaps the richest tradition evolves from the SmallTalk experiments in the
1970s [Gold83]. This work led to Kay's implementation of his Dynabook concept [Kay75], and Jaterto
Weyer's formal evaluation of this paradigm as a teaching tool [W eye82]. In a subsequent publication, Weyer
and Borning envision an interaction between an electronic encyclopedia and a reader as a "conversation with
a guide or tutor who accompanies us during our learning adventure" [Weye85a]-- the reader embarks with
a query, gains knowledge along the tour, and returns with an answer.

A number of commercial concerns are attempting to create devices that will function as "electronic books"
[Micr86, Owl86]. But reading is just one of many ways that people interact with their books; They write in
them, they fold pages, they remove pages, and they insert bookmarks. We are constructing a medical
hypermedia system that changes our way of reading, but do we address all of the ways in which a book is really
used? What aids do readers employ while reading a medical book? We suspect that an analysis of reader
behavior would show that some of the following features would prove useful:

!!!!. Medical readers like to use highlighters to emphasize important
concepts and keywords. Every medical school bookstore keeps an ample
supply of yellow, orange, and green marking pens. Some readers highlight
only rare terms, some highlight almost every sentence they read, and some
highlight only those words already set in boldface or italics! Some
highlight in multiple colors, suggesting they are following some
implicit semantic rules. The common characteristic can be generalized:
People like to superimpose their own values on print.

November 1987 Hypertext '87 Papers 63

64

'II. · Readers like to annotate their reading. These annotations may be the
explication of an implicit statement (e.g., adefmition of "class IV heart
failure"), a supplement to published information (e.g., a trade name
where only a generic is listed), or a correction that makes the text more
appropriate to the user's setting (e.g., order a "Chern Panel 9" when the
text says "check the serum electrolytes"). Each annotation is meant to
convey additional information about the passage to which it refers.

'II. Readers frequently tum pages back and forth as they read. Medical
hypermedia will require several types of page turners. First, these systems
will need a text-to-text page turner to explore references made to other
portions of a document. Second, they will need a text-to-figure/table page
turner to examine figures and tables while reading text. Third, they will
require a text-to-dictionary/glossary page turner to examine formal
definitions of terms. Fourth, readers often must refer to other articles
while reading. For this task readers need a text-to-text page turner.
Finally, they will require a text-to-reference page turner to examine
citation headings referenced in the text

At times, the path from query to answer takes the reader through many
references full of relevant points. Readers need some mechanism to
markthetrailofanenjoyablepathsothattheycanretum to it in the future.
This requires that the system be able to save a trace of the query and
reading sequence. Brown University's Intermediarefers to these traces as
webs [Meyr86, Yank85].

Medical life is characterized by interruption. Readers need a "smart
bookmark" that keeps their place within the text when their reading is
interrupted. This bookmark should help to simplify the reader's task
when he continues reading. If he has paused for only a few minutes, the
bookmarkshouldjustmark the portion of the text where reading stopped.
Butifthereaderhaspausedforseveralhoursordays, the bookmark should
help to restore the context by providing a summary of the previous reading
session.

Medical readers often photocopy citations, pertinent phrases, or entire
pages. They need a clipboard for recording such notes. This clipboard
also should record the source or context of the copied material so that they
rarely have to ask "Now where did I read that?"

The pursuit of an medical problem creates a continuously growing list of
new ideas and knowledge sources. Readers engaged in this intellectual
pursuit need an agenda-keeper to retain lists of future readings and tasks.
This device could request the appropriate information automatically, so
that information will be available when desired.

Hypertext '87 Papers November 1987

All these tools require some knowledge (or assumptions) about the content of the hypertext document and the
reader's goals, knowledge,andpreferences. At one extreme lies the common user profile used by operating
systems, text editors, and electronic mail systems. At the other extreme lies the metaphor of dynamic book as
conversation: The goal of the reader is to obtain information; the goal of the program (the speaker) is to
understand what the user wants. Implementing a program that understands what the reader wants remains on
of the most challenging problems facing artificial intelligence.

CONCLUSIONS
Our work suggests that both the small-document and the graph-traversal approach can provide useful
perspectives toward information retrieval from hypertext. Our prototype demonstrates the power of combining
these two paradigms, and suggests the need for further work in two areas. First, extending the notion of card
weight propagation using belief network techniques might provide any way to incorporate artificial intelligence
techniques into hypertext systems. Second, although effective information retrieval mechanisms will be
essential for robust hypertext systems, the ability to personalize these systems also will greatly enhance their
utility within the medical community.

Acknowledgements

This work has been supported by grant LM-07033 from the National Library of Medicine and a grant from
the New Medical Foundation. Computer facilities were provided by the SUMEX-AIM resource under NIH
grantRR-00785. I thank Steve Weyer, Gio Wiederhold, Edward H. Shortliffe, Christopher D. Lane, and Lyn
Dupre for their advice and support.

REFERENCES

[Aamc86]Association of American Medical Colleges, "Medical Information in the Information Age". Proceedings of
the Symposium on Medical Informatics, Association of American Medica! Colleges, Washington DC, 1986.

[Bush45] V.Bush, "As We May Think," The Atlantic Monthly Vol. 176, July, 1945, p. 101.

[Cove85] D. Covell, G. Uman, and P .Manning. "Information Needs in Office Practice: Are They Being Met?," Annals
of Internal Medicine Vol. 103, October, !985, pp. 596-599.

[Fox86] E. Fox. ''Information Retrieval: Research into New Capabilities," in CD/ROM, The New Papyrus. Microsoft
Press, Bellvue, Washington, 1986, pp. 143-174,.

[Gold83] Adele Goldberg and David Robson, Smalltalk-80: The Language and its Implementation, Addison-Wesley
Publishing Company, Reading, Massachusetts 1983.

[Kay75] Alan Kay, "Personal Dynamic Media," Techuical Report, Xerox Palo Alto Research Center, Palo Alto, 1975.

[Kove86] L. KovedB. Shueidennan, "Embedded Menus: Selecting Items in Context," Communications oftheACM, Vol.
29, No.4, April, 1986, pp. 312-318.

McCr84] D. McCracken and R. Akscyn, "Experience with the ZOG Human-Computer Interface System, "Technical Report
CS-34-113, Computer Science Department, Carnegie-Mellon University, Pittsburgh.

[McCr84] D. McCracken and R. Akscyn, "The ZOG Approach to Database Management," Techuica1 Report CS-34-113,
Computer Science Department, Carnegie-Mellon University, Pittsburgh.

[Meyr86J Norman Meyrowitz, "Intermedia: The Architecture and Construction of an Object-Oriented Hypermedia
System and Applications Framework," in Proceedings OOPS LA 86. 1986.

[Micr86] Microsoft Press, CD/ROM, The New Papyrus. Microsoft Corporation, Bellvue, Washington, 1986.

November 1987 Hypertext '87 Papers 65

66

[Mona87]L Monarch andJ. Carbonell, "CoaiSORT: A Knowledge-Basedfnterface," IEEE Expert Vol. 2, No. I, Jan. 1987,
pp. 39-53.

[Or!a86] M. Orland and R. Saltman eds., Manual of Medical Therapeutics, 25th Edition. Little, Brown, and Company,
Boston, 1986.

[Ow!86] Owl Technology, Guide User's ManuaL Owl Technology, 1986.

[Pear8fi] J. Pearl, "Fusion, Propagation, and Structuring in Belief Networks," Artificial fntelligence Vol. 29 No. 3, Sept.
1986, pp. 241-288.

[Salt83] Gerard Salton and Michael J. McGill, fntroduction to Modem fnforrnation Retrieval, McGraw-Hill Book
Company, New York, 1983, p. 63.

[Warr81] K. Warren ed., Coping With the Biomedical Literature. Praeger, New York 1981.

[Weye85]S. Weyer and A. Berning, "A Prototype Electronic Encyclopedia," ACM Trans. Office fnforrnation Vol. 3, No.
I, Jan, 1985, pp. 63-88.

[Weye82]S. Weyer, "Searching for fnforrnation in a Dynamic Book," PhD thesis, Department of Education, Stanford
Univerisity, February, 1982.

[Wino86]Terry Winograd, "A Language/Action Perspective on the Design of Cooperative Work," in Conference on
Computer-Supported Cooperative Work, MCC Software Technology Program, December 3-6, 1986, pp. 203-
220.

[Xero85] Xerox Special Information Systems. Notecards Release 1.2i Reference Manual. Xerox Corp .• Pasadena,
California 1985.

[Y auk85] N. Y aukelovich, N. Meyruwitz, and A. van Darn, "Reeding and Writing the Electronic Book," IEEE Computer,
Vol. 18, No. 10, October, 1985, pp. 15-30.

Hypertext '87 Papers November 1987

Hypertext and Pluralism: From Lineal
to Non-lineal Thinking1

William 0. Beeman, Kenneth T. Anderson, Gail Bader, James Larkin, Anne
P. McClard, Patrick McQuillan, and Mark Shields

Office of Program Analysis
Institute for Research in Information and Scholarship
Brown University
P.O. Box 1946
Providence, Rhode Island 02912

ABSTRACT

One goal of American and Northern European higher education is to promote acquisition of a
pluralistic cognitive style, which has as an important property- non-lineality. This paper investi
gates the effects of using of an advanced hypertext/hypermedia system, lntermedia, to develop
instructional materials for two university courses in English and Biology intended to promote
acquisition of non-lineal thinking. Use of Intermedia is shown to produce significant learning
effects, which are somewhat more pronounced for persons involved in developing materials than
for students using the system.

INTRODUCTION

A central problem in the study human cognition is whether human cognitive styles-basic modes

of apprehension and codification of reality-are universal or variable across cultures and life

stages. A related problem is the question of whether human cognitive styles can be changed

through education and training. This paper addresses these questions, and poses a more specific

one: Can complex human cognitive styles be changed more effectively using computer-aided

learning processes, specifically those using hypertext applications, than through traditional post

secondary school instructional methods?

Many American educators believe that student learning in post-secondary education is tied to

a change in cognitive processes. Students are thought not only to acquire knowledge, but also to

learn new ways of thinking. Essentially they are thought to acquire a new cognitive style through

the educational process. As we will show below, most American and many Northern European

educators view a cognitive style referred to variously as pluralistic, relativistic, or critical thinking

as the most desirable goal of the educational process. We maintain that all of these cognitive

styles, though they may differ in emphasis, share an important feature: an emphasis on movement

toward non-lineal thinking. Throughout this discussion we will refer to this cognitive style as plu

ralistic, non-lineal thinking, though some of the sources which we quote and to which we refer

use some of the other terms cited above.

In the past decade it has also been widely accepted that student learning can be improved

through the use of computer-based instruction (CBI). While a vast literature already exists on

CBI and its effects (Kulik, Kulik and Cohen 1980; Kulik, Kulik and Bangert-Drowns 1985), the

November 1987 Hypertext '87 Papers 67

68

jury is still out on exactly what accounts for improved learning through CBI (Clark 1983, 1985a,

1985b). Moreover, until recently most instructional software was designed to promote essentially

lineal thinking through such techniques as programmed instruction and drill-and-practice. The

potential value of CBI for promoting non-lineal thinking has been unexamined. At Brown Univer

sity we are now completing an assessment of a three year project, the Educational Software Pro

ject (ESP), which directly addresses the development of pluralistic thinking through the use of

sophisticated educational software. The discussion which follows derives from this assessment

Cognitive Styles and Western Educational Processes

There is considerable research suggesting that humans everywhere may not think alike, nor may

they think in the same way at all stages of their lives. Cognitive styles can be contrasted in many

ways. Anthropologists Edward Sapir and Benjamin Wharf conducted research on language and

cognition leading to the well-known "Sapir-Whorf Hypothesis" (Sapir 1924, 1949; Wharf 1956).

This suggested to many researchers that there may be a linkage between the language one speaks

and one's patterns of thought. 2 An extreme formulation of the hypothesis would suggest that

there are as many styles of thought as there are varieties of language.

Cognitive psychologists have also developed typologies of thinking styles based on environ

mental conditioning and ontogenetic development. Bernstein's "elaborated vs. restrictive codes,"3

Piaget's stages of early childhood cognitive development 4 and William Perry's scale of develop

ment in college students from "dualistic thinking" to "contextual relativistic reasoning" to "com

mitment, "5 which we will consider at greater length below, are examples of these.

Educational systems in the United States, Canada, Great Britain and Australia (seen in part in

other Northern European nations) seem unique in their tacit acceptance of the notion that cogni

tive styles can be changed through directed instruction. In many countries, the basic mental func

tions of students are assumed to be in place and intact early in a child's school career. The basic

function of education is then to exercise the brain through rote memorization and standard drill

exercises with less attention to integration of that information. The French and Japanese educa

tion systems are notable for this.

In the United States higher education has traditionally been seen as contributing to an ongo

ing human ontogenetic process. Through education the student is seen not only to acquire infor

mation, but also to develop new capacities as a human being. Styles of thinking are seen to be

different at different stages of education, and much energy is devoted to seeing that students learn

"how to think." It is also felt that styles of thinking are coupled with ethical development, and

that ethical training cannot be divorced from learning itself.6

The cognitive style most widely fostered in American and Northern European post-secondary

education today is the promotion of pluralistic, integrated thinking, whereby students are encour

aged to see the phenomena of the world in interrelated relativistic terms rather than as isolated

bits of information. 7 William Perry, in a comprehensive study of Harvard final examinations from

1900 to 1960, documents a rise in the percentage of examinations requiring "considerations in

more than one frame of reference, that is, relativism (Perry 1968: 4)" from a high of 20% in 1900

to 70% in 1960. He has referred to this as the "intellectual revolution of this century." (Perry

1976:30) Most research on the development of this cognitive style has taken place at single insti-

Hypertext '87 Papers November 1987

tutions of higher education. Perry's work (1970) took place exclusively at Harvard, and Ray

Heath's similar work (1964) at Princeton. However, research in Lancaster, England over the past

decade focusing on university lecturers' aims and objectives showed a widespread, clear pattern of

expectations at many institutions.

While knowledge and technical skills were expected, students had to be able to
use these effectively-to combine and interrelate ideas . . . The unifying theme
both in the interviews and in the general literature on the aims of university edu
cation is that of 'critical thinking' or as Ashby has described it-'post-conven
tional thinking' (Entwhistle and Ramsden 1983: 7-8) .8

As stated in the introduction, we gloss this kind of thinking as pluralistic cognitive style.

The nature of non-lineal thinking

Pluralistic cognitive style in its extreme ideal form is non-lineal in nature. The ideal scholar is one

whose insights and perceptions are automatic, correct and spontaneous, proceeding from a total
integration of knowledge and the principles which govern its meaning and use across a broad

spectrum of contexts. Total pluralistic integration of knowledge is an asymptotic ideal in complex

societies, approached only by Zen masters and mystics. It is seen in more limited ways in the

expertise and facility of the most revered experts in any discipline, who are able (o encounter new

phenomena and interpret them correctly, seemingly without thinking.

The burning question for educators is how to move novice learners to the point where they

apprehend and develop this style of thinking (Kohlberg 1972). Every instructor knows students

who work very hard, read everything assigned, and perform· well on tests, but whose understand

ing of subject material is somehow mechanical-they just don't "get it," the "it" being the cogni

tive style instructors feel appropriate for the material.

The paradox in post-secondary education is that the ideal of non-lineal knowledge is ap

proached through lineal communication, presentation and instruction. Lineal knowledge implies

lines, fixed structures and definitive processes. Anthropologist Dorothy Lee describes academic

lineal structures in this manner:

In our academic work, we are constantly acting in terms of an implied line. When
we speak of applying an attribute, for example, we visualize the process as lineal,
coming from the outside When I organize my data, I draw conclusions from
them. I trace a relationship between my facts. I describe a pattern as a web of
relationships. Look at a lecturer who makes use of gestures; he is constantly mak
ing lineal connections in the air. And a teacher with chalk in hand will be drawing
lines on the board whether he be a psychologist, a historian, or a paleontologist ..
. . The line is found or presupposed in most of our scientific work. It is present in
the induction and the deduction of science and logic. It is present in the philoso
pher's phrasing of means and ends as lineally connected. Our statistical facts are
presented lineally as a graph or reduced to a normal curve. And all of us are lost
without our diagrams. We trace a historical development; we follow the course of
history and evolution down to the present and up from the ape; and it is interest
ing to note, in passing, that whereas both evolution and history are lineal, the first
goes up the blackboard, the second goes down (Lee 1959:110).9

Lee's description of academic presentation of information is accurate, but she makes the

assumption that Westerners are incapable of thinking in any but this exclusively lineal manner.

She contrasts this way of thinking with the non-lineal thought of the Trobriand Islanders who she

claims not only think non-lineally, but also have no grammatical expressions which imply linkage,

such as the word "and."

November 1987 Hypertext '87 Papers 69

70

Her characterization of thinking in the West is, we believe, unwarranted. Westerners are not

only capable of non-lineal thinking, they strive to achieve it. But representing its nature to others

is often difficult, if not impossible. Descriptions by nature require language, presented in a time

stream, and thus scholars resort to the diagrams and inductive-deductive models Lee describes,

but other experts reading these materials understand them for what they are: mere skeletal sugges

tions of the real thought lying below. 10 It is for this reason that "expert" systems designed for the

computer cannot represent true expertise. As Dreyfus and Dreyfus (1986a, 1986b) point out, true

expertise is indeed non-lineal-the expert simply knows without consciously transversing a compli

cated decision matrix. 11 The closest we may get to public representation of this state is in non-dis

cursive and semi-discursive forms such as music, performance and poetic imagery.

Nevertheless college instructors do not shirk from trying to represent this view to students

despite its difficulty. Viewing non-lineal knowledge from a lineal perspective is somewhat like
viewing three-dimensional objects from a two-dimensional perspective. The non-lineal world

seems to consist of conflicting ideas, multiple explanations and contradictory interpretations of

phenomena. For the pluralistic knowledge worker such conflicts do not exist; all items of informa
tion have a natural place within a patterned cognitive universe.12

Teaching non-lineal knowledge

In a university setting the pursuit of non-lineal knowledge is a life-long occupation. It is an occu

pation chosen by those who are able to live with such an open-ended work activity, with the full

knowledge that one's work will never be complete, and that it will always be superseded by subse

quent generations of workers. Nevertheless, even partial integration of a large body of knowledge

provides enormous personal satisfaction, and is extremely practical as a basis for conducting one's

life.

An instructor in a college classroom cannot hope to imbue students with this vision from the

very start. He or she can, however, attempt to start students on the path to viewing knowledge in

this way. The first step is often to disabuse students of the notion that there exist single truths in

the world. The second is to introduce them to the notion of pluralistic thinking and multi-causal

explanation. The third is to bring them to a level of sophistication which enables them to examine

and question the parameters by which knowledge itself is defined, 13 thereby <~!lowing them to

make personal judgments and choices about correctness and validity.

Many logistical difficulties face the instructor in this pursuit. First, students typically lack the

knowledge base that serves as the critical foundation for pluralistic thinking. Second, students and

instructors meet at disjointed, infrequent intervals. Third, the material in a course of instruction

must be laid out in a lineal fashion, piecemeal over the course of several months. Fourth, the

material is disjunct: lectures, readings, exercises and examinations all sprinkled throughout the

time of the course. Finally, students themselves are left to interrelate this disjunct material the

best they can. The proof of their success usually lies in their performance on examinations, which

often become the most meaningful integrative exercise engaged in by students. Every instructor

feels mixed happiness and sadness when, as often happens, he or she hears from students: "I

didn't really know what this course was about until I wrote the final exam."

Conscientious instructors do the best they can to get beyond the lineal properties of the mate

rial they are presenting to students, but in direct instruction non-lineal knowledge can only be

Hypertext '87 Papers November 1987

conveyed by implication. Just as in mathematics two points determine a line and two lines a plane,

so can instructors suggest the pluralistic shape of knowledge in a given course of study through

systematic presentation of fragmentary pieces. Nevertheless, mere presentation of material does

not guarantee that students will actually make the transition from lineal to non-lineal thinking.

Rhetorical strategies must be utilized to guide students to the correct use of information.

lntermedia-Hypertext tool for promoting non-lineal thought

The Institute for Research in Information and Scholarship (IRIS) at Brown University undenook

a three year research project (under support from the Annenberg/CPB project) aimed at creating

software designed to address two difficult problems in instruction, the connectivity of materials

and the visualization of concepts and ideas. The software developed for the project, called Inter

media, consisted of a number of applications or ~'tools'" such as a text editor, graphics editor,
timeline editor, a three dimensional viewer, etc., within a hypermedia framework allowing the

materials created by the applications to be linked, annotated and navigated. Utilizing a hypenext,

hypermedia model, it was hoped that new capabilities for visualization and connectivity embodied

in Intermedia would enable students to synthesize course materials and facilitate instruction. 14

Connectivity addresses the question of the relations between material. One of the key aims of

Intermedia was to provide the ability to link different materials creating semantically meaningful

relationships between different information and, ideas. Using this software environment, "authors"

(who may be students or instructors depending on the guidelines determined by the instructor)

could link and annotate materials to create "semantic webs" or trails of meaning. In the course of

the Educational Software Project, connectivity early became defined as the need and ability to

show-that any single concept, problem or idea must be understood from a variety of perspectives.

The materials created attempted to demonstrate this interconnected juxtaposition of ideas. Con

nectivity had another meaning within the project, in that the workstations on which Intermedia

ran were connected via ethernet, thus allowing all users to share files.

Visualization referred to the use of "dynamic, interactive graphics" to build and interact with

visual representations of concepts and processes. The representation of of processes and concepts

are often laborious (drawings on chalkboards) or cumbersome and lack the fiexibility to be ma

nipulated by instructors and students. Interactive graphics however, allow instructors to represent

dynamic concepts to their students and to manipulate these concepts to illustrate process.

The Educational Software Project developed Intermedia for, and examined its use in two

Brown University courses, English 32, an English literature survey course, and Biology and Medi

cine (hereafter Biomed) 106, a plant cell biology course. Each of the two instructors were asked

to use Intermedia to develop educational materials to meet their specific instructional needs. The

materials to be created, the way in which they would be utilized in the course and the form of

presentation were decided by the instructors and were not pre-determined by project criteria. 15

Each of the courses was closely observed by a team of social scientists, once as the instructor

taught it prior to the introduction of the Intermedia materials and again when the course was

taught using the materials. During this time instructors and students were interviewed several
times, and a select group of students was asked to keep time and task diaries of their activities

during the semesters in which the courses were taught. A computer laboratory was set up for use

by the project classes, and student and instructor use of this facility was also observed. 16

November 1987 Hypertext '87 Papers 71

72

Pluralistic thinking in an English literature course

For the students in his English literature course, the instructor, George Landow, has one main

goal-to develop advanced scholarly skills in the field of English literature in a self-directed fash

ion. To attain this level of intellectual sophistication, Professor Landow believes that students

need to progress through two interdependent stages of development. They first have to acquire

extensive familiarity with the literature through comprehensive reading and study. The second

stage requires critically applying this knowledge to issues raised in the literature. Beyond mere

literal understandings of the works, students should be able to draw on a range of contextual

sources (e.g., authors' biographies, political, religious, economic, and social developments of the

time, etc.) to support or refute literary interpretations, as well as to understand why one analysis

constitutes a valid assessment where another fails.

Professor Landow refers to the ability to interrelate contextual influences and literary works

as "multi-causal" reasoning. His course syllabus contains an elaborate explanation of this process:

If this course has one central idea, it is that no literary phenomenon-no work,
part of a work, or idea about one-can· ever be explained by a single fact. All
literature ... is multi-determined, by which we mean that multiple causes impinge
upon each fact. Dickens may write a particularly great novel in a certain way
because, 1) he needed money, 2) he worked out his own psychological problems
in writing it, 3) he confronted and challenged past and contemporary novels and
novelists, 4) he wished to convince his readers to think about the world in a
certain way-and so on. All are explanations, and they don't conflict with one
another.

This approach, emphasizing the integration of a range of factors to create pluralistic under

standings, underscores his interest in having students "learn how to synthesize information rather

than parrot back concepts," a general skill, he argues, that "one can use in any course you care to

take at Brown or elsewhere."

In his teaching, Professor Landow found it difficult to bring students to this point of intellec

tual sophistication due, most often, to one of two obstacles: "Either students don't have enough

background or they don't know what to do with their knowledge if they have read a lot." The

traditional response to this dilemma, he felt, was for instructors to "spoonfeed" students with

some background knowledge and literary analysis-what he called, "the consumer theory of edu

cation," where instructors produce and students consume. Rather than spoonfeeding students,

Professor Landow sought to nurture a "community of discourse" in which students could refine

their analytic skills by devising their own literary interpretations of assigned readings and criticizing

those of their classmates. In this process, class discussion in a seminar format was extremely

important. Professor Landow, in fact, used quality of class discussion as an important index of the

success of the instructional process.

Pluralistic Thinking in a Biology Course

Peter Heywood teaches Biomed 106, a plant cell biology course, one of the courses in which

Intermedia was implemented. His primary goal for the students in Biology106 has always been to

teach them to think like biologists. This requires that the students acquire a broad base of knowl

edge from which they should be able to draw upon to integrate materials from many different

Hypertext '87 Papers November 1987

areas of cell biology. Also, they should be able to apply this knowledge to new information and

experimental problems creatively.

Thinking like a cell biologist means thinking experimentally. This involves the application of

pluralistic biological knowledge to experimental problems. Learning through experimentation is

one of the ways in which students have of connecting information, integrating and applying the

knowledge which they acquire from other contexts (i.e.,lectures, textbooks, journal articles, dis
cussion, etc.). Because Biomed 106 is taught without a laboratory, as are over fifty percent of the

biology courses at Brown, the students have more difficulty integrating the knowledge which they

acquire from the class through their own experience. Peter Heywood's goal, then, is to give the
students the opportunity to learn experimentally without actually participating in a "hands on"

experiment.

In the past, Peter Heywood has had difficulty in conveying the connectivity of all of the

course materials for Biomed 106. Aside from not having access to laboratory facilities, difficulties

in teaching students to think of biology pluralistically arise because the course has been taught in a

traditional lineal fashion. By traditional lineal fashion we mean that the course has been geared

around lectures, textbook readings, and journal article readings, all of which have been presented

in a sequential manner.

Textbooks segment instructional material into topics. The topics are usually dealt with in full

in separate chapters. The material is not usually integrated between chapters. A student will some

times come across a footnote which tries to integrate material in one chapter with material in

another, but in general the student is left to his or her own connective abilities. The author(s)

often hope that the reader will piece the material together after they have finished reading the

book.

Lectures also suffer from the segmental topic phenomenon. The instructor often has a par

ticular topic area to cover in a limited amount of time. Usually this subject is marked out in a

syllabus so that the student also knows what to expect in lecture for a particular day. However,

Peter Heywood tries to integrate material from various parts of the course into his lectures. This

approach is not wholly satisfactory. A partial explanation is that because the students are aware of

what is to be covered, they tend to focus on that specific material. Also, words in a lecture seem

ephemeral to the student who is busily taking notes. Often the best a student can do is to jot down
the main ideas, and in doing so he or she often misses some of the more subtle and important

connections that the professor makes about the course material.

Nevertheless, Professor Heywood relentlessly attempts to guide the students to learn to think

in a nonlineal experimental fashion during the course of his lectures by posing questions which are

intended to spark an integrative train of thought in the students' minds.

Using journal articles also has its pitfalls in a lineally taught course. Ideally, for the biology

·student, journal articles should serve as "springboards" for thought. Students should be able to

take the central ideas of the articles they read and incorporate them into a larger body of working

knowledge from which they can generate new and testable hypotheses. However, students often

only attend to issues relating directly to the particular topic being focused on for that particular

week, or for the upcoming exam.

In the past, Professor Heywood has tried to resolve some of the difficulties of demonstrating

the connectivity of material by requiring students to write "a professional paper". Each year that

November 1987 Hypertext '87 Papers 73

74

he has taught Biomed 106 he has assigned a twenty to twenty-five page research paper to his

class. This is the usual publishable length biology paper in the profession. Aside from giving the

students practice in writing professionally, the paper gives the students the opponunity to write on

a topic that is of immediate interest to them, integrating and synthesizing some of the material that

they learned in the class with information they researched in the library. Like professional biolo

gists, they are expected to look critically at their topic and to use up-to-date material. It is de

scribed in the course handbook as follows:

The term paper is an opponunity to become an expen in a subject that interests
you, and so it is imponant that the topic should be your choice. Each year ap
proximately half of the class chooses to write on a topic which is different from
those suggested and/or write on organisms other than plants (medical issues are a
frequent alternative).

The term paper will require reading and critical discussion of original publications
(such as scientific papers and review anicles). The paper should be written on the
cellular level and should be detailed and specific. Please reference your sources
in the text and include a bibliography at the end of the paper. . .

The paper also tests the students abilities to think experimentally, because pan of thinking

critically about their topic is to suggest alternative ways of seeing their panicular problem, and

suggesting new experimental ways of approaching it. Professor Heywood said,

... when the students write their term papers they have to emphasize an experi
mental approach. They not only have to review the literature in a critical way, but
say what they themselves would do in terms of designing an experiment.

Tests also serve the purpose of helping the students to synthesize and interrelate the vast

quantities of information. Unfo_nunately, students too frequently learn the material for exams only

well enough to pass, and do not retain information any longer than is necessary. Unlike the paper

where the students learn through integrative thinking, exams may only test the students' shon

term recall-especially the shon answer exam questions. The essay exam, on the other hand,

comes closer to testing the students' abilities to make connections and to think creatively about a

problem related to the course. Professor Heywood uses exams which are a combination of shon

answer and essay because he feels it is imponant to test two levels: first. whether the student is

able to access basic materials which are fundamental for the course and second, whether they are

able to synthesize information and formulate an argument based upon the material. Professor

Heywood has always preferred the essay questions on exams to the shon answer questions for

judging whether the student is truly understanding the course material.

Ultimately, what Peter Heywood wants, as most instructors do, is to have his students really

KNOW the material. He doesn't want them to simply memorize volumes. Rather, he wants them

to take information and ideas in such away that they generate new information and ideas. Basic
knowledge is necessary for this to occur, along with a certain amount of memorization, but he
feels that the material is not truly learned until it can be easily translated from one context to

another by the student.

How lntermedia worked in promoting pluralistic thinking

For George Landow, Intermedia offered a method for mediating between student preparation and

the classroom discussion process he considered so important for developing and demonstrating

Hypertext '87 Papers November 1987

pluralistic thinking. Primarily, Intermedia would serve as an information source, an "electronic

encyclopedia" that provided social, historical, and other contextual information, previously avail

able only through "spoonfeeding," which students would later interweave with their understanding

of the texts to foster multi-causal analysis in class discussion and on exams and assignments.

In addition to functioning as an electronic encyclopedia, Intermedia offered a model for

understanding the interrelatedness of information central to Professor Landow's pedagogical aims.

As he explained, "Intermedia is going to allow students to develop habits of linking things ... of

making connections, of making comparisons, and drawing discriminations and formulating prob

lems. Most important for us ... formulating multiple explanations of complex phenomena." For

instance, browsing through the Intermedia materials roughly paralleled the critical thinking char

acteristic of multi-causal reasoning. By following a path of their choice through a web of intercon

nected documents, students begin to see how writers, works, and their literary periods connected,

to weigh the value of different sources, and to realize that they could personally construct valid

literary interpretations. Ideally, rehearsing these skills during Intermedia sessions would prepare

students for carrying through similar analytic operations during class discussion and while writing

papers and exams.

The Intermedia materials themselves contained a second model for understanding multi

causal analysis, the "concept map." Designed by Professor Landow and his graduate assistants to

represent interrelationships graphically, these heuristic devices presented authors and other rele

vant topics encircled by such contextual and literary influences as "religion," "technology and

science," "literary relations," j'biography," and "works. •• Differing from a standard table of con

tents, the topics were arranged to suggest more than lineal relations. As Professor Landow ex

plained

You see things arranged around a central concept or entity and that is establishing
in you the habit of thinking of entities surrounded by interconnecting ideas ...
[leading one] to think in complicated and sophisticated ways [This] is a
perfect model for education. It can be used in anything, whether you're reading
the newspaper, working mathematically, or anything else. It is a way of teaching
you that education is a thinking, active procedure.

Given this tool for interrelating extensive background materials, Professor Landow was able to

remove himself from dominating class discussion, especially limiting his need to lecture. Observa

tion in Professor Landow's class showed that he adopted more of a "coaching" role and relied far

less on didactic presentations. Chart 1 (See Appendix) shows a dramatic difference in his class

room role before and after Intermedia use. Using Intermedia Professor Landow prompted the

class with many fewer questions, and student questions and observations increased. This, had the
additional effect of allowing more time for discussion. Students, now primed with contextual un

derstandings, could determine the course class would follow rather than following the instructor.

Professor Landow also felt that quality discussion had improved. Noting factors which may

have contributed to this development, he explained:

From the very first, discussions have been better than they have ever been I
have heard occasionally people actually quote Intermedia or introduce informa
tion without saying this, but that is the only place they could have gotten it. ...
[also] it seemed to me a lot more people had very specific correct things to say
about individual poems. Now when someone would say something, [others]
would respond as though they had .read ... and had thought about it. ... they
felt more at home with the materials and when I chime in with something,
they don't let me control the situation they keep talking. The ability ... for

November 1987 Hypertext '87 Papers 75

76

me to interrupt and have them immediately take over discussion again is very
different from last year. Last year, I had to be extremely careful or they would
just stop talking. So those are a whole series of improvements ... they are willing
to ask a questions . . . they will try to answer mine and will go on and ask their
own.

As a consequence of using Intermedia Professor Landow felt that formal, graded student

performance also improved in a variety of ways. For instance, he felt that student writing assign

ments "proved markedly superior to those in previous years." The grader for the mid-term exam,

a woman who had taught at Brown for six years and who did not know the students, described the

exam as the "most difficult exam, let alone mid-term" that she had seen. As for student perform

ance, the "high quality of the essays" which demanded that students "not just spit back facts,"es

pecially impressed her. Since students had to synthesize and analyze literature, much of which

came from the eighteenth century, she was "really amazed at how well the students understood

the period." In her experience, students generally found it hard to realize the complex interrela

tionship between 18th century literature and the social environment in which it was written-yet,

the English 32 students were, in her judgment, able to grasp this aspect of the literature well. She

felt compelled to assign five students grades in excess of the theoretical maximum for the exami

nation. The students receiving these high grades were among the highest users of Intermedia.

Many students in English 32 agreed with Professor Landow's assessment of their perform

ance. Commenting on her development of multi-causal analysis, one student said:

... you can get an idea of the author, put him in his historical background, the
time period, and other author he relates to So, you get an idea of the person
within the whole course ... a way to place authors in some kind of context ...
something to refer to when ... trying to remember things about them.

Another student outlined the ways Intermedia allowed him· to make integrated, pluralistic
analyses: "I can look at 'science and technology' (a file on Intermedia), then I can look at

'Victorianism,' and then I can look a biography and put them all together myself."

In English 32 the corpus was designed to expand students' contextual understanding of Eng

lish literature and so to provide a basis for further investigation. One student explained how using

Intermedia in this fashion affected discussion:

I know more about the materials than I am going to garner from simply reading
[the text] and therefore I can go into discussion with a better background, more
knowledgeable, and I can say more intelligent things.

By creating a "common denominator" among students, another student felt Intermedia

boosted the quality and complexity of class discussion:

Intermedia allows me to get past the basic need for rudimentary information-bi
ographies, history-outside of class. In class then, one has a 'common denomina
tor' among the students and you can go on past it.... [0] nee you are in the
classroom ... you are sensing how [other people] respond to the literature ... and
you can integrate all of this information that would otherwise have to be given in a
straight, boring lecture [Y]ou can say, 'OK, Browning was such and such. I
think this influenced his poetry in this area and this paragraph specifically be
cause ' You are getting at the heart of the [author], of the literature, and how
it applies to what you are doing

Students also saw how using Intermedia in this fashion affected the instructor's role in class:

Professor Landow doesn't have to sit and talk forever and ever to give us all this
information about the background; ... we can get a lot of that ourselves from Inter
media [S]o that helps our discussion ... get into more specific things and [Lan-

Hypertext '87 Papers November 1987

dow does] not have to give us this general stuff so we can all have better discus
sions.

One component implicit in multi-causal analysis is the acceptance of varying perspectives

that, rather than having one "right" answer, multiple pieces fit together to form a coherent whole.

One student provided a telling instance of her appreciation for this approach when she copied

some Intermedia notes on Romanticism for a friend in a different, non-Intermedia section of

English 32. She gave her these notes because "it is just another viewpoint, and the more view

points you have, the better anything is. . . . And she just had the viewpoint of one professor."

Summing up how Intermedia and Professor Landow's instruction fit together to create an inte

grated understanding of course materials, a student remarked, "[This approach] ties everything

together and makes a survey course cohesive. It means something, rather than skimming across

the top of things that you can't get into."

The sense of developing an pluralistic, non-lineal appreciation for English 32 came across

when students tried to separate out and assess various course components. Reflecting on her

preparation for the mid-term, one student said, "I couldn't really tell what I had gotten from

lecture or [class discussion] section or the introductions in the book or from Intermedia," even
though these were the materials she relied on for completing the exam. Another student, when

asked what Intermedia had contributed to the course this semester, remarked, "I do think it adds

to [the course] ... it is just hard to define how much."

The final bit of evidence suggesting that students broke from a lineal understanding of Eng

lish literature is the students' sense that process had value in other courses-a transfer of learning.

One student compared English 32 to other literature classes he had taken:

I can place things [in history] whereas in other classes, I would read something
but I didn't have an understanding of the influences surrounding it ... or [know]
how to relate it to other ... pieces of literature I feel like I am doing that
now and I will be doing it in the future too-trying to relate things.

A second student reflected on what he had taken from the class saying, "Learning to learn.

The power of learning . . . it doesn't matter in what area because you can use the process of

learning ... in any area."

Professor Landow sought to bring students to a level of intellectual sophistication at which

they would personally devise literary interpretations based upon non-lineal, multi-causal synthesis

of text with extraliterary, contextual information. Viewing student performance in light of these

goals, their appreciation for multi-causal reasoning, their sense that knowledge sources had be

come so entwined as to blur their origins, and their realization of this skill as applicable to "learn

ing" in a broad sense of the word, all suggest that many students in English 32 did, at least, begin

to achieve true non-lineal, pluralistic thinking.

Peter Heywood feels that Intermedia was a success in a number of ways. His primary goal for

his class is to teach his students how to think like cell biologists. This requires that they learn to

think less lineally; that they come to understand that there are many explanations for the same

phenomenon, and many different ways of arriving at those explanations. Intermedia has provided

him with an effective way to supplement his classroom teaching to accomplish this particular goal.

Additionally, Intermedia has helped him teach the experimental approach because it in some

ways simulates the lab experience. The second assignment that he gave to his students, in which

November 1987 Hypertext '87 Papers 77

78

the students were asked to attempt an explanation of the role of microtubules at anaphase using

Interdraw, Intertext, and information drawn from Intermedia as well as any other pertinent

sources, exemplifies the way in which the lab idea was realized. Drawing upon their general

knowledge and other resources, the students were able to come up with solutions to the problem

which were possible, and indeed some of which had been postulated formally by scientists who

had come to their conclusion through extensive experimentation in the laboratory. Although the

students had not been exposed to this particular area, yet, they were able through Intermedia to

make connections in the material that they would not have otherwise been able to make based

upon the course material they had up to that point. Doing the assignment was yet another way for

Peter Heywood to get his students to practice thinking in a nonlineal fashion.

An added benefit of using Intermedia this year for Peter Heywood is that it made lecturing

easier for him. He was able to cover more material more thoroughly than he had in previous years

simply because the students had access to the lecture notes on Intermedia. He did not have to

re-explain things as frequently, and he could spend less time talking about some of the simpler

ideas, and more time on the difficult ones. Using Intermedia also had the benefit that it allowed

students the opportunity to pick up on the interconnections in the lecture instead of just focusing

on the general topic. This in fact reinforced many of the same kinds of connections that the

instructor was making.

Professor Heywood feels that Intermedia helped his student to see biology and his class more

pluralistically; that it was easier for them to understand how all of the course material was interre

lated. That this was so was reflected in the exams and the papers that were turned in this year as

compared with previous years. Last year 34% of professor Heywood's class received "A's", as

compared to 44% in this year's class. The students were graded both times on the basis of their

performance on three exams and the term paper which were all equally weighted at twenty-five

percent of their grade. Indeed, for both courses there was a positive correlation between high

Intermedia use and high grades (r=.29 at .05 level of confidence).

Students apparently felt that they had learned more in the course using Intermedia. On a

survey administered to students at the end of the course, 100% of Professor Heywood's students

felt that they learned either "moren or "much moren in his course than in the average course at
Brown. In the previous year, without Intermedia, only 77% felt this way. Nevertheless the nature

of learning was different. • 'When asked if, given a choice, they would choose a section of a

course which used Intermedia over one which did not, 73% of Biomed 106 students and 76% of

English 32 students stated that they would choose the section with Intermedia.

Real pluralistic learning?

We began this discussion asking whether cognitive styles could change through education and

training, and whether computer instruction could aid or effect this change. In English 32 and

Biomed 106 there seems to be convincing evidence that the instructors had clear goals of develop

ing pluralistic thinking in their students, that they had difficulty in achieving their goals using

traditional teaching methods, and that use of Intermedia in their opinion significantly improved

student performance in areas which they felt indicated movement toward that style of thinking.

We are left with the question of whether use of Intermedia actually helped students to acquire

a new. non-lineal cognitive style~ or merely helped them in their performance in two courses.

Hypertext '87 Papers November 1987

Hypertext in general, and Intermedia in particular, can be thought as a model for presenting

information, made practical titrough a particular computer application. One unintended conse

quence of our research, discovered when Professor Landow was forced to teach English 32 after

having prepared Intermedia materials, but before the workstations on which Intermedia was to

run were ready for use was that he changed the way he organized his course. As a result he felt

that students grasped pluralistic reasoning styles far better than in previous years. Students were

also far more satisfied with the course than in previous years (McQuillan 1987). 17

Our research also shows that if acquisition of a new pluralistic cognitive style did occur

through Intermedia use, the students themselves may not be aware of it. That some of the stu·

dents in the biology class were able to grasp Peter Heywood's conception of the pluralistic nature

of cell biology is evident by their exam answers, papers and questions in class. However, the

extent to which they incorporated this way of thinking into other aspects of their scholarly life

remains unknown. Most students seem to adjust to the style of their teachers as the semester goes

on because they are interested in doing well in the class. Our observations may reflect this and not
actual nonlineal learning.

Intermedia, it might be argued, teaches lineal thinking in the sense that students are following

links preset for them by the instructor, and one might argue that this is more lineal than leaving

the student to his/her own devices to range freely in a library. However, given only a textbook, the

average student will not read footnotes, much less be able to mark out pages with their fingers in

the books, notebooks and journal articles that relate nor will he or she go to the library to search

for a reference cited. But with these resources "at their fingertips" on Intermedia the average

student is more inclined to look at the related material. This in itself is valuable to the student in

terms of his/her scholarly development. Further, Intermedia used·in this way approaches a model

for the way that the instructors want their students to think-nonlineally, in a pluralistic manner.

The instructor hopes with the constant practice of seeing material in this way the student will

retain this way of thinking even after the course has ended and apply it to other materials.

One early indicator of the impact of Intermedia on students is to gauge how students view a

hypertext-based (Intermedia) component in terms of other resources available to them within the

course; and how they compare courses containing a hypertext component to courses without such

a component. Our student survey data presented in Tables 1 and 2 (See Appendix) show that

Biology students say they learned more and have a better overall opinion of their course than do

English students. Biomed "106, a course with an already excellent reputation in the University,

seems to be a more improved course in students' eyes.

As discussions in previous sections indicate, there are many uses to which Intermedia could

have been put, but it is possible to group students' goals in using (or not using) Intermedia into

two categories: performance goals and understanding goals. Table 3 should make these categories

clear. Thi~ table also shows that students found lntermedia most useful in helping them broaden

and deepen their understanding of course materials, but relatively less useful in achieving per

formance goals such as getting better grades or avoiding doing other work.

We found that the people who were most involved in the authoring process learned to think

about their subject areas more pluralistically by constructing materials for Intermedia. We learned

from working with the instructors and the teaching assistants who put the material on the system

that there is a learning curve to thinking in this pluralistic way. Both of the professors involved in

November 1987 Hypertext '87 Papers 79

80

the project, as well as the teaching assistants, developed their own thinking as they worked more

extensively with the hypertext model.

The rethinking process was long, and the longer the two groups worked with the system, the

more ideas they generated about how it should and could be used for their courses. The profes

sors and the teaching assistants were able to grasp "hypertext thinking", and perhaps they bene

fited more from its nonlineality than the students did, simply because they were more immersed in

using the system and the whole authoring process.

The students didn't utilize the system as much as the professors and teaching assistants, or use

it in the same way. They were not forced to make their own links; they followed those laid out by

the instructors. Nor did they make additions of their own to the corpus. Their use of the Inter

media system was passive. So it is unclear whether true pluralistic nonlineal thinking occurred for

them or whether, as in most of their classes, they merely replicated what they thought the instruc

tor wanted to hear. These instructors wanted to hear their students tying ideas together-ideas

which were tied together for them on Intermedia by links.

Intermedia forced the instructors and the teaching assistants who prepared the material to

clarify their thinking about the ways in which the various materials with which they were working

fit together as an interrelated whole. Just as a first draft of a paper is often not well formulated,
the first Intermedia corpora were not as well formulated as they eventually came to be. One

English 32 teaching assistant described the process this way: with Intermedia "there were some

new ways of conceiving things, forcing myself to think about relationships, literary relationships

that seemed a little fuzzy before, and certainly a lot of the stuff that I did was new background

research ... I probably did it in a different way (for Intermedia) then I would have if I had done

pure research on my own."

One of the teaching assistants for Biomed 106 commented on the fact that after spending so

much time thinking about biology in terms of linking material, that he was unable to resist thinking

about his other courses in this way. He said that it became apparent to him that he had suc

cumbed to a new way of thinking upon lending his class notes from his geology class to a friend.

Upon returning the notes, the friend asked him what all of the margin markings which said, "link

to-"were about. It is evident from this, that working with Intermedia intensively had nonlineal

learning effects on him.

We have seen that creating material and making links caused a change in thinking for some of

the participants in the project. One of the students who made links for the English corpus thought

that it changed the way that she thought about literary materials months later. This change in

thinking: the ability to incorporate new material and to draw connections was added for her. In a

sense, she learned to think pluralistically.

"The most striking instance of "remembering Intermedia-style" happened when
a professor of mine was telling a story about an eccentric colleague. He said " this
guy was devoting his life's work to a totally obscure 19th century writer, Max
Berenbohm." I said "I'm getting a picture in my mind of a funny little pen and
ink caricature . . " "exactly I" says the professor.

I realized later that the picture in my mind was one of the illustrations in the
English corpus. It just popped upon the screen in my mind just the way way it
does on Intermedia-it was a real verbal-visual link. It didn't provide a whole lot
of real information, to be sure, but it was there. On a more mundane level, I've
experienced countless recognitions that I owe completely to working with the

Hypertext '87 Papers November 1987

English corpus. I think the links really do help create a sense of connectedness in
my mental image of what "English Lit" is. It is a totally different kind of picture
from the typical "reading list" or "great books" approach. For one thing, the
sense of network rather than a list makes it easier, in a way, to insert a neglected
work or authors in my mind's picture of the canon. It's more adaptable and
flexible. Connectedness and difference both fit in."

In sum, for those people (especially the teaching assistants) who used the system extensively,

in the way that it was intended to be used, real pluralistic learning occurred. We are not certain

whether the students' exposure to Intermedia fostered the same types of learning effects. This

may be due to the fact that they used the system passively rather than actively; they did not

contribute directly to the corpus. Another possible reason could be that the amount of time they

spent working on the system was not as great and their use not as intensive. It is possible that they

simply never got to the point on the learning curve where they were able to fully exploit the

system.

CONCLUSIONS

It too early to state conclusively that students using Intermedia were able to acquire a new plural

istic cognitive style. Nevertheless the Intermedia system was clearly a powerful educational tool for

destroying the lineality of traditional information in classroom teaching. In the eyes of instructors

and students its use promoted greatly increased understanding of classroom materials in a plural

istic mode. The fact that persons involved in creating the materials used in teaching experienced a

powerful reorganization of their own thinking regarding these materials suggests that increased use
of Intermedia results in cumulative reinforcement of pluralistic, non-lineal thinking.

It wlll be interesting to see if other hypertext systems produce the same cognitive effects in

users as they are introduced in teaching and research. Clearly this is an extremely fruitful field for
further study.

November 1987 Hypertext '87 Papers 81

82

NOTES

1 Thanks to James M. Nyce for valuable aid in the preparation of this paper.

2 There are many formulations of the "Sapir-Whorf hypothesis." The most extreme forms
posit a direct connection between language form and thought processes. A weaker form
emphasizes the shape communication about thought takes when filtered through the chan
nel of a specific language.

3 Bernstein emphasizes socialization as the principal determinant of cognitive style as opposed
to Piaget who maintains that cognitive styles change with natural processes of human
growth.

4 Piaget's developmental stages with younger children are often compared with Perry's work
in college student development. Ct. Haisty (1983).

5 See also Perry and Whitlock (1958) for an earlier formulation.

6 This is doubtless conditioned in part by the extraordinary number of colleges founded, run by
or affiliated with religious organizations. American institutions of higher education also
seem to feel the necessity to embody an educational philosophy unique to each institution
in their overall educational structure. In other nations where higher education is centralized
and run through the national government, it is a national educational policy which is imple
mented.

7 There is no single ideological frame for this pluralistic integration, only a commitment to
moving students toward this style of thinking. Certain religious colleges are quite explicit in
their desire for pluralistic education of a special kind. They strive to equip students for the
application of a particular religious philosophy in every scholarly and professional disci
pline, and for every life situation which might be encountered by an adult.

8 Ashby's characterization of post-conventional thinking as quoted by Entwistle and Ramsden
is as follows: ·

The student (moves) from the uncritical acceptance of orthodoxy to creative
dissent over the values and standards of society ... (In higher education)
there must be opportunities for the intellect to be stretched to its capacity, the
critical faculty sharpened to the point where it can change ideas. (Ashby
1973:147-9).

Note also Stephen Ehrmann's broad characterization of the means to achieving these
pedagogical goals: "the three academic conversations. (Ehrmann 1987)," consisting of
conversations with objects, such as books, pieces of text, diagrams and maps; synchro
nous conversations with other people, such as. in lectures or discussions; and asynchro
nous conversations with others such as in written communications.

9 Lee's characterization derives from a strong formulation of the Sapir-Whorf hypothesis.

10 It may be that some languages, such as that of the Trobrianders, facilitate discussion of
non-lineal thought processes, but we argue that Westerners are quite capable of this kind
of thought despite the limitations of Indo-European languages.

11 We are not able to really determine whether such a decision matrix exists and is trans
versed very rapidly, or whether some other structure governs pluralistic cognitive process
ing. Dreyfus and Dreyfus liken the difference between non-expert decision making and
expert decision making to the functioning of a non-compiled vs. a compiled computer
program.

12 We are reminded of novelist John Barth's notion from The End of the Road, "cosmopsis,"
the ability to maintain contradictory information and beliefs within a single mental frame.

13 Perry, op. cit. provides a nine-stage schema for this development leading from "simple
dualism" through "complex dualism," "relativism," and finally "commitment in
relativism," where knowledge becomes integrated with one's own life in a framework of
personal choice. Use of the Perry scheme is widespread in the study of student le~trning

Hypertext '87 Papers November 1987

and writing. See Entwistle and Ramsden (1982) and Ryan (1984) for discussion of studies
deriving from Perry.

14 The lntermedia system is described in detail in Yankelovich 1986 and Meyrowitz 1986. More
theoretical statements about lntermedia and its applications are contained in Yankelovich
and van Dam 1987; and Yankelovich, Meyrowitz and van Dam 1985.

15 Details of preparation of materials for both courses are contained in Yankelovich, Landow
and Cody 1986 and Yankelovich, Landow and Heywood 1987.

16 The assessment of lntermedia experience was undertaken by the Office of Program Analy
sis in Iris in conjunction with an outside team of advisors, Rob Kling (team coordinator),
Kathleen Gregory-Huddleston, John King, and Kenneth Kraemer. Full details of the assess
ment plan and its associated research methodologies are contained in Beeman, Gregory
Huddleston, King, Kling and Kraemer 1986.

17 In Tables 1. 2 and 3 in the Appendix to this paper, the three repetitions of English 32 are
referred to as English 32a, 32b and 32c. Only in English 32c did students use lntermedia.

November 1987 Hypertext '87 Papers 83

BIBLIOGRAPHY

Ashby, E.

1973 The structure of higher education: a world view, Higher Education, 2 142-51.

Barth, John

1958 The End of the Road. New York: Doubleday & Company.

Beeman, William 0., Kathleen Gregory-Huddleston, John King, Rob Kling and Kenneth
Kraemer

1986 Assessment Plan for a Network of Scholar's Workstations in an University Envi
ronment: A New Medium for Research and Education. Submitted to the Annen
berg/CPB Project, March.

Bernstein, Basil

1971-5 Class, Codes and Control. 3 vols.,London: Routledge and Kegan Paul.

Clark, R.E.

1983 Reconsidering Research on Learning from Media. Review of Educational Re
search. 53(4)

1985a Confounding in Educational Computing Research. Journal of Educational Com
puting Research 1 (2)

1985b The Importance of Treatment Explication: A Reply to J. Kulik, C-L Kulik and
P.A. Cohen.

Dreyfus, Hubert L. and Stuart E. Dreyfus

1986a Putting computers in their place." Social Research 53(1): 57-76.

1986b Mind Over Machine: The Power of Human Intuition and· Expertise in the Era of
the Computer. New York: Free Press.

Ehrmann, Stephen C.

1987 Hypertext as a Medium for The Three Academic Conversations. Paper submitted
for Hypertext Workshop, University of North Carolina, November 13-:15, 1987.

Entwistle, Noel J. and Paul Ramsden

1982 Understanding Student Learning. London and New York: Croom Helm and
Nichols.

Haisty, Donna B.

1983 The Developmental Theories of Jean Piaget and William Perry: An Application to
the Teaching of Writing. Ph.D. dissertation, Department of English, Texas Chris
tian University, Ft. Worth Texas.

Heath, Roy

1964. The Reasonable Adventurer. Pittsburgh: University of Pittsburgh Press.

Kohlberg, Lawrence and Rochele Mayer

1972 Development as the Aim of Education. Harvard Educational Review 42: 449-96

Kulik, J.A., C-L Kulik and P.A. Cohen

1980 Effectiveness of Computer-based College Teaching: A Meta-analysis of Find
ings. Review of Educational Research 50(4): 525-544.

Kulik, J.A., C.C. Kulik and R.L. Bangert-Drowns

84

1985 The Importance of Outcome Studies: A Reply to Clark. Journal of Educational
Computing Research 1 (4) : 381-387.

Hypertext '87 Papers November 1987

Lee, Dorothy

1959 Codifications of reality: lineal and non-lineal. In Freedom and Culture.
Englewood Cliffs: Prentice Hall. pp. 105-120.

Meyrowitz, Norman

1986 lntermedia: The Architecture and Construction of an Object-Oriented Hypertext/
Hypermedia System and Applications Framework. OOPSLA '86 Proceedings.
Portland, Oregon, September 29-0ctober 2, 1986.

McQuillan, Patrick J.

1987 Computers and Pedagogy: The Invisible Presence. Working Paper, Office of Pro
gram Analysis, Institute for Research in Information and Scholarship, Brown Uni
versity.

Perry, William G.

1968 Forms of Intellectual and Ethical Development in the College Years: A Scheme.
New York: Holt, Rinehart and Winston.

1976 Students as Makers of Meaning. Higher Education 5: 125-132.

Perry, William G. and Charles P. Whitlock

1958 Of study and the Man. Harvard Alumni Bulletin. (February): 1-13.

Piaget, Jean

1950 The Psychology of Intelligence. Trans. Malcolm Piercy and D.E. Berlyne. Lon
don: Routledge and Kegan Paul.

1959a The Language and Thought of the Child. 3rd ed. Trans. Marjorie and Ruth
Gabain. London: Routledge and Kegan Paul.

1959b Judgment and Reasoning in the Child. Trans. Marjorie Warden. Patterson, N.J.:
Littlefield, Adams.

Ryan, Michael P.

1984 Monitoring Text Comprehension: Individual Differences in Epistemological Stan
dards. Journal of Educational Psychology 76 (2): 245-258.

Sapir, Edward

1924 The Grammarian and His Language. American Mercury 1: 149-155

1949 Selected Writings of Edward Sapir. David G. Mandelbaum, ed., Berkeley: Uni
versity of California Press.

Whorl, Benjamin

1956 A Linguistic Consideration of Thinking in Primitive Communities. In John B. Car
rol, ed. Language, Thought and Reality: Selected Writings of Benjamin Lee
Whorl, pp. 65-86. Cambridge: MIT Press.

Yankelovich, Nicole

1986 INTERMEDIA: A System for Linking Multimedia Documents. IRIS Technical Report
86-2, Institute for Research in Information and Scholarship, Brown University,
Providence, Rl, 1986.

Yankelovich, Nicole and Andries van Dam

1987 Spinning Scholarly Webs. The Annenberg/CPB Project Report to Higher Educa
tion. The Annenberg/CPB Project, Washington, D.C. 1987.

Yankelovich, Nicole, George P. Landow and David Cody

1986 Creating Hypermedia Materials for English Literature Students. Institute for Re
search in Information and Scholarship and Department of English, Brown Univer
sity, Providence, Rl, October 1986.

November 1987 Hypertext '87 Papers 85

Yankelovich, Nicole, George P. Landow and Peter Heywood

1987 Designing Hypermedia ldeabases-the lntermedia Experience. Paper submitted
to the Annenberg/CPB Project, August 30, 1987.

Yankelovich, Nicole, Meyrowitz, Norman and Andries vari Dam

1985 Reading and Writing the Electronic Book. Computer 18(10) [October]: 15-30.

86 Hypertext '87 Papers November 1987

APPENDIX

Av.

p
e
r

c
1
a
s
s

25

20

15

10

5

0
Instructor
Questions

Student
Questions

Chart 1

Student
Observations

Effect of Intermedia Use on English 32 Class Discussion

TABLE 1
Amount Learned in Course

Compared to Other Courses Taken at Brown

Much More About less
More Average

ENGLISH 32a .0% 19.2% 53.8% 11.5%
ENGLISH 32b 11.5% 42.3% 34.6% 7.7%
ENGLISH 32o 10.0% 40.0% 36.7% 13.3%
BIOMED 106a 22.2% 55.6% 22.2% .0%
BIOMED 106b 27.3% 72.7% .0% .0%

Much
Less

15.4%
3.8%
.0%
.0%
.0%

November 1987 Hypertext '87 Papers 87

TABLE 2
Overall Evaluation of Course

Compared to Other Courses Taken at Brown

Much Better About Worse Much
Better Average Worse

ENGLISH 32a 7.7% 23.1% 34.6% 23.1% 11.5%
ENGLISH 32b 15.4% 38.5% 30.8% 11.5% 3.8%
ENGLISH 32o 10.0% 36.7% 26.7% 23.3% 3.3%
BIOMED 106a 27.8% 50.0% 16.7% 5.6% .0%
BIOMED 106b 45.5% 45.5% 9.1% .0% .0%

TABLE 3: Opinions about lntermedia
Biomed 1 06b=regular face type; N=11

English 32c=bold face type; N=30

RANK
English Biology NO, NOT YES, YES,

REALLY SOMEWHAT DEFINITELY NIA
4 1 reinforced the lectures 18% 27% 55%

7°/o 60% 30"/o 3%

2 2 deepened understanding of 18% 46% 36%
course material 7% 47% 43% 3%

3 3 helped your understanding 27% 46% 27%
7% 60% 33%

5 4 helped prepare for exams 36% 9% 55%
17% 50% 33%

1 5 taught things not found in 36% 46% 18%
other sources 3% 33% 60% 3%

6 6 increased class participation 55% 18% 9% 18%
53% 37% 10%

7 7 improved your grades 64% 9% 18% 9%
53% 30% 10% 7%

8 8 replaced other course readings 73% 27% 0%
82% 18% 0%

88 Hypertext '87 Papers November 1987

Experiences
and Writing

Hypertext Habitats:
Experiences of Writers in NoteCards
Randall H. Trigg and Peggy M. Irish

Intelligent Systems Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

ABSTRACT

This paper reports on an investigation into the use of the NoteCards hypertext system for

writing. We describe a wide variety of personal styles adopted by 20 researchers at Xerox as

they "inhabit" NoteCards. This variety is displayed in each of their writing activities:

notetaking, organizing and reorganizing their work, maintaining references and

bibliographies, and preparing documents. In addition, we discuss the distinctive personal

decisions made as to which activities are appropriate for NoteCards in the first place. Finally,

we conclude with a list of recommendations for system designers arising from this work.

1. INTRODUCTION

There is an apparent contradiction inherent in the notion of using hypertext for writing

papers.1 To be sure, there is the possibility that in the future readers will access "soft"
documents online. The "published" form of a document could then be a network of interlinked
chunks of text, graphics, etc. [Trig83, Nels81]. However, for today and the foreseeable future,
the audiences for our papers will not access them via a computer, but rather by reading
hardcopy renderings. This means that we need the final product of our writing efforts to be a
traditional, predominantly linear, paper document. Nonetheless, we have found hypertext to
be quite well-suited to supporting the writing process. This is especially true when writing is
viewed broadly as consisting of a range of activities beyond simple text composition. These
include among others: notetaking, organizing and structuring, outlining, and maintaining
references and bibliographies.

To investigate the topic of writing in hypertext, we conducted a series of interviews of
researchers at Xerox using NoteCards, a popular hypertext system available on Xerox
workstations. (See Hala87 for a detailed description of the system and its design rationale.) In
addition to providing a powerful interactive hypertext framework, NoteCards allows its users
tremendous freedom to create a'nd adopt personal styles. Many of the users we interviewed
spend a significant portion of their online time doing research. Because of the extended scope
of their work and the relatively unconstrained nature of NoteCards, they evolve for
themselves online "habitats". In the same way that a person's office often has a "lived in" feel,
these users' online environments reflect their personal styles as well as the substance of their
work.

November 1987 Hypertext '87 Papers 89

90

The writers discussed here are 20 researchers who have used NoteCards for one or
more writing tasks, usually on several papers. They come from a wide variety of backgrounds

and include anthropologists, physicists, linguists and computer scientists. Some are
accomplished Lisp programmers while others have had no programming experience and use
the computer predominantly for writing and electronic mail. The writing projects vary in size
from short papers and presentations to Ph.D. theses. With nine of these writers, we

tape-recorded in-depth interviews which included extensive "guided tours" of each of their
hypertext environments. We also had access to the writers' notefiles (i.e. files containing their

hypertext networks). The figures appearing in this paper are taken from those notefiles. 2

An important feature of this study is that each of the writers discussed here is a
voluntary user of NoteCards. That is, their use of NoteCards is neither one of their job
requirements nor part of a writing "task" imposed by us. Rather, these researchers freely
choose to do their personal writing projects in NoteCards and can leave it at any time. In that
sense, this study is naturalistic rather than experimental. That is, it reflects what people are
doing independent of the study. Furthermore, our writers select for themselves the particular
writing activities that are appropriate for NoteCards and those that are not. In fact, we have
included two cases of writers who worked for some time in NoteCards and found it sufficiently
unsatisfactory that they were forced to discontinue use altogether. The experience of such
users who "leave the fold" is particularly valuable as it points out dramatically those parts of

the system in need of improvement. More generally, it affords us the opportunity to
investigate those writing activities, styles and situations that are perhaps not as appropriate

for hypertext support.
The primary goal of this paper is to describe the variety of writing activities our users

elect to perform in NoteCards and the wide variety of styles they employ. Our hope is that this
information will be useful to our fellow hypertext system designers who intend to support the
writing process. In Section 2, we provide an overview of the fundamental concepts in
NoteCards, concentrating on those of particular relevance for writers. In Section 3, we discuss
the user-specific limits ofNoteCards, that is, which activities our users found natural to do in
N oteCards, and which were best done elsewhere. The next four sections discuss particular
writing activities grouped into the loose categories of: notetaking, gathering and maintaining
references, structuring and organizing, and creating a document. Note that the order of these
sections is not meant to imply that the corresponding activities constitute successive stages of
writing. On the contrary, these groups of activities are generally interleaved, each likely to
occur at any time during a writing project. Finally, we conclude with a discussion of the
implications of this work for hypertext system designers, and recommendations for future
research.

2. OVERVIEW OF NOTECARDS

NoteCards is an extensible computer environment designed to help people manipulate and

structure information [Hala87). The basic NoteCards construct is a semantic network made
up of a set of notecards interconnected by typed links. This network may be organized,
displayed and managed by tools provided by the system. N oteCards also provides a set of
methods and protocols for creating programs to manage the network.

Hypertext '87 Papers November 1987

A notecard (or sometimes just card:) is an electronic analogy of a 3x5 index card. Every
notecard includes a title and an arbitrary amount of an editable "substance," such as a piece of
text, a structured drawing, or a graph representation. Some examples of cards are shown in
Figure 1. Different kinds of notecards are defined in an inheritance hierarchy of card types
(eg., text cards, sketch cards, graph cards, etc.) "Bringing a card up" from the database, i.e.
displaying the card, activates an editor appropriate to its card type; text cards activate a text
editor, sketch cards a _sketch editor, and so on. Multiple cards can be displayed
simultaneously, each in an arbitrarily sized window. NoteCards contains a set of standard
card types, along with a facility for adding new types of cards ranging from small extensions of
existing types, to those based on entirely different substances (e.g., video cards).

n Chp 2: Structure of Window Environments I
n Chp. z Overview I

I
I
I

nuse.- Interface Toolkit!

n Dellktop Manager I

§Issues!

n Survey of Window Sy51tems I
noescriptlons of surveyeesl

nolossary I §concepts and Terms I
nReference MOOel Terms I_

nscr~en Management 1/27/&71

Ghp 2: StMJGture of W1ndow Env1ronmentsfj:
2. The Structure of Wmdow

Envir<Jnments

n <Expander> Chp. 2 Overview I
n Architecture of Window Environments!

nrunctlonality of Window System I
n Jssues in Window Environment Design I

issue · how t:o economically use
available screen space. With •.;.,.•indo•::ing
and the abilitY to illteract with a
multitude of activity, the demand for
screen space grows. The most common
method of dealing with this problem is
the use of icons, though Cedar's

an and speculative
perspective respectively.
!cohen et al. as I discusses a number of

interesting topics in designing
powerful tiling managers including
how tiling can recapture some of the
benefits of overlapping, how the user

Figure.1. Cards, fileboxes and links.

Cards can be connected to other cards by arbitrarily typed, directed links to form a
network. Links are used both to organize a network and to navigate through it. A link type is
a user-specified label signifying the nature of the relationship between two cards. It is usually
up to the user to decide how to take advantage of link types to organize the network. An
individual link appears as a link icon (typically a boxed title) in the body of its source card, as
shown in Figure 1. Selecting the link icon with the mouse causes the link to be traversed and a
window containing the link's destination card to be opened.

November 1987 Hypertext '87 Papers 91

92

The filebox is a specialized card type provided to help users manage large networks.
Fileboxes provide a hierarchical filing structure that can be used to cluster and organize
collections of notecards. NoteCards requires that every card (including fileboxes) be filed in
one or more fileboxes, and that the fi!ebox structure form a true hierarchy (i.e., a directed
acyclic graph). File boxes may contain text, cards and other file boxes, as shown in Figure 1.

A browser card displays a structural diagram of a network of notecards. The browser
contains a graph, the nodes of which are link icons representing cards in the network and the
edges of which are lines representing links between cards. (Nodes can also be simple textual
labels.) The dashing styles of the lines appearing in the browser represent link types.
Browsers can be edited in two ways. First, nodes and edges can be added, deleted or
rearranged in the browser diagram without affecting the corresponding cards and links. For
example, the vertical spaces between nodes in the browser shown in Figure 2 were added by
the user to reflect logical groupings. Second, new cards and links can be created or existing
ones deleted using operations available through the browser card interface. Both sorts of
editing operations appear in the menu attached to the lower right corner of the browser in
Figure 2. Another feature of the browser card is the browser overview window, which displays
the contents of the entire browser scaled to fit into a window, and appears to the left in Figu;e
2. The position of the wire frame in the overview indicates the portion of the browser
appearing in the main window; "dragging" it with the mouse causes the main window to scroll.

!i:",'

~ ·MGroup vs, indlvidua.l owned ideas I
: ~ -dldeG championing I

/El:§i~~~~~E~ ~ ·- ·M Building vs, reintroducing I
:0.'':?>. ~- -n Technica.l merit/relevance I
,-l~

~"':,"~,\
·-~·:~ '. ', '"'M""'n"'m""• ""••"'n=•=•n"'s I
-;.'1\ \'-n Systemuic-->ad hoc I
:,1;,',\ 'MErrect or time pressunl
:I"" oM,,' i '·~·,\' nKey ideas/
. .,;. ~'. •n Occurn:nce of transfigurations I
~~··:·noynamic design structure!

'?.:, 'Moesign decision-making I

Figure 2. Browser card.

Link & Edge
Add Label
Add Node
Add fdg5

Remove Node
Remove Edge

Move Node
Label Smaller
Label

A document card contains a linearization of a portion of the network specified by the
user. When creating a document card, the user selects a.starting card, the set of link types to
follow, and certain formatting options. N oteCards then traverses the resulting network and
places in the document card the contents of each card it encounters. The end effect is of
collapsing a network ofindividuallinked chunks of text and graphics into a linear document.

Hypertext '87 Papers November 1987

All information pertaining to a network of cards and links is stored in a notefile, a
structured file managed transparently for the user by NoteCards. A single user can
simultaneously access any number of notefiles, and can create and traverse special links
(known as cross-file links) connecting cards residing in different notefiles. The boundaries of a
notefile can be relaxed further using file cards. A file card is a card whose substance is simply
the name of a file. When a link is followed to a file card, NoteCards finds the file with that
name and opens it in a text editor window. File cards were designed to allow work to exist in a
file external to the notefile, and yet still be made available from within the notefile.

Finally, NoteCards contains a programmer's interface of more than 150 lisp functions

that allow the user to create, access, and modify all N oteCards objects. Functions are provided
for modifying the characteristics of individual cards and links, and for building new

structures. This interface also gives users the ability to create new card types, modify the user
interface to NoteCards, and specify global actions over an entire notefile. It is designed to
support both small modifications and large system developments.

3. WHEN TO USE NOTECARDS

An important goal of this study was to investigate the decisions of writers as to the

appropriateness of N oteCards for their particular work. In general, this decision is not made
once and for all. Most revisit the issue each time they begin to write a paper. Furthermore, for

different writers the NoteCards medium is found to be appropriate for different sub activities of
the writing process. For example, some writers do early notetaking and data gathering in

NoteCards, electing to move out of the system for final document preparation. Others only
enter NoteCards when they perceive the need to structure or restructure parts of their paper.

When to enter NoteCards?

The first decision writers make is whether to try N oteCards at all. The outcome presumably
depends on such factors as advertising, recommendations from friends, general curiosity, etc.
Some of our writers played with NoteCards on toy problems before using it for serious work,
while others jumped in with a real project at the outset. In addttion, several of our writers had
already used NoteCards for non-writing tasks and were thus familiar with its general
capabilities.

Beyond the initial decision to try NoteCards, our writers decide for each particular
paper or research project whether to do that work at least partially within N oteCards. For the
most part, these decisions are based at least in part on personal experience with the system
(rather than simply hearsay). We found three factors to be relevant to the decision of whether
to write all or part of a new paper in N oteCards. The first concerns the complexity of the work
to be done. Papers for which the organization or structure is already known seem less
appropriate for composition in hypertext. These are papers that can be generated using a
single instance of the text editor in a window. Most of the work involves tinkering with prose
rather than large scale structuring.

The second factor involves the degree to which the paper borrows from previous work
already available in NoteCards. In the extreme case, the paper is seen as part of or closely
related to a larger project, and merely requires assembling pieces of prior work. At the other

November 1987 Hypertext '87 Papers 93

94

extreme, the paper is on a new topic and none of the author's prior work in N oteCards can be
seen to be relevant. Note, however, that if prior non-NoteCards writing is relevant, then the
idea of creating a new notefile containing both the old work and the new is worth considering.

Finally, the overhead for using NoteCards must be considered. Assuming the
NoteCards system is already loaded in the user's environment (this happens automatically for
most users), the costs for starting work on a new paper consist merely in creating and opening
a new notefile. Once work is underway, however, NoteCards imposes some overhead as
compared to say, a single text editor. Mont86b discusses some of the requirements made on
the user including segmenting material into cards, card titling and filing, etc.

In most cases, some combination ofthese three factors is at work. Usually, the writer
weighs the overhead of using NoteCards against its benefits, primary among these being
support for structuring and restructuring the paper. For example, consider the following case.
One user had been working outside ofNoteCards, using the text editor to create multiple files
containing descriptions of experiments to be included in a paper on music perception. The
window on the left side of Figure 3 displays a system filebrowser over these files. He
subsequently brought some of these files into N oteCards in order to manage versions and
changes, and to help in rewriting the introduction to include a literature review. He realized
that the introduction would contain many references and felt that NoteCards would support
organizing and linking these references into the paper. He also preferred to view and edit his
sections as cards in a file box rather than as text editor files on a server. The two cards on the
right side of Figure 3 show a portion of the resulting NoteCards organization.

ABSTRACT. TEO IT; 1
EXP1. TEDIT~9
exp1. tr-off; 1
figs. tedit; 1
F'IGURECAPS, TEOl T; 1
FOOTNOTES. TED IT; 3
INTRO. TEO IT; 12
PAPER!. TEOIT;1
P.EFS. TEDIT;i
t 1 t lepage. ted it; 4
TOC.TEDIT;2

<JORDAN'> MUSI C>PAPER> EXP2>
EXP2. TEDIT~15
EXP2.TEDIT~4
EXP2. TI'WFF ~ 1
F I•12H- TEST -OLD. TED IT; 1
RESUL TEXTRA. TEO IT; 1

<JORDAN> MUSIC> PAPER> EXP3)
EXP3. TEDIT:13
EXP3.TEDIT;2
EXP3. TRDFF; 1
EXTRA. TED IT; 1

< J OROAN> MUB I C) PAPEP.> E;-;pq)
E:<P4. TEDIT;17
EXP4.TEOIT;3

<JORDAN'> MUSIC> PAPER~ EXPI5)
EXP5. TEOIT;13
E:~P5. TED IT; 3

nExp 3 dis:c (old) I

Figure 3. Paper structuring inside and outside NoteCards.

Often it is the case that papers with short time horizons are less likely to be written
using N oteCards, perhaps because there is less time to take advantage of the hypertext
environment for reorganizing and restructuring one's work. In this case, however,
restructuring was precisely the purpose of the move into NoteCards. We were told by this
writer that the fact that he had less than two weeks to complete the paper argued in favor of

Hypertext '87 Papers November 1987

using NoteCards; he didn't see how he could reorganize the paper in such a short time without
it.

For projects involving long papers and extended research, the tradeoffs are sometimes
different. On the one hand, such projects usually involve restructuring on both large and
small scales. At the same time the length of the paper makes it likely that the structure will
be more complex. Each of these argues for the appropriateness of embarking on the project in
NoteCards. On the other hand, large projects tend to magnify the risks of using NoteCards (or
any computer environment); the more one is invested, the harder it is to "bail out."

.. Falling out" of NoteCards

At some point in the writing process, many writers find it necessary to move out of N oteCards.
This happens most often during the final document preparation phase. Once the organization
of the paper has been determined and a draft exists, smoothing the text is sometimes done
outside of NoteCards in a single text file. It seems that the major reason for this is the
increased accessibility of the document; changes can be made, comments integrated and
hardcopies generated without having to open the notefile.

For example, towards the end of writing a Master's thesis in NoteCards, one writer
made external text files out of the chapters in his notefile, and worked on these files for several
weeks until the chapters were in final form. He even changed one chapter significantly,
splitting it into two new chapters. Note, however, that this work was later brought back into
NoteCards. Indeed, the process of using NoteCards is more complex than a simple 3-stage
model of enter, work, and fall out. For example, earlier in the course of that same user's work,
he wrote a thesis proposal in N oteCards. Near the end of that period, he moved it into an
external text file for smoothing. Later, as he started work on the thesis proper, he brought the
proposal back into NoteCards breaking it up to allow piecewise access.

A special card type called file card (see Section 2) was added to N oteCards precisely to
help in such situations. One writer did, in fact, make extensive use of file cards. As in the case
described above, he moved his document from N oteCards into an external text file for final
smoothing. Upon completion of this work, he created a file card in the notefile pointing to the
completed document. This allowed access to the final copy both from inside and outside
NoteCards.

Nonetheless, such facilities are insufficient to solve the accessibility problem in general.
One of the researchers who left NoteCards altogether did so for just this reason. This
individual was one of our most serious users having written several papers in NoteCards, as
well as using it for various non-writing projects. His major complaint is that cards in a notefile
(other than file cards) are not generally accessible except through NoteCards. This is due to
the fact that all cards and links in a notefile are stored together in a single file, a situation that
is probably exceptional among hypertext systems. In Unix-based hypertext systems for
example, each card (or node) is stored in a separate file [Trig86a, Deli86]. This presumably

allows access to individual cards without loading in the network.3

November 1987 Hypertext '87 Papers 95

96

4. NOTETAKING

There are a set of activities that are common elements of doing research, though not strictly
part of the process of composing text for a fmal document. They usually take place before
writing begins and include: taking notes from reference books and articles, gathering data
from various sources, and generating notes "from one's head." Given that these notes are at
best loosely structured, hypertext can be an ideal environment for creating and organizing
them. In our study, we found notetaking to be a fairly common activity among our writers,
particularly those engaged in longer term projects for which the form and even the focus of a
final paper were not initially known. In this section, we look at the decision to use N oteCards
to store particular notes, as well as styles of organization for those notes that do make it into
NoteCards.

There are two primary reasons our writers give for deciding not to put certain notes
online. Both involve trading off the work involved against perceived benefits of having the
notes available at the time the paper is written. One problem is that notes sometimes have a
graphical component which can be difficult to transfer online. In the case of one writer, the
notes contain complex equations. Although there are facilities for laying out equations in the
text editor (and thus in a text card), using these takes far more time than writing them out by
hand. This writer finds entering equations into the computer to be too much work unless he is
confident that they will appear in the paper. Similar arguments apply to quick diagrams and
flowcharts.

A second problem for some writers arises when they aren't sure where a particular note
fits into the current structure ofthe notefile. One writer stated that he likes everything in his
notefile to fit into a structure, preferring not to have cards in the notefile that are
"unorganized". As evidence for this, he generally goes to some lengths to clean up the contents

of his ToBeFiled and Orphans fileboxes.4 Notes that don't easily fit into an appropriate place
in the notefile are written in an offiine notebook instead and only later inserted into the
notefile if their relevance becomes apparent.

Other writers, however, develop schemes and conventions in NoteCards especially to
handle notes whose precise resting place in the notefile is not obvious. One writer uses a
"WhiteBoard" filebox similar to a physical whiteboard. This filebox contains old cards, cards
without a home, and loose text. Periodically he sorts through this box, filing cards and moving
text into new or existing cards. In the interview, he compared these actions to copying notes
and figures from a whiteboard to paper, and then erasing the whole board to start over. This
same user has a second mechanism he calls "bins" for storing some of his notes. A bin is an
unordered, unstructured filebox containing cards and boxes related to some general topic.
Like many other users, he prefers not to let unfiled cards build up in the ToBeFiled and
Orphans fileboxes. This writer occasionally looks through the bins in his notefile to see what
might be of use in his writing. Another writer has a "Miscellaneous Thoughts filebox," shown
in Figure 4, where he puts cards not yet categorized. As soon as he sees how a card fits into his
paper, he files it in one of the fileboxes making up the paper "outline".

The situation of having notes with no place to put them has a flip side; namely, that of
having fileboxes in a structure and no notes to fill them. This is relevant for writers who
occasionally adopt a top-down approach to notetaking, creating topical fileboxe's to contain

Hypertext '87 Papers November 1987

notes that don't yet exist. These fileboxes become a sort of agenda of work to be done. For
example, one of our writers is in the process of taking notes from a set of audio tapes. Each
tape has a corresponding filebox in the notefile, though several are empty. Similarly, this user
keeps empty fileboxes meant to contain notes from books and articles which he hasn't yet read.
For example, he created an empty "Sociolinguistics" filebox to contain notes on materials
relating to that subject. This filebox appears on the right side of Figure 4, along with the
filebox in which it is filed.

This is a box for miscellaneous thoughts and
addenda that aren't actually part Of the outline or
the thesis. Yet. Probably most of them will get
folded in evenr.ually, or they may even become
the thesis.

FILE BOXES

NOiE CARDS

n The Mikado I
n Plrolli on Expertise I
n Anecdoces and Location in Problem Space I
n JSD: Art'ificial Intelligence and Learning Strlttegie:J I
n Anecdotes and Examples I
n Context and Theory Reliability I
nAnn BI"Own: Reciproc4J Teaching Strategies\

noelhctsl

n E&rly Thoughts on Copiers 4.fld Diagnosis I

~ n Ramblings on Cognition I
n Procedure Pittall5j

Iva! Mikado Sketch!

nn•e Cha.ra.cter of Narratives\

ncharacterization of Talk/

Thh sectioa will try to be
a. revi~w of the rlllevant
literature.

FILE BOXES

§Anthropology ot Work!

@sociolinguistics!

F3cognitive Anthropologyj

§3 Cognitive Science I
a Ethnomethodology I

NOTE CARDS

Oaibliography I

This is where we will or~ani:ze
at! the muerial on
sociolinguist!cs-.

FILE BOXES

NOTE CARDS

Figure 4. "Miscellaneous Thoughts" and top-down filebox creation.

One special kind of notetaking involves the articulation of thoughts preparatory to
writing a paper and has often been called brainstorming [Osbo79]. Rather than face an empty
pad of paper (or text card window), the brainstormer jots down thoughts on small pieces of
paper (or electronic notecards) in order to get started. These notes act as seed material for the
paper. Among practitioners of this method in NoteCards, we found two distinct styles. The
first involves the use of a text editor window in which to write phrases or short sentences that
capture relevant ideas. These bits of text are moved around in the card in order to reflect some
appropriate ordering. Changes to font size and face are also used as a way of organizing the
thoughts.

The other scheme uses a NoteCards browser (see Section 2) to easily create cards having
short phrases as titles. These titles appear in link icons in the browser and can be arranged

spatially on the canvas to capture grouping, etc.5 Links can also be created between the new
cards from within the browser, though we found few instances of that behavior. Rather, the
common practice involves creating new cards a:u:< ;noving their link icons around for grouping

November 1987 Hypertext '87 Papers 97

98

or to vaguely represent an outline. At some point, the user brings up one of these cards and
enlarges on the idea represented by the card's title with text (or graphics). Figure 5 contains
the "Thoughts Browser" used by one writer to organize ideas for a paper. The cards that were
generated while brainstorming in the browser, as well as the browser itself, are all filed in the

file box shown on the left side of the figure. 6

lOb! oLD fnmework sketeh I

Stuff we DON'T talk abou
Relations to other systems

MNotefile format!

n Links as objectsd "t.azy" link icon deletion I

nversioning!

M caching links and card parts l

M Types mechanism iil CommonL.oops j n Miscellaneous I
Moefault behavior.& inherit;sncej

Figure 5. Brainstorming browser.

5. REFERENCES AND BIBLIOGRAPHIES

Another set of activities important for both research and writing pertains to managing
references. These activities can take place during the entire writing process and include:
jotting down the name of a reference, recording a full bibliographic entry, maintaining
.references, inserting a reference into a document, and generating a bibliography. Many of
these tasks require attention to organization, and hypertext provides the necessary organizing
capabilities.

We found a wide range of complexity in the reference-handling styles of the writers we
studied. Not surprisingly, we found that the extent to which different users work at coping
with references in NoteCards depends on the size of their reference "databases," ranging from
less than 10 references to more than 150. In this section, we take a closer look at the methods
used by some of our writers for handling references in NoteCards.

A number of writers developed sophisticated structures to aid in the task of maintaining
and organizing large numbers of references. One example is the system employed by one user
while writing his Master's thesis in N oteCards. For each of his references, he creates a text
card titled with the author's name and the year of publication, and places the bibliographic
entry into the card's contents. These reference cards are linked into his thesis with Reference
links, one of which appears in the text of the card in the lower right corner of Figure L One of
his reference cards appears in the bottom window in Figure 6. He files all of these reference
cards in one large fi!ebox, called "Bibliography Bin," shown in the window on the right of
Figure 6. This filebox is loosely organized by ordering the cards and by adding line breaks to
indicate subject breaks. As an aid in generating a bibliography for each of his thesis chapters,
this writer links all of the references for a chapter into one bibliography card, as can be seen in

the "Window Environment Bibliography" card in Figure 6. This card is later used to construct
the bibliography for the chapter by means of a Draft card (see section 7) containing the

Hypertext '87 Papers November 1987

contents of the cards linked to by this card. The file box in the upper left corner of Figure 6
contains all of the bibliography cards for the chapters. The three cards in the top line of this
filebox are used to store reminder notes falling into three categories: the references on order
from the library, the references he's considering obtaining, and those he is in the process of
acquiring on his own.

Mwlndow Environment Bibliography/

n Other References I
n Window System Manuals I

bBIY & Rosenburg asj

Maobrow et aJ. as!

Maravo 79!

ncommonl.isp 841

McLas &7!

dc.tr-d & Henderson 87/

tuart

Maty & RosenbW"g as!
Mc.t.rd & Henderson 87/

M Cohen et a.l. 85/

Moosling as!
M6ettys as!
Mwarnock & Wyatt az I
Q]
Mttopgood et at. as\

Mrrestlej
nwhim as!
Mo11sp 7s!

dAthen-. 85!

"A Multiple, Virtual·Workspace Int~rface to support User
Task Switching," AOM Trans.:zcti¢11.$ on Grafklts, Sp~ lssu~ on Usv
lnt'lrfac~SajtWI:U~. In Press. 1987

Figure 6. Reference cards and bibliographies.

Another writer chooses to take a slightly less structured approach to the task of
maintaining references and generating a bibliography. In the course ofnotetaking, he creates
a reference card, titles it with its author and title (or abbreviated title), and places notes taken
from the reference into the card. He then updates a running bibliography by typing the
biblographic entry for this reference into a Bibliography card containing entries for all of his

references. To simplify the creation of the entry, he stores several copies of a sample entry in
this card, so that at least one is "within reach" at all times. For ease in locating a particular
reference in the Bibliography card, he groups the entries under subject headings. Although
this writer constructs his bibliography entirely by hand, it isn't an unmanageable task

because he adds to it only occasionally.
Some writers have made extensive use of the NoteCards programmer's interface to

customize N oteCards to their particular information management needs. This becomes
apparent when we examine the programs they have written for creating and maintaining

November 1987 Hypertext '87 Papers 99

100

references as well as bibliographies. One writer, in particular, has created several programs
to help him with this task. His primary motivation for implementing these programs was the
large number of references he maintains for one paper in particular (more than 150). As an
aid to creating reference cards, he defined his own Reference card type, which upon creation

contains the fields of a bibliographic entry ready to be filled in. At that time, it also
automatically prompts him for a filebox and a title, in the form of author and year. Once a

Reference card is created, a link to it may be inserted into the text using another of this user's
programs. This program allows him to choose an item from a menu which prompts for a

reference card. It then inserts, into the text currently being edited, a link to that reference
card. To facilitate the coercion of references from the form oflink icons to numbers in the text
of a paper, and to generate a bibliography, he created another program using the
programmer's interface. This program runs through a document card containing a paper and
collects all of the links to reference cards. It orders this list of references, either by their
occurrence in the document or alphabetically, and assigns numbers to each of them. It then
makes another pass through the document card, replacing each link to a reference card with
its assigned number. Finally, it generates the actual bibliography from this collected list of
references.

Another writer working on a Ph.D. thesis also created a program using the
programmer's interface to partially automate reference tasks related to his literature search.
His system for maintaining references includes: creating a file box for each article, inserting a
bibliographic reference (in proper format) as well as a summary of the article into the filebox,
and titling the file box with the title of the article. If he finds specific items of interest in the
article, he places them in separate notes and files them in the fiiebox. These notes contain

Source links back to the article filebox, so that the reference can be found when only the note is
on the screen. His program semi-automates this process by: creating a blank notecard; filing it
in a specified article file box and inserting a "back" Source link; and filing it in the Notes
filebox (which contains all notes, unsorted). He still must manually title the notecard and fill
in its contents, but the organizational part of the task is accomplished by his program.

Some of the writers have a tendency to refer to only a few sources in their papers, and
their papers are typically shorter than those of the writers whose reference styles are
described above. These people do not use complicated reference organization schemes because
they feel such schemes incur too much overhead for their application. One such writer chooses
to simplify the reference-tracking procedure by titling reference cards with the titles of the
sources, and by not bothering to store the full bibliographic entries for the sources in his
notefile. Instead, he looks up the bibliographic information when it comes time to generate the
bibliography at the completion of the paper. He also chooses to keep all of his reference cards
in one Source filebox; since he doesn't have many, he doesn't bother to order them. Several
users don't bother with reference schemes at all. They simply insert references into their text
and manually generate a bibliography when the document is complete.

6. STRUCTURING AND RESTRUCTURING

One of the well known strengths of hypertext systems is that they allow multiple
organizations of the same information to coexist and even evolve in parallel. Indeed, we found

Hypertext '87 Papers November 1987

widespread "redundancy" (to use the term of one of our writers) in those notefiles that were
part oflonger term projects. That is, the same cards are filed in multiple fileboxes or linked to
by several other cards. For example, Figure 1 shows two parallel organizations of a set of cards
on the structure of window environments. The filebox on the left contains all of the cards
rei event to this topic, while the cards on the right are part of the multilevel structure of the
paper, constructed by the writer with links. Note that three of the four cards on the right are
filed in "Structure of Window Environments."

What has perhaps been less widely acknowledged is the need for multiple structures
when converting from one organization to another. We found that none of our writers perform
instantaneous reorganizations of their notefiles. Rather, changeovers are gradual often
leaving part of the information in the old structure (or in both old and new), while more recent
information is filed and linked according to the new structure. One of our writers displays this
sort of gradual conversion in his thesis notefile. He plans to write his thesis section by section
working from a structured "outline" filebox. He grew dissatisfied with his first outline, but
rather than modify it, he created a new version by copying those parts of the old outline likely
to remain relatively constant. (Corresponding sections of the two outlines are shown in Figure
7; the original appears on the left, the current version on the right.) Some of the new outline is
less developed and less inter-linked than the original, but it better reflects his current
thinking. In short, the present state of his thinking on the thesis structure can be captured by
neither of the outline cards alone, but rather by the parallel alternative views and by the
gradual progression from one to the other.

aided design tools, locating this work relative to the field.
,-n survey of Literature I

·'III. Methodology
A. Obser ... ational

1. Review of other observational methods
2, Why chose method of observation,

Mcho'e method of ob:~ervo.tion text!

Att<empts at designing an e~periment prov<:od to be
premature Msucce:!liliful experiment not aswredl, bUt

educational for studying brainstorming

~·~
3. 1 of own ol

method I

B. Analytical·-playbacks with participants. other
designers, other analysts. DivirJe into segments, idea
careers nAnalytlcal procedure I

n Multiple viewpoints)
IV, Analysis--Broad Qescri.pciv~ <tnalysis

A. Intra to analysis, prerequisites for
ar,alysis--segmer,ting, idea careers (maybe in pre·.dous
chapr~r)

' rv. Methodology
A. Deciding on an approach to studying r:lesign

activitY
1. What is an appropriate scientific approach to

studying design activit:r?
2. Why an expe-rimental approach was

rejected--conditiotJS for successful experiment
not present ·

-a. Too man:; ·;ariables, too little control
b. Design activity is very rich and unstable
c. Time investment great

3. Why an empirical approach
a. Direct observation of naturalistic activity
b, Descriptive
c. Appropriate for current le•;e! of

understanding in design and fr::.r exploring
issues for future research

B. Obsen-·ational Methodology
1. Naturalistic design sessions (relevant

problems)
2. Passi•;e, unobtrusive •:ideotaping
3. Typically l-l/2 hours (participants decide

when to stop)
C. Analytical Methodology

1. Segmentation?
2. Multiple viewpoints including parti~ipants.

analysis work group, obser•.rations from the
literature

Figure 7: Evolution of an outline.

When dealing with complex structure, it is essential for the user to be able to see the
overall organization. The NoteCards browser (see Section 2) was specifically designed to
support such overviews. As it turns out, the browser is used by several of our writers to help

November 1987 Hypertext '87 Papers 101

102

convert between organizations as well. There are three common means of keeping the
contents of a browser card up to date. First, one can recompute the browser. This causes the
current contents to be cleared and a new version to be created based on a traversal of the
network. This traversal starts from the same root cards and follows the same link types used
when the browser was first created. The second approach, reconnecting the browser, preserves
both the nodes and their positions. Only the edges are redrawn to correspond to the current
links in the notefile. Finally, users can manipulate the nodes and edges in the browser by
hand, adding new nodes and deleting existing ones. For example, the writer responsible for
the browser in Figure 2 uses it to locate and bring up cards quickly, and to organize his
thoughts. He adds vertical spacing in the layout of the browser to group related nodes
together. Consequently, he can't use NoteCards to recompute the browser because his
modifications to the layout would be lost. Instead, he adds new nodes by hand and lets
NoteCards reconnect the browser (i.e. redraw the edges).

A second example is shown in Figure 8. In this case, two collaborating writers make use
of browsers to help them view the organization of their paper over time. They create a browser
over the hierarchy of file boxes and cards representing the outline of the paper. The browser
allows them to reorganize the structure. For example, when creating a card, they might
recognize that it should be filed in a new fllebox. They sometimes know immediately where
the new filebox belongs in the hierarchy, since they keep much of the paper's structure in their
heads. But when this isn't possible, they bring up the browser to obtain a global view of the
hierarchy.

_.. n Abstract I

1 D lnt.-oauction!

tf!'1JB~~!}~:- M AI Overview I
'MAt Methodology!

:DFundament418oundsl

:', LO~co=m~p·~·~u~;o~n'":' ~co~m,pl::oox:::;;'"-'Y! ,, ..
~·, MMacNJ Approach I

~~~~~~~§~::~ ~ Mora.nular PhiLlie Space! 

,, 
\' n Summary of sut. Approach I 

'MPapcr Summary f 

Figure 8: Browser over filebox and filed card structure. 

Structure can be added to notefiles without using cards and links. For example, almost 
everyone adds annotations of some form to larger fileboxes, including blank lines between 
groups of link icons, indentation, textual commentary and headings. The file box on the left 
side of Figure 9 displays such structuring annotations. Simple unlabeled grouping is done 
with blank lines while larger categories are identified with headings. Note also the indenting 
appearing near the top of the filebox to represent inclusion. This writer pointed out the ease 
with which such annotations can be done (and undone) without incurring the overhead of 

Hypertext '87 Papers November 1987 



extra layers of file boxes to represent subgroupings. For contrast, this figure also contains one 
of the "bins" used by this writer for filing cards in an "unstructured" format. 

noLisp! 
Mcedu Viewers! 

~ 
MsmaJITalk-80 I 
MsmaiiTt.lk-80 Vicwcr.JI 

Mlnterlisp-D I Msymbolie:~~ In Other Li~p I 
r::l!J M News! Mother Unix! 

n Viewpoint! MMa.cintosh I M Microsoft Windows I 

n Trellis In FCP Windo'ln' I 

History: 

n History Quostions I 

n Thosi:ll Propo:1141 - History I 

Figure 9. A "structured" filebox and a "bin." 

7. DOCUMENTPREPARATION 

We use the phrase "document preparation" to refer to those activities involved in the 
production of a linear document. These can include organizational activities like planning a 
linear path through some portion of the notefile as well as composing and editing text for the 
document. For our purposes, document preparation does not include writing activities like 
note taking and reorganizing which can happen prior to and independent of considerations of a 
final document. As is the case for other activities described in this paper, document 
preparation can take place throughout the extended writing process, often commencing well 
before the final text is composed or assembled. Usually paper structuring or layout is done in 
an outline, which is massaged and fine-tuned for some time before any text is written. For 
some, the outline takes the form of a filebox hierarchy whose filebox titles correspond to the 
section titles of the paper. One writer uses a flat hierarchy consisting of cards for the sections 
and issues of a paper all filed in a single filebox. She arranges the cards in the order she 
wishes them to appear in the paper and then creates the first draft of the document by copying 
their contents, in order, into a new card. 

If a filebox structure becomes large and complex, it is advantageous to be able to view 
the structnre as a whole. Some writers use browsers for this purpose as shown in Figure 8. 

November 1987 Hypertext '87 Papers 103 



One user demonstrated an unusual use of browsers when writing a paper. Following a period 
of notetaking, he created a browser over his structure of notes and taped it to a wall of his 
office. Mer looking at it for a few days (recall that the browser displays only card titles, not 
contents), he tore it down, threw it away, and began writing. The actual composition of the 
paper was done in a single linear document without further reference to the notes. In fact, it is 
typical of his style to rarely refer to his notes after originally composing them. 

Some writers, however, create no explicit paper layout structure using cards and links, 
either browser or file box-based. Rather, their outline is simply a single text card capturing the 
overall structure of the paper to be written. (Compare, for example, the outlines appearing in 
Figure 7 .) Sometimes, the outline includes links to existing cards containing notes relevant to 
the topic of that part of the outline. Still other writers do no explicit rendering of paper layout 
whatsoever until the time of final document composition. 

In addition to the issue of the presence or absence of an outline or other linearizing 
structure, our writers' notefiles vary in the degree to which the text in existing cards furnishes 
appropriate starting material for the paper. At one extreme are users who compose text for the 
document in a fresh notecard (or sometimes a fresh text file external to NoteCards). These 
writers often bring up relevant cards on the screen so as to have them visible while writing. 
They sometimes copy text from these notes, but more often they either paraphrase or simply 
refer to them. In a sense, this composition of the paper in a single text card signals a move out 
of the hypertext medium. Future work on the document including smoothing (e.g. adding 
transition sentences or paragraphs) and integration of reader comments happens to the linear 
document rather than to the source cards. Some writers take the further step of putting ·the 
document in a file card (see Section 2). This allows the document to be accessed independently 
ofNoteCards. 

For other users, the connection between the linear form and the hypertext source is 
maintained over time. Often, this is done using document cards, which aiiow users to 
automatically generate a linear document (in a card) covering some portion of the network. 
Changes to the document are made in the source cards from which the document was compiled. 
This allows portions of the paper to be visible in different windows and simultaneously 
accessible. However, this scheme can cause problems if two documents that share cards are 
being written in the same notefile. Here it may be difficult or impossible to make the same 
card function smoothly in both papers. To preclude this, some writers add an intermediate 
layer of cards containing sections of the paper. The document card "engine" then runs over the 
network of section and subsection cards to create the linear document. A writer may choose to 
add links from sections to relevant source notes. These can optionally be ignored by the 
system during computation of the document card. 

Another writer, while working on his Master's thesis in NoteCards, found the 
functionality of document cards inadequate. Among other things, he required greater control 
over the traversal parameters used during their creation. This writer, being a programmer as 
well, used the NoteCards programmer's interface [Trig87] to create a new card type he calls 
Draft card. (The right hand side of Figure 1 in Section 2 shows part of the structure of cards 
over which his draft card computes in order to create a linearized document for Chapter 2 of his 
thesis.) 

104 Hypertext '87 Papers November 1987 



Unfortunately, a few of our users have found document cards to be insufficient for their 
needs. In particular, two writers collaborating on a paper needed to be able to modify the 
contents of a document card and have the source cards be updated automatically. For this and 

other reasons not relevent here, these two writers were forced to leave NoteCards altogether.7 

In effect, their need is for the functionality of an outline processor [Enge84, Hers85] and 
illustrates the need for a layering of outline processor technology on top of hypertext. In such a 
scheme, outlines, like browsers, become one way to view a N oteCards subnetwork. These 
outline viewers would allow incremental inline expansion and compression of levels of the 
hierarchy. Changes made to the outline would automatically be passed back to the cards from 
which the outline was computed. 

8. CONCLUSIONS AND RECOMMENDATIONS 

This paper and the work it represents has proceeded under the assumption that there is no 
single model of the human activity of writing. Without question, there are patterns and 
regularities across writers and writing styles, several of which were identified here. It may 
indeed be the case that certain writing activities or styles can be shown to be 
counterproductive or that certain others might justifiably be promoted in computer-supported 
writing environments. (Smith et a! [Smit86) have created a hypertext system for writers 
based more on this latter premise.) In our work, however, the approach is different. We treat 
the problem of providing computer support for writers as an exercise in user-centered system 
design. We encourage our users to "inhabit" the computer system, and then look closely at the 
individually distinctive environments they create in order to learn both about how the system 
can be improved and about the writing process itself. 

This approach has important implications, some of which have already been 
demonstrated by the NoteCards sytem, while others are only now being explored. First and 
most important, this design philosophy requires the existence of a powerful, stable, and yet 
adaptable system, enabling the emergence of personal styles exhibited in the computer 

environment. In one sense, users of N oteCards tailor the system each time they adapt it to the 
particular task at hand. More explicit tailoring by both programmers and non-programmers 
must be supported as well [Trig87]. Furthermore, there is a need for infrastructure to 
encourage and support sharing the results of such tailoring among users. Toward that end, we 
are embarking on a project to create an online, hypertext "strategy manual" largely created by 
users by which new tools, conventions, strategies, and styles of use can be communicated 
within the NoteCards user community. Finally, there is a danger that approaches like ours 
can lead to sprawling unmanageable systems having little overall coherence. To preclude 
such an outcome, investigations like this one should be part of a larger' systematic, iterative 
design process. 

In addition, there are several lessons learned here that may be valuable for other 
designers of hypertext systems intended to support writers: 

Support for multiple organizations and interaction among them. We found a variety of 
ways in which our writers make use of multiple overlapping structures. Sometimes, these 

parallel organizations are meant to persist for the duration of the project. In other cases, the 
writers are in the process of converting from one organization to another. It is, perhaps, this 

November 1987 Hypertext '87 Papers 105 



106 

need for information sharing across multiple structures that argues best for hypertext as the 
implementation medium. 

Multiple views of the network. Throughout our experience with hypertext, we 
continually confront the problem of obtaining global views of the network. Our writers found 
graphical overviews of structure to be useful for this purpose, as well as facilities for 
linearizing the network. Outline-based viewers would also be useful in N oteCards as well as a 
chronological browser based on the creation times of the cards it displays. 

Sliding in and out of hypertext. Our writers often faced decisions as to which activities 
should be performed inside and outside the system as well as when to enter and leave 
NoteCards altogether. They also occasionally found the need to access nodes in a hypertext 
network from outside the hypertext system. Until totally integrated hypertext computer 
environments become available, our systems must continue to support such boundary 
crossing. 

ACKNOWLEDGMENTS 

We are immeasurably grateful to "our writers" who put up with extended tape-recorded 
interviews and follow-up questions as well as "strangers" snooping through their notefiles. 
And who at the same time raised our sometimes flagging spirits by doing the most ingenious 
things with NoteCards. Thanks also go to Lucy Suchman, Ramana Rao, Susan Newman and 
John Tang for discussions and comments on earlier drafts. 

REFERENCES 

[Conk87] Conklin, J. , "Hypertext: An Introduction and Survey," Computer, September, 
1987. 

[Deli86] Delisle, N., Schwartz, M., "Neptune: a hypertext system for CAD -applications", 
Proceedings of ACM SIGMOD '86, pp. 132-142, Washington, D.C., 1986. 

[Enge84] Engelhart, D. C., "Authorship Provisions in Augment," IEEE 1984 COMPCOM 
Proceedings, pp. 465-472, 1984. 

[Garr86] Garrett, N. L., Smith, K. E., Meyrowitz, N., "Intermedia: Issues, Strategies, and 
Tactics in the Design of a Hypermedia Document System," Proc. of Conference on 
Computer Supported Cooperative Work, Austin, December, 1986 

[Hala87] Halasz, F. G., Moran, T. P., Trigg, R. H., "Notecards in a Nutshell," Proceedings of 
the ACM CHI +Gl Conference, pp. 45-52, Toronto, 1987. 

[Hers85] Hershey, W., "Idea Processors," BYTE p. 337, June, 1985. 

[Mont86a] Monty, M. L.,Moran, T. P. "A Longitudinal Study of Authoring Using NoteCards," 
poster presented by Monty at CHI '86 conference on Human Factors in Computing 
Systems, (Boston, April13-17, 1986). Extended abstract published in ACM SIGCHI 
Bulletin 18(2), October, 1986. 

Hypertext '87 Papers November 1987 



[MontS6b] Monty, M. L., "Temporal Context and Memory for Notes Stored in the Computer," 
poster presented at CHI 'S6 conference on Human Factors in Computing Systems, 
(Boston, April 13-17, 1986). Extended abstract published im ACM SIGCHI Bulletin 
1S(2), October, 19S6. 

[NeisS!] Nelson, T. H., Literary Machines, 19SL Available from the author (Box 12S, 
Swarthmore, PA 19081). 

[0sbo79] Osborn, A. F., Applied Imagination, 3rd revised edition, New York: Charles 
Scribner's Sons, 1979. (First edition published in 1953.) 

[Smit86] Smith, J., Weiss, S. F., Ferguson, G. J., Bolter, J. D., Lansman, M., Beard, D. V., 
"WE: A Writing Environment for Professionals," University of North Carolina at 
Chapel Hill, Department of Computer Science Technical Report S6-025, 19S6. 

[Stef86] Stefik, M., Foster, G., Bobrow, D. G., Kahn,. K. M., Lanning, S., Suchman, L. A., 
"Beyond the Chalkboard: Using Computers to Support Collaboration and Problem 
Solving in Meetings," CACM 30(1), 19S6. 

[TrigS3] Trigg, R., "A Network-Based Approach to Text Handling for the Online Scientific 
Community," Ph.D. Thesis, Dept. of Computer Science, Univ. of Maryland, 1983. 

[TrigS6a] Trigg, R. & Weiser M., "TEXTNET: A Network-Based Approach to Text Handling," 
ACM Transactions on Office Information Systems 4(1), 19S6. 

[TrigS6b] Trigg, R. H., Suchman, L., Halasz, F. G., "Supporting Collaboration in NoteCards," 
Proc. of Conference on Computer Supported Cooperative Work, Austin, Texas, 
December 3-5, 1986. 

[TrigS7] Trigg, R. H., Moran, T. P., Halasz, F. G., "Adaptability and Tailorability in 
NoteCards," Proceedings of INTERACT '87, Stuttgart, West Germany, 19S7. 

[YankS5] Yankelovich, N., Meyrowitz, N., van Dam, A., "Reading and Writing the Electronic 
Book," Computer 1S(10), 19S5. 

NOTES 

1. Throughout the paper, we use the traditional term "hypertext", coined by Ted Nelson 
[NeisS!]. Terms like "hypermedia" [Garr86] better capture the notion that the chunks 
appearing in a network can be in the form of graphics, audio, video, etc. as well as text. These, 
however, have yet to come into wide use. See ConkS7 and Yank85 for surveys of work in this 
area. 

2. See Mont86a for a longitudinal study of a single author using an earlier version of 
NoteCards. 

3. In most cases this sort of access is read-only since, in general, changes to the substance of a 
hypertext node affect the location of its links. Note also that in the computing environment in 
which N oteCards runs, the one-file-per-card scheme is very inefficient due to the high 
overhead of file creation and access. 

November 1987 Hypertext '87 Papers 107 



108 

4. The ToBeFi!ed and Orphans fileboxes are maintained by the system and contain 
respectively, cards that haven't been filed in a filebox and cards whose last incoming link has 
been deleted. 

5. The Co lab system [Stef86] also supports such brainstorming using online graph-structured 
representations. 

6. There are other mechanisms in NoteCards that can be used for brainstorming. Primary 
among these is the Sketch card and its derivatives which support line drawings and free text 
on a two-dimensional canvas. 

7. Though there was insufficient space to discuss the particular issues raised by our 
collaborative writers, we firmly believe that providing support for this style of writing and for 
collaborative research in general is crucial. For a look at a few of the relevant issues, see 
Trig86. 

Hypertext '87 Papers November 1987 



COMPREHENDING NON-LINEAR 
TEXT: The Role of Discourse 
Cues and Reading Strategies 

Davida Charney 

Department of English 
The Pennsylvania State University 
University Park, PA 16802 

ABSTRACT 

By studying the structure of written discourse and the processes by which readers 

acquire information from texts, we have learned a great deal about how to design texts 

that facilitate learning. However, recent advances in computer technology have enabled 

the development of new forms of text that violate standard assumptions of what texts are 

like. These new forms may pose serious problems for learning because they lack 

discourse features that readers rely on for assimilating new information. In particular, 

readers traditionally rely on the writer to determine the sequence of tbpics and to 

employ conventional cues that signal relationships among topics, such as relative 

importance or chronology. However, on-line hypertext systems present texts 

non-linearly, requiring readers to decide what information to read and in what order. 

This paper assesses the potential impact of non-linear texts on theories of discourse and 

on current cognitive theories of text processing. It also describes research in progress 

on readers' sequencing strategies in hypertext. Research on the effect of hypertext on 

reading will have important practical implications for designing hypertext systems that 

satisfy readers' needs. 

PROBLEMS POSED FOR READERS BY NON-LINEAR TEXTS 

Most people think of a text as a collection of ideas that a writer has carefully 

organized into a coherent sequence or pattern. Discourse theorists have 

November 1987 Hypertext '87 Papers 109 



identified a host of stable patterns that writers employ on every level of text, 

from small units such as sentences and paragraphs, up to grand schemas that 

outline the structure of an entire text, such as a fairy tale, a resume or a policy 

argument [Hall76], [Vand79], [Fahn83]. Indeed, as readers, we depend on 

structural patterns to help us recognize the type of text we are reading and 

integrate its parts. Empirical studies of reading comprehension confirm that 

readers understand and learn from texts more easily when the information is 

set out in well-defined structures and when the text provides clear signals of 

shifts from one part to the next [Vand83], [Kier80], [Fras70]. But apart from 

any natural disposition we may have to look for structure in a text, our view of 

text as an ordered succession of concepts is strongly reinforced by the 

constraints of the standard print medium: texts come to us on printed pages 

that we generally read in order, from the top down and from left to right. 

Today, the constraints of the medium are being lifted by developments in 

computer technology. Instead of storing texts on-line as large, monolithic 

blocks, software designers are developing systems that link individual pieces 

of text together into complex networks. For example, the reference 

information for users of the text editor EMACS is stored on-line as a 

hierarchical network of facts that users can access in any order [Conk87]. In 

addition to serving a reference function, networks are also being developed to 

serve as sophisticated databases, as writing environments, and as instructional 

materials. Recent examples of such networks include Carnegie-Mellon 

University's ZOG system [Robe79] , Xerox PARC's NoteCards [Hala87], Brown 

University's INTERMEDIA [Yank85], and Tektronix's Neptune [Deli86] (for a 

general overview, see [Conk87]). These systems give readers much greater 

control over the information they see and the sequence in which they see it. 

Instead of reading or skimming through a text from beginning to end, readers 

use "menus" to "order up" the pieces of text they want . to read onto the 

computer screen. The most interesting systems link together information 

from a variety of media and sources so the reader can access related 

documents, graphics, and audio-visual displays at various points in the text. 

The texts become non-linear hypertexts: each reader may choose to view a 

different selection of pieces in a different sequence; any given reader may 

choose different sequences on different occasions. 

110 Hypertext '87 Papers November 1987 



Along with greater control, of course, comes a greater burden for the readers, 

who must now locate the information they need and relate it to other facts in 

the network, often without the aid of traditional structural cues. Most 

hypertext designers recognize the problems such networks may present, 

especially for readers who are unfamiliar with the concepts in the textbase. 

They report informal evidence that users may be overwhelmed by the choice 

among menu items and by the difficulties of maneuvering · through the 

networked text structure. As a result, readers can lose track of where they are 

in the network (and where they have been), and often read a great deal of 

material that is not relevant to their purpose [Yank85], [Whit85], [Trig83]. 

While a fair amount of research is underway on the design and 

implementation of hypertext systems, very little research has investigated 

how readers handle such unorthodox texts and how seriously these problems 

interfere with normal reading processes. 

ISSUES FOR RESEARCH 

Given the growing interest in hypertext systems, it is important to assess the 

impact of non-linear texts on theories of discourse and on current cognitive 

theories of text processing. As in other areas of human-computer interaction, 

research can inform cognitive theory as well as practical system design. 

Three research issues appear especially important: (1) What strategies do 

readers adopt for sequencing pieces of hypertext (i.e., constructing a path 

through the network)? (2) How do such strategies influence learning (i.e., the 

mental representations readers build of the text)? (3) What strategies can 

hypertext designers employ to facilitate reading processes? 

Readers' Sequencing Strategies In Hypertext 

Since little systematic evidence is available about the effects of non-linear text 

on reading, it is important to assess the seriousness of the absence of discourse 

cues, especially sequencing conventions. Although we know that presenting 

information in a poor order can impair learning from a text [Barn84], little 

research has been conducted on how readers themselves choose to sequence 

the pieces of a text and whether reader-chosen orders are generally poor. 

November 1987 Hypertext '87 Papers 111 



The most reasonable prediction is that readers new to the subject domain will 

have trouble sequencing the pieces of a text in groupings that reflect 

meaningful relationships. This prediction has not yet been tested directly, but 

it is supported by two kinds of evidence. First, there is empirical evidence that 

math students classify word problems by superficial similarities in the 

wording or the hypothetical problem situation rather than by deep 

relationships. Similar strategies have been noted for novice computer 

programmers [Adel81]. Second, there is anecdotal evidence that inexperienced 

readers of scientific articles and textbooks fail to look at figures or tables when 

they are referred to in the text. These results suggest that when readers are 

given the responsibility of selecting what text to read, they may sequence the 

information poorly or omit important information altogether. 

Other important sequencing questions include: 

Information type: do readers consistently read certain types of 

information (e.g., examples), while consistently skipping others (e.g., 

definitions, historical background)? 

Prior knowlege: 

sequencing strategy? 

how does prior knowledge influence 

Are domain experts better than 

a reader's 

novices at 

deciding what to read? Determining when they have read enough? 

Mental Representations of Hypertext 

While it is important to know how readers construct a path through a hypertext 

system, the heart of the question is not what order they choose, but the effect 

of the chosen order on what they learn. In particular, how does the chosen 

sequence affect the readers' ability to grasp relationships between different 

pieces of text, such as relative importance, spatial or chronological ordering, 

cause and effect, and so on? 

A large body of research suggests that readers construct hierarchical 

representations of the text they read [Vand83]. Readers are much more likely 

to remember general information at the top of the hierarchy than specific, 

low-level details. Crucially, the mental mechanism that Kintsch and van Dijk 

112 Hypertext '87 Papers November 1987 



[Kint78] propose to explain this "levels effect" turns on the order in which 

readers encounter propositions in the text and the degree to which important 

concepts (i.e., arguments in the propositions) are repeated in successive 

sentences. Readers incorporate each new proposition in the text into their 

internal, hierarchical textbase by creating networks with chains of repeated 

arguments. To the extent that the sentences in the text reuse the same 

arguments, the text is more coherent and the easier it is to create a mental 

textbase. When no explicit link to previous propositions is available in a local 

region of text, readers must either recall earlier propositions from memory or 

invent a link through inference processes. The memory advantage for high 

level propositions arises because these propositions are most likely to provide 

links throughout the text. The model assumes that links are created between 

propositions in working memory. Memory for a given proposition improves as 

the number of times it cycles through working memory increases. 

The advent of hypertext raises a number of interesting issues for this approach 

to text processing. First, Kintsch and van Dijk's processing model [Kint78] 

assumes that a relatively stable textbase can be derived from a given text. This 

assumption seems to depend on a linear reading of a fixed amount of 

information. Amost by definition, however, hypertext avoids imposing a fixed 

order on information. Conklin [Conk87] distinguishes two types of links 

between the nodes in a hypertext network: organizational· links (which tend to 

create hierarchy) and referential links (which Conklin observes are truly 

characteristic of hypertext). Obviously, hypertex'ts that fully exploit the 

potential of referential links raise interesting problems for the construction of 

a textbase. For example, will readers taking different paths through the 

network emerge with equivalent 

provide graphic displays of the 

textbases? Second, 

information network. 

some hypertext systems 

These displays may be 

quite important for helping readers construct a text base: by providing 

reminders of previous concepts and by providing an explicit guideline for an 

internal representation of the network. However, such a guideline may only 

be useful to the extent that the hypertext network itself is strictly hierarchical. 

November 1987 Hypertext '87 Papers 113 



Hypertext Design: Reinventing Discourse Cues 

Assuming that learners have trouble coping with the responsibility of 

sequencing their reading, an important research goal will be to design and 

evaluate methods of adapting discourse cues for non-linear texts. For example, 

can the listing of "menu items" serve some of the same functions as sequence 

cues in standard texts? Will readers follow cues such as cross-references from 

one piece of text to another when the referenced piece of text does not "follow" 

the current one? 

Document designers have relied on the text processing literature to support 

their recommendations to writers. For example, they tell writers to organize 

text hierarchically (e.g., stating general information before specific 

information), to make presuppositions and transitions between sections 

explicit, to use a small set of often repeated vocabulary items and to introduce 

new terms only in clause predicates [Felk81], [Kier85]. While these 

recommendations have been found to facilitate reading, they may be quite 

hard to follow for writers of hypertext. How can hypertext writers interpret 

document design recommendations that incorporate notions of precedence or 

first mention? 

At this point in the development of hypertext systems, it is not clear where to 

draw the line between system design decisions and .document design decisions. 

For example, constraints on the types of links in the network and the "size" 

and content of nodes are critical for planning the segmentation and labelling 

of text. However, these constraints may be imposed for a particular hypertext 

system or they may be left up to a given writer working with a flexible 

hypertext system. System designers and document designers must therefore 

work together to define strategies for facilitating reading processes. 

SEQUENCING STRATEGIES: RESEARCH IN PROGRESS 

This section describes a study that addresses some of the issues raised in the 

previous section, specifically the issue of topic sequencing. While the study is 

still in its initial stages, the design is presented to illustrate one approach to 

collecting data for designing optimal hypertext databases and interfaces. 



Participants in this experiment will study on-line information about an 

unfamiliar software program (viz., an electronic spreadsheet program). The 

text will be presented in a hypertext network (via Tektronix's Neptune 

system). The experiment will include a training phase and a test phase. In the 

training phase, subjects will study the procedures for using the spreadsheet 

program and their sequence of choices from the information network will be 

recorded. In the test phase, subjects will use the spreadsheet program to solve 

a series of problems that apply the studied procedures. The test is intended to 

reveal the effects of the sequencing choices on what subjects learn. The basic 

methodology for the study has been used successfully in previous work on 

skill learning from texts [Rede86], [Char86]. 

In the training phase, subjects will read about Microsoft's Multiplan program. 

This spreadsheet program involves a number of independent procedures that 

users can combine in various ways to solve problems. For example, some 

procedures must be executed in a fixed sequence, some can be applied at the 

discretion of the user, and some undo the effect of other procedures. This 

diversity of procedures requires subjects to acquire a deep understanding of 

what the procedures are for, as well as how to execute them. 

Subjects 

Volunteers from the PSU community (undergraduates and/or staff) will be 

paid a fee to participate in the study. A questionnaire developed in previous 

research [Char86] will be used to assess previous computer experience. This 

measure will be used primarily in the statistical analyses, rather than as a 

screening device. 

spreadsheets will 

However, no one who has prior experience with electronic 

be allowed to participate. 

Design and Procedure 

As described above, the research study will involve a training phase and a test 

phase. In the training phase, subjects will read the information contained in 

the hypertext network. Subjects will be randomly assigned to study the 

network in one of the following four conditions: 

November 1987 Hypertext '87 Papers 115 



Pre-P! anned Sequencing: subjects will be presented with a listing of 

menu choices and asked to rank them in the order in which they would 

like to read them. Subjects will subsequently read the text in the chosen 

order. 

Opportunistic Sequencing: subjects will be presented with a listing of 

menu choices and allowed to select and read topics in any order. This 

condition should reveal the extent to which readers can use information 

in one piece of text as a cue to choosing the next piece. 

Random Sequence: subjects will be told to read the topics in a prescribed 

random order (or perhaps in alphabetical order). 

Guided Sequence: subjects will be told to read the topics in a prescribed 

logical order, based on relationships between the topics. This condition 

and the Random Sequence condition are intended to provide base-lines 

for evaluating the sequences subjects devise themselves. 

This design compares reader-chosen orders to two baselines. Previous 

experiments on topic ordering have either enforced a random sequence or 

·various guided sequences, but have not systematically compared the effects of 

these orders to those that learners choose for themselves [Bam84], [Maye76]. 

This design tests the prediction that the orders subjects choose will be better 

than random orders, but worse than a logical guided sequence. 

The sequence of topics that subjects choose in the Pre-Planned and 

Opportunistic Sequencing conditions will be recorded and analyzed. It is likely 

that subjects with little computer experience will use superficial criteria to 

order the topics. For example, they may group together topics that use 

semantically related terms in the menu listings, regardless of whether or not 

the topics have any actual bearing on each other. In any case, the subjects' 

orderings will be evaluated by several metrics. For instance, the relatedness 

of the topics in the network will be judged by independent raters. These 

ratings will be used to quantify how often subjects read unrelated topics in 

succession. 

116 Hypertext '87 Papers November 1987 



In the testing phase, subjects will attempt to solve problems using the 

spreadsheet that call on the procedures they studied in the training phase. 

The problems, which will be similar to those employed successfully in 

previous research [Char86], will reveal whether subjects learned the 

procedures and grasped the relationships between them. For instance, 

subjects should be able to carry out tasks that involve fixed sequences of 

procedures and they should be able to choose the more appropriate of similar 

procedures. Subjects' performance will be evaluated in terms of the number 

of problems they can solve, how long it takes to solve them and the nature of 

the errors they make along the way. They most important· analyses will 

compare the performance of subjects in different training conditions. It is 

expected that subjects who read topics in more logical sequences (whether 

chosen by themselves or the experimenter) will learn more and therefore 

perform better in the testing phase. 

IMPLICATIONS FOR FUTURE RESEARCH 

Non-linear text presents exciting opportunities for researchers in discourse 

analysis, document design and cognitive science. From the practical 

perspective, the need for good design is growing as rapidly as the increasing 

use of computers for transmitting verbal information. More importantly, 

however, the electronic medium is shaking our assumptions of wh'at texts are 

and can be. We can now re-evaluate current theories of discourse and text 

processing. Some of the important long-term questions include: what it 

means in cognitive terms for readers to get "lost" in networked text; how the 

purposes readers bring to the text influence their selection strategies; and 

whether different strategies are needed for different types of text. 

Since hypertext systems are largely still under development or are just now 

entering the marketplace, research on the effect of hypertext on reading will 

have important practical implications for designing hypertext systems that 

satisfy readers' needs. 

November 1987 Hypertext '87 Papers 117 



REFERENCES 

[Adel81] Adelson, B. "Problem solving and the development of abstract 

categories in programming languages." 

422-433, 1981. 

Memory and Cognition, 9, 

[Barn84] Barnard, P., MacLean, A., Hammond, N. "User representations of 

ordered sequences of command operations." Paper delivered at 

INTERACT '84: the First IFIP Conference on Human-Computer 

Interaction, 1984. 

[Char86] Charney, D., Reder, L. "Designing interactive tutorials for computer 

users." Human-Computer Interaction, 2, 297-317, 1986. 

[Conk87] Conklin, J. "A survey of hypertext" (MCC Technical Report 

[Deli86] 

STP-356-86, Rev. 1). MCC Software Technology Program, Austin, TX, 

February, 1987. 

Delisle, N., Schwartz, M. "Neptune: 

applications." SIGMOD Record, 15 (2), 

a hypertext 

132-143, June, 

system for CAD 

1986. 

[Fahn83] Fahnestock, J., Secor, M. "Teaching argument: a theory of types." 

College Composition and Communication, 34, 20-30, 1983. 

[Felk81] Felker, D., Pickering, F., Charrow, V., Holland, V., Redish, J. 

Guidelines for Document Designers. 

Institutes for Research, 1981. 

Washington, DC: American 

[Fras70] Frase, L. "The influence of sentence order and amount of higher 

level text processing upon reproductive and productive memory." 

American Educational Research Journal, 307-319, 1970. 

[Hala87] Halasz, F., Moran, R., Trigg, R. "NoteCards in a Nutshell," submitted to 

CHI+GI 1987, Toronto, Canada, April 5-9, 1987. 

118 Hypertext '87 Papers November 1987 



[Hall76] Halliday, M., & Hasan, R. Cohesion in English. London: Longman, 

1976. 

[Kier80] Kieras, D. "Abstracting main ideas from technical prose" (Technical 

Report 5). University of Arizona, Tucson, 1980. 

[Kier85] Kieras, D., Dechert, C. "Rules for comprehensible technical prose: a 

survey of the psycholinguistic literature" (Technical Report 21). 

University of Michigan, Ann Arbor, 1985. 

[Kint78] Kintsch, W., van Dijk, T. "Toward a model of text comprehension and 

production." Psychological Review, 85, 363-394, 1978. 

[Maye76] Mayer, R. "Some conditions of meaningful learning for computer 

programming: advance organizers and subject control of frame 

order." Journal of Educational Psychology, 68, 143-150, 1976. 

[Rede86] Reder, L., Charney, D., Morgan, K. "The role of elaborations in 

learning a skill from an instructional text." Memory & Cognition, 14, 

64-78, 1986. 

[Robe79] Robertson, G., McCracken, D., Newell, A. "The ZOG approach to 

man-machine communication" (Computer Science Technical Report 

CMU-CS-79-148). Carnegie-Mellon University, Pittsburgh, PA, Oct., 

1979. 

[Trig83] Trigg, R. "A network-based approach to text handling for the online 

scientific community" (Computer Science Technical Report TR-1346). 

University of Maryland, November, 1983. 

[Vand79] van Dijk, T. "Relevance assignment in discourse comprehension." 

Discourse Processes, 2, 113-126, 1979. 

[Vand83] van Dijk, T., Kintsch, W. Strategies of discourse comprehension. 

New York: Academic Press, 1983. 

November 1987 Hypertext '87 Papers 119 

/ 



[Whit85] Whiteside, J., Jones, S., Levy, P., Wixon, D. "User performance with 

command, menu and iconic interfaces." In L. Borman & B. Curtis 

(Eds.), Human Factors in Computing Systems: CHI '85 Conference 

Proceedings. San Francisco: SIGCHI, April, 1985. 

[Yank85] Yankelovich, N., Meyrowitz, N., and van Dam, A. "Reading and 

writing the electronic book." Computer, 18, 15-30, October, 1985. 

120 Hypertext '87 Papers November 1987 



The Notes Program: 

A Hypertext Application 
for Writing from Source Texts 
Christine Neuwirth, David Kaufer, Rick Chimera & Terllyn Gillespie 

English Department 
Carnegie Mellon University 
Pittsburgh, PA 15213 

ABSTRACT 

Notes is a hypertext application developed to investigate the effects of computers on the 

writing process, in particular, on the processes of acquiring and structuring knowledge 

when writing from source texts. Notes is designed to help writers record their own ideas 

(e.g., reactions, inferences, plausibility assessments), recover the context for those ideas 

easily and view ideas from multiple perspectives. In this paper we outline the theoretical 

basis for the design of the Notes program. Then we briefly describe the program itself and 

its relation to relevant research. Finally we describe our experience with users. 

INTRODUCTION 

'Vriting an essay requires shaping a complex network of ideas, not all of which are present at 

the beginning of the writing process, into a coherent linear structure of sentences and 

paragraphs. For this linear structure to be successful, the writer must have constructed 
systematic conceptual groupings among ideas [Meye75[. When a writer knows a domain well, 

relatively simple reordering of available knowledge may be all that's necessary. However, when 
a domain is new to the writer, or the writer is reconceptualizing a well-known domain, the 

writer may need to engage in extensive reorganization and elaboration of his or her own 

understanding. 

We have designed and implemented a computer program, called Notes, to investigate the 

effects of computers on the writing process, in particular, to experiment with tools to support, 
not replace, the decisions writers make while acquiring and structuring knowledge. Notes is 
one component of a larger project to develop decision support systems for reading and writing 
[Neuw87]. 

The Notes program has an analog in earlier technology: 3x5 note cards. The following 
section, which outlines some key components in the writing process, Jays the theoretical 

groundwork for exploring the benefits of note cards for writers, the limitations of conventional 
note cards, and the expected benefits of computer-based note cards. 

November 1987 Hypertext '87 Papers 121 



122 

The Writing Process 

Theories of writing processes typically identify the following activities in writing: acquiring 

knowledge, viewing it from different perspectives to gain new insights, structuring knowledge 

according to those perspectives, selecting and possibly creating knowledge to meet goals for 
discourse and re-arranging it so that a reader with different perspectives will fmd it equally 

coherent [Youn71J. This section explores each of these activities in some detail and comments 

on the use of note cards as a technology that can aid a writer in carrying out these activities. 

Acquiring Knowledge 

Many of the ideas that we ultimately make use of in a text come to .us while acquiring 
knowledge, that is, while exploring a problem and fmding out more about it. Typically, ideas 

in a new domain do not come to us in an orderly fashion. Rather, they present a puzzle of 

seemingly unrelated concepts and unexplained connections. It is difficult to remember specific 
facts that we learn. We often restructure ideas to fit patterns that are already familiar or drop 

ideas that are difficult to assimilate to familiar patterns [Bart32). 

As we read or find out new information, we are not simply recording it. We are constructing 
connections, drawing inferences, imagining scenarios and examples, commenting on 

plausibility, noting connections to other texts and knowledge as well as connections to our 
immediate goal and the problem we are investigating. These elaborations play an important 
role in acquiring new knowledge. Researchers postulate that elaborations play two vital 

functions: They form connections between what people already know and the new knowledge 

and they build multiple retrieval paths for the ideas [Rede79J. While it is important when 
reading to construct elaborations and inferences, it is equally important when writing to 

remember that they are elaborations and inferences, and not to confuse them with the original 
information. 

Viewing Knowledge from Different Perspectives 

The second activity usually included in writing, especially by a theory that includes invention, 
involves viewing knowledge from different perspectives. Some inventional theories involve 

explicitly teaching writers a set of perspectives. For example, Aristotle's topoi, Young, Becker 
and Pike's tagrnemic grid (particle, wave, field), Burke's pentad (act, scene, agency, purpose, 

etc.) or Nelson's system of synectics. Each of these techniques provides a system for exploring 

concepts, an activity essential to discovering new elaborations or relationships. Most such 

theories stress the importance of systematically varying perspectives, a way to overcome 
Burke's observation that "A way of seeing is also a way of not seeing." Indeed, studies which 
have examined creativity in writing have noted a direct relationship between the amount of 
examination of concepts from different perspectives and quality of writing and creativity 

[Youn73; Moor85). 

Hypertext '87 Papers November 1987 



Structuring Knowledge 

Different perspectives also provide frameworks for structuring knowledge. Few studies have 

examined the process of writing while the writer is acquiring domain knowledge. Those few 

studies that do exist support the notion that structuring knowledge can be a significant task in 

writing in new domains. Newell's [Newe84] study, which examined the role of writing in 

learning, found that writing about a new domain required writers to move from relatively 

isolated and detached concepts to an integrated structure. Langer's [Lange84J study of the 

relationship between topic-specific knowledge and quality in expository writing suggests that 

the degree of organization of knowledge is directly related to a writer's success. Writers whose 

knowledge was highly organized, i.e., their knowledge base included superordinate concepts, 

precise meanings, analogies to other concepts, and explicit links among concepts, were most 

successful. 

Selecting and Arranging 

At some point in the process of writing, the writer must decide what knowledge, both acquired 

and original, is going to be suitable for communicating to a reader. Moreover, the writer must 

decide what linear order for the ideas--what juxtapositions and connections as well as 

oppositions--will result in best meeting the writer's goals. Exploration must, at least 

temporarily, come to an end. 

The Benefits of Note Cards for Writers 

There are many ways to "write" ideas down, to record the connections between them, to 

juxtapose ideas, perhaps discovering new connections: pencil and paper, 3x5 n\)te cards, tape 

recorders, text-editors, etc. Some of these are better than others for aiding the processes of 

invention and arrangement just outlined. This section explores the benefits of note cards for 

carrying out some of these activities. 

Writers use note cards for three primary reasons: First, note cards provide an external store for 

a large body of knowledge that as yet has no coherent linear structure. Second, note cards 

provide a convenient way for writers to record their own reactions, elaborations, and 

interpretations of texts while still maintaining a record of sources that the writer may want to 

return to or to acknowledge. Third, note cards provide a way of representing knowledge that 

makes some inventional activities easier. 

The first benefit to writers using note cards is that they provide a convenient way to record 

ideas in a text. As noted above, recording concepts and propositions is particularly important 

when there might be a tendency to fit new knowledge to familiar but inappropriate patterns. 

The second benefit to writers using note cards is that note cards give them a convenient way 

of recording their own reactions, elaborations, and interpretations of texts that they arc reading 
while still maintaining a record of the source. By recording the source together with the 

November 1987 Hypertext '87 Papers 123 



124 

elaboration, note cards make both available for review and reevaluation. The importance of 

review and reevaluation in learning a new domain has been cited by writing researchers as a 

reason that writing has a major role to play in learning [Emig7!J. 

Various studies that are relevant to taking notes have explored the strategic significance of 

elaborations during reading. A study of elaborations during reading in which the elaborations 

are written down rather than unwritten (mental or verbalized) found that written responses led 

to better pastes! responses than unwritten [Mich61). 

The third and most distinctive benefit for note cards is their power as a representational 

medium. A given network of ideas can be represented by a number of different structures, 

some of which are better than others for enabling a person to work. Par example, numbers 

are usually better represented with Arabic than with Roman numerals. Likewise, the various 

structures that are encouraged by the use of note cards are better than an initial, relatively 

fixed, linear structure when a person needs to seek out relationships among ideas. Note cards 

facilitate alternative representations for the linear structuring of concepts, allowing writers to 

experiment with tentative arrangements until the writer discovers or can impose a workable 

framework. 

limitations of Conventional Note Cards 

The previous section argued that note cards provide a· better representational system for writers 

working in new domains than linear structuring: note cards facilitate a writer's exploration for 

alternative structures of ideas. Despite this advantage, however, conventional note cards have 

disadvantages. Not infrequently, writers forget the context for tile original note, and must 

return to the source material in order to make sense of the content of the card. A similar 

problem occurs with paraphrasing in notes: the writer introduces inaccuracies. Writers, 

especially iriexperienced ones, tend to spend all their time writing down quotes from the source 

texts rather than recording paraphtases, elaborations, inferenceS', interpretations, etc. 

The foremost problem with note cards arises when the writer is struggling to tmpose a 

workable framework on the material: although notes offer a more tractable medium for this 

activity than 8xl I paper, creating alternative frameworks nevertheless destroys the previous 

order. Writers have two alternatives to circumvent this problem. First, they can make 

duplicates of note cards, a time-consuming venture. Second, they can number note cards and 

then record the structuring by means of the numbers. Reconstructing the ordering is then 

possible, but like the duplication solution, also time-consuming. 

Expected Benefits of Computer-based Note Cards 

When a writer is working with texts that are stored in the computer, the Notes program keeps 

a link between each note and the specific region in the source text from which it came. We 

reasoned that such a facility would free the writers (I) to paraphrase because they would 

Hypertext '87 Papers November 1987 



always be able to easily recover the quotation, and (2) to record their own elaborations, 
reactions, inferences, etc., because they could easily recover the context for them. 

Recovery of context is only easily accomplished when the texts are stored in the computer. 
Although this is possible in a writing course in which the number of readings is small, it will be 

a number of years before we see vast numbers of texts stored on computers. Thus, the 
primary benefit of computer-based notes in the near future will be its potential for helping 

writers create alternative organizational frameworks more easily. Unlike paper, the computer 

does not collapse the storage and display of information. Because of this feature, the computer 
can be easily programmed to allow writers to create and view alternative organizations of their 

notes. Creating new alternatives does not destroy previous organizations and the computer can 
easily keep track of the book-keeping involved. 

Design Goals 

We built the Notes program to explore the ideas just outlined. In the Notes program, we use 
an underlying database in order to maintain links from notes to sources and from sources to 

notes and to allow the user to view notes from multiple perspectives. 

The following list represents other design goals for the Notes program, together with their 

rationale. 

November 1987 

--Ease of learning and use. Writers typically come to a program like Notes wanting to 
get on with a task. The program must allow them to get started with useful work 

immediately and must be easy for them to learn as they go along. Student writers 
must be able to learn the system while engaging in useful writing activities; otherwise 

the system will be unattractive to their teachers who will see it as taking time from the 

teaching of writing. In a hypertext application, ease of learning and use appears to be 

intimately connected to the user's ability to negotiate links among text objects without 

getting lost. 

--Quick access to notes. The time it takes to access a note must be comparable or 
better than the time it takes to do so from a traditional note card file. The program 

must exploit the searching and retrieval power of the computer with an easy to use 

search interface. 

--Flexibility for online and offiine work. It will be some years before significant 
numbers of texts are online. The program must work well with off-line sources as well 

as online ones. Likewise, the notes must have a hard copy representation. 

Hypertext '87 Papers 125 



THE NOTES PROGRAM IN DETAIL 

The Notes program consists of two basic objects, source texts and notes, and a single derived 

object, lists of notes. Source texts are those texts the user is reading and wants to take notes 

on. The source texts can be online or off, but the following discussion illustrates a user taking 

notes on an online text. Notes are those texts the user composes in order to record 

elaborations of the source texts, i.e., the user's record of his or her "writing" of the text. Notes 

are online. 

In addition to the basic objects, the Notes program consists of a single derived object: lists of 

notes. In the current version of the notes program, the lists are automatically compiled by the 

Notes program. Lists have a linear order, alphabetically by the author of the source text and 

within sources, by the user-created name of each note.
1 

The user can also create alternative 

lists, typically based on ordering principles that the Notes program cannot compute 

automatically. The alternative lists allows the user to impose a hierarchical structure on the 

notes as well. 

Figure I illustrates how the screen rnigh? appear to a user who is in the midst of reading on 

the topic of creativity. The user has taken notes on two source texts: one by Hayes and one 

by Perkins. The system maintains a list of all the notes a user has taken in the region labeled 

All Notes List. At this point and at any point, the user can select from a range of activities: 

view the notes, create classes and classify the notes, form alternative organizations for the 

notes, etc. The user controls the order of these activities. Let's suppose that the user wants to 

take more notes on one of the source texts, Hayes, "What is a creative act?" To do so, the 

user opens as set of menus and uses a mouse to select Open from a Source Text menu card. 

Taking Notes 

To take a note, the user selects the region in the source text where he or she wants to take a 

note, moves the mouse cursor anywhere in the selected region, opens a menu, and chooses 

Take Note from the pop-up menu (see Figure 2). 

Composing a Note 

When a user chooses Take Note, a note region appears below the source text. The source text 

itself is recentered, if necessary, so that the selected region for the note remains visible on the 

screen. An icon appears in the source text. The icon looks like a footnote in a square and 

indicates that there is a link between the source text and the note (see Pigure 3). 

To compose a note, the user moves the mouse cursor inside the note region, clicks the left 

mouse button and begins composing ("Why is it important...?"). The Notes program uses the 

Andrew system base editor, so the user has the full functionality of an integrated text-



editor/document-formatter to compose. In addition, the user can copy material from the 
source text or from other windows on the screen and paste it into the note. 

Although the note region approximates a 3 X 5 card, the text of the note can be as long as the 

user desires. If the text that the user composes exceeds the space allocated to a note region, 
the entire text will not be visible. However, the user can scroll the text to view different parts 

of it or enlarge the Notes program window so that more text is visible. 

In addition to composing the text of the note, the user must also compose a name for each 

note ("Why Criteria?"). A name is a mnemonic for the contents of the card, and is used by 

the Notes program to display a list of notes that have been composed. 

To take another note, the user selects a region of text and chooses Take Note again. The 
previous note is replaced by a blank note and except for the name of the note, which is put 

into the Notes listings, the previous note is "put away" from view. 

Viewing Notes 

Mter the user has taken a number of notes, perhaps in a different session, he or she may wish 
to review the notes. To view notes, the user positions the mouse cursor in the All Notes List, 

points at i' note of interest and clicks the left mouse button.' The note appears in the View 

Notes region (see Figure 4). 

The user can display up to four notes at a time. In addition, the user can ask the program to 
expand the viewing region so that more notes can be viewed. When the viewer has been 
viewing a series of notes and calls up a new note, the new note will appear in place of the note 

that has been dormant the longest. 

Alternative Lists 

In addition to viewing notes from the All Notes List or from the source text, the user can also 

create alternatively organized lists of notes, called alternative lists. Alternative lists support 

viewing notes from alternative perspectives. Users can create as many alternative arrangements 
as they need. They can cut and paste across different lists. In addition, they can display 

different alternatives on the screen and compare them. 

November 1987 Hypertext '87 Papers 127 



128 

Classifying Notes 

Classes play an important role in the Notes program: classes allow users to group notes 

together. For example, while taking notes or after, a user may group notes according to classes 

that he or she creates. The classes might be related to the content or structure of the source 
texts, or to the nature of the elaborations that the user has composed. Figure 4 shows three 

classes: Original, Value, and Ability, located in the region labeled Classes at the top of the 

screen. 

To create a class, the user displays the classes by means of a menu and chooses Add a New 

Class from the Edit Classes menu. There are also options to Delete a class or to Rename a 
class. Because deletion affects notes which might be in the specified class, the user is first 

informed of the number of notes which are in the class and asked to confirm or cancel the 

deletion. If the user responds Confirm, the class is deleted; the notes in the class are not 
deleted, but only removed from the class. 

To add a note to an already existing class, the user makes the note the current note and clicks 
on its class name. The class name highlights to indicate the current note is a member of the 

class. Notes can be added to as many classes as the user desires. 

To delete a note from a class, the user makes the note the current note, and clicks on the class 
name. The class box is de-highlighted to indicate that the note has been deleted from the class. 

Searching 

The user can search for notes on the basis of content, classes, the author of the source text, 
the title of the source text, the date and time the note was created, and the date and time that 

the note was last modified. These facilities allow users to locate notes automatically. For 
example, if the user had taken notes on two source texts on creativity, one by Hayes and the 
other by Perkins, and classified several of the notes in a user-created class of definition, the user 

could search for all the notes by Hayes or Perkins that are in the class definition. The search 

results in a listing of those notes appearing on the screen. The user can view the contents of 
particular cards in the search result in the same way as any list of notes. 

Implementation 

The Notes program runs on advanced function workstations--InM RTs, SUN2s & 3s, and 

VAXstations. It runs under Andrew, a window-management and base environment for UNIX 

4.2 BSD [Morr86]. 

Hypertext '87 Papers November 1987 



RELATED RESEARCH 

Text Editors 

Text-editors, one of the primary user interfaces, are closely tied to computer input/output 

hardware: Each generation of input/output hardware (keypunches, TTYs, CRTs, and bit

mapped displays) has brought a corresponding generation of editors (batch editors, line editors, 

screen-oriented editors, and integrated text-editor/document formatters). 

Only recently, however, has the hardware been powerful and cost-effective enough so that 

attention could be turned from designing software that would run efficiently on the hardware 

to designing software tailored especially to the editing needs of users. New systems, such as 

integrated text-editors/document formatters, structure-based and network-based editors, have 

been developed in a resulting surge of research interest [Meyr82). The Notes program has 

elements in common with each of these developments. The Notes program can be viewed as 

an integrated text-editor/document formatter that allows the user to take full advantage of the 

text-editing paradigm while providing constructs that prima facie will facilitate parts of the 

writing process. This section explores the recent developments in structure-based editors and 

networked-based editors as they relate to Notes. 

Structure-based Editors 

Structure based editors are editors whose user interface and functionality exploit the structural 

properties of the data that are being edited. Most were developed for editing programming 

languages; some can edit any general data structure, including graphic structures [Fras81J; a few 

have been developed specifically for editing English text [Walk&!; Alle8IJ. The widespread 

distribution of personal compu~ers has brought a number of structure-based editors for English 

text to the general public's attention (e.g., ThinkTank). 

Structure-based editors for English text usually provide two capabilities. First, they provide a 

diagram of the structure of the document--a hierarchical table of contents--to help readers and 

writers visualize the structure. Second, they provide a set of commands that exploit the 

structure; for example, a command to move the text cursor to the beginning of the next 

subsection; a command to exchange two sections; a command to show only sections and 

subsections, suppressing paragraph detail, etc. 

November 1987 Hypertext '87 Papers 129 



130 

The Notes program incorporates a structure"based editor for English text: Each Alternative 

List provides users with a structure"based editor in which they can impose structure on their 
notes by arranging them in a hierarchy, possibly creating new notes in the process. Unlike 

existing structure"based editors, which allow users to create only one hierarchical order, 

however, Notes allows users to create multiple hierarchies. Although users of standard 

hierarchical editors can approximate this capability by copying the original file and creating an 

alternative order in the copy, changes in the contents of the notes in the original file will not be 

reflected in the copy; whereas in the Notes program, changes in the contents of the noies are 

reflected in each alternative list, regardless of whether the alternative list was created from an 

already existing one. 

Network-based Editors 

Network-based editors are editors whose user interface and functionality allow users to build 

networks of data by creating links among arbitrary pieces of structure. Most were developed to 

experiment with non"linear organizations for data that the computer medium makes possible. 

Users can typically use a network-based editor to exploit the structural properties of the data, 

but network-based editors leave it up to the user to impose the structure; the system docs not 

provide it or enforce it as in a structure based editor. 

The concept of a network-based editor is often traced to a paper by Bush [Bush45[ who 

proposed creating a system that would allow users to build associative links through a set of 

documents. Early, partial implementations of linked data include NLS/AUGMENT [Enge68; 

Enge73] and Hypertext [Carm69[. Later developments have taken several directions. Xanadu, 

an outgrowth of Hypertext, is working toward a distributed, hypertext database that could 

support any number of user interfaces [Nels8![. lntermedia, also an outgrowth of Hypertext, is 

working toward linking pieces of data objects besides text, including graphics and images 

[Yank85[. Textnet [Trig86[ and NoteCards [Trig87J are experimenting with the effects of linked 

networks of data on human-computer interaction, both for individuals and for groups. 

The Notes program also supports links, but of a much more restricted variety than these 

systems: The Notes program supports links between the source text and a note and between a 

bibliographic reference and a note. One way to view the Notes program is as an optimized 

interface for creating the links most useful for taking notes. A unit task analysis [Card83[ 

illustrates the optimization. In a general network-based editor, taking a note and linking it to 

the original source text and to a bibliographical reference would require approximately 8-11 
unit tasks: select a region, create a from-link, specify the type of the link as a note link, type 

some text of the note, select the text, create a to-link, select the text of the note again, create a 

from-link, specify the type of the link as a reference link, select the text of the bibliography, 

select a to-link. In the Notes program, taking a note requires 3 unit tasks: select a region, 

choose take note, type some text. The unit tasks savings comes about because Notes 

automatically selects the data to link to (i.e., a note) and creates two links (i.e., a note link and 
a reference link) in a single operation. 

Hypertext '87 Papers November 1987 



At least one of the general network-based editors, NoteCards, could probably be specialized to 
support the task-optimized linking of the Notes program. We plan to re-implement the 
underlying database for the Notes program so that it is based on a generalized networked 

database and subroutine library. A generalization of the database will allow us to make the 
Notes program compatible with other specialized tools for writing that we are currently 

implementing. 

FORMATIVE EVALUATION WITH USERS 

Thoughout its development, we have been conducting formative evaluations of the program, 

where by "formative evaluation" we mean a study that attempts to evaluate a program in order 
to improve it. We have operated Notes in five sections of experimental writing courses for two 
semesters. 

Participants 

The participants in the evaluation have been experienced and inexperienced computer users 
with no prior experience with the Notes program. Some had no prior experience with 

Andrew, the computer system on whlch Notes is implemented. 

Methods 

Each participant comes to two sessions. The first session is a training session. In the training 
session, we provide a one-on-one tutorial introduction to those parts of the Andrew system 

that participants need in order to work with the Notes program. The training time on Andrew 
averages about 30 minutes. Then we give participants a hard copy tutorial introduction to the 

Notes program and ask them to work through the tutorial at their own pace. The average 
time to work through the tutorial is about 45 minutes for experienced computer users, 90 

minutes for inexperienced. 

In session two, we ask the participants to read two short articles on an issue (controlling 

human behavior), and to write an essay that (I) synthesizes the issues from the other two 
essays as a springboard for developing a position on the issue and (2) lays out their position on 
the issue. To make the task demanding, we impose a time constraint: 45 minutes to read the 

essays and 45 minutes to write a draft. We ask participants to use the Notes program to take 
notes and write their essays. In both training and work sessions, we ask participants to think

aloud as they work and we record what they say [Eric84J. 

So far, all participants take the full 45 minutes to read the essays and, all participants but one 
have taken the full 45 minutes to write the draft of the essay. 

Our observations of the errors participants make and the thinking-aloud protocol data give us a 

wealth of information about specific problems with the program, problems that were, for the 
most part, relatively easy to fix. But the most valuable information about the overall design of 

November 1987 Hypertext '87 Papers 131 



132 

the program comes from interviews with participants after they have completed the reading and 

writing task. The interview questions, based in part on a set developed by Hidi and Klaiman 
[Hidi83], focus the users' attention on the process of taking notes and probe for the Notes 
program's effects on their usual note-taking processes (see Appendix I for a list of the interview 
questions). 

Results of the Interview Questions 

For the most part, we have incorporated solutions to participants' problems with the Notes 
program into the version described in this report. However, we have two outstanding 

problems that we urgently need to address. The first concerns the representation of notes; the 

second concerns support for the process of taking notes. 

It is now well-established that the right representation can significantly influence the ease of 
problem-solving [Sirno81]. Our interviews with users suggests that we would do better to 
provide them with not one representation for notes but a variety of representations, with each 
representation providing a better match to a particular sub-task. For example, some users 

would like to cluster their notes in a graphical network of notes before deciding on any linear 

order for them whatsoever. Others would like their notes to represent a path through an issue. 

The second problem concerns the support for the process of taking notes. At the present time, 

it is easy for writers to move from notes to prose. But, not too surprisingly, writers requested 
the ability to move from prose to notes. Writing actual prose represents a bottom-up planning 
procedure. As in other complex tasks, writers engage in a combination of top-down and 
bottom-up planning. 

We will be working to provide these additional capabilities and testing whether they provide 
the useful decision-support for the complex task of writing an original paper from sources. 

REFERENCES 

[AIIe81] Allen, E., Nix, R., & Pedis, A. PEN: A hierarchical document editor. Proceedings 

of the ACM SIGPLAN!SIGOA Conference on Text Manipulation, (Portland, Oregon, 
June 8-10, 1981) ACM, New York, 1981, 44-81. 

[Bart32] Bartlett, F.C. Remembering. Cambridge: Cambridge University Press, 1932. 

[Card83] Card, S.K., Moran, T.P., & Newell, A. The Psychology of Human-Computer 
Interaction. Lawrence Erlbaum Associates, 1-lillsdale, N.J., 1983. 

[Carm69] Carmody, S., Gross, W., Nelson, T.H., Rice, D., & van Dam, A. "A hypertext 

editing system for the /360", in Pertinent Concepts in Computer Graphics, M. 
Fairnan & J. Nievergelt, Eds. University of lllinois Press, Urbana, Ill., 1969, 291-

330. 

Hypertext '87 Papers November 1987 



[Enge68] Engelhart, D.C. & English, W.K. "A research center for augmenting human 
intellect", in Proceedings of the Fall Joint Computer Conference, vol. 33. AFIPS 

Press, Reston, Va. (1968), 395-410. 

[Enge73] Engelhart, D.C., Watson, R.W. & Norton, J.C. "The augmented knowledge 
workshop", in Proceedings of the National Computer Conference, vol. 42. AFIPS 

Press, Reston, Va. (1973), 9-21. 

[Eric84) Ericsson, K.A. & Simon, H.A. Protocol analysis: Verbal reports as data. MIT 

Press, 1984. 

[Fras81] Fraser, C.W. Syntax-directed editing of general data structures. Proceedings of the 

ACM SIGPLAN/SIGOA Conference on Text Manipulation, Portland, Oregon, June, 
1981, 17-21. 

[Emig77] Emig, J. "Writing as a mode of learning," College Composition and Communication, 

28, 1977, 122-128. 

[Hidi83] Hidi, S. & Klaiman, R. "Notetaking by experts and novices: An attempt to identify 
teachable strategies," Curriculum Inquiry, 13,4 (1983), 377-395. 

[Lang84] Langer, J.A. "The effects of available information on responses to school writing 

tasks," Research in the Teaching of English, 18, I (Feb. 1984), 27-44. 

[Meye75] Meyer, B.J.F. The organization of prose and its effects on memory. Amsterdam, The 

Netherlands: North-Holland, 1975. 

[Meyr82] Meyrowitz, N. & van Dam, A. "Interactive editing systems," A CM Computing 

Surveys, 14, 3 (Sept. 1982), 321-415. 

[Mich61] Michael, D.N., & Maccoby, N. "Factors influencing the effects of student 

participation on verbal learning from films," in A.A. Lumsdaine (Ed.), Student 

response in programmed instruction. Washington, DC: National Academy of 

Sciences, 1961. 

[Moor85] Moore, M. T. "The relationship between the originality of essays and variables in 
the problem-discovery process: A study of creative and non-creative middle school 

students," Research in the Teaching in English, 19, I (Feb. 1985), 84-95. 

[Morr86] Morris, J.H. et al., "Andrew: A distributed personal computing environment," 
Communications of the ACM, 29, 3 (March, 1986), 184-201. 

[Ne1s81] Nelson, T. Literary Machines. T. Nelson, P.O. Box 118, Swarthmore, PA 19081, 

1981. 

November 1987 Hypertext '87 Papers 133 



134 

[Neuw87] Neuwirth, C.M., & Kaufer, D. Decision support systems for reading and writing. 
Technical Report CMU-CECE-TR-3, Pittsburgh: Carnegie-Mellon University, 
Center for Educational Computing in English, English Department, 1987. 

[Newe84] Newell, G.E. " Learning from writing in two content areas: A case study of 
protocol analysis.," Research in the Teaching of English, 18, 3 (Oct. 1984), 265-287. 

[Rede79J Reder, L.M. "The role of elaborations in memory for prose," Cognitive Psychology, 

1979, II, 221-234. 

[Trig86] Trigg, R. & Weiser, M. "TEXTNET: A network-based approach to text handling," 

ACM Transactions on Office Information Systems, 4, I (Jan., 1986), 1-23. 

[Trig87] Trigg, R., Suchman, L., & Halasz, F. "Supporting collaboration in NoteCards," In 

Proceedings of the Conference on Computer-Supported Cooperative Work (Austin, 

Tex., DEC.). ACM, New York. 1987. 

[Walk81] Walker, J. "The document editor: A support environment for preparing technical 

documents," Proceedings of the ACM SIGPLAN/SIGOA Conference on Text 

Manipulation, Portland, Oregon, June, 1981,44-50. 

(Y ank85] Y ankelovich, N ., Meyrowitz, N. & van Dam, A. "Reading and writing the 
electronic book," Computer, 18, 10 (Oct., 1985), 15-30. 

[Youn71] Young, R. E., Becker, A., Pike, K. Rhetoric: Discovery & Change. Harcourt, 

Brace & Yovanovich, San Francisco, 1971. 

[Youn73] Young, R. E., & Koen, F.M. The tagmemic discovery procedure: An evaluation of 

its uses in the teaching of rhetoric. Final Research Report to the National Endowment 

for the Humanities, Grant number E0-5238-71-116, University of Michigan, 1973. 

ACKNOWLEDGEMENTS 

We thank the many people involved with the development of the Notes program, especially 

the teachers and students who have used the program and given us valuable feedback. The 
work described in this report represents contributions by the following people: 

System design: Chris Neuwirth, Rick Chimera, David Kaufer 
System programming: Rick Chimera, Gary Keirn, Dale Miller, Keith Evans, Aaron 

Oppenheimer 
User testing: Chris Neuwirth, Terilyn Gillespie 
Documentation: Terilyn Gillespie, Tom Gomoll 

System design consultant: Thorn Peters 

Hypertext '87 Papers November 1987 



The design, development and testing of the Notes program has been supported, in part, by the 
Fund for the Improvement of Post-Secondary Education (FIPSE) as part of the Warrant 
Project, Preston Covey, Cheryl Geisler, David Kaufer and Chris Neuwirth, Principal 
Investigators. We would also like to thank Carnegie Mellon's Center for the Development of 
Educational Computing for programming support, Carnegie Mellon's Information Technology 

Center for system support and IBM for an equipment grant. Finally, thanks to Davida 
Charney, Erwin Steinberg and Richard Young for their comments on earlier drafts. 

NOTES 

1 A planned extension will allow users to see note cards by other program-generated orders, 

such as grouped by classes that the user has put the notes in. 

2Because the system that Notes is implemented on allows multiple windows, the entire screen 
may not be devoted to the Notes program. If a user has more than one window on the screen, 
Notes occupies the portion of the screen that the user has allocated for it, but the Notes 

window itself would still appear as described. In addition, the Notes window itself can take on 
different appearances. For example, the user can hide various regions of the Notes program's 

window from view and expose regions to view. For example, if the user is primarily engaged 

in taking notes, he or she may not want the listing and viewing regions exposed to view and 

there is an option to Hide/Expose the All Notes List and Viewing regions. 

3 . 
From Hayes, J. R., [1982] The Complete Problem Solver. The Franklin Institute Press, 

Philadelphia, pp. 197-8. 

November 1987 Hypertext '87 Papers 135 



136 

APPENDIX 1: INTERVIEW QUESTIONS 

1. Do you usually take notes? 

2. When you do take notes, do you take them as you just did or was this particular session 
unusual? If unusual, how? 

3. When you do take notes do you have a particular style, format or procedure that you use? 
Does this depend on the reason you are taking notes? Did the Notes program interfere with or 

enhance your style, format or procedure? 

4. Do you usually have some specific ideas ·in mind before you begin to take notes or does the 

text suggest ideas to you? Did this process feel any different when working with the Notes 
program? 

5. Do you usually reword or select particular ideas to take notes on, or do you often copy 

parts of the text verbatim? Does this depend on your purpose? The material? Did your 

rewording or copying practices change or stay the same as a result using the Notes program? 

6. How do you select the ideas you take notes on? Did taking notes with the Notes program 
affect your selection of ideas? 

7. What features did you like about the Notes program? 

8. What features did you dislike? 

9. What would you change? What would you change it to? 

I 0. If you had to name just one additional feature that the Notes program should have, what 

would it be? 

II. Would you use the Notes program again if you had the opportunity? Why or why not? 

Hypertext '87 Papers November 1987 



. .. . . .. . 
All Notes List 

~ Hayes, J.R. (1982). What is a creative act?. The Complete Problem Solver 
(pp. 197- 198). Philadelphia: The Franklin Institute Press. 

Consequential 
Length of time 
Copy cats 
Originality criterion 
Newness 
Value vs. Consequential 
Subjectivity and value? 
Being there 
Housepainter example 
Intentionality 

Perkins, D. N. (1981). Having it. The Mind's Best Work. Cambridge, MA: 
Harvard University Press. 

Memory Alte rna.tive Usts 
More creative All Notes I 
Criteria for postulating an ability View Notes I 

Classes 
Source Text 

. 
New 

-~ew from file 
I ' . 

Edit Reference 

Delete 

Write To Scribe File 
Read Scribe File 

;>•. 

" 
. 

Figure I. The Notes Program Window 

November 1987 Hypertext '87 Papers 137 



138 

at 1s t ere a out t ese very 1 erent acts t a 
eads us. to call them all'creative'? Typically we 
apply fa1rly stringent criteria in judging creativity. 1 
most cases, we require an act to pass three tests 

efore we call it creative. First, we must believe 
hat !h~ act is original. Second, we must believe 
hat it 1s valuable. And third, it must suggest to us 
hat the person who perfonned the act has special 

mental abilities. For example, when we see what 
he person has done, we ask ourselves, "How did 
he ever think of that?' or, 'How did he have the 
at1ence to work all that out?' 

Lefs examine these conditions in o 

Originality 

V>fe certainly wouldn't judge a painter creative who 
~Imply copied the pictures of other painters. To be 
JUdged creative, painters must use their own 
res?urces to shape the painting. They must paint 
their own p1ctures.mm 

We don't mean though that everYthing in a creative 
work must be original. Painters, writers, and ;! :: 
inventors routinely use ideas borrowed from 

Figure 2. Taking a Note 

Hypertext '87 Papers 

Hayes, J.R. (1982). 
What is a 
creative act?. 
The Complete 
Pmblem 
Solver(pp. 
197. 198). 
Philadelphia: 
The Franklin 
Institute 
Press. 

Consequential 
Length of time 
Copy cats 
Originality. 

criterion 
Newness 
Value vs. 

Consequent 
ial 

Subjectivity and 
value? 

Being there 
Housepainter 

example 
Intentionality 

Perkins, D. N. 

1
1981). Having 
t. The Mind's 
Best Work. 
Cambridge, 
MA: Harvard 
University 
Press. 

November 1987 



November 1987 

a IS ere a ou ese very 1 erent ac s at 
eads us to call them all 'creative'? Typically we 
pply fairly stringent.criteria in judging creativity. I 

most cases, we requ1re an act to pass three tests 
efore we call it creative. First, we must believe 

hat the act is original. Second, we must believe 
hat it is valuable. And third, it must suggest to us 
hat the person who performed the act has special 
ental abilities. For example, when we see what 

he person has done, we ask ourselves 'How did 
he ever think of that?' or, "How did he have the 
alienee to work all that out?' 

Why is it important to have criteria? 

Figure 3. Composing a Note 

Hypertext '87 Papers 

Hayes, J.R. (1982). 
What is a 
creative act?. 
The Complete 
Problem 
Solver(pp. 
197- 198). 
Philadelphia: 
The Franklin 
Institute 
Press. 

Consequential 
Length of time 
Copy cats 
Originality 

criterion 
Newness 
Value vs. 

Consequent 
ial 

Subjectivity and 
value? 

Being there 
Housepainter 

example 
Intentionality 
Why criteria? 

Perkins, D. N. 
(1981). Having 
ft. The Mind's 
Best Work. 
Cambridge, 
MA: Harvard 
University 
Press. 

139 



If.!! 
il\l: ~Copy cats n~t Original ii.i Well, maybe. But it 

Value seems that the creative. But 
Abilities creative acts that are someone can be 
a new class important are "inspired" or 

consequential. 'influenced' bk 
Otherwise, why all another's wor and 
the fuss about still be creative. 
creativity? Where do we draw 

the line? 

!lm Maybe borderline 

AII_I'IC>teS _LI~ case aren't important~ 

Hayes, J.R. (1982). 
What is a 
creative act?. 
The Complete 
Problem IT ~ 
Sol~er(pp. Lengm 01 ume 
197- 198~. ~ ?K: .But I ,.. Isn't. originality just Philadelp ia: was another word for 
The Franklin on the creativity? What is 
Institute for some the concept going to 
Press. . f~me before the explain about 

Consequential 
'Eureka!" creativity? 

publicity subject 
Length of time Chance favors the 
Copycats well-prepared mind. 
Ongmality 

criterion 
Newness 
Value vs. 

Consequent 
ial 

Subjectivity and 
value? 

Being there 
!"!! ~ .. 

Figure 4. Viewing and Oassifying Notes 

140 Hypertext '87 Papers November 1987 



. . . , . . . 
Alterna ive ists All Notes List 

AOIItleS aram ~;;:~ 

~ Housecainter 
:;:::; .Subjectivity and Hayes, J.R (1982). 

exampe value? What is a 
Value vs. creative act?. 

Bein2 there Consequential The Complete 
nalogy Problem 

Length of time Solver(pp. 
Intentionality 197- 198~. 

Hayes idea Philadelp ia: 
Copy cats The Franklin 

Abilities mix vs. stuff Originality criterion Institute 
Newness Press. 

Really a mix? Value vs. 
Consequential Consequential 

Talent or knack Subjectivity and Length of time 
value? Copy cats 

Memory Being there Orig1nality 

r~~ 
criterion 

More creative Newness 
Both Hayes and Value vs. 

Creative i 1i~l Perkins discuss Consequent 
s better? 

I 
criteria for creativity. ial 
Whereas Hayes' Subjectivity and 

Criteria for postu seems to be driving value? 
Jating an ability · at ways to Being there 

distinguish creative Housepainter 
Perkins acts from ones that example 

are not creative, lntentionalit~ 
Perkins' criteria seem Why criteria. 
designed to 
distinnuis a 
s~eci 1cally creative Perkins, D. N. 
a ility from onther, p 981 ). Having 
perhaps more t. The Mind's 
general mental ~}!' Best Work. 
abilities. ~~!~ Cambridge, 

MA: Harvard 
(1) The ability in ~I! . University 

~ itself should make a Press. 
~ ~~ 

Figure 5. Alternative Lists 

November 1987 Hypertext '87 Papers 141 



142 Hypertext '87 Papers November 1987 



Translating 
Text into 

Hypertext 



Hypertext and the 
New Oxford English Dictionary 
Darrell R. Rayrrond and Frank Wm. Tompat 

Centre for the New Oxford English Dictionary 
University of Waterloo 
Waterloo, Ontario, Canada 
N2L 3Gl 

ABSTRACT 

An alternative to rrenual composition of hypertext databases is conversion from existing texts. Such conver
sion often requires careful analysis of the text dcx:urmnt in order to determ'ne how best to represent its structure. 
We illustrate sorre of the issues of conversion Kith an analysis of the Oxford English Dictionary 

INTRODUCTION 

CD ROM and other low-cost high-capacity storage devices are making widespread compu

terized access to existing reference works a reality. Examples of documents currently available on 

CD ROM include Bowker's Books In Print, Microsoft's Bookshelf (which contains ten works 

including Roget ~ Thesaurus, Bartlett~ Familiar Quotations, the World Almanac, and the U.S. 
Zip Code Directory), the McGraw-Hill Concise Encyclopedia of Science and Technology, and 

the Thesaurus Linguae Graecae. The basic assets of computerization - speed of access and 

quantity of storage - make almost any electronic form of these documents useful. However, com

puterization also presents new opportunities in advanced representations for such documents, 

both for storage and for display. Hypertext is one currently underexplored area of representation 

[Mich87j. 

Producing a good hypertextual representation of an existing document can be difficult. The 

document may have been created decades or centuries ago,· and, so its authors or editors cannot 

be consulted about their intentions. As a result, structure must be inferred from a careful study 

of the text. Further, the characteristics of pen and paper or the printing press often exert a 

powerful influence on a document, and this influence must be isolated from the purely formal or 

logical constraints of its structure. Once the characteristics of the original document have been 

determined, the hypertext designer attempts to represent these accurately within the restrictions 

of the computer medium. A final problem in conversion is that we lack a rigorous characteriza

tion of hypertext. Some writers emphasize speed of access or non-linearity of the medium 

[Conk86], others emphasize selectivity [Jone87]; text conversion focuses attention on the discrete

ness of the hypertext fragments and the explicitness of hypertext links. Fuzzy definitions of 

hypertext make it difficult to evaluate the acceptability of a given conversion. 

t On leave at Bellcore, Morristown, N.J. during 1087·1988 

November 1987 Hypertext '87 Papers 143 



This paper reports our experiences in evaluating the potential for hypertextual representa

tions of the Oxford English Dictionaryo With the completion of the Supplement to the OED, 

Oxford University Press has turned to consideration of an electronic form for the dictionary, 

referred to as the New OED [Wein87J. The text of the OED has been completely keyboarded, 

and we are currently designing suitable computer-based tools for storage, editing, and searching. 

Our work on the OED has provided some insight into the problems of converting existing docu

ments to hypertexto 

THE OXFORD ENGLISH DICTIONARY 

The Oxford English Dictionary !Murr28] is the largest and most scholarly dictionary of 

written English. Its production spanned the period from 1884 to 1928, with nearly thirty years of 

preliminary effort in planning and collecting material. In its standard form the OED consists of 

twelve books containing 42.51 million words in 252,259 entries, and 1.86 million quotations. An 
important subsequent work is the four-volume Supplement that contains entries for words which 

were not covered in the OED, and also contains additional material and emendations to existing 

entries. The Supplement was produced from 1958 to 1986. 
Abbreviate (lbri·vi1elt), !'.,also 5-7 abreriate. 

[£ ABDREVJATB Jfl. 1L ; Of on the analogy of vbs., 
so formed; see ~ATil. A direct representative of L. 
a!J!Jreviiire; RS Anatoo!l, and the obs. AnREVT, re.. 
present it indirectly, through OFr. a6regier and 
mid. Fr. abrbJin-. Uke the latter, aNrtT.Jiate, was 
often spelt a.J,.eviate in ;;-7.] To make aborter, 
shorten, cut short in any way. 

iS30 PALSGit., I alwevyate: I make a thyn~shorte, 1enll?ep. 
:ribs Btr.coN Essa.YI ;~~:ltiYo 99 (l86~) But 1t i:t one Thing to 
Abbreviate b:r Contm.cting, Another by Cutting oW. 
t 1. trans. To make a diseoarse shorter by omit

tinli details n.nd preserving tbe substaDce ; to· 
abndge, condense. 061. 

"JofSO CAestn-Pl. I. s(Sh. Soc.)Thd matter he.abbrevited 
into pia. yes twentr·foure. JP CR2&Nit Ct~nn)' errfcAinr 111. 
t6 The. queane abreuiated her disc:oarse. J637 RAunGH 
Ma/u>nrd 34 Abreviated out of two Arabique wnten trans
lated into Spanish, zdts MANLitT InterPnterprr.f.,l h&'lle 
omitted several ltlatte" • • contracted ~~md abbrniated 
Others. 
tb. To make an abstract or brief o( to epitom .. _ 

ize. 06s. 
e 1450 T11e:vtsA Hlnkll"s Pof)'c!,.. I. 1u (Roll!! Ser.) Twgus 

Pompeius, in hys~il iiiJ. booke!l allemosteof aile the uoryee 
or the worlde, whom lustinus his di~ple did abbre~iate. 
s6o3 F1.ottto Mtmta;pe (1634) 627 To reade, to note, ,and to 
abbreviate PolibiU!I, 1648·9 1"/te Kinrdcnrn Wedly lntelll· 
re~~en- jan.. J 6 to 23 The high court oOustice did this day !lit 
again concerning the triaU of tho ICing. 'Ihe charg@ wu 
b1ougbt in and abreviated. 
t c~ MalA.. To reduce (&fraction) to lower tenns. 

O!Js. 
~~ Mtfflr~,. Dt"ct. I. 11 To abbreviate rraetiooi in arith8 

meuc and algebra. Is to JCS!Ien proponionallj' their terms, 
or the numerator and denominatOT. ' 
t 2. intr. To speak or write briefly, to be brief. Oh. 

Figure 1. Abbreviate. 

The basic unit of the OED is the entry; each entry details the historical development of a 

given word. A typical OED entry is that for Abbreviate, part of which is seen in Figure 1. An 
entry consists of the main form, (the word being defined), pronunciation, part-of-speech, a list of 

variant forms, etymology, and a set of senses. Each sense contains a definition and typically some 

illustrative quotations chosen from different sources and time periods. Senses often have nested 

subsenses in the ease of commonly used words, prefixes, or suffixes. 

While some of the structural elements in an entry are indicated by special symbols (e.g., 

etymologies are surround by "["and ")"), most are indicated only implicitly, by position and font 

or a combination of both. It was necessary to keyboard the text of the OED manually so that 

144 Hypertext '87 Papers November 1987 



tags could be added to the data to designate the implicit structure. These tags were designed for 

ease of data entry rather than completeness of structure representation. As a result, extensive 

work was conducted to build parsers which could complete the tagging and verify the data. 

[Kazm86] The tagged and parsed text for Abbreviate is shown in Figure 2, up to and including 

the rlrSt two quotations. These tags are currently being exploited in the development of a data

base index. 

<entry> <hwgp> <hwlem>abbreviate </hwlem> <pron 1d=0000041884>a2breve.br 
<1>Umac. </1> &sd. vUsylab. <i>e</i> <su>i</su> t </pron>, <pos>v. </pos> </hwgp> 
<vfl> Also <vd>S,ten. 7</vd> <vf>a.brevia.te</vf>. </vfl> <etym> f .<xra. 
1d=0000041880><xlem>abbrevia.te</xlem> <pos>ppl. a. </pos> </xra>; or on the 
analogy of vbs. so formed; see <xra 1d=0000041881> <xlem>-ate</xlem> </xra>. 
~es.A direct representative of L. <cf>a.bbreviatmac.re</cf>; as <xra 
1d=0000041882><xlem>abridge</xlem> </xra.>. and the obs. <xra 
1d=0000041883><xlem>abrevy</xlem> </xra>. represent 1 t indirectly. through OFr. 
<cf>abregier</cf> and mld.Fr. <cf>abre2acu. vier</cf>. tes .Like the latter. 
<of>abbrevia.te </cf>, was often spel t <cf>a-brevtate</cf> in Sbn. 7. </etym> 
<sen4> <sen6> To make shorter. shorten. cut short in any wa.y. <qpa.ra> <quot> 
<qdat>1530</qdat> <auth>Palsgr.</auth>, <qtxt>I abrevyate: I make a thynge 
shorte, <i>Je abrege</i>. </qtxt> </quot> <quot> <qdat>1625</qda.t> 
<a.uth>Ba.con</auth> <wk>Essays</wk> xxiv. 99 (1862) <qtxt>But it is one Thing to 
Abbreviate by Contracting, Another by Cutting off.</qtxt> </quot> </qpara> 
</sen6> </sen4> 

Figure 2. Tagged data for Abbreviate. 

·CONVERTING TEXT TO HYPERTEXT 

Much attention has been focused on attractive aspects of hypertext such as multiple win

dows and multiple access paths to text fragments. Contemplating the conversion of the OED to 

hypertext has led us to consider other issues, in particular the problems involved in defining nodes 

and links. A document can be broken into many networks of arbitrarily chosen pages or nodes, 

but not all of these are suitable representations of the whole content of the original text. The 

choice of nodes, links, and network of interconnection each have a significant impact on the 

nature of the whole hypertext. 

From the point of view of document conversion, what distinguishes hypertext is that its text 

fragments and links are discrete and explicit. Hypertext nodes are text fragments which have the 

special characteristic of being both semantically and syntactically discrete. Ideally, each node 

represents a single, independent concept which is susceptible to classification in a large number of 

ways. However, not all concepts are representable in this fashion. Some previous hypertext work 

seems to suggest that any text would be better off as hypertext. We suggest that if the 

document's themes are too closely interwoven then syntactic fragmentation must lose semantic 

information. 

Similarly, hypertextual links are also discrete and explicit, as can be observed from the 

requirements that they need labels and that users actively select them; We suspect that the rich· 

ness of some documents is directly related to the implicit nature of their links, since the source 

and sink of an implicit link varies with interpretation and hence is more flexible than an explicit 

link. Finally, decomposition of the document into pages and links necessarily involves some con

sideration of the network and its associated substructures. If this organization is not sufficiently 

November 1987 Hypertext '87 Papers 145 



representative of the theme, argument, or structure of the original document, then information 

will again be lost. 

These issues suggest that for some purposes and documents no hypertext representation will 

be adequate. Hypertext makes an implicit structure explicit, so the key question in conversion 

must be will explicit structure be as expressive as implicit structure? When the answer is yesj 

the document will gain from conversion; otherwise, conversion will degrade the representation of 

the document. 

In the case of the OED, the bulk of the text is quotations which have been extracted from 

other texts. For these it is clear that the fragments exhibit the necessary discreteness, and so a 

hypertext representation should provide an appropriate delivery vehicle. The subsections of the 

entries adhere to a formal structure since we can describe them with a context-free grammar. 

However, our discussions with Oxford editors [Raym86] have led to the observation that an entry 

is not merely a collection of independent parts. Entries are stylistic, creative wholes in which the 

relative sizes and arrangement of the parts often conveys important (though implicit) information 

about the development of a word. We have yet to determine if this implicit structure can be 

explicitly represented in a useful form. 

VvHY HYPERTEXT FOR THE NEW OED? 

The main reason for considering a hypertext representation of the New OED is to support 

browsing. The OED can be treated as a text database to which formal queries are posed, e.g. 

What interfections were in common use in the period 1670-1120'1 [Gonn87a][Raym87a] How

ever, experience with an extremely rapid searching program called PAT [Gonn87bj has shown that 

browsing the dictionary is an invaluable adjunct to formal querying, and is often more fruitful, 

serendipitous, and enjoyable. Browsing is a two-stage process: users specify a pattern to be 

located and then navigate in the vicinity of the pattern. Our users typically employ PAT to 

search for entries containing interesting quotesi phrasesp or words~ ~nd then navigate the original 

paper dictionary for the context of the quotes. This switch of medium is necessary because PAT is 

not knowledgeable about the structure of the dictionary, and so does not support navigational 

browsing. An obvious approach is to supply a hypertext-like b'rowsing facility as a front end to 

PAT. 

A second reason for hypertextual representation is to improve the existing representation~ 

in particular to remove the constraints imposed for the original medium. The OED was originally 

contracted for a specific number of pages, which the editors soon determined would not be suffi

cient. Nevertheless, they employed every means at their disposal to make the OED fit within 

this. page restriction, short of reducing its quality or comprehensiveness. The need to conserve 

"real estate" led to very dense typesetting and the extensive use of abbreviations and symbols; 

very few spatial techniques could be employed to give the structure of an entry visual saliency. 

While the result is admirable, we need not observe this constraint any longer. A hypertextual 

representation should provide better visual saliency and more rapid navigation around large 

entries. A key mechanism to be employed is dynamic reformatting of entries according to user 

specification. 

146 Hypertext '87 Papers November 1987 



A third reason for hypertextual representation is integration of the OED with the user's 

task. Our users typically query and browse the OED as part of a more extended task. At a 

minimum, users want to save their results and queries for use in a new session, but they also 

expect access to annotation facilities, the ability to cut and paste fragments of OED text into 

other documents, routines for sorting and filtering extracted quotations, and tools for statistical 

analysis of selected variables. The most important observation here is that hypertext can facili

tate a consistent and simple interface to a wide range of tools. 

STRUCTURAL CHARACTERISTICS OF THE OED 

A few minutes of browsing the OED reveals its most important characteristic - the vari

ance in size and structure of its entries. Entries in the OED range from "Gig: see JIG" to the 

entry for set v., which is almost half a megabyte. Some entries have hundreds of quotations, but 

many have none. An entry may contain a well-balanced arrangement of senses and quotations, or 

it may consist largely of possible compounds or formations e.g., the entry for un-. Some entries 
can be perceived very quickly, while comprehension of even the structural skeleton of long entries 

is extremely difficult. Clearly, attempting to find a representation for such a wide range will not 

be a simple task. 

Merely knowing the size of the largest and smallest entries is insufficient to develop a 

representation. Figure 3 shows the distribution of the sizes of the entries in the OED, where the 

size of each entry has been rounded off to the nearest ten characters. 

The most striking observation is that some 49,000 entries (one-fifth of the total) contain 

fewer than 50 characters. The majority of these are entries for obsolete variants of words and 

cross-references to other entries. 95% of all entries are smaller than 4000 characters, however 

21% of all entries are larger than 1000 characters. It would appear that large entries are not the 

most common, and hence the problem of representation may be less severe than it first appeared. 

However, the probability of access is not equal for every entry. The size of an entry is dependent 

on the number of suitable quotations found for the word; thus it should not be surprising that a 

large number of the smaller entries are obsolete or infrequently ?sed words, white commonly used 

words have larger and more complicated entries. If the commonly used words are also more 

likely to be browsed, the need for a good representation increases. An argument could be made 

that the larger entries are more likely to be browsed whether they are common or not, since their 

structure and content are more difficult to perceive and remember. It should also be noted that 

the size of entries will generally increase when the material in the Supplement is integrated with 

that in the OED. 

The display of larger entries may be facilitated by structural views or abbreviations such as 

those described Furnas [Furn86). Structural information can be extracted from the tags, and 

hence they can be employed in construction of a structural view. Figure 4 shows the relationship 

between number of tags and size of entry for J. Clearly, the larger the entry, the more tags it 

contains. 

However, many tags are only typographical, or otherwise designate flat structure which 

does not facilitate abbreviated display. A more illuminating measure would compare the number 

of sense tags to entry size. Each sense tag denotes a level in the logical hierarchy, so this 

November 1987 Hypertext '87 Papers 147 



22000 

20000 

n 18000 

0 
16000 

0 14000 
f 

12000 
• 
n 10000 
t 
r 8000 

• 6000 

s 4000 

2000 

0 

150 
140 
130 
120 

n 110 
0 100 

90 
0 80 
I 

70 

t 60 

" so 
g 40 
s 30 

20 
10 
0 

148 

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 

size in characters (exclusive of tags) 

Figure 3. Distribution of entry size. 

· ..... 
·.: .. :.· 

... 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

size of entry 

Figure 4. Distribution of tags vs. size of entry. 

Hypertext '87 Papers November 1987 



measure roughly indicates the correlation between size and quantity of structural information. 

This data is shown in Figure 5. Clearly the number of sense tags is not well correlated with entry 

size. We have observed that some entries have a large number of quotations or long etymological 

notes but a very shallow sense structure; a tag-derived skeletal view of such an entry is not indi

cative of its size or comprehensiveness. On the other hand, some entries have a deeper hierarchy 

with relatively little leaf content; in this case a tag-derived skeletal view overemphasizes the con

tent of the entry. 

30 

n 27 
0 

0 

I 

s 

24 

21 

18 

e 15 
n 
s 

• 
t 
a 
g 
s 

12 

9 

6 

3 

0 

-===·---.. ·· .. 
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

size of entry 

Figure 5. Distribution of sense tags vs. size of entry. 

We are currently evaluating several representation prototypes, running on a Sun 3/50 under the 

X window system. Details of these prototypes will be presented at the workshop. 

Forming an OED hypertext also requires identification of links. First we must ascertain 

which links are already present in the data or tags. The most explicit links are the cross

references, which are pointers to other entries. These can appear in etymological notes or sense 

text, and are visually designated by printing the main form of the cross-referenced entry in small 

capitals. In Figure 1 there are cross-references to -ATE, ABRIDGE, and ABREVY. The OED con

tains 475,000 cross-references for an average of 1.88 per entry, making these a substantial source 

of bypertextual links. 

However, a large number of cross-references does not necessarily imply an equitable distri

bution of cross-reference destinations. Figure 6 and 7 show the distribution of CfQSSooreference des-

tinations from J and A to the letters of the alphabet. The last bar of each graph represents the 

number of cross-references to suffixes (i.e., words beginning with "-"). It is apparent that most 

cross-references are to words in the same letter of the alphabet, with the only major exception 

being cross-references to suffixes. 

November 1987 Hypertext '87 Papers 149 



10000 -
c-

n 9000-
0 

8000-

0 

r 7000-

r 
6000 -

• 5000 -

e 4000 -
r 

• 3000 

n 
c 2000 -

e 
1000 -• 

0 
.---, 

~ 

a b c d • I g h k lmnop q r • t uvwxyz -
destination 

Figura 6. Distribution or cross--reference destinations for~ 

This distribution is indicative of several factors. First, cross-references in the OED gen

erally point to words with similar spelling. Many cross-references are prefaced with erroneous 

spelling of, variant of, obs. form of, verbal form of and other such phrases which typically indi

cate a word with very similar spelling. The major exception to this rule is suffixes, which are dis

tributed more evenly about the alphabet. The second factor is the history of the development of 

the dictionary. Volumes were generally compiled in alphabetical order, and so the compilers of 

the later volumes naturally had more information on which to base cross-references, and would be 

more likely to cross-reference existing entries than as-yet uncompiled entries. We observe from 

Figure 7 that J cross-references earlier volumes more than later ones. A third factor is psycho

logical; since an editor would be most familiar with the section of the OED currently in progress, 

it is more likely that he or she would insert cross-references to entries in that section. 

A more general type of link is known as a lexicographical link. These links result from the 

simple observation that since the OED is a book which defines most English words, every word in 

the OED can be seen as the source of a implicit link that points to its definition. The OED and 

other comprehensive dictionaries are thus unique in containing to some extent their own reference 

material. Lexicographical links are simple and natural for the casual user, and following them 

about the dictionary is merely a special case of the general ability to point to any text and find 

its entry in the OED. However, determining the source and destination of these links is not sim

ple. The word being used as the source may need to be reduced in tense or number to its mor

phological root. Then the OED must be checked to see if the root is a main form; that is, if 

there is an entry corresponding to the root. It is possible for the root to be the main form of 

150 Hypertext '87 Papers November 1987 



n 
0 

0 

r 

e 

1600 -

1400 -

1200 

1000 

f 800-

• 
r 600-

• 
" 400 -
c 

• 
• 

-

-

a b c d e f g h k I m n o p q r s t u v w x y z -

destination 

Figure 7. Distribution or cross-reference destinations for J~ 

several entries, in which case either the part of speech must be extracted from the surrounding 

text, or the set of entries is returned to the user for manual evaluation. 

IT the root is not a main form, there are still three possibilities: the root (or the original 

word) is a bold lemma; the root (or the original word) is an italic lemma; the root (or the original 

word) is a variant form. Bold and italic lemmas are used to indicate. compounds and other 

derived forms which do not require separate entries but which may have their own supporting 

quotations. We note that the supporting quotations for bold and italic lemmas are not structur

ally identified in the current tagging, and must be extracted from the quotation list by observing 

the occurrence of the bold or italic lemma in the quote. Variant forms are spelling variations; 

each entry has a set of variants that is divided according to the century in which the variant is 

acceptable. 

The existing cross-reference links in the OED are important, but limited in their scope. 

Furthermore, they can be treated as a special case of the more general lexicographical links, 

which present several difficulties. Supporting these links will require sophisticated access 

software. 

RELATED WORK 

In addition to developing hypertextual representations of the OED, we have identified two 

other benefits of considering the OED in the context of hypertext. 

November 1987 Hypertext '87 Papers 151 



The first area is the use of the OED as a generator of hypertextual links for other docu

ments. For example, co-citation links could be derived for every two texts that supply a quota

tion to the OED that illustrates a given sense of a word. Useful links within and between other 

texts can be identified from collocations in the OED; for example, a large overlap among words in 

definitions might serve to identify similarity of topic. More refmed techniques to extract mean

ingful pairings remains a difficult research problem in computational linguistics. 

More importantly, the issue of developing and editing entries for the OED increases the 

need for powerful editors for hypertext systems. A significant problem in editing is the creation 

and maintenance of the sense structure [Raym86]. The source material for each entry is a large 

set of quotations obtained over the years from volunteer and directed readers, each handwritten 

on a 6" by 4" slip of paper. In a method still practised today, the editors distill the senses of the 

word from the set of quotations by arranging and re-arranging the slips into spatial categories on 

a desktop, looking for the pattern of historical development. In a computerized environment, 

one's first guess is that an appropriate system might employ a desktop metaphor as does a system 
like NoteCards [Hala87]. However, existing systems seem to be designed for tens of slips at a 

time, whereas OED editors can be faced with organizing thousands of slips. A more fundamen

tal problem has been identified in experiments we have conducted on organization of proverbs 

[Raym87b]. These experiments indicate that there is a quantifiable decrease in the quality of 

semantic categorization when a categorization task is performed in an electronic environment 

employing a spatial metaphor. It appears that the ability to create temporary, unnamed 

categories is a key factor in the development of good semantic structures, and that current sys

tems and metaphors interfere significantly with this ability. 

CONCLUSIONS 

Our experience with the OED illustrates some of the issues involved in converting existing 

texts to hypertext. Conversion of complex texts requires a careful analysis of the document and 

an understanding of its history and nature. The analysis of the OED le.d us to the observation 

that a key characteristic of hypertext is the discrete nature of its components. We considered 

display of large entries in the OED and learned that a simple structural abbreviation would not 

be satisfactory in all cases. The investigation of explicit links in the OED showed significant 

amounts of local interconnectivity, hut relatively few links between sections of the database that 

had been compiled at different times. We suspect that this localization of links to be a general 

tendency in large documents and possibly even in hypertexts, simply because of the cost and diffi

culty of continually integrating old material with new. Concurrent work on the OED and hyper

texts also highlighted two further directions for hypertext research: improving data content by 

using reference materials to identify related subject matter, and improving hypertext editors to 

address the problems of organizing vast amounts of textual data. 

ACKNO~EDGEMENTS 

We gratefully acknowledge the financial assistance received from the Natural Sciences and 

Engineering Research Council of Canada through the University-Industry Program under grant 

CRD-862. 

152 Hypertext '87 Papers November 1987 



REFERENCES 

[Conk86] Conklin, J., "A Survey of Hypertext", MCC Tech. Report STP-356-86, October 23, 
1986 

[Furn86] Furnas, G.W., "Generalized Fisheye Views", Proceedings of the CHI '86 Conference 
on Human Factors in Computing Systems, April13-17, 1986, pp. 16-23 

[Gonn87a] Gonnet, G.H., Tompa, F.W., "Mind Your Grammar: A New Approach to Modelling 
Text", VLDB '87, Brighton, England, September 1987, pp. 339-346 

[Gonn87b] Gonnet, G.H., "Examples of PAT", OED-87-02, UW Centre for the New Oxford 

English Dictionary, Waterloo, Ontario, August 1987 

[Hala87] Halasz, F.G., Moran, T.P., Trigg, R.H., "NoteCards in a Nutshell", Proceedings of the 

CHI + GI Conference on Human Factors in Computer Systems and Graphics 
Inter face , April 5-9, 1987, pp. 45-52 

[Jone87] Jones, W .P., "How Do We Distinguish the Hyper From the Hype in Non-Linear 
Text?", INTERACT '87, Stuttgart, September 1-4, 1987, pp. 1107-1113 

[Kazm86] Kazman, R., "Structuring the Text of the Oxford English Dictionary Through Finite 
State Transduction", CS-86-20, Department of Computer Science, University of 
Waterloo, Waterloo, Ontario, June 1986 

[Mich87] Michel, S., "Guide - A Hypertext Solution", CD ROM Review, pp. 22-24, 

July/ August 1987 

[Murr28] Murray, JA.H, The Oxford Englioh Dictionary, Oxford at the Clarendon Press, 

Oxford, England, 1928 

[Raym87a] Raymond, D.R., Blake, E.G., "Solving Queries in a Grammar-Defined OED", unpub
lished technical report, UW Centre for the New Oxford English Dictionary, Waterloo, 

Ontario, February 1987 

[Raym87b] Raymond, D.R., Canas, A.J., Tompa, F.W., Safayeni, F.R., "Measuring the Effective

ness of Personal Database Structures", International Journal of Man-Machine Stu

dies (in press) 

[Raym86] Raymond, D.R., Warburton Y., ~'Computerization of Lexicographical Activity on the 
New Oxford English Dictionary", OED-87-03, UW Centre for the New Oxford English 

Dictionary, Waterloo, Ontario, December 10, 1986 

[Wein87] Weiner, E., "The Electronic English Dictionary", Oxford Magazine, February 1987, 

pp. 6-9 

November 1987 Hypertext '87 Papers 153 



154 Hypertext '87 Papers November 1987 



Content Oriented Relations between 
Text Units-
a Structural Model for Hypertexts 
Rainer Hammwohner and Ulrich Thiel 

University of Constance, Dept. of Information Science 
Project lWRM-TOPOGRAPHIC 
Postfach 5560, D-7750 Konstanz, F.RG. 

I. ABSTRACT 

A common feature of various recently developed information systems Is the decomposition of 

linear document structures which are enforced by conventional print media. Instead, a network 

organization of information units of different forms (textual, graphical, pictorial and even auditive 

presentation modes may be combined) is provided. Documents organized this way are called 

'hypertexts'. However, two questions arise immediately when an effort is made to build information 

systems on the basis of this conception: 

- What are the 'units' constituting a hypertext? 

- What sort of links between the units will be provided? 

Most approaches to hypertext systems impose the task of deciding these questions on the 

authors of hypertexts, thus the systems are hypertext management devices (eg 

CHRISTODOULAKIS ET AL. 86, WOELK ET AL. 86). The approach taken in this paper leaves a 

more active role to the software by applying knowledge based techniques. 

The starting point is the automatic content analysis of machine-readable full-text documents which 

may be downloaded from a full-text data base. The analysis process results in a partitioning of the 

document Into thematically coherent text passages, which are one kind of node of the 

hypertextual version of this document. Other nodes contain graphics, tables and summarizations. 

The content analysis is accomplished by a semantic parser, which has access to an explicit 

model of the discourse domain. The TOPIC-System (HAHN/REIMER 86) comprises prototypical 

implementations of these components. Due to the semantic modeling relations between the 

nodes may be formally defined in order to provide content oriented browsing facilities. The 

graphical retrieval system TOPOGRAPHIC (THIELjHAMMW6HNER 87} employs an already 

implemented subset of them to guide users to relevant text parts. 

In this paper we outline a structure model for hypertexts based on partial representations of the 

meaning of text parts. Formal definitions of content oriented relations between such text units are 

given in terms of a logic specification language. 

November 1987 Hypertext '87 Papers 155 



II. TEXT UNITS: RESULT OF A CONTENT ORIENTED FRAGMENTATION OF 

DOCUMENTS 

In this section, we will first present a basic model of general hypertext systems that allow users to 

browse in a set of•text units• (they may be presented in a multi-media environment)- In order to access 

relevant units, the user must be guided along content oriented links connecting units that have a 

semantic overlap_ 

A concept oriented framework for modeling the semantics of text units is outlined in the second part of 

this section, serving as a foundation for the definition of relations between the concepts modeled_ 

These relationships may be used in two ways: rrrst, they provide information for the semantic parsing 

that is needed to obtain representations of the units' contents. (J/e briefly outline some problems of 

the parsing process that can be solved by the defined relations.) In the next chapter, the construction of 

relations between text units will then be based on the same relations. 

Content analysis of text units provides not only a powerful browsing facility, but also the opportunity to 

propose an augmented hypertext model. This model features "derived text units•, which may be added 

to the original ones. These new text units may be regarded as summarizations of the contents of text 

fragments. They provide an overview over larger units, and surplus give rise. to a special type of 

browsing. This navigation operator leading from the condensed abstract to detailed original 

information is called •informational zooming". Parts of the abstract may be weighted, thus the zooming 

is interest-driven. 

11.1 Basic Hypertext Features: Browsing in a Set of Text Units 
Most hypertext systems employ graphical user interfaces, which are part of object oriented 

programming environments. Wmdowing being a usual feature, the common technique of assigning a 

window (or icon as a shrunken form) to each text unit allows to choose appropriate presentation 

methods for each type of text unit. 

The surface structure of the given original document and the media used to communicate can be 

employed to introduce the following classification of text units: 

1) The units conveying the simplest semantic structures are formated graphical entities like tables. 

Their surface structure corresponds directly to their contents. 

2) Textual units consist of sentences, therefore their surface structure is linear. The semantics of a text 

unit can only be partially modeled due to its complexity. 

3) Graphical units are assemblies of graphic primitives, whereas pictures and icons are sets of pixels. 

156 

The analysis of pictures requires a dedicated methodology, which will not be a topic of this paper, 

but the (partial) modeling of pictorial semantics can be accomplished within the formal framework 

outlined in the following. 

Hypertext '87 Papers November 1987 



As speech fragments, animated graphics, software modules, and videos may also be nodes in hypertext 

networks, the classification above does not claim to be a complete one. However, the types of text units 

included in the subset can be regarded as the most important ones for our approach to construct 

hypertext versions from machine-readable documents. 

In order to access text units that are not depicted on the screen the user is usually given the opportunity 

to browse in the hypertext network. There are two kinds of browsing ( cf BATES 86): 

a) undirected browsing: The user investigates text units in an arbitrary ordering. This type of navigation 

may provide a survey of what can be accessed in general, but if the number of items available 

increases the user will ask for a more dedicated access to text units which are relevant for him. 

b) directed browsing: This way of navigation requires that the text units are interconnected by 

meaningful links. Thus, a selection of the appropriate link may be accomplished, which results 

either in the replacement of the text unit currently displayed on the screen, or in the presentation 

of one or more additional text units. 

In this paper, we are concerned with the latter. In most hypertext systems, the selection of text units to 

be accessed is based on keywords or descriptors (eg WEYER 82, WEYER/BORNING 85) which are 

either assigned to the text units by the hypertext author or are detected in the units by string matching 

procedures. However, if the network of text units is to be constructed automatically, formally specified 

relations which refer to partial representations of the contents of the interconnected units are needed . 

to provide content oriented browsing facilities. The semantic modeling may be restricted to topical 

descriptions, because in most situations it suffices to know what a text unit is about instead of having a 

detailed account of its contents. Therefore, the text analysis may be accomplished by selective parsing 

procedures that capture the meaning of nominal phrases. As far as full texts are concerned, a method 

which allows the determination of the "aboutness" of a text in a reasonable time is required that is 

applicable in situations where larger collections of texts have to be processed. (Similar restrictions of 

image analysis may aim at identification of the objects depicted in a picture, while neglecting deeper 

analysis like action detection and scene interpretation.) 

11.2 Capturing the Contents of Text Units: Knowledge Representation and 
Semantic Parsing 
In the following, we specify the properties of a knowledge representation formalism which is powerful 

enough to capture the contents of tables and to support a semantic parsing yielding topical descriptions 

of text passages on an indicative level. There is evidence for the appropriateness of similar approaches 

to image and speech analysis, but this hypothesis will not be discussed to further extent in this paper. 

November 1987 Hypertext '87 Papers 157 



We start with the category of text units whose semantics is intuitively understood in terms of simple 

relationships: tables. Added to textual parts of a document, they often serve to summarize the main 

faets or to communicate sets of formated data records. The semantics is constituted by the aggregation 

of columns or rows as a table, thus providing a framework for entering the individual items into the 

right place. Each column (row) is associated with its set of entries, as well as the table is constituted by 

its columns or rows. This obviously may be modeled by a "frame" ( cf MINSKY 75) by identifying the 

columns (rows) with "slots", the data items contained in a column being its "slot entries". 

Here is a concise verbalization of the frame construct from which first-order predicates are obtained. 

They may be regarded as abbreviations of the informally specified structural conditions for frames, 

slots, and entries. (Although it is possible to give a complete axiomatization ( cf HAYES 79), for the 

purposes of this paper it is sufficient to adopt a descriptive view on frames treating them as an abstract 

data type (cf HAYES/HENDRIX 81). Thus, implementational issues may be left outside, while the 

discussion concentrates on properties of (and relations between) objects that are presumed to match 

the frame specification.) 

A frame consists of a name and a set of slots. This requirement may be formalized using the basic 

predicate 

is-frame(t) 

asserting that f is a frame, the function 

fn(t) 

yielding the name of the frame f, and for each slot s the condition 

is-slot(f,s) 

stating the assignment of s to the frame f. A slot has a name given by the function 

sn(s) 

and a (potentially empty) set of entries such that for each entry the proposition 

is-entry(f,s,e) 

holds. Slot entries may either be unstructured individuals or may be frames, having a slot set of their 

own. The latter possibility allows a modeling of aspects (slots) of a frame by nesting the 

representation structures. In the following example, a frame ealled "Zenon-X" represents a hypothetical 

micro-computer which is characterized by the features "Manufacturer', "Vendor', and "CPU'". A fictive 

corporation is assigned to the "Manufacturer"-slot: "Zeta-Machines". Thus, the meaning of the table 

below is captured completely. 

158 

Zenon-X Manufacturer Vendor CPU 

Zeta ... Machine!i 

Hypertext '87 Papers November 1987 



The same frame may also be taken as a partial semantic representation of a sentence fragment like: 

••• the Zenon-X which was recently developed by Zeta-Machines ..• 

However, for the purpose of text analysis procedures which yield such a frame representation of a given 

sentence, it is necessary to restrict the possible slot filling operations by means of integrity rules in 

order to model linguistic regularities ( cf REIMER 86). A first step in this direction is the introduction 

of "singleton slots" which stand for properties that can ouly have one value at a time. The singleton slots 

of the frame f fulfill the condition 

is-single(f,s). 

Further integrity rules may require that an item must be a member of a specified set of allowed entries, 

if it is to be assigned to the slot as a value during the parsing process. (y{e give no further formalization 

of the notion of integrity rules here, because they are primarily important for processes that change the 

knowledge base, i.e. editing domain-specific knowledge and parsing the documents, and have been 

discussed in REIMER 86, and REIMER/HAHN 85 where a frame representation model (FRM) is 

presented which captures the semantics of concepts. As FRM is used as the knowledge representation 

formalism in the text analysis system TOPIC, the prototypical hypertext system TOPOGRAPIDC 

accessing the results of TOPIC may therefore assume the knowledge structures to be consistent.) 

In order to capture the conceptual contents of a given text correctly the text analysis mechanism of 

TOPIC has to perform' two main tasks: anaphora resolution and (restricted) concept learning. The 

solution to these problems is primarily based on providing two different kinds of frames: "A prototype 

frame acts as a representative of a concept class consisting of instance frames which all have the same 

slots but differ from the prototype in that they are further characterized by slot entries. Thus, instance 

frames stand for individual concepts of a domain of discourse' (HAHN /REIMER 86). The notion of 

prototypes can be formalized in the following definition: 

Def. 1: 

'If: is•prototne(f) #is•fr&JRe(f) A 13 s: [is·slot(f,s) A 3 e: is•entry(f,s,e)] 

There is a canonical relation associating each instance frame to its corresponding prototype: the inst-

relation, which relates frames with similar slot structures. 

Example: inst 

Micro· 

-
C-•m...:.pu_t_•_rl-M-an_u_f_a_c_tu_r_•_r_,rv_e_n_d_or+C-P_u_ ~ _z_•n_•_n_·_x+_M_an_u_f_a_c_tu_r_•_r_,rv_e_n_d_or+c-P_u __ 

tnst 
Zeti. -Mi.chines 

The formal definition below is a generalized version of the inst-predicate, holding not only between a 

prototype and its corresponding instance frames, but also between two instances if the second frame is 

a specialization of the frrst one: 

November 1987 Hypertext '87 Papers 159 



Def. 2.: 

(1) Vf1 Vf2 :inst(f1,f2) ++ is·fnme(f1) A is·frame(f2 ) A 
(2) V s1 3 s2 : [is-slot(f1 ,S,) ~ is-slot(f2 ,s2 ) A m(s1 ) •SD(s2)] A 
(o) vs2 3 s1 : [is-slot{f2 ,s2 ) ~ is-slot(t,,s,) A m(s1 ) .. ,.(s2)] A 
(4) 3 <2 3 e : [is•entry(tz,s2,e) A o3S1: [m(s1 ) •Sil(s2 ) 

A is-eatry(f1,s,e)]] 

This can be employed in a simple but often sufficient heuristic of concept learning: If an unknown noun 

occurs during the parsing process and there is an indicator of what concept class it may belong to ( eg if 

it is a compound noun containing a prototype identifier), then it can be integrated into the knowledge 

base as a frame inheriting the slots of its supposed prototype. The slots may then be filled with further 

information from the text. 

In the process of anaphora resolution the inst-relation is used for identifying the instance frame that 

occurred in the previous text part, if a prototype frame is encountered (and there is linguistic evidence 

that it is used anaphorically). This method can be extended to other prototypes which are 

generalizations of the instance's prototype. In this case, the is-a-relation holds between the prototypes. 

(Note that the above descriptions of concept learning and anaphora resolution are idealized to 

emphasize the very ideas. More technical specifications give HAHN/REIMER 86). 

The formal definition of the is-a-relation is recursive due to the fact that slots may be frames 

themselves. To cover this case we use the extended is-a-relatione-is-a, which is the transitive hull of the 

union of the inst- and is-a-relations. 

(1) 

(2) 

(3) 

(4) 

Def. 3: 

Def. 4: 

++ is-prototYPe(f1) 

3 s : [ is•slot(f 2,s) 
vs: [is-slot(f1,s) 
3 •'3 f3 f':[is-slot(f,,s') 
fll{f') • m(s') 

A is·prototYPO(f2 ) A 
A .., is-slot(f1,s)] A 
~ [is-slot(f 2,s) V 
A f•(f) • m(s) A 
1\ e•is•&{f ,f') ]]] 

(1) Vf1 Vf 2 :e•is-&(f1,f2) ++ is•&{f1 ,f2) V inst(f1,f2) V 
(2) 3 f': [is•o.(f1 ,f') A illst(f' ,tz) ] 

In the following example, the is-a-relation holds between "Micro-Computer' and 'Graphics

Workstation', because of the additional slot 'Graphics-Screen'. 

Example: is-a 

Gr•phics Manuf. Vendor CPU Micro
Computer Manuf. Vendor CPU ~ 

~ 
Worksta.tion 

160 Hypertext '87 Papers 

Graphics 
Screen 

November 1987 



The knowledge representation mechanism of TOPIC/TOPOGRAPIDC combines the modeling of 

concepts as frames with the modeling of certain relationships between frames, a technique originally 

devised in the area of 'semantic networks'. Furthermore, the relations are defined mathematically 

exploiting the structural properties of the frames involved Due to the concise definitions, the concept 

hierarchy of the knowledge base is system-controlled, i.e. each new frame entered into the knowledge 

base will be classified automatically by computing all the relational links that connect it to modeled 

concepts (cf REIMER 86). The system incorporates a variety of other relations (eg parts), which 

support the semantic parsing procedure. Thus, the parser - organized as a lexically distributed grammar 

in the format of word experts ( cf HAHN 86) - is not only enabled to assemble factual knowledge by 

recognizing concepts, filling slots or classifying sub-concepts but also to detect topical shifts by 

combining syntagmatic indicators (start of a new paragraph, occurrence of idiomatic phrases that 

indicate a new topical focus) with semantical criteria ( eg if the current sentence has no semantic 

overlap with the previous ones.) 

11.3 An Augmented Hypertext Model 
Whereas the world knowledge base of TOPIC/TOPOGRAPIDC contains a taxonomic model of the 

discourse domain, the text knowledge base consists of "text graphs" which represent the knowledge · 

obtained by the parsing process. Each analyzed text is thus stored not only in textual form (i.e. the 

original text units), but also associated with its topical and, to some extent, factual content, which is 

organized as a conceptual graph. The following information about the analyzed text can be found in the 

text knowledge resulting from the analysis and the subsequent condensation process: 

a) A multi-hierarchical graph whose nodes contain the topical structures of the text in decreasing 

generality. The contents of these nodes are similar to world knowledge structures. 

b) Fragments of world knowledge denoting the main topics of the text passages, i.e. the frames that 

match the most salient concepts in thematically coherent text parts. The frames are connected by 

relational links, thus a network representing the topical structure of the text unit is given. 

c) The frames occurring in the networks may have 'filled' slots, i.e. there may be entries assigned to 

them during the process of text analysis. The filling of slots contributes to the factual information 

from the text by adding more precise details to the general information provided by the frames and 

their slots. 

The semantic representations of text units offer the opportunity to support the user with interaction 

techniques which complement the access to original text units via browse operations. The basis for this 

augmentation of the dialog facilities are artificial (or derived) text units: 

- The natural language presentation of text unit contents does not necessarily depend on the 

original text fragments. Text generation procedures that cast the knowledge structures into 

predefmed templates are currently under development. Thus, it will be possible to provide 

November 1987 Hypertext '87 Papers 161 



abstracts of the text units. 

- A graphical presentation of the semantic structures - as tables or networks of nodes representing 

concepts - provides an automatic "text mapping" (a technique of drawing conceptual graphs in 

order to memorize the contents of texts (cf DANSERAU/HOLLEY 82) which enhances 

remembering performance). This facility is featured by our prototypical information system 

TOPOGRAPHIC. 

The presentation of artificial text units as "condensates" of the original ones entails the possibility of 

switching between different layers of specifity which may be assigned to the given text units 

(THIEL/HAMMWOHNER 87 provide a more detailed discussion of the layered organization of text 

units). Especially the access to more detailed text units is supported in TOPOGRAPHIC by a general 

operator: informational zooming. As in optics zooming reveals more details of physical objects, the 

'zoom' option in TOPOGRAPHIC can be used to access more detailed informational structures, or, in 

other words, to switch to a layer below. This is facilitated by navigating along the semantic relation that 

holds between an abstract (or conceptual network) and the text unit it has been derived from during 

the text analysis. (The next chapter provides an overview of the semantic relations that may additionally 

be used for navigation in a hypertext graph.) Thus, it is easy for the user to access an original text unit 

whose corresponding abstract or conceptual graph are relevant. The expansion of simple objects, 

usually the nodes (i.e. frames) of a network given, also fits into this model. Zooming alone, however, 

does not suffice for a goal oriented dialog, because there may be too much detail information on the 

layer below. Therefore, a sort of focussing is needed. This is accomplished by the 'select' option which 

allows to mark those features of a given layer, which are to be shown in detail by the zoom operator. 

Selecting a topical profile from a knowledge base representing the taxonomic structure of the discourse 

domain to which the analyzed documents pertain induces a relevance weighting on the text units. This 

will be employed to define pragmatic relations between text units in the next chapter. 

Ill. HYPERTEXTUAL RELATIONS 

As we have outlined in the previous chapter intertextual relations are of crucial importance for 

hypertext systems in order to supply the user with operators for content oriented navigation within the 

hypertext graph. According to the semiotic categories there are the following types of hypertextual 

relations: 

- Syntagmatic relations are derived from the surface structureof the documents within the hypertext. 

162 

The relation "next-passage-within-the-same-text" eg hold between two text units which can be 

found in the same document a~ adjacent positions. This means that our notion of syntagmatic 

relations excludes surface structures of hypertext presentation structures at runtime, which are 

generated according to semantic and pragmatic relations. Thus the computing of syntagmatic 

Hypertext '87 Papers November 1987 



relations is straightforward. 

- Semantic relations which represent paradigmatic aspects of text units depend on the content of the 

text units. Informational inconsistency between text units for instance induces a semantic relation. 

Special types of semantic relations connect original and derived text units, which result from 

parsing, text condensation or generation. 

- Pragmatic relations represent dependencies between the dialog context, the intentions of the user 

which may be given as an interest profile, the content of the hypertext and the intentions of the 

authors of the text units. Examples for pragmatic relations are "next-lesson" which holds between 

tutorial text units or "next-relevant-text" which gives an answer to a query. 

111.1 Semantic Relations 
Semantic relations are based on structural similarities of the semantic representations of the text units. 

Some of the large number of possible semantic relations will be defined in the following. For each 

relation a informal verbal introduction to its meaning- to show its relevance to the task of guiding the 

user through a hypertext graph-, a formal definition and an example will be given. 

A formal defmition of a relation is based on properties (slot -entries) of frames which are elements of 

the semantic representations of text units. Thus hypertextual relations can be inferred by the means of 

relations between frames. 

-same name: 

The hypertext consists of several text units belonging to different texts. Each unit has its own set of 

frames as semantic representation the name ·of each frame denoting a concept the text is about 

(synonyms being normalized) and the slots cumulating the facts concerning this concept as entries. A 

frame may be member of more than one frame set and there may be several frames (as members of 

different frame sets) with the same name, but with different slot fillers. Most of the semantic relations 

as defined below describe relations between different descriptions of the same topic, therefore a 

means of testing whether two frames have the same name is a prerequisit of the definition of .such 

relations. 

Def. 5: 

-
z_en_•_n_-_x-;_M_a_n_u_f_a..;c..;t_u:.r•:.;r;_f-V.;_:•n::.d:.•:.;r+C::P..:U:.. ~ Zenon-X Manufacturer Vendor CPU 

1nst ----t--...::._:.;..:..:;:...;;;_j-.:...:.;:.;::.:;;+=:._::.__ 
Zet.a-Machines Zeta-Machines 68020 

November 1987 Hypertext '87 Papers 163 



• complement: 

All information contained in the first frame must also be found in the second one completed by (at 

least) an additional entry. The information of the first frame is confirmed and completed by the 

second one. 

Def. 6: 

compl1(f1,f2) ++ •'l"(f1 ,f2) A 3f: [lnst(f,f 1)A hst(f,f 2)] A 
wt(t,l,> 

(1) The relation is defined on the set of frames, therefore both parameters must be frames. 

Additionally they should have the same name ( eqn def. 5) to indicate that they refer to the same 

topic. These presumably different frames taken from two distinct text units must have the same 

slot structure to be comparable, therefore the inst relation ( def.3) must hold between each of them 

and a third frame. 

(2) f2 must contain an additional entry in any slot and thus be an instance of r1. 

Example: compl 

Zenon-X Manufacturer Vendor CPU ~ Zenon•X Manufacturer Vendor CPU ----+------+---4-- com I ;;._--+-------+---4----
Zoh•Mo.chinos Zoto.-Mo.ckines fi8020 

• x-complement: 

The information given by these frames is disjunct. Both frames are needed to obtain the complete 

information. 

Def. 7: 

c•> vt, vr, 
(2) 

(3) 

(1) see def. 6. 

x•compi,(f1,f2 )++ O'lll(f1 ,f2). A3f :[iast(f,f.,)A inst(f,f,)] A 
ys V<~ [is•slot(f1,s)Ais·slot(f2 ,s') A 
V e :[is•ontry(f1 ,s,e) Ais-ontry(t, ,s',e) ~ sn(s) ;tm(s')] 1 

(2,3) Corresponding slots of f1 and f2 (the slots have the same name) must contain disjunct sets of 

entries. Thus, if a concept is entry to both of the frames, it must be entry to slots with different names. 

Example: x-compl 

164 

zenon-X Manuf.acturer Vendor CPU l : Zenon-X Manufacturer Vendor CPU 
==:..::+..:;::.;:.::.:.;:.;.;;:.:.;~+..;.;..;_-f--{_:!·••mpl_} ----+--------+-.:.:-f-::-.8:;0::-:2~0 

Zet.a-Mo~.chines u 

Hypertext '87 Papers November 1987 



• add-inf: 

This relation is similar to the complement relation, but the focus is on a special property of the frames, 

therefore the relation has a slot as « third argument. 

Def. 8: 

(1) II f 111 f 2 II s : AU·W1(f1 ,fz,<) ++ O'lll(f1 ,fz) II 3 f : [iast(f,f,) II inst(f,f z>1 II 
(Z) 3 ·~ [is-slot(f1,s) II is•slot(fz,s') II sn(s) • m(s') 11 
(3) II• '[is-elltry(f,,s,e) ~ is-eatry(f.,s',e)]ll 
(4) 3 e': [is•entry(fz,s',e') II Ois•eatry(f

1
,s,e')]] 

(1) see def. 6 

(2) The specified slot must be slot of f1. f2 must have a slot with the same name. 

(3) All entries, which are assigned to the slot of the frrst frame, must be assigned to the corresponding 

slot of the second one too. 

( 4) The second frame must contam an additional entry to this slot. 

Example: add-inf (Vendor) 

Zenon-X Manufacturer Vendor CPU ~ Zenon-X Manu.f.acturer Vendor ----+------+---t-- add-int 
Zet.a-Machines H.arrod.s Zeta-Machines Harrods 

Tiffany 

- alt-inf: 

This relation is derived from add-inf io the same way x-compl is derived from compl. 

Def. 9: 

CPU 

68020 

(1) 

(Z) 

(3) 

(4) 

($) 

llf111f211• :dt-inf1(f1,f,,s)++e'ln(t,,r.) 11 3f :[illst(r,t,)ll but(f,f,)] 11 
3 ·~ [is-slat(f1,s) II is-slat(f2,s') 11 sn(s) • sn(s') II 

(1) see def. 6. 

(2) see def. 8 

3 e : is-e,.try(f1,s,e) 11 3•': is-eatry(f ,s',e') 11 
• • 11 e : [l<•entry(f1,s,e) ~ .., is-entry(f.,s",e) 1 11 

11 e': [is-entry(f.,s;e•) ~ .., is-entry(f1,s,e')]] 

(3) Each of the corresponding slots must contaio at least one entry. 

( 4,5) The set of entries to these slots must be disjunct. 

Example: alt-inf (Vendor) 

Zenon-X Manufacturer Vendor Manufacturer Vendor CPU CPU : : : Zellon·X ----t------+---+--(. •lt->nf _:> ----t------+---+--
Zeta•Machines Harrods Tiffany 

November 1987 Hypertext '87 Papers 165 



·conffict: 

The frames contain inconsistent information. 

Def. 10: 

<•> vr, vr. 
(2) 

++ eqn(f, ,t
2

) A 3 f : [b•rt(f ,t 1) A inst(f ,f 2)] A 
3 s 3 s': [is-slot(f1,s) A issslot(f21s') A m(s) • sn(s') 1\ 

(0) 

(4) 

is·singlo(f1,s) A is-siDJlo(f2,s') A 
3 o1 3 e,:[is•oatry(f1,s,o1)A is-ontry(f2,s',e2)A 

(S) 

(<) 

[i<-fro.me(e
1
) A i<•frame(oz> A 

[fn(o1) * fn(e2) A -.[e•is-o.('i 1"z) V e-is-a.(e2,e1)] V 
(7) 

(8) 

fn(e1) • fn(o2) A confl(o1 ,e2)] V 
-,is-frame(o 

1
) A -.is-frame(•.> A o 

1
;t o 

2 
]] ] 

(1) see def. 6. 

(2) In f1 and f2 there must be two corresponding slots which fulfill the following conditions. 

(3) The two slots must be singletons, therefore they must not contain more than one entry. 

( 4) Each of the two slots contains an entry. 

(5) If the entries are frames then (7) or (8). 

(6) If these (see 6) frames have different names, the conflict relation must not hold if one frame is a 

specialization of the other. 

(7) If they have the same name, the conflict relation must hold between them. 

(8) If the entries are no frames they must be different strings . 

.Example: confl 

Zenon-X Manufacturer Vendor CPU Zenon-X Manufacturer Vendor 
---+------+---+-- <···tt > 

Zoto.•Machinos 8080 

• property coincidence: 

Zeta •Machines Harrods 
Tiffany 

CPU 

68020 

Similar properties are assigned to two distinct objects. The passages may be read in order to compare 

these objects with respect to other properties. 

Def. 11: 

(1) 

(2) 

(3) 

(4) 

vr,vr, ..,.. :same-prop (t,,t,,s) 
f 

++ is·frame(f 1) A is-fnme(f 2) A 
-.oqn(f

1
,f

2
) A 3 f: [inst(f,f,) A inst(f,f 2)] A 

3<' :[i<·slot(f
1
,s)A is-slat(f2 ,s') A sn(s) • sB(s') A 

3• : [is-ontry(f1,s,e) A io-entry(f2,s',e)]] 

(1) With the exception, that the names must not be the equal, see def. 6. 

(2) Because eqn does not hold it frames must be tested that f1, r2 are frames. 

(3) see def. 8 

( 4) The two slots contain the same entry. 

166 Hypertext '87 Papers November 1987 



Example: same-prop (CPU) 

Sun Manufacturer Vendor CPU : Zenon•X Manufacturer Vendor CPU 
~;;;;_--+...::;;.:;:;;;;.;;.......:..;:_+.....;.;:_-t-- < s.ame-erop)· 

68020 Zet<l•Machines Tiffany 68020 

These relations which are defined on a set of frames can be used to defme relations on semantic 

representations of text units which are sets of frames. Thus, the semantic relations are completely 

independent from the surface structure of texts. Two interrelated text units may therefore be part of 

the same text or belong to different ones. The predicate unit-rep tests whether a set of frames 

represents a text unit. A complete definition of unit-rep would require a deeper understanding of the 

parsing process which is out of the scope of this paper. The following lemma which can be derived 

from the complete definition suffices our purpose. 

·Lemma 

VK' llllit•rep(K) ~ \f f € K • [ is•fnme(f) A ...,3 f' € K :eqn(f,f')] 

A relation between two text units holds iff the corresponding frame oriented relation holds between 

two frames which are members of the units ( def. 12). The semantic relations which hold between 

frames with respect to special properties ( eg def. 8) are used to define relations on text units according 

to def. 12a. A relation oo text units, which depends only on the interrelation of two frames may be a too 

weak restriction. A relation of partial identity (id.J between text units demands that the intersection 

of their frame sets must have at least n elements ( def. 13). The intersection between this relation and a 

frame based semantic relation may be used to enforce stronger restrictions ( def. 14, def. 14a). 

Def. 12.: 

(1) VK 1 VK 2 • rei, (K1,K2) # llllit•rep(K
1

) A KJOit·rep(K
2

) A 
(2) 3f1 EK 1 3f2 EK 2 • rol 1(f1,f 2) 

Def. 12.a: 

(1) VK 1VK 2 VfV<:relK (K ,K ,f,s) ' . # anit•rep(K ) A anit·rep(K ) A 
(2) 

Def. 13: 

(1) VK 1 VK 2 • id0(K1,K,) 
(2) 

Def. 14: 

Def. 14a: 

November 1987 

fEK
1
A 3f1 €~• rel 1(f,f1 ,s) 

# unit-rep(K ) A unit·rep(K ) A 
IK 1 nK 2 1 <::: ll 

Hypertext '87 Papers 167 



111.2 Pragmatic Relations 
Pragmatic relations between text units reflect the situational context in which the dialog between user 

and hypertext system takes place. This can be described by a variety of parameters - eg models of the 

discourse or the intentions of users or hypertext authors. In the following we will restrict our interest to 

two aspects of dialogs which are important for the design of hypertext systems and can be tackled by 

the formal instruments we have introduced above: 

1. the amount of details the text units contain (Du) 

2. the specifity of the user's wishes - formulated as a query (S0 ). 

The combination of these aspects allows to distinguish several dialog situations. Weyer's 'Dynamic 

Book" (WEYER 82) supplies the user with original text units, therefore Du cannot be manipulated. 

Variations of specifity are gained on a syntagmatic level by alternatively presenting titles, subtitles or 

text passages. According to different s0 •s two prototypes of dialog situations may be defmed. 

1. 1f s0 is high - several terms are selected from the subject index - the system behaves like an 

encyclopedia from which the user may derive information by dialog. 

2. Unspecific (or unknown) queries enforce browsing on the syntagmatic !eve~ eg skimming the 

headlines of the next chapters. 

Systems which are able to present information with several degrees of abstraction allow to adjust Du 
to the dialog situation. Intelligent tutoring systems adapt the level of abstraction heuristically based on 

an explicit model of the student and his presumable information needs that may .be derived from this 

model (SLEEMAN 83). Information retrieval systems - on which we will focus our interest in the 

following - allow the specification of Du - by selecting more general or more special index terms -

and s
0 

- eg by ranking the search terms. To what extent text units match a query - with respect to the 

content and the degree of abstraction- can be defined by a relevance relation relev(O,TU,r), where 0 

is a query, TU a text unit and r the degree of relevance. In our retrieval model we use the explicit 

representation of the semantics of a text unit to define the degree of relevance by relating the text unit 

to the query as shown in the following definition. 

Def. 15: 

(1) 

(Z) 

In this formula 0 represents the query, F the semantic representation of a text unit and r the degree 

of relevance. 

168 Hypertext '87 Papers November 1987 



(1) The relevance of a text unit is computed by summing up the weights g of those frames, which are 

related (by a predefmed relation, here : eqn) to a frame of the query. The weight g, which can be 

defined by the user during the dialog (see dialog example in section IV.), is in the range from 1 

to 10. chr is the characteristic function of this relation mapping all pairs (f1, fz) which are elements 

of the relation on 1 and all other pairs on 0. 

(2) The relevance of a text unit can't completely be separated from the relevance of the text the unit is 

taken from. Therefore the overall relevance of the text ( a set of text units denoted by T) is added 

to the relevance of the text unit itself. 

Recall and precision of the query may be adjusted by choosing an appropriate relation, which must 

hold between the frames of query and text unit. The relation of name similarity ( eqn see def. 5) is the 

most elementary of the possible tests. Instead of chr eqn the characteristic function of the union of eqn 

and e-is-a may be applied in the relevance measure yielding a controlled expansion of the recall. (This 

is comparable to down posting operations in thesaurus based retrieval systems.) 

IV. GUIDING THE USER FROM SEARCH TERMS TO RELEVANT TEXT 

CONTENTS: A DIALOG EXAMPLE 
After discussing the hypertext model we want to give some insight to the experimental information 

system TOPOGRAPHIC which supports knowledge based interaction facilities which provide content 

oriented access to text knowledge bases. The results from the text analysis and condensation process 

stored therein may be regarded as text units in the sense mentioned above. 

We illustrate the essential features of the user interface - which supplies the user with a 'graphical 

retrieval language' meeting the needs of hypertexts and is based on the representation structures as 

defined above- by means of a (slightly simplified) dialog. This example shows alllayers·of information 

that can be accessed in a series of zooming operations (which means switching from a more general to 

a more special text unit) in order to give an overview of the system's capabilities. On each layer shown 

the zooming is prepared by selection operations that facilitate focussing on relevant sections of the 

layer below. If the items to be selected are not visible due to the limited size of the screen, browsing is 

used to access them. (A real life dialog may not have such a straightforward zooming structure, there 

might be 'loops' in it in cases the user returns to higher levels to change his focus up there and then 

zooms again. Thus a feedback facility for query refmement is given.) 

At the beginning of the dialog the most general concepts of the world knowledge base (which can be 

thought of as a representation of a hypothetical text unit defming the terminology of the domain of 

discourse) are presented to the user so that he is informed about the domain of discourse. The user 

starts to explore this conceptual hierarchy by applying the browse option to the concepts 'Product', 

'Software', 'System Software' and 'Operating System' (cf fig. 1). (He needn't know that they are 

frames, he only operates on graphical items.) To shorten the process of investigation, the user can 

November 1987 Hypertext '87 Papers 169 



oo,. .. n,.,,,. ..... o.v 

: 

···-··-···-·-· 
.. 
I 

fig.l 

enter search terms tentatively, which are not offered by the system at the time being. The command 

'find('Operating System')." entered via the "Prolog" window is equivalent to the browse-sequence 

mentioned above. Additional to the 'e-is-a' relation connecting the concepts (see def. 4) other 

relational dependencies of one concept can be shown on demand (such as the 'parts' relation which is 

similar to but not identical with the relation holding between an object and its parts (cf fig. 1)). 

While browsing the user constructs a query by selecting relevant terms (selected terms are presented 

in inverted mode). Zooming the window which presents the domain dependent knowledge on the 

taxonomic level yields a list of all selected terms and their activation weights indicating their relevance 

for the further retrieval process ( cf fig. 2). (The weights may be increased or decreased if necessary.) 

A subsequent zooming of the 'selected terms' object produces a list of text passages which are 

related to the query by the relevance relation (see de[ 15). The passages are ranked according to 

descending values of r. At the same time the graphical representation of the knowledge base shrinks to 

the format of a box due to the shift of the user's attention to information layers below. Bibliographical 

information (title etc.) about the text and a short textual extract of the beginning of each passage are 

given. In fig. 2 the semantic representation of the most relevant passage (topic profile of passage klS of 

text tl) is shown. Applying the zoom operator to other list elements would reveal their representation, 

respectively. Zooming the node 'UCSD-PASCAL' in the topical network of the most relevant text 

170 Hypertext '87 Papers November 1987 



part reveals the factual information about this PC-Operating-System that was extracted from this 

particular text part during the analysis process ( cf fig. 3), whereas zooming the whole window results in 

the corresponding text passage ( cf fig. 2) . 

1<21 I 12 1"2) 

~- I --.. ~ --

I 

fig. 2 (above) 

. -- .. ' ~-.. ·-
s 

=·· •• .. 
....... _ .. . ... ..... 12 ,.I) 

....... d -· "' . 12 CUI ··- I 
o.-.... __ ... -

... 
I 

November 1987 

.. 
IIH 

"'"' .... ~-- ....... -·--·
-------·~~ 

-··· J ...... - .... -~~~- ·-~- .. ·· ...... 

..... ... . " 

' . . . . _ .. 
I iih 

!~ I ,l .. 
........ _ .. ~ ........ 

"" ................ .-.~ 4- ···--·--·- -s.·-- ___ .. , ... 
-.u, .. J•••" •• .., .. .,,., P'lltSCM.~u- •----···--···· 

Sl'Dtacmat1C browse 

I 

I 

~-.:.-

1-
~'"--:;· _] 

'"' Spiel-•,.. CMtPT-"s--

.... s.•···-CIUII' .. ·"I--

~:----.!- I 
I . ..... 

~:--·-·- I 

... S.•··--CIIIPT-1--

... ,. .... -
CIIIPT<n1111- ... 

se•;r.atic lin 4lt-1nt ~puter 

complement. 
J:~mplemenl 

"""""' 
- ............... .. _ ....... - nn-f'-•-•-1:-·- ..__ 

·-.. _ .. ____ ,. .. ,_ 

~·-

Hypertext '87 Papers 

fig. 3 (below) 

171 



Switching between topic profiles may be accomplished not only by zooming from the list of text units 

but by browsing the current text profile as well. The user is then asked (a pop up menu will be 

displayed ( cf fig. 3)) whether he wants to see the next relevant passage or another relevant one which 

is connected to the current text unit by a semantic relation ( cf fig. 3). Only those relations will be 

offered which promise a successful continuation of the browsing process, i.e. lead to other text units. 

Thus, the combination of pragmatic and semantic or syntagmatic information about possible successors 

of the current text unit allows to restrict the set of new objects to be presented efficiently. In our 

example, the conjunction of requirements selected (all items of the menu in fig. 3 yields one salient 

text unit (cf fig. 4)) containing a frame named UCSD-Pascal as welL These relations may be inferred 

from the properties of the two frames according to def. 14 and def. 14a (definition of hypertextual 

relations by frame relations) and: 

a) x-compl : all entries are different ( def. 6). 

b) alt -inf : the sets of entries of two corresponding slots are disjunct, i.e. the product is sold by different 

vendors ( def. 9). 

c) conf: there are different entries to corresponding slots which are singletons, i.e. supposed a product 

has no more than one manufacturer there is a conflict between the two frames ( def. 10). 

Again, this dialog fragment is somewhat idealized, in real live dialogs a set of more or less qualifying 

text units might be obtained, which wonld then be presented in a table similar to the list of relevant text 

passages retrieved by the query (fig. 2) . 

... ' ..... ~ ...... . . : ...... 
it--

......... _ ..... 
··--~- I .,.._. ......... -·-

,. ..... -.. -
L--------4~----------------~c __ .. _ 

~~.---~--+----------------4 

• 

-· 
fig.4 

172 Hypertext '87 Papers November 1987 



(a remark on the example: TOPOGRAPIDC supports the retrieval of German texts, therefore the text 

example is taken from a German (computer-) magazine. This text is about software products available 

for the ffiM-PC. For convenience, all identifiers occurring in the example have been translated.) 

V. IMPLEMENTATIONAL REMARKS 

The development of the TOPOGRAPIDC system is supported by BMFf/GID under contract 

'1020018 1'. It is implemented in Prolog and Con a CADMUS 9200 with UNIX. The Prolog.System as 

used in TOPOGRAPIDC was developed as part of the project by augmenting the IF-Prolog 

interpreter with new built-in predicates. Additional to common features of Prolog it supports access to 

frame based knowledge bases and graphical tools for interface management, which are implemented 

in C for the purpose of efficient execution. The basic frame predicates used in the definitions above 

are a (small) subset of the predicates provided for knowledge base access. TOPOGRAPIDC's 

graphics-predicates include multi window and mouse interaction techniques as well. 

November 1987 Hypertext '87 Papers 173 



REFERENCES 

CHRISTODOULAKIS ET AL. 86: Christodoulakis, S.; Ho, F.; Theodoridou, M. 
The Multimedia Object Presentation Manager of MINOS: A Symmetric Approach. 
In: SIGMOD Record, Vol. 15, No.2, 1986, pp. 295-310. 

DANSEREAU /HOLLEY 82: Dansereau, D. F.; Holley, C. D. 
Development and Evaluation of a Text Mapping Strategy. 
In: Flammer /Kintsch ( eds. ): Discourse Processing, Amsterdam, North Holland, 1982, pp. 536-
554. 

HAHN 86: Hahn, U. 
On Lexically Distributed Text Parsing: A Computational Model for the Analysis ofTextuality 
on the Level of Text Cohesion and Text Coherance. 
In: Kiefer, F. ( ed.): Linking in Text, Dordrecht, D. Reide~ 1986. 

HAHN/REIMER 86: Hahn, U.; Reimer, U. 
TOPIC Essentials. In: Coling 86: Proc. of the 11th Conf. on Computational Linguistics, 
August, 25-29, 1986, Bonn, FRG, ACL 1986. 

HAYES 79: Hayes, P. J. 
The Logic of Frames. 
In: Metzing, D. ( ed.), Frame Conceptions and Text Understanding, Berlin, New York : De 
Gruyter, 1979, pp. 46-61. 

HAYES/HENDRIX 81: Hayes, P. J.; Hendrix, G. G. 
A Logical View of Types. 
In: Proceedings of the Workshop on Data Abstraction, Databases and Conceptual Modelling, 
SIGART Newsletter Nr. 74, Jan., 1981, pp.128-130. 

MINSKY 75: Minsky, M. 
A Framework for Representing Knowledge. 
In: Winston, P. (ed.): The Psychology of Computer VISion, New York: McGraw Hill, pp. 211-
277. 

REIMER 86: Reimer, U. 
A System-Controlled Multi-Type Specialization Hierarchy. 
In: Kerschberg, L. ( ed.): Expert Database Systems. Proceedings of the 1st International 
Workshop, Menlo Park/CA: Benjamin/Cummings, 1986, pp. 173-187. 

REIMER/HAHN 85: Reimer, U.; Hahn. U. 
On Formal Semantic Properties of a Frame Data Model. 
In: Computers and Artificial Intelligence 4. 1985. No. 4., pp. 335-351. 

SLEEMAN 83: Sleeman, D. H. 
Inferring Student Models for Intelligent Computer Aided Instruction. 
In: Michalsky et a!. ( eds. ), Machine Learning. An Artificial Intelligence Approach, pp. 483-
510, Palo Alto, CA: Tioga, 1983. 

THIEL/HAMMWOHNER 87: Thiel, U.; Hammwohner, R. 
Informational Zooming: An Interaction Model for the Graphical Access to Text Knowledge 
Bases. 
In: Yu; van Rijsbergen (eds.), Proc. of the lOth Annual Int. ACMSIGIR Conf. on Research & 
Development in Information Retrieval. New Orleans, Louisiana, 1987, pp. 45-56. 

WEYER 82: Weyer, S. A. 
The Design of a Dynamic Book for Information Search. 
In: Int. J. of Man-Machine Studies, Vol. 17, 1982, 
pp. 87-107. 

WEYER/BORNING 85: Weyer, S. A.; Borning, A.H. 
A Prototype Electronic Encyclopedia. 
In: ACM Transactions on Office Information Systems, Vol. 3, No. 1, 1985, pp. 63-88. 

WOELK ET AL. 86: Woelk, D.; Kim, W.; Luther,W. 

174 

An Object Oriented Approach to Multimedia Databases. 
In: SIGMOD Record, Vol. 15, No.2, 1986, pp. 311-325. 

Hypertext '87 Papers November 1987 



SuperBook: An automatic tool for 
information exploration- hypertext? 
Joel R. Remde, Louis M. Gomez, Thomas K. Landauer 

Bell Communications Research 
435 South St. 
Morristown NJ 07960 

ABSTRACT 

The goals and methods of the text browser, SuperBook, are compared with those of 

hypertext systems in general. SuperBook, intended to provide improved access to text ex

isting in electronic form, employs cognitive tools arising from human computer interaction 

research, such as full-text indexing, adaptive aliasing, and dynamic views of hierarchical 

information. Superbook automatically preprocesses on-line text written for paper publica

tion, and produces a multi-window display, including a dynamic table of contents, pages of 

text, and a history of search words. Although SuperBook and hypertext share common 

goals of improved search and navigation, SuperBook is designed for accessing existing do

cuments while most hypertext systems are better suited for authoring new information 

structures. Further studies are needed to evaluate the effectiveness of each of these kinds 

of systems. 

INTRODUCTION 

The text-browser that we will describe here, Super Book, performs some of the 

functions often envisioned for hypertext systems, but differs in several significant ways 

from implemented or proposed examples of such systems. Super Book takes as input ordi

nary text in a standard text formatting language, and automatically converts it into a 

multi-windowed browser with rich search, navigation, annotation and display enhance

ments. We are not especially concerned about whether it is or is not appropriate to call 

Super Book "hypertext", but we do think it is instructive to draw attention to the similari

ties and differences in goals, approaches and methods. 

As we understand the relevant history and philosophy, hypertext is proposed as an 

improvement on several perceived deficiencies of traditional paper text presentation of in

formation. Let us list some of these deficiencies. 

!. It is too hard to find information in ordinary text. 

November 1987 Hypertext '87 Papers 175 



176 

2" It is too hard to acquire information in a sequence other than that determined by 

the author. 

3. It is impossible to properly present many domains of knowledge because some im

portant relations cannot be represented in a linear structureo 

4. It is extremely difficult to integrate and update large bodies of frequently changing 
information from many different sources. 

5. Book style organization is a highly inefficient storage and retrieval technology; the 

same information often appears in many different places" 

Hypertext is, then, conceived as an alternative information delivery vehicle in 
which modules of text (or other media) are stored in a different kind of data structure, or
dinarily a graph, and some graph-like display is used to describe the modules and their in

terrelations to the reader. It is claimed, or at least hoped, that this form of organization 
and presentation of information will be more effective and desirable. Both readers and 

authors are expected to benefit. Readers, it is hoped, will be better able to find just the 
right information in the right sequence to serve their particular needs and support their 
individually optimal trajectories of learning, problem solving or entertainment. Authors. 

it is hoped, will be better able to organize and relate information and ideas. In addition, 
multiple, asynchronous "authorship" should be facilitated. Both author and reader, who 

may be the same person, as well as communities of users, will presumably profit from the 
greater freedom, flexibility and efficiency of this mode of organization" 

The SuperBook project had its origin in somewhat different and narrower, 

although overlapping goals. First, a very large and growing proportion of textual materi
al is being produced in electronic form with word-processing and text-formatting equip

ment. The delivery of such documents directly in electronic form is very attractive. 
However, with currently available tools, using text in this form is not very attractive. 

Video screens are small, hard to read and awkward to transport. Paging or scrolling 
through raw text files intended for print is slow and disorienting. With computer power 
to help, we thought, it should be possible to ameliorate these difficulties and to provide 

additional useful facilities that would compensate for the inherent disadvantages of linear 
text viewed on a video screen. The goal was simply to use computation to improve the 

usability of on-line text. 

There was, however, another source of our interest in this project. Along with 
several colleagues, we have been studying a variety of issues in the human use of comput
ers for textual information handling tasks. This has led to the discovery of some funda

mental behavioral obstacles in such tasks, and to the invention of some new computer
based "cognitive tools' that can help to overcome them. .We wanted to apply these new 
tools to improve the way people obtain and use information from books. We were espe
cially interested in books used for learning or for reference, (as opposed to books that are 

read like novels) berau~e these seem to pose the greatest nePd and opportunity for assist-

Hypertext '87 Papers November 1987 



ing the user. 

One relevant question that had been studied was why people frequently fail to find 
desired information in textual and other information retrieval devices [Furn83J, [Furnj, 

(Gome84j, (Gomej. Very briefly, it was found that the principle cause of failure is that, 
when searching for something, users describe the things they want in different terms from 
those by which the system knows them. One remarkably effective solution, typically rais

ing search success rates by a factor of four, from 20% to 80%, is just to greatly increase 
the number of names by which each information object can be reached. This is called un

limited aliasing or rich indexing. Several techniques for accomplishing it have been tested 
with favorable results in both laboratory experiments and prototype systems [Furn85j, 

(Gome84j, (Gomej. Full-text and adaptive indexing are easily automated techniques that 
seemed especially suitable for enhancement of existing on-line books. 

Another information-handling aid that had arisen from this research was the 
fisheye viewer (Furn85] that shows hierarchical structured information selectively accord

ing to a "degree-of-interest function". This function is based on nearness in the text to 
the point of focus and the a priori importance of higher levels in the hierarchy. Since 
there was also empirical evidence of the utility of this device for improving navigation 

within text, we wanted to apply a version of it too, to on-line books. 

Thus, our goals overlapped at least the first two hypertext rationales listed above 
- improved search and navigation. Some partial and indirect solutions to the other prob
lems that have motivated the hypertext vision also fall out of an attempt to provide a 

powerful and convenient delivery mode for textbooks and references. We will postpone 
further discussion of these until the details of the current implementation and design have 

been presented. In the discussion section at the end of the paper we will con·sider how the 
results of our effort merely to make good electronic books overlaps and differs from the 
accomplishments of hypertext projects as such. 

WHAT SuperBook IS AND OOES 

Here is a quick overview of the system. A narrative scenario of its use, with illus
trations, and details of implementation follow. 

The SuperBook software takes as input a text document prepared for a standard 
formatting package such as TROFF, Scribe, or Interleaf, and produces an enhanced 

delivery mode for the document. It analyzes the words and heading structure of the text 
and creates a data structure that allows pieces of text to be presented in a print-like for
mat in one or more arbitrary-sized windows (see Figure 5), which can be scrolled, paged, 

highlighted, or selected by mouse. The full heading hierarchy, providing information 
about the location of the text in the document, is displayed above the text in each win
dow, and is updated as necessary when scrolling or paging. 

Appearing in a sepJ.rate window is a Table uj Contents of the text, constru('ted au-

November 1987 Hypertext '87 Papers 177 



178 

tomatically by SuperBook from the formatting macros specifying hierarchically ordered 
headings. This dynamic Table of Contents shows varying levels of detail of chapters and 

sections, like fisheye. The user controls the degree of detail by opening up sections by 
mouse selections and displaying subheadings to any desired depth. Sections from the 
Table of Contents can be selected by mouse and displayed as text. 

SuperBook builds a full-text index or concordance that 1s used to find all oc

currences of any word, word stem, or boolean combination thereof. Search words are en
tered from the keyboard or by mouse selection from the screen. The Table of Contents is 
coordinated with the full-text index to show the distribution of a search word or phrase 

throughout the document. The number of occurrences of the word is posted alongside the 
title for each section in the Table of Contents providing extra orientation to the user con
cerning which sections are likely to be of interest. 

There is also a facility for creating aliases. For words seldomly occurring or not 

occurring at all in the text, readers can add other words as index synonyms. The reper
toire of aliases built up by a community of users improves the likelihood of a hit when do

ing word lookups. In addition, there is a facility to annotate the text. Users can open a 
workspace window, enter a comment or addition of any length, and, by a mouse click, 
leave an icon containing their initials and date in the margin of the visible text. The 

comment is stored out of sight, retrievable by mouse, and, if so desired, indexed by all its 
contained terms as part of the general index. Finally, there is limited provision for figure 

graphics. If the original text contains contains figures that can be automatically generat
ed or are stored as bit-maps, they can be automatically displayed in a separate window. 

NARRATIVE SCENARIO 

SuperBook has been demonstrated on three documents to date - the LSSGR, the S 
Language for Data Analysis, and a Lisp tutorial. Here we will show a typical scenario us

ing SuperBook on the LSSGR. The LSSGR, or LATA Switching Systems Generic Re
quirements, is a seven volume document produced by Bell Communications Research, 
describing in detail requirements for telephone and switching equipment for manufactur
ers and vendors. 

The LSSGR contains about 4 Megabytes of text with a rich hierarchical structure 
of sections and sub-sections - up to seven nested levels. Since the paper version of the 

LSSGR consists of seven volumes, the information relevant to a query may be distributed 
over more than one volume, making it cumbersome to use. Super Book on the other hand 
can easily keep track of all seven volumes in a single database and on a single screen. 

The LSSGR in SuperBook on the SUN workstation initially comes up with four 
windows. These include a Title window, a Table of Contents window, a Page of Text win
dow, and a Word Lookup window. Extra, overlapping Page of Text windows may be 
created as desired. The Title window displays the title of the book implemented and also 

Hypertext '87 Papers November 1987 



T 

1 

contains some general command buttons. The Table of Contents window initially shows 
only the highest level sections of the book, which are usually chapters. The LSSGR is di
vided into three functional sections and only these appear in the initial Table of Contents 

(see Figure 1) . 

. 

LSSGR - LATA Switching Systems Generic Requirements 

jEXITj jPRINT I jHELPj I NEW TEXT PAGE I 

~ Qf Contents ~ cl text 

*COMMON FUNCTIONAL SECTIONS 
*TANDEM SUPPLEMENT 
*FEATURE SPECIFIC DOCUMENTS 

'\ 

rr 

1 
I Find word J !Find section I I Page I jRemove [ 

!expand I !collapse! !Find wordjiHove cursorJ 

Figures 

.\'lQI:.d 1 ookl!P 

Jenter word I jHove word j 

Figura 1. Initial configuration of the SuperBook version of the LS.$..(>_8 document. The full book title ap· 
pears at the top of the screen. The Ial:!!Jl_.of.C.o.ntl!llls shows the highest level divisions of the book. The 
EaQ:ll_J)i.Iexl and \'lQr.Q_Lo.o_kup windows are initially empty. 

November 1987 Hypertext '87 Papers 179 

. 



The Word Lookup window maintains a list of the words or phrases searched so far 
m the book. In Figure 2, for example, the user entered the word queuing. The ending 
-ing is stripped off and all the different words throughout the entire document that begin 
with the root queu- are found and shown. In Figure 3 the user clicked on the Find 
Word button in the Table of Contents window whereupon SuperBook indicated the 
number of occurrences of the words matching queu- in each section of the Table of Con

tents. 

~ !ook!!P ~ lookup 

jHove wordj jEnter word I jHove word J 

lype a word(s) to search tor queuing Found 172 occurrences of: queue, queued, queueing, 
queues, queuing 

180 

(a) (b) 

Figure 2. The user has typed ~ng as a search word. SuperBook then lists the five forms of words 
beginning with the stem 1lllUI:: that it found in the ill.G.R. in 172 places. 

~ Q! contents 
31 "C!Jt!ON FUNCTIONAL SECl!ONS 
13 •TAhDEM SUPPLEMENT 

128 •FEATURE SPECIFIC DOCtlttENTS 

!Expand I leal lap•• I 
D1atr1but1on of word(a) ~p~~~ 

I Hove f oct~a I 

Figure 3. By clicking the mouse on Ein_<tJili.OlQ in the '(able_Jlf_C9111~o~ a breakdown of the 172 oc
currences of Q.IJ.e-": by sec!ion is shown. 

Hypertext '87 Papers November 1987 



Figure 4 shows how chapters or sections in the Table of Contents may be expand
ed into subsections. A section title is selected by clicking on it, and it is then expanded by 
clicking on Expand. The reader has decided to expand the section containing the highest 
frequency of the matches for queu-. Here we see the FEATURE SPECIFIC DOCU
MENTS section of the LSSGR and one of the subsections, OUTGOING FACILITY 
GROUP QUEUING in the section PRIVATE FACILITY FEATURES being expanded. 
The word frequency for each newly displayed subsection is also posted. 

~ Qf Contents 
rT 31 "CMMIN FUNCTIONAL SECTIONS 
I.J. 13 "TANDEM SUPPLEMENT 

128 I-FEATURE SPECIFIC DOCUMENTS 
"81 RESIOENC£ AHD BUSINESS CUSTCJ<£R FEATURES 

1114 "82 PRIVATE FACILITY FEATURES 
"84 CUSTII<ER S'I/ITCHING SVSTEM FEATURES 

3 •ta COIH AND CHARGE-A-cALL 
•15 PUBLIC SAFElY 

17 "28 MISCW.AHEOUS 
"25 INTEROFFIC£ 
"38 CALL PROC£SSING 
"31 SERVIC£ S'IIITCHING 
"35 SVSTEM MAINTENANC£ 
•.ce TRUNK. LINE AND SPECIAL SERVICE CIRCUIT 

TEST 
~ 0 45 ACfiiiiNISTRA liON 

~ l®:cl·=t!~,j,~~J"' ltolhpsel jF1nd .,ordj IHova facuaf 
Dfatr1but1on of word(s) queu 

(a) 

~ Q£ Contents 
"C!MMON FUNCTIONAl. SECTIONS 
•tANDEM SUPPLEMENT 

FEATURE SPECIFIC DOCUMENTS 
•at RESIDENCE AND BUSINESS CUSTCJI1ER FEATURES 

1114 82 PRIVATE FACILITY FEATURES 
•ouTWARD WIDE AREA TELECOMMUNICATIONS 

SERVICE (OUT'IIATS) 
114 LOUTGOING FACILITY GROUP QUEUING 

•t.8 IHTROOUCTION 
1 2.a USER PERSPECTIVE 

43 "3 .a FEATURE REQUIREMENTS 
4 .a FEATURE FL1711 OIAGRAII 

D 5 .a GLOSSARY 
8 . a B IBliOGRAI'ttV 

1 •AUTCMATIC FLEXIBLE ROUTING 
•AUTHORIZATION COOES FOR AFR AND ACCOUNT 

CODES FOR 
a 'MESSAGE DETAIL RECORDING TO CUSTII<ER 

PREMISES 
•94 CUSTOMER SWITCHING SYSTEM FEATURES 

3 •ta COIN AND CHARGE-A-CALL 

l1 •15 PUBLIC SAFETY 
17 •29 MI~EOUS 

IWijl'fC.i,ml·~(! jColhpsal jF·ind wordj JMova focusJ 
D1atl"'1but1on of word(a) quau 

(b) 

Figure 4. Expansion of sections in the "lallllUlLCQn~s window. The word frequencies in the sub
sections are shown as sections are expanded. 

By clicking first on section 3.0 FEATURE REQUIREMENTS, and then on Find 
Word in the Page of Text window, the first occurrence of queu- in section 3.0 is shown in 
the context of full text {see Figure 5). Notice the highlighting of the words matching 
queu-, and the higher level sections containing the text listed above the text itself, which 

provide a extra orientation to the user. To move through the text the user can scroll up 
or down with the scroll bar, or go forward or back a page with the Page button. To find 
the next occurrence of the current word the user can click again on Find Word, perhaps 
selecting another section from the Table of Contents first. 

November 1987 Hypertext '87 Papers 181 

I 



~ 2! Contents ~2£~ 
FEATURE SPECIFIC DOCUMENTS 

~ 
31 "CtMIDN FUNCTIONAL SECTIONS 92 Pft!VATE FACILI1Y FEATURES 
13 •TANDEM SUPPl.EMEHT OUTGOING FACILI1Y GROUP CJEIJING 

128 FEATURE SPECIFIC DOCUMENTS 3.9 FEATURE REQUIREMENTS 
"91 RESIDENCE AND BUSINESS CUSTCMER 3.1 FEATURE DPERATICWS 

FEATURES 

rr 1&1 92 Pft!VATE FACILI1Y FEATURES A call enure the Wttch on an tncc~~tng factHty 
"OUTWARD WIDE AREA TELEc:tMU<ICATIDNS group or Una. Either AFR or dfrect (code) access may be 

SERVICE (DUTWA'!S) und to .. lac:t tha outgoing factHty group. If an 
110 OUTGOING fACILI1Y GROUP CJEIJING outgoing factlfty group for whfch the call is eligible { 

« •1.8 INTRODUCTION baeed 11 •• g., on the class of ~~ervica of the tnccrntng 
1 2.9 USER PERSPECTIVE facility group) te avatlable. thfll call lihould be routed 

<131"3.9 FEATURE REQUIREMENTS and OFGQ playa na role. (The hunting tn AFR or for 
4.9 FEATURE FLOW DIAGRAIC direct (code) accass should be applied to determine if an 

6 5.9 GLOSSARY outgoing facility is available. Thus. for example, the 
6.9 BIBLIOGRAPHV hunting over Wtda~rea Teleca.muntcat1ons Service (WATS) 

1 •AUT(M4TIC FLEXIBLE ROUTING bands should be app1fed before an attempt fs made to 
•AUTHORI~TION CODES FOR AFR AND ACCOUNT ~a call.) Otherwise. the call encounters the all-

CODES FOR a11owed-outgo1ng~facility-groups-busy condition. The 

1 8 "MESSAGE DETAIL RECORDING TO CUSTCMER switch should dat.enn1ne if the incaning facility group or 
PREMISES line hu been •arked to prohibit cpK~ing. If so, then 

"94 CUSTCMER SWITCHING SYSTEM FEATURES 

l1 3 •1e COIN AND CHARGE-A-cALL IF1nd uordfl I Find section I I Page J IR•ovej •15 PUBLIC SAFElY 
Looking for t~~orc:l(a): ..... 

iupandl ICollapael jFtnd ¥ord jJHova curaor I 
' 

Distr1button of word(s) ..... 

fT 

~ 

Figure 5, Displaying text containing the search word l:!!Ji!J.I: in the eag!LilLJ~ window, The desired 
sec:ion. 3.Q£Ei\I!.!Bf_BE_Q!.Il8.EMEN.TS was first selected from the Ia,bllLoLC.Q!l\llnts window. 

In Figure 6 the user has clicked on the word OFGQ appearing in the Page of Text. 

This word· is appended to the history list in the Word Lookup window and is searched just 

as if it were entered from the keyboard. A word distribution in the Table of Contents 

shows that it first occurs in section 1.0 INTRODUCTION. When text containing its first 

occurrence in this section is displayed, we find the definition of this acronym (Figure 7). 

!:ail: cl .:tl:xt 
FEATURE SPECIFIC ooct.MENTS 

82 PRIVATE FACILI1Y FEATURES 
OUlGOING FACILI1Y GROUP CJEIJDIG 

3.9 FEATURE REQUIREMENTS 
3.1 FEATURE OPERATIONS !2r..d I Ooklll) 

A call enters tha awiteh an an 1~"~Ct~n1ng facility 
g~ or 11ne. Either AFR or direct (code) access ay be ....... used to eelect the outgoing facility group. If an pl..-! outgoing facility group for which the call 18 a11g1bla ( 
based. e.g., on the claas of aarvtce of the tncomtng 
facility group) fa available. the call should be routed 
and~ plays no role. (lhe hutting fn AFR or for 
dfrec code) access should be applied to det:anntne tf an 

I Enter ... ord I jHova word j outgoing facility ts available. TM. for example. the 
hl.nt1ng over W1ds-Area Telec~D~~Unicattans Service (WATS) 
bands should be applied before an atte.pt is 1111ade to Found 16 occurrences of: ofgq 
ql.&l8 a call.) Otherwise. the call encounters the all-
a11owed-outgotng-fact11ty-groups-busy condition. The 
switch should determine if the tnea-ing fac111ty group or 
line haa been 1aarked to prohibit qtaUing. If ao. then 

I Find ¥ord I lftnd section! IPmgaJ 1·-···1 
looking for word(s): ..... 

(a) (b) 

Figure 6. The user has clicked on QEO_Q 1n :he :ex:, causing a search :o be per;ormed on this word. 

182 Hypertext '87 Papers November 1987 



LSSGR - LATA S~itching Systems Generic Requirements 

jEXITj jPRINTj jHELPj I NEW TEXT PAGE I 

~ g£ Contents f.w: cl l.!:Xt 
FEATURE SPECIFIC DOCUMENTS 

fJ •ctM~ON FUNCTIONAL SECTIONS 112 PRIVATE FACILITY FEATURES 
•TANDEM SUPPLEMENT OUTGOING FACILITY GROUP QUEUING 

1.11 FEATURE SPECIFIC OOCU<ENTS .1.8 INTRODUCTION 
•et RESIDENCE AHD BUSINESS CUSTCJIIER 1.1 DEFINITION 

FEATURES 
1.11 a2 PRIVATE FACILITY FEATURES T Outgoing Facility Group Queuing (IFGQ) is a per-

•01J1WARD WIDE AREA TELEC(MIIUNICATIONS outgofng-private-facflity-group featur-e that improves the 
SERVICE (OUT'IIATS) usage of the DFGQ customer's prfvate-facfltty groups. 

1.11 OUTGOING FACILITY GROUP QUEUING The purpou of tFGQ fa to alla.~ a call to waft for a 
7 1•1.a INTRODUCTION facility fn one or mora prfvata-facflfty groups to become 
1 2.a USER PERSPECTIVE idle on a ffrat-coma, ffrat-served basta (with optional 
7 "3.a FEATURE REQUIREMENTS priority treatment). Provided that certain conditions 

~.a FEATURE FLOW DIAGRAM are 111et, OFGQ may be invoked by the Salftch after a caller 
1 s.a GLOSSARY fa unsuccessful fn finding an fdla facility in an 

8.a BIBLIDGRAPHV outgoing facility group. The search for the fdle 
•AUTtM4TIC FLEXIBLE ROUTING facflfty could hava been tnfttated either by the caller 
•AUTHORIZATION CODES FOR AFR ANO ACCOUNT dialing an access code for a particular outgoing private-

CODES FOR facility group or by the caller using Automatic Flexible 
"MESSAGE DETAIL RECORDING TO CUSTOMER l1 Routing (AFR). (familiarity with AFR ts assuned tn this 

PREMISES FSO.) The following capabilities are contained tn OFGQ: 
•94 CUSTCMER SWITCHING SYSTEM FEATURES 

~ •19 COIN AND CHARGE-A-cALL lffnd .. ortl jFfnd section I fPage J IRe•ovel •15 PUSLIC SAFElY • Looking for word(a): ofgq 
Ex I p and Colla aa Find .. ord Hove cursor 

P I "'"' _ ___,!._! ----'1 
01strfbutfon of word(a) atgq 

Figure 7. Distribution of word QE~_Q among sections in the IalllulLC.Qnte.n~ and the first occurrence of 
QEG_Q in the text. 

To illustrate the adaptive index feature of Super Book, let us suppose that the user 

wishes to search for places in the LSSGR that mention phone companies. In Figure 8 the 

user has entered the phrase phone company into the Word Lookup window, and Super

Book announced that it was not found. Later on, perhaps, the user will notice the term 

TelCo appearing in the text, clearly having Telephone Company as its meaning from its 

usage. The user may now search for TelCo to find all of its occurrences in the LSSGR. 

However, to avoid the frustration of another such failure, the user has decided to alias 

phone company with TelCo. This is done simply by placing the two phrases on the same 

line in the history of the Word Lookup window using the Move word button. When a 

word or phrase to be searched is placed on the same line as other words, Super Book takes 

all of the phrases on the line as synonyms, searches for them all, and ORs together the 

resulting occurrence sets. In Figure 9 the user has aliased phone company, TelCo, and 

telephone company as well. Now, when the user (or someone else) enters phone company, 

Super Book will come back with all occurrences of TelCo and telephone company. 

November 1987 Hypertext '87 Papers 183 



!!2.l:d I ookup 

queu
Dfll'r 
phone canpany 

~ 

.!w:d l ookup 

!Hove wordJ 

Found 584 occurrenca of: talco. telcos 
......,. .,_any not found 

(a) (b) 

Figure 8. A search for pbQne company was unsuccessful, whereas MQQ was found 584 times. 

fl2l:d I ookup fl2l:d I ookup 

........ 
afl!'r 

........ ....... 
phone canpany 1\. 

~"-'Y 
phone ccrnR\ny• 'telea"". telephone COIIIp8.ny 

I Enter word I jEnter wordj !Hove word I 

Focnf ~ occurrences of: talco, tolcoe 

184 

(a) 

fl2l:d I ooJcup 

jEntar "ord I jHove vordl 

Found 589 occurrenc:ae of: talco. telcoa. telephona. 
~ 

(c) 

(b) 

Figure 9. Defining synonyms in SuperBook: When words are moved to the same line in the word history, 
they will be trea:ed as synonyms when doing a search. Now, when a user searches 'or ~PliDll 
SuperBook looks up :he synonyms~~= and ~~e..klliDPliDll in the book. 

Another customization feature of Super Book is the facility for adding annotations 

to th.e text of the document. At any point in the text the user may add any annotation of 

his own, such as a reference, example, or explanation. This is done by clicking in the 

margin to the right of the text in the Page of Text window. A small editor window then 

appears on the screen. into which the user enters some text (Figure 10). 

Hypertext '87 Papers November 1987 



f.w: cl :t&x1 
FEATURE SPECIFIC DOCUMENTS 

92 PRIVATE FACILITY FEATURES 
MESSAGE DETAIL RECORDING TO CUSTOMER PREMISES 

3.9 FEATURE REQUIREMENTS 
3.1 FEATURE OPERATIONS 

T 3.1 FEATURE OPERATIONS 
ANNOTATION 

3.1.1 MAIN FEATURE OPERATIONS See also Section 5.7.1 

The switch should provide the standard originating and 
terminating treatment described in LSSGR Sections 5.2.1 and 5 

"' .2.2. In addition, the switch should collect and save MDR 
information during call processing. The switch should have 
the capability to collect MDR information during the call 
situations described in Sections 3.1.1.1 and 3.1.1.2 and 
should collect and save the MOR information described in 
Section 3.1.1.3 through 3.1.1.9. Call situations are divided 

l1 into seven categories (I-VII) and the situations that fit 
into each category are described in Sections 3.1.1.1 and 3.1. 

I Find 111ord I IF1nd section I I Pagel IR .. ovol 
Looking for word(s): talco-, telephone conpany 

Cal (b) 

Figure 10. When the user clicks in the margin area to the right of the text a small editor window appears 
on the screen into which the user enters an annotation. 

When finished, the editor window disappears, and an icon consisting of the user's login 
and the date appears in the margin of the Page of Text window, indicating the presence of 

the annotation (see Figure 11). This icon is scrolled along with the main text. To see the 
actual annotation one need only click on the icon causing the annotation text to appear in 

·a separate pop-up window. Note how such notations can be used to create .. hot .. text, or 

to build new internal nodes, increasing the number of navigation routes. 

f.w: cl :t&x1 
FEATURE SPECIFIC DOCUMENTS 

92 PRIVATE FACILITY FEATURES 
MESSAGE DETAIL RECORDING TO CUSTOMER PREMISES 

3.9 FEATURE REQUIREMENTS 
3.1 FEATURE OPERATIONS 

T 3.1 FEATURE OPERATIONS 

3.1.1 MAIN FEATURE OPERATIONS 

The switch should provide the standard originating and 
tenminating treatment described in LSSGR Sections 5.2.1 and 5 tkl 
.2.2. In addition. the switch should collect and save MDR 7/24/87 
information during call processing. The switch should have "' the capability to collect MDR information during the call 
situations described in Sections 3.1.1.1 and 3.1.1.2 and 
should collect and save the MDR information described in 
Section 3.1.1.3 through 3.1.1.g. Call situations are divided 

~ into seven categories (I-VII) and the situations that fit 
into each category are described in Sections 3.1.1.1 and 3.1. 

{Find word I I Find section I I Page I I Remove I 
Looking for word(s): te leo-. telephone canpany 

Figure 11. A"ter leaving :he edi:or an icon consisting ot ~he user"s ini~ials and date remains. indica:ing 
the exis:ence of an anno:a:ion. 

November 1987 Hypertext '87 Papers 185 



186 

Graphs and figures in the text will be displayed in windows of their own, which 
appear whenever references to them are made in the text, however, this feature is not ful
ly implemented yet. 

IMPLEMENTATION 

SuperBook consists of a preprocessing phase and the browser itself. The prepro
cessor reads and analyzes on-line source text, written in some standard text markup 

language, and builds a formatted text data structure and full-text index. The hierarchical 
structure of the text, as indicated by the formatting macros of the markup language, is 
also represented in the data structure and index, and is used to construct the Table of 

Contents. Super Book uses an interpretation module specific to the formatting package to 
properly format and structure the text. The preprocessing phase is fully automatic pro
viding that the required interpretation module is given. Although the preprocessing may 

take several hours to run, it need be done only once for each document or major update. 

To get SuperBook to accept a new text markup format, it is only necessary to 
write a translation program to convert the text to any of the "standard" formats that 

Super Book already knows. The scope of documents available to Super Book is quite large 
and growing, as interpretation modules are written making more formats recognizable. 

The number of existing on-line documents is large compared to the number of different 
text formats, and it is hoped that SuperBook will eventually be able accept already for

matted text, without depending on structuring macros at all. 

Super Book at present is written mostly in Franz Lisp, which, while easy to modify 
and debug, runs rather slowly on a SUN. It would be possible to improve the speed by 

rewriting portions of it in C. 

DISCUSSION 

When SuperBook is considered in contrast to many other syst·ems which are gen

erally labeled hypertext we must ask the question - is SuperBook a hypertext system? 
Yes and No. Yes, at least in spirit, SuperBook is a hypertext system because it is a collec

tion of tools explicitly designed to encourage the flexible exploration of ideas by making 
information more available. This goal was the original appeal of hypertext-like ideas e.g. 
[Bush45]. 

However, judged by its formal or architectural similarity to other recently 
developed systems, SuperBook may not be an example of a hypertext system. Those re
cently developed information browsing tools commonly designated as hypertext e.g. 

[Coll87], [Hala87], have data structures which directly support handcrafted author gen
erated machine readable links between elements in an information space. In addition, 
these systems usually have sophisticated graphics tools and displays, to aid authors and 

Hypertext '87 Papers November 1987 



readers in the creation and modification of the structure connecting the information 

modules. But, are these features, which Superbook lacks, necessary to accomplish the 

basic hypertext goal: a useful environment for the flexible exploration and creation of 

ideas? We think this is an open question. 

Different approaches to the same problem. Super Book attempts to accomplish the 

same ends as hypertext systems like ZOG [Robe81] and NoteCards [Hala87] by sophisti

cated key-word techniques applied to the full contents of a text, obtaining added intra

text relationships through annotation and adaptive aliasing, and by text navigation aids. 

It is a clear goal of both SuperBook and other systems to give readers a tool to 

overcome the perceived limitations placed on them by the linear construction of standard 

books. Hypertext systems like those mentioned above do this by providing authors and 

reader with customizable spatial information structures, and the tools to traverse and 

construct them. We believe that this solution came about, at least in part, because these 

systems take as a starting point the preparation of new information sources and not, as 

Super Book does, the recasting in electronic form of existing paper text and graphic rna-. 

teriaL Rather than developing new techniques to allow authors to build non-linear struc

ture into a document, we attempted to develop ways to automatically expose the struc

ture in a text and give users tools to explore it non-linearly. 

It is important to point out that the usefulness of the information tools that result 

from either approach have not been evaluated to any significant degree. It is too early to 

tell if multi-window browsing tools of any underlying design will be valuable to people do

ing knowledge work. However, it worth noting that the key-word techniques used by 

Super Book to increase the number of aliases to each information object have been shown 

to improve information retrieval performance [Furn83j, (Game]. It is also worth pointing 

out that McCracken and Akscyn [McCr84] report that ZOG data structures can cause the 

novice user to become lost and disoriented (see [Mant82] for a complete discussion). They 

also report that people rapidly learn to use ZOG and overcome early learning difficulties. 

It is fairly clear that there is a wide range of applications for multi-window brows

ing systems. Some of those needs may be best met by systems whose underlying design 

resembles that seen in recent hypertext systems. New tools for information creation are 

an excellent example of such an application. On the other hand, systems like SuperBook 

are well suited to handling existing material and developing libraries of existing books 

which can be made available in one integrated format. 

REFERENCES 

[Bush45] Bush, V., "As We May Think", Atlantic Monthly, no.176, pp. 101-108, Boston, 

1945 . 

. Coll87! Collier. G., "Thoth-11: Hypertext with explicit semantics'', Submitted to Hyper-

November 1987 Hypertext '87 Papers 187 



188 

text '87. 

[Furn83] Furnas, G.W., Landauer, T.K., Gomez, L.M., and Dumais, S.T., "Statistical se
mantics: Analysis of the potential performance of key-word information sys
tems", Bell System Technical Journal, 62, 6, pp. 1753-1806, AT&T, New York, 

1983. 

[Furn85] Furnas, G.W., "Experience with an adaptive indexing scheme", "Human Factors 
in Computer Systems", CHI '85 Proceedings, pp. 131-135, ACM, New York, 

1985. 

[Furn86] Furnas, G.W., "Generalized Fisheye Views", in M. Mantei and P. Orbeton (eds.), 
"Human Factors in Computing Systems', CHI '86 Proceedings, pp. 16-23, ACM, 

New York, 1986. 

[Furn] Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T., "The Vocabulary 

Problem in Human-System Communication: an Analysis and a Solution", 

CACM, (in press). 

[Gome84]Gomez, L.M. and Lochbaum, C.C., "People can retrieve more objects with en

riched key-word vocabularies. But is there a human performance cost?", in B. 
Shackel (Ed.) Human-Computer Interaction - Interact '84, pp. 257-261, North

Holland, Amsterdam, 1984. 

[Gome] Gomez, L. M., Lochbaum, C. C., Landauer, T. K., "All the Right Words: A 
Study of Human Performance and Key-Word Information Retrieval", (in 

preparation). 

[Hala87] Halasz, F., Moran, T., Trigg, R. "Notecards m a Nutshell", CHI + GI '87 

Proceedings, ACM, New York, 1987. 

[Mant82] Mantei, M. M, "A study of disorientation behavior in ZOG", Ph.D. dissertation, 
University of Southern California, 1982. 

[McCr84]McCracken, D.L., Akscyn, R.M., "Experience with the ZOG human-computer 

interface system", Int. J. Man-Machine Studies, 21, pp. 293-310, Academic 

Press, New York, 1984. 

[Robe81] Robertson, McCracken, G.D., Newell, A., "The ZOG Approach to Man-Machine 
Communication", Int. J. Man-Machine Studies, vol. 14, pp. 461-488, Academic 

Press, New York, 1981. 

Hypertext '87 Papers November 1987 



User interface design for the 
Hyperties electronic encyclopedia 

Ben Shneiderman 

Department of Computer Science, 
Human-Computer Interaction Laboratory, and 
Institute for Advanced Computer Studies 

University of Maryland, College Park, MD 20742 

The Dream 

Printed books were an enormous stimulus to science, cultore, commerce, and entertainment. Electronic 
books and hypertext syste!llS may produce a similar stimulus in the next centory, but current designs are 
poor. Typical screens are too small, too slow, too complicated, and too hard to read. Witlt careful attention 
to the user interface and the underlying technology, we have a chance to create a new medium that is 
potentially more attractive and effective than printed books in many situations. 

Electronic books can have color, animation, sound, rapid access, compactness, rapid traversal and search, 
user annotation, electronic dissemination and updating, dynamic text to reflect Ute user's needs, and other 
featores yet undreamed of. 

The Past 

Hyperties has been under development at the University of Maryland since Fall 1983. It was orignally 
called TIES (1be Interactive Encylcopedia System), but the new name was chosen to indicate the close 
relationship with hypertext concepts. Hyperties allows users to explore textual and graphic information 
resources in an easy and appealing manner. They merely touch (with their fingers or with a mouse or by 
pressing arrow keys to move a light bar onto) highlighted topics or objects that interest them and a brief 
definition appears at the bottom of the screen. The users may continue reading or ask for the full entry 
about the selected topic. An article about a topic may be one or more screens long. As users traverse 
articles and graphics, Hyperties retains the path and allows easy reversal, building confidence and a sense of 
control. Users can also select articles and graphics from an index. 

Hyperties is attractive for instruction (and entertainment) because the author's ideas and writing style are the 
focus of attention. Through careful human factors design, the computer aspects have been trimmed to let 
the author communicate to the students and to allow the students to control their learning. Hyperties has a 
defined instructional strategy - articles and graphics linked by embedded menus - that simplifies design, 
permits strong suppon for authoring, and enables use of previously written materials. 

Hyperties can be an addition to a museum exhibit, a browser for information in libraries, a tool for 
diagnostic problem solving, an environment for novels or mysteries, an online help strategy, a browser for 
computer program text, a format for cookbooks or self-help manuals, or a way to explore cross referenced 
materials such as legal documents or an annotated Bible. 

November 1987 Hypertext '87 Papers 189 



bwtn P. Hulllllt 5pece TtiiiCOOI 

faglno trying to - tho clcxa - u.o bottao of a IIIJd<ly 
panclc TMt fa ha.l uti DI!ICMi 1 daacr1ba tn.1r vi .. of the 1tare 
and pl&Mta t.tnugh the Earth"• ·-~,.,... ... ldY&ncld •• 
~teal -lOG)' hoe a-, our capoil111t1n ~m be 
,_.,. 11aft.:t by tho turbulanct1 and lrightnooa of our 
at ~ p'a •e Ewn the f1nat fi"'CU'd obtrY~tc:riaa, 8UCh u th8 
.,. at Mte PalCMr', C&11farn1a, an rnt.ricted by then 
CCifid1t10ftll., In adc:l1tianJ) t.he M1ect1va abaorpt1on of tM 
l't!UIPF.._ •J) Wlich lata 1n vfeibll light and ,..d1a •v•• •1tted 
by ~~toni llftd plonoto, but -ludn ..,.t other '"""' of onorgy, 
lfatta _. a-1oc1ga of caloottol bodln. 

To .,., tho ... ~- to .......,.tfon tn fnfr'll'Od, 
vltravfolat, lt"ray, a--n.y, and co.1c ray .,.-.gin, NASA 
1-,.__ oota111tao, oach holping to oocpla1n dffflt'8flt 
p U II behind aat.r"ancclfcal phe!ICIMIII.c lut, to data, the 
.. 1 .. of thooo orllttfng ....,atorfoo hoo beon 11a1tod by tho1P 
NlaUw11 -11 ofza and liaitad opoct...l capob111ty. 

lblll, far the ftrat t1•• a ground-e1zad obaarvetory w111 bii 
placed 1n Cll"'b1t to ¥1aii the un1vru 1n via1b1a and u1t.rav1olat 
light - by Earth'• a!looophoMI. 

C.HIId the E81fte P. IMIJ•t• Space Telaacapai th• n1111 
obalrvatory te a ~1de and 1ntarnatiana1 coope~at1¥R affaFt~ 
Ita noaa""""'"" Edioin P. -1• (!.8!19-1953), who diOCOYOPOd 

thot tho ..,1_ - for beyond tho Milky Voy fl&l""J'o 

Tho -1• ..... Tol_.,. w111 wfgh about 25,81!8 poundo 
(U,3811kg) and ~Ill hovo • lan;tll of 43 fnt (13.1 a) and a 
di- of 14 foot (4.211 a). Ita aojor ~ .,.. on 
lipt1U1 teteecap~~ ... .U1:J, ftw H1Ht1f1C 111Sir••Rtl8 9 and & 

OlqiJIOrt IJOtaiO -lo, 

PiS! t OF 3 

IETUII 

Above: SUN 3 version shows 
two pages with text and graph
ics items selectable by mouae to 
obtain more information. 

Left: PC version enables 
touchscreen or arrow key selec
tion of highlighted items 
(embedded menua) in text only, 
but graphics can be shown. 

Hyperties 



Hyperties consists of: 

-Browser 
- Authoring tool for composing new articles and editing 
• Databases for browsing. 

Databases already created include: 
Austria and the Holocaust (106 articles) 
Adele Stamp Student Union (42 articles) 
Hypenies Tour (68 articles) 
FULCRUM Project (30 articles) 
Online Maintenance Manual (52 articles) 
Managing your Credit (23 articles) 
David Seymour (1911-1956): Photographer (30 articles) 
Wmes (40 articles) 
UM Office of Minority Student Education ( 41 articles) 
Introduction to the Computer Science Department (76 articles) 
Introduction to Online Database Searching at the National Agricultural Library (178 articles) 

Hypenies is appealing to authors because of the explicit instructional model, the reduction of 
computer-related concepts, the focus on content, and the lively user interface. It allows authors to create a 
network of conceptual knowledge in which concepts are linked associatively and the learner is free to 
explore pathways based on their needs and interests. There is a great sense of satisfaction in composing 
articles and seeing the linkages come to life as they are used by students in novel ways. 

The Hypenies authoring software guides the author in writing a title, brief definition (5-35 words), text 
(50-1000 words, typically), and synonyms for each article title. The author marks references in the text by 
surrounding them with a pair of tildes. Hyperties collects all references, prompts the user for synonym 
relationships, maintains a list of articles, and allows editing, addition, and deletion of articles. The author 
tool displays TO/FROM citations for each article and allows authors to keep notes on each article. A 
simple word processor is embedded in the authoring software, but users can create articles on their own word 
processor, if they wish. There are no commands to memorize, operations are done by selection from 
options on the screen. 

Hyperties runs on a standard IBM PC (monochrome or color) and on IBM PCs, XTs, or ATs with or 
without toochscreens. We are attracted to the possibility of eliminating the keyboard while still providing 
substantial exploratory power. Hyperties was first written in APL and has been rewritten in the C 
programming language. Dan Ostroff, a graduate student in computer science, did the implementation and a 
major portion of the user interface design. Janis Morariu and Charles Kreitzberg contributed substantially 
to the design. Jacob Lifshitz, Susan Flynn, Richard Potter, William Weiland, and Catherine 
Plaisant-Schwenn did major maintenance and enhancements during 1985-87. The SUN 3 version with 
multiple windows and touchable graphics (graphic embedded menus) was implemented by Jacob Lifshitz 
and William Weiland. 

Empirical Studies 

More than a dozen experimental studies have been conducted to test out design alternatives and observe user 
behavior. Over 400 subjects participated in these controlled experiments. In addition, more than three 
hundred novices and experts have tried and commented informally on the current design. 

In the study comparing the arrow keys (maybe better termed "jump" keys because the cursor would jump to 
the closest target in the direction pressed) to the mouse, the arrow-jump keys proved to be an average of 
15% faster and preferred by almost 90% of the subjects. We conjecture that when there are a small number 

November 1987 Hypertext '87 Papers 191 



of targets on the screen and when arrow-jump keys can be implemented, they provide a rapid, predictable, 
and appealing mechanism for selection. 

In an early study conductesd by David Powell, subjects traversed a database with 42 articles about the 
University of Maryland Student Union. The embedded menus technique reduced the number of screens 
viewed when compared with an explicit menu strategy. There were significant reductions in the times for 
task performance, and the subjective preference was strongly for the embedded menus. 

The embedded menus idea was also used for two experiments with online maintenance manuals for 
electronic equipment. A tree structured and linear form of a 52 page maintenance manual was prepared for 
screen presentation and in paper form. Experimental subjects had to perform 12 tasks using one of the 
manuals. Significant differences were found showing that time was reduced using the paper versions. No 
significant differences were found between the tree and linear versions for speed or error rates. When a 
pruning algorithm was applied to the text to allow users to trim text unrelated to their task, the time was 
cut in half. This latter experiment used only the computer condition and demonstrated one of the advantages 
of screens over printed text. This is important, since for many applications printed manuals are still easier 
to use and approximately 30% faster to read than computer displays. 

Four selection strategies (mouse, arrow-jump, touchscreen, and numbered keys) were compared in a study in 
which each of 24 subjects used each strategy to follow prescribed paths through the database. The 
touchscreen resulted in the fastest time and highest preference, but also the highest error rate. Improved 
strategies for touchscreen and the mouse were proposed. 

Two studies were conducted to better understand how novice users traverse a database when seeking to 
answer historical fact questions. Judin Sukri compared a paper version of the Austria database (about 150 
pages) with the Hyperties version. For simple fact queries paper was faster but Hyperties matched paper 
with more complex queries that required information from several articles. Subjects strongly preferred 
Hyperties even though it may have taken more time. Steve Versteeg compared performance with Hyperties 
versions showing 9, 18, and 34lines of text (all single spaced) on the Enhanced Graphics Adapter display. 
The dense 34 line version was least preferred and performance times did not significantly differ across 
versions. Anecdotal evidence from both these studies helped shape our understanding of how people use 
Hyperties. 

A study with 24 subjects compared the speed, accuracy, and user satisfaction of three touchscreen strategies 
designed for Hyperties. The "lift-off" strategy that enabled users to drag a cursor just above their fmgers, 
produced statistically significantly lower error rates than the traditional "Iand-on" strategy. The lift-off 
strategy is implemented on the Microtouch touchscreen. We also have implemented Hyperties to run on 
the ffiM lnfowindows system. 

On May 21, 1986 a version of Hyperties was installed in downtown Washington, DC in conjunction with 
an exhibit of the photographs of David Seymour. On November 14, 1986 a similar version of Hyperties 
was installed in the International Center of Photography at 94th Street and Fifth Avenue in New York City 
with another exhibit of David Seymour's photos. We collected usage data to understand reading patterns for 
patrons of these exhibits and are currently preparing a report. Index usage was much heavier than expected. 

Studies currently being carried out focus on user strategies of using the index versus using the embeded 
menus, the advantages of four large versus forty-five short articles, the merits of three color coding styles, 
the impact of varying margin sizes and vertical spacing, and the impact of larger windows. Dependent 
variables include time to find answers to factual questions, comprehension scores on questions presented 
after reading, and subjective satisfaction. 

Current Directions 

ln October 1987 we completed version 2.3 with revisions to many messages, repairs to some bugs, and 
many small improvements to the author tool. It also enables users to set their own colors for text 

192 Hypertext '87 Papers November 1987 



highlights and the cursor. Current design efforts focus on importation of large databases, browsing of 
computer programs, videodisc usage, and integration with other software. We have arranged for input from 
an IBM scanner in the proper format to suppon CGA and EGA graphics on the ffiM PC. Bit-mapped 
display images for the SUN 3 workstation are generated on a Macintosh with Thunderscanner. 

An advanced browser with string search, various bookmarks, multiple windows, user annotation, printing, 
etc. is being designed and parts are being implemented. An advanced authoring tool with automatic 
reference marl<ing and sophisticated editing/fonnatting is planned. 

The SUN 3 versions suppon our exploration of highlighting techniques for touchable graphics. In the 
current version the selectable regions pop up as the mouse cursor passes over them. This is a good stan 
and makes for a dramatic experience, but some mechanism seems necessary to enable users to reveal all 
selectable regions without a great deal of mouse exploration. Possibly a single key or a on-screen button 
would cause ali selectable regions to become highlighted. Highlighting might be done by blinking, color 
coding, hash marks, or various borders. 

The multiple window strategies include a traditional independent arrangement of windows and a simple 
panning motion in which selections are always made in one window and older pages migrate to other 
windows in an orderly predictable manner. A more flexible strategy is to enable users to indicate which 
window is to receive the next page of text or graphics. Then backups are done by each window 
independently. An empirical evaluation of the benefits and problems in underway. 

Availability 

The University of Maryland has contracted with a software development flrm to support commercial 
applications and distribution of Hyperties. The ffiM PC version of Hyperties 2.3 is available, but the SUN 
3 version is still in the research and development phase. To flnd out more, contact: 

Charles Kreitzberg, President 
Cognetics Corporation 
55 Princeton-Hightstown Road 
Princeton Junction, NJ 08550 

Reports 

(609) 799-5005 

1) Ewing, John, Mehrabanzad, Simin, Sheck, Scott, Ostroff, Dan, and Shneiderman, Ben, An experimental 
comparison of a mouse and arrow-jump keys for an interactive encyclopedia, International Journal of 
Man-Machine Studies 24, 1, (January 1986), 29-45. 

2) Koved, Larry and Shneiderman, Ben, Embedded menus: Selecting items in context, Communications of 
the ACM 29, 4, {April1986), 312-318. 

3) Koved, Larry, Restructuring textual information for online retrieval, Unpublished Masters Thesis, 
Department of Computer Science, University of Maryland Technical Repon 1529 (CAR-TR-133), (July 
1985). 

4) Lifshitz, Kobi and Shneiderman, Ben, Window control strategies for online text traversal, Unpublished 
Technical Report, Department of Computer Science, University of Maryland, College Park, MD 20742 
(July 1987). 

5) Marchionini, Gary and Shneiderman, Ben, Finding facts and browsing knowledge in hypertext systems, 
IEEE Computer, (January 1988) (to appear). 

November 1987 Hypertext '87 Papers 193 



6) Morariu, Janis and Shneidennan, Ben, Design and Research on The Interactive Encyclopedia System 
(TIES), Proc. 29th Conference of the Association for the Development of Computer Based Instructional 
Systems, (November 1986), 19-21. 

7) Ostroff, Daniel M., Selection Systems: Interactive Devices and Strategies, Unpublished Masters Thesis, 
Department of Computer Science, University of Maryland, College Park, MD, (May 1986), 161 pages. 

8) Ostroff, Daniel M. and Shneiderman, Ben, Selection devices for users of an electronic encyclopedia: An 
empirical comparison of four possibilities, University of Maryland Computer Science Center Technical 
Repon 1910, (September 1987). 

9) Potter, Richard L., Weldon, Linda J., and Shneidennan, Ben, Making touch screens effective: An 
experimental evaluation of three strategies, University of Mary land Computer Science Center Technical 
Repmt 1920, (September 1987). 

10) Shneidennan, Ben, User interface design and evaluation for an electronic encyclopedia, Proc. of the 2nd 
International Conference on Human-Computer Interaction, Honolulu, ID, August 1987. In G. Salvendy, 
Ed., Cognitive Engineering in the Design of Human-Computer Interaction and Expert Systems, Elsevier 
Publishers, Amsterdam, (1987), 207-223. 

11) Weldon, L. J., Mills, C. B., Koved, L., and Shneidennan, B., The strocture of information in online 
and paper technical manuals, Proc. Human Factors Society- 29th Annual Conference, Santa Monica, CA, 
(1985), 1110-1113. 

194 Hypertext '87 Papers November 1987 



A Hypertext Writing Environment 
and its Cognitive Basis* 
John B. Smith, Stephen F. Weiss, & Gordon J. Ferguson 

Department of Computer ·science 
University of North Carolina 
Chapel Hill. NC 27599-3175 
919-962-1792 

Abstract 

WE is a hypertext writing environment that can be used to create both electronic 
and printed documents. It is intended for professionals who work within a computer 
network of professional workstations. Since writing is a complex mental activity that 
uses many different kinds of thinking, WE was designed in accord with an explicit 
cognitive model for writing. That model raises several important questions for both 
electronic and printed documents. The paper includes a discussion of the underlying 
cognitive model, a description of WE as it currently exists and as it will be extended 
in the near future, as well as a brief outline of experiments being conducted to 
evaluate both the model and the system. It concludes by re-examining some of the 
issues raised by the cognitive model in light of WE, especially the role of constraints 
in hypertext systems. 

1. Introduction 

Hypertext is a form of electronic document in which data is stored as a network 
of nodes connected by links. Nodes can contain text, source code, graphics, audio, 
video, or other forms of data. Hypertext documents are normally meant to be 
written, stored, retrieved, and read within a computing environment. Thus, they 
spend their entire life on-line rather than on paper. 

We are building a system that differs from most hypertext systems. It regards 
the network or directed graph form of information as one (early) stage in the de
velopment of a document rather than as its final form. Our system, which we call 
the Writing Environment or WE for short, helps writers transform loose associative 
networks of ideas into a hierarchical structure and then write a document in accord 
with that structure. The product that results can remain in electronic form but 
it can also be printed out to produce a paper document. Thus, the system can 

* Parts of this research were sponsored by The National Science Foundation 
(Grant IRI -8519517), The Army Research Institute (Contract MD A 903-86-C-0345), 
and The International Business Machines Corporation (SUR Project 423). 

November 1987 Hypertext '87 Papers 195 



be used both as a conventional hypertext system and as an authoring system with 
advanced graphical, direct manipulation structure editing capabilities. 

Supporting both electronic and conventional paper forms of documents is a 
key aspect of WE. While electronic documents may eventually replace paper ones, 
that day is not at hand. Even in organizations in which professionals work within 
a network of workstations, paper documents continue to be important. Many users 
prefer to edit on paper rather than on screen. Most internal documents - memo
randa, proposals, reports, etc. - must be printed for upper management to read 
them. And most documents that go outside the organization still go out through 
the mails or, more likely, Federal Express, than through a network. Thus, in build
ing a system that supports both electronic and printed forms of documents, we have 
attempted to provide the best of both worlds. 

A second major concern of our research group is the relation between WE and 
the cognitive processes of its users. We are particularly interested in the cognitive 
strategies writers use to transform information in one form into another. Conse
quently, a second line of research we are carrying out is a series of experimental 
studies to first map and then differentiate between the strategies used by expert vs. 
novice writers and those that lead to effective vs. ineffective documents. 

This interest in the relation between cognitive process and system functions is 
shared with a number of hypertext developers. From the beginning, those work
ing on hypertext systems and concepts have been keenly interested in the relation 
between thinking and computing; Vannevar Bush called his theoretical system 
memex and saw it as an environment that would enchance the thinking of knowl
edge workers [Bush, 1945]. Doug Engelhart called the first actual hypertext system 
The Augmented Human Intellect System [Englehart, 1968]. Another, more recent 
system is called Knowledge Garden [Thompson & Thompson, 1987]. 

While the hypertext systems that are emerging offer many new opportunities 
for structuring and using information, they also raise a number of new questions 
concerning how best to create and use those resources. Much of the work we have 
done to understand and model the cognitive processes of writers applies equally 
well to the authors and users of hypertext "documents". Hypertext authors must 
still transform inchoate ideas into coherent structures. that can be comprehended as 
well as traversed. Users of hypertext documents must still understand what they 
read (or see, or hear, . . . ) and must construct relations between new information 
and old, one idea and another. Thus, a second part of our discussion will be a 
consideration of the cognitive processes that underlie WE and that apply to other 
hypertext systems, as well. 

In describing our work, we will look first at the cognitive basis for WE that 
includes a Cognitive Framework for written communication. In doing so, we will 
point out issues that have long-term implications for hypertext systems. Next, we 
describe WE. Following a brief discussion of some of the experimental studies we 

196 Hypertext '87 Papers November 1987 



are conducting to evaluate both the cognitive model and the system, our discus
sion concludes by reconsidering several of the questions raised by the Cognitive 
Framework in light of the description of WE. 

2. Cognitive Basis for WE 

In this section, we discuss the cognitive processes involved in writing. We 
describe those processes, first, as they are used for conventional paper documents 
and, then, for electronic or hypertext documents. 

2.1. Cognitive Modes 

Writing is a complex process that draws on many different cognitive skills. 
Not just translating ideas into words but retrieving information from the writer's 
memory or from external sources, identifying associative relations among ideas, 
drawing inferences and making deductions, building larger hierarchical structures, 
as well as reading, analyzing, and rewording during the editing process. Some 
writers even report using visual and kinesthetic thinking. 

We view these processes as constituents of a set of cognitive modes. A mode 
consists of three components: one or more cognitive processes, a product produced 
and/ or operated on by those processes, and a set of rules that govern the kinds of 
products that can be produced within the mode and the relations that can exist 
among the parts of the product(s). Writers use different cognitive modes to pro
duce different forms of information or to transform one intermediate product into 
another. 

For an intuitive sense of modes, consider the following examples. During early 
exploratory thinking, many writers adopt a mode of thinking in which the primary 
purpose is to identify ideas and data that may be included in the document and 
to consider various relations among them. The tenor of exploratory thinking is 
often relaxed and creative as the individual generates and considers alternative 
possibilities for the document. However, the mode of thinking used for organizing 
the content of the document is different. As the writer shifts to building a single 
integrated structure, he or she is likely to work with more focused attention and a 
stronger sense of purpose. Writing, per se, and editing involve still other modes of 
thinking. 

2.2. Cognitive Framework for written communication 

Figure 1 shows the flow of information through the different cognitive modes 
used for conventional written communication. The model includes both reading and 
writing. The areas of the "hourglass" denote different cognitive modes. The modes 
are shown across the top of the figure, the products along the bottom; the tapered 
areas of the hourglass form, itself, indicate relative differences in the constraints 

November 1987 Hypertext '87 Papers 197 



Invited Panel 
on Systems 



prewriting 
remembering 

writing reading 

sequence sequence 

network network 

Figure 1 

Cognitive Framework for Written Communication 

198 Hypertext '87 Papers November 1987 



imposed by the different rules for the various modes. (A smaller area implies more 
constrained options; a larger area, more relational possibilities.) We can now define 
more precisely the processes, products, and rules for the major modes used for 
writing. 

During the early exploration phase of writing, represented on the left of Figure 
1, the writer retrieves potential content from long-term memory or from external 
sources, considers possible relations among ideas, and, perhaps, groups related ideas 
and constructs small hierarchical structures. In that mode, the underlying rules are 
those associated with a network: any idea can be related to any other idea through 
simple association. Thus, the intermediate product is a network or directed graph 
of ideas. 

Organization is the task of constructing a integrated structure for the docu
ment. For many documents, particularly those written by professionals, that struc
ture will be a hierarchy. The product is, thus, a hierarchical structure, and the rules 
are those that govern hierarchies. That is, each concept or node in the hierarchy 
can be subordinate to at most one other concept/node, but it may be superordinate 
to many concepts/nodes. Building such a structure requires a different set of cogni
tive processes from those used during exploration. The critical one is the process of 
abstract construction that includes perceiving subordinate/superordinate relations, 
comparative levels of abstraction, sequencing, proportion, and balance. This mode 
is shown as smaller than that for exploration since a hierarchy is a restricted form 

. of network and is, thus, more constrained. 

Writing, itself, involves still a different set of cognitive processes. Here, the 
primary task is encoding the abstractions of content and the relations of the hier
archical structure into a sequence of words, drawings, or other explicit forms. The 
structure of the encoded text is linear and represents a path through the hierarchy. 
Consequently, it is even more constrained than organization mode. 

Editing is not shown in the Figure, but would represent still further constrain
ing of the linear sequence and would include additional reading and analysis, as well 
as encoding, processes. 

Reading, shown on the right half of the Figure, employs an analogous set of 
processes and forms. Whether the reader reads the document from beginning to end 
or jumps around from place to place, when that reader settles to read, the text that 
is read or decoded is a linear sequence of words. The text that is comprehended, 
however, is a hierarchy. That is, the reader sees that several points do, indeed, 
add up to the conclusion drawn by the author or that a generalization is supported 
by the facts or argument cited [Kintsch, 1974; Meyer, 1975; Kintsch & van Dijk, 
1978]. What is remembered, though, is that portion of the text hierarchy that is 
integrated into the network of long-term memory. 

Thus, both writing and reading involve a series of transformations in which 
different cognitive processes transform information in one structural form into a 

November 1987 Hypertext '87 Papers 199 



different structural form. For writing, that dynamic is network to hierarchy to 
linear sequence. For reading, the dynamic is reversed. (A more through discussion 
of cognitive modes can be found in [Smith and Lansman, 1987].) 

2.3. Implication for printed documents 

Central to both writing and reading is the hierarchical form of information. 
Perhaps that is not surprising since research in reading comprehension has shown 
scientifically what many writers have known intuitively: that hierarchy is an opti
mal form for most expository documents. Consequently, features that highlight a 
document's (hierarchical) structure increase its comprehensibility. 

More specifically, thematic titles presented prior to a well-structured text sig
nificantly increase free recall of the content of that text [Schwartz & Fla=er, 1981]. 
Within a text, advance organizers- passages containing the main concepts of a text 
or section of text but at a higher level of abstraction - positively affect comprehen
sion [Ausubel, 1963]. Hierarchical texts in which the structure is signaled or cued 
are comprehended more effectively than texts in which the structure is not signaled 
[Meyer, Brandt, & Bluth, 1980]. At the paragraph level, inclusion of a topic- or 
theme-sentence in the initial position, rather than in an internal position or not 
at all, results in more accurate comprehension [Kieras, 1980; Williams, Taylor, & 
Ganger, 1981]. 

Consequently, for efficient, effective co=unication, a writing environment 
should support and encourage development of documents with these characteris
tics. 

2.4. Implication for hypertext documents 

This research has significant implications for developers of hypertext systems. 
Readers of hypertext documents are likely to have problems comprehending what 
they read similar to those of readers of conventional documents. The same features 
that facilitate comprehension there are also likely to apply to electronic documents
a well-defined structure that is clearly signaled, advance organizers such as overviews 
and descriptive titles, and topic statements within individual paragraphs or content 
units. All of these help the reader develop a high-level understanding of the docu
ment's content and purpose that serves as a framework in which to understand and 
attach its details. 

The underlying model for most hypertext systems is a directed graph in which 
content units are associated with the nodes and the sequences in which the reader 
may access them determined by the links. However, a network of information has 
properties very different from those of a hierarchy. By definition, a hierarchy ad
dresses a single, high-level concept or purpose. Thus, it is well-suited for writers 
who wish to argue a single point or produce a specific action by their document. A 
network has no such central thrust. Rather, it is an environment in which different 

200 Hypertext '87 Papers November 1987 



readers may immerse themselves for different purposes and with different expected 
results. Thus, the emphasis is on the experience of the reader rather than any spe
cific motivation or action. We can easily imagine new forms of entertainment, new 
literary genres, or even bodies of research materials with directed graph structures. 
But we cannot foresee purposeful, action-oriented co=unications in this form. 
Hierarchical documents, on the other hand, provide the reader with a sense of the 
whole by including high-level overviews that describe what will follow. Structural 
information of this sort does not exist in a directed graph. Most network-based 
hypertext systems have ignored the issue of global structure. Instead, they simply 
provide for each unit of information the links in and the links out. And most readers 
quickly get lost in the tangle. 

While visual tools for helping readers grasp large graph structures are promis
ing, (see Figures 5 and 6, below), the issues of purpose and focus are inherent. 
In the section that follows, we will describe the WE system, pointing out as go 
along how it has addressed these issues. After that, we will return to these same 
concerns, suggesting a somewhat different perspective of hypertext that may help 
resolve some of these problems. 

3. Description of WE 

WE was designed to be congruent with the cognitive theory of writing outlined 
above. In describing the system, we will first discuss its multimodal design, then 
the function it provides for moving intermediate products from one system mode to 
. another, and, finally, several special features including a zoom and roam function for 
searching a large graph structure and controlling the display, WE's interface with 
an underlying database, and print options. We will also describe WE's hypertext 
features and several extensions we plan to make to the system in the near future. 

3.1. Modes 

WE supports each of the major phases of writing in a separate window or 
system mode. The rules that underline each cognitive mode are reflected in the 
operations WE supports in the corresponding system mode. WE's structural modes, 
shown on the left of Figure 2, support representing information units as nodes, 
moving these nodes from one place to another, and defining relationships among 
them in the form of directed links. WE's encoding and editing modes, shown on the 
right side of the screen, only permit manipulation of the content (currently, text) 
associated with these nodes; structural operations are not allowed in these. A more 
detailed explanation of each of WE's modes follows. 

The user interface provides direct manipulation of visual objects. Objects are 
selected by pointing with a mouse. Pressing a mouse button provides a pop-up 
menu specific to the type of object selected. Thus, user operations are organized 
around a taxonomy of visible object types. 

November 1987 Hypertext '87 Papers 201 



Writing [nw.-....t .... ,.. (w-&poc" ~~~ ...... ~~~~~=··-·· "!!' 
I\I[TWOAK MOO£: I'QI 41 VIew COftt"" Olop~o&riPrint YU:T 1.400( IV!. .. <Mitro! ~tpl.o.y/Prinl 

::;;: 

TIIEE MOOO T"'• 41 Vl<l .... Contn>l Obpior!Priftt 

="""' vlo .. CMU'OI "s.pl(ly/Prinl 

Figure 2 

WE: Default Screen Layout 

202 Hypertext '87 Papers November 1987 



3.1.1. Network Mode 

Network mode, shown in the upper left quadrant of Figure 2, is intended to 
support the early exploratory phases of document development. It is also the mode 
normally used for hypertext. The cognitive processes, described above, for the corre
sponding cognitive mode are retrieving potential concepts from long-term memory 
andfor from external sources, representing these concepts in tangible form, clus
tering them into related groups, defining specific relations or associations between 
pairs of concepts, and constructing small hierarchical structures. 

The system functions for network mode were designed to support the corre
sponding cognitive processes as directly and as unobtrusively as possible. To rep
resent a concept, the user may point anywhere in the visual space of WE's network 
mode and select create node from the menu. He or she is then prompted for a brief 
title to label the node. As the set of nodes/ideas grows, the user's cognitive orienta
tion is likely to shift to building small clusters of ideas. The move option, selected 
from the node menu, can be used to gather concepts into spatial groups. To make 
relations between nodes explicit, the user may link them and give the link a title. 
The writer who thinks of links as indicating a super/subordinate relation may use 
this options to build small hierarchies. Figure 3 shows a network constructed by 
exploring the cognitive concepts related to WE. 

As patterns of nodes emerge on the screen, they produce a similar change in 
the pattern of concepts in the writer's mind. At some point, the author is likely to 
shift from exploring the ideas and relations inherent in the data and his or her mind 
to constructing a single, integrated structure for the document. Thus, the writer's 
intention shifts from possibility to commitment. At this point, he or she may pause 
to tidy up the exploratory clusters in preparation for moving into a different mode 
of thinking and working. 

3.1.2. Tree Mode 

Tree mode helps the user build a single, integrated hierarchical structure for the 
document. Noting super- and subordinate relations as was done during exploration 
is frequently almost a reflexive cognitive process, but constructing a large integrated 
hierarchical structures is not. It requires additional processes. The writer must 
think on a broader scale, noting relations among not just small groups of concepts, 
but whole substructures of ideas. He or she must also note parallel relations among 
similar configurations as well as balance the overall structure. In short, organization 
is a process of conscious, deliberate construction. 

WE represents the hierarchy as a tree, as seen in the lower left quadrant of 
Figure 2. Figure 4 shows an expanded tree mode. The constraints for tree mode 
are different from those of network mode. It is no longer possible to create isolated 
nodes; new nodes can be created only in relation to the tree. To add a node, the 
writer first selects a node in the tree. He or she can then add a 'child' (subordinate 

November 1987 Hypertext "87 Papers 203 



!•• 
I eo..,.. ... .. -''==--, 
.--r~ .-. ., 

\ 
I,. ..... ......... 

Figure 3 

WE: Network Mode 

204 Hypertext '87 Papers November 1987 



··-~ -· ·~-wttt~r>t~r ....... 
" TN:E 11M)()(: T,.. a .......... ~,.-c • 

::;:: 

rr-- I re:_"-- J 
Oogn!M ,.._ ..,J 

~eub..,Wl wrktotn -.nk:adon 

i~- fW printed - .. .re_--
J ~.-·'I LLIIIOplc.&-. .... ,.~ .. J{--·-HT'"'- ___ .,.Wf: J 

rl- J 

}{ 
!lilt ... - J t: ll:'~uc~ '{"'"""' ~-HDucrlptlon ., WE ~ TeK1 ....... 

J 
rr-&ftiiRo&ll> 

~-- J- '1" ...... 
• 

~ ~:~ ~~- ':.,.. 
• 

Figure 4 

WE: Tree Mode 

November 1987 Hypertext '87 Papers 205 



concept), a 'parent' (superordinate concept), or a 'sibling' (parallel concept). Nodes 
may be moved from our place to another in the tree. In fact, entire subtrees (a node 
and all its descendants) may be manipulated: moved, deleted, or made the focus of 
display. But neither nodes nor branches may be moved out of the tree and remain in 
tree mode, since the rules of this mode constrain the product to a single hierarchical 
structure, not a forest. 

One of WE's strength is its support of information flow across the modal bound
ary between network and tree modes. Moving concepts is simply a matter of copying 
and pasting nodes. Both operations may be done to and from either tree or network 
mode simply by selecting the node to be moved in one mode and then pointing to 
the position where it is to be pasted in the other mode. Moving structures of nodes 
is done the same way. If the structure in Network Mode is hierarchical, the opera
tion is straight forward. If it is not a hierarchy - e.g., a graph containing a cycle -
WE transforms the graph into a hierarchy by applying a depth first algorithm that 
breaks links that cross the hierarchy. 

A subtract tree operation in network mode provides a form of negative infor
mation flow. When a branch of the hierarchy is selected in tree mode, the subtract 
tree operation removes from the display in network mode all the nodes contained 
in the branch. Thus, only those ideas/nodes will remain displayed in network mode 
that have not yet been integrated into the document's hierarchical structure. 

3.1.3.1. Editor Mode 

Editor mode, shown in the lower right quadrant of Figure 2, provides access 
to a standard text editor. It is used to encode the concept represented by a node 
into text. In the current system, that editor is the Smalltalk text editor. In future 
extensions of WE, the system will support additional text editors as well as editors 
for other kinds of data, such as graphics, sound, and video. At that time, the editor 
invoked will be keyed to the data type of the particular node. 

To begin writing, the user points to the node in either tree or network mode 
and selects the edit option on the menu. This transfers control to editor mode. Text 
may then be keyed in, deleted, and so on. The user leaves editor mode simply by 
moving the cursor from that area of the screen into any of the other mode windows. 

3.1.4. Text Mode 

In text mode, shown in the upper right quadrant of Figure 2, the document 
is presented in linear form much as it would appear in printed form. Text mode 
constructs a representation of the continuous document by stepping through the 
tree - from top to bottom, left to right - inserting node labels as section headings, 
followed by the blocks of text associated with the nodes. A scroll bar permits the 
writer to move forward and backwards through the document as a whole (the path 
through the tree). A long-term goal is to make the representation identical to final 

206 Hypertext '87 Papers November 1987 



formated output. Currently, text mode provides three editing regions within its 
window. As the tree is traversed using the scroll bar, the blocks of text associated 
with the various nodes are moved into the three areas of the window. 

Within each area, a second scroll bar permits the user to move through the 
text for the individual node displayed there. Thus, by scrolling to the bottom of 
one section and the top of the following section, the writer can see how the text 
for the two nodes fits together. The writer can edit the text for each node using 
the Smalltalk editor, just as in editor mode. Text can also be moved from one 
area/node to another, and the section headings (node label) can be edited, as well. 
However, the node itself can't be deleted or edited structurally from text mode. 
This can be done only from tree mode. 

3.2. Special Features 

WE provides several additional featuring that are not, strictly speaking, part 
of the writing process. These include a zoom and roam option for managing a group 
of nodes too large to fit on a single screen, an interface for a supporting database, 
and options for printed output. 

3.2.1. Zoom and Roam 

Navigation through the two dimensional space of computer displays has typ
ically involved some form of scroll bar. Unfortunately, these do not present any 
overview of the space being explored. WE uses a different technique, called roam
ing, that was originally developed by other members of our research group [Beard 
& Walker, 1987]. The user can invoke the roam and zoom display from either net
work or tree modes: the system will then display in a pop-up window a very small 
representation of the entire graph or hierarchical space with the area of the current 
display indicated by a box, (see Figure 5). This box can be directly manipulated 
to change the scale or position of what is then displayed in the mode window. Fig
ure 5 shows a stretch box and Figure 6 shows the resized network mode that was 
produced as a result. 

3.2.2. Database 

WE is intended to be used in conjunction with an object oriented database 
system in which all structural information is stored. To support this interface, WE 
uses low-level data objects that correspond with database operations. These objects 
are currently of three types: structures, nodes, and links. Structures are typed, 
named sets of links (and, by implication, associated nodes). The type indicates 
whether the structure is a graph, hierarchy, or path. This information is used 
by the system to determine the operations that can be performed on the particular 
structure. Each node is also viewed as a typed object. Associated with it are various 
attributes that identify the type of content "within" the node and, thus, bind it to 

November 1987 Hypertext '87 Papers 207 



Wortr. 8piiCG 

'" 

c=l. 

Figure 5 

WE: Roam arid Zoom View of Network Mode 

208 Hypertext '87 Papers November 1987 



Wft<ingCn""-• ,,.... wn Sp&eo -· ,7 .. _ 

NETWOfVt Jo400t: ~~ • VMw C:0..1rol 01 ...... 7~· '" r:-
li: 

9 

I"' I I Default layout., I l~ 
""""lpio Coori''"l l'nlcUMS 

1··-·~~-1 ,- L 
... 

-' 1'"'··- I 

\ \ r o .. c:ripdon <It \!11 l--
1"··- I r::-

~~U·H I ·--
I·~ ~ .. , .. I 

1'-- I INetw..,.-.: 
I 

Figure 6 

WE: Resized View of Network 

November 1987 Hypertext '87 Papers 209 



a particular editor/display program; its spatial dimensions in network mode space; 
and both its associative and hierarchical links. Links are attributed pairs of node 
identifiers that define the directed arc. Attributes indicate the structure of which 
the link is a part and additional system information. 

Currently, the database is confined to a. single document, but we will extend 
its definition to permit teams and departments to store collections of documents 
and other kinds of data. Thus, future users will be able to search the database 
for information relevant to a current project. Once a usable node or structure is 
found, it can be imported into the environment and included in the structure being 
developed. 

3.2.3. Printed Output 

WE produces output for a laser printer, although actual formatting is done 
by TeX using commands inserted into the text by WE. The detailed mechanics of 
the printing process are, of course, installation dependent. However, two levels of 
intervention are available to users. First, the TeX files, themselves, can be saved 
and modified as necessary. Some sections of this document were prepared using 
WE, others with a conventional editor; the two groups were integrated in this way. 
Second, the TeX macros that format the headings, select the fonts and spacing 
between sections, and so on, are stored in a dictionary and can be changed by the 
users. 

3.3. Extensions to WE 

WE is an evolutionary system. We will continue to enhance it, providing 
additional functions and additional capability with respect to the size and number 
of documents. High on the list of priorities are functions to help users manage 
multiple drafts of single documents. Most of these extensions will be implemented 
in terms of the database design when WE is merged with an underlying object
oriented database system. 

A more fundamental enhancement will allow WE to handle distributed writing. 
There are many (perhaps most) projects that are too big for a single person. The 
next major step in the development of the Writing Environment will be to support 
collaborative writing. A group of writers, possibly widely separated geographically, 
will be able to work together to produce a single product. Each user will be able to· 
see a single shared workspace and will be able to manipulate the workspace under 
a managed collaborative paradigm. 

A longer term goal is to merge another system we are developing- MICRO AR
RAS [Smith, Weiss, & Ferguson, 1986], an advanced full-text retrieval and analysis 
system- with WE. This will provide fast, flexible content-based searches as well as 
other analytic functions. 

210 Hypertext '87 Papers November 1987 



While we have chosen to characterize the system in terms of writing, it is 
actually a more general tool. It is useful in many other information management 
applications where the major steps are: 

• conceptualization - the generating of ideas; 

• organization - imposing structure on those ideas; 

• modification - refining the ideas and structures; 

• and linearization - defining linear paths through the structure. 

Such applications include designing a building, planning a logistical operation, or 
writing a large computer program. In each case, the process begins with the cre
ation of a graph structure or hypertext of content units. The nodes represent the 
individual components of the operation, and the links represent the dependencies. 
Implementing the operations requires that the hypertext be linearized, for example, 
along a single time line. WE will provide tools to develop additional modes tailored 
to particular applications. 

4. Experimental Studies 

4.1. Protocol Tracker and Cognitive Grammar 

In addition to serving as a tool for writing, WE can also be used to observe 
how people write. We have implemented an on-line tracker that captures a user's 
interactions with the system. That information is represented as a sequence of 
symbols, with attributes, that constitutes a history of the session. We have also 
built a replay function that permits us to replay the session in time proportional to 
the original session, in uniform time, and in manually controlled steps. 

We are developing a more powerful tool for analyzing these data. To be com
prehensible, the low level data must be transformed into symbols that are more 
general and more indicative of the user's strategy. That is, users think in terms of 
high level conceptual phrases but they enact those phrases as a sequence of lower 
level operations. For example, the conceptual phrase might be to create a cluster of 
ideas. This is accomplished in WE by creating a set of nodes, labeling them appr<>
priately, moving them near one another, and, perhaps, linking them together. We 
are developing a cognitive grammar by which low level operations can be mapped 
to a small set of conceptual phrases and higher level constructs. The parse trees 
produced by the grammar will provide insight into the user's overall writing strat
egy. By comparing the strategies of different classes of users (for example, expert 
technical writers vs. novice writers), we hope to develop more effective and efficient 
writing methodologies and tools. 

November 1987 Hypertext '87 Papers 211 



5. Conclusion 

We conclude by returning to some of the questions and issues raised at the 
beginning of this paper. While the processes of reading and writing conventional 
documents have been studied in considerable detail, we still have a very limited 
understanding of the cognitive processes and strategies that produce effective in
formation transfer. We know even less about such communications for electronic 
documents. A major line of research that should go hand in hand with the devel
opment of hypertext and other electronic document systems is formal, controlled 
experimental studies of users' interactions with these systems followed by actual
use studies to confirm results. We are committed to this approach as an integral 
part of the development method for WE; we know of at least one other research 
group (Xerox PARC) that, we believe, shares this concern. But this is a large and 
complex area of inquiry that will require additional researchers as well. 

In many respects, hypertext is a state of mind. It has been described fre
quently as a tool to enhance the user's mental abilities, as an environment in which 
to think, etc. It is essential, however, to remember that human beings don't exist 
in only one state of mind. We use multiple cognitive modes for different intellectual 
tasks and purposes. (Figure 1 showed the organization of those modes for written 
communication.) But, as suggested above, hypertext in its fundamental form- a 
directed graph of information components - is most consistent with one particular 
mode of thinking - exploration. Exploratory thinking usually occurs early in the 
development of a set of ideas. Such thinking is an integral part of the overall cog
nitive process not just for writing but for many forms of productive, professional 
work. But it is an end in itself for only certain situations. Great for an aesthetic 
experience - James Joyce, or more likely, John Fowles, would have loved it as a 
literary medium. Great for an undirected, free-flowing learning experience, anal
ogous to spending an evening browsing through an encyclopedia. But as a tool 
for professionals, hypertext, we believe, will become a supporting utility over which 
more constrained applications will be developed rather than the primary application 
system, itself. To be truly effective, hypertext applications must match additional 
power with additional control and structure. In the long term, constraints may turn 
out to be more important than raw power. 

Looking further into the future to a time when large distributed databases of 
hypertext documents will exist, we don't see (or don't want to see) a fiat, hyper
plane of spaghetti. Rather, we believe that out of that hyperplane will emerge 
peaks of understanding and purpose created by professionals using powerful new 
tools. These peaks will be criss-crossed, to be sure, by multiple paths and relations, 
sometimes visible, sometimes not. But each peak will be supported by a single, 
integral hierarchical structure. 

We share the.enthusiasm for hypertext that is growing daily. But we hope that 
trail-blazers will think about where they are going in addition to how to get there. 
And that those that follow them will do so for purpose as well as for possibility. 

212 Hypertext '87 Papers November 1987 



6. Acknowledgments 

A number of individuals and organizations have contributed to the work de
scribed here. We wish to thank our sponsors for both their financial support and 
the advice and encouragement provided by their program officers. These include 
The National Science Foundation, The Army Research Institute, and The IBM; 
Corporation. We also wish to thank our faculty colleagues, Profs. Marcy Lans
man (Psychology) and Jay Bolter (Classics), for their contributions to the ideas 
described here. We also wish to thank the following graduate students who have 
helped to develop WE: Paulette Bush, Yen-Ping Shan, Irene Jenkins (Psychology), 
Valerie Kierulf, and Greg Berg (Psychology). 

'1. Notes 

Ausubel, D. P. (1963). The Psychology of Meaningful Verbal Learning. New 
York: Grune & Stratton. 

Beard, D. V. & Walker, J. Q. (1987). Navigational techniques to improve the 
display of large two-dimensional spaces. Chapel Hill, NC: UNC Department of 
Computer Science Technical Report 87-031. 

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1), 101-108. 

Engelhart, D. & English, W. (1968). A research center for augmenting human 
intellect. Proceedings of1968 FJCC. Montvale, NJ: AFIPS Press, pp. 395-410. 

Kieras, D. E. (1980). Initial mention as a signal to thematic content in technical 
passages. Memory and Cognition, 8(4), 345-353. 

Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ: 
Erlbaum Associates. 

Kintsch, W. & van Dijk, T. A. (1978). Toward a model of text comprehension 
and production. Psychological Review, 85, 363-394. 

Meyer, G. J. F. (1975). The organization of prose and its effects on memory. 
Amsterdam: North Holland Publishing Company. 

Meyer, G. J. F., Brandt, D. M., & Bluth, G. J. (1980). Use of top-level structure 
in text: key for reading comprehension of ninth grade students. Reading Research 
Quarterly, 1, 72-103. 

Schwartz, M. N. K. & Flammer, A. (1981). Text structure and title-effects 
on comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 20, 
61-66. 

Smith, J. B. & Lansman, M. {1987). A theoretical basis for a computer writing 
environment. Chapel Hill, NC: UNC Department of Computer Science Technical 
Report 87-032. 

November 1987 Hypertext '87 Papers 213 



214 

Smith, J. B., Weiss, S. F., & Ferguson, G. J. (1986). MICROARRAS: An 
overview. Chapel Hill, NC: UNC Department of Computer Science Technical Re
port 86-017. 

Thompson, B. & Thompson, B. (1987). KnowledgePro. Software distributed 
by Knowledge Garden, Nassau, NY. 

Williams, J.P., Taylor, M. B., & Ganger, S. (1981). Text variations at the level 
of the individual sentence and the comprehension of simple expository paragraphs. 
Journal of Educational Psychology, 73(6), 851-865. 

Hypertext '87 Papers November 1987 



Argumentation 



Constraint-Based Hypertext 
for Argumentation 
Paul Smolensky1·3 Brigham Bell' Barbara Fox2.3 Roger King' Clayton Lewis1•3 

'Department of Computer Science, zDepartment of Linguistics & 
3Jnstitute of Cognitive Science 
University of Colorado, Boulder, CO 80309 

ABSTRACT 

In this paper we describe a hypertext system we are developing for the support of reasoned 
argumentation: the EUCLID project. We use the project to address two general problems arising 
with hypertext: the problems of controlling user/document interaction, and the problem of 
controlling the screen. We suggest that guiding users' interaction with hypertext is difficult 
because of the unique form of discourse that hypertext represents, and that structuring 
user/document interaction can be achieved through specializing to a particular type of material 
and designing the hypertext system to respect the particular discourse structure characteristic of 
that material. EUCLID's design is tuned to the structure of reasoned discourse. The problem of 
screen management in EUCLID is a serious one, because our presentation of complex arguments 
requires mapping the complex logical relations between parts of realistic arguments onto complex 
spatial relations between items in the display, We describe a general system we are developing 
which provides this high degree of control for hypertext screen management. This system 
represents a constraint-based approach to hypertext, in which the items from the underlying 
database that are to be displayed may each contribute a number of constraints on the layout; a 
general constraint-satisfier then computes a screen layout that simultaneously .satisfies these 
constraints. Each time an item is to be added to or deleted from the screen, the constraint set is 
adjusted and the screen layout is recomputed; thus the spatial relationships on the screen provide 
at all times a veridical representation of the underlying relations between displayed database 
items. This kind of strong screen control is demanded by hypertext applications which, like ours, 
are fine grained: the number of nodes and links being displayed number in the hundreds. 

0. INTRODUCTION 

This paper addresses two general problems arising in hypertext systems: the problem of controlling the 

interaction between user and document, and the problem of controlling the screen. 

Hypertext is a new form of communication that introduces a new challenge in controlling interaction 

between document and user. This challenge arises because hypertext falls in a difficult no-man' s-land 

between the traditional discourse media of ordinary text and conversation. In ordinary text, the reader has 
virtually no influence on the presentation of information, so the author has complete control over the 

organization of material, and an obligation to design an organization that will be satisfactory for the reader. 

In ordinary conversation, the interlocutor has great influence on the flow of information, but the speaker is 
physically present to make real-time decisions about how to dynamically structure that information. In 

November 1987 Hypertext '87 Papers 215 



hypertext, the reader has tremendous control over the flow of information, but the author is not there to 
provide real-time guidance. There is thus a tendency for users of hypertext systems to be denied the kind 
of guidance possible in ordinary text or conversation, guidance that is generally necessary for a user to 
effectively absorb information from a source whose structure is complex and not thoroughly familiar. In 
short, hypertext systems often set up an interaction between user and document that is poorly structured, 
and users simply get losL 

One approach to structuring hypertext interaction is to focus on a certain type of material, and base the 
hypertext interaction on a study of the discourse structure characteristic of that type of material. In the 
work reported here, we have focussed on material that is characterized by a high degree of logical 
structure: reasoned argumentation. By focussing on this reasoned discowse, it is possible to develop a 
hypertext system designed to support user-computer interaction that revolves specifically around logical 
structure. Section 1 of this paper reports on the hypertext system we are developing to support reasoned 
discourse: the EUCLID system.' A fuller description of this system may be found in [Smol88]. 

The second general hypertext problem we address is that of controlling the screen. In presenting large 
complex arguments, it is important to design a well-organized screen in which many logical relationships 
are implicitly encoded in the spatial relations between items on the screen. This will be elaborated in some 
detail below, but to take a simple example, it is often useful to place opposing arguments side-by-side, 
using a representation in which the logical opposition of the arguments is implicitly encoded in their 
relative spatial locations. Such implicit notations are often desirable; they are absolutely necessary in 
situations where explicitly indicating all relationships (eg., by labelled arrows) would create a display that 
is hopelessly cluttered. 

The demands of creating the highly structured displays needed to portray complex arguments has led us to 
·an approach to screen management we call constraint-based display. The basic idea is that every item and 
relationship to be displayed contributes a certain number of constraints on the screen layout; the display 
system then designs an appropriate display by simultaneously satisfying all these constraints. We are 
developing a general constraint-based hypertext system for displaying items selected from a large network 
database, and applying this general system specifically to our argumentation domain. 

216 

Section 1 of this paper is a description of the EUCLID system for supporting reasoned discourse. This 
motivates the constraint-based approach to hypertext, and gives a concrete arena in which to then discuss 
the constraint-based approach in Section 2. The project is in its early phases: much of the system to be 
described has already been implemented; the remainder has been designed and is currently being built. 

1. REASONED DISCOURSE AND THE EUCLID PROJECT 

Spoken language, writing, and mathematical notation and proof are symbolic systems that have profoundly 
affected human reasoning capacity. Modem computers are powerful, active symbolic systems with the 

I. The environment EUCUD is unrelated to the programming language Euclid [Lamp77, Holt83]. 

Hypertext '87 Papers November 1987 



potential, we believe, to provide significant further advances in human reasoning ability. 

In this Section of the paper, we describe a tool we are developing for helping people create and assess 
reasoned arguments and communicate these arguments to others. The tool provides reasoners with a 
language, ARL, for expressing their arguments in a clear, precise, and relatively standardized fashion. The 
medium in which this language is realized is a computer environment we call EU=. 

In Eu=. the computer plays a role analogous to acoustic or print media in verbal or written 
argumentation: it provides a medium-an extremely powerful one-for supporting logical discourse 
among human users. We are not proposing to use computer reasoning to replace human reasoning. Our 
goal is to give users the expressive and analytic power necessary to elevate the effectiveness of their own 
reasoned atgumentation. 

1.1. The goal: Enhancing reasoned discourse 

A central activity in theoretical reseateh is the construction of reasoned atguments supporting theoretical 
conclusions. The problem we address is a practical one: bow can this activity be effectively suppotted? 
While our focus is on atgumentation of the type found in reseatch papers (for we are developing our tool 
while using it ourselves in our work), we also consider, to a lesser extent, related forms of atgurnentation. 
Other examples of reasoned discourse, in addition to reseatch papers, include policy advocacy for decision 
making (e.g. reasoned letters to the editor), pedagogy in theoretical disciplines such as linguistics and 
physics, and, to a certain extent, reasoned argumentation in everyday conversation. 

The domains of analysis we have in mind are ones that are not strictly formal, so that mathematically 
rigorous proofs are not possible. Our goal is to enhance reasoned discourse that now occurs in natural
not formal-language. 

We take the goal of enhancing reasoned discourse to integrally incorporate both support of explicit 
discourse processes (like reading and writing} and also support of reasoning itself. A clear distinction 
between cognition and communication is patticulatly problematic in the area of reasoning. Atgumentation 
is the construction of a symbolic structure intended to persuade through conformity to certain social 
conventions: reasoning is intrinsically a discourse phenomenon. The point is underlined by a substantial 
body of reseateh on writing which suggests that what writers most need support for is the planning of 
documents: the main problem is deciding exactly what to say, and devising an overall presentation plan 
[Fiow80, Greg80, Kell85a, Kell85b, Kell88]. Even in the writing of few-patagraph business letters, people 
spend two-thirds of their time planning [Goul80). In the domain of reasoned discourse, it is clear that 
planning-laying out the line of argumentation-is a crucial and almost completely unsupported activity. 
The process of planning a reseateh paper-the worldng out of the claims to be made and the arguments to 
support them-is essentially the process of catrying out the theoretical component of the reseatch itself. 

Our goal, then, is to provide a tool to facilitate reasoning and enhance reasoned discourse, patticularly 
writing. 

November 1987 Hypertext '87 Papers 217 



218 

1.2. The tool 

In this section we specify the functionality that ARL and EU= are intended ultimately to provide. 
Presently, only part of this functionality has been implemented. 

1.2.1. ARL: An Argumentation Representation Language 

Our fundamental hypothesis is that in conslructing an argument, twO kinds of knowledge are brought to 
bear: knowledge of the subject domain, and knowledge of argumentation per se. These respectively 
manifest themselves as argument content and argument slructure. A general purpose argumentation tool 
helps the user by virtue of its knowledge of argument slructure, not argument contenL 

Drawing a clear line between slructure and content is so crucial to this research that we find it useful to 
give that line a concise name: the Divide. Content information is below the Divide; slructure information 
is above the Divide. Examples of assertions below the Divide are: 

• Lower interest rates lead to bull markets. 
• linguistic principle X is universal. 
• Approach Y to knowledge representation is seriously flawed. 

Above the Divide we find statements such as: 

• Claim C 1 supports claim C 2• 

• Claim C is the main point of argument A. 
• Claim C is made by author S. 
• Claim C 1 made by author S 1 contradicts claim C 2 made by author S 2· 

• Term Tis used by author S 1 to mean phraseD 1 but by authorS 2 to mean phrase D 2• 

This latter sort of information is often not explicitly stated in text, but in it lies the slructure that 
characterizes reasoned discourse. (The crucial importance of information above the Divide has also been 
emphasized by Zukerman and Pearl [Kuck85]. In the tutoring context, they have studied how such 
information is introduced through natural language expressions they call meta-technical utterances.) 

Information below the Divide involves terms and predicates that vary completely from one domain of 
argumentation to another. But information above the Divide involves a reasonably constant vocabulary: 
the examples above use the terms claim C, argument A, authorS and the predicates supports, main-point, 
asserts, contradicts. This vocabulary is characteristic of reasoned discourse in any domain. 

ARL offers a set of primitive term-types and primitive predicates for formally describing argument 

slructure, such as those mentioned in the previous paragraph. In addition, it incorporates high-order 
slructures formally defmed by combining simpler ones: for example, high-level standard schematic 
slructures for arguments, arguments by analogy, allegations of misrepresentations, and argument 
refutations. 

To give users the expressive power needed in real argumentation, ARL must let users extend the 
language's set of primitives and must provide the machinery for them to formally create their own high-

Hypertext '87 Papers November 1987 



order constructs. 

The ARL statement corresponding to "Claim C 1 supports claim C 2" uses the formal predicate supports 
to relate two entities that have formal type c~aim. The content of each claim is not expressed formally, 
but informally, in natural language. For example, the content of C, might be "Lower interest rates lead to 
bull markets. • Thus ARL is a semi-forma/language: argument structure information (above the Divide) is 
represented formally, while argument content (below the Divide) is represented infonnally. The computer 
has access to the semantics of the formal information, but only the user has access to the semantics of the 
informal information. 

We believe that the notion of semi-formal language is potentially of great value to the design of effective 
joint human/computer systems: its applicability extends beyond joint human/computer reasoning, to 

include nearly any joint human/computer activity. 

1.2.2. EUCLID: An Environment for User Construction of Logical Informal 
Discourse 

A formal representation of the structure of the argument contained in a theoretical research paper is too 

large for anyone to explicitly represent without the help of a data manager. The computer environment 
EUCLID keeps track of ARL representations, allowing users to select porti<ms of the argument to be 
displayed on a high-resolution graphics terntinal. In addition to displaying ARL structures, EUCliD allows 
users to add new structures, and modify old structures. Users can state that they want to create a new 
instance of a higher-level construct (say an analogy), whereupon EUC!lD prompts the user for the necessary 
inputs and manages the details of creating the necessary data structures. Information is displayed in ways 
specially designed to show the various argument components. For example, there are special displays for 
analogies, refutations, or retrieval requests like "show all claims whose validity depends on this one." 
Along with the capability to create new types of argument structures, users have the capability to specify 
new ways of displaying them. Users also have considerable choice among alternative types of displays. 

An argument created in EUCUD may contain full pieces of text: EUCliD is intended to provil!e a unified 
environment for working out an argument and expressing it in text. A specific example will be illustrated 
in the next section; to give the general idea, reading a "journal article" in EUCUD might proceed like this. 

After reading the abstract, the user decides what further information is of most interest: an experimental 
procedure, a source for a "fact," a theoretical argument, the theoretical assumptions. The requested 
information is retrieved and the screen is reconfigured to incorporate the new information, which is 
displayed in a manner reflecting its information type. The retrieved information might be a piece of text, 
like a section of a paper, or perhaps a table or graph, or even a running program. In one unified ARL 
datastructure is contained both the underlying logical structure and the pieces of text that present the 
argument. EUCUD is a hypertext system specially tailored for logical material-reasoned discourse. 

1.2.3. An example: The Chinese room debate 

As an example of how EUC!lD might look to a user reading an argument, we will consider an argument that 
has been our testhed: the "Chinese room" argument of John Searle [Sear80]. This argument claims to show 
that instantiating an AI program-even one that could answer questions indistinguishably from a human 
and thereby pass the Turing test-cannot be sufficient grounds for saying that a machine "understands" in 

November 1987 Hypertext '87 Papers 219 



220 

the full sense of the word. The core of the argument is the following analogy. A Chinese story is slipped 
under the door of a closed room, and then Chinese questions about the story are slipped in. Back under the 
door come Chinese answers to the questions, indistinguishable from those of a native speaker. As it 
happens, inside the room is Searle himself, working away at copying Chinese symbols he doesn't 
understand from big books under the guidance of a complex set of English instructions. According to 
Searle's analogy, the Chinese characters are to the Searle in the room as English is to a question answering 
computer: completely meaningless forms being manipulated without any understanding. 

The commentary from numerous cognitive scientists that was published with the article reveals a 

tremendous diversity of outlooks, and appears to evidence a considerable amount of confusion about just 
what Searle's argument is. The argument is still highly active today, meriting an entire session of the 1986 
meeting of the Society of Philosophy and Psychology. Our goal is to use EUCLID to delineate, as clearly as 
possible, the positions taken by the numerous participants in the published debate; in the process, the 
expressive adequacy of ARL and the usability of EUCLID will be challenged by a truly worthy argument. 

Figures 1 through 6 illustrate how EUCLID might be used to study an ARL representation of the Chinese 
room debate. We imagine the user has read the text, and is ready for an analysis. Figure 1 gives a tabular 
display of the top level of Searle's argument. This is a relatively clean display, in which a lot of relatiolllll 

infonnation is implicit in the arrangement of items on the screen. Figure 2 shows the relationships 
explicitly. The left side of the diagram are claims and arguments that Searle attributes to his opponents, 
those accepting the position of "strong AI." On the right side of the diagram are the claims and arguments 
that Searle accepts. At the very top of the left side is the main claim of the strong AI view. Immediately 
beneath the strong AI position are three arguments supporting it, which Searle attributes to his opponents; 
to the right of each one is Searle's counter-argument. Below these counter-arguments are Searle's 
arguments in favor of his own position, the main claim of which is stated at the top of the right column. To 
the left of Searle's arguments are refutations of them which them he attributes to his opponents and to the 
right of these are his counter-arguments. 

A user facing the austere display of Figure 1 might request that the implicit relationships be made explicit, 
giving rise to Figure 2. Next we suppose the user to have selected "The Chinese Room" for further 
infonnation about Searle's key argument. This selection leads to a new display, Figure 3, which expands 
upon the selected item. (Note that the new display is coherently displayed without intervention by the 
user.) Figure 3 shows the form of the Chinese room argument it is an analogy, and is displayed in an 
appropriate form. On the left side of the Chinese Room display are the elements of the Chinese room 
domain; on the right side are the corresponding elements of the AI system. Searle's analogy is a mapping 
that carries elements and claims from the Chinese Room domain into elements and claims of the AI 
domain. 

Having been shown the explicit form of the Chinese Room analogy, we next suppose that the user wishes 
to consult the text to check the accuracy of the analysis given for the analogy. Figure 4 shows the text 
separated into pieces that are explicitly connected to components of the analogy analysis. Deciding this 
representation of the relationships is too messy, the user requests a simpler representation. Figure 5 show 
the text, unbroken, next to the analogy analysis. After selecting a particular item in the analysis, the 

Hypertext '87 Papers November 1987 



Strong AI 

An AI program 
(running on a von Neumann machine) 

thai can pass the Turing test lacks no 
important element or understanding 

The argument from Information proceulng 

The argument lrom behavior 

The argument from implemcntalion Independence 

The systems reply 

The robot reply 

The brain simulator - reply 

Searle 

An AI program thnl cnn i>nss the Turing test 
lacks an lmporlonl element nr understnndlng 
ibnt would be J>resenl If the pro~rum were 
Implemented on a machine wilh the cuusal 
powers or lhe bruin. 

The argument from formalily 

Jusl behaviorism 

Juat modern-day dualism 

The argument !rom formality: 
The Chinese room 

The inlcrnal Chinese room 

The Internal Chinese room 
+ peripherals 

The argument from water pipes 

The argument from lactation 

Figure 1. An example EUCLID screen showing the high-level argument structure in an analysis of the 
Chinese room debate. Figures 1 through 6 are MacintoshTM mock-ups from the system design. (Figures 7 
through 10 show screens from an implementation.) 



'The 

Strong AI 

An AI program 
(running on n von Neumann machine) 
that can l'nss !he Turing test lacks no 
important element or understanding 

supports 

The argument from information processing 

The argument from behavior 

argument hom implementation independence 

The s)'slcms reply 

The robot 

The brain sirnulalor reply 

Searle 

4 
cotUradicls ~ 

An AI prognm that con pass lh1· Turin~ lest 
lucks an im11ortnnt clement or uuderstunding 
that would be Jlresent if the program were 
implemented on n machine with lhe caus-nl 
powers or the brain. 

refutes 
The 

rej1Hes 
Just 

refutes Just 

refult:s_ 

.... refules 

argument born formality 

behaviorism 

modcm·dmy dualism 

The argument from formalily: 

· Thr !.'It lit~>~· .I\ llt11!1 . 

The internal Chinese room 

The h1lcrnal Chinese room 
+ peripherals 

The argument from water pipet 

The orgumcnl hom lactation 

.'fllf'jiOTIS 

Figure 2. The screen of Figure 1 after relations that were implicitly represented by spatial relationships have 
been explicitly represented by labelled arrows. One node on the screen, "The Chinese Room; has been 
selected lor expansion in place. 



Strong AI 

An AI prngram 
(running on • von Neumann Jnuchlne) 
I hal can pass I he Turing Its I lack! no "4o conlrodicu,. 
hnporliiRt element or understandin& 

supp6riJ 

lhe argument hom lnlormatlon proceulna 
_ refulu 

The argumcnl hom behavior 
~ refulu 

Tl1.: argument hom Implementation Independence .... refutes 

rc{ulu 

J The J)'Jienu reply llt./ufu 

The robot reply 
rCJU!CJ 

The brain almuhlor nply 
vcfutu 

Searle 

.!\ u AI program I hill can 111155 llu: Tudug ~csl 
lucks an huporiiUll elemcnl ur untlerslandlng 
I ~----------------------------, 
I !IUf>f>Off.l 

p 

T 

Ti 

The Chinese Room 

domains: The Chinese Room AI rrngnm on von Neumann un.chinc 
that c:an pan Turing lui 

mopped 
eltme,.ls: wrlllcn Chinese symbols Jll u:rlpu 

wrillcn Clllucsc aymbuh Ill siory 
wrlllcn Chinese l)'mbuh Ill questions 
wdltcn Chinese symbols 1.1 answers 

Searle (s) Yon Neumann compulcr 

wrltlcn English lnstruclluns machine languase compilation of AI proaram 

1 performs formal syn bol compulcr performs rormai aymbol 
mlllnlpulallons manlpululons 

1 producu •ymboh lhal tompulcr produces iymboh lhat 
humans judge coareci humans judge corlecl 

dlnclt: 1 lackt an lmp01lont clencnl {compuler lack.l an lmporlanl clement 
ol understanding Chinese ol understanding English) ---1-------

The lnlc~nal Chinese room 

The internal Chinese roont 
+ peripherals 

The lfgumcnl from water pipes 

The argumcnQ from h~<lation 

Figure 3. The screen of Figure 2 after expansion of the Chinese Room argumenl. 



Strong AJ Sen ric 

An AI program 
(runnlna: Oil a ~on Neumann hlllChlnt) 

lhal can pau lilt Turlna: lUI locks no •~'"""""'"'=•='"''"'"-' lmporlau6 tltuuul ur undtrstaruliug ,. 

An AI 11rogram ihnl un pass tlu: Turin& tell 
lurks nu Jmpurtnnt tltmenl of undtrshndlnl 
llntl would be prutn! If llu: prognw~ wue 
hiiJIIrmt·nacd un a machine will! lht causal 
jiOWCI"S o( !he IJruJn, 

~---------------------------. 

~~~pporiJ 

The IIIJIImtnl hom lnfofm&tioo protcllin&
... ,,, .. ,,,

The usumenl rtom behnior ... ft/1111!1

The UJIInltnt hom lmplemcnl•lloo Independence te{ulu

Tnt: Scule'a lfliele, pp. 417·1

Suppo1e that I'm Jodcd in 1 room ~nd alven e iarse bueh or Chinese writinG.
Suppote furthermore (u h indeed lhc usc) !hat I know no Chinese, ehlu:r

Wlittcn or 8pokcn, and thai I'm nol evUI nrc lh~l I could rccosnl7c Chinuc
w!ilin& u Chinen wrillna dhlinel flom, say, Japanese writina or munlngleu

S<JIIiules. To me, Chione wlilina h just so m•ny munin~~;lcu 1quil:1:les.

Now IUppnsc hulhcr thai dtcr lhi1 fiul balch of Chincu:
~witin& i am sh·cn a ~econd bitch of Chinese script

IOg~lhcr with e 1c1 oB ru!u lor enrrclatin& lhe 1ccnnd balch with !he
fiul batch. The 11ulu are in Enslhh, and I undentand these ruin

os well u any other natllle speaker nl English.

They uuble n•c: to condtle one ICI of form•l aymbnls wllh 111111hcr
set ot lorm•l symbnh, and &II !hal ~in1mal~ means here h thai i

no idcnlify lhc aymbob entirely b)' their 11hapcs.

Now 111ppou: nho !hat I em gi~en a third batch uf Chinue syml•oh

iuj!,clhcr "'·ith 3ome hutrucllons, aaain In F.ngli•b, th11 enal.olc
me 10 couelltc clcmcnu of thil thhd hidt with the finl two baitltu,

anLithcie 111lcs !nstrucl me bnw ao &ivc ln~lc urlain Cl1inese aymbub
with eeJI~in su!U of !hares in rurnnsc In unain sorts of shaJ>U

given me In the ihild bat~h.

Surrnsa: Dhlll that after l!. wltilc I Jcl go ,~tood al lullnwing Uu:
inutucaionz (Cif menipuluins; the Chinese 1ymboh and the

rro8nmmus act •~ snud 11 wlitins ibc fHugums that lwm the
ulcrn•! roinl nl v!cw ... my an~WtiS au: absnluacly

iruUuinsuhhnblc lrom lhoJc Df n1tlvc Chinuc IJ>Ukcn.

II ~ceon~ no me quhc nbv!uua In !he cump!c 111~1 ! do !llll
undu&laod a wnrd nr tiu~ Chinuc Jillllu.

Tl1c argument hom rormllity

.hn beh11viorlsm

JuS! mudcw-day duallam

The argument hom lormalhy:

'J"hc Chinc•c Room

The Chinn~ Room

deme••H;-. wdllen Clllnese aymb11h " Wfillcll Chlnuc symboh " wrillcn Chlnue aymbob " Wlhten Chlnuc aymboh "
Sea tie 1•1

wrlllea Englbb huuucllnns

a pe~£orma humal symbol
manipulatlnnz

II piodo<t:U l)'mbol$ 11111
hlilnlilS j111dge ([;OUCei

$ imcka an ~nlpori~na dcmcnl
of undcuunding Chlne!c

mapped

AI prngnm nn von Ucumann m3tiJillc

!hat can pau Turing lui

tcrlpll
I lory
quclliona
IOIWCU

von Neumann cnmpuler

machine lansuajtC COOIJ>II:ltlnn nf AI !'lllj:r~au

computer perfmnu ltumal S)'mimi
mauipulatlnM

com1•utcr produces syn•buh !hal
humani jud~c couccl

ltomrutcr lad:~ u imp1Hianl dcmcul
ni undcnhndln~t Enlllisi•l

Figure 4. The screen of figure 3 alter a request for the original lex! underlying !he individual elements in ihe
analysis ol ihe Chinese Room argument.

1>111' I"" 8 ~

Strunl: AI

An AI JltiiJ!rlilll

trurwiu~: on 11 \lUll Neumann m;Jchiue)
that c>Jn pass lhe Turln11 ltsl lack! no COIIfrtl<iidr
hnpuri:Jnl dement ur undersll111dinl!

supports

The "Jilmcnl irom lnrnrmatlon puu;eulna
tc(UIII

The argumenl hum bchnlof
tc/"lcr

The araumcnl hom lmplemcntitlon Independence _ rc/<dc:r

Tnt: Surlc arlicle, pp. 417·81

S11ppolc 1hat I'm locked in a room 10d given a larae balch ol Chinese writing.
Suppote f11rlhcrmorc (u it indeed lhc cue) that I know no Chinue, ellllCI
Wlitlcn or spoken, and thJI I'm not even sure that I cnultl recognize Cllinc~e

writing 11 Chinese writing di11incl hom, uy, Japanese wrltin& or meaningless
''l''iggles. To o1e, Chioe1e writlna h just 10 many muninglcu squigglu.
Now suppose further that allcr lhil linl b1lch of Clainuc wrilins I am given

a tccund b1tch of Chinese acripl to&elhcr wilh a sci o(rules lor cnuchtina_
lhc second batch wilh the rirtl bdcb. The rulu are In English, and I undcruandj

thttc rules u well 11 IllY olbtr native spukcr of Enslhh. They en1blc me to ·
cnnclue one 1c1 of lormal tymbob with another let or formal 1ymbol1, anal ~u

th11 "form•J~ mc.nt hue h thai 1 can ldcnlify the aymbob e111hcly by their

llupet. Now IIII'Pille 1110 thai I 1111 aiven I llaird balch of CllinciC symbnh
~!!thcr with 1<1mc instrucliont, •s•in In Enslhh1 !hat enable me 111 couchlc
clcmcnh ol thil third bitch wilh lhe first 11110 blidiCI, 1nd thue rulese lntlfUCI
n1c how lu alvc back ccrlain Chinete tymbob with ccrlait1 10111 of thapet In
rcspnnte tu cuhln tOllS or shapu alven me In the d1lrd balch. , , , Suppose
aho lhal liter 1 while I tel to aond al followln& the lnsuucllonl (or nunlpulaliiiJ
the Cllincsc symboh 1nd lhe progrunmcn acl 10 aood u wrltlna the pwgnms
that from the calcrnal point of view , , , my answeu IU:: abtolutely lndhlinttul·
shablc: hom those uf naliYc: Chinese speakers. il sc:ema to me quite obvious
lhal I do nul andcuhnd a word ol the Chinese llorict.

Sen de

.\11 ,\1 jltU)tnuu tlull c:m puss lhe Turin~: lest
Ia cks llll IIIIJWrtanl element ur under st 1111 dIng
lloul wuuM he pruenl U llle prnj!rum were
lnltllcmcn!cd 1111 11 muc:lllne with the causal
Jllllfl'tS u(the 1Jn1in.

The argument front formality

Just b~luviurhm

Juu 11111dun-day dualllm

The argumclll from formality:

The Chinue Room

<lvmui111: Tl1e Chlne1c Room AI pr11gnm on von Ncum~nn ma.cbinc
lhal can pass Turing test

elcmc111J: wriUen Chinese symbols

written Cl•incsc symboh

wrlncn Chinese l)'inboh

wrillen Chlncsc symbols

" " " ..
mapptd

~~~~~~~~~ scrip u 
story 

._ q11c:siJons 
111111/Cfl 

Searle (•l 

1HiH~11· r.n~lhh iiHtfiH'lhHH 

s pc1furms formal symbol 
manlpUiai.lont 

produce! 1ymbols thai 
humans judge correct 

clinch: 1 hckt In lmpoflaul elemcnl 

uf undcuundlug Chlnue 

von Ncum~no computer 

machine lan~:uagc comJ>ilalinn o( A! l'flll:r:uu 

COIIIJ•utcr pc:rfurnu furmal symhol 
manlpubilons 

eumputcr prnduces symbuh thai 

humans Ju•lgc cunccl 

(compulcr lack• en hnpnriani clemcni 

of undcnl~ndina Euglilil•l 

Figure 5. The screen of Figura 2 after a request for the text underlying a single selected element of the 
analysis. This display indicates the underlying text differently from the display of Figure 4. 

' ,;'!'•" I ~ 



Slrung AI 

,\u ,\J 11ru~nun 

(runuin~: nn a vun Nenmlllln madliucl 
lho11 c;~n pass the Turing hsl l:u:ks nu 
impurlowl elemenl uf untlcrslautliuu 

The a.rgumenl hnm infnrm;llllon processing 

The ugument hom behavior 

The ugumcnl f10m implcmenl<~liun independence 

The systems reply 

The wbot reply 

The brain almulalor rCl'i)' 

Scurle 

An Ai lll"tl~nun lillll c;ln pu~s: ihc Turluu tcsl 
lack!ii 1111 imtuirlani clcmcttl ul' utulcr.'ilanding 
lhni would he 11rcscni ir the jlfUj~nuu were 
imph.·mcnh•tl un a m;u:hiuc ll'ilh lhc cnusul 
puwct·s uf the lu·uin. 

The argun1cnt fwm fotmalliy 

Jus!. bchavliuh.m 

lust mndcrn-day dualism 

'rt1e ugumcnl hum lnrmolily: 

Tiu: Cllincsc Room 

.Jomui,u: The Chinese Room 

4!l4!111tli!$J: wr!!lcn Chinese ~ymboh " wliucn Chinese $)'mbuh M2 
wrillcn Chinuc symbob " wrlllcn Chinc~c symboh .. 

Sc;ulc (•l 

wrlllcu Enullsh lnsllucllont 

• pcrfurRIS lurma.i symboi 
uaanipulatlnna 

s prnduccs symboh !hal 

humans judge correct 

clinch: s lackl 111 lmpurlan! elcmcnl 
o( u•ulcrsl:utt.ling Chinese 

The litlcmal Chinese ronm 

The internal Chinc5c mnm 
t 1•criphcrals 

The arcumenl fnun water pipes 

The ugumenl from lactation 

AI prognun on von Neumann machine 
ihal. can p:us Turiag lest 

scripts 
story 
qilestions 
aniwcrs 

von Neum11nn compuacr 

machine language compilation of AI pwgram 

computer performs formal zymboi 
m;ulipulalions 

computer produa.::cl symboh ihat 
humans; judge correct 

!computer lacks an lmporh:nt element 
of understanding English) 

Figura 6. The screen of Figure 2 after elimination of the arrows explicitly representing the relations of the 
displayed items; the relations are indicated only implicitly, in the spatial relations on the screen of the 
displaved i\ems. 



corresponding parts of the text become underlined. 

After studying the analysis side-by-side with the text, the user decides to accept the analysis for the time 

being and proceed. A request to remove the text and the explicit relationships gives the relatively clean 

screen of Figure 6, from which it is now reasonable to proceed by selecting another part of the overall 

argument for analysis. 

· The displays of Figures 1 through 6 are mockups towanls which we are currently striving. The displays of 

Figmes 7 through lO are screens from the current EUCLID implementation on the SymbolicsTM lisp machine. 

Figure 7 shows the top level of the argument; Figure 8 shows an expanded view in which "the argument 

from information processing" and "the Chinese Room argument and replies" have both been expanded in 

place. Figure 9 shows the screen after attention has been shifted to the Chinese Room argument, which 

now fills the screen; "the systems reply" and "the internal Chinese room" have now been expanded out. In 

Figme 10, we have returned to the top level of the argument; the part of the argument in which Searle 

refutes his opponents has been reduced to a fairly compact form, and the part in which he supports his own 

position has been expanded. All the operations that have been performed by the user are simple menu 

selections, indicating what information to add or delete; all screen management has been done by EUCLID. 

The displays of Figmes 7 through 10 are generated in a top-down, recursive fashion, in which large 

datastructures called display templates specify the overall organization of the large portion of the screen 

occupied by a particular argument; when imbedded arguments are displayed, control is governed by the 

templates for the imbedded arguments. The displays of Figmes 1 through 6 demand an additional degree 

of screen control relative to those of the existing implementation; switching to the use of arrows to indicate 

relationships, as in going from Figure 1 to Figure 2, requires a degree of local control that is cumbersome 

for the current top-down, template-driven display system. To achieve the more local screen control 

required by Figures 7 through 10, we are currently re-implementing EUCLID using the constraint-based 

display approach to be described in Section 2. 

1.2.4. Creating arguments 

Having descn"bed the kinds of capabilities EUCLID is intended to provide for reading arguments, we now 

consider argument generation. It is useful to distinguish a number of processes which must all be 

supported by EUCLID. These processes are closely related to processes that have been studied in the 

creation of ordinary text [Flow88, Haye80]. The processes are intermingled, and should not be viewed as 

serial phases. 

• Dump: Generate terms and assertions the author feels to be central to the argument. EUCLID 

serves as electronic paper. 

• Reader-preprocess: Indicate for various terms and assertions what they assume about the 

reader: background, interests, what other items have been previously read (prerequisite 
relations), etc. EUCLID stores this information for use in the linearization process (below). 

• Organize: Insert definitions of terms, relations between assertions (eg., supports, 

contradicts). EUCLID serves as ARL structure editor and browser. 

• Fill-in: Generate missing terms, claims, and arguments. EUCUD provides templates for 

common arguments types, checks for missing components of these argument templates, and 

satisfies useful database queries (e.g. "find claims lacking supports links"). EUCLID's 

November 1987 Hypertext '87 Papers 227 



EUCliD - ··- - "-"· ---·- - . -
Refute ·and Support ArgtUJIC!~l 

Main Claim: Only brains ;md machines wllh the same causal powen as brains can think. 

Refute Argument 
Main Chlm: An AI program (running on a von Neumann macbiM) that can pan the Tufin& tes! lacks an lmportan! element of undo<~utandlng. 

Claim to Refute: An AI program (running on a von Neumann machine) that can pau the Turing toast lacks no Important element of 
understanding. 

Claims Rejulatlon 

The ;ugument from information processing. • • The Chinese Room Argument and Replies. \ 

The ugument from behavior. • • Just behavlorhm. 

• The arsument from lmplementaUon Independence. • • Just modem-day dualism. 
Support 

•argument from lactaUon . 

··----·-··---··---· 

Figure 7. An actual screen image of the high-level argument structure of the Chinese room debate, from a 
Symbolics™ implementation ol EUCLID. The overall argument structure Is that of a refut .. -and
aupport-argumant: opponents' arguments are stated and refuted, then supporting arguments are given. 
Here the refut., part has lhrae sub-arguments and corresponding refutations; ihe support part has a 

single G"b-argument. 

• 



! 

! 

EUCliD - -- ~- ·--·-- ---- ---
Refute and Support Argument 

Main Claim: Only brains and machlnei with the same causal poweu as brains can think, 

Refute Argument 
Main Claim: An AI program (running on a von Naumann machine) that can pass the Turing test lacks an Important element of understanding. 

Clahn lu Refute; An AI program (running on a von N11umann machine) that can pass lhf> Turing test lacks no Important element of 
understanding. 

Claims Rafutatlon 

Basic Argument Refute and Support Argument 
Main Claim: The araumenl from Information procenlng. Main Claim: The Chinese Room Argument and Replies. 

Analogy Argument Refute Argument 
Antac•danl Domain Co1u•quant Domain Main Clc1lm: Minor modifications of the Chinese Room Araumenl 

Human& Computer& defaat all countl!r-argurnents. 

The human brain doeh ~>The computer does Claim to Refute; The Chlne&e Room h wrong for a varhtly of 

something callvd "Information Information procenlng. reuons. 

procesdna;.~ Cl11lmz; Rll/Ulil.llon 

Clinch: Humane undeutand Chim: Computeu undeutand The sy~ttem& reply• •The Internal Chinese room. 
the lnhomatlon that the Information that The robot reply• •The lnhunai Chlne•e room 
they are proceulng. they are procenlng. with peripherals 

The brain simulator reply • • the argument from water pipes. 
Support 

Analogy Argument 

~ 
Antllcadent Domllltn Con:uquant Dom11ln 

The ChinllSfl Room AI program on von Neumann 
machtnfl that can pass Turing test 

wriUen Cblnese symboh #I• escrlpu 
wrllten Chinese symbols #2 • estory 

wriUen Chinese 5ymbols #3• equesUons 

written Chinese symboh #4 • eanswen 

Searle • evon Neumann 

wrlUen English Instructions • .machine language compilation 
of AI program 

Searle performs formal symbol• • computer performs formal 
manipulations sym~ol manlpulallons 

Searle produces symboh that• .computer produces symbols 
- L__ __ ~--- ---- ---- -----~-----------

Figure 8. The screen from F19ure 7 after the refute part of the argument has been expanded to show 
mare detail. 

I 

i 



I 

EUCliD 
Refute and Support Argument 

Main Claim: The Chlne$e Room Argument and Replies. 
Qeeratlons on Refute Argument. 

Refute Argument view ob~~ at top 
Main Chlm: Minor modlflcallons of the Chinese Room Argument defeat all counter·argumenh. 11' 

Clahn ao Reiulu: The Chinese Room h wrong for a varlely of rea$ons. 
add n:futatlon pair 

Claims Rll/~J8ation 

Basic Argument Basic Argument 
Main Claim: The syiitem$ reply Main Clailn: The Internal Chinese room. 

•Concede that: lhe penon who h locked In the toom doe$n'l • Have ihe person In Uu1 Chinese Room memorize (Internalize) the 
elements of the system. All calculations are done In tha peuon't undeutand Chinese. 

o He Is merely a prut of a whole syst<;Jm. head. Call lhh tbe tnlernal Chinese Room. 
"It Is &lUI poulble (and probable) that the penon can memorl<~:e all •The whole sy$tem undeut .. uJs. 

of lhh, and &Ull doesn't undeHiand. 

The robot reply • • The Internal Chinese room with periphetals 

The brain simulator reply• •the argument hom water pl~es. 
Support 

Analogy Argument 
Antaead11nt Domlllln ConsaquQnt Domain 

The CMnast~ Room AI program oo VOl! Nrilu.mann mach ina thllll can pass Turing lt!:SI 

wrHh:m Chinese tymbols #1 o •scripts 
written Chinese symbols #l• estory 

wrllten Cblne5e symbols #3 • •question$ 
wdUen Chinese symboh #4 e •answeu 

Searle • ovon Neumann 
written English lmtructlons • • machine language compilation of AI program 

Searle performs formal symbol manlpulallons• •computer performs formalaymbol manipulations 

S-earle produce$ syu1boh that bum~ns Judge correct• •computar produces symbol$ that humans Judge correct 

Cllt~ch~ Searle lacks an Important elem<lnl of uudolutandlng Chinese Claim: computer lillck1 an Important element of undentandlng 
En~lish. 

Figure 9. The refutation oi "The argument from information processing• is itself a refut•-and
aupport-argument. Here it has been expanded to fill the display. 



EUCLID -- --~-- --- - - -- -· --- ·----·- -- ··-· - --
Rofuto and Support Argument 

Main Cl.tlm: Only brains and machines with the ume causal powen as buha can Udnk. 

Rohlle Argument 
Main Claim: An AI prognm (running on a von Neumann machine) that can pass the Turing hlst lacks an Important element of understanding. 

Claim to Refute: An AI program (running on a von Neumann machine) that can pan the Turin& lest lacks no Important element of 
understanJina:. 

Claims Refutation 
The argument hom Information processlna:.• •The Chinese Room Argument and Replies. 

The argument from behavior.• •Just behavlotlsm, 
The argument hom Implementation Independence. • • JU$1 modern-day dualhm. 

Support 
Analogy Argument 

AniiiCIIdllnt Domain Conscqu11nt Domain 

lactaltu,, understanding 

lactation h a biological process • • understanding h a biological procen 

the product of lactallon 1s milk • • the product of understandlns h Intentionality 

Cllncl1: a computer llmulallon of lactation could not produce milk. Claim: a computer slmulaUon of undentandln& could not produce 
lntentlonallly. 

~ 

Rgure 1 0. A return to the top-level of the whole argument, as shown in Figure 7, with the support sub
argument now expanded in place. tt is an anal.ogy-argumant. 

i 



232 

library of examples of different argwnent types lets the user browse for possible approaches. 

• Linearize: Impose on parts of the argument graph a linear order, thereby generating a 
document. EUCLID partly automates this process, making use of prerequisite relations, 

and filtering the database on intended readers' background and interests. Schemas for 

document types help guide this process. 
• Edit prose: Generate readable text EUCLID functions as text editor integrated into ARL 

structure editor. 

The support provided by EUCLID in these processes is substantial. While the activity of expressing an 
argwnent in ARL form is itself helpful in developing the argument, the support that EUCLID can supply on 

the basis of the formal ARL relations that it can process is a major part of the benefit of using EUCLID 

instead of pencil and paper for developing argwnents. On the other hand, we feel that the process of 
expressing an argwnent in ARL form requires extensive human processing and that the prospects for 

automating the process are dim. 

1.3. Effectiveness of EUCLID 

Three techniques for overcoming the limitations of human reasoning capacity are exploited by EUCLID. In 
discussing them, we will illustrate the techniques with examples from EUCLID but also from a familiar and 

extremely powerful reasoning tool: algebra 

The frrst technique is the elimination of i"elevant information. In algebra, one important reason we can 

solve problems is that once the problem bas been cast into a set of equations, we can forget what the 
variables denote, and not be distracted by that now-irrelevant information. The process of expressing an 
argument in EUCLID form bas some of the same advantages as expressing a word problem in algebraic 

notation. Once an argument's structure has been expressed in ARL, a number of structural analyses can 
proceed without the distractions introduced by the content of the argument: for example, it is possible to 

find all claims that would become unsupported if a given claim in the argument were denied, or all the 
unsupported claims, or pivotal claims on which large parts of the argument hinge. 

The second technique is explicit chunking. In algebra, a new variable can be introduced to denote a 

complex subexpression, and the simplification the new variable affords enables us to cope with expressions 
that would otherwise be too complex to manage. In EUCLID, a central tool for assessing arguments is to 
encapsulate large subarguments into a single conclusion, often, a conclusion that is only implicit in the 

original, non-EUCLID form of the argument. This encapsulation enables users to more effectively cope with 

complex arguments. 

The third technique is explicit decomposition. In algebra, it is crucial to decompose a problem into a set of 

individual equations that can analyzed separately, or to decompose a complex expression into individual 
terms that can be analyzed separately. Only by isolating independent subparts can we cope with complex 

algebraic problems. Similarly, in EUCLID, a central technique is the decomposition of complex arguments 
into subarguments which can be constructed, understood, or assessed independently. 

In addition to these particular techniques for overcoming cognitive capacity limits and enhancing 

reasoning, there are very general reasons why EUC!ID can promote the effectiveness of reasoned discourse. 

Hypertext '87 Papers November 1987 



Expressing an argument in ARL amounts to making notationally explicit the kind of logical structure that is 

often left implicit in informal argumentation. Explicit notational systems offer many advantages over 

implicit systems: standardized systems permit automatization of standard skills; they promote information 

retrieval; they enable explicit instruction, srudy and analysis of the notational system; and the public 

sharing of the system enables evolution of the system and provides a common basis for communication. 

Furthermore, there is good evidence that providing readers explicitly with· the overall structure or 

macrostructure of documents significantly increases their comprehensibility and retention [vanD83]. 

1.4. Relation of EUCLID to existing systems 

Because EU= is an AI-based system for argumentation and reasoning, the project is often identified with 

AI projects aimed at computer understanding of arguments in natoral language form [Alva85, Birn82, 

Birn80, Flow82] and with attempts to formalize the principles of human reasoning ( eg. circumscription and 
default logic-[Arti80]-fuzzy logic-[Zade79, Zade84]-logics with modal operators-[Hint69]-and so 

forth). In fact, the EU= project involves neither of these goals. The notation of the EU= system, 
ARL, is a semi1ormal language, processed both by the computer and by users. Since only information 

about argument structure is formalized in EUCLID, there is no attempt to formalize domain information as is 

necessary for an AI system that understands arguments in natural language. Furthermore, the validity of 

arguments in EUCLID is assessed by the user, informally, so thete is no attempt to formulate formal 

principles by which validity is assessed in complex, realistic arguments. 

Nonetheless, ARL is a language for expressing argument structures whose development is being driven in 

part by the need to provide the power necei;sary to express the argument molecules of Birnbaum, Flowers 

and McGuire [Birn82, Birn80, Flow82], the argument units of Alvarado, Dyer, and Flowers [Alva85] and 
the argument sttategies and fallacies studied in the informal logic literature (for example, [Acoc85, 

Enge80, Foge82, Govi85]). 

There are number of existing general hypertext-like systems that can be related to EUCLID. NoteCardsTM 
[Brow85, VanL85], NotePad© [Cyph86], ldeaSketchTM [Brow85], and, to a much more modest degree, 

ThinkTank,.,., are all systems for developing and interrelating ideas. EUCUD can be viewed as a 

specialization of these systems to the particulat domain of argumentation. The system is tuned to the 

specific demands of argumentation, from the display of information, to the editing operations, to the 

retrieval of information. One particular manifestation of this tuning is that the screen is continually 

managed to maintain an orderly display of information and the logical relations between items. The system 

assumes such a large burden of screen management that EUCLID has forced the development of a new 

hypertext displaying system, discussed in Section 2 of this paper. 

1.5. Discourse analysis 

As stated at the beginning of this paper, we feel that hypertext interaction needs to be structured in a way 

appropriate to the discourse type of the particulat material in question. Our construction of the EUCLID 

system is therefore being guided by research into the structure of reasoned discourse, in currently existing 

media such as text and conversation, and in the hypertext medium as it emerges. This research is being 

carried out as part of the EUCUD project, and a number of techniques from discourse analysis are being 

applied. As explained at the beginning of the paper, hypertext involves a mixture of discourse elements 

November 1987 Hypertext '87 Papers 233 



234 

from conversation and text, and thus provides fertile new ground for discourse analysis. A goal of our 

analysis of reasoned discourse is to maximize the effectiveness of EUCLID by providing users with the kind 
of support they most need in constructing, comprehending, and assessing arguments. 

2. THE CONSTRAINT-BASED APPROACH TO HYPERTEXT 

The EUCLID project requires a screen management system that allows the spatial layout of items on the 

screen to represent complex relations between dynamically selected items from the underlying database. 

Each time the user adds or deletes information from the screen, the screen needs to be redesigned so that 

the spatial layout of the new screen properly reflects the new information content. (Of course, it is 

important to minimize the screen reorganization so that users do not need to continually make major 

reorientation to the screen.) 

EUCLID is an example of a hypertext application that is fine grained: the nodes and links being displayed on 

the screen at a given time number in the hundreds. Each node contains a small amount of content (on the 

order of 10 words); the hundreds of relations being displayed obviously cannot each be overtly displayed, 

eg. by an labelled arrow; most must be displayed implicitly by the spatial arrangement of the displayed 
nodes. This is just how an outline, for example, displays the tree structure of its nodes: that node x is a 

child of node y is displayed by placing x below y, indented by one quantom of indentation; that node z is 

the next sibling of node x is indicated by having node z displayed immediately below x with the same 

amount of indentation. This sort of implicit representation of relations is used heavily in the EUCLID 

displays of Figures I through 6. (Even where relations are explicitly displayed with arrows in these 

Figures, the nodes are spatially arranged so that these relations are simultaneously implicitly represented in 

the layout) 

We are developing a general hypertext facility for providing the high degree of screen constrol demanded 

by fme grained hypertext applications such as EUCLID. This facility is called CBH, for Constraint-Based 
Hypertext. EUCLID is a particular application built on CBH. 

CBH is used to display portions of network databases of the sort usually assumed in hypertext At any 

given moment, there is a subset of the database that is currently being displayed on the screen: the active 
perspective. (There may be other inactive perspectives stored: these are database subsets that are not 

currently being displayed). All the items in the active perspective are entitled to influence the current 

display. The displayed items in the active perspective include all kinds of database items: objects, 

properties, and relations. CBH is designed for fine grained hypertext systems where perspectives can 

simultaneously include hundreds of nodes and links. 

The layout of the current display is computed as follows. Each item in the active perspective influences the 

screen layout by contributing constraints on the layout; all the constraints contributed by all the items in the 

active perspective are assembled together into the active constraint set. A constraint satisfier then 

computes a screen layout that satisfies the constraints in the active constraint set (These constraints may 

be satisfied in an approximate fashion.) 

Examples of the kind of constraints that appear in the active constraint set are as follows. Consider a data 

object with textual content: say, a EUCLID claim c. This object might contribute to the active constraint set 

the constraint that in some rectangular region R(c) on the screen, the string giving the content of the 

Hypertext '87 Papers November 1987 



claim c must be printed. This constraint can be written: 

contains-text( R(c), content(c), Display-attributes(c)) 

Alternatively, in a more compact representation, this object might contribute the constraint that in some 

rectangular region on the screen, a generic icon designating "claim" must be drawn: 

contains-graphic( R(c), claim-icon-3, Display-attributes(c)) 

Next consider an item from the database that is not a data object but rather a property: say, the EU= 

attribute unsupported, applied to some particular claim c. This item 111ight contribute to the active 

constraint set the constraint that the display of c must use a large bold font, or, alternatively, must appear 

in the color red: 

size( Display-attributes(c)) =large 
style( Display-attributes(c)) =bold 
color( Display-attributes(c)) =red 

Finally, consider a database item that is a relation between two objects: say, the EU= relation 

refutes, holding between two claims cl and c2. This relation might contribute to the active 

constraint set the constraint that the rectangles in which cl and c2 are displayed must be horizontally 

aligned: 

horizontally-aligned( R(cl), R(c2)) 

Alternatively, this relation might contribute the constraint that there must be an arrow bearing the label 

refutes from the display of cl to the display of c2: 

joined-by-arrow( R(cl), R(c2), Path, "refutes") 

· The constraints conlributed by displayed items involve a number of display variables, such as locations of 

rectangles on the screen (R) wherein information is to be displayed, paths of lines and arrows (Path), 
display atlributes (such as color, font size and style: Display-attributes), and so on. The problem 

of screen layout is then the problem of assigning values to all these display variables so that all the 

constraints in the active constraint set are met 

As indicated by the exarnples above, alternative methods for displaying a given item correspond to 

different constraints. Choosing to represent a claim by its contents or by an icon, choosing to represent a 

propeny by font size or by color, choosing to represent a relation by spatial alignment or by an arrow, all 

amount to choosing for database items different constraints to contribute to the active constraint set. Each 

package of constraints that a database item can conlribute to the active constraint set is called a constraint 
schema. For example, a constraint schema that has already been mentioned is joined-by-arrow: for 

any binary relation r in the database, the relationship r (x, y) can conlribute the constraint 

joined-by-arrow( R(x), R(y), Path(r), label(r)) 

Thus a particular screen is determined by two things: the active perspective-which determines what 

database items are displayed-together with a choice for each item of a particular diplay constraint schema 

to contribute to the active constraint set-which determines how each item is displayed. Since it will often 

be desirable to have all items of a particular type displayed in the same way, ie., according to the same 

November 1987 Hypertext '87 Papers 235 



236 

constraint schema, it is important to be able to specify at the level of data types the choices of which 

constraint schemata are to be contributed by the various items in the active perspective. This can be 

arranged as follows. 

Consider all the database items in a perspective. Each item has a data type, and we can tack each item onto 

the database type hierarchy by suspending it from the node for its type. This creates a tree, whose leaves 

include the database items in the perspective, and whose non-terminal nodes are datatypes. To any node n 
on this tree we can attach information specifying the constraint schema governing the constraints 

contributed by the given individnal or type n. We call this tree a display constraint schema hierarchy, or 

for short, a display hierarchy. A valid display hierarchy has the property that every individnal database 

item in the tree either has a constraint schema directly attached to it. or inherits a constraint schema from 

some ancestor in the tree. 

Thus to specify a digplay in CBH, it is necessary to specify a perspective and a display hierarchy. The 

CBH displayer takes the active perspective and for each item in that perspective, it f"mds in the display 

hierarchy the appropriate constraint schema. It then uses this constraint schema to generate the set of 

particular constraints to be contributed by that item. It assembles the constraints contributed by all the 

items in the perspective to form the active constraint set. It then uses its constraint satisfier to assign values 

to all the display variables occuring in the constraints. Once these values are assigned, the display is 

composed; the displayer then uses the computed values of the display variables to paint the display on the 

screen. 

Figures 11 through 15 use a small example to summarize this discussion of bow CMH works. Figure 11 
gives the overall architecture of the CBH system. Figure 12 shows a small EUCLID-like screen. Figure 13 

shows the relevant portion of the database; the active perspective corresponding to Figure 12 consists of all 

·the instances in the portion of the database shown in Figure 13. Figure 14 shows the display hierarchy used 

to create the screen of Figure 12; all specification of constraint schemata is done at the type level, so the 

instances suspended from the types are not shown. The relation linking nodes in the display hierarchy to 

their types is called ctl.splay-constraint-schema. Figure 15 gives part of the defmitions of the 

constraint schemata used, using a Prolog-like notation in which the names of variables begin with upper

case letters. 2 

The preceding discussion has treated digplay constraints as hard constraints: predicate-calculus-like 

propositions that would presumably have a truth value of either true or false. Actually, many of the 

important constraints in screen layout are soft: they are constraints that can be met more or less well, and 

the goal of constraint satisfaction is to meet the total set of soft constraints as well as possible. Examples of 

such soft constraints include: make the location of an item as close as possible to its position in the 

previous display (assuming it was present in the previous display); make the font size as close as possible 

to 10 points (where smaller font sizes may be nessary to fit items onto a crowded screen); line up 

horizontally as well as possible the following items; place this item as high as possible on the screen; place 

these items as close as possible to each other; and so forth. Our approach to display constraints 

incorporates soft constraints as well as hard ones. As usual with soft constraints, numerical strengths are 

2. The conventions for formally specifying constraints used in the text were modified slightly relative to 
Figure 15, for expository convenience. The intent of this paper is to communicate the basic idea of 
constraint-based hypertext; details of constraint specification will be taken up elsewhere. 

Hypertext '87 Papers November 1987 



perspective 
editor 

©®[fQ 

display hierarchy 
editor 

display 
hierarchies 

constraint generator 

share 
instances 

share 
types 

~database 

database 
editor 

tml?©lfu ~U®©UrL~ rr® 

constraint 
sets 

relations 

displayer 
displays I •Gcree~ 

(incremental) 
(soft) 

constraint 
satisfier 

Figure 11. The overall archaecture ol the CBH (Constraint-Based Hypertext) system we are developing as a 
general-purpose hypertext system on which to build EUCLID. 



The Searle Debate 

~ Strong Al's Claim 

L The argument from formality • R 

Searle's Claim 

238 

The Robot Reply 

Formality is Shadow Chasing 

~ The Chinese Room 

~ The Robot Counter 

Rgure 12. A very simplified sample EUCLID screen to illustrate the constraint-based approach to hypertext. 

Hypertext '87 Papers November 1987 

s 



argument 

--~~ --~,... ,_______--.:t:_____ "'"'·-·r,, PP' rt _ .,g 

a17 ~ "The Argument from Formality" 

a18 ~"Formality is Shadow Chasing" 

r&sa49 

~n 
"The Searle Debate" 

a19 ~'The Chinese Room" 
n 

a20 _.."The Robot Reply" 
n 

a21 _..''The Robot Counter" 

t relation 
--~--~,... ~~--~---

refutes 
n 

~"refutes" 

r11 (a18,a17} 
r12(a20,a19) 
r13(a21 ,a20} 

relations: 

"R" 

t = type-of 

supports 

s35(a17,c25} 
s36(a19,c26) 

n = has-name 

claim 

y 
n 

c25 __.."Strong Al's Claim" 
n 

c26 __.. "Searle's Claim" 

~ "supports" 

"S" 

i=instance-of 

r&sa49, a17 - a21, c25 - c26, s35 - s36, r11 - r13 

Figure 13. The network database and the active perspective underlying Figure 12. 



display-arg 

argument 

refute-and-s uppo rt-arg claim 

refute-and-support-display-1 display-by-name 

relation 1 --~~----~~ ~~~~~---refutes n 
. d / ~"refutes" 

/ "R" 

horizontal-lineup, 
labelled-arrow 

relations: 

supports 

dl 
labelled-arrow 

d = display-constraint-schema 
t = type-of 

n = has-name 
i=instance-of 

Figure 14. The display hierarchy underlying Figure 12. 

"supports" 

"S" 



Display Constraint Schemata 

display-by-name (X,Rect,Printstring) := 
contains-entire-string(Rect, Printstring), 
narne(X, content(Printstring)), 
font(Printstring) = default-font(type(X)), 
size(Printstring) approx=(3) default-size(type(X)). 

refute-and-support-arg-display- ~ (A) := 
vertical-stack(R5,[Rl,R4]), 
horizontal-stack(R4,[R2,R3]), 
display-by-name(A,R!,Printstring), 
underlined(Printstring), 
display-arg(refute-side(A),R2), 
display-arg(support-side(A),R3) . 

display-arg (A,R) := 
vertical-stack(RO,[Rl,R2,R3]), 
contains-entire-string(Rl,Printstringl), 
narne(A, contents(Printstringl)), 
display-claim(R2,conclusion(A)) 
display(R3,arg-body(A)) . 

vertical-stack (R,Rlist) := 
rectangle(R), 
list-of(rectangle,Rlist), 
top(R) = top(first(Riist)), 
bouom(R) = bottom(last(Rlist)), 
for-all(Ri,tail(Rlist),top(Ri)=bottom(predecessor(Ri,Rlist))) . 

Figure 15. Examples of definkions of some of the display constraint schemata used in Figure 14. 

November 1987 Hypertext '87 Papers 241 



242 

necessary, and the specification of these strengths is part of the job of the constraint schemata (and these 

strengths are, of course, user-modifiable). Each soft constraint contributes a term to a sumS that defines 

the total degree to which the constraints are violated. The goal of constraint satisfaction, then, is to 

minimize S. Our initial approaches to this numerical optimization problem include both the stochastic 

technique of simulated annealing [Kirk83] and the deterministic technique of gradient descent. 

It is important to note that in the hypertext setting, most of the constraint satisfaction problems that need to 

be solved are incremental problems. That is, the typical case is that a screen has already been laid out, and 

the user has just added an item to or deleted an item from the perspective; the set of constraints that now 

need to be satisfied differ very little from the set already satisfied, so the previous display provides a very 

good starting point from which to seek an optimum for the newS function. 

Figure 11 includes a number of "editors" for modifying the various data structores in the CBH system. To 

illustrate how these work, imagine a user to have clicked on a displayed item for a menu of operations. 

Imagine the user selects delete. A second menu now appears, offering a number of different "deletions" 

available to the user: the selected item can be deleted from the perspective, so that it disappears from the 

screen but remains in the underlying database; or the underlying item can be deleted from the database; or 

the constraint schema for the selected item can be deleted from the current display hierarchy. These three 

forms of deletion call upon the functionality of the three editors: the perspective editor, the database editor, 

and the display hierarchy editor, respectively. (From the user's point of view, there is no need to 

distinguish the editors per se: there are simply a number of operations available through menus that alter 

the active perspective, the database, or the current display hierarchy.) 

3. CONCLUSION 

In this paper we have addressed the problems of controlling the interaction between users and hypertext, 

and of controlling the screen. We have suggested that user/document interaction be structured according to 

the particular discourse type characterizing the given material. We have described a hypertext system, 

EUCLID, for the support of reasoned argumentation. Interaction in EUCLID is being designed to reflect the 

structure of a particular discourse type, reasoned discourse. EUCLID rests on a semi-formal argument 

representation language, ARL, in which formal specification of structural information, for use by both user 

and machine, is combined with informal specification of content information, to be used only by the user. 

The EUCLID system assumes the burden of maintaining at all times a coherent, well-composed screen, in 

which complex structural relations among the underlying database items are represented by complex 

spatial relations among the displayed representations of those items. The great demands this places on 

control of the screen have led us to develop a general system for hypertext display in which displayed items 

contribute constraints on the display, and the display system composes a screen layout that satisfies the 

total set of constraints. The design of this constraint-based hypertext system CBH has been described; its 

implementation is now underway. 

ACKNOWLEDGEMENTS 

This research has been supported by NSF grant IST -8609599, a grant from Symbolics, Inc., and by the 

Department of Computer Science and Institute of Cognitive Science at the University of Colorado at 

Boulder. 

Hypertext '87 Papers November 1987 



REFERENCES 

[Aboc85] Acock, M. (1985). Informal logic examples and exercises. Belmont, CA: Wadsworth. 

[Alva85] Alvarado, S.J., Dyer, M.G., & Flowers, M. (1985). Memory representation and retrieval for 

editorial comprehension. Proceedings of the International Joint Conference on Artificial 
Intelligence. 

[Arti80] Artificial Intelligence. (1980). Special issue on non-monotonic logic. Volume 13, Numbers 

1-2. 

[Birn82] Birnbaum, L. (1982). Argument molecules. Proceedings of the American Association for 
Artificial Intelligence. 

[Birn80] Birnbaum, L., Flowers, M., & McGuire, R. (1980). Towards an A1 model of argumentation. 

Proceedings of the American Association for Artificial Intelligence. 

[Brow85] Brown, J.S., & Newman, S.E. (1985). Issues in cognitive and social ergonomics: From our 

house to Bauhaus. Human-Computer Interaction, 1, 359-391. 

[Cyph86] Cypher, A. (1986). The structure of users' activities. In D.A. Nonnan & S.W. Draper, Eds., 

User centered system design. Hillsdale, NJ: Erlbaum. 

[Enge80] Engel, S.M. (1980). Analyzing informal fallacies. Englewood Cliffs, NJ: Prentiss-Hall. 

[Flow80] Flower, L.S., & Hayes, J.R. (1980). The dynamics of composing: Making plans and juggling 

constraints. In L.W. Gregg & E.R. Steinberg (Eds.), Cognitive processes in writing. Hillsdale, 

NJ: Erlbaum. 

[Flow88] Flower, L.S., Hayes, J.R., Carey, L., Schriver, K., & Stratman, J. (to appear). Detection, 

diagnosis and the strategies of revision. College Composition and Communication. 

[Flow82] Flowers, M., McGuire, R., & Birnbaum, L. (1982). Adversary arguments and the logic of 

personal attacks. In W.G. Lehnert & M.G. Ringle (Eds.), Strategies for natural language 
understanding. Hillsdale, NJ: Erlbaum. 

[Foge82] Fogelin, R.J. (1982). Understanding arguments: An introduction to informal logic. New York: 

Harcourt, Brace, Javanovich. 

[Goul80] Gould, J.D. (1980). Experiments on composing letters: Some facts, some myths, and some 

observations. In L.W. Gregg & E.R. Steinberg (Eds.), Cognitive processes in writing. Hillsdale, 

NJ: Erlbaum. 

November 1987 Hypertext '87 Papers 243 



244 

[Govi85] Govier, T. (1985). A practical study of argument. Belmont, CA: Wadsworth. 

[Greg80] Gregg, L.W. & Steinberg, E.R., Eds. (1980). Cognitive processes in writing. Hillsdale, NJ: 
Erlbaum. 

[Haye80] Hayes, J.R. & Flower, L.S. (1980). Identifying the organization of writing processes. In L.W. 
Gregg & E.R. Steinberg (Eds.), Cognitive processes in writing. Hillsdale, NJ: Erlbaum. 

[Hint69] Hintikka, KJJ. (1969). Models for modalities. Dordrecht: Reidel. 

[Holt83] Holt, R.C. (1983). Concu"ent Euclid, the UNil(l'M system, and Turis. Reading, MA: Addison

Wesley. 

[Kell85a] Kellogg, R.T. (1985). Computer aids that writeiS need. Behavior Research Methods, 
Instruments, & Computers,l7, 253-258. 

[Kell85b] Kellogg, R.T. (1985). Why outlines benefit writeiS. Paper presented to the Psychonomic 

Society, Boston. 

[Kell88] Kellogg, R.T. (in press). Designing idea processors for document compostion. Behavior 
Research Methods, Instruments, & Computers. 

[Kirk83] Kirkpatrick. S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimization by simulated annealing. 
Science, 220,671-80. 

[Lamp77] Lampson, B. W., Homing, JJ., London, R.L., Mitchell J.G., & Popek, G.J. (1977). Report on 
the programming language Euclid. SIGPLAN Notices, 12, Number 2. 

[Sear80] Searle, J. (1980) Minds, brains, and programs. The Behavioral and Brain Sciences 3, 417-457. 

[Smol88] Smolensky, P., Fox, B., King, R., & Lewis, C. (in press). Computer-aided reasoned discourse, 

or, How to argue with a computer. In R. Guindon (Ed.), Cognitive Science and Its Applications 
For Human-Computer Interaction. Hillsdale, NJ: Erlbaum. Also available as Technical Report 
CU-CS-358-87. Department of Computer Science, Univernity of Colorado at Boulder. 
February, 1987. 

[vanD83] van Dijk, T., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: 
Academic. 

[VanL85] VanLehn, K. (1985). Theory reformulation caused by an argumentation tool. Report. Xerox 
Palo Alto Research Center, Palo Alto, CA. 

[Zade79] Zadeh, L.A. (1979). A theory of approximate reasoning. In J.E. Hayes, D. Michie, & L.I. 
Mikulich, Eds., Machine Intelligence 9. New York: Wiley. 

Hypertext '87 Papers November 1987 



[Zade84] Zadeh, L.A. (1984). Syllogistic reasoning in fuzzy logic and its application to reasoning with 

dispositions. Technical Report 16. Cognitive Science Program, UCB, Berl<eley, CA. 

[Zuke85] Zukennan, I. & Pearl, J. (1985) Tutorial dialogs and meta-technical utterances. Manuscript. 

Computer Science Department, UCLA. 

November 1987 Hypertext '87 Papers 245 



246 Hypertext '87 Papers November 1987 



For proprietary reasons, tile original, reviewed version of this paper has been withdrawn from publication. The 
authors, however, will present the original paper in 01e session called Argumentation. -Ed. 

giBIS: A Hypertext Tool for Team 
Design Deliberation 

Jeff Conklin and Michael L. Begeman 

MCC 
Software Technology Program 
3500 West Balcones Center Drive 
Austin, Texas 78759-6509 
ARPA: conklin@MCC.COM begeman@MCC.COM 

ABSTRACT. 

This paper introduces an application-specific hypertext system designed to facilitate the capture 

of early design deliberations, which implements a specific design method called Issue Based Infor

·mation Systems (IBIS). The hypertext system described here, giBIS(for graphical IBIS), makes 

use of color and a high speed relational database server to facilitate building and browsing typed 

IBIS networks. Further, giBIS is designed to support the collaborative construction of these 

networks by any number of cooperating team members spread across a local area network. Early 

experiments suggest that the giBIS tool, while still incomplete, forges a good match between 

graphical interface and design method even in this experimental version. 

INTRODUCTION. 

There is a growing recognition that hypertext is an ideal framework on which to base a support 

environment for the system design process. In the MCC Software Technology Program we have 

been working on a hypertext-based project called the Design Journal which is aimed at providing a 

team of system designers a medium in which all aspects of their work can be computer mediated 

and supported. This includes the traditional documents such as requirements and specifications, 

but it also includes designers' early notes and sketches and their design decisions and rationale. 

By design rationale we mean the design problems, alternative resolutions (including those which 

are later rejected), tradeoff analysis among these alternatives, and record of the tentative and firm 

commitments that were made as the problem was discussed and resolved. Our research has two 

thrusts: (i) to understand the structure within and between design decisions, and (ii) to address 

the interface problems inherent in capturing large amounts of informal design information and in 

providing effective methods for the indexing and retrieval of this information. As part of the 

latter thrust we have built a running prototype of the Design Journal called giBIS, which is based 

on a simple model of design deliberation called Issue Based Information System, or IBIS. 

November 1987 Hypertext '87 Papers 247 



248 

THE IBIS METHOD. 

The IBIS method was developed by Horst Rittel (RIT70], and is based on the principle that the 
design process for complex problems is fundamentally a conversation among stakeholders (e.g. 

designers, customers, implementors, etc.) in which they bring their respective expertise and view

points to the resolution of design issues. The IBIS model focuses on the articulation of the key 
Issues in the design problem. Each Issue can have many Positions, where a Position is a statement 

or assertion which resolves the Issue. Often Positions will be mutually exclusive of one another, 
but the method does not require this. Each of an Issue's Positions, in tum, may have one or more 
Arguments which either support that Position or object to it. Thus, each separate Issue is the root 

of a (possible empty) tree, with the children of the Issue being Positions and the children of the 

Positions being Arguments. 

A typical IBIS discussion begins with someone posting an Issue node containing a question such as 

"How should we do X?" That person may also post a Position node proposing one way to do X, 

and may also post some Argument nodes which support that Position .. Another user may post a 
competing Position responding to the Issue, and may support that with their own Arguments. 

Others may post other Positions, or Arguments which support or object to any of the Positions. In 

addition, new Issues which are raised by the discussion may be posted and linked into the nodes 
which most directly suggested them. 

GENERALIZES 
or 

SPECIALIZES 

RESPONDS-TO 

POSITION SUPPORTS 
or 

OBJECTS-TO 

ARGUMENT 

Figure 1: The set of legal rhetorical moves In IBIS. 

THE giBIS TOOL. 

There were three technological themes guiding our design of giBIS. The first was an interest in 

exploring the capture of design rationale (CON87b]. The second theme was an interest in sup
porting computer mediated teamwork, and particularly the various kinds of design conversations 

that might be carried on via networked computers, a Ia email or news [EVE86,HOR86]. Thirdly, 

we wanted an application in which we would have a sufficiently large information base to investi
gate issues regarding the navigation (i.e. search and browsing} of very large and loosely structured 

information spaces. 

Hypertex! '87 Papers November 1987 



The giBIS tool which emerged from these themes has the following features: 

Integral Browser: The giBIS browser uses iconic shapes and color to clearly indicate type and 

state information for nodes and links. It displays the issue networks from two tightly coupled 

vantage points: a global (or zoomed-out) view from which users can view the entire scope of 

the network, and a local (or. zoomed-in) view which reveals the fine structure of the network. 

Context Sensitive Menus: The giBIS interface provides context-sensitive menus which con

strain the users to making only "legal" methodological moves, thereby ensuring the taxonomic 

integrity of the networks. 

Multiple Access Paths: Users can instantaneously access any node in the network by directly 

mousing it in the browser, by selecting it through the hierarchically-ordered index window, or 

by use of the NEXT button, which leads users through the network in a structure-based, 

linearized fashion. 

Search and Query: An integral search and query mechanism allows users to rapidly search 

through issue networks by constructing a proto-node whose structure and content mirrors that 

·of the nodes they wish to retrieve (i.e. a "query by example" approach). 

Multiuser Support: The tool supports simultaneous access and update of issue groups by 

multiple users on a common Local Area Network. giBIS provides the necessary concurrency 

control, locking, and update notification to allow real-time interactive network construction 

by teams of cooperating designers. 

Figure 2: The giBIS Interface. 

November 1987 Hypertext '87 Papers 

Node index 

--1-- Control panel 

-+---- Inspection 
Window 

249 



OBSERVATIONS. 

In the first seven months that giBIS was available in the MCC Software Technology Program, 16 

people created 21 issue groups containing a total of 1153 nodes and 1237 links. Based on this 

limited data we can make some preliminay observations, both positive and negative. 

The Synergy of Tool and Method: The limited set of node and link types in IBIS and the use of 
color and hypenext in giBIS seem to complement each other well. Users were generally enthusi
astic about using the tool, and reponed that it imposed a structure on discussions which exposed 
"axe grinding, hand waving, and clever rhetoric". 

The Dangers of Premature Segmentation: One common but subtle difficulty in hypenext systems 

is that it is sometimes unnatural to break ones' thoughts into discrete units, particularly when the 
problem is not well understood and those thoughts are vague, confused, or shifting. With g!BIS 

this effect is pronounced, because the IBIS method imposes a rather austere selection of node 

and link types on the user. We are exploring composite node structures which will bring an Issue's 

deliberative text into a single node, smoothing the flow of ideas within Issue-based discussions. 

A Problem with Context in Non-linear Documents: Traditional linear text provides a continuous, 

unwinding thread of context as ideas are proposed and discussed - a context which the writer is 

directly, if unconsciously, constructing to guide the reader to the salient points and away from the 
irrelevant and distracting ones. Indeed, a good writer anticipates the questions and confusions 

that the reader may encounter, and carefully crafts the text to prevent these problems. The 

hypenext (or at least giBIS) author, however, is being encouraged to make his or her points 
discrete, and to separate them from their context. Even the careful author is in danger of not 

· anticipating all the various routes by which a reader may reach a given node, and so may fail to 

sufficiently develop the context necessary to make the node's contents clear, if not compelling. 
We have as yet found no solution for this problem. 

250 

Annotative or "Meta" Discussions: In IBIS discussions there is sometimes a need for a meta

discussion when a participant in an issue group feels that someone has poorly or inaccurately used 

the IBIS structure to present their ideas. In fact, it has been noted that there are three levels of 

description for collaborative work: substantive {the content of the work), annotative (comments 

about substance), and procedural (comments about procedures and conventions for use of the 
medium) [TRI86]. In our framework, all three levels can be discretely represented by Issue

based conversations. 

Macro-level Organization of the Browser Space: One of the "hot issues" in hypenext research is 

the problem of the effective use of a graphical browser to navigate in networks that have more 

than a few dozen nodes. This is linked to the more general problem of disorientation [CON87a], 

but bears particularly on the visual and spatial aspects of disorientation in a large data space. The 

g!BIS browser ran into these difficulties as well. The global view and mechanisms mentioned 

above have helped to reduce this problem significantly. 

Hypertexl '87 Papers November 1987 



CONCLUSIONS. 

We have briefly described the IBIS method, the giBIS tool, and some preliminary observations 

about the use of the tool. Our experiments with giBIS are informing our theory about the struc

ture of design decisions and design rationale, and are providing us with important insights about 

the design of the Design Journal, a hypertext-based environment for system engineering which we 

will continue to design, prototype, test, and transfer into our shareholders' development environ

ments. 

REFERENCES. 

[CON87a] Conklin, J. "Hypertext: a Survey and Introduction". I.E.E.E. Computer, Vol. 20, 
No. 9, September, 1987. 

[CON87b] Conklin, J., "The Capture of Design Rationale". Paper in progress, to be MCC TR in 
fall of 1987. 

[EVE86] Eveland, J. and Bikson, T. "Evolving electronic communication networks: an 
empirical assessment." Proc. CSCW'86: MCC!ACM conference on 
computer-supported cooperative work. 1986. 

[HOR86] Horton, M. and Adams, R (Center for Seismic Studies, Arlington, Va.). "How to 
read the network news." Distributed by Mr. Adams quarterly over the USENET 
news network. 

[RIT70] 

[TRI86] 

November 1987 

Rittel, H. and Kunz, W. "Issues as elements of information systems." Working paper 
#131. Institut fur Grundlagen der Planung I.A. University of Stuttgart. 

Trigg, Randall, Lucy Suchman, and Frank Halasz, "Supporting Collaboration in 
NoteCard.," Proceedings of CSCW '86: the Conference on Computer-Supported 
Cooperative Work, MCCISTP, Austin, Texas, December, 1986. 

Hypertext '87 Papers 251 



252 Hypertext '87 Papers November 1987 



Exploring Representation Problems 
Using Hypertext 

Catherine C. Marshall 

Xerox Special Information Systems 
250 N. Halstead Street 
Pasadena,CA 91109 

ABSTRACT 

Hypertext is a technology well-suited to exploring different kinds of representational 

problems. It can be used first as an informal mechanism to describe the attributes of objects 

and to capture relationships between the objects. Then hypertext structures can be 

constrained into a more formal representation of a domain, model, or analytic technique. A 

range of strategies for using hypertext can be employed to describe a problem and converge 

on an appropriate representation; competing representations can be informally evaluated to 
compare their relative expressive power. 

This paper discusses several applications that have used NoteCards, a hypertext idea 

processing system, to tackle representation problems. Examples from each problem domain 

have been collected using the hypertext system as the initial acquisition vehicle. Subsequent 

analysis using hypertext structuring tools has revealed the semantics of each problem domain 

enabling the development of competing representations. Abstraction of the structure and 

form of these representations can be used to guide system extensions. These tailored 

extensions support the evaluation of a representation's relative merits; the representation 

that has been developed in response to a particular problem can be applied to analogous 

problems to determine the limits of its scope. 

The first application described in this paper models a type of policy decision-making process; 

the second looks at approaches to representing the logical structure of an argument; and the 

third suggests some methods for capturing the structure of a political organization as an 

alternative to a conventional database design. The applications are discussed in terms of the 

issues they raise and the trade-offs they involve, how hypertext-based tools have been used to 

exploit the representations, and the solutions and techniques that have been developed in 

the process of creating each representation. 

INTRODUCTION 

Hypertext systems are generally aimed at the needs of authors, designers, on-line readers, and 

other users performing idea processing tasks, but they also meet the needs of many 

November 1987 Hypertext '87 Papers 253 



254 

representation tasks directed at producing a formalism. Hypertext systems provide tools to 
view and manipulate structure as well as content, thus supporting the move from textual 
descriptions to emergent forms and abstract structures. The ability to work with unstructured 
information in conjunction with formalized, systematically organized information is the chief 
advantage in using a hypertext system rather than a knowledge representation language or a 
database description language. Systematic structures and expressions of content can be 
introduced and manipulated without the constraints of a formalism. Examples can be 
collected and analyzed, and structure can be created and imposed as general patterns are 
understood. 

The representation process parallels the principal activities comprtsmg idea processing, 
acquisition, analysis,. and exposition [Hala87]. The acquisition phase of the representation 
process involves collecting examples from the domain, and possibly organizing them in some 
rough conceptual framework. The analysis phase involves discovering which features describe 

an object, what relationships exist between objects, and how objects can be categorized. Thus 
node contents, network structure, and a classification system are represented. The analysis 
process produces an abstract form of the representation that may then be refined as flaws are 
identified and missing features are noted. The exposition phase uses the product of the 
analysis phase, the representation, in an application to demonstrate its effectiveness. The 
representation can be applied to analogous problems by instantiating the formalism with 
elements of the new problem. Figure 1 summarizes a hypertext approach to creating a 
representation: 

examples 

analy~ ~lyze 
content ~- structure 

~ re me 
object granularity relational 

description description 

gener~~eralize 
content structure 

abstract 
representation ~ 

instantiate I refine 
/ representation 

concrete 
representation 

Figure 1. A model of the representation process. 

NoteCards is a hypertext system that has been under development at Xerox's Intelligent 
Systems Laboratory for the past four years [Hala87]. Because it was designed to meet the 
needs of idea processing activities, it has served as an interesting basis for conducting 

Hypertext '87 Papers November 1987 



investigations involving representation problems. This paper describes the salient features of 
the NoteCards system, then discusses three different representation tasks that have used 
NoteCards (and, more generally, hypertext concepts) to support the processes entailed by the 
tasks. The applications bring up certain important issues and trade-offs, and suggest 
activities that hypertext can support. Specific features necessary for each task are also 
discussed. 

SALIENT FEATURES OF THE NOTECARDS HYPERTEXT SYSTEM 

The central construct in the NoteCards system is a semantic network that consists of 
electronic notecards as the .nodes connected by typed links. Each notecard contains an 
arbitrary amount of information embodied in text, graphics, images, or some other editable 
substance. Each link designates a specific relationship between two notecards; the 
relationship may be either user or system defined. The system provides two specialized types 
of cards, browsers and fileboxes to help manage networks of cards and links. A browser 
contains a structural map of a network of cards; it may be system-generated or user-created. 
Browsers are both a presentation tool and editing mechanism. File boxes can be used to cluster 
and organize collections of notecards, yielding a hierarchical filing structure managed by the 
system. N oteCards also includes a set of protocols and functions for creating new types of 
cards and manipulating the information in the network. This applications-oriented 
extensibility plays an important role in preserving and formalizing a representation so it may 
be applied in other situations. 

Figure 2 illustrates a sample NoteCards screen display. It includes a text notecard with a link 
to a second text notecard, a map with links inserted in it, and a browser of a relevant portion of 
the network. The map is drawn on a sketch card that is based on an object-oriented graphics 
editor. Sketch cards are used extensively in the applications discussed below. 

November 1987 

_, 

Atl~r-tlc 
Ocean 

Na:i~~ I"""! 
• ":-,~~EW 

)). """\AMAS •• '\ 
';J ' 

Figure 2. Sample NoteCards display. 

Hypertext '87 Papers 255 



256 

USING NOTECARDS AS A VEHICLE FOR DEVELOPING REPRESENTATIONS 

This section describes three application areas in which N oteCards has been used as the vehicle 
for capturing a representation in the context of a specific domain and problem. The first two 
applications, the Rational Actor Model for policy decision-making and the template for 
representing the logical structure of a legal argument, are both part of a more general 
investigation into the structures and processes of argumentation. The third application is 
more of a proof-of-concept problem; the representation created here was to demonstrate how 
hypertext could provide leverage in creating shared information resources. Each application 
is presented in terms of initial problem (what the representation is supposed to capture and a 
little bit of background), approaches used, and results. The abstract techniques embodied by 
each representation are intended to be sufficiently general that they can be applied to other 
problems. 

Application 1: A Rational Actor Model for policy decision-making 

Analyses of international events are often framed within a tacit Rational Actor Model to 
explain the logic of an action and justify the corresponding response or policy decision. This 
application deimes a hypertext model to represent rational actor analysis; the template 
developed for analysis and decision-making is intended as a general framework for performing 
similar tasks. It is a vehicle for evaluating competing explanations and arguments about the 
consequences of any particular course of action. The Rational Actor Model assumes that the 
behavior of a nation can be viewed in terms of a monolithic, rational individual with a unified 
purpose and motivation and that the intricate processes within a government can be ignored. 
Interaction between rational actors occurs in a chess-like move/countermove framework. 
Thus, to perform a rational actor analysis in the NoteCards framework, the analyst adopts the 
role of the decision-making actor. 

The examples for the NoteCards representation of the rational actor template are taken from 
Allison's multi-model analysis of the Cuban missile crisis [Alli71]. The initial part of the 
representation process involved simply moving Allison's outline of explanations and decision 
options into a hypertext form. In this case, text cards were used to collect verbal descriptions 
of the rational actor analysis. Cards were created for each of five hypotheses explaining 
possible Soviet goals in deploying the missiles in Cuba. Evidence for each hypothesis was also 
collected in individual cards and linked to the supported hypothesis. This structure soon 
proved to be too weak to represent the type of argument that was being employed in the source 
text. 

In Allison's analysis, the arguments for and against each of the explanations are based on the 

other options the Soviets could have chosen to achieve that particular goal. The explanations 
of how certain options meet specific goals are framed not only in the context of the situation, 
but also in the constraints imposed by the Rational Actor Model. This form of explanation 
suggested that a representation be developed to use this notion of evaluation of goals with 
respect to options as constrained by the model. VanLehn's matrix summary cards [VanL85l 

Hypertext '87 Papers November 1987 



inspired the development of a similar type of matrix for use in this application. By using 
options and goals as rows and columns, a framework is provided for evaluating the 
explanations and the entire argument is given a structure. Figure 3 shows an abstract form of 
an Option/Goal matrix; each row is labeled with a different option, and each column is labeled 
with a goal. The cells of the matrix contain a semi-qualitative assessment of how well an 
option supports the corresponding goal: 

01 

02 

03 

G1 G2G3G4 ··· 

+ - 0 + 

0 - + 0 

0 + - 0 

Figure 3. An Option/Goal matrix. 

In its NoteCards implementation, both the cells of the matrix and its row and column labels 
are links to supporting argument networks and description cards. To represent how an 
individual hypothetical goal is tested, a matrix like the one shown in Figure 4 is constructed. 
Testing an individual hypothetical goal involves weighing it against each of a set of plausible 
options. The options are obtained by introducing slight variations into the character of the 
situation. For example, in the. case of the Cuban missile crisis, the Soviets chose to deploy 
MRBMs, IRBMs, and troops in Cuba. The character of the deployment should thus be varied 
to yield some other hypothetical options (for example, deploy a small number of MRBMs in 
Cuba or deploy Soviet troops in Cuba) and the location of the deployment can be varied (Berlin 
instead of Cuba) to explore that characteristic of the option chosen. Constraints introduced by 
the Rational Actor Model (such as "Avoid risk" or "Minimize cost'1 are also evaluated with 
respect to the options in the context of the hypothetical goal of the action. Figure 4 shows the 
Option/Goal matrix evaluating the hypothetical goal of Probe, an abbreviation of what Allison 
refers to as "Hypothesis Four: Cold War Politics." 

Goal Set defining Possible Worlds 

Test Goal Sialic Goals 

~ Options/Consequences jHG: Prabej j SG: Avuid risk I J SO: Minimize cost I I SG: Obey constraints I 

joJC1: Defensive Missiles in Cubaj [B] ~ ~ ~ [B] 

/OIC2: MRBMs, IRBMs, Troops in CutN./ 1< .. >1 ~ [B] [B] I <•>I 
jotC3: Troops in Berlinj [ill] [B) [B) [B) @i] 

/oJC4: smas #of MRBMs in Cuba/ l<••>l ~ rEB ~ I <++>I 

/OIC5: Troops in CuDa/ )<NA>I /<NA>I I<NA>! I<NA>I I<NA>! 

Figure 4. Option/Goal matrix evaluating a hypothetical goal. 

In this representation, links are used to carry an assessment of value; they are 
semi-quantitative measures of argUment strength. The sigma cell values combine the 
evaluation of the claim supporting a particular option with regard to the hypothesized goal (in 
the Test Goal column) with any negative values of the links in the row for that option, which 

November 1987 Hypertext '87 Papers 257 



258 

indicate that Rational Actor constraints (referred to in Figure 4 as Static Goals) have been 
violated. For example, in Figure 4, the option "O/C4: Small # of MRBMs in Cuba" is assessed 
as strongly supporting the hypothetical goal of probing American intentions in the context of 
Cold War politics; a value of < + + > has been assigned to the appropriate cell. Since no 
constraining Rational Actor goals have been violated, the value in the sigma column for O/C4 
is also < + + >. But in the case of option "O/C2: MRBMs, IRBMs, Troops in Cuba," the very 
positive assessment of the hypothetical goal has been modified downward in the sigma column 
by the violation of cost minimization and ideological constraint satisfaction goals. The level of 
constraint violation was relatively small, so the sigma value for O/C2 has been lowered a 
qualitative step to < + >. In this case, assessment of the sigma values has been subjective; 
however, eventually the heuristics for combining values will be made explicit so the sigma 
column can be computed automatically. 

The top level Option/Goal Matrix, the Possible Worlds Matrix shown in Figure 5, is 
constructed from the set of completed lower level Option/Goal matrices. Its rows match the 
option range of the lower level matrices and each of its columns represents a goalset combining 
a hypothetical situational goal with the set of constraining static goals. The values in its cells 
can thus be taken directly from the sigma column of the corresponding matrix for evaluation of 
a single hypothetical goal. For example, in the matrix shown in Figure 5, the column under 
"GS: Probe" is taken from the sigma column in the matrix shown in Figure 4. 

llnt:crpreu.tion I i I 

Hypothetical Options )tiS: Berlin) )GS: Coercion! 

)0/C1: Defensive Missiles in Cuba/ 

Figure 5. A Possible Worlds Option/Goal matrix. 

To interpret the Possible Worlds matrix to isolate the goal associated with the most likely 
explanation, the row of cells corresponding to the opponent's action is used. In the case of 
Figure 5, the actual Soviet action is described by "O/C2: MRBMs, IRBMs, Troops in Cuba." In 
that row of cells, the most positive value corresponds to the hypothetical goal addressing 
Soviet strategic inferiority in the missile race, "GS: Power." Therefore, the winning argument 
is associated with that hypothetical goal, and it can be taken to represent the most likely 
possible world. An explanation and counterargument mechanism can be driven off of this 
matrix to produce explanations like, "If rational actor RA had wanted to satisfy hypothetical 
goal HG embedded in goalset GS, then it would have acted according to option 0/C." For 
example, in the case of Figure 5, for the hypothetical goal embedded in "GS: Defense," an 
explanation could be built by finding the most positive cell value in its column, and 
instantiating in the form given above: "If the Soviets had wanted to satisfy the goal of Cuban 

Hypertext '87 Papers November 1987 



defense (GS: Defense), then they would have deployed Soviet troops in Cuba (O/C5: Troops in 

Cuba)." 

The chief advantage of using this matrix layout to organize the Rational Actor analysis is that 
it is a very compact representation for evaluating competing arguments. The Possible Worlds 

matrix shows a range of scenarios that account for the Soviet action, as well as an assessment 

of their relative plausibility. Because the cells are links to a claim structure, a NoteCards 

browser can be used as the vehicle for examining competing arguments and evaluating the 
strength of the underlying structures. 

The representation used for claim structures imposes the requirement that each leaf card of 

the claim network be linked to the network by either an Evidence link or an Assumption link. 
Figure 6 shows an example of a claim structure; it refers to a claim supporting the cell in 

Figure 4 corresponding to the option "O/C2: MRBMs, IRBMs, Troops in Cuba" and the 
hypothetical goal "Probe." The solid lines represent Evidence links; the dashed line represents 

a + + link to the subclaim. It is has been chosen as an example since it is relatively simple; 
many of the claim structures constructed in representing Allison's rational actor analysis of 

the Cuban missile crisis are far more complex. This claim structure representation also allows 
the network to be browsed to pinpoint evidence dependencies. 

I ClAim: Probe is the accepted expfana:tion for Soviet action! 

// ..... ··- ... ~-- ······ ..... . 
IE: Sorensen .-ec4lls action !loS political! )E: Ktmncdy's interpretation of cvcnt:w! !Claim: Several politic&l gains from probe/ 

j 
(E: Conversation between Schlesinger and Kennedy\ 

Figure 6. A simple example of a claim structure underlying a value link. 

Several unexpected results arose from the assumption/evidence requirement on claim 

structures. (1) The need to identify assumptions helped to tease out some implicit 

characteristics of the Rational Actor Model. The ability to explicitly identify model 

dependencies may facilitate the process of applying this representation to the problem using a 
different analytic model, for example Allison's Governmental Politics Model. (2) Because 

there were so many examples of both evidence and assumptions, various categories of each 

became obvious. This observation led to the construction of a hierarchical framework of 

fileboxes to express a taxonomy of evidence and assumptions. Link types could also have 
expressed this taxonomy; for example, Assumption links could have become Model 

Assumptions, Domain Assumptions, and Local Assumptions. However, it was inconvenient to 

expand the existing set of link types since this application had already put much of the burden 
for value assessment on the link types. 

Application 2: Logical argument structures 

The second application investigates the logical or deep structure of an argument as part of a 

multi-level analysis of argumentation. This analysis of an argument's logical structure is 

November 1987 Hypertext '87 Papers 259 



framed in the legal domain. Specifically, transcripts of the oral arguments from several 
Supreme Court cases are examined to arrive at a representation that captures individual 
micro-arguments and how they interact. The representation identifies legal concepts and 
organizes the separate concepts into an issue-level argument. 

The representation of a micro-argument is based on Toulmin's argument layout [Toul58]. A 
Toulmin argument layout consists of six elements: a claim, which is an assertion about a 
specific entity or a central thesis; a qualifier, which may modify the claim; a datum, which is a 
fact in support of the claim; a warrant, which is a rule or principle governing the datum/claim 
relationship; a backing, which is a case, model, or other support for a warrant; and a rebuttal, 
which is a counterclaim that may function as a claim in another argument. In this 
application, the Toulmin structure has been simplified by omitting the qualifier, so the basic 
structure looks like this: 

Datum -----r-~---~ 

Since 

Warrant 

I 
On Account of 

Backing 

So, Claim 

I 
Unless 

Rebuttal 

Figure 7. A Toulmin structure. 

Arriving at a NoteCards representation of this structure took several iterations despite its 
apparent simplicity. The examples used to drive the development were taken from a 
California Supreme Court case, People v. Carney, which revolves around the issue of whether 
the warrantless search of the defendant's motor home was justified by the so-called 
"automobile exception" to the Fourth Amendment requirement and the right established by 
Article I, section 13 of the California Constitution. In particular, the primary argument that 
motor homes are included in the protection given by the Fourth Amendment was used as an 
example. This argument's datum is "Motor home X is being used as a home," and its claim is 
"Motor home X cannot be searched without a warrant." 

From Figure 7, three initial requirements are placed on the representation. First, the spatial 
layout of the argument is important to the comprehension of the content. The spatial layout 
includes the linguistic cues, so, since, on account of. and unless, since they are key to 
understanding how the logical structure maps to a surface structure of connected sentences. 
Second, the relationships between the argument elements, the datum, claim, warrant, 
backing, and rebuttal, should be expressed in some way. Third, there needs to be a way to 
represent connections between elements in different micro-arguments. For example, two 
arguments might share a warrant, or a claim in one argument might be a datum in another 

260 Hypertext '87 Papers November 1987 



The first attempt at representing a basic Toulmin structure used the N oteCards browser card. 
The browser seemed to be an apt candidate since it shows a graph of the network, provides 
facilities for editing structure and creating new nodes, allows relationships between nodes to 
be specified and differentiated on the display, and can be saved in the database. Figure 8 
shows the browser version of an argument card. Each node corresponds to a card; the card's 
title is shown as the label for the node. A link legend appears on the upper right hand corner of 
the browser. Labels have been added to show the linguistic cues. 

Motor home X is used 
as a home. 

_ ~ ~ _ Motor home X cannot 
---~-- - ---~- i be searched without a 

(So] . warrant. 

[Since] 
=-=='===~~' Homes cannot be be 
searched without a I 
warrant. 

A 
I 

[Unfess] 
Motor home X is 
excepted from the 4th 
Amendment warrant 
requirement. 

Figure 8. Argument card as browser. 

Not only does the appearance deviate from the ideal layout shown in Figure 7, but also the 
semantics of the argument become muddled. There are directed links in both directions to 
indicate the relationship between datum and claim; this structure seems to be an adequate 
reflection of the Toulmin layout's semantics. The relationships between rebuttal and claim 
and backing and warrant are similarly straightforward, but the warrant relationship actually 
annotates the links between datum and claim, not the claim itself. There is no way to make a 
link from a card to another link in N oteCards. The other semantic problem with this 
representation concerns how the elements are related to the argument. The nodes in a 
browser in fact represent link icons whose destination is the card shown by title. Therefore, 
the link from the argument card to its constituent elements is of type BrowserContents, a 
system-supported link type that is essentially meaningless in the context of this application. 

With these criticisms in mind, a sketch-based intermediate representation was tried and 
rejected, primarily because the editing functionality was inappropriate for the task. However, 
the link semantics seemed to match the problem domain and were carried over to the third 
representation of an argument card; this time the representation was based on a simple 
node-link graph, managed by the user, not the system. A graph-based argument card is shown 
in Figure 9. 

November 1987 Hypertext '87 Papers 261 



262 

<Datum> Motor home 
X is being used as a 
home. 

<Claim> Motor home X 
---[So]- c~nnot be searched I Without a. warrant. 

[Since] 

I 
<Warrant> Homes 
canno't be be searched 
without a warrant. 

I 
[On Account Of] 

I 
<Backing> 4th 
Amendment 
requirement. 

[Unless] 

<Rebuttal> Motor home 
X is excepted from the 
4th Amendment 
warrant requirement. 

Figure 9. A graph-based argument card. 

In this variation, the link that connects the argument with its constituents shows the role each 
constituent plays in the context of the individual micro-argument. Link types are shown as 

part of the link icon in this display- the icons are of the form <link type >destination card title. 

Hence, a particular constituent can play a different role in another argument (most often, a 

claim becomes a datum in another layer oflogical argument or a warrant is tested with a new 
datum). Note that there are two kinds of nodes in this graph card: link icons to connect 

arguments with constituents (such as Datum or Warrant) and labels that annotate the graph 
with linguistic cues (such as Since or Unless). The two types of nodes fulfill the first two 

representational requirements concerning spatial layout and relationships between argument 

elements. In addition, the title of the argument card now reflects the purpose of the argument, 

showing why motor homes are included under the Fourth Amendment protection. This 

change made it easier to organize the sixty or so micro-arguments that were found in the 
analysis. 

The final requirement on the representation for micro-argument structure is that 
interargument relationships can be meaningfully exploited. Figure 10 shows a NoteCards 

browser, following the path from argument card to constituents, to the next set of argument 

cards that share these constituents, to the set of constituents for the second set of argument 
cards. This browser has been constrained to show only four levels of structure and the five 

types of argument links in both directions. It gives some indication of the pattern of argument 

construction used in the transcript. In practice, the browser was expanded further and helped 

to identify the two main concepts (actual function and mobility) used in the course of the 
argumentation process. 

Hypertext '87 Papers November 1987 



, Mator hanw X cannat 
be seuched without o11 

w•n-•nt. 

Figure 10. A browser showing two interconnected levels of argument. 

Application 3: Socialist Republic of Vietnam Party Structure 

At first glance, creating an information resource based on a description of the party structure 
of the Socialist Republic of Vietnam seems like a fairly conventional database problem rather 
than a hypertext application. But the problem proved to be amenable to this more "expensive" 
way of structuring information. First, a description of an organization combines highly 
structured information with loosely structured information. Second, the application realizes 
some benefit from using multiple representations of the same information. For example, an 
organization chart can supplement a hierarchical structure. Third, database extensions may 
involve information that does not conform to the original pattern. For example, the database 
may need to be extended by taking notes on news wires and in some way tying these 
unstructured notes to both individuals and organizations. Finally, the information is 
accessible from an number of different routes- some users may find it more convenient to work 
from an organization chart, while others may find that browsing the hierarchy conforms more 
closely to how they think about organizational structure. The complexity of having multiple 
representations is hidden from the user who opts for one information model over another. 

This application is especially valuable in demonstrating the trade-offs between representing 
information as relational links or as hierarchical structures that cluster like entities. This 
trade-off first arises in the decision of whether to use the system-supported hierarchy of 
fileboxes and filed cards, or to design an organization chart scheme to provide context. In the 
latter case, the cards representing individual secretariat members are linked to the 
sketch-based organization chart with Secretariat links. Figure 11 illustrates the trade-off. In 
this application, both methods were used, since links are not a costly information structure in 
NoteCards. 

November 1987 Hypertext '87 Papers 263 



I 
Secretariat I NguyE:n Lam I 
General Secretary I L Q I I LE! ouan / e uang oao 

Memberz I Hoang Tung f 

f Loi! Duo Tho f J NguyE'n Tl'lann Binnf 

I vo cni cong j Jnan Kienf 

J Nguyen OW:l T&m I J Tran xuan eao111 

Figure 11. Hierarchical filing scheme v. spatial filing scheme. 

The impact of these two representation schemes is reflected in Figures 12 and 13 showing the 
division of semantics in two browsers. The browers have been designed to show the same 
information, namely which Political Bureau members belong to other Party organizations. In 
Figure 12, the information is conveyed largely by the way a card corresponding to an 
individual is filed in the hierarchy; information is carried only in the existence of links, not 
through their type. The original browser layout has been manipulated for the sake of 
compactness. 

![ 
{DOMuO;l 

., I 
:: 

·,rro;;;;;;] 

'';J-· I 
1/.1 I 
'I 

1'-'/: 
;~ I 

I 
\\I ' 
\\1 ~ I I 

I 
I 

. , 
~ .. •. . . 

Figure 12. A portion of the browser generated from a filebox hierarchy. 

In Figure 13, the semantic weight has been shifted almost entirely to the links. Note that the 
number of links connecting the Socialist Republic of Vietnam Party Structure with the various 
Political Bureau member indicates the extent to which they are multiply affiliated and the 
link dashing style shows the specific affiliations. Labels have been added to the browser to 
enhance its readability. 

264 Hypertext '87 Papers November 1987 



Figure 13. A browser generated from a network structure. 

This application illustrates one of the most compelling reasons to use a hypertext system to 
address representation problems. Both of the organization methods discussed can be 
supported concurrently; the redundancy strengthens the representation rather than 
detracting from it. 

ISSUES 

Representation problems raise several important issues for the design of hypertext systems 
and for strategies for using hypertext. One recurrent issue in developing representations is 
choosing the most appropriate grain size for the individual objects. In N oteCards, this 
translates to deciding when to segment information in separate cards, and what information to 
use as the content of cards. For example, in the argumentation application discussed earlier, 
one crucial decision was whether a micro-argument defined a card that simply contained the 

statements corresponding to the argument elements (claim, datum, warrant, backing, and 
rebuttal), or whether the argument elements each needed to be on a separate card. This 
single-card scheme for representing a micro-argument could have easily been made to appear 
exactly as it does in Figure 9. In fact, in the initial phases of development, representing each 

element as a separate card seemed too fine a division of structure - after all, the only 
information each card held was its title. Yet this division turned out to be necessary to 
meaningfully represent the relationships between micro-arguments. Then too, a structure 
was eventually developed for the contents of the argument constituent cards, so the grain size 
proved to be appropriate. 

In many representation problems, a key decision centers around the distribution of meaning
should links or cards carry the semantic burden. Sometimes the decision is forced by the 
node-link implementation in the hypertext system. For example, in N oteCards links can't 
annotate other links; this limitation helped to determine the form of the micro-argument 
representation discussed earlier. In the representation of the Vietnam Party structure, the 

November 1987 Hypertext '87 Papers 265 



266 

trade-offs were such that multiple distributions of semantic weight were developed. More 

specifically, the decision in NoteCards often centers around whether to use the 

system-maintained hierarchical filing structure, or whether it is necessary to use a network of 
user-defmed links, thus placing the semantic burden more heavily on link types. Sometimes 

the distribution of meaning between link types and nodes is driven by the focus of the 
application. Performing a representation task or interpreting the resulting of an analysis 

becomes confusing if link types are used for too many semantically orthogonal purposes. 

One of the most interesting representational issues centers around using spatial layouts in 

support of a structuring scheme. All three applications described in this paper use either 

sketch cards, graph cards, or browsers as the focal means of representing structure. The 
Rational Actor Model relies on sketch card-based matrices to show relationships between 

options and goals and to create a framework for expressing competing arguments. In the 

second application argument cards use a graph to provide spatial context for the constituent 

elements of a Toulmin structure and browsers to show interargument relationships. The third 
application uses a literal representation of an organization chart (based again on a sketch 

card) to provide a spatial filing system for the cards describing individual Party members. In 

these and other applications, a graphic representation of structure has been quite effective in 
organizing information and promoting comprehension. 

The issue of distribution of meaning between links and nodes ties in with the representation of 

quantitative or semi-quantitative values. Value links as implemented in the Rational Actor 

Model show the strength of a reiationship, but this assessment could have been captured using 
a destination card property as shown in Figure 14. The problem with this strategy is that the 

card is then limited to one role and one context- if the claim were applied in another situation, 

the strength of the support it offered might be far less. A better solution to the assignment of 

value to links is to make value a link property, but links properties are not ye_t supported in 

NoteCards. 

acted on the basis of it choosing the and, 
in retrospect. explained the Soviet action in these 
terms. 
I <Evidence> E: Sorensen recalls action a.s political! 

<Evidence) E: Kennedy's: interpretation of events 

I {f'+> Ctairn: Several political gains from probe I 

w~re 

(1) rirawing Russia China closer togethter, 
least strengthening the Soviet position in the 
Communist world by shewing that Moscow was 
capable of bold action in support of a Communist 

Figure 14. Moving the semantic burden from a value link to a destination card. 

Hypertext '87 Papers November 1987 



The final issue in representation development is capturing the exploration of a problem in a 

concrete structure so that it can be reapplied. In NoteCards, this may mean creating a new 
card type, or it may mean performing some other type of system tailoring through the 
programmer's interface [Trig87]. In many cases it means that constraints must be imposed on 

the kinds of links that can be anchored in a given card; it also means that the form (and 

perhaps content) of the substance of the card types used in the abstract representation must be 

defined. This process of "casting a representation in concrete" is facilitated somewhat by the 
protocols and functions provided in NoteCards, but could be given considerably greater 

assistance. The template cards developed for the Instructional Design Environment (IDE) 

[Russ87] are one instance of how abstractions can be described in NoteCards. 

CONCLUSIONS 

Hypertext meets many of the needs imposed by a representation task. First, hypertext 

systems are generally based on a semantic network of nodes and links, where the iwdes can 
contain arbitrary content. Semantic networks are a convenient mode of representation for a 

variety of applications. Second, hypertext systems frequently provide tools for viewing and 

manipulating this network • browsing seems to be a ubiquitous requirement in establishing 
the viability of a particular representation. Furthermore, it is often most convenient to 

interact with a network as a structure; structure editing capabilities are ideally provided by a 

hypertext system. Third, hypertext systems can provide a way of abstracting and preserving a 

representation so it may be reapplied and possibly generalized or refined. Fourth, and most 

importantly, hypertext systems support the emergent properties of the representation process. 

The flexibility of a hypertext system is exercised in performing a representation task. In the 

course of developing a representation, a user may need to switch the granularity of the 

representation to reflect a growing understanding of which information should be embedded in 
the content of a node, and which should be made explicit in the network. It is also necessary to 

balance the semantic weight between network nodes and links. Similarly, the user needs to be 

able to move between graphic and hierarchical organizing schemes. Often the system must be 

sufficiently flexible to support multiple representations simultaneously. 

One important way in which hypertext systems can be extended is in their capacity to aid in 

the formalization process. First, patterns must be recognized so they can be abstracted; an 

extended hypertext system may support this activity. The formalization process includes a 
certain amount of system tailoring and imposing of constraints, but it also includes checking 

consistency and restructuring existing work in a new framework. Once the system has been 

tailored and the necessary support provided for the representation, subsequent work can adopt 

the new scheme, but additional system support is required to enforce it on earlier work. 

A second way hypertext systems can be extended is by facilitating programmatic interaction 

with user-created structures and substances. For example, if a representation is used by an 

expert system or some other type of inference engine, it may be necessary for the program to 
interact with the content of a node or object to extract the knowledge inside it. Since hypertext 

November 1987 Hypertext '87 Papers 267 



268 

is a good vehicle for capturing and structuring knowledge, programmatic interpretation of a 
hypertext network appears to be a logical extension. 

REFERENCES 

[Alli71] Allison, G., Essence of Decision: Explaining the Cuban Missile Crisis, Little, Brown 
and Company, Boston, Mass., 1971. 

[Hala87] Halasz, F.G., Moran, T.P., and Trigg, R.H., "NoteCards in a Nutshell," CHI+ GI '87 
Conference, Toronto, Canada, April, 1987. 

[Mars86] Marshall, C., "Representation of a rational actor model in NoteCards," Xerox Special 
Information Systems (internal report), Pasadena, California, July, 1986. 

[Russ87] Russell, D.M., Moran, T.P., and Jordan, D.S., "The Instructional Design 
Environment," to appear in Intelligent Tutoring Systems: Lessons Learned, J. Psotka, 
L.D. Massey, & S.A. Mutter (Eds), Lawrence Erlbaum Associates, Inc, Hillsdale, NJ, 
in press. 

[Toul58] Toulmin, S., The Uses of Argument, Cambridge University Press, Cambridge, 1958. 

[Trig87] Trigg, R.H., Moran, T.P., and Halasz, F.G., "Adaptability and Tailorability in 
NoteCards" Proceedings of INTERACT-87, Stuttgart, West Germany, September, 
1987. 

[VanL85] VanLehn, K., "Theory reform caused by an argumentation tool," Xerox Palo Alto 

Research Center Technical Report, ISL-11, July, 1985. 

Hypertext '87 Papers November 1987 



Systems II 



Thoth-11: Hypertext with Explicit 
Semantics 

George H. Collier 

Bell Communications Research, MRE2Q373 
435 South St. 
Morristown. NJ 07960 

ABSTRACT 

This paper describes a hypertext system - Thoth-11. This system provides a rich means 
for modeling semantic interconnections among texts. It allows a user to browse texts. 
exploring their relations with other texts. These relations are modeled by a directed 
graph . The texts are embedded in the graph. Connections among specified phrases 
in the text and the graph structure are automatically formed. In the browsing mode the 
user is presented with an interactive graphic display of the directed graph. In the text 
mode the user can use multiple windows to display and interact with the stored text. 

INTRODUCTION 1 

Modern high speed digital computers have made possible the existence of many new tools 
for working with text. Some of these are: WYSIWYG text editors (such as the one I 
composed this paper on); idea processors such as MORE [MORE86]; desktop publishing 
tools such as ReadySetGo! [Read86]; key word retrieval systems such as S-Book [Gome87]; 
and recent hypertext systems, such as the one that I will describe. 

Hypertext is not new; it was first proposed by Vannevar Bush in the 1940s [Bush45]. 
Computerized versions of Bush's Memex were proposed by Ted Nelson and Douglas 
Engelhart in the early 1960s. Ted Nelson coined the term "hypertext" to refer to the 
electronic documents supported by such a system. Such systems are in vogue; a recent 
survey [Conk86] counted over fifteen in various states, two being commercial products for 
Macintosh PCs.2 

November 1987 Hypertext '87 Papers 269 



This paper will describe my version (and vision) of hypertext. It takes a unique approach 
in that it attempts to support the direct modeling of the semantics underlying the hypertext 
structures created by the document author. 

Printed Texts: Ink on Paper 

Printed text is an inherently linear structure. A sentence is made up of words in a certain 
order. In turn, a paragraph is made up of sentences in a certain order. Chapters follow 
chapters in a set sequence. Yet text is highly interconnected and multiply linked by the 
meanings of the terms it uses, its logical structure and the rhetorical relations among its 
components. These relations are intrinsically non-linear. 

For example, consider the arrangement of a reference work such as an encyclopedia. The 
articles in the encyclopedia are ordered alphabetically by entry names. Yet the articles are 
highly interrelated and multiply interconnected by semantic, logical, and rhetorical 
relations. For instance, an article on modern art might refer to World War I and its 
influence on the modern conception of the world. These articles might describe the same 
object, for instance, France, in which case a form of semantic co-reference ties these two 
articles together. An author might refer to another article as holding a position supporting 
his. Here one part of a text is logically linked to another as it provides logical support for a 
premise in the other. As an example of a rhetorical relation, an article on a painter might 
be an expansion of some topic only touched on in passing in another article. 

Sometimes these relations are marked explicitly in the printed text, but often they are not. 
Existing structures for marking relations among texts include footnotes (from marker to 
note), reference sections (from text to text), glossaries (from phrases in a text to a defining 
phrase), and indices (from a topic to a place). Yet these markers represent much less of the 
structure than one would desire. Consider a "see also" section that points to other articles. 
But such a section does not provide information about why it would be useful to see another 
article or the context for the reference. In a printed text one can only provide a weak pointer 
to an interrelated piece of text. With modern computers it is possible to provide much more 
powerful tools. 

270 

• Printed text has inherently linear and often arbitrary ordertng 
forced on it by the prtnt medium. 

• Semantically and logically texts are tied together in 
conceptual "webs". 

• Existing means for marking connections among texts 
support only part of the web of interconnections. 

Hypertext '87 Papers November 1987 



HYPER Texts 

Awareness of the forgoing limitations in ink-on-paper is not new. In 1945 Vannevar 
Bush, the director of the Office of Scientific Research and Development, proposed in an 
article in Atlantic that : 

Selection by association, rather than by indexing. may yet be 
mechanized . ... Consider a future device for individual use, 
which is a sort of mechanized private file and library. . .. A 
memex is a device in which an individual stores all his books, 
records. and communications. and which is mechanized so 
that it may be consulted with exceeding speed and flexibility. 

All hypertext systems begin with this proposal. Bush did not know of the developments in 
micro-electronics leading to today's computers; so his proposal is limited by the technology 
of 40 years ago. The memex was to be based on microfilms for memory and a mechanical 
mechanism for retrieving the appropriate entry. None the less, the article is prescient and 
subsequent proposals differ mainly in the technological base. 

Ted Nelson in a unusual3 book called Computer Lib and in a later book [Nels81] proposed 
the notion of hypertext. In Nelson's proposal (as implemented in the Xanadu system 
[Greg83]) documents are connected together by links. The links can be point-to-point, 
point-to-span and span-to-span. A point-to-point link goes from from one "point" - a 
particular location in a document (such as immediately following the dagger here: tl - to 
some other point in the same or another document. "Spans" are regions of text (such as this 
paragraph. Links connect regions of text (spans) to places in text or span to span. 

Another pioneer was Douglas Engelhart [Enge84] whose system, NLS (later called 
AUGMENT), focused on the group work environment , providing support for collaboration. 
This system includes facilities for electronic mail, multiple authorship of documents and 
even a remote on-line "conferencing mode". Again in NLS any text entity may be 
addressed and linked to other pieces of text. 

All of these, Bush's Memex, NLS/AUGMENT, and Xanadu links, are designed to break 
the "linear straightjacket" of ink on paper. There have been many systems which have 
followed on the heels of these original proposals. 

Other Proposals 

The central notion in all hypertext systems is that of "linking" text together There are 
many different hypertext projects; the major ones are: NLS/Augment [Enge84]; Xanadu 
[Greg83], [Nels81]; TextNet [Trig83], [Trig86]; TIES [Shne86]; Symbolics Document 
Examiner [Symb85J; NoteCards [Hala86J; Intermedia [Yank85]; Neptune [Deli86]; 
PlaneText [Gull86]; and Guide [Guid87]. All of these systems rest on the idea of tying 

November 1987 Hypertext '87 Papers 271 



pieces of text together. However, the treatment of the links varies widely. I do not plan to 
review these systems in this paper; the interested reader should see [Conk86]. 

What does characterize all these systems is the underlying notion of a link. These links 
are used to connect things together, usually text, although several of these systems allow 
connections to graphics, etc. It is possible to think of the links as connecting abstract nodes 
(be they whole documents, places in documents, pictures, etc.) and conceive of hypertext as 
a directed graph. It is this conception that underlies the design of Thoth-11. 4 

THOTH-II'S DESIGN. 

Thoth-11, like all hypertext systems, needs to provide several things: 

• A way of storing and manipulating the pieces of text which 
jointly make up the hypertext. 

• A way of storing and manipulating links among the pieces of 
text. 

• An interface which makes the system usable. 

In the sections that follow I will discuss the way that these are provided in Thoth-11. The 
undedying design of Thoth-11 is simple. Thoth-11 is based on thinking of hypertext as a 
directed graph. Everything in the system is treated as a node, a link, part of a node or link 
or the result of traversing a link. Since Thoth-11 treats hypertexts as objects embedded in a 
directed graph it is very similar to TextNet [Trig83], [Trig86] and Netbook [Shas85a]. 

Links and Nodes Make a DG 

In graph theory a network is defined by a set of vertices and edges or nodes and links. All 
hypertext systems share the notion of text that has been "stitched" together by a set of links. 
In Thoth-11 the links bind together nodes. Together the links, which represent connections 
between the nodes, and the nodes define a network.s The hypertext reader interacts with 
the system by following interconnections between pieces of text and visiting them. 

In Thoth-11, unlike other hypertext systems such as the Brown Intermedia project, nodes 
have an existence separate from the text. In the Intermedia system links connect regions 
of text to other regions of text. In Thoth-11 the links connect nodes and the text is in turn 
connected to these nodes by other types of links. As strange as it might seem, it would be 
possible to create a network in Thoth-11 that has no text at all embedded in it. This is because 
the network is intended to do more than "just" connect pieces of text; it is intended to 
represent some part of the designer's conception of the topic about which he is creating the 
document. 

272 Hypertext '87 Papers November 1987 



This abstraction of the nodes is one of the differences between Thoth-11 and TextNet. While 
both Thoth-11 and TextNet share the idea of embedding text in a semantic net, in TextNet the 
notion of a node or chunk is much more tightly coupled to a piece of text. One and only one 
piece of text is stored at a chunk. The same is true in NoteCards [Hala86], where each link 
points to a "notecard" on which text is stored. In Thoth-11 it was my intention that the nodes 
be stand-ins for concepts (or real world objects) and thus they may have none, one, or many 
pieces of text tied to them. Nodes represent a conceptual anchor around which collect pieces 
of text and connections to other objects. These anchors can (to abuse a metaphor) put hooks 
into the text through a process which I call "partial semantic interpretation". This is 
described in more detail below, but essentially is a process of connecting the network 
structure to the text on the basis of target phrases. In this, Thoth-11 creeps closer to natural 
language processing (although it would have a long way to go). 

In a directed graph it is possible to label the links and the nodes. By the perspicuous use of 
labels it is possible to create directed graph structures that represent relations that hold 
among objects. We might say that such a graph has been given meaning or semantics and 
that it is a semantic net. 

Hypertext with Semantics 

Thoth-11 is designed around giving the hypertext object, the text pieces and their 
interconnections, an explicit semantics. The hypertext object consists of a set of linked · 
pieces of text (or other objects). In Thoth-11 the structure created by this network is given an 
explicit meaning. 

What is Semantics? 

The term "semantics" has had a long history in philosophy, psychology, linguistics and 
artificial intelligence. It has been used to "mean" many things. In AI, for instance, there 
are several major theories of how representational schemes such as semantic nets gain 
meaning, i.e., how they are useful for representing knowledge. At least three positions 
may be distinguished: procedural semantics, extensional semantics, and intensional 
semantics [Coll87a]. 

A semantic net, which Thoth-11 relies on, is a declarative style of AI knowledge 
representation. Declarative styles do not embody procedures which can be understood as 
their semantics.s The sort of networks used in Thoth-11 are static and they gain their 
semantics from a relation to some other thing: the world or some conceptualization of it. 

Semantics in a Semantic Network 

A semantic net is a labeled directed graph. In particular, a semantic net is a labeled 
directed graph in which the labels are chosen in an interesting way. For instance, suppose 

November 1987 Hypertext '87 Papers 273 



that one wanted to represent the fact that Santa Claus lives at the North Pole. One might 
represent the North Pole as one node, Santa Claus as another node, and the relation "lives 
at" as a link between the two nodes. The fact that Rudolph shares Santa Claus's place of 
residence might be represented by adding a node for Rudolph and connecting it to the North 
Pole node with another instance of the "lives at" link. 

In a semantic net nodes represent objects and links represent relations among these 
objects. 7 One can think of the objects as concepts or meanings and the relations among 
them conceptual relations (an intensional account) or think of the objects as entities in the 
world and relations among them (an extensional account). Notice that while the relations 
allowed are only binary this does not restrict the expressiveness of the semantic net. Any 
n-arry relation can be decomposed into a binary relation. The commitment to binary 
relations does has some effect on the fluency of the representation as this decomposition 
may do some damage to original conception underlying the construction of the network. 
Another restriction on semantic network representations as opposed to the more powerful 
frame based representations is a difficulty in representing kinds of things and natural 
classes [Coll87b]. It is hard to represent what we mean by saying "Rudolph is a reindeer" 
.in a pure semantic net since a notion of inheritance of properties in a type hierarchy is 
lacking. In most semantic net notations thls is added but Thoth-11 does not support it. 

The advantage semantic networks have over other types of semantics for hypertext is at 
least two-fold. First the node-link-node structure supports the hypertext notien in a very 
straightforward way. The nodes represent places where the texts can "live" while the 
links are connections (relations) among the texts/nodes. The node-link-node structure 
also supports browsing in a very natural way. In Thoth-11 browsing is traversing the 
network where the links represent paths among the nodes. Finally, semantic nets are 
"broad-brush"s relative to other styles of knowledge representation. Predicate logic and 
frames support more sophisticated styles of representation but this sophistication forces 
constraints. The difference in style is like that of drawing with finger paints vs. with a 
drafting pencil. 

Visiting Nodes and Traversing Links 

In Thoth-11 as in all hypertext systems it is possible to browse a document by following the 
interconnections among the pieces of text. In Thoth-11 this is conceived of as visiting a node 

and traversing links. Visiting a node gives access to the information connected to that 
node; browsing (or traversing) a link either causes an action to take place (such as 
retrieval of a piece of text) or gives access to another node. 

Node and Link Types 

In Thoth-11 there are three kinds of links and one kind of node. The basic ,semantic 
network is defined by the nodes and value links . Value links point from a node to another 

274 Hypertext '87 Papers November 1987 



node. Text"Iinks connect pieces of text to nodes. Lexical links connect regions of text to 
nodes. Thus a Thoth-11 document is a construction of these four kinds of things. Figure 1 is 
a representation of the sort of structures making up Thoth-11 documents. 

Node 

Text Unit 

Figure 1. Diagram of the types of structures which make up Thoth-11 documents. The spheres 
represent nodes in the network. Nodes in the network are tied together by value links. These 
nodes are tied to pieces of text (the polygons) by two kinds of links. Text links are direct 
connections between a node and a piece of text. Lexical/inks connected phrases in the text to 
nodes. 

In another sense of "kind" there are (in principle) an infinite number of types of nodes 
and links. As mentioned above the nodes and links can be labeled. Each node in the 
network is treated as unique and its label is treated as its proper name. Each link label is 
treated as a kind (of relation) and information about the use of particular instances of each 
link type are collected in a central place. 

Link Traversal Equals Action 

A central metaphor in the design of the system is: link traversal causes actions. In the 
case of value links, which link nodes to other nodes, link traversal browses the network, 
moving the user from one "location" to another. On the other hand, traversing a text link 
causes the system to retrieve the text piece attached to a node by that link. Traversing a 
lexical link, which connects text regions to nodes, causes the system to move to that node. 
The design of the interface which implements this metaphor is described in more detail 
below. 

Semantics In Thoth-11 

One of the major design goals in Thoth-11 was to embed semantics into the hypertext 
document. This is created by the labeled directed graph. Nodes in the network can be 
thought of as representing objects while the links between the nodes represent relations 

November 1987 Hypertext '87 Papers 275 



among the objects. It is possible to represent in Thoth-11 that a car has several major 
subsystems: its engine, drive train, suspension, etc. To each of these conceptual objects 
texts may be connected. These texts might provide descriptions of the drive train, for 
instance, and instructions for its maintenance. The links provide relations for modeling 
the connections among the conceptual objects. The engine might have many causes of 
failure and these could be represented in the system and connected to the node for the 
engine by a cause_of Jailure relation. 

By representing these concepts and representing the conceptual relations that hold among 
them the document designer is expressing a conceptualization of a domain and giving a 
reason for its existence. Hopefully this labeling of the structure can serve as a guide to a 
user as the reason for the connections among pieces of the structure are made at least 
slightly more specific. Presumably in any hypertext structure there is a reason for 
building a connection among one document (or place in a document) and another. Here 
the designer is able to make more explicit why that connection is there. 

Partial Semantic Interpretation 

There is semantics in the network as the network represents concepts and their 
interrelations. There is is also semantics "in the text" as the system provides a 
mechanism for interpreting the text and tying it into the network. Just as a name, such as 
"Bob", or a definite description, "the present president of the United States" refers to some 
individual (perhaps the same); phrases in the stored text can be connected to nodes in the 
network. The system has a stored "lexicon" which it uses to make exact string matches 
against the text. If one tells it to search for the literal string ''hypertext" and connect it to a 
node in the network then every time it displays text with that string embedded in it it will 
highlight the string (by italicizing it) and the user can mouse on that text and gain access to 
information stored there. This is similar to the Ties system [Shne86] but in that system 
these pieces of text point to other pieces of text and the connections among them. 

Another difference between this process and the Ties system is that in Ties one must 
explicitly mark-off these text regions during document preparation. Thoth-11 has a stored 
lexicon of phrases which it automatically and dynamically matches against the text. Each 
phrase is associated with a node in the network. The system can not deal with multiple 
nodes tied to a single phrase - the equivalent of polysemy in naturallangnage; but it does 
allow multiple phrases to point to the same node - the equivalent of synonymy. Since the 
program does strict string matching and does not do any syntactic analysis (such as 
stemming) the matching is quite restricted. On the other hand, in technical texts there are 
many "frozen" technical noun phrases whose meaning does not vary with the context 
particularly. Here the technique has proved quite useful. 

276 Hypertext '87 Papers November 1987 



Semantics In Other Hypertext Systems 

Other designers of hypertext systems have considered the issue of semantics. In fact, 
many begin with an explicit rejection of the notion underlying the design of Thoth-11. 
Hypertext systems are often seen as presenting an alternative to the type of "full-blown" 
knowledge representation used in natural language processing (frames; etc.). In Trigg's 
system the semantic network is used to model the logical and rhetorical relations among 
pieces of text and not the domain which the text is about. N oteCards [Hala86] began with 
frustration with trying to code a document into a full-blown knowledge representation 
scheme.9 In Brown's Intermedia project [Yank85] links connect "blocks" (what Nelson 

would call "span-to-span" links) and are not presently labeled. 

In such approaches explicit representation of the target domain is either rejected or 
impossible. It is my belief that this is mistaken. The choice is not between representing 
the domain in "full-blown" formalisms or hypertexts. Rather both are points on a 
continuum. The structure of the links is at least implicitly a model of the domain. It is due 
to the semantic content of the text that one feels that one piece of text is related to another. I 
would claim that semantics is latently present (in a more or fess organized fashion) in 
any hypertext structure. The advantage of the present approach is that it makes the 
semantics explicit. 1 0 

The motivation for ignoring semantics comes in part from a fallacious belief that a choice 
mu_st be made between real knowledge representation and something else. All knowledge 
representation schemes, including the one in my head, are inadequate. All knowledge 
representation structures are incomplete. Some of the real dimensions of choice are (1) 

amount: how much information is represented; (2) expressiveness: what it is possible to 
represent; and (3) fluency: how easy it is to represent what one wants to represent. Along 
these dimensions variation is possible and, for instance, one can trade off the amount of 
information represented against ones investment in creation time. Underlying the 
design of Thoth-11 is a commitment to such partial representation schemes. 

Design Summary 

The goal in the design of Thoth-11 is to exploit the directed graph which is an intrinsic part of 
any hypertext structure; so that it explicitly represents information. The information 
represented in the directed graph relates to the texts embedded in it and provides a guide to 
their interrelations and dependencies. To this end texts are tied to particular nodes in the 
graph - conceptual anchors - and phrases in the text are recognized and pointers built to 
nodes in the graph. 

November 1987 

• In Thoth-11 pieces of text are embedded in a labeled 
directed graph - a semantic net. 

Hypertext '87 Papers 277 



• The semantic net is used to represent the domain with which 
the texts deal. 

• Partial semantic interpretation of the text is done by string 
matching phrases and connecting them to nodes in the 
graph. 

THE INTERFACE 

The interface to Thoth-11 is based on the Symbolics™ Lisp Machine user interface [Symb85] 
and makes extensive use of its mouse and menu facility. The interface has two modes - a 
~rowsing mode and a text display mode. In the browsing mode the user interacts with a 
graphic display of the directed graph, while in the text mode the user views units of text in a 
multi-window environment. The graph provides a model of the textual interconnections 
and the user is able to "visit" pieces of text that are connected to particular nodes. 

Spiders: A DG Browser 

Users browse the DG by interacting with a graphic display of the nodes and their 
connections. Figure 2 is a screen dump of a Thoth Spidersll display of a directed graph that 
represents part of a repair manual for a VW Rabbit.12 This manual will be described in 
much greater detail below. The thin lines represent links; the dots represent nodes. Each 
link and node is labeled. 

Figure 2. This figure is a reproduction of a screen dump of the Thoth Spiders display of a semantic 
net. The large black dots represent the nodes and the lines represent links between the nodes. All 
objects in the display are "mouse-able" and can be manipulated by the user. 

This display is based on a different philosophy from other browsers for graph structures, 
such as SemNet.13 In some approaches the user is shown the whole structure at once. In 

278 Hypertext '87 Papers November 1987 



SemN et nodes occupy locations in a three dimensional space and only a single display 
object exists for any given node. The problem such systems face is that it is difficult to 
display all the myriad links and nodes without the display objects falling on top of one 
another and obscuring each other. This problem is partially solved in SemNet by locating 
the structure in three dimensional space and showing the user a two dimensional view of 
it. The user can "fly around" in the space varying the angle from which he views the 
structure. The interface model is: the user is presented with different views of one static 
object that represents the complete structure. 

The design of Thoth Spiders is different. The space is a two dimensional plane rather than 
a three dimensional space. Location in the space is uninterpreted. Often in browsers such 
as SemNet, there is an attempt to map spatial location into some conceptual metric. For 
instance, the y axis might be used to represent abstractness. The most abstract objects 
would be plotted high up in the space while the more concrete sink to the bottom. In Spiders 
where a node is located on the display is purely a function of the users interaction with the 
system. Secondly, users interact with the structure that they view, creating the graphic 
objects as they browse. These properties flow from two basic decisions: 

• The location of a graphic object has no particular meaning 
in terms of the abstract structure that is being displayed. 

• There can be multiple graphic objects all representing the 
same ab~ract object. 

~his different use of the display space allows the drawing of the network to "flow out" over 
the 2D plane. In any system in which the nodes are multiply connected the placement of 
one node depends on the place of the nodes to which it is connected. By breaking these 
connections display is made inordinately easier. The display algorithm breaks cycles by 
treating every reference to a node as unique. This potentially creates multiple graphic 
representations of the same underlying node in the network. The interface model is: the 
user views a two dimensional plane on which part of the larger graph structure is drawn. 

Users interactively create this structure by browsing the links connecting the nodes. The 
displayed nodes are in one of two states. If they are expanded, all of their links are drawn. 
In Figure 2 an expanded node (the heavy black dot) is at the center of the screen. A fan of 
links comes out of the node and, from the links, fans of attached nodes. The attached nodes 
are in an unexpanded state. Browsing the structure is performed by "expanding" a node. 
This results in the promotion of the node to the status of expanded, and all of its links are 
drawn. In Figure 3 the node for Fuel Injection Pump Timing Specifications hanging off 
of the link named Needs·Specifications·For has been expanded and we see more of the 
structure. Since the display is treated as a window onto a much larger plane, it is possible 
to slide the window around and view parts of the structure that have fallen outside the 
viewing area. The user moves his view around by clicking on menu entries. The bottom 
menu entries, Up, Down, Right, and Left slide the window around; the item Center on 
Mouse, centers the view on a point selected by the user with a mouse. Not only can a user 

November 1987 Hypertext '87 Papers 279 



change the point of view, by moving the "window" about the graphic plane, he or she can 
manipulate the way the graph is drawn. The user can "pickup" and move any of the nodes 
and links. One of the major design goals is to give users as many tools for manipulating 
what they see as possible. Users should be allowed the view of the data they want. The 
display is the result of a negotiation between the user and the program. 

FUEL~INJECTION~PUMP•TIMING•SPECIFICATIONS 

•INJECTION-PUMP 

t 

Figure 3. This figure is a screen dump of a Spiders display after a user has expanded a node and 
its links are now displayed. Spiders is designed to allow users to quickly browse a large semantic 
network by expanding nodes and following the links joining them. 

Once users have decided that they would like to peruse the text linked to a particular node, 
they invoke text mode. 

Text Mode 

Figure 4 is dump of the screen, when the system is in text-viewing mode. The interface 
model is: a window is a view of a node. Here Thoth-11 differs from other systems. In most 
systems - N oteCards for instance - nodes are pieces of text and vice verse. In Thoth-11 there 
is another level of abstraction, the nodes to which text is connected. In a text-mode window 
the user can read any ofthe associated text at that node. These windows were created either 
by "querying" a node in the DG while in browsing mode or by "querying" a phrase in a 
piece of text while in text mode (see below). All text windows have the same structure. On 
the left side of the window is a menu bar. Displayed on the top is the name of the node to 
which the window points. In the menu are two types of commands. One set is window 

280 Hypertext '87 Papers November 1987 



operations such as resizing and movement. The other set consists of the te:x:t command and 
the graph command. The graph command puts the display back in the browsing mode. The 
te:x:t command pops up a menu of the text associated (linked) with that node. 

···- .. :::·· ···.·.· .. 

TO DRAIN: You should dr~in the fu•l f£lter bet~een filter 
lch•on•••· whether the fuel filter is contaMinated or not. For 
fex.onple, on 1977 throush 1$2 MOdels, the filter should be 

12,000 kn (7509 ni.) and every 24~BBB kn (1SBB ni.) 
lthoere•ft;r. On 1983 standard diesels, you :::~hould drain the 

:._ ::· ... • .: :. ·•· .::.:.: .: .. •, .• ... :··.··. 
:::::::: ······ ::::: 

····· ····· ....... _::::: 

Figure 4. This is part of a screen dump of text mode. Here two windows are displayed. Each 
window is a 'Window' on a node and the text attached to that node can be viewed in that window. 

If any of the text displayed exactly matches one of the stored phrases, then that piece of text is 
italicized. In Figure 4 several words are italicized and the one with the mouse on has a box 
drawn around it. Ifthe user clicks on a word when it is boxed, the system follows the pointer 
from the phrase to the associated node and makes the associated window. Thus if the user 
had clicked on the right mouse key while the system was in the state displayed in Figure 4, 

then a window would have been created that displayed text associated with the node 
corresponding to the phrase "fuel filter". This sort of interaction is similar to that found in 
the TIES system [Shne86]. However Thoth-11 supports multiple windows and on-the-fly 
recognition of target phrases. In Thoth-11 , as the text is being displayed, it is checked 

against the words in the stored phrasal lexicon. 

November 1987 Hypertext '87 Papers 281 



IMPLEMENTATION 

The current version ofThoth-11 is implemented in Zeta-Lisp and runs on the Symbolics 3600 
family of computers. It makes extensive use of flavors which is the object oriented 
programming facility on the Symbolics. 

The use of object oriented programming allowed me to distribute the flow of control across 
the objects. For instance, each "spider" - which displays as a large central black dot with a 
set of lines radiating out of it - has a flavor object associated with it that ''knows" how to 

draw itself, what other spiders it is connected to, what its current location on the screen is, 
whether it is off-screen, what node in the semantic net it is associated with, etc. The 
interface is based on message passing among objects and generic methods that are 
inherited and specialized by the particular instances. 

Using Lisp and a Lisp Machine also allowed me to take advantage of the large virtual 
memory and built in memory management. The current network is held in virtual 

memory. It is not necessary to cache the links in a data-base as is done in the Intermedia 
project. Further, Lisp naturally supports the kind of connectivity exploited in Thoth-11 and 
intrinsic to the notion of hypertext. 

USING THOTH·II 

Thoth-11 is designed to help users browse a hypertext document. The definition of this 
document consists of a file in a certain format. The following sections define that format 
and describe a sample document. 

The Input File 

The syntax of input files to Thoth-11 are simple. For value links the syntax is: 

(node-namel link node-namezl 

(node-namel link node-namez node-name3 ... node-namenl. 

Here the links references have been underlined for clarity. 

The syntax for text links is: 

(node-name text-link 11 text for displayu) 

or 

282 Hypertext '87 Papers November 1987 



(node-name text-link "file name"). 

Lexical links are similar: 

(node-name l.e.x. "string to look for") . 

Two kinds of links do not directly create structure but are useful for organizing the 
hypertext. Backlinks automatically create links that go in an opposite direction to the 
links that they are a backlink for. Pretty-name links supply names for screen display. 

(linkl backlink link2) 

(node-name pretty-name "name to print") 

(link pretty-name "name to print") 

Let us consider a very small example. Below is a short list of input forms and Figure 5 is a 
graphical representation of the resulting hypertext structure. 

(vw-rabbit haspart rabbit-engine) 

(rabbit-engine problems engine-wont-start) 

(engine-wont-start ~ dead-battery) 

(vw-rabbit description "The vw rabbit is a German car.") 

(battery-dead description "The battery is dead if it has no 
electrical charge. This makes the car impossible to start.") 

rabbit engine 

Figure 5. This is a diagram of the network that would be created by the sample input file described 
in the text. The circles represent nodes, while the arrows represent value Jinks between the nodes. 
Two pieces of text have been attached to the nodes. 

November 1987 Hypertext '87 Papers 283 



VW Hypermanual 

This section describes the VW Hypermanual , a hypertext repair manual built in Thoth-11. This 
manual was designed and built by Cheryl L. Wilson of Bellcore. 

Goal of the Hypermanual 

The VW Hypermanual is designed to replace a paper repair manual for a VW diesel Rabbit. 
The paper manual is designed for the amateur and professional mechanic. The section 
modeled in Thoth-11 is taken from the fuel injection portion of the fuel and exhaust system 
section. This corresponds to approximately 17 pages in the paper manual and took about 40 

hours to construct. The network consists of 52 nodes and 96 relations. 

Organization of the Hypermanual 

There are several simple principles underlying the organization of the manual. 

Conceptual 'planes of connection' are one of the most important features of the design of the 
VW Hypermanual. These planes partition the complete network and are a "view" of the 
complete VW system. For instance, one conceptual plane is major systems; these nodes 
and relations constitute a coherent whole which stands in its own right. Objects in this 
plane or view are much more highly interconnected with each other than with objects in 
other "planes". A second plane contains a representation of mechanical problems found 
in the rabbit fuel system. This is yet another view of the rabbit's fuel system and it is one 
that a user might use to gnide his search for cures for his balky car. 

Another organizing principle is the use of nodes in the network to represent categories of 
things. For instance, a node is used to stand for the class of problems encountered. 
Particular instances of problems are tied to the node representing problems in general by a 
relation of "instantiation". Some of the major categories are: 

• Parts, e.g .. fuel injection pump 

• States of parts. e.g .. leaky. 

• Symptoms of the car, e.g .. hard starting. 

• Systems which make up the car, e.g .. exhaust system. 

Certain relations also play central roles. The car is made of parts, which are in turn made 
of subparts. So the relation part of plays a central role in organizing the network. Other 
important relations are symptom and and cause. 

284 Hypertext '87 Papers November 1987 



Lexical entries, i.e., the recognition of word strings on the fly, provide an important 
mechanism for tying together the network. For instance, the description of the cause of 
some electrical problem might refer to the "battery". This word is tied automatically to the 
node which represents the car's battery. The user can then get more information about that 
part simply by clicking on the italicized text. The use of these phrases allows users to 
change their direction of attack on the fly, to get more detail about a topic when and if 
needed, to refresh memory of definitions, etc. 

Paper versus the Electronic Manual 

While constructing this hypertext document several major differences between it and the 
paper version became clear. 

• A hierarchical organization has been avoided. 

• The manual allows user to easily change topics by 
changing their "direction of travel" through the network. 

• User can easily control the level of detail. 

• The semantic network provides an organizing guide for the 
user that is not as restrictive as a strict hierarchy or an index. 

• The user is not the 'victim" of a single vision of the index as 
expressed by the index or table of contents. 

Hypermanual Conclusion 

While the manual described is quite small (it currently is being vigorously worked on), it 
is large enough to show, we believe, some of the potential of semantically based hypertext 
systems like Thoth·ll for technical manuals. It seems to us that such manuals will be quite 
different from ordinary paper manuals and they may require completely new writing 
styles. On the other hand, their creation will be justified by the increases in flexibility and 
tailorability to the specific needs of users. 

CONCLUSION 

Tho!h·ll is a browser for hypertexts. It allows for powerful and flexible linking of texts 
together. The structure that links the documents together can also serve as a model of some 
aspect of the structure of the text, whether it be at the semantic, logical, or rhetorical levels. 
The interface uses the power of a high resolution graphic display to show complicated 
conceptual information in an immediate and vivid form. The system exploits multi
windows, allowing the user to view simultaneously many different pieces of text. 

November 1987 Hypertext '87 Papers 285 



Advantages of the Approach 

I believe that this approach differs from some others in significant ways. Further these 
differences give it some advantages. 

• The latent structure embedded in any hypertext Is made 
explicit. 

• The semantics of the network provide a guide for use in 
browsing. 

• The network provides an explicit conceptual model of the 
domain. 

Disadvantages of the Approach 

There are also substantial disadvantages to the approach. 

• There is no hierarchal structure imposed. Tables of contents 
have their uses! 

• It is easy to get lost. 

• It is hard to do the representation work correctly. 

Final Summary 

Paper is hard to beat. It is cheap. You can put it in your pocket. It has very high resolution.l4 

The technology for using it is highly developed. Yet it is hard to model the structure of 
documents and their interconnections using ink on paper. Interesting computer systems 
have to do more than turn low resolution pages. Hypertext is one such possibility. In Thoth-11 
one can, it is hoped, capture something of the complex conceptual connections that tie pieces 
of text together. As a result, we can make an expert's view of a body of literature more 
accessible to others. Understanding often consists of knowing how things are connected 
together. 

286 Hypertext '87 Papers November 1987 



REFERENCES 

[Bush45] Bush, V. (1945). As we may think, Atlantic Monthly, 176, 101·108. 

[Coll87a] Collier, G. (1987). Describing States of Affairs in KEE 3.0. Bell Communications Research 

1M-ARH·009623. 

[Coll87b] Collier, G. (1987) On the Reification of Universals in Frame-Based Knowledge 

Representation. Bell Communications Research TM (in press). 

[Conk86] Conklin, J. (1986). A Survey of Hypertext, MCC STP-356-86. 

[Deli86] Deliesle, N. (1986). Neptune: A Hypertext System for CAD Applications, CR-85-50, 

Tektronix Computer Research Laboratory. 

[Enge84] Engelhart, D. (1984). Collaboration Support Provisions in Augment, Afips Office 

Automation Conference. 

[File84] Filevision (1984) Telos Software, 3420 Ocean Park Blvd., Santa Monica, CA 90405. 

[Fox79a] Fox, M. S. & Palay, A. J. (1979a). The BROWSE System: An Introduction, Carnegie· 

Mellon University. 

[Fox79b] Fox, M. S. & Palay, A. J. (1979b). The BROWSE System: Part II: Phase II and Future 

Research, Carnegie-Mellon University. 

[Gome87] Gomez, L., Landauer, T. & Remde, J. (1987). Superbook: An Automatic Tool for 

Information Exploration. Bell Communications Research 1M (in press). 

[Greg83] 

[Guid87] 

[Gull86] 

[Hala86] 

[Jaco84] 

November 1987 

Gregory, R. (1983). Xanadu: Hypertext from the future, Dr. Dobb's Journal, 75, 28-35. 

Guide (1987). Owl International Inc., 14218 NE 21st St. Bellvue, WA. 98007. 

Gullichsen, E., D'Souza, D. & Lincoln, P. (1986). The PlaneTextBook, STP·333·86(P), 

MCC. 

Halasz, F. (1986). NoteCards: An Experimental Environment for Authoring and Idea 

Processing, Xerox PARC. 

Jacobs, M.A. & Murray, D.J. (1984). Fi/evision, Telos Software Products, Santa Monica, 

Ca. 

Hypertext '87 Papers 287 



[Lena83] Lenat, D; Borning, A; McDonald, D.; Taylor, C.; & Weyer, S. (1983). KNOESPHERE: 

Building Expert Systems with Encyclopedic Knowledge, IJCAI, 8th International Joint 

Conference on Artificial Intelligence, 167-169 

[MORE86] MORE (1986). Living Videotext, 2432 Charlestown Rd., Mountain View CA 94043. 

[Nels81] Nelson, T. (1981). Literary Machines, available from author, Box 128, Swathmore, PA, 

19081. 

[Read86] ReadySetGo! 3 (1986). Manhattan Graphics, 401 Columbus Avenue, Valhalla, NY 10013. 

[Robe81] Robertson, G; McCracken, D; & Newell, A. (1981). The ZOG approach to Man-Machine 

Communication, Int. J. Man-Machine Studies,14, 461-488. 

[Scha85] Schatz, B (1985). Telesophy, Telesophy Project at Bell Communications Research. 

[Shas85a] Shasha, D. (1985a). Netbook- an exploratory environment for readers and writers, New York 

University. 

[Shas85b] Shasha, D. (1985b). When does Non-Linear Text Help?, New York University, TR-178. 

[Shne86] Shneiderman, B. & Morariu, J. (1986). The Interactive Encyclopedia System (TIES), 

University of Maryland. 

[Symb85] Symbolics, Inc. (1985). Programming the User Interface, Symbolics, Inc. 

[Trig83] Trigg, R. (1983). A Network-Based Approach to Text Handling for the Online Scientific 

Community, University of Maryland,. 

[Trig86] Trigg, R. & Weiser, M. (1986). TEXTNET: A Network-Based Approach to Text Handling, 

ACM Transactions on Office Information Systems, 1, 4. 

[Walk85] Walker, D. (1985). Knowledge Resource Tools for Accessing Large Text Files, Bell 

Communications Research, 85-21233-25. 

[Weye82] Weyer, S. (1982). Dynamic Book for Information Search,lnternational Journal of Man

Machine Studies, 17, 87-107. 

[Weye85] Weyer, S. & Borning, A. (1985). A Prototype Electronic Encyclopedia, ACM Transactions 

on Office Information Systems, 1, 3, 63-88. 

[Yank85] Yankelovich, N. & Meyrowitz, N. (1985). Reading and Writing the Electronic Book, 

Computer,JO, 17, 15-29. 

288 Hypertext '87 Papers November 1987 



!This research has benefited from the ideas and encouragement of Robert Amsler and Don Walker. See Walker 
(1985) for a broader discussion of some the issues raised here. I would also like to acknowledge the 
assistance of Margaret Nilson, an early user, and Cheryl L. Wilson who is mostly responsible for the VW 
Hypermanual. 
2ouide (1987) and Filevision (1984). 
3unusual only now as it was truly a product of the 1960s. It resembled the Whole Earth Catalog. 
4TI10th was the Egyptian god of writing. 
5The objects that are connected are not necessarily texts. They can be pictures, video sequences, etc. 
6This is, of course, an oversimplification. 
7There are more complicated semantics but they ~e irrelevant to the current discussion. 
81t is worth noting that major theories of human memory and of meaning have been expressed via semantic 
nets. 
9Personal communication. 
1 OHence the title of this paper. 
liThe display resembles a childhood drawing of a spider. 
12nus hypertext was created by Cheryl Wilson of Bellcore. 
13Personal communication from Kim Fairchild at MCC. 
14 At 300 dots per inch - standard laser printing - a Symbolics high resolution display would be about three 
inches on a side. 

November 1987 Hypertext '87 Papers 289 



290 Hypertext '87 Papers November 1987 



The Architecture of 
Static Hypertexts 

Tim Oren 

Apple Computer, Inc. 
10500 N. DeAnza Blvd. MS 27AJ 
Cupertino, CA 95014 

ABSTRACT 

This paper 's purpose is to describe how the hypertext technique can make CD-ROM (and 
other static storage media) a more comfortable environment for human use. I begin by 
considering implementation issues for hypertext on CD-ROM and suNeying currently 
available products. I suggest desirable goals for the use of hypertext on the static CD 
medium, and propose that their achievement will follow from a correct choice of 
conventions of use and construction of the hypertext database. Such goals include 
augmenting text search algorithms, recovering lost benefits of the print medium, 
designing meaningful connections between documents to assist human communications, 
and allowing variable interactivity with the user. 

WHAT IS HYPERTEXT? 

Hypertext is defined as non-sequential reading and writing. Documents stored in a hypertext 
system have the property of active cross-references. Active means that you can instantly gain 
access to the cited document by picking the cross-reference from the computer display. You may 
then follow further references, or return to the original document. In hypertext parlance, this 
active reference is called a link. The documents are often called nodes. An assembly of nodes 
and connecting links form a hypertext network. A set of links are often referred to collectively 
as a 11Web". 

Though the hypertext term is new, the concept of linked documents is very old. For instance, 
the scientific and engineering literature with its standard system of cross-references forms a 
paper hypertext spanning hundreds of thousands of documents and hundreds of years. Many 
works of classic literature, such as the Talmud and Horner, have spawned bodies of interlocking 
commentary all related by a standard scheme of verse or passage referencing. 

The difference in true hypertext systems is the technological support which replaces the 
manual process of locating and fetching volumes and passages. This notion can be traced to 
Vannevar Bush's seminal Mernex paper of 1945, which proposed cameras, microfilm, and a 
mechnical retrieval engine as a means for supporting scientific research [Bush45]. In the 1960's, 
Douglas Englehart's NLS/ Augment project substituted magnetic storage for film and a computer 
for the mechanical engine, and brought an early version of Mernex to life [Enge68]. It primarily 
supported hierarchical linking, and was designed as a dynamic medium for cooperative work or 
individual thinking and writing. NLS is a superset of what has come to be called an "idea 
processor" or outliner [Hers85][Fost85]. 

November 1987 Hypertext '87 Papers 291 



The term hypertext was popularized by Ted Nelson in his 1974 book "Dream Machines" 
[Nels74] which looked beyond hierarchical relations to a densely interwoven network of nodes 
which directly reflected the ideas within the human mind. In later works Nelson expanded 
his notion into ''Xanadu", a network of interconnnected hypertext engines which would be both 
an environment for cooperative thinking and a medium for electronic publishing of hypertext 
works [Nels80J[Nels82J[Greg83]. 

In the last few year, several implementations of hypertext have appeared as academic or 
commercial products on workstation computers. These include Brown University's lntermedia 
[Yank85J[Garrett 1986][Meyr86], the TIES program at University of Maryland [Shne86], Xerox' 
Notecards system [Mont86a][Mont86b][Trig86][Hala87], Tektronix' Neptune [Deli86], and the 
experimental PlaneText program at MCC [Gull86]. A excellent technical report available from 
MCC surveys these systems and discusses issues in designing hypertext software [Conk86]. 

IMPLEMENTING HYPERTEXT ON CD-ROM 

Why should hypertext be of interest to the CD-ROM industry? We can readily observe that 
people think using ideas, concept and facts, not arbitrary pages or screens. Ideas are connected 
in the mind, forming classes and narratives. Hypertext shares the property of connectivity, 
relating documents or information chunks which in tum contain facts and concepts. It is 
reasonable to hope that a medium with this property would help overcome the searching and 
browsing problems that arise in large collections of isolated documents converted from the static 
print medium. 

(We should hasten to note that hypertext is NOT a form of artificial intelligence. A.I. in 
general strives for a representation of human knowledge and physical reality which may be 
used effectively by the machine. In constrast, hypertext uses the machine to augment human 
thinking by providing a dynamic medium not possible on paper [Stef86]. The evolved human 
uses of hypertext may prove enlightening to researchers of cognition, but there is no necessary 
intent to model human thought.) 

CD-ROM is particularly suited as a storage medium for hypertext. Two properties of CD-ROM 
are helpful: its read-only static nature and large capacity. Dynamic, editable hypertext have 
a problem with updating. Unks may originate in any document and, depending on the 
implementation, may point to an entire document or a passage or point within it. When the 
target document is edited, moved or deleted, any or all of these links may have to be changed. 
While this task is feasible with suitable data structures, it may be a considerable 
computational load for a microcomputer when dealing with tens or hundreds of thousands of 
nodes. On CD-ROM, the basic document cannot be removed or altered. Annotations or new nodes 
may be added, but an unchanging node structure will always be present, relieving the update 
problem. 

Before the appearance of CD-ROM, massive hypertext databases could only be brought to a 
desktop computer user by remote access to massive hard disks attached to mainframes or 
distributed networks. Distribution of the hypertext across machines or update by multiple users 
compounds the link updating problem with issues of simultaneity. A single CD-ROM is large 
enough to store a hypertext equivalent to 100 large print volumes. The advent of Xanadu and 
other hypertext writing systems will eventually make larger hypertexts possible, but the 
economics of creating hypertexts probably makes this a reasonable size limit for the first 
generation. 

The size and static nature of CD-ROM also allows storage of the hypertext links for optimal 

292 Hypertext "87 Papers November 1987 



retrieval. Rather than storing the pointers in a disjoint database, they may be stored within 
the document itself. Duplicate tables of incoming and outgoing links for each document may 
also be placed on the disc, eliminating the need for multiple accesses to the CD-ROM when the 
user requests these summaries. 

Already, vendors of CD-ROM retrieval software have begun to adopt the hypertext technique 
as an additional or primary browsing technique. The "hotlinks" feature of KnowledgeSet's 
KRS and "sideways browse" in the TMS Research software augment basically hierarchical 
browsing structures [KRSS6][Rese86]. Owl's Guide product goes further in adopting hypertext as 
the basic metaphor for browsing [Guid86]. General microcomputer software products such as 
Box Company's Window Book and Uving Videotext's More also have hypertext-like features 
and would readily adapt to CD-ROM use [Wind86][More86]. 

WHAT IS THE DESIGN PROBLEM? 

Fulfilling the promise of hypertext will require careful design of the hypertext database. 
Hypertext itself is simply a technique; it does not imply any particular structure of links or 
nodes. Unplanned, unstructured links are not the best use of hypertext; they can produce an 
"amorphous blob" database that may be fascinating to explore, but does little to ensure fast 
access to interrelated ideas. In such an unplanned hypertext, the access problem for links can 
become as bad as that for documents. The user does not know what links to expect in a node, and 
navigation from place to place becomes a hit or miss proposition. It is easy to get lost, and there 
is no consistent pattern of knowledge to be found. Experiments at KnowledgeSet with a 
hypertext generated by automatic recognition of cross-references within Grolier's Electronic 
Encyclopedia tend to bear out these statements [0ren86]. 

What we need are, in Alan Kay's term, "conventions that work" in .the hypertext medium. In 
,seeking these conventions of use, we should continue the hypertext paradigm of honoring the 
mental habits of the human. We should look at existing media for techniques that work in the 
.new situation and will be familiar scenery to the user. We should also realize that hypertext 
on CD-ROM is inherently different from the dynamic Xanadu environment envisioned by 
Nelson. Where dynamic hypertext is a tool for cooperative writing and online publishing, 
hypertext on CD-ROM is a stored medium constrained to transmit human communication in the 
absence of feedback from reader to author. In this situation we cannot hope for desirable 
properties of hypertext to emerge through use, we must design them. 

A conservative approach to the design task is to attempt to alleviate problems which are now 
apparent with CD-ROM databases. One of these problems is the loss of desirable properties of 
the print medium: location, closure, unity of type, and state preservation, for instance. Another 
is the known difficulties of full text search, in particular the Boolean algorithms most common 
in CD-ROM retrieval engines. These difficulties include tradeoffs between retrieval precision 
and recall, and inconsistent human or automatic choice of indexing terms. A larger design task 
is to improve the degree of communication which is achievable with a static medium. If the 
structure of hypertext combined with the storage capacity of CD-ROM could achieve this goal 
we would have reason to claim success for the medium. This should be possible if there is merit 
to the hypertext claim of matching some aspects of human cognitive behavior. 

RECOVERING BENEFITS OF PRINT 

In exchanging print for the electronic medium we lose some benefits which occur because the 
paper volume has physical being. Restoring them would be a reasonable goal for hypertext. I 
will consider the properties of state preservation, unity of type, serendipity, closure, and 

November 1987 Hypertext '87 Papers 293 



location. 

State preservation 
By state preservation I mean that a printed volume stays the same when noone is looking at it. 
Bookmarks or fingers can be put between pages to temporarily save locations. Marginalia and 
underlines remain in place. Temporary notes can be paper clipped to the pages or stuck on with 
adhesive. A hypertext browser should have similar properties [Scra85]. 

Bookmarks and fingers are used by humans to replace the cognitive task of remembering page 
numbers and the physical task of looking them up again. The electronic equivalent of a finger 
in the book is a browser which remembers the previous position when following a link. One 
way of doing this is to generate a new view window at each jump, leaving the previous 
document, scroll point, and selection in the old window. Multiple windows allow side-by-side 
comparison of documents and specification of new links by direct manipulation [Shne83]. 
However, they can easily produce clutter on a small microcomputer display. A compromise is 
to jump the browser window to the target document, but preserve the state of the previous 
document and restore upon return. An user option for requesting a new window restores the side
by-side benefits. 

Hypertext bookmarks are simply links to a document which are generated at the user's request 
and stored with some associated comment or picture. As the collection of bookmarks builds up, 
they present an access problem in themselves. For this reason, and the unity of type concerns 
presented below, each set of bookmarks should be collected as a full fledged hypertext 
document which may be searched and targeted by a link. 

To simulate writing in the book, some form of document versioning is required. Since neither 
marginalia nor highlighting delete information or change the fundamental document structure, 
they can be stored as an increment file associated with the document. Making a full copy of the 
documents with changes can quickly fill up a magnetic disk if a large CD-ROM database is 
annotated frequently. 

The equivalent of Post-its or paperclipped notes can be constructed by putting a link in the 
increment file, targeted to a new notepad document stored on magnetic disc. Again, notes and 
marginalia should be fully searchable. If one notepad document or bookmark set is allowed to 
link to another, the general hypertext update problem is reintroduced. Here the designer must 
choose between benefit and implementation difficulty. 

An interesting issue is whether annotations and notes should be private to the author or public 
to all users of the database. Privacy and security considerations speak for local notes, but a 
public option would allow the CD-ROM workstation to be a focus of collaboration and 
serendipity just as Xanadu envisions, though limited to sequential use. 

Unity of type 
Simply because everything is printed on the same paper, books have a unity of interface seldom 
achieved in software. The lesson for hypertext is to avoid needless multiplication of data 
types. For instance, the storage medium for a document should be transparent to the user. Links, 
bookmarks, and document references generated by search should be of one type. Hypertext 
documents, user notes, bookmark sets, search result lists and tours (see below) should also form 
one type. In a hypertext world where anything can link to anything, complexity grows as the 
square of public data types. Disallowing some type combinations introduces modes in the 
interface, to the confusion of the user. 

294 Hypertext '87 Papers November 1987 



Of course, some dynamic elements of hypertext have no print equivalent: animated graphics 
and video and sound sequences. These complexities should be buried within the scope of a 
document. The onus should be on the hypertext system to determine the correct type of browser 
for a document or object within a document. The Smalltalk approach of hiding the display 
method within the data object has much to recommend it here [Gold83]. 

Serendipity 
The physical nature of a printed book encourages serendipity. The book can fall open at an 
unintended place. Interesting pictures may draw the eye into articles which would otherwise 
be missed. A passage being read may adjoin another which catches the eye. Given the 
perennial shortage of screen space in the electronic medium, much attention is given to removing 
just this sort of "irrelevant" information. Returning serendipity without intruding on the main 
retrieval task is a design task visited on the database architect [Love84]. 

Links can easily be inserted in a hypertext to simulate physical proximity created in page 
layout. There is no requirement that these links should obey conventional topology; they can 
lead anywhere in the database. They might be an opportunity for the designer to build in 
weak connectivity with a model such as "I want a link here that might interest the kind of 
person that would read this article, even if it's not directly relevant." For this feature to be 
used, the cost to explore a link must be very low, a single mouse click or keystroke with almost 
no pause on the jump and return. 

Because pictures are recognized as gestalts they are an effective way to draw attention to 
documents otherwise missed. A number of printed works, such as the Whole Earth Catalog, 
have deliberated used this property to promote discovery by readers. A hypertext equivalent 
might be to link all pictures in a list and provide a slide show feature to start flipping through 
them at any point in the list. The user could stop the show at any point of interest and examine 
the related document. Since pictures often contain items not of direct relevance to the 
associated document, it may also be useful to design a picture description language to be 
attached to the images and searched separately from the text documents. 

Truly random jumps have limited appeal. A document randomly chosen might already be 
familiar. If it is novel, it is entirely out of context and its relation to the remainder of the 
database will be a complete mystery unless the user is willing to invest the time to explore the 
neighborhood. To make random jumps useful, very strong location cues and tools must be 
available. This aspect may be better handled by tours as described below. 

Closure 
Closure is simply telling when you are done, or how far you have to go. In a conventional book, 
the end is quite obvious. The amount and weight of paper in the left hand versus the right is a 
continuing cue. It is easy to find how much remains in a chapter by paging quickly ahead, 
scanning for breaks in the text rather than reading. Hypertext loses these abilities; there is no 
direct way to tell what fraction of the database has been viewed and it is difficult to draw an 
analogy to "pages left in chapter" when the reader can instantly branch from a given linear or 
hierarchical reading patttern. 

These properties can be simulated when the hypertext system retains a memory of the user's 
actions, which documents have been viewed and which links followed, and in what order. This 
memory can be used to generate simple statistics such as fraction of database read, but more 
importantly they can be used to lead the reader to the portion which is undiscovered. It 
becomes meaningful to make requests such as: "Show me something new", "Show me a new path 
to something I've seen before", "Let's review the paths I have taken to this node", "Put me back 

November 1987 Hypertext '87 Papers 295 



in the context of last Tuesday'', or "Tour this section using link types I most frequently choose." 

Notice that any of these requests can be filled without a deep understanding of the contents of 
documents. The idea does suggest that document and link objects should be given the property of 
recording requests make of them, and that a global record of features used will be more than a 
tool for the interface designer. Again the issue of private and public access to these records is 
interesting. What value is there in seeing the database through other's eyes? Would this be a 
breach of intellectual privacy so blatant as to stifle exploration and speculation? 

Location 
A well designed book uses print conventions to give the reader a sense of location. Running 
chapter titles, section headings, type styles and indentation situate the current passage in the 
hierarchical or narrative structure of the work. Positioning of images and tables reinforce the 
topic under discussion. Again, many of these are lost in the electronic medium because they are 
deliberately designed as peripheral cues which are only occasionally brought into focus by the 
reader. When the physical element of proximity is removed, and restricted display area 
constrains layout, it is easy for these cues to be abandoned [Mont86a). Hypertext systems 
exacerbate the problem by encouraging a proliferation of small nodes encapsulating a single 
idea [Conk86). Display systems which present only one document at a time are particularly 
poor for location, because they throw the entire burden of placekeeping on human memory 
[Robe81][McCr84]. 

Location is one of the most difficult problems in hypertext design. Some print conventions, such 
as ruruiing titles and headings, can be adopted as is or converted into hierarchical or linear 
links among documents. However, such adaptations cannot cope with thousands of nodes with a 
web more complex than simple linear or hierarchical relations. 

The usual approach to this problem is to generate a view of the neighborhood around the 
current position. A straightforward approach is to show a "zoom out" or "road map" schematic 
view of the adjoining nodes. Such views can be automatically generated at the time of request, 
built manually during the editorial process, or defined by the user. Allowing the latter 
possibility is very interesting, because the construction of such a view by the user is a direct 
statement of perceived relevance among the documents. Such views might evolve naturally 
from collections of bookmarks. Most current techniques presume automatic generation, but have 
immediate application to precomputed or editorially created neighborhood views. 

The neighborhood view can take many forms, all in the general class of contiguity maps. Print 
conventions include timelines and maps. We might borrow conventions from technology such as 
PC board layout with documents corresponding to packages and links to traces. A viewing 
method adapted from semantic net browsers is simulated 3-dimensional space [Fair86). This 
deserves more investigation, but appears to have problems with screen clutter, complexity of 
controls to manipulate the view, and lack of obvious mapping to the documents themselves. 
"Spaghetti looks the same from any perspective " - Steve Weyer. 

Any of these views can be overwhelmed by heavy branching at a node or attempts to view at 
several links distance from the current document. As the number of nodes in sight grows, the 
view either becomes cluttered or is forced to multiple screens, defeating the purpose of synopsis. 
Methods called filtering and focused or distorted views help overcome this problem. 

Filtering is removal of documents from the view based on a simple criterion [Kay83]. If the 
documents are typed, a subset of these types may be displayed. If links are typed, the view 
may be generated by moving along a subset of link types. In some systems, such as Brown 
University's Intermedia, links may actually be loaded and unloaded in related sets. In 

296 Hypertext '87 Papers November 1987 



hypertexts with hierarchical structure, the filtering could create views up, down, and 
sideways in the hierarchical levels. If the current document contains narrative or tour links, 
they are direct editorial cues to location and other documents on the paths should be 
preferentially displayed. All filtered views have the characteristic of requiring the user to 
manipulate the filtering criteria, rather relying on automatic function of the hypertext system. 
Filtering is also be antagonistic to serendipity, as it removes the chance of accidental discovery 
of an unanticipated type of relation. 

Distorted views use more complex criteria for rejection or inclusion of nodes in the view. The 
basis for choice typically extends beyond simple link or node types to include global or regional 
properties of the database. For instance, the fisheye viewing technique developed by George 
Furnas shows samples from the database in relation to their distance from the viewing point 
[Fum86] . In a fisheye view of a linear list, all items near to the current position would be 
shown_ with more and more entries omitted farther from this focus point. By changing the 
degree of interest function associated with a fisheye view, the type of distortion produced can 
be varied. 

Ousters are another type of distorted view. Each document is assigned to one or more clusters. 
The neighborhood view from a node shows adjoining clusters rather than single documents. One 
document may be chosen to stand for the cluster, or a separate designator may be generated. 
Attempts to automatically generate clusters may rest on similarity measures of the text within 
the documents, or on analysis of the pattern of connectivity amongst nodes. At KnowledgeSet, 
an attempt was made to cluster on the basis of minimizing connectivity between clusters, using 
untyped links derived from textual analysis of a print original [Oren86]. This project failed, 
probably due to a lack of editorial control of the links and very high connectivity among a large 
subset of the documents. Typing of the links, or prior design of the link and documents to fall 
into clusters may be necessary for success. · 

Like other views, clusters can be deliberately created as part of the editorial process, perhaps 
as an extension of the regular hierarchical outlining process. One can also allow the user to 
assign documents to self-defined clusters upon retrieval. The interface might consist of a small 
form with category check boxes, or a collection of "rubber stamp" icons tQ be applied to the 
document. This feature does not solve the general location problem, but does allow the user to 
build up a personal information space with invented clusters and names. 

These neighborhood views share the property that they are deliberately invoked by the user. 
Other location methods attempt to be less intrusive, providing subliminal or periodic cues 
without explicit request. For example, transitions between documents might include a seque in 
which the browser zoomed back to a cluster view, panned to the cluster of the new document, 
and zoomed back in to the text level. Colors, background patterns or icons could be used to 
indicate the topic of a document or its level in a hierarchy. In a multimedia system, sound 
might be a peripheral cue to location. 

AUGMENTING FULL TEXT SEARCH 

Boolean full text search has become the de facto retrieval method for CD-ROM for a number of 
reasons. Users, implementers and data providers with experience in online retrieval are 
accustomed to Boolean search and have carried that experience into the new medium It is easy 
to precompute the inversion tables required in Boolean search and optimize their layout on the 
CD-ROM medium. The technique also makes modest demands on the processor power available 
in desktop computers. 

November 1987 Hypertext '87 Papers 297 



However, Boolean search is well known to be flawed. A severe tradeoff has been demonstrated 
between precision, the portion of retrieved items which are actually of interest, and recall, the 
fraction of actually relevant items which are found in the search [Biai85]. This failing may be 
attributed to imprecise or incomplete choice of search terms by users [Fum83], lack of semantic 
analysis of the documents, and the fact that relevance is simply not a binary decision. 
Whatever the reasons, unaugmented Boolean search is not a good technique to impose on a 
desktop computer user who has no experience with the tradeoffs involved, and who may be 
unwilling to formulate complex queries. Particularly with sensitive databases such as law or 
medicine, a false impression of co,mpleteness is dangerous, and a plethora of irrelevant 
documents may overwhelm the time available for research. Probabilistic and weighted 
Boolean methods of full text search [Salt83] offer substantial improvements, but have been slow 
to appear on CD-ROM due to the processing load they impose and greater difficulty of 
implementation. In the interim, The network structure of hypertext databases may allow 
improvement in the apparent performance of Boolean search [Bart85]. 

Hypertext links can allow text search to fail gracefully. If links joining related nodes have 
been built into the database, failure to find every relevant document is no longer so important. 
Assuming that the target of a search is in fact a set of documents with related semantics, it 
should suffice to retrieve a subset of these documents and reach the remainder by browsing via 
hypertext links. As link following replaces exhaustive scanning of a list of retrieved 
documents, the presence of false hits in this list becomes less obnoxious to the user. 

The hypertext network can also be used as a direct component of search. The analogy of a 
hypertext to the interlinked body of scientific literature has already been noted. 
Bibliographic and cocitation analysis have been shown to dramatically increase search 
performance in this setting, presumably because the links directly trace the evolution of ideas 
[Bich80]. These techniques could be used to augment search of a CD-ROM hypertext where the 
links shared this property. The user would mark documents of known interest. Following and 
comparing incoming and/ or outgoing links would generate a candidate document set which could 
be included as a term in Boolean search or used in a weighted search. 

Even when the links are not explicitly bibliographic, the hypertext network can be used in 
relevance feedback. Spreading activation along links from user marked nodes can used to 
generate document weights. Marking could be explicit, or the browser could simply record the 
nodes visited by the user since the last search, with an option to forget a document which was a 
false path. 

The onus is on the hypertext designer to ensure that these techniques will work. The necessity 
is that links be true reflections of semantic relevance, if not exact bibliographic relation. If 
there are links in the database which do not indicate relevance, e.g., links between articles 
with the same date, the hypertext system should be able to associate relevance weights with 
links. In a hypertext system with explicitly typed links, the relevance weight could be 
associated with type. 

IMPROVING HUMAN COMMUNICATION 

For hypertext to succeed as a medium, it must offer advantages beyond print or isolated 
documents stored in an electronic form. Its particular potential on CD-ROM is to overcome the 
inherent limitation of a static medium to communication without feedback. 

Both common sense and experiences suffered by AI practitioners indicate that an idea exists in 
the human mind as part of a dense web of entities and relations. Nonetheless, we manage to 
pass ideas from mind to mind using the medium of spoken language. Language itself is a 

298 Hypertext '87 Papers November 1987 



delicate balance between efficiency and breakdown. Efficient language is terse and evocative, 
resting on an assumption of similarity of concepts between the communicating parties. When 
this fails, breakdown occurs. When no continuity of ideas exists, the failure may be permanent. 
More often, an iterative process of exchanging concepts and examples eventually reestablishes 
communication. 

The weakness of static media, whether print or electronically based, is the inability to support 
such iterative communication of ideas. Written language has adapted by being lengthier and 
more formal and precise. However, if breakdown does occurs, there is no general mechanism for 
obtaining a meaningful elaboration, example, or definition of terms. At best, a conscientious 
author will provide sample problems with solutions, references to other works, and example 
applications of an idea. These may or may not fit the needs of a given reader, and often go 
unused because of the time and labor required. 

Implementing hypertext on the static medium may ameliorate this difficulty in 
communication. Hypertext honors the connectedness of memory by making relations explicit, 
allowing them to be explored until the idea is dear. Hypertext jumps are less laborious than 
thumbing through a book or returning to the shelves, and should do much to encourage 
investigation when doubt occurs. Thus hypertext suits the static medium for communicating 
ideas, as opposed to transmitting disconnected bits of information. 

Cognitive considerations 

The capacity of the CD-ROM medium makes it possible to store a great number of possible 
paths of inquiry, hopefully anticipating the needs of most viewers. The design problem for the 
hypertext architect is anticipating and building the most useful paths, given that it is 
impractical to elaborate all paths due to production costs and time. This section proposes some 
rules for choosing useful paths, based on what we know and guess about human cognitive 
processing. 

Beyond the economic limits on construction, there may be optimum and maximum numbers of 
links per document determined by the limits of human cognition. A small hypertext constructed 
in Xerox's Notecards system has an average of slightly greater than two links per card 
[Conk86] .. A large hypertext automatically generated from Grolier's Encyclopedia also has an 
average of about two links per documents, with 80% of the documents having 10 or fewer links 
[Oren86]. Other experimenters with constructed hypertexts report ranges of four to eight, and 
two to ten links per screen [Kaeh87][Shne87]. 

It is suggestive that these connectivity figures mostly lie within the number of items considered 
optimal for selection from menus: "seven plus or minus two" [Mill56]. If this number represents a 
fundamental human limit on simultaneous consideration, the consequences of exceeding it in 
hypertext documents should be obvious. We would expect choosing a path from such documents 
to take longer, because of the need to reload links while reaching a decision. This phenomenon 
needs further investigation. 

A related question is the optimum size of a document in a hypertext system. Because of the 
explicit representation of relations, it is not clear that print conventions are meaningful in this 
regard. In fact, limited experience again suggests that documents created in a hypertext system 
tend to express one idea, and are smaller than traditional print documents or text files [ Conk86]. 
This fits well with the notion than links capture relations between ideas. 

If we accept these suggestions, the burden on the author and editor of a CD-ROM hypertext 

November 1987 Hypertext '87 Papers 299 



becomes clearer. As yet, we have no automatic tools to extract idea sized chunks from linear 
text. The requirement for parsimony of linkage suggests that just as in print, what is not said is 
just as important as what is represented. The burder'- of expression and selection falls squarely 
on the human content creator. 

Contiguity and Similarity 
In searching for the best types of links for inclusion in a hypertext, we should look at existing 
taxonomies of ideas and their associations, and methods used in present static media to express 
these relationships. Aristotle defined two associative principles, similarity and contiguity 
[Mand84]. Objects in a similarity relation share properties, but no further association; they are 
members of a set or class. On the other hand, contiguity puts objects and events into a spatial or 
temporal relation. The relation may be very simple, as in a time line, or very complex, as in an 
organized scene or script 

Contiguity relations are more readily learned and recalled than abstract concepts or 
hierarchies [Mand84]. This is not surprising, since contiguity is the rule in our everyday life. 
All of our experience occurs in contiguous time and space, and the human is adapted to survive 
by quickly storing this experience, as episodic memories, and later create generalizations with 
value in predicting the future by the process of abduction [Rosz86][Bate79]. 

Contiguity may be represented verbally, textually, or visually. In print media, contiguity 
relationships are shown with time lines, maps, or narrative. Maps can directly represent a 
complex physical or conceptual space, and may translate directly into the electronic medium 
when an appropriate metaphor can be found. Verbal narrative as a learning tool covers a range 
from aboriginal cultures such as the Australian Bushmen to the "war stories" that circulate in 
technical professions [Snyd83]. Print narrative is present not only in fiction, but in biography 
and history texts which transfer a lesson by telling a story. 

Computer scientists have represented contiguity relations as frames, scripts, and schemata 
[Scha77]. Attempting to understand stories with these tools, we find that the information 
explicitly transferred is not enough for understanding, that text assumes underlying knowledge 
in the reader [Lena86]. In fact, we have effectively rediscovered the narrative convention that 
expected behavior is not mentioned [McLu64][Mand84]. We might say that the value of a 
narrative is pr.ecisely in its novelty, in deviation from the expected script or schema. Again, we 
can make the argument that we are evolved to learn by exception. If generalizations have 
value in predicting the future, an exception can be deadly. Our learning pattern is consequently 
skewed to quickly note the novel. Our media achieve parsimony by congruence with this 
phenomenon; by evoking pattern and articulating exception. 

Here is precisely the assumed "common ground" of static media which we expected. The 
narrative convention causes communication breakdown when the reader does not have the 
appropriate abstraction in mind and is unable to extract it from the story. This type of failure 
means that the experience cannot be generalized and reapplied. 

We use similarity relations to codify and retrieve knowledge. We build hierarchies of 
classification exhibiting the common elements of experiences, objects, and concepts. Similarity 
relations capture the generalizations deduced from narrative and experience. Similarity 
enables metaphorical and analogic reasoning by exhibiting common features among the related 
elements. 

Similarity relations are shown in print with outlines, tables of contents, formal taxonomies, 
and encyclopediac classifications. Most textbooks are organized into a hierarchy of topics to be 
defined discursively. In the electronic medium, key term indices define similarity classes, and 

300 Hypertext '87 Papers November 1987 



structured documents and outline processoers emulate print conventions for classification. 

The difficulty of communicating similarity relations reflects their very generality. There must 
be some commonality of experience between author and reader in which to ground the argument, 
or the concepts abstracted become meaningless buzzwords. In this situation, the recipient is 
unable to learn the similarity relation because it cannot be restated in familiar terms. 
Textbooks provide specific examples to overcome limits of experience, but there is a practical 
limit in breadth and depth of coverage. Some level of prior experience must be assumed. 

Supporting multiple relations in hypertext 
We can see a complementarity of capability and limitation between contiguity and similarity, 
between narrative and classification. Hypertext fuses the two by breaking the one track limit 
of linear text. In a single hypertext we may embody multiple hierarchies of classification and 
many trails of narrative and experience. When a narrative is unclear due to a missed concept, 
the reader may pause to examine other documents in a similarity class. If an explanation of 
similarity becomes murky, a trail of examples can be followed. The user retrieving desired 
facts can move smoothly into the learning experience, and vice versa. 

The ability of hypertext to represent multiple hierarchies breaks a limit of printed outlines. It 
allows the exposition of multiple points of classification with greater opportunity for discover 
of analogy and metaphor. Different hierarchies can also embody competing views of the same 
experiences. Consider, for instance, how a Marxist and capitalist might classify and explain 
the same set of news stories. Limited experience shows that multiple hierarchies do occur in 
constructed hypertexts [Mont86b]. 

The multiple narratives in a hypertext correspond to Bush's memex trails [Bush45] and are also 
called tours or paths in the hypertext literature [Yank85]. Hypertext is a multivoice medium. 
Tours could embody differing pedagogical approaches to the material, or different points of 
view by the reader. For example, the same generalized material on ecology might be 
illustrated with different examples depending on the bioregion of the viewer. A tour can 
simply determine the next document presented by default, or it could be a dynamic presentation 
with realtime sound, video, and animation components. 

DESIGN FOR A RANGE OF INTERACTIVITY 

Note that we have moved from a user actively searching for documents to a Ieamer acquiring 
concepts and experiences through both passive and active communication with the database. 
This ability to vary the nature of human/ computer interaction within a hypertext system 
deserves exploration. I believe there is a spectrum of interactivi ty. At one end of the range is 
the active human, passive computer combination. This is the world of the user, the goal 
directed seeker of information with the computer performing search and retrieval on demand. 
This is the situation addressed by our cognitive models of problem solving behavior, and by 
user interface designs for productivity software. The user mode of interaction is also apparent 
in learning by exploration. 

At the other end of the spectrum is the passive human and active computer combination. The 
human role as observer or viewer is found in many educational situations such as lectures and 
films. The lecture model gives the student a learnable narrative tour through material, 
explicitly demonstrating connections and relieving the cognitive load of navigation during 
learning [Conk86]. We may also note that every successful entertainment medium to date 
presumes the passive viewer model. 

November 1987 Hypertext '87 Papers 301 



We are looking for a position in the middle of the spectrum where the human and computer 
both move between the active and passive roles. We might call the human in this situation a 
participant. A participant system is characterized by graceful yielding and recovery of control. 
There is a fluid transition between roles, the human may interrupt or redirect a default 
presentation at any point. The best educational simulations and adventure and arcade games 
fit this model. However, most such games embody very simple models of the computer as 
antagonist or riddlemaster, so the experiences generated without human input are unlikely to 
be satisfying. 

A hypertext system fits the participant model when it includes elements such as saved tours 
which can be activated and viewed, and cancelled or paused at any time. During a pause the 
user can become an active explorer or experimenter and then resume the paused tour or switch to 
another tour. Memory in hypertext systems as described earlier also fit this model, for the user 
can turn control over to the computer, asking for review of previous material or access to novel 
documents. 

What is the role of the computer in a participant system? In many cases it will simply act as a 
playback device, delivering a tour or experience created by the database author. In other 
systems the computer will be active, adapting to actions by the user and to properties of the 
documents and links being accessed. This role for the computer is very close to the software 
"agent" model proposed by Alan Kay [Kay84]. 

I suggest that an agent in a hypertext database need not have a deep understanding of the 
documents themselves, so long as it has a model of the conventions of the hypertext links, and 
the database follows these conventions uniformly. A parallel would be the human reference 
librarian who does not comprehend the material in articles being sought, but does understand · 
the conventions of card catalogs, abstract collections, citation indexes and bibliographic 
references. Because these relations can be made explicit in a hypertext they can be utilized 
without, for instance, having any deep comprehension of the meaning of any article title. Such 
a hypertext agent would always be delving ahead of the user, calling up documents suggested 
by link patterns, rating them for relevance to the current topic and readying them for display. 
The user could either accept these suggestions or continue with a query strategy. 

In a hypertext which embodies the patterns of narrative and classification discussed earlier, 
the agent might aetas a teacher in a limited fashion, choosing to switch between elaboration by 
example or explanation by appeal to similarity. Such an agent could be explicit request of the 
student, or could present questions on material scanned and choose a strategy based on the 
response. A hypertext with planned structure of this sort also lends itself to a "quiz by 
demonstration", asking the student to traverse links to documents forming an example of a 
principle under discussion. A reasonable assignment from a human teacher might be to find a 
path between two documents, and explain the relations between every node on the path. Such a 
testing strategy encourages exploration, and puts emphasis on relations between ideas rather 
than memorization of isolated facts [Weye86][Rosz86]. 

This all suggests that hypertext may lead us to a reexamination of our models of human
computer interaction. Analysis and design to date has focussed on planning and problem solving 
behavior, on goal directed productivity applications. If we wish to design successful CD-ROM 
products for education and entertainment, the same level of analysis must be applied to the 
differing demands of these roles. 

CONCLUSIONS 

I have tried to show that CD-ROM hypertexts form a new medium, which not only opens new 

302 Hypertext '87 Papers November 1987 



possibilities but lets us augment material originated in other media. We are just beginning to 
understand the uses of hypertext and the issues it raises for interface and database design. Like 
any new technology, our design efforts will be accompanied by much trial and error. The task 
for technologists and publishers alike is to be conscious of what we are doing, meanwhile 
minimizing the costs of experimentation. 

One of my themes has been the need for structure deliberately built into the hypertext 
database. The creation of carefully crafted electronic content is exactly analogous to the 
production value now added to print works by editors, designers, and publishers. Successful 
products in the new medium will require just as much creative effort, though it may take 
different form. Some of the forms will be unique, but many will be borrowed from print, video, 
and audio. Publishers need to be searching for these forms, and preparing to continue their role 
in the new medium. 

The task for technologists is to keep the cost of this experimentation and creation low. The 
tools for building hypertexts and their component documents must be easy to use, lowering the 
barriers to content experts and creative artists. If a capability of the new medium is ill 
supported, it might as well not exist, because few creators will interrupt their work to struggle 
with poor or non-existent tools. There must be fast feedback between creation and testing, so 
that experiments can be evaluated. A once-through data preparation to final disc process is 
unacceptable. The authoring tools must be fully capable of demonstrating the behavior of the 
product in its delivery environment. Finally, the quality of tools directly determines the 
feasibility of database projects. Every authoring system has a "gain" that relates the 
production values achieved to the time and cost expended. If this performance is poor, few 
products will be economically possible. 

CD-ROM has already won a position as an archival system for existing data. Existing 
standards and retrieval systems reflect this role. To go further, opening new markets and 
competing with other media, databases and retrieval systems must be specifically crafted for 
CD and the new audiences it can reach. This will happen if technologists and publishers ally 
in a conscious search for new forms. The hypertext technique is a good basis for beginning this 
search. 

BIBLIOGRAPHY 

[Bart85] Bartschi, M., "An Overview of Information Retrieval Subjects", IEEE Computer, 
May, 1985, pp. 67-84. 

[Bate79] Bateson, G., Mind and Nature, Bantam, New York, 1979. 

[Bich80] Bichteler, J., Eaton, E. A. III, The Combined Use of Bibliographic Coupling and 
Cocitation for Document Retrieval, J. Am. Soc. Inf. Sci., July 1980, pp. 278-282. 

[Blai85] Blair, D.C., Maron, M. E., "An Evaluation of Retrieval Effectiveness for a Full-text 
Document-Retrieval System", CACM, 28(3):289-299, March 1985. 

[Bush45] Bush, V., "As We May Think", Atlantic Monthly, July 1945, pp. 101-108. 

[Conk86] Conklin, J., A Survey of Hypertext, MCC Technical Report STP-356-86, 
Microelectronics and Computer Technology Corporation, October, 1986. 

[Deli86] Delisle, N., Neptune: A Hypertext System for CAD Applications, CR-85-50, 

November 1987 Hypertext '87 Papers 303 



Tektronix Computer Research Laboratory, Beaverton, Oregon, January 1986. 

[Enge68] Engelhart, D.C., English, W.K., "A Research Center for Augmenting Human 
Intellect", Proceedings Fall Joint Computer Conference, 1968, pp. 395-410. 

[Fair86] Fairchild, K.M., Poltrock S., "Semnet", Videotape Program, ACM-SIGCHI, 
Boston, MA, 1986. 

[Fost85] Foster, E., "Outliners: A New Way of Thinking", Personal Computing, May 1985, p. 
74. 

[Fum83] Furnas, G.W., Landauer, T. K., Gomez, L. M., Dumais, S. T., "Statistical Semantics: 
Analysis of the Potential Performance of Key-Word Information Systems", Bell 
System Technical Jounal, 62(6):1752-1805, July, 1983. 

[Fum86] Furnas, G.W., "Generalized Fisheye Views", Proceedings CH/'86, Boston, 
Massachusetts, Apri113-17, 1986, pp. 16-23. 

[Garr86] Garrett N.L., Smith, K.E., Meyrowitz, N., "Intermedia: Issues, Strategies, and 
Tactics in the Design of a Hypermedia Document System", in Proceedings of the 
Conference on Computer-Supported Cooperative Work, MCC Software Technology 
Program, Austin, Texas, 1986, pp. 163-174. 

[Greg83] Gregory, R., "Xanadu: Hypertext from the Future", Dr. Dobb's Journal, 75:28-35, 
January 1983. 

[Guid86] Guide Software for Macintosh, contact: Owl International, Inc., 14218 NE 21st 
Street, Bellevue, WA 98007, (206) 747-3203. 

[Gull86] Gu!lichsen, E., D'Souza, D., Lincoln, P., Casey, T., The PlaneTextBook, MCC TR N. 
STP-333-86(P), 1986. 

[Gold83] Goldberg A., Robson, D., Smalltalk-80: The Language and its Implementation, 
Addison-Wesley Publishing Co., Menlo Park, CA, 1983. 

[Hala87] Halasz, F., Moran, T., Trigg, R., "NoteCards in a Nutshell",Proceedings CHI+GI 
'87, Toronto, Canada, April 5-9, 1987. 

[Hers85] Hershey, W., "Idea Processors", BYTE, June 1985, p. 337. 

[Kaeh87] Kaehler, T., personal communicaton. 

[Kay83] Kay, A.C. "New Directions for Novice Programming in the 1980s", in Programming 
Technology, P. J. L. Wallis, ed., Pergamon Infotech, Elmsford, NY, 1983, pp. 209-
247. 

[Kay84] Kay, A.C., "Computer Software", Scientific American, 251(3):53-59, September 
1984. 

[KRS86] KRS (Knowledge Retrieval System) Software for IBM PC, contact: KnowledgeSet 
Corporation, 2511C Garden Road, Montery, CA 93940, (408) 375-2638. 

[Lena86] Lenat, D., Prakash, M., Shepherd, M., "CYC: Using Common Sense Knowledge to 
Overcome Brittleness and Knowledge Acquisition Bottlenecks", AI Magazine, 

304 Hypertext '87 Papers November 1987 



6(4):65-85. 

[Love84] Lovell, B., Science Digest, June 1984, p. 91. 

[Mand84] Mandler, J.M., Stories, Scripts, and Scenes: Aspects of Schema Theory, Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, 1984. 

[McCr84) McCracken D. L., Akscyn, R. M., "Experience with the ZOG Human-Computer 
Interface System", Int. J. Man-Machine Studies, 21(4):293-310, October 1984. 

[McLu64] McLuhan, M., Understanding Media: The Extension of Man, 1964. 

[Meyr86] Meyrowitz, N., "INTERMEDIA: The Architecture and Construction of an Object
Oriented Hypermedia System and Applications Framework", Proc. OOPSLA 86, 
ACM, Portland, Oregon, September, 1986. 

[Mill56) Miller, G.A., "The magical number severn, plus or minus two; some limits on our 
capacity for processing information", Psychological Rlroiew, 63:81-97, 1956. 

[Mont86a) Monty, M.L., ''Temporal Context and Memory for Notes Stored in the Computer", 
SIGCHI Bulletin, 18(2):50-51. 

[Mont86b )Monty, M.L., Moran, T.P., "A Longitudinal Study of Authoring using Notecards", 
SIGCHI Bulletin, 18(2):59-60. 

[More86) More, Software for Macintosh, contact: Living Videotext, 2432 Charleston Road, 
Mountain View, CA 94043, (415) 964-6300. 

[Nels74) Nelson, T.H., Dream Machines, Hugo's Book Source, Chicago, IL, 1974. 

[Nels80] Nelson, T. H., "Replacing the Printed Word: A Complete Literary System", in 
Information Processing 80, S.H. Lavington (ed.), North-Holland Publishing 
Company, IFIP, 1980, pp. 1013-1023. 

[Nels82) Nelson, T.H., "A New Home for the Mind", Datamation, March 1982, pp. 169-180. 

[Oren86] Oren, T.,Kildall, G., Rolander, T., "Experiences with Hypertext on CD-ROM", 
unpublished paper. 

[Rese86] Research Software for IBM PC, contact: TMS Inc., 110 W. 3rd Street, P. 0. Box 1358, 
Stillwater, OK 74076, (405) 377-0880. 

[Robe81) Robertson, G. , McCracken, D. , Newell, A., "The ZOG Approach to Man-Machine 
Communication", Int. J. Man-Machine Studies, 14:461-488, 1981. 

[Rosz86) Roszak, T., The Cult of Infonnation, Pantheon, New York, 1986. 

[Salt83) Salton G., McGill, M.J., Introduction to Modern Information Retrieval, McGraw
Hill, New York, 1983. 

[Scha77] Schank, R., Abelson, R., Scripts, Plans, Goals and Understanding, Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, 1977. 

[Scra85) Scragg, G.W., "Some Thoughts on Paper Notes and Electronic Messages", SIGCHI 

November 1987 Hypertext '87 Papers 305 



Bulletin, 16(3):41-44, January 1985. 

[Shne83] Shneidennan, B., "Direct Manipulation: A Step Beyond Programming Languages", 
IEEE Computer, 16(8):57-68, August 1983. 

[Shne86] Schneiderman, B., "User Interface Design and Evaluation for an Electronic 
Encyclopedia", Proc. 2nd Int'l. Conf. on Human-Computer Interaction, August 10-15, 
1987, North-Holland (to appear). 

[Shne87] Shneidennan, B., personal communication. 

[Snyd83] Snyder, G., "Good, Wild, Sacred", CoEvolution Quarterly, Fall 1983. 

[Stef86] Stefik, M., "The Next Knowledge Medium", AI Magazine, 7(1):34-46, Spring 1986. 

[Trig86] Trigg, R., Suchman, L., Halasz, F., "Supporting Collaboration in NoteCards", in 
Proceedings of the Conference of the Conference on Computer-Supported 
Cooperative Work, MCC Software Technology Program, Austin, Texas, 1986. 

[Weye86] Weyer, S., "As We May Learn", in Multimedia in Education: Interfaces to 
Knowledge, Apple EAC (in press). 

[Wind86] Window Book Software for IBM PC, contact: Box Company, 56 Howard Street, 
Cambridge, MA 02139, (617) 576-0892. 

[Yank85] Yankelovich, N., Meyrowitz, N., van Dam, A., "Reading and Writing the 
Electronic Book", IEEE Computer, October 1985, pp. 15-30. 

Note: a version of this paper was presented at the Strategies for Information Access Workshop 
of the 2nd International Conference on CD-ROM, Seattle, WA, March 3, 1987. 

306 Hypertext '87 Papers November 1987 



Document Examiner: Delivery 
Interface for Hypertext Documents 
Janet H. Walker 

Symbolics Inc. 
11 Cambridge Center 
Cambridge, MA 02142 

ABSTRACT 

This paper describes the user interface strategy of Document Examiner, a delivery interface for 

commercial hypertext documents. Unlike many hypertext interfaces, Document Examiner does 

not adopt the directed graph as its fundamental user-visible navigation model. Instead it offers 

context evaluation and content-based searching capabilities that are based on consideration of 

the strategies that people use in interacting with paper documents. 

INTRODUCTION 

Hypertext documents are linked modules of information, created, distributed, and accessed 
electronically1• 2. This technology has tremendous potential for making more information 
more available to more people. The challenge at this time is to make the information ac-

" tually accessible to people, not just potentially accessible. That is, the major challenge lies in 
defining the user interfaces for the software that will deliver hypertext documents. 

Interfaces for most research-oriented hypertext systems have reflected the organizational 
structure of the underlying hypertext document. That is, the information base was or
ganized as a network; the user interface was organized as a network browser3• 4 . A solely 
network-based interface is not, however, a necessary characteristic of a hypertext document. 
It might not even be a desirable characteristic, once the time comes for hypertext to leave the 
shelter of academic research environments. 

This paper describes the user interface strategy used in Document Examiner, an end-user 
interface for commercial hypertext documents5• Document Examiner is part of Symbolics 
Genera6, the software development environment (operating system) for Symbolics com
puters. 

The examples in this paper show Document Examiner being used to deliver the Symbolics 
software product documentation. In printed form, this documentation consists of around 
8000 pages. It contains all forms of documentation, from initial tutorial material to reference 
material on software internals. This documentation was prepared by technical writers as 
part of the Symbolics software product. 

In order to set the context, I would like to outline some of the factors for categorizing hyper
text systems and contrast our system with two typical, widely known hypertext systems, 
Xanadu7 and NoteCards4: 

November 1987 Hypertext '87 Papers 307 



308 

• What does it hold? We deliver documentation that is part of a larger software product. 
Xanadu was designed to manage a library of prepublished material, N otecards to or
ganize a set of working notes. 

• How is it organized? Our documentation is highly structured. The material in library
like systems has few inherent interrelationships. The material in N otecards is highly 
interrelated but typically not highly structured. 

• Who writes it? Our document is prepared by a small group of cooperating writers. The 
documents in Xanadu were to be submitted by authors and the annotations by readers; 
in Notecards, each user serves as both writer and reader (although recent work8 has 
explored using N otecards for collaborative work. 

• How much does it change? Our document is under constant maintenance, with revised 
versions published with every software release. It has more changes than a library but 
is more static or controlled than the information in Notecards. 

• How big is it? Our documentation corresponds to 8000 printed pages with about 
10,000 nodes and 23,000 links. This is small by "global library" standards but large in 
comparison to personal notes. 

• Where does it fit in? This work has commercial rather than academic roots and 
production rather than research goals. 

Many current hypertext systems are research vehicles developed in academic environments 
where it is feasible to have individuals assuming both writer and reader roles interchange
ably. In fact, some hypertext systems offer a common interface for reading and writing. In 
the product development world, however, it is more conventional and manageable to 
separate these roles: the writers are product developers and the readers are customers. We 
have separate interfaces for reading and writing our documentation. This paper addresses 
the readers' interface only, leaving description of the writers' issues to other papers9• 10•11. 

DOCUMENT STRUCTURE 

This section describes the documentation database for which Document Examiner is the 
interface. 

The documentation is organized as a database of modules. The writers determine the nature 
of the modularity, depending on the information needs of the subject they are documenting. 
Modules can be any size at all and can contain any kind of subject matter. The decisions are 
made by the writer and are not subject to any kind of enforcement. Writers choose the 
module boundaries according to their understanding of how readers will need to access the 
material. 

Modularity 

In our implementation, we refer to the modules as records. Each record in the document 
database has a unique identifier, assigned at the time of its creation. These identifiers are 
used internally by the system to track the location of records. Readers and writers specify a 

Hypertext '87 Papers November 1987 



record by its name and type. Names are just that: any words sufficient to name the topic 
uniquely (within its type). Because our application is software documentation, the types are 
things like "function", "variable", or "section". 

Internally, each record is composed of fields, which embody various kinds of information 
about the record: 

• Content fields for the document (full description, one-line description and so on). 

• Accessory information (keywords, the record type and so on). 

• Audit information (the version number and the publication status of the record). 

• Database information (the server location of the record, its outward links). 

Figure 1 diagrams the kind of information found in a typical record. The content and acces
sory fields are maintained by the writers; the others are maintained by the editor that the 
writers use and by other supporting software. 

Field name 

Name: 
Version·number: 
Disk-location: 
Source-file: 
Contents: 
Children: 

Tokens: 
Keywords: 
Oneliner: 
Source-topic: 
Source'type: 
Flags: 
Modification-history: 

Field contents 

DOC: !CONVERSATION COMMANDS! 
1 
( #P"Q: >rel-7>sys>doc>conv>convl. sab _18" 632 8 77 8 0) 
"SYS:DOC;CONV;CONVl.SAR-36" 
#<RECORD-FIELD CONTENTS> 
((INCLUDE 

#<RECORD-GROUP DOC:IAPPEND CONVERSATION COMMAND!> 
#<RECORD-GROUP DOC:IDELETE CONVERSATION COMMAND!> 
#<RECORD-GROUP DOC:IWRITE CONVERSATION COMMAND!>)) 

(("Converse" "commands")) 
#<RECORD-FIELD KEYWORDS> 
#<RECORD-FIELD ONELINER> 
#<RECORD-FIELD SOURCE-TOPIC> 
SUBSECTION 
Available, Modified, Filled, Installed 
( (1 "jwalker" 2760810574)) 

Figure 1: A represenlation of a record data structure, showing some of its fields and their contents. 

Relationships 

One of the fundamental characteristics of a hypertext document is modularity. Another such 
characteristic is the ability to indicate the relationships between the modules. The hypertext 
literature often describes these relationships as "links"1. 

In our database, the writers use links between records to establish the overall structure of 
the documents in the database (see Figure 2). The links are directional, from one record to 
another. Links can link whole records or link a point in text to a whole record. In practice, 
in the current documentation, all of links are from a point to a whole record. 

November 1987 Hypertext '87 Papers 309 



310 

Record 

Name ---
Type -- Unk 

Record 
Contents 

------ Name 
Type --
Contents 

Keywords/ 
... 

Keywords 
Link ... 

Record 

Name 
Type --
Contents 

Keywords 
... 

Figure 2: Links from a point in one record to another record. 

In a documentation application, it is necessary to impose some structure on the information 
rather than providing simply a large "flat" namespace of interrelated modules. You can 
think of a conventional document, containing chapters, sections, subsections, and so on, as 
being a predefined path through a hypertext structure. The writers use links from within 
the textual content of a record in order to impose structure on the modules and hence create 
the document structure. 

A taxonomy of different kinds of links has been proposed by Trigg12. At this time, we have 
only one kind of link and we support several different kinds of views for it: 

• Inclusion. An inclusion link specifies that the content fields of the record referred to 
are to be included at that location when a reader is reading the document. 

Hypertext'S? Papers November 1987 



• Precis. A precis link specifies that the title and oneliner fields of the record are to be 
included at the location of the link. 

• Crossref. The result of a crossreference link is to insert a conventional crossreference 
at the location ofthe link, for example, "See the section Combatting Gnats." 

• Implicit. As writers create the material, they can enclose the names of some topics in 
implicit name links. 

Conventional document structures are built using these different record views. One record 
can "call'' any other record using a link. Figure 3 shows the structure imposed by inclusion 
and crossreference links on a set of records. 

G 

8 

D 

F 

G 
F 

Document Database 

Show 
Section G 

See also B 

A 

8 

c 
D 

E 

F 

Show 
Section A 

See also D 

Figure 3: Paths through the database. The names of the nodes are letters A through G. The links 

between the nodes are the arrows, labelled with I to indicate inclusion and r to indicate a crossreference. 

The figure diagrams the results of two documentation lookups, for nodes A and G. 

November 1987 Hypertext '87 Papers 311 



312 

Versions 

Some hypertext systems incorporate concepts that are usually addressed under the topic of 
version control or configuration control in software development systems13. This is primarily 
a document structure or management issue as opposed to an interface issue. For configuring 
the document, our document database uses the general system configuration tools14 avail
able with Symbolics Genera. In addition, writers can view either the published version of a 
record or the version(s) they are currently worlcing on. 

INTERFACE REQUIREMENTS FOR HYPERTEXT DOCUMENT DELIVERY 

Hypertext documents, hypertext delivery software, and hypertext authoring software are all 
distinct, separable problems. In most cases so far, the people building the delivery interface 
are also the people creating the underlying information structure that it is delivering. Hence 
it is natural, but not necessary, for these three components to become intertwined in desigu. 
As the concepts in this field mature, this situation will change; standards for information 
structures will emerge, companies will emerge to prepare documents in hypertext form and 
other companies will develop delivery interfaces to serve different customer bases. (Apple's 
HyperCard product is a preview of the future in information delivery.) 

In the near term, the problem facing designers of hypertext delivery interfaces is exactly that 
posed by Jeff Conklin in his description of using hypertext1: 

"The writer is no longer making all the decisions about the flows of the text. The 
reader can and must constantly decide which links to pursue .... reading hypertext 
. .. tends to present the user with a large number of choices about which links to 
follow and which to leave alone. These choices engender a certain overhead of 
metalevel decision making ... " 

This is a description of a very high level of cognitive overhead, much higher than that ex
perienced by people reading conventional documents. I think we should view this description 
as the challenge of hypertext interface design rather than as its solution. 

If hypertext documents are to replace paper documents, they must both retain the ad
vantages of paper delivery and provide the advantages of electronic delivery. 

What does a paper manual provide? 

In spite of its often-derided rigidity and linearity of structure, paper has had many incidental 
good qualities as a delivery medium. In designing a replacement for paper, one needs to 
consider these qualities and to devise electronic analogs for them. 

What do people do with paper manuals? How do they use them? 

• Look up things they know they want. They use the index to locate the relevant pages. 
For S<!mething they refer to often or something very important that they want to be 

able to find agrun, they put in bookmarks. 

• Try to find out what they want. They sometimes use the index or table of contents to 
find anything that might be related to what they want. They then travel in ever-

Hypertext '87 Papers November 1987 



widening circles around that area of the book, hoping to stumble on the relevant 
material. 

• Try to find out the general nature of what is available. They use the table of contents 
to see the overall structure or generally flip through pages looking at headings or pic
tures. 

• Annotate the material. They use a highlighter to emphasize relevant portions. They 
make notes in margins with ideas, crossreferences, caveats, clarifications, or examples. 

• Take "snapshots" for use elsewhere. They sometimes copy pages for either remote use 
or very fast reference use. 

People also mention the reassuring tangible, physical nature of paper: 

• Take it on the bus. Books are portable; you can read them anywhere. 

• Leave it open beside the keyboard. 

• Find vaguely remembered information by position. 

• See at a glance "where" you are (by fractional position within the book). The size, feel, 
and design of a book all give information about its likely relevance to any particular 
information-finding problem. 

In addition, paper is a "low overhead" medium for readers. If they want, they can simply 
read the material in the order that it was supplied by the author, with some degree of con
fidence that the result was designed to be comprehensible that way. Strategies for using 
paper documents are highly overlearned skills for most adult computer users. 

Replacements for the good qualities of paper need to be more than imitations that try to 
carry the surface features of paper into the electronic world. Instead, they should be func
tional analogies that provide the same kinds of benefits with an entirely different implemen

tation. 

What can an electronic manual provide? 

An online manual can provide benefits that are unimaginable with paper delivery. 

• Full indexing. We can analyze the contents of electronic documents in order to provide 
much more complete indexing than is feasible for almost any paper document. In 
addition to indexing, brute-force full-text searching is also an option for locating 

material. 

• Quick following for cross-references. When the text of a document instructs its reader 
to "See section 9.3", a document delivery interface can let the user follow that instruc

tion directly. 

• Back referencing. Software that can analyze the structure of a document knows which 
other topics have links to a particular topic. 

• History. An online delivery interface can keep track of what the reader has already 
seen. 

November 1987 Hypertext '87 Papers 313 



314 

As online information bases become more extensive, helping users manage volume, context, 
and history will emerge as the most important practical problems with interfaces. 

DOCUMENT EXAMINER INTERFACE DESIGN 

Document Examiner was designed to preserve beneficial aspects of paper manuals while 
adding the power and flexibility of content-based operations. 

Document Examiner is a window-based utility that is integrated with the rest of Symbolics 
. software environment. Figure 4 shows a screen display from Document Examiner. 

Document; Examiner Current Candidate& 
Present11tion Substr-ate Facilities 

Basic Presentation Systen Concepts 
Pr-edefined Po-esentation TYP<=!I 

Meta-Presentation Argun<!lnts to Presento~~t 1 on 
Predefined Presentation Types Inhedtance of Pres.,nt!ltion Argu.,ents 

Presentation types form the basis of the typin~ system for user Input Presentation-Type Definition Fac;lH:.ies 
Presentation Input Context Facilities and program output. A large number of predetmed presentation types Pr-esentation Input Blip Facilities exist; relatively few are used for program 1/0. This h! because every Other Presentation Facilities structure, flavor, and Common Lisp data type is also a presentation llr"iting a P.-esentar.ion Type p.,.,..,<~~,.. type. Most, howe..,er, are of little use in end-user-oriented application Use.--D.,fined Data Types '"" Pre5ent4tion Types programs. Consider, for example, the Common lisp types hash-tabla Exploring Presentation Type5 and Pr"e5entation and compiled-function; you would not generally encounter these In Show Presentation Type Connand end-user-visible places. Show Handler"3 For" Types Connand 

In this section, we list what we regard as the types most likely to be Pr"e3entat ion Inspector 
used by application programmers. Some, like lnterer, string, and U31ng the Pr"esentation Insp<~~cto.-
boolean, are encountered frequently In all kinds o programs. Many Invoking the Pr"esentation Inspector 
others, like sys:code-Fragment and net:network, are mor~ The Pr"esentation Inspecto,..•s fraf'le 
specialized in their uses. Stroategy for Using the P.-esentation Ins 

In any case, all of the ty&es Included her& are also documented as 
Pr"esentat lol'l !nsoectol' Co.,,.ands 

Sunnory of Pre111entation Inspecto.- Conf'lil lndlvJdual entries in the ictionary of Predefined Presentation Types. Help Pr"1!3~ntetion Inspector Co.,,.and Also, many of them are defined in the file 
sys:dynanic-vindov3;3tandar"d-pr"e3ent<~tion-tyoes.lisp, where you - .. can look for models when defining your own 7pes. The dictionary • Predefined Present11tion Tyoes Section 
entry for each typfl notes whether it Is one o those Included In this 
file. 

The documented types are divided Into thre~ groups: , . Common lisp Presentation Types 

2. Symbollcs Common Lisp Presentation Types 

3. Other Presentation Types 

Of course. the Common Lisp types form a subset of the Symbollcs 
Common Lisp types, but for the purposes of the"resent discussion, 
we separated them out. The Other Presentation ypes Include the 
potentially useful types exported from packages other than Symbollcs 
Common Lisp; most of them are In the speclali:;:ed-use category. 

The following table lists the useful Common Lisp presentation types: 

Common Usp Presentation Types 
and 
chara<:ter 

Viewer: Standard (Readflr} 

Command• Show Candidates Help 
.,. Shl>u Ov•rvi•u Pr•d•fi.n.lld Pr~s•ntatil>n TypfJ~ 

~ 
Show Documentation Select. View<!lr 

.. Find T.Wh Of Con.t•nb PrfJSfJf!t.stion 5ubstr&tt1 F4Cilil:i•s Show Overview Reselect. Candidates 

.. 5hou DocUI'IfJfl/;atton Pr«<•fin•d Pr•s•nt;ation Typ•s Show Table of Contents Private Document .. 
Mouse R. Menu. -
To see other commands, press Shift, Control, Meta-Shift, or Super. 
lihu 8 Oct 12:15:1'9] keyboard tl-USEih ~ Input 

Figure 4: Document Examiner screen display. The viewer contains the first screenful of a section, whose 

bookmark is in the bookmarks pane. The candidates pane contains the table of contents tor the document 

that this section appears in. Several recent commands are visible in the command pane. 

! 
' ' 

ti 

The most fundamental decision in the interface was to make the material that a person was 
reading look essentially as it would in a paper book. The reason for doing this was "ease of 
use". We saw no reason to have the underlying information structure be reflected in the user 
interface model unless that structure was a good model for interacting with information. My 
experience in trying to help users with a tree-structured information interface (the INFO 
subsystem in EMACS) led me to believe that a book-like interface would be more palatable 
for many people. 

Hypertext '87 Papers November 1987 



The rest of this section describes the ways in which Document Examiner addresses the re
quirements of people using it to read documentation. 

General description and terminology 

Document Examiner is an application that runs in its own window. The window is divided 
into panes (subwindows) used for different aspects of managing the user's interaction with 
the document: 

• Viewer. The majority of the screen area is used for showing a topic. It gives people the 
feeling of reading a section from a book. 

• Command pane. The bottom area of the screen contains a fixed command menu and a 
command interactor area where the user can type commands. Most commands are 
available in either mouse or keyboard forms. 

• Candidates pane. "Candidates" is the term used for a set of record names that have 
been retrieved in answer to some user query. Candidates are mouse-sensitive. (that is, 
clicking a mouse button while the mouse cursor is positioned over the name invokes a 
command.) 

• Bookmarks pane. This area of the screen maintains a chronological record of the topics 
that a user has read in the accompanying viewer. The bookmarks are mouse-sensitive. 

• Overview window. "Peephole" context for a topic. In a temporary display, the overview 
shows both a graph of the inclusion links for a topic and ail its outward links. 

Topic Lookup 

The basic lookup command is Show Documentation, which operates on a record name. This 
is the command that users issue to see documentation for some system feature or document 
section for which they already know the name (or enough of it to specify the record uniquely). 
Figure 4 shows a record partiaily read into a viewer. 

Show Documentation is actually a request for an inclusion view of the record. The system 
retrieves the record from the remote server and begins displaying the fields specified for an 
inclusion view. As further references are encountered, those records are retrieved and dis
played according to the view that the writer specified for them. Structurally speaking, the 
users are reading the linear structure resulting from tree traversal of a subtree in the docu

ment structure. 

Users can scroii forward through the topic to its end. Repositioning within a topic is handled 
with standard system scroii key commands and a mouse-operated scroll bar. 

The display is analogous to an editor buffer in which each new record's display is appended 
to previous displays. The user can reselect previously displayed records (using the names in 
the bookmarks pane), scroll through earlier text, or use search commands to look for a par

ticular textual string within the display. 

As writers create the material, they enclose the names of topics in implicit name links. 
Figure 4 shows a record that contains this kind of link. Every topic name that is visible 

November 1987 Hypertext "87 Papers 315 



316 

anywhere in the documentation can be an implicit link to another topic. Users can follow 
these links because they are mouse-sensitive, either directly or as operands for typed-in com
mands. 

Finding topics of interest 

The basic search command is Show Candidates, which operates on a set of words. This 
command is Document Examiner's equivalent to using an index in a paper manual. This is a 
happy case where a strategy that people are accustomed to from the paper world (using an 
index) can be implemented far more powerfully online than in the paper world. 

Show Candidates uses the word or phrase that the user specifies to search for records that 
contain those words in their titles or keywords. Figure 5 shows some results from an ex
ample query. 

Command line: 

Show Candidates finding help 

Candidates offered: 

Finding Out About Zmacs Commands with HELP 
Finding Out What a Prefix Command Does 
Method for Searching for Appropriate Zmacs Commands 
More HELP Commands for Finding Out About Zmacs Commands 

Keywords for "Method for Searching for Appropriate Zmacs Commands": 

m-XApropos 
Searching for appropriate commands 
Finding the right command 
Help A Zmacs command 

Figure 5: Documentation topics suggested by Show Candidates for the words "finding• and "help". 

The user can control several attributes of the search strategy: 

• Kind of matching. The default search strategy uses simple heuristic matching to iden
tify records of interest. When the words in the query and the words in the keywords 
have stems15 in common, then the record is retained for the candidates. For example: 

"Deleting files" matches delete-file 
File deletion 
Deleting multiple file versions 

Also available are other modes of searching that involve conventional exact or substr
ing matching on the query words and keywords. 

• Multiple word order. The default is to accept a record as a candidate if it has the query 
words in the keyword phrases in any order. Other modes specifY that the words have 
to be adjacent, in the same order, or nearby (in the same keyword phrase) in order for 
the record to qualify. 

Hypertext '87 Papers November 1987 



• Word combination. The default searching uses "logical and" combination for a multiple 
word query. All of the words in the query have to be present in the keywords for the 
record to be a candidate. 

Searching is based on keywords rather than the full text of the documentation for several 
reasons. Full-text searching is slower than keyword search by definition because the volume 
of material is much greater. In addition, the full text is kept on a server machine (for storage 
efficiency) rather than in the user's local memory; searching would be a performance bot
tleneck when several users needed to search at .once. Furthermore, although we have not 
tried a fully inverted index, we expect that it would result in many more false alarms with
out more hits than keyword indexing does. 

The candidates resulting from any query are stored in the candidates pane. Figure 6 shows 
the candidates list that results from a search for "deleting files". Any record in the can
didates pane can be operated on with a number of mouse commands, including: 

Show Documentation 
Show Overview 
Show Table of Contents 

Document; Examiner 

Vlewftr: Standard (Reeder) 

Commando 

Show Candidates (word(s) [default •presentation types"]) deleting files .. 
Mouse-L: Show Documentation; Mouse-M: Overview; Mouse-A: Menu. 
To see other commafldS, press Shift, Control, Control-Shift, Meta-Shift, or Super. 
Lfhu B Oo::t 12:313:31J ]walker tL-05Eii!: User Input 

~ 

Current Candidates 
Delete file 
Delete File COP'IP'Iond 
DELETE-FILE 
Deleting Files 
Deleting nultlple File Versions in D1red 
FEP File Propertie!l 
FS: DELETE-FfiiLURE 
How to Interpret Directory Lhtings 
Perforr~ing Dul'lps 
Protecting Files Frort Being Deleted in Dired 
Saving the Mail File 
SI :COn-DELETE-FILE 
Using FSEdit CoP'Ir~<•nda 

VCI: : DELETE-ENCACHED-FILE-BRANCH 
i!L:DELETEF 

Bool<msrl<a 

Show Candidates Help 
Show Documentation Select Viewer 

Show Overview ~eselect. Candidates 
Show Table of Contents Privau Oocumeflt. 

Figure 6: The candidates pane contains the list of candidates resulting from the search for "deleting files". 

November 1987 Hypertext '87 Papers 317 



318 

Examining context and structure 

After using an index search command, the user next needs to determine which of the items 
retrieved are most relevant. Using an index in a paper manual, this can be a very time
consuming task, depending on the quality ofthe index and the number of references to check. 
In this arena, an online system can shine. 

The Show Overview command displays an overview of any record (see Figure 7). An over
view contains contextual information enabling the user to determine whether or not this 
record is relevant and, if it is relevant, whether it or something related to it is more ap
propriate. 

Document; Examiner Current Candidatea 
Append Conversation (n-X) Converse Conr~and 
append conversation by referenees (n-X) Zrooil c 

OllliTIIifiMf 
Delete Conversation (PI-X) Conve.- .. e Connand 
delete converl!!ation by r-eferences (n-Xl Zrtai 1 c 

Section: "Using Converse' Introduction to Converse 
It Is Included In topics: "Converse', 'Talking to other Users" Replyh•s to Znoll l'lc:ssage:1:1 

It appears in documents: Communicating With Other Users, User's Guide select o11 conversations by references (r~-X) '" :~elect conversation by references (ro-H) Znail c to Symbolic:s Computers l.lr1te Conversation (n-X) Converse Connan<:! 
Keywords: 

Sending Interactive Messages 
See also: 

'Customizing Converse• 

Talking to other User~~roduction to Converse ~ending and fleplylng to Messages with Conver 
sing Convene dault Benavio~ of ConverJe 

~<ro"'"'" " <•••on• ~:"""' CommooO> 
sp Unener Connnands tor Convene 
ending and Replying to Me,ages with Conver 

c..... ,,,, <•~""'~''"" ""'''~" c'"""' """""""" . unom•t~ng Convene onver:slii Com,.,ands 
sp UstenEr Co11nnands tor Converse 

Viewer: Standard (Reader) 
I 

Command• Show Candidat-es Help 
!lo>Show Candidate• (uord(a) [dahult 'deleting rn •• ·n converaatlona 

~ 
Show Documentation Select Viewer 

.... 5hoiJ Ovaro,d.atl Introduction l"o Convarsfi Show Overview Reselect Candidates 

.,_ Sholl Ovarvi.au Using Con..,arsa Show Tabl<! of Contents Private Oocl.!ment 
~ 

-Mouse R. Menu. 
To see other commands, press Shift, Control, Meta-Shift, or Super. 
llt11.1 Q Oct 12:57:56] Jwalker CL-USEii': User Input 

Figure 7: An overview for the section "Using Converse" appears in a temporary window overlaying the 

Viewer. This section occurs twice in the document set, in two contexts, as shown by the diagram. 

One graphic display is shown for each inclusion-type link to the record. In tree structure 
terms, the graph shows the parent, siblings, and children for the overviewed record. All of 
the record names on the screen are mouse-sensitive so that the user can explore this set of 
topics further, perhaps with more overviews, in order to pinpoint the relevant areas of the 
document. In fact, users employ the overview heavily to explore "the neighborhood" for a 

record and thus to zero in quickly on the most relevant area to read. This graphic display is 
primarily a decision-making aid and only secondarily a navigation aid. 

Hypertext '87 Papers November 1987 



This kind of display has significant advantages over either a conventional table of contents 
or a full display of the graph. It constrains the amount of information that the user has to 
process while still giving enough relevant information with which to make decisions. (In this 
sense, it is similar to the powerful "fisheye view" concept16.) 

Users starting out to investigate a new system or new topic area need an equivalent to the 
paper-based strategy of flipping pages to see what's there. To address this need, Document 
Examiner can provide a table of contents for the subtree under any record. Figure 4 has a 
table of contents display in the candidates pane. 

The initial screen display (Figure 8) has the names of all the documents in the document set 
so that the reader can use those as a basis for commands to see either an overview or their 
table of contents. 

~ Shot~ llsi.ng Cot>.-,..•• 
._ Sp~:~ce R•,.ove ryp•ou.t Uifldov 
.,_ Sd•c& Candidat.s List .. 

Internal Guide t<l Version Control 
Version Control Desisn and Inpler•u!!nta 

Figure 8: Initial screen configuration of Document Examiner, showing the "top level" directory of docu

ments. 

Saving the results of an investigation 

Users shouldn't have to remember the history or state of their interaction with a document. 
Document Examiner addresses the issues of convenience and memory load with both short
term and long-term strategies. 

November 1987 Hypertext '87 Papers 319 



320 

For assistance with an ongoing investigative session, Document Examiner maintains several 
kinds of context: 

• Input history. Using a standard system feature in Symbolics Genera, the user can 
recapture and edit any command entered earlier in a session. 

• Query result history. In addition to reactivating earlier commands, a user can select 
the results of earlier commands. For example, the results of earlier queries can be 
reinstated in the candidates pane, saving some time but more importantly, eliminating 
the need for users to remember their exact queries. 

• Lookup history. When a user asks to see a record, Document Examiner creates a 
bookmark for it. The set ofbookmarks in the bookmarks pane constitutes a chronologi
cal record of a user's interactive session. The bookmarks are active, of course, so that a 
user can reselect a topic by clicking the mouse over the topic's bookmark. 

• Reading context. Users folfuw crossreference links freely, suspending reading one topic 
in order to look at another. Document Examiner saves the user's reading position 
within a topic so that when they reselect that topic, it is positioned as they left it. 

• Preseroing lookup history. When substantial effort has gone into fmding a set of 
relevant topics, it is useful to be able to save the results of this effort for a future 
session. The user can save a set of bookmarks in a file called a "private document". 
The set of topics represented by the bookmarks can then be read in automatically in a 
subsequent session. This is our approach to the need addressed by Bush's "associative 
trails" in Memexl7. 

EVALUATION 

Document Examiner attempted to provide users with familiar and functional strategies for 
finding and using information in a large document set. How well did it succeed? 

• Look up things you know you want. Show Documentation displays exactly and only the 
topic that the user requests. 

• Try to find out what you want. Show Candidates functions like a powerful index. 
Show Overview displays local context and acts as a decision~making aid for whether to 
read a topic. 

• Try to find out the general nature of what is available. Show Overview and Show Table 
of Contents display local or complete structural information for a document. 

• Annotate the material. We have not yet attempted to address this issue. 

• Take snapshots. Several commands serve to hardcopy a record or collection of records. 
Save Private Document lets the user save a collection of bookmarks for future use. 
Users can copy areas of the viewer (for example, code fragments) to editor buffers for 
further manipulation. 

• Tangible aspects of paper. Document Examiner has a full-screen window whose parts 
are stable and always visible. Although this by no means models the physical at
tributes of paper, subjectively it has some similar reassuring properties. 

Hypertext '87 Papers November 1987 



Document Examiner was first shipped as part ofSymbolics software product in April o£1985. 
In our experience, it is both usable and used. In a year-long usage survey, we found users at 
all levels of experience used Document Examiner about equally often. Both groups of users 
looked up large "conceptual" topics as well as short reference ones; Show Overview and Show 
Candidates commands were used heavily for locating material to read18• 

New employees of Symbolics are introduced to Document Examiner as part of their early 
experience with the machine. We have software engineers who know little about the or
ganization of the paper manuals as they do most of their reading using the online form of the 
manual. In fact, a recent survey of the engineering staff found about half of the 24 people 
who answered either did not have a paper document set or had not removed the shrink wrap 
from their books (five months after receiving them). 

Several people expressed strong preference for online lookup over paper. One person men
tioned using paper occasionally when they didn't understand something reading it online 
(but commented that "the documentation was as impenetrable on paper as it was [online].") 
A few people remained opposed to online information delivery in principle, independent of 
the interface. For these people, the subjective value of the tangibility of paper outweighs all 
current benefits of electronic delivery. 

,The major complaints concerning Document Examiner, from both customers and inhouse 
users concern performance. Many commands, including overviews, large tables of contents, 
Jong lists retrieved by index searching, and remote lookup oflong topics, take more than 10 
seconds to complete. This amount of delay is unacceptable to everybody, including the im
plementors. The fact that people do continue to use this facility heavily in spite of the delays 
is probably a testimony to the usefulness of the online features over paper. 

ISSUES FOR FURTHER WORK 

We have identified a number of areas in our implementation that need further investigation: 

• Locators. As the documentation being delivered by this kind of interface becomes 
larger, the index searching capabilities become correspondingly more important. Some 
of the work now underway in information science in automatic indexing is relevant to 
hypertext document delivery (for example19J. 

• Annotation. As in other hypertext implementations, users do need the capability to 
make notes "on" our documentation. We have approached this problem cautiously, 
however, since the design issues include helping users maintain their notes across 
different releases of the system documentation. 

• Context. Readers often have some need to constrain the set of topics under considera
tion in searching tasks. Several kinds of constraints: 

• Structural. Consider only one particular document (that is, the records in a 
particular subtree). 

• Content. Consider only records that have anything to do with some general topic 
area (for example, only records related to I/0). 

This issue has been addressed by Intermedia with the concept ofwebs20• 

November 1987 Hypertext '87 Papers 321 



322 

• Naming. Our topics are designated externally by topic/type identifiers. This naming 
strategy requires that topic names be unique within their type. At present, "section" is 
the record type used for all conceptual material in documents. As a result, the writers 
often feel that their freedom to name things appropriately is hampered by the im
plementation. 

CONCLUSION 

Document Examiner meets its goals of delivering information from a large, complex docu
ment set to users. As an interface to information, it is flexible and powerful. By building the 
interface around the information-finding knowledge and strategies that people bring from 
their experience with paper documents, it is simple to operate. 

ACKNOWLEDGMENTS 

Many people have contributed to the design, implementation, and refinement of this system. 
Particular thanks are due to Richard L. Bryan for implementation prowess. 

REFERENCES 

1. Conklin, J., "Hypertext: An Introduction and Survey'', IEEE Computer, Vol. 20, No.9, 
September 1987, pp. 17-41. 

2. Engelhart, D. E., "Authorship Provisions in AUGMENT", Intellectual Leverage: The 
Driving Technologies, IEEE Spring Compcon84, 1984, pp. 465-472. 

3. Robertson, G., McCracken, D. & Newell, A, "The ZOG Approach to Man-Machine 
Communication", International Journal of Man-Machine Studies, Vol. 14, 1981, pp. 
461-488. 

4. Halasz, F. G., Moran, T. P., & Trigg, R H., "NoteCards in a Nutshell", Proc. CHI+GI 
'87 Human Factors in Computing Systems and Graphics Interface, SIGCHI Bulletin, 
April1987, pp. 45-52. 

5. Walker, J. H., "Symbolics Document Examiner", SIGGRAPH Video Review, Vol. 19. 

6. Walker, J. H., Moon, D. A, Weinreb, D. L., & McMahon, M., "Symbolics Genera Pro
gramming Environment", IEEE Computer, Vol. 20, 1987, In press 

7. Nelson, T. H., "Literary machines", Published privately by the author, 1981. 

8. Trigg, R. H., Suchman, L. A, & Halasz, F. G., "Supporting collaboration in 
NoteCards", Proceedings of the Conference on Computer-Supported Cooperative Work, 
1986, pp. 153-162. 

9. Walker, J. H., "Symbolics Sage: A Documentation Support System", Intellectual 
Leverage: The Driving Technologies, IEEE Spring Compcon84, 1984, pp. 478-483. 

10. Walker, J. H., "Supporting Document Development with Concordia'', IEEE Computer, 
In press. 

11. Walker, J. H., & Bryan, R. L., "An editor for structured technical documents", Paper 
accepted for Protext IV conference. 

12. Trigg, R. H. & Weiser, M., "TEXTNET: A Network-Based Approach to Text 

Hypertext '87 Papers November 1987 



Handling'', ACM Transactions on OffiCe Information Systems, Vol. 4, No.1, 1986, pp. 
1-23. 

13. Delisle, N. & Schwartz, M., "Contexts--A partitioning concept for hypertext", 
Proceedings of the Conference on Computer-Supported Cooperative Work, 1986, pp. 
147-152. 

14. Symbolics Inc., Volume 4. Program Development Utilities, Release 7.0 ed., 11 
Cambridge Center, Cambridge, MA 02142, 1986. 

15. Salton, G., The SMART retrieval system--Experiments in automatic document 
processing, McGraw-Hill, New York, 1968. 

16. Furnas, G. W., "Generalized Fisheye Views", Proc. em '86 Human Factors in Com
puting Systems, SIGCHI Bulletin, April1986, pp. 16-23. 

17. Bush, V., "As we may think", Atlantic Monthly, Vol. July, No. 176, 1945, pp. 101-108. 

18. Young, E., & Walker, J. H., "A case study of using a manual online", Paper in 
preparation for CHI '88. 

19. Fagan, J. L., "Automatic phrase indexing for document retrieval: An examination of 
syntactic and non-syntactic methods", Proceedings of the Tenth Annual International 
ACMSIGIR Conference on Research & Development in Information Retrieval, ACM 
SIGIR,1987, pp. 91-101. 

20. Yankelovich, N., Meyrowitz, N, & van Dam, A., "Reading and Writing the Electronic 
Book", IEEE Computer, Vol. 18, No. 10, October, 1985, pp. 15-30. 

November 1987 Hypertext '87 Papers 323 



324 Hypertext '87 Papers November 1987 



Issues 



The Hype in Hypertext: 
A Critique 
Jef Raskin 

Information Appliance 
1014 Hamilton Court 
Menlo Park, CA 94025 

ABSTRACT 

Hypertext has received a lot of mostly uncritical attention. The author sees it as one part inspiration 
and nine parts hyperbole. A number of user interlace and technical problems are discussed. 

A CRITIQUE 

The literature on Hypertext is generally effusive and non-critical. Even Conklin's survey article 
in Computer (IEEE Computer, September 1987, pg 17 ff) ends up admitting that the author 
hopes that "the reader come away from this article excited, eager to try using hypertext for 
himself, and aware that he is at the beginning of something big, something like the invention of 
the wheel, but something that still has enough rough edges that no one is really sure that it will 
fulfill its promise." This article looks at what some have seen as rough edges but which may be 
cracks that extend deep into the heart ofhypertext. 

Conklin's advocacy is tame stuff compared with Hypertext's prime mover, Ted Nelson, who 
writes with the messianic verve characteristic of visionaries. Many followers and supporters of 
the Hypertext concept take much the same tone; in fact, there have not been many who have 
gainsaid the concept, for on the surface it seems a good one that is well within our technical reach. 
On the other hand, it has not been implemented except for a few more or less experimental 
proje.cts: the grand vision languishes unfinished, though often started. If the details are kept 
fuzzy enough, Hypertext seems like a wonderful, universally applicable, powerful, natural, 
human-oriented model for organizing and accessing knowledge. Having felt that draw, and also 
having implemented some real-world projects that were considered visionary when I started but 
became well-accepted (and commercially successful) when I was finished, I took a closer look at 
Hypertext and found some deep and fundamental difficulties that have not been much discussed. 

A good place to begin is with some other ideas that, like Hypertext, sound very good but are 
simpler, and have failed to deliver on their promise. 

There is a certain frustration in playing adventure games. The games ostensibly avoid requiring 
that you learn special computer commands by allowing you to frame your commands in English. 
This sounds very inviting, but whenever your response varies from the stylized vocabulary and 
grammar that the game recognizes you run into a wall of incomprehension. The game spins off 
a subgame of guessing which words the developer thought useful or significant. Synonyms in 

November 1987 Hypertext '87 Papers 325 



326 

English may or may not be synonyms to the game; you often find that though what you said is 
correct, it is not accepted. All in all these games tend to be a frustrating experience unless you 
come to accept that figuring just how to emasculate your vocabulary and grammar is part ofthe 
game. Not everybody thinks this is fun, but if you enjoy it, you are a prime example of a puzzle
lover or "hacker" in the old, non-pejorative sense of a person who likes to play with a system
for hours and days on end if necessary- in order to learn how it works. 

What is really happening in these games is that the players are learning a set of computer 
commands- by trial and error. In an adventure-style sword battle your knowledge of fencing 
is of no use, but your knowledge of the system developers' frame of mind is. The notes that most 
players end up making for their own use form the manual that the game's inventors (deliberately) 
didn't provide. In other words, there is not much difference between an adventure game and a 
poorly documented computer program. Both present the same kind of challenge, and appeal to 
much the same set of users. 

The problem with adventure games was that something that sounds like the right, natural, 
inevitable and easiest thing to do failed (in some sense) because it delivered only the aroma of 
what was promised. When you are hungry, this can be worse than nothing at all. The full meal 
may, in fact, be undeliverable. Naturallangusge may be an inherently unsuitable medium for 
programming (in the present meaning of the word) or even controlling an imaginary universe. 

This insight can be extended to Hypertext. Hypertext, in a nutshell, is text (in the sense of what 
one finds in books) where there are links between different texts and portions of texts for some 
very large universe of knowledge. You might be reading, on the display of your information 
appliance, about butterflies. Say that the text mentions a gathering of monarch butterflies that 
occurs in Monterey, California. So you point to (by some means) the word monarch, and you press 
the "delve deeper" button (or some such action) and a picture of the butterfly comes onto your 
screen. You touch one of the legs of the butterfly and up comes, say, details of the leg of the 
butterfly or perhaps an article on butterfly legs. You then press the "back to where! was" button, 
and continue reading. Upon pointing to the word "California" the delve deeper button might give 
you a map of California with Monterey called out, and so forth. 

As technology permits, the concept of "text" in Hypertext expands to include color images, 
moving images (movies), sounds, real-time links to the author or other experts on the subject you 
are "reading" about, reference librarians who can point to further sources of information, and 
literally anything else that might conceivably be pumped through wires or .the aether to your 
system. 

Lastly, the Hypertext vision includes a growing body of on-line information, becoming richer as 
it is used because users provide an ever-increasing number of sources of data and links between 
items. It assumes wide acceptance by a large number of ordinary, non-technophilic people. 

It sounds wonderful. 

There are, of course, some technological questions that can be asked about Hypertext: for 
example, how will we get the very high bandwidths between sources of information and the 
individual's machine required to make pictures and text available quickly enough to avoid 
frustration? Another technological problem lies in the massive storage capacity, network, 

Hypertext '87 Papers November 1987 



switching, and software required. There are social, legal, and economic problems as well. 
Examplesofthese problems include questions such as: will the f"manciallyprivileged have easier 

. access, and thus widen the gap between haves and have nots? Nelson has addressed (though 
without sufficient depth) the questions of who owns the material, who owns the all-important 
linkages, how copyrights are preserved, who pays for the central system, how to insure 
compatibility between systems and how an author gets paid. But this essay is concerned with 
basic conceptual problems, assuming that the technological problems will be solved in the 
natural course of events, and leaving the other questions for another time. I will also ignore the 
very real but probably not as serious "chicken and egg" problem of how Hypertext gets started, 
since at first it is necessarily rather weak and thin. While this last problem will have to be faced, 
other services, such as telephones faced the same dilemma and overcame it. Whether it gets off 
the ground depends in part on the quality of the initial system: where will we get enough linked 
text to make it useful at first? 

The problem with "natural language" games, which also applies to many "natural language" 
interfaces for more serious (this does not imply more worthy) applications, has a parallel in the 
proposed Hypertext systems. As an example, take the passage where the text mentioned a 
gathering of monarch butterflies. First of all, not every word will have the same kind or depth 
of information behind it. Say that a previous user had looked up the meaning of the word 
"monarch" and established a link to "kiog." Then, when you point to "monarch" meaning a kind 
ofbutterfly, you might find yourself in the midst of a discussion of the divine rights ofhereditary 
rulers. You go "up" and try "butterfly" and you find a general description of the Iepidoptera, which 
does not mention "monarch" since it only gives the Latin name, which you do not recognize. You 
can grope around for a while, trying this and that sub-heading in what you find, and maybe what 
you want is there, and maybe it isn't. One key question is: How Do You Know Iflt's There? This 
isn't the advertised smooth, rapid access "feel" of hypertext, this is a fishing expedition. 

Let's say that, by some means, you can point for specificity to the whole phrase "monarch 
butterfly" and you get, rather than some particular linked item, a list or menu of such items and 
other menus. Aside from having to learn how to operate the menus and make selections from 
them, it is well known that menus are aslowwayofgettingfrom place to place, especially if they 
are many levels deep. Avoiding, also, the question ofhow (or by whom) the menus are generated 
(Nelson suggests that people will spontaneously create them and charge for their use), let's say 
that one menu item leads you to a picture of the butterfly. As before, you point to a leg. Now, 
it is not clear if you are pointing to, say, the tarsus, the whole leg, to legs in general, to butterfly 
legs, or to the whole insect. Since butterflies are beautifully symmetrical, are you pointing to ask 
about symmetry in general? 

Not every item or detail in a picture will have a reference attached to it. How will you tell which 
do and which don't? None of the references about Hypertext seem to carefully address this 
problem. I tried a medical "Hypertext" styled system a few months ago, based on video disks with 
immense storage capacity. You could point to a structure in a dissection and get a close up view, 
or views from other angles. It seemed fine when being demonstrated by someone who knew which 
body parts had further data behind them, but when I tried to use it and pointed to structures that 
I was curious about, most of the time the system, being finite, could give me no information. 

November 1987 Hypertext '87 Papers 327 



There is a vague assumption that as people use it, the system will monitor and gather up the links 
they generate, and thus grow in depth and value. Does a link happen whenever you move from 
one frame or screenful to another? It will not, according to Nelson. You will have to explicitly 
tell the system when you are making a link Gust how you do this is not specified), and I think it 
is important to ask if you are likely to bother making links at all. Remember: people are 
inherently lazy, and when you are hot on the trail of some information how likely are you to stop 
and tell the system which links seem valuable to you? If as a result ofthis observation you make 
the system record all links, good and bad, will there be human editors who will prune them (and 
where would we get these editors, how would we pay them, and is it in principle even possible 
to tell a good link from a bad link?) If the links are not pruned, won't most searches turn into wild 
goose chases? One man's links are another man's sausages. 

In other words, it is notclearthatit can work as neatly as the hand-wavingofits visionaries make 
it seem. I have been told that there are no bad links, and in a sense this is correct: any connection, 
even ifit is a misreading of, say, "sheer" for "shear," is meaningful and potentially useful (say to 
a person studying common reading mistakes, or to a poet). But the clutter a user faces will be 
enormous. 

The central lacuna is the omission of any specification of a human interface. The Xanadu project, 
trying to implement a real-world version of Hypertext, is just building a central processing and 
storage facility. When I have asked theimplementors what it will look like to the user-a central 
question if it is to be widely accepted, and it must be used by a large population to fulfill the plans 
of its inventors- they say that the "front end" is not their concern. I claim that the "front end," 
namely what devices and how it will look to users is as important as the central nexus. It may 
be more important, since if the front end puts people off, they will never get any further. Yet there 
is no user interface specification for what Hypertext will look like to the individual user. It is 

. important that the user interface be reasonably uniform from implementation to implementa
tion. This point has been well demonstrated by the Apple Macintosh computer. One of my goals 
when designing the Mac was to make it easier for a software designer to use a provided interface 
model than to create a new one. This was a positive use of people's laziness. Thus, unlike any 
previous system, you can move from application to application with relative ease, and buying a 
new program is not as traumatic an experience as it used to be. With earlier computers, each new 
application program gave you a nearly totally new experience. 

328 

A Hypertext system will have good "feel" only if it is fast enough. This is another area solved 
primarily by looking the other way. In ten years the word "work" may easily generate 200 pages 
of menus of referents (since the word "work," like so many other words, has everything from 
negative implications (dirty work) to positive ones (work ethic), to technical ones (force times 
distance), to political ones (ownership of one's labor)). How long will it take the central system 
to find the menus, how long will it take to transmit them, how long will it take you to go through 
them, how long will it take you to get to the next submenu? Most people don't use dictionaries 
and encyclopedias because it takes from half a minute to a few minutes to look something up. If 
a computer system is as slow or slower, it will be avoided as thoroughly as people avoid other 
reference systems. 

Hypertext '87 Papers November 1987 



The lack of a carefully thought out "front end" is thus a major flaw in the design of Hypertext. 
A person should be able to use it from any available port, whether at home, at school, in the office, 
at the library, or when walking in the park using Alan Kay's mythical Dynabook. (There's 
another fme-sounding idea that has never been specified to the point where you can evaluate if 
it's workable. It, too, lacks an interface specification and apparently does what the user intends 
by a combination of wishful thinking and magic.) 

In short, Hypertext only sounds like a good idea. It tends to evaporate when looked at closely. 
There are three basic human interface problems: (i) the linkages are often either cumbersome, 
wrong for your needs, or trivial, (ii) the problem of what aspect of a word, phrase, or picture you 
in tend has not been addressed, (iii) a uniform and excellent human interface specification is both 
necessary and absent. 

I am sure enough of human ability to believe that the problems being addressed by Hypertext
like systems are not impossible to solve. What I am questioning is whether this particular 
proposed part of a solution, namely linked text (with a very broad definition of"text") is the right 
one, or even a feasible one. As with playing"adventure" games, you will be trying to second guess 
the link builder's frame of mind rather than staying within the subject you are working with. 
Knowledge of the system will often be more valuable than understanding your field. As the 
students of a poor teacher learn to give not the right answers but those the teacher wants, 
Hypertext users will spend much oftheir time pleasing the system instead of themselves. 

It is perhaps worthwhile asking why Nelson and the Xanadu people have looked at the aspects 
they have and ignored the ones mentioned here. I hope I may be excused for making an ad 
hominem observation: these people consider themselves hackers (in the best sense). They feel 
athome at the annual Hackers' Conference. They love technology, and like Joyce's Leopold 
Bloom, thrive on innards. They can discuss the minutiae of a particular system to all hours and, 
I f'ear, sometimes confuse their satisfaction in technical ingenuity and accomplishment with 
usability. The power of a linked data structure is formidable and amazing. My own thesis in 
computer science exploited such a structure. From speaking with Xanadu's implementors, and 
some people who hope to tap into its data, I have seen how they have been seduced. The potential 
is enormous, the attention given to implementation of searches into vast quantities of human 
knowledge brilliant, and a host of fascinating problems in computer science have been attacked, 
and some seem solved. One gets an honest feeling of accomplishment. But they have not 
addressed the question: when a person sits down at her system what will have to be done first? 
What will she see? What is the next steptheusertakes,and the next ... ? How will it look? How 
many keystrokes or mouse pushes or finger jabs will it take to find what is wanted? How long 
will it take? No, they speak to me of megabytes and optical disks instead of Susan and Jim and 
Marjorie and Bill. They speak of the great benefits that will accrue to individuals- that's one 
end; and the vast linked data base- that's the other end. But when asked how the ends are made 
to meet, just how the natural impedence between them is overcome, the designers become 
in specific and waffle. How humans interact with systems is not their field and is not really close 
to their hearts. It is not the computer science they studied. It is a soft subject and making good 
interfaces (which they fervently believe should be done) will not win them the sincerest plaudits 
of their peers. 

November 1987 Hypertext '87 Papers 329 



330 

None of this denies their interest in doing good things for the world and for individual people. The 
"how" just hasn't been thought through. This may stem from Nelson's belief that "The starting 
point in designing a computer system must be the creation of the conceptual and psychological 
environment-the seeming of the system [a nice phrase, but not very informative]-what I and 
my associates call the 'virtuality. m 

And what everybedy else calls the "concept.• I agree that one must begin by deciding, as Nelson 
says, "how it ought to be." Unfortunately, Nelson's "how it ought to be" does not include specifics 
of how it works in detail. Whether the hypertext concept is useful or not is most decidedly a 
function of the user interface, just as computers are more or less useful depending on how they 
facilitate access to their power. Consider the relative difficulty of using a double-edged razor 
blade without a handle. Itisjustas sharp, but much harder to use. Nelson's avoidance of what 
he calls "front end" issues is a major failing in the quality of his vision, his priorities, and his 
understanding of what makes things work well for people. 

Since creating the Macintosh project at Apple I've led the design of a number of products 
including the Canon Cat and SwyftWare. In the process, my associates and I obtained an 
excellent interface between people and text by using exactly what Nelson decried: a straightfor
ward linear structure. It was acted upon not by links and list processing but by an extremely fast 
search (which can be considered a real-time volatile link). One major difference is that we were 
driven to this internal structure by starting with a particular and finely tuned human interface, 
and only then searching for technology to implement it. I do not agree with Nelson's statement 
that people naturally think in hierarchical structures of many layers. If that assumption falls, 
so does most of the Hypertext concept. Studies show that people prefer flat structures over deep 
ones, and if we do not accede to the way humans work then we are not likely to design workable 
products. 

The Hypertext vision is worth a try. The demonstrations so far have been tantalizing. It is my 
guess that the reality will remain tantalizing, and will never fulfill the dreams of Hypertext's 
advocates -nor the dreams that they instilled in me, for that matter. 

While Hypertext itself may or may not be a good idea, the vision of giving everybody access to vast 
reaches of human knowledge is a praiseworthy one. There are probably better and more 
realizable ways. Hypertext is certainly incomplete at present, both in terms of implementation 
(as its designers would agree) and in terms of concept (they might not agree). My intent has been 
to present a countervailing opinion to the vast majority of what has been written and to balance 
the present uncritical discussion (that is, adulation) of Hypertext. 

Thanks to David Alzofon, Sam Bernstein, and Scott Kim for their constructive comments. 

REFERENCES 

Conklin, Jeff, "Hypertext: An Introduction and Survey", IEEE Computer, September 1987,1 7ff. 

Hypertext "87 Papers November 1987 



Relationally Encoded Links and the 
Rhetoric of Hypertext 

George P. Landow 

Department of English and the Institute for Research in Information and Scholarship (IRIS) 
Brown University, Providence, Rhode Island 02912 

I. INTRODUCTION 

More than two years' work on designing, writing, editing, and linking documents in 
Context32 [Land86], the first course employing Intermedia developed at Brown 
University's IRIS (Institute for Research in Information and Scholarship), has provided 
valuable experience of hypertext and hypermedia systems. Context32, which contains 
more than a thousand text and graphic files joined by approximately 1300 links, appears 
the most ambitious implementation thus far of a full hypertext and hypermedia system 
intended for multiple users. Members of the development team at IRIS have previously 
described various aspects of Intermedia's object-oriented programming [Meyr86], general 
design [Meyr85, Yank87a, Yank87b], and educational goals [Land87]. This paper presents 
conclusions about what works best at each end of a hypertext path or linkway and propos
es that, like other forms of discourse, hypertext requires systems of conjunctive and other 
relational devices. 

II. THE NEED FOR A RHETORIC OF LINKING IN HYPERMEDIA 

Designers of hypertext and hypermedia materials confront two related problems, the first 
of which is how to indicate the destination of links and the second, how to welcome the 
user on arrival at that destination. Drawing upon the analogy of travel, we can say that 
the first problem concerns exit or departure information and the second arrival or entrance 
information. In both cases the designer must decide what users need to know at each end 
of a hypertext link in order to make use of what they find there. The general issue here is 
one of interpretation-namely, how much interpretation must the designer-author attach 
(1) to link pathways and (2) to files at the end of links to permit them to function efficiently 
in a multi-user system? 

At this relatively early stage in the history of hypertext systems, those involved, as one 
might expect, devote most attention to the simple fact of linking and to the effects upon 
discourse of such electronically linked text. Although hypertext clearly redefines some of 
the basic characteristics of page-bound printed discourse, such as the rigidly hierarchical 
distinction between a main text and its annotation in scholarly works, it still depends upon 
many of the same organizing principles that make page-bound discourse coherent and even 
pleasurable to read. 

The experience of courseware developers and of student users with Context32 clearly dem
onstrates that simply linking one text to another in some cases fails to achieve the 

November 1987 Hypertext '87 Papers 331 



expected benefits of a hypertext system and even alienates the user. Drawing upon our 
experience with developing Context32 at Brown, I would like to examine several examples 
of insufficiently encoded hypermedia materials and then, in later sections, to discuss vari
ous approaches to encoding or attaching necessary information. Since graphic images in 
hypermedia systems so clearly demonstrate the problems created by insufficient encoding, 
we shall examine them first and then later look at text files. 

At an early stage in the development of Context32, some of my graduate-student assis
tants assumed that placing certain kinds of images that they deemed interesting at the 
ends of links would suffice to inform students in some undefined way. Portraits of writers 
and similar documentary or informational use of earlier graphic work, such as a 
nineteenth-century photograph of homeless boys (Figure 1), exemplify this kind of linked 
file. Ultimately, I removed most such files or modified them in ways that are described 
below, but some were left unchanged because I wished to learn how students would react 
to them (and some because we have not yet had the opportunity to make necessary 
modifications to the files). As it turned out, students found no educational value either in 
such links or in the files at their ends, and they resented the time required to call them up, 
inspect them, and put them away. 

Why, then, were such kinds of linking educationally and informationally ineffective? In the 
first place, these graphic files confused the users, who could not quickly determine why 
such material had been included. Once confused, they resented the presence of the link. 
Before discussing several solutions to the problem of efficient handling of informative links 
in hypertext, let us note the basic assumptions underlying these reactions, the most im
portant of which is that links represent useful, interesting, educationally significant rela
tionships. Such assumptions, we must realize, do not derive from overestimations of hy
pertext but are intrinsic to such systems. In fact, because links and link-relations play 

. such primary roles in hypertext (and hypermedia), they influence the content they convey · 
and thus exemplify the McLuhanesque principle that the medium is the message [McLu62, 
McLu64]--<>r at least that every medium of communication itself communicates an iden
tifiable bias or message. Sometimes the message takes the form of a negative bias created 
by the limitations of a specific technology. For example, using currently available hard
ware for the first implementation of Context32, we discovered that both mid-nineteenth
~ntury woodblock illustrations and those that Beardsley created at the end of the century 
(Figure 2) appear clearly. Photographs and paintings with a wide range of tonality and 
those depending heavily upon color do not work as well. In fact they reproduce so poorly 
that we have had to omit most Romantic art-with the result that users of the system 
might conclude not that our technology has particular limitations that constitute a bias but 
that there is no Romantic art or that it has little relevance. 

332 

Hypertext as a medium also conveys its own positive bias or message, for hypertext's 
system of linked files conveys the strong impression that its links signify coherent, pur
poseful, and, above all, useful relationships. From which follows: 

Rule 1: Hypertext links condition the user to expect purposeful, im
portant relationships between linked materials. Such was the capacity 
of hypertext systems that I originally planned to draw upon when I began 
to work with software developers at IRIS, and from this capacity one can 

Hypertext '87 Papers November 1987 



deduce one of the principles embodied in Context32 that is also a principle of 
hypertext: 

Rule 2: The emphasis upon linking materials in hypertext stimulates 
and encourages habits of relational thinking in the user. Such intrin
sic hypertext emphasis upon interconnectedness (or connectivity) provides a 
powerful means of teaching sophisticated critical thinking, particularly that 
which builds upon multi-causal analyses and relation of different kinds of 
data [Land87). But one must note a third, cautionary principle: 

Rule 3: Since hypertext systems predispose users to expect such sig
nificant relationships among files, those files that disappoint such 
expectations appear particularly incoherent and nonsignificant. 
When users follow links and encounter materials that do not appear to 
possess a significant relation to the file from which the link pathway origi
nated, they feel confused and resentful. 

As the examples of the author's portrait and documentary photograph suggest, appending 
brief texts in the form of titles to the images does not always provide enough information 
for the user, because titles do not sufficiently establish a relationship between the two 
linked files. Such inadequate relational encoding or markup does not appear only in hy
pertext and hypermedia systems, of course, but such systems accentuate the user's neg
ative reaction. In fact, inadequately presented visual information characterizes many il
lustrated textbooks, particularly literary anthologies, that include portraits of authors, 
works of art, and other supposedly relevant visual materials. As studies have shown, 
students generally ignore such materials. Books permit the student user to avoid appar
ently nonsignificant and insignificant materials--one simply glances at them and turns the 
page or, in many cases, simply never glances at them at all-but hypermedia systems, 
whose linkages suggest that the user will encounter significant relationships between ma
terials, make ignoring such materials more difficult. They force the user to confront rela
tionality--or its absence. 

Ill. SOLUTIONS: THE RHETORIC OF ARRIVAL 

As the examples of a writer's portrait and documentary information about the historical 
background have shown, conventional titles do not adequately direct the user how to relate 
a graphic image to other materials. In contrast, "Victorian Design: Medieval Revival" 
[Figure 3), an illustration of an item exhibited at the 1851 Crystal Palace exhibition, the 
first world's fair, exemplifies the kind of encoding or rhetoric required to enable' the user to 
make sense of graphic files-that is, to discern one or more conceptual relations between 
them and files to which they are linked. The appended text reads: "This curiosity from the 
Crystal Palace exhibition of 1851 is not a suit of armor but a stove built in the shape of 
one. What do such bizarre glances back at the past tell us about the Victorian age, which 
invented the idea of Progress as we know it? Can you find in the poems you have read 
any examples of thus clothing present purposes in ancient forms?" Students who highlight 
the link marker and issue a command to follow receive a menu of various Victorian liter
ary works, including Tennyson's "Morte d' Arthur," a poem set in medieval England, and 

November 1987 Hypertext '87 Papers 333 



"Tithonus," one set in the Greece of ancient myth. Experience with these materials has 
taught that to be educationally effective they must follow these principles: 

Rule 4: Linked graphic materials must appear with appended texts 
that enable the user to establish a relation between file of departure 
and that of arrival. The solution we have adopted appears in Figure 3, 
whose text (a) provides factual information, (b) encourages users to relate 
that information to a problem on which they are working, and (3) contains 
links that allow them to pursue various investigations. From this follows 
two principles: 

Rule 5: The entire text accompanying visual material serves as an 
introduction and not just the opening sentence or so. And: 

Rule 6: The accompanying text does not have to specify all relevant 
information the designer wishes the user to have; rather, emphasiz
ing that a relationship exists at all may be enough. From which fol· 
lows: 

Rule 7: Texts serve not only to provide information but also to reas· 
sure the user that the link embodies a significant relationship and to 
provide some hint, however incomplete, of how that relationship can 
be formulated by the user. 

The visual information, which provides interesting data of an unexpected sort, also enforc
es the principle that relevance is in the mind of the beholder and that the investigator's 
function in whatever field is to inquire what connections might exist among various kinds 
·of data and and their relative value might be evaluated. 

The principles of making effective links to files containing largely visual information also 
apply when linking text to text. Here, too, one must employ devices that enforce hypertext 
capacity to establish intellectual relations. A user who activates the link marker in 
"Victorian Design: Medieval Revival" receives a choice of links to files about the poetry of 
Tennyson and Browning, both authors who, like the designer of the stove, use old forms to 
solve contemporary problems. The first of these files, "Tennyson's 'Marte d'Arthur'" 
(Figure 4), shows how one can emphasize the relationality of a text file by a combination of 
information, questions, and links. This text file begins by offering the student information 
about the poem's publication history and about its indebtedness to Sir Thomas Malory's 
Arthurian work, after. which it continues with a series of alternating factual statements 
and questions that ask the student to apply the new information contained in them to draw 
broad conclusions about medievalism, the relation of the poem to Tennyson's own life, and 
its connection to Carlyle, a passage from whose work is included. The file also contains link 
markers indicating the existence of paths to files on the poet's biography and Carlyle. 
Planned additions include an essay on medievalism and links to it. The point here is that 
one must employ the same structure of information, questions, and link markers in both 
graphic and text files. 

334 Hypertext '87 Papers November 1987 



IV. SOLUTIONS: THE RHETORIC OF DEPARTURE 

We have examined methods of encoding points of arrival before examining the encoding of 
link markers, which are points of departure, because the basic need for such encoding ap
pears so clearly when users first confront files new to them. Experience with Context32 
has shown that links and link markers also require similar kinds of encoding to be used 
effectively, and this implementation of hypermedia employs at least six different forms, 
three of which are internal to the file containing the link marker and three externaL 

L Internal: 

(a) Link marker apparently independent of accompanying text. 

(b) Link marker whose spatial proximity to text indicates probable 
nature of link destination. 

(c) Specific directions accompanying link marker, 

2. External: 

(a) Link descriptions 

(b) Menu called up by link marker at site of multiple links. 

(c) Local map automatically generated by Intermedia. 

An instance of L(a), a link marker that appears independently of accompanying text, oc
casionally appears in overview files, such as that for Tennyson (Figure 5). Overview files, 
which are graphic directories, play an important role in Context32 since they simultane
ously inform the user in a general way about the kinds of information available in relation 
to a particular subject and also enforce the point, a central theme of the course, that indi
,Udual phenomena, such as an author (e.g., Tennyson, Pope), aesthetic category or period
ization (e.g., Victorianism [Figure 6], Neoclassicism), or other topic (e.g., religion in 
England, Darwinism), relate to a range of subjects and approaches. An example of such 
naked or unaccompanied link markers L(a), which are relatively rare in Context32, ap
pears in the center of the Tennyson OV (overview) file near the poet's name. Although this 
marker lies adjacent to a text specifying the main subject of this graphic directory file, that 
text does not suggest any link destination since the user is already within the Tennyson 
directory file. This marker simply represents the destination of another link (since linking 
creates link markers within each linked file) to an index file, and as such it represents 
something of an anomaly and should be replaced by form L(b), Each of the separate boxes 
or texts specifies to varying degrees what the user can expect to find on arrival at the link 
destination. The markers situated near the titles of individual works of Tennyson and the 
boxes labeled "Biography" and "[biographical] Timeline" clearly indicate their destinations. 
That labeled "Literary Relations" leads to another graphic directory file [Figure 7], which 
takes a standard form, and after using Context32 to study a few authors or works, the 
student can expect to encounter this kind of graphic representation of literary relation
ships. Since more variety exists in relation to other materials organized by the overview 
file, the user does not know in advance what to expect from the labeL Thus "Cultural 
Context," which here links to the Victorianism OV (Figure 6), also links to an essay on 

November 1987 Hypertext '87 Papers 335 



"Tennyson and Victorianism," but authors less important in the course often do not have 
such additional linked documents. Similarly, there is an even wider variation in the num· 

· ber and nature of documents linked to "Religion" and "Science and Technology." 

One approach to informing the user more about the nature of a link destination appears in 
those files, chiefly literary relations directories, that exemplify l.(b) because the text their 
link markers accompany is .so specific that it indicates the likely nature of the link destina
tion. Such specifying texts also appear in primary text documents. For example, when a 
file on a modern author contains a link marker near "Freudianism," "World War I," or an 
aspect of literary technique, such as "Theme," or "Imagery," the user can expect to en
counter an essay (or diagrammatic presentation of one) on these subjects at the end of a 
link. These observations on the way that Context32 indicates link destinations in various 
kinds of graphic and text files lead to a crucial principle of hypermedia: 

Rule 8. Any file in a hypermedia (or hypertext) system is a directory 
file. Although I have been writing as if Context32 only employed those 
graphic files specifically entitled "OV" (for overview) as directories, users 
can and do rely on whatever file they find themselves in to organize linked 
information. From this characteristic of Context32 follows a point at which 
hypermedia capacities converge with an important emphasis of contempo
rary literary theory: 

Rule 9. Regardless of what kind of directories the authors and de
signers include in a hypermedia system, users can organize it ac
cording to their individual interests. Modern literary theorists argue 
that literary investigations should be organized not in the traditional man
ner according to authors or periods but according to individual texts 
[Scho85]. Hypermedia, which has strong individualistic and democratic po
tential, permits users to make any file (and any interest) the organizing 
principle of their investigations. 

Now, to return to the problem of encoding link destinations within files. The most specific 
te'Xtual specification of a link destination occurs in l.(c), when specific directions inform 
users of a link destination, usually by inviting them to make their way there. For exam
ple, the file entitled "Point of View in 'The Pruss ian Officer"' begins: " Point of view [link 
to definition]," and in the file entitled "Neoclassical Couplet" the following sentence appears 
next to an example of Pope's satire on women: "Follow to see a woman's view: Lady Mary 
Wortley Montague's couplets." 

In addition to such internal means of indication link destinations from within the file, 
Intermedia provides three external ones-2.(a) link descriptions, 2.(b) menus of link de
scriptions, and 2.(c) local maps. After choosing a link marker, the user can put down a 
menu and select a link description rather than follow a link without further information 
(Figure 8). Many, though not all, link descriptions inform the reader if the linked files 
contain primarily graphic or text materials. During the first implementation of Intermedia 
and Context32 users do not seem to have employed this capacity very much, perhaps be
c.:tuse invoking it involves additional delay. A second external means of indicating link 
destinations involves automatically generated menus that appear when the command is 

336 Hypertext '87 Papers November 1987 



issued to follow a link marker to which two or more files are linked (Figure 9). A third ex
ternal indicator takes the form of Intermedia's automatically generated local map (Figure 
10), which contains the names of all files linked to the file currently active. Although local 
maps for files containing relatively few links are easy to use and helpful as a way of dis
covering link destinations, those for files with many links are difficult to use. 

V. ACKNOWLEDGEMENTS 

Intermedia is the culmination of two years of intense effort by a large team of developers 
led by Norman Meyrowitz, Scholar's Workstation Group Manager. I would especially like 
to thank him and Nicole Y ankelovich, our Project Coordinator, for their continual re
sourcefulness, tireless effort, and unfailing good humor. I would also like to thank Helen 
DeAndrade, Tim Catlin, Page Elmore, Charlie Evett, Matt Evett, Ed Grossman, Nan 
Garret, Karen Smith, Tom Stambaugh, and Ken Utting for their contributions to the 
Intermedia system and David Cody, Glenn Everett, Suzanne Keen Morley, Kathryn 
Stockton, and Robert Sullivan for their contributions to Context32. 

The work described in this paper was sponsored in part by a grant from the 
Annenberg/CPB Project and a joint study-contract with IBM. 

VI. REFERENCES 

[Conk86] J. Conklin. "A Survey of Hypertext." MCC Technical report Number 
STP-356-86, October 23, 1986. 

[Garr86] L. Garrett and K. Smith. "Building a Timeline Editor from Prefab Parts: The 
Architecture of an Object-Oriented Application." OOPSLA '86 Proceedings. 
Portland, Oregon: 1986. 

[Land86] G. Landow, D. Cody, G. Everett, K. Stockton, and R. Sullivan. Context32: A 
Web of English Literature. Providence, Rhode Island: Institute for Research in 
Information and Scholarship: Brown University, 1986. 

[Land87] G. Landow. "Context32: Using Hypermedia to Teach Literature." Proceedings of 
the 1987 IBM Academic Information Systems University AEP Conference. 
Milford, Connecticut: IBM Academic Information Systems, 1987. 

[Lars86] J. Larson. "A Visual Approach to Browsing in a Database Environment." IEEE 
Computer, June 1986. 

[McLu62] M. McLuhan. The Gutenberg Galaxy: The Making of Typographic Man. Toronto: 
University of Toronto Press, 1962. 

[McLu64] M. McLuhan. Understanding Media: The Extensions of Man. New York: 
McGraw-Hill, 1964. 

[Meyr85] N. Meyrowitz. "The Intermedia System: Requirements." Providence, Rhode 
Island: Institute for Research in Information and Scholarship, Brown 

November 1987 Hypertext '87 Papers 337 



338 

University, September 1985. 

[Meyr86] N. Meyrowitz. "Intermedia: The Architecture and Construction of an 
Object-Oriented Hypermedia System and Applications Framework." OOPSLA 
'86 Proceedings. Portland, Oregon, 1986. 

[Ong82] W. Ong. Orality and Literacy: The Technologizing of the Word. London: Methuen, 
1982. 

[Scho85] R. Scholes. Textual Power: Literary Theory and the Teaching of English. New 
Haven: Yale University Press, 1985. 

[Yank85] N. Yankelovich, N. Meyrowitz, and A. van Dam. "Reading and Writing the 
Electronic Book." IEEE Computer, October 1985. 

[Yank87] N. Yankelovich, G. Landow, and D. Cody. "Creating Hypermedia Materials for 
English Literature Students." SIGCUE OUTLOOK, September 1987. 

[Yank87b] N. Yankelovich, B. Haan, and S. Drucker. "Conrtections in Context: The 
Intermedia System." Providence, Rhode Island: Institute for Research in 
Information and Scholarship, Brown University, 1987. 

Hypertext '87 Papers November 1987 



From Sansom's ·victorian Life In P~otographs• (Thames and 
Hudson: London, 1974) 

Figure 1. "Homeless Boys" (a file linked to Charles Dickens) 

BEARDSLEY"S THREE STYLES: (GPL) 
Sir Bedivere (left), a Tennysonian subject, shows the influence of Morris and "Withered Spring" (center) 
shows that of Blake. How has Beardsley changed his handling of space and the human figure in the last 

"How Sir Belvidere cast the sword Excalibur into 
the water" 

Reade, "Aubrey Beardsley" (The Viking Press, New York 1987} 

Figure 2. "Beardley's Three Styles." · 

"Withered Spring" 
(Beardsley) 

"The Mysterious 
Rose Garden" 



Victorian Design: 
Medieval Revival 

ThiS curiosity from 
the Crystal Palace 
exhibition of 1851 Is 
nol a suit of armor 
but a stove built In 
the shape of one. 

What do such bizarre 
glances back at the 
past tell us about the 
VIctorian age, which 
Invented the Idea of 
Progress as we know 
II? 

Can you lind any 
examples of such 
clothing present 
purposes in ancient 
forms In the poems 
you have read? 

(GPlj 

"Morte d'Arthur" 
[GPL] 

First draft written early 1834; published in Poems (1842); incorporated 
into the Idylls of the King (1870) as "The Passing of Arthur." This is the first 
of Tennyson's poems to be based on Sir Thomas Malory's Marte d'Arthur. 
(He had written "The Lady of Shalotl'" in 1833, before he read Malory.) 

1. like '"The lady of Shalott," this poem represents one of Tennyson's 
early contributions to Medievalism in poetry. In what sense does "Marte 
d'Arthur" appear escapist and in what committed and immediately relevant to 
his own age? Does the poem suggest ways in which the modern poet living in 
an urban, technological. mercantile society can use myth or an idealized past? 

2. Tennyson here employs a standard medieval romance literary 
structure that puts the protagonist through a series of tests that test and 
educate him. What in particular does Bedivere learn about the relation 
between keeping faith and being able to believe or have faith? What does this 
have to do with •Carlyle? 

3. Arthur the King is, at least in small part. also Arthur Henry Hallam 
(see the •biography)o What in this poem is amplified by your knowledge of 
Tennyson's personal grief for his friend? 

4. Do you find a second debt to Carlyle In the connection between 
Arthur's benediction to Bedivere ("The old order changeth, giving place to 
new,/ And God fulfills Himself in many ways,/ lest one good custom should 
corrupt the world" and these passages from Carlyle's Signs of the Times ? 

We have a faith in the imperishable dignity of man; in 
the high vocation to which, throughout his earthly 
history, he has been appointed" However it may be 
with individual nations, whatever melancholic 
speculators may assert, it seems a well-ascertained 
fact, that in all times ... the happiness and greatness 
of mankind at large have been continually 
progressive. . . . That admiration qf old nobleness, 
which now so often shows itself as a faint dilettantism, 
Will one day become a generous emulation, and man 
may again be all that he has been, and more than he 
has been. 

What similarities can you find between Carlyle's work~ and 
Tennyson's? [GE, GL] 

Figure 3. "Victorian Design: Medieval Revival" 

Figure 4. "Morte d' Arthur" 



"' Literary relations 

"' Cultural context 
(VIctorianism) 

Other Arts 
(Pre-Raphaelites} 

Tennyson 

~;~· .a 
· ".T .... -·.i " . 

' -

"" 

nmellne 

"' Biography 

ALFRED TENNYSON 
1809-1892 

WORKS 
e "'Mariana'" 

'"The Lady of Shalott"' 
a "'Tears, Idle Tears" 

erurYsses" 
e"'Titl'lonus .. 

•St. Simeon Stylites"' 
e Marte d'Arthur" 
e .,In Memoriam" 

GE&GPL 

Religion 

Science and 
Technology 

Figure 5. "Tennyson OV" (overview or directory file). 

VIctorianism in Art, 
Architecture, and Literature 

El 

Images of Victorian 
Life 

Darwin & Evolution 

Victorian 
An Introduction 

Victorianism 
contrasted to 
Romanticism 

and El 
Neoclassicism 

Figure 6. "Victorian OV" 

El 

Gaskell 

I 
The Brontes 

I 
Thackeray 

I 
Eliot 

.. .. 

Evangelicalism 

Utilitarianism 

Spiritualism 

VIctorian 
Authors 

I I El '::arlyle 
Tennyson I 

I Macaulay 
Browning I I Ruskin 

Arnold I 
I Arnold 

Swinburne I sl Newman 
C & DG cosset II 

e Hop Ins [GPLJ 



RUSKIN'S LITERARY RELATIONS AND INFLUENCE 

NOVEUSrs 

( Wordsworth I fS'cott I NON-FIC710N 

( ~olarldge I - I f Johnson l Radcliffe 

[ayfOn J .. _...( Rousseau I 
ROMANTICISM I I Carlyle I 

... ... 
'\. e 

JOHN RUSKIN 

ART CRmCISM 1-- L lind Sage-wrilln; I '-- sociAL cRmCISM I 
S/,_ofVMII.:ot + SltmH of Vmlc!l s._, ~of ATdlltfl:tln 

r Gothk: "•"'v"' I --- .J Hun1U18Worll:~ ' 
clo .. ndieola 

l~•lndlt•otaodety 1 l Word Painting: Dlck~aan, I Wei,.,..Strie I 
O.H. Lnmnce 

(MNI»WIIIIIm J 1 .~u~~ •odely: Ghandl 1 

f AlnclltlllfO!lsm I 
Symbolic Rullem: I Pre-RaphMIIies ., .. ,.. 

L llcloHm Onign Clbutw ... ) r A-•11>&"'- •nd c.eodenta of I 
IIIIo 189tl'e (P1ter, Wilde) 

William and Morri• and An. I 
and Clalt1 Move~Mr~t 

Figure 7. Two InterDraw files with varying degrees of relational text: "Tennyson's 
Literary Relations" and "Ruskin's Literary Relations" 

<'.'''"'" Llnta 
liN!I: PROPERTIES 

O~etonan OO:Tennyson UD :'f: 

£Nplalner fiiJtU!.IH•!IP g. !lj,j loll 

D 
...... , ... ,. ~ oM .... , .. , ... " 

~ 
~ 

ALFRED TENNYSON 
Retauon 1809-1892 

Sflurc•tlo~k EMplelner: Btoct 1584 
Desl Bhttt hllll!lner: B!fltt 1585 

Jllpply&Ciosel! ~ ~ 

WORKS 
a -uariana~ 

"'The lady of Shalotr 
51 "Tears. Idle Tears· 

etUiysses· 
st'Tithonus~ 

•st. Simeon Stylites· 
ED~Morte d'Arthur· 
a Din Memorla111• 

GE&GPl 

Figure 8. A link explainer (for path between "Tennyson OV" and "Victorian OV"). 

342 Hypertext '87 Papers November 1987 



This curiosity from 
the Crystal Palace 
exhibition of 1851 I! 
not a suit ofannor 
but a stow built In 
the shape of one. 

What do such blzarn 
glances back at the 
pasttell us about the 
Victorian age. which 
invented the idea of 
Progress as we know 
It? -Com you find any 
e:Mamples of such 
clothing present 
purposes in ancient 
fonn:~~ In the poems 
you have read? 

JG"l 

Figure 9. A menu of link descriptions (generated by a link in "Victorian Design: Medieval 
Revival"). 

~ 
ISS! EXHIB(OV) 

" ' 

Victorian Design: 
Medieval Revival 

This curiosity from 
the Crystal Palace 
exhibition or185t is 
not a suit of armor 
but a stove built in 
the shape of one. 

What do such bizarre 
glances back at the 
past tell us about the 
VIctorian age. which 
Invented the idea of 
Progress as we know 
It? 

Can you find any 
examples of such 
clothing present 
purposes in ancient 
forms In the poems 
you have read? 

[GPLI 

Figure 10. Local tracking map generated by links in "Victorian Design: Medieval Revival" 



344 Hypertext '87 Papers November 1987 



Reflections on NoteCards: 
Seven Issues for the Next 
Generation of Hypermedia Systems 
Frank G. Halasz* 

Microelectronics and Computer Technology Corp. (MCC) 

3500 West Balcones Center Dr. 

Austin, TX 78759-6509 

ABSTRACT 

NoteCards is a general hypermedia environment designed to help people work with ideas. Its 

intended users are authors, designers, and other intellectual laborers engaged in analyzing 

information, designing artifacts, and generally processing ideas. The system provides these 

users with a variety of hypermedia-based tools for collecting, representing, managing, 

interrelating, and communicating ideas. 

This paper presents the NoteCards system as a foil against which to explore some of the major 

limitations of the current generation of hypermedia systems. In doing so, this paper highlights 

seven of the major issues that must be addressed in the next generation of hypermedia 

systems. These Sfl!Ven issues are: search and query, composite nodes, virtual structures, 

computational engines, versioning, collaborative work, and tailorability. For each of these 

issues. the papers describes the limitations inherent in NoteCards and the prospects for doing 

improving the situation in future systems. 

INTRODUCTION 

NoteCards is a general hypermedia environment designed to help people work with ideas. Its 

intended users are authors, researchers, designers, and other intellectual laborers engaged in ana

lyzing information, constructing models, formulating arguments, designing artifacts, and generally 

processing ideas. The system provides these users with a variety of hypermedia-based tools for 

collecting, representing, managing, interrelating, and communicating ideas. 

NoteCards is in many ways typical of the generation of workstation-based hypermedia systems 

that is currently moving from the research lab into widespread use (e.g., lntermedia 

[Garr86b,Meyr86] and Neptune [Deli86al). These systems are proving to be extremely useful 

in application domains ranging from educational courseware through computer-aided engineering 

to legal argumentation. At the same time, as these systems move out of the lab into the real

world, their limitations and design flaws are becoming increasingly apparent. 

• I would like to thank Randy Trigg and Tom Moran of Xerox PARC and Jeff Conklin, Michael Begeman, and 
Eric Gulllchsen of MCC. The Ideas presented In this paper were developed during many discussions with these 
folks over the last year. I would like to especially thank Michael Begeman for pointing out the Importance of 
what I've called virtual structures {and what he calls views). 

November 1987 Hypertext '87 Papers 345 



'Ibis paper presents the NoteCards system as a foil against which to explore some of the major 

limitations of this current generation of hypermedia systems. In doing so, this paper will highiight 

some of the major issues that must be addressed in designing the next generation of hypermedia 

systems. 

NOTECARDS IN BRIEF 

NoteCards was designed to support the task of transforming a chaotic collection of unrelated ideas 

to an integrated, orderly interpretation of the ideas and their interconnections. Analyzing one's 

business competitors is a prototypical example. The task begins with the analyst extracting scraps 

of information about competitors from available sources. The collected information must be 

organized and filed away for subsequent use. More importantly, the information needs to be 
analyzed, i.e., the relationships between the various ideas have to be discovered and represented. 

Once these analyses are complete, the analyst composes and writes a document or presentation 

that communicates the discovered information and its significance. 

NoteCards provides the user with a 'semantic' network of electronic notecards interconnected by 

typed links. 'Ibis network serves as a medium in which the user can represent collections of 

related ideas. It also functions as a structure for organizing, storing, and retrieving information. 

The system provides the user with tools for displaying, modifying, manipulating, and navigating 

through this network. It also includes a set of methods and protocols for creating programs to 

manipulate the information in the network. 

NoteCards was developed by Randall Trigg, Thomas Moran and the present author at Xerox 
PARC. A more detailed discussion of the system, its design goals, and our experiences with its 

use can be found in [Hala87]. 

Four basic constructs 

NoteCards is implemented within the Xerox Lisp programming environment. The system is de

signed around two primitive constructs, notecards and links. In the basic system, these two primi

tive are augmented by two specialized types of cards, browsers and fileboxes, that help the user to 

manage large networks of cards and links. 

Notecards. A notecard is an electronic generalization of the 3x5 paper notecard. Each notecard 

contains an arbitrary amount of some editable substance such as a piece of text, a structured 

drawing, or a bitmap image. Each card also has a title. On the screen, cards are displayed using 
standard Xerox Lisp windows as shown in Figure 1. 

Every notecard can be 'edited', i.e., retrieved from the database and displayed on the screen in 

an editor window that provides the user with an opportunity to modify the card's substance. 

There are various types of notecards, differentiated (in part) by the nature of the substance (e.g., 

text or graphics) that they contain. In addition to a set of standard card types, NoteCards in

cludes a facility for adding new card types, ranging from small modifications to existing card types 

(e.g., text-based forms) to cards based on entirely different substances (e.g., animation cards). 

346 Hypertext '87 Papers November 1987 



Capabililies ol New Mmsiles>;-;: '<"· : ·:>~ 
Even though the weapons in question 
replace older weapons (the Pershing 
lA and the Vulcan bomber), both are 
C3.pable of more destruction faster 
than their predecessors, This is the 
result of new radar- guidance 
systems, with new levels of accuracy. 
Also have e:ufflclent range to make 
vulnerable installations and cities in 
the We3lern USSR, in the case of the 
P 2. within a matter of minut~~. 

(p, 371) See jGuldonce of Pershing •I 

new American Perehing 
missile, fitted with a l"adar·homing 
warhead, is designed to be even 
more accurate. As il fa lis back to 
earth this compare~ a radar image 
of the target with an image stored in 
its computer memory. It :shoulld 
then be able to sdjust its flight path 
$0 as to hil its targe-t with pin·point 
a•:curacy after~ journey of 1,600 
kilometers." (p. 13) 
s .... 

· · jet engine 
produces speed!ll of 800km/h over 

distances of 2,500 km. ~Mie~l'ile carries a 
computer which i!!l programmed with m"'p~ 
of the areae mi~!lile i= to fly over, eo can 
compare actual poeilion.wlth programmed 
couree and con-ect couree. Computer ie 
designed to allow miesile to follow a zig·zag 

Figure 1: Example notec!lrds with embedded link icons. 

Links, Links are used to interconnect individual notecards into networks or structures of related 

cards. Each link is a typed, directional connection between a source card and a destination card. 

The type of a link is a user-chosen label specifying the nature of the relationship being repre
sented, 

The links are anchored at a particular location in the substance of their source card by a link icon 

but point to their destination card as a whole. Clicking in the link icon with the mouse traverses 

the link, Le,, retrieves the destination card and displays it on the screen, In Figure 1, each of the 

two cards contains two link icons, 

Browsers, A browser is a notecard that contains a structural diagram of a network of notecards, 

Figure 2 shows a Browser card for a network composed of 8 cards and 8 links, The cards from 

this network are represented in the browser by their title displayed in a box, The links in the 

network are represented by edges between the boxed titles, Different dashing styles distinguish 

different types of links, 

The diagrams in Browser cards are computed for the user by the system, Once created, browsers 

function like standard notecards, The boxed titles in the browser are in fact icons for traversable 

links between the browser and the referenced card, 

Browsers support two levels of editing, First, the user can edit the underlying structure of a 

network of notecards by carrying out operations on the nodes and edges in the browser, Second, 

November 1987 Hypertext '87 Papers 347 



348 

I Smith, "Missile Oaploym.,..ts•l 

FILE BOXES 

I Pershing U cb.Jr•cteristics I 
I GLCM cb.Jr•cteristic:s I 

I Guidonce of Pershing I I 
I Pershing • Speed I 
l~~ccur•cy of Peo sloluq •I 
I Origin• of ........., •I 
l~~onye --... ........,I 
I.....,.., 2 hiring .. IIRO I 
,.......,.., C•pobllitles I 

Figure 2: Example browser card (top) and filebox cards. 

the user can add and delete nodes and edges in the browser diagram without making correspond

ing changes to the underlying NoteCards structures. 

Fileboxes. Fileboxes are specialized cards that can be used to organize or categorize large collec

tions of notecards. A filebox is a card in which other cards, including other fileboxes, can be 

filed. NoteCards requires that every notecard (including fileboxes) must be filed in one or more 

fileboxes. Figure 2 shows 3 fileboxes in addition to the browser. 

Fileboxes were designed to help users manage large networks of interlinked notecards by encour

aging them to use an additional hierarchical category structure for storage and retrieval purposes. 

Interacting with NoteCards 

Accessing information. Navigation is the primary means for accessing information in NoteCards. 

The user moves through the network by following links from card to card. Alternatively, the user 

can create an overview Browser for some sub-network and traverse the links from the Browser to 

the referenced cards. NoteCards also provides a limited search facility that can locate all cards 

matching some user-supplied specification (e.g., a particular string in the card's title or text). 

Hypertext '87 Papers November 1987 



User interface. The NoteCards user interface is mouse- and menu-based. Operations are initi

ated either by direct manipulation or by choosing commands from menus associated with the 

various icons and windows on the screen. Whenever possible specification of objects is done by 

the user pointing to the referent on the screen. Beyond these generalities, the user interface 
incorporates a diversity of specific interaction styles due to the great variation in user interface 

styles among the many preexisting Lisp packages incorporated into the system. 

Tailorability 

NoteCards is fully integrated into the Xerox Lisp programming environment. It includes a widely 

used programmer's interface with over 100 Lisp functions that allow the user to create new types 

of cards, develop programs that monitor or process a network, integrate Lisp programs (e.g., an 

animation editor) into the NoteCards environment, and/or integrate NoteCards into another 

Lisp-based environment (e.g., an expen system). 

There is some degree of (non-programming) user tailorability in NoteCards as well. The system 

includes a large set of parameters that users can set to tune the exact behavior of the system (e.g., 

how links are displayed or the default size of notecards). In addition, users often create template 

cards or structures of cards that can be copied to create instances of the template. See [Trig87] 

for funher details about tailorability in NoteCards. 

NoteCards in use 

From its inception, the design and development of N oteCards has been driven by the needs of its 

user conimunity. Currently there are over 70 'registered' users within Xerox. At least 25 of these 

are 'everyday' users. There are, in addition, an undetermined number of users at various univer
sity, government, and industrial sites outside Xerox. This user community has provided invalu

able feedback on the strengths and weaknesses of NoteCards as applied to a variety of tasks 

including document authoring, legal, scientific, and public-policy argumentation, design and de

velopment of instructional materials, design and analysis of copier pans, and competitive market 

analysis. Perhaps the most common use of NoteCards is a database for storing miscellaneous 
personal information. 

A typical example of how the system can be used to suppon idea structuring and generic author

ing is the network created by a history graduate student who used the system to research and write 

a 25-page paper. Figure 3 shows a browser of the filebox hierarchy created during this project. 

The author made a habit of keeping this browser on his screen at all times as a way of speeding up 

the process of filing and accessing cards. This hierarchy was made up of 40 fileboxes and con

tained 268 (non-filebox) cards. 

The cards in Figure 1 are taken from this hierarchy. In general, cards stored in the hierarchy 

contain a shan (average of about 100 words) quote or paraphrase taken from an article or book. 

About half of the cards have links embedded in their substance. As a rule, these were 'See' or 

'Unspecified' links and were placed at the end of the card's text preceded by the word 'See' 

There are also a few dozen inter-card links of other types. 

November 1987 Hypertext '87 Papers 349 



350 

Figure 3: Browser of the filebox hierarchy from the public policy (nato-missiles) notefile. 

Further description of this network and the process involved in using to author a paper can be 

found in [Mont86a] and [Hala87]. 

NoteCards' niche in the space of hypermedia systems 

The term 'hypermedia' has been used to describe a wide variety of different systems and concepts 

ranging from outline processors through artificial video worlds. In this paper, 'hypermedia' will be 

used more narrowly to refer to information representation and management systems that organize 

information into networks of multi-media nodes interconnected by links. Each node generally 

contains a large chunk of 'content' such as a document, a drawing, or a voice annotation. The 

links are used to represent interrelations among these nodes. 

Even with this restricted definition, there is wide variety in the nature and function of existing 

systems. NoteCards' niche in this varied space of hypermedia systems can be clarified by parti

tioning the space along three fundamental dimensions: scope, browsing vs. authoring, and target 

task domain. 

Scope: Hypermedia has been proposed as the mechanism for storing and distributing the world's 

entire literary output [NeisS I]. Hypermedia has been proposed as an common information space 

for teams of programmer's on large software projects [Garg87]. Hypermedia has been proposed 

as a tool for individuals and small work groups engaged in authoring and idea processing 

[Hala87]. Although all of these proposals share the notion that information should be organized 

Hypertexl '87 Papers November 1987 



into network of nodes and links, they differ radically in scale, e.g., in the sizes of their expected 

information bases and user populations. This extreme variation in scale implies there will be 

differences throughout these systems, ranging from underlying storage mechanisms through the 

user interface to conventions for their use;' 

Browsing versus Authoring: In systems designed primarily for browsing, the hypermedia network 

is carefully created by a relatively small number of specialized authors in order to provide an 

information space to be explored by a large number of more or less casual users. These browsing 

systems are generally characterized by relatively well-developed tools for information presentation 

and exploratory browsing. Tools for creating and modifying the network tend to be less evolved. 

Hypermedia instructional delivery systems [Garr86b] and interactive museum exhibits [Shne87]. 

In systems designed primarily for authoring, the hypermedia network serves as a information 

structure that users create and continuously modify as part of their ongoing task activities. Hyper

media systems for idea processing [Hala87], document authoring [Smit86], and software devel

opment [Deli86a] are primary examples. In such systems, the tools for creation and modification 

of the network are well-developed. Tools for easy browsing and sophisticated information display 

tend to be less evolved. 

Target task domain: Many hypermedia systems have been designed to .support a specific task. 

For example, WE [Smi86] is an environment designed specifically to support the professional 
writer. Other hypermedia systems are designed to provide general hypermedia facilities to be used 

in a variety of applications. Even these generic systems, however, are usually designed with a 

target task domain in mind. The features and capabilities emphasized in the system often reflect 

the requirements of this target. Contrast, for example, Intermedia [Garr86b] and Neptune 

. [Deli86a]. Both are general hypermedia systems. But Neptune was designed to support software 

engineering and thus emphasizes versioning [Deli86b] and node/link attributes .. In contrast, In

. termedia was designed for multi-user interactive educational applications and thus emphasizes 
novel interactive displays [Garr86a] and 'annotation' facilities. 

NoteCards is designed for use by individuals or small work gro~ps. In this respect, NoteCards is 

similar to PC-based systems like Guide [Guid86] and to single-user workstation systems like WE 

[Smit86]. Conversely, NoteCards differs significantly along this dimension from 'global' systems 

like Xanadu [Nels81). as well as systems designed to support larger groups such as ZOG 

[Robe81) and NLS/Augment [Engl68]. Although its original design places less-emphasis on 

multi-user access, NoteCards is very similar in scope to Neptune [Deli86a], Intermedia 

[Meyr86,Garr86b) and Textnet [Trig83). 

NoteCards is first and foremost an authoring system designed to provide its users with facilities for 

creating and modifying hypermedia structures. In this respect, NoteCards is similar to many of 

the aforementioned systems (i.e., Augment, Guide, lntermedia, Neptune, WE) and different 

from oniine presentation systems such as TIES [Shne86] and interfaces to CD/ROM databases 

[Lamb86). ZOG has a slightly different flavor, being simultaneously browser- and author-ori

ented. 

November 1987 Hypertext '87 Papers 351 



NoteCards was originally designed as a tool to support idea processing and authoring in a research 

environment. Its original goals were very similar to those of NLS/ Augment, although the actual 

implementations of the two systems are (on the surface) quite different. Systems such as WE and 

Guide were also designed to support authoring tasks. Intermedia (education) and Neptune (soft

ware engineering) were designed with very different application domains in mind, although both 

systems were designed in part to support document authoring tasks. 

Overall, NoteCards is most similar to Intermedia and Neptune despite the differences in their 

target application domains. The three are very similar in scope and in the type of facilities they 

provide. This similarity is reinforced by several factors including a common emphasis on exten

sibility, similar underlying platforms (i.e., workstations), and a contemporaneous development 

schedule. Although the present paper specifically discusses NoteCards, most of the issues raised 

are equally relevant to these two systems as well as to most of the current generation of hyper

media systems. 

SEVEN ISSUES FOR THE NEXT GENERATION OF HYPERMEDIA SYSTEMS 

In the three years since its first release, we have been able to observe NoteCards in use and 

misuse in a wide range of situations and applications. These observations have provided signifi

cant insight into the system's particular strengths as well as its weak points. A brief but balanced 

assessment of the system is contained in [Hala87]. In contrast, for expository reasons the 

present paper focuses only on NoteCards shortcomings, i.e., on the ways in which the system falls 

short in meeting the needs and preferences of its users. 

Many of NoteCards' shortcomings are specific to its current implementation and could be cor

rected by limited redesign or reimplementation of the existing system. However, some of 

NoteCards' shortcomings reflect fundamental weaknesses in the hypermedia model on which the 
system is built. It is precisely these fundamental shortcomings and the mechanisms for their 

correction that will form the basis for designing the next generation of hypermedia systems beyond 

NoteCards, Neptune, Intermedia, and their cohorts. The following sections describe seven such 

limitations that have become evident through our observations of the NoteCards user community. 

Each of these limitations raises a variety of issues for the design of future hypermedia systems. 

Issue 1: Search and query in a hypermedia network 

The primary method for accessing information in NoteCards is 'navigation' through the network 

by following links from card to card. Typically, the NoteCards user brings a card onto the screen, 

examines its content and links, and then traverses the link that is most likely to move closer to the 

target information. Fileboxes support such localized link traversal by providing a hierarchical 

structure in which information is located by recursive descent through an increasingly specific 

category structure. In addition, localized link following is augmented by browsers (and other 

user-invented overview displays) that provide global maps of the network. Such global overviews 

allow the user to visually scan for and then directly move to areas of the network in which the 

target information is likely to be found. 

352 Hypertext '87 Papers November 1987 



Navigational access to information has been adequate, and occasionally even ideal, for a large 

number of NoteCards applications. These applications can be divided into three basic classes. 

First, the navigational access has proven sufficient for the small authoring, note taking, and infor

mal knowledge representation tasks that NoteCards was originally designed to support. In these 

tasks, an individual or a small (2 to 3 person) workgroup is creating and intensively using a 

relatively small network (50 to 250 cards). Because the network is small and familiar, users have 

little problem locating information. 

A second class of 'navigational' applications are the display-oriented representation tasks in 

which the network is centered around a single display, usually a browser, used to represent a 

structure being designed or studied. The goal of these tasks is to create and manipulate this 

display. In some sense, the network is secondary to the display and is used only to create the 

structure to be displayed and to "hide" unimportant details. In these tasks, information access 

occurs through the central display, with little direct card-to-card navigation. An example of such 

a network is described in [VanLSS]. 

The third class of navigationally-oriented applications is online interactive presentations. In these 
applications, the network's author often includes in each card navigational instructions to be used 
by readers of the network. Such 'guided' online presentations are discussed in [Trig86]. If no 

such navigational instructions are included, then the network is generally designed to be explored 

by the user in a non-directed manner. 

In contrast to these navigationally-oriented applications, there are a variety of applications for 

which NoteCards' reliance on navigational access is problematic. These applications are generally 

characterized by large, unfamiliar, heterogeneously structured networks. Even in a 500 node 
single-user network, navigational access can be difficult as the network changes and its structure 

becomes heterogeneous. In these cases, navigational access is problematic because users tend to 

get lost while 'wandering around' in the network looking for some target information. Often these 

users can describe exactly what information they are looking for, but simply cannot find it in the 

network. 

An incremental solution to the navigational problems encountered in NoteCards would be to 

improve and augment the existing navigation tools. For example, browsers could be made signifi

cantly more effective by applying techniques such as fish-eye views [Furn86] and graph 'fly

overs' [Fair87). In addition, new tools such as a voting scheme similar to Synview [Lowe86] 

could be implemented in NoteCards. Although these changes would alleviate some of the naviga

tion problems, they would not eliminate them entirely. 

A more fundamental solution to the navigation problem is to augment navigation by a query

based access mechanism. With query-based access, the user could formulate a query encapsulat

ing a description of the target information and then rely on the system to locate that information 

in the network. NoteCards already provides some limited query/search facilities. In particular, a 

user may search for all of the cards with some distinct property, e.g., that contain a particular text 

string. This search is extremely simple with no boolean expressions and no regular expressions 

provided. For NoteCards to be a useful in managing large heterogeneous networks, search and 

November 1987 Hypertext '87 Papers 353 



query needs to be elevated to a primary access mechanism on par with navigation. Providing a 

search and query mechanism in the context of a hypermedia system is an interesting challenge. 

There are two broad classes of query/search mechanisms needed in a hypermedia system. The 

first mechanism is content search. In content search, all cards and links in the network are 
considered as independent entities and are examined individually for those entities whose content 

or properties match a given query. For example, all the cards containing the string 'hyper• 
system' would be a content query. Content search is more or less standard information retrieval 

applied to a hypermedia information base. Although many techniques for such searches are well 

known, there are many innovative apprDaches that could be explored in a hypermedia environ

ment. 

Content search basically ignores the structure of a hypermedia network. In contrast, structure 

search examines the hypermedia network for sub-networks that match a given pattern. For 

example, a simple structure query might be: all sub-networks containing two cards connected by a 
'supports: links where the target card contains the word 'hypertext'. This query contains a de

scription of node content (i.e., contains the word 'hypertext'). It also contains a structural de

scription of a sub-network (i.e, two cards connected by a 'supports' link). A more complicated 
structure query, involving an indefinite sequence of links, might be something like: a circular 

structure containing a card that is indirectly linked to itself via an unbroken sequence of 'sup
ports' links. This query could be used, for example, to find circular arguments. 

The development of a structural query facility is an interesting and difficult task. One major 

subtask is to design a query language geared towards describing hypermedia networks. This struc

ture query language needs to be useable by the typical hypermedia user, who is unlikely to be 
facile with the intricacies of structure representation languages. A second major challenge is to 

design and implement an efficient structure search engine to processes these queries. A mecha

nism that searches a network for any sub-network matching some (possibly complex) pattern is 

difficult to implement and even more difficult to implement efficiently. 

In addition to its role as a mechanism for locating information, search and query be critical to 

many other aspects of future hypermedia systems. For example, the search and query mecha

nism will be used as a filtering mechanism in the hypermedia interface. Users will specify a 

'query' in order to describe the information of interest to them. The interface would then show 

only those aspects of the network that 'matched' this query. The NoteCards browser currently 

operates in this manner, but only with respect to a very limited set of structure queries. A full

blown query mechanism would allow much more interesting browsers to be constructed. More 

importantly, the search/query mechanism could be linked much deeper into the interface provid

ing for a pervasive information filtering mechanism that is absent in NoteCards and its cohorts. 

Search and query will also be a critical component underlying the virtual structures mechanism 

described in Issue 3 below. Thus, in many ways, the success of the next generation of systems will 

depend on a good solution for the problem of search and query in a hypermedia network. 

354 Hypertext '87 Papers November 1987 



Issue 2: Composites - augmenting the basic node and link model 

There are only two primitive constructs in NoteCards, cards and links. All other mechanisms in 
the system, including fileboxes and browsers, are built out of these two constructs. Although, this 

design has been surprisingly successful, experience suggests that this basic hypermedia model is 

insufficient. In particular, the basic model lacks a composition mechanism, i.e., a way of repre

senting and dealing with sets (or sub-networks) of nodes and links as unique entities separate 

from their components. 

A typical use for composites can be seen in the task of writing an organized document (e.g., a 

technical report) in NoteCards (see [Trig87]). In this task, users typically put the text for each 

subsection and for each figure into a separate card. All of the cards for a single section are then 

flied in a filebox. These section fileboxes are filed in the appropriate chapter fileboxes, which in 
turn are filed in a single filebox representing the document. This scheme is workable. It allows 

the user to focus in on the text/graphics for a particular chapter, section, or subsection. Using the 
NoteCards document compiler, the user can linearize the network into a single document card 
containing all of the text and graphics for the document in the appropriate order but without any 

hierarchical structure. This document can then be manipulated, e.g., read or printed, as a single 

entity. There is a problem, however, in that the document card is a separate entity from the 

'source' cards stored in the document's filebox hierarchy. It contains only copies of the text/ 

·graphics from these source cards. Changes made to the text/graphics .in the document card are 

not (automatically) reflected in the corresponding source card. 

'More importantly, the user can see the entire document at only one level. Despite the elaborate 

filebox hierarchy, there is no way to 'zoom' in and out of the document structure, examining its 

contents at different levels of detail (e.g., just the chapters, or all the chapters with their subsec

tion headings, etc). This capability is commonly found in outline processors and is a critical 

component in many writing and information organization tasks. As a result, a number of writers 

have abandoned NoteCards in favor of outline processors for their simple authoring tasks. 

This example suggests that N oteCards is missing the critical notion of composition. In particular, 

the system lacks a mechanism by which collections of cards and links can be reified as single 

composite entity. If such a mechanism were available, the document filebox hierarchy could be 
replaced l;ly a composition hierarchy. In this latter hierarchy, the document would be a linearly 

ordered composite of chapter cards. Each of these chapter cards would themselves be a linearly 

ordered composite of section cards, which in turn would be a linearly ordered collection of the 

source cards containing (finally) text/graphics. Each composite card in this hierarchy could be 

displayed showing varying amounts of 'detail' about its (direct and indirect) subcomponent cards. 

For example, the highest level composite, i.e., the document itself, could be viewed as a list of 

chapters or, alternatively, as a concatenation of all of the text/graphics in the source cards at the 

base of the composition hierarchy. 

The semantics of composites implies that the components of a composite are included 'by refer

ence' rather than 'by value' as is currently done in NoteCards' document card. Thus changes to 

a source card would by definition be reflected in any composite that contains that card. Con-

November 1987 Hypertext '87 Papers 355 



versely, changes to text/graphics viewed from within the context of a composite would by defini

tion be changes to the source card actually containing the text/graphics. 

The use of a composition mechanism to augment the basic node and link mechanism is a critical 

advancement in the hypermedia model. The filebox concept in NoteCards was designed (in part) 
to provide some of the characteristics of a composition mechanism in the context of encouraging 

hierarchical organizational structures. But the fllebox concept was flawed because it failed to take 

into account the differences between reference relations and inclusion relations. In particular, 

inclusion implies a part-whole relationship in which characteristics of and operations on the whole 

will be true of the part as well. Reference implies a much looser relationship in which the partici

pating entities allude to each other but remain essentially independent. 

The difference between (and the confusion among) inclusions and references arises very fre

quently in designing hypermedia networks and applications. In NoteCards, a browser in some 

sense 'contains' the sub-network it displays. For example, one can edit the network by editing 

the browser, which implies an inclusion relation. But confusion arises because the actual imple

mentation uses standard links (i.e., references) to connect the browser to the nodes it 'contains'. 

The NoteCards filebox concept was a source of great confusion among users for similar reasons. 

On a less system-oriented level, NoteCards users have frequently requested the ability to refer to 

sub-networks or collections of unlinked cards as unique entities with names and properties of 

their own, separate from the names and properties of their component nodes and links. For 

example, a legal application might involve building a network of arguments (one argument per 

card) for each case. Ideally, this entire network would be 'included' in composite card, which the 

user could then utilize to refer to the network in its entirety. For example, the user might want to 

attach properties to the network as a whole marking its validity or its convincingness. In the 

absence of a composition mechanism, the user must invent her own mechanism for dealing with 

structures made up of more than one card. In NoteCards, users frequently utilize the root card of 

a sub-network as the representative of the entire sub-network structure. 

In the next generation of hypermedia systems, composition should join nodes and links as a 
primitive mechanism. NoteCards, Intermedia, and Neptune all currently lack a notion of compo

sition. Designing a composition mechanism appropriate for inclusion in these systems raises a host 

of interesting decisions and issues including, for example: 

Can a given node be included in more than one composite? 

Do links necessarily refer to a node per se or can they refer to a node as it exists within 
the context of a given composite? If the latter is possible, what does it mean to traverse 
a link? 

How does one handle versions of composite nodes? E.g., does a new version of an 
included node necessarily imply a new version of the composite? 

Should composites be implemented using specialized links or is a whole new 
mechanism necessary? 

These issues present a challenging design problem for future hypermedia systems. However, the 

task is not impossible. NLS/Augment [Engl68] has (of course) already pioneered much of the 

356 Hypertext '87 Papers November 1987 



territory. The notion of composition is used heavily and effectively in the NLS/Augment system, 

although in ways that are not always directly relevant to NoteCards and its cohorts. 

Issue 3: Virtual structures for dealing with changing information 

NoteCards requires its users to segment their ideas into individual 'nuggets' to be stored away, one 

per card. Each of these cards then needs to be assigned a title and filed in at least one filebox. 

Empirical observations [Mont86b] have shown that these three seemingly trivial tasks pose signifi

cant problems for many users. In particular, a user in the very early stages of working with a 

particular set of information may not sufficiently understand the content and structure of that 

information. Knowledge about the critical dimensions of the idea space, the characteristics which 

distinguish one idea from another, and appropriate naming schemes develops over time as the 

user becomes familiar with her information. The problem arises because the segmentation, titling, 

and filing tasks all require the user to have such knowledge 'up-front'. As the user's knowledge 

of the information space evolves, previous organizational commitments (e.g., titles and filing cate

gories) become obsolete. 

Experienced NoteCards users get around this problem by adopting various strategies to delay the 

segmentation, titling, and filing of information. To avoid premature segmentation, these users will 

place the entire idea stream in a single text card. They will go back and review the entire stream 

before segmenting into separate cards. To avoid premature filing, experienced users file all cards 

6:. a single filebox and then use a sketch card in order to organize the cards. In this sketch card, 

they organize links (used as representatives of the target cards) into piles based on some judgment 

of similarity or 'belongingness' . These piles can be easily shifted or rearranged when new infor

mation comes in. When the piles are stable, they can be transferred into a filebox structure. 

In a sense, NoteCards encourages its users towards premature organization of their information. 

This occurs because users' conceptual structures have a tendency to change faster than their 

corresponding NoteCards structures. The result is that the NoteCards structures are often obso

lete with respect to the user's current thinking. To some extent, this situation is unavoidable 

because it will always be easier, quicker, and less tedious to change one's internal conceptual 

structures than it will be to update the external representations of these conceptual structures. 

The pressure towards premature organization also refiects limitations in the NoteCards user inter

face. Relaxation of the strict titling and filing requirements is an often requested NoteCards 

'enhancement' that would certainly help minimize this pressure. Providing less-stringent organ

izational structures such as the similarity piles described above would also provide a more natural 

environment for some organizational tasks. Increasing the ease by which structures could be 

modified (e.g., improving browser-based editing) would make it easier for users to track their 

changing internal structures. 

At a more fundamental level, however, users experience difficulty in coping with change because 

the basic hypermedia model in NoteCards is inherently fragmentary and static. By definition 

hypermedia imposes a structure in which information is encoded into a collection of more or less 

independent nodes interconnected into a static (although changeable) network. This encoding is 

static because the segmentation and linking is represented directly in the data structure. The 

November 1987 Hypertext '87 Papers 357 



encoding can be changed only by altering the data structure, i.e., by altering one static encoding 

to make a new static encoding. 

The static nature of hypermedia networks could be largely eliminated (when appropriate) by 

including in the hypermedia model a notion of virtual or dynamically-determined structures. In 

the current model, nodes and links are extensionally defined, i.e., nodes and links are defined by 

specifying the exact identity of their components. In contrast, virtual structures would be defined 

intensionally, i.e., by specifying a description of their components. The exact subcomponents of 

a virtual structure are determined by a query/search procedure whenever the structure is accessed 

or instantiated. For example, a possible virtual composite node might be defined by a specifica

tion of the form: a sub-network containing all nodes created by someone other than me in the last 
3 days. Each time this composite was accessed, its structure and content would be recomputed. 

The notion of virtual structures for hypermedia is a direct adaptation of the concept of views 

(a.k.a. virtual tables) in the world of relational database systems (e.g., [Date81]). In the rela
tional database world, a view is a table constructed at instantiation time by applying a stored view 

definition to data explicitly stored in base (or non-view) tables. From a user's perspective, a 

view-based table is nearly identical to a base table. All the same operations apply, including 

updates. Although virtual structures in a hypermedia network would be significantly more com

plex than the views in a relational database, the same principle of non-differentiation at the 

interface should apply. Any operation possible on a base hypermedia entity should apply as well 

to virtual structures. 

The notion of virtual structures in hypermedia would be possible only in a system that supported a 

substantial search/query mechanism over the hypermedia network. The definition of the compo

nents in virtual structures are in fact queries. Instantiating a virtual structure involves satisfying 

these queries and constructing a dynamic entity from the results. Although it is not a strict re

quirement, it would make sense if the 'query' language used for virtual structure descriptions was 

the same as the basic query language. 

Virtual structures are a particularly powerful mechanism when combined with the notion of com
posites. A virtual composite allows the user to create nodes that are dynamically constructed at 

access time from other nodes, links, and composites that are stored in the network. Such virtual 

composites are true hypermedia entities and not simply a display of results from a query. Thus, 

the user can add links, properties or additional static descriptions to a virtual composite. Brow

sers, for example, could be implemented as virtual composites built from the results of a structure 

query. 

The notion of virtual links in a hypermedia structure has already been explored in ZOG 

[Robe81]. ZOG includes a small set of navigational links that are constructed whenever a node is 

accessed and displayed. These links connect the displayed node to nodes that the user has 

recently visited, thereby allowing the user to move quickly back from whence she came. In future 

systems, the notion of virtual (or computed) links will extend to non-navigational situations as 

well. Rather than linking to a specific node, the user will have the capability to link, for example, 

to the most recently created node containing the string 'hypertext'. 

358 Hypertext '87 Papers November 1987 



Implementing virtual nodes, links, and composites will be a difficult problem for the next genera

tion of hypermedia systems, especially when response time is a important factor. Nevertheless. 

virtual structures will provide these systems with an ability to adapt to changing information in a 

way that is simply not possible with the current static hypermedia model. Although virtual struc
tures will not replace static structures (since not every relation can be described by a query), they 

will be critical components of future hypermedia networks. 

Issue 4: Computation in (over) hypermedia networks 

NoteCards is basically a passive storage and retrieval system. It provides tools for users to define, 

store, and manipulate a hypermedia network. In service of this goal, it does some processing of 

the network and the information it contains. For example, browsers involve computing the transi
tive closure defined by a root node and a set of links types. The system, however, does not 

actively direct the creation or modification of the network or the information contained therein. 

Unlike an expert system, for example, NoteCards does not include an inference engine that ac

tively processes the network in order to derive new information. 

Although the basic system is relatively passive, NoteCards is frequently augmented by more active 

computational engines for a particular application or task domain. In one case, for example, 

NoteCards was augmented to function as the delivery vehicle for computer-assisted instruction 
[Russ87]. In this case, the applications developers implemented a driver that retrieved from the 

network and interpreted special 'script' cards. These script cards orchestrated the display of 
other cards containing instructional and test material. Students were expected to answer the test 

material and their answers were stored in the appropriate cards in the network. ·The driver then 

used these answers together with the instructions in the script cards to determine what material to 

display next. In a more advanced version of this system, the driver was a rule-based system that 

examined a number of cards in the network, including the cards containing the student's previous 

answers, in order to determine the what material to present. 

In the foregoing example there is a clear separation between NoteCards per se and the computa

tional engine embodied in the driver. The computational engine is not integrated into NoteCards. 

Rather it serves to consume and produce cards and links through the programmer's interface in 

much the same sense that a (human) user of the system consumes and produces cards and links 

through the user interface. Aside from the programmatic access to information in the network, 

NoteCards contains no special support for computational engines of this sort. 

NoteCards does provide some haphazard support for integrating event-driven computations into 

the system. In panicular, a (programming) user can create new classes of nodes whose methods 

carry out some auxiliary computation whenever an instance of the class is created, accessed, or 

modified. An example is the Query card, which performs a query on an external database to 

refresh its contents whenever it is brought up for display. While this ability to embed auxiliary 

computations in the methods of a card class is useful, it is limited in a number of ways. First, 

since links are not first class objects in NoteCards, it is not possible to trigger computations during 

the access or modification of links. Second, triggers are defined at the class level with no general 

support for triggering computations attached to specific node instances. Third, computation trig-

November 1987 Hypertext '87 Papers 359 



gered inside an access method cannot generally access the full functionality of NoteCards. Be

cause of these limitations, relatively few users have implemented event-driven computations 

within NoteCards. 

It is unclear whether the level support that NoteCards provides for computational engines is ap

propriate for future hypermedia systems. Designers of such systems could follow the NoteCards 

model and continue to support computational engines as separable external entities that create, 

access, and modify information via the standard programmatic interface. Alternatively, one could 

design a hypermedia system incorporating a more active computational component that automati

cally processes (e.g., make inferences from) the information stored in the network. In this case, 
the hypermedia system would function more like an expert system, both storing information and 

actively processing that information. 

To a great extent the choice between a passive and an active hypermedia system is an efficiency 
versus generality trade-off. The ultimate functionality for the approaches is approximately the 

same. However, the distribution of responsibility and effort is different. Computation built into 

the hypermedia system it is likely to be more efficient, especially when that computation involves 

extensive access to information in the network. In contrast, an external computational engine is 

less restricted because no commitment to a particular computational engine needs to be made 

when the system is implemented. Thus, the choice between an active and a passive hypermedia 

system will be determined largely by the intended applications and the performance needs of 
these applications. 

Both the internal and external computation models will involve <iliallenging design issues. For 

systems that support an external engine, the triggers and hooks provided for this engine will have 

to be carefully chosen. Hooks need to be provided at both the instance and the class levels for all 

entities in the network (i.e., nodes, links, compositions, storage compartments, etc). Triggers 

should also be provided for particular events (rather than entities) to make it easier to implement 

event-driven systems. In addition, the system might provide some basic data structures that make 

it easy for an external computational engine to store temporary state information associated with 

entities in the network. For example, a cycle-detection engine might need to store markers on 

nodes it has visited. Handling these markers inside the hypermedia system might result in effi

ciency gains. 

The design issues for the internal computation model are significantly broader and less crisp. 

Most importantly, the nature of the hypermedia computational engine needs to be determined. 

One possibility is a rule-based system in which the rules specify patterns in the network (akin to 

structure queries) and produce new network structures or modify existing structures. The rule 

interpreter for such a system could run continuously and asynchronously or it could be triggered 

by storage and retrieval events occurring in the hypermedia network. Other computational en

gines are also possible (e.g., truth-maintenance engines). The choice of an appropriate engine 

depends on the intended application and on the degree to which the concepts inherent in the 

computational engine can be integrated with the concepts inherent to hypermedia systems. 

360 Hypertext '87 Papers November 1987 



Issue 5: Versioning 

NoteCards has no versioning mechanism. Each card and link exists in oniy one version and is 

altered in place when modified. As a result, the range of applications that can be easily supported 

in NoteCards is severely limited. For example, NoteCards has never been used for maintaining 
software due, in part, to the overwhelming importance of versioning in configuration manage
ment. The lack of versioning has had a lesser impact on the authoring, argumentation, and idea 

processing tasks for which NoteCards was originally designed. Although users in these applica

tions frequently request versioning support, they have been able to make significant progress in its 

absence. 

NoteCards lags behind its cohort systems in the versioning arena. Both Neptune and Intermedia 
provide some versioning support. Neptune, for example, provides a time-based linear version 

thread for individual nodes and links. The system also provides a panitioning scheme called 

'contexts' [Deli86b] that allows users to begin a independent version thread for a given set of 
nodes. Intermedia, like NoteCards, keeps only a single version of each node. Intermedia, does 

however, have a notion of alternative named versions of the 'web', i.e., the set of links that 

interconnect a collection of documents. This allows each user, project, or application to work 

with its own network structure over a common set of document nodes. 

PIE [Gold84] included a more extensive versioning mechanism than either Neptune or Inter

media. In the PIE model, versioning in a hypermedia network occurs at two levels: the level of 

individual entities (nodes, links, composites) and the level of changes to the hypermedia network 

considered as a whole. At the lower level, each entity has its own version history. In PIE the 

version history was a linear thread, but in the general case it could be an arbitrary version graph. 

Although the issue was not specifically addressed in PIE, it is important to provide (virtual) enti

ties corresponding to both specific versions of an entity and the differences (deltas) between 

successive versions. Both the versions and the deltas should be addressable within the system, 

i.e., be possible hits for a search. For example, in a software engineering context it should be 

possible to search for either the version that implements Feature X or the set of changes that 

implements Feature X. One possibility would be to treat the deltas between successive versions as 

special hypermedia nodes capable of being annotated and referenced. 

Providing a branched version history for all entities in a hypermedia network raises some very 

difficult issues regarding the semantics of references between entities. In particular, a reference to 

an entity may refer to a specific version of that entity, the newest version of that entity, to the 

newest version of that entity along a specific branch of the version graph, or to the (latest) version 

of the entity that matches some panicular description (i.e., query). Which of these reference 

types is supported is a decision that affects the entire hypermedia system, but it is an especially 

critical decision in the design of links and composites. Moreover, composites raise the related 

. problem of propagating version changes from subcomponents to their composites. For example, a 

(significant) change in an individual software module implies the creation of a new version of the 

system of which that module is a part. In contrast, updating the spelling of a few words in a 

paragraph may not require the creation of a new version of the document(s) containing that 

paragraph. 

November 1987 Hypertext '87 Papers 361 



Maintenance of a version tree for individual entities, however, is not sufficient support. In gen
eral, users will make coordinated changes to a number of entities in the network at one time. For 

example, a software developer may implement a new featute by making coordinated changes to a 

number of separate modules. The developer may then want to collect the resultant individual 
versions into a single 'version set' for future reference. This set would be a snapshot of the 
collection of entities at some particular point in time, what in the software domain is often called a 

'release'. 

An alternative to version sets, is the 'layer' mechanism used in PIE. A layer is a coordinated set 

of changes to one or more entities in the network. For example, all of the changes made to 

various modules in a software system could be collected into a single layer described as the 

changes that implement Feature X. The resulting layer could then be applied to the pre-change 

versions of the entities to get the post-change versions. 

In a layer-based system, the primary issue is the mechanisms available for managing and for 

composing layers. In PIE, there were constructs called 'contexts' that were essentially sequences 

of layers. The hypermedia network for a given context was determined by applying the first layer 

to the base network and then applying the next layer to the result and so on through the sequence 

of layers in the context. New contexts could be created by mixing and matching the layers from 

other contexts and then producing a hypermedia network by successive applications of the layers 

in the context. However, not all such constructions made semantic sense. PIE aided the user in 

determining which contexts were sensible and which weren't. 

One important application of the notion of contexts is to provide a collaborative system (see Issue 

6) in which each user maintains a private context through which she interacts with the hypermedia 

network. Each user's context contains a base layer that is the public hypermedia network. On 

top of this base are one or more personal layers which alter the base network to provide a person

alized view. At any time a user can make her view public by applying the layers in her view to the 

layers in the base system (and informing her collaborators to use this new base network in their 

contexts). 

Although the PIE versioning scheme is not perfect, it is richer and more complete than those 

. provided by most hypermedia systems. One of the design issues facing the next generation of 

systems is how to improve the level of versioning support in hypermedia networks. The PIE model 

seems like an appropriate place to start in resolving this issue. 

Issue 6: Support for collaborative work 

In its original design, NoteCards focused almost exclusively on supporting individuals working 

alone on idea processing and information management tasks. Collaboraticn was seen as occurring 

outside of the NoteCards environment, e.g., through face-to-face conversations, electronic mail, 

or hardcopy documents. In practice, however, this has rarely been the case. Most idea process

ing and information management tasks are inherently collaborative, with groups of varying from 

two to ten people working on a common topic or project. 

362 Hypertext '87 Papers November 1987 



The problems and prospects surrounding support for collaborative work in NoteCards have been 

discussed in detail by Trigg, Suchman, and Halasz [Trig86) and hence will not be described here. 

It is important to note, however, that support for collaborative work remains a critical issue for the 

next generation of hypermedia systems. Although many existing systems have provided for the 

mechanics of multi-user access to a hypermedia network, none has adequately addressed the 

issue of support for the social interactions involved collaboratively sharing a hypermedia network. 

The challenge for the next generation of hypermedia systems is to provide adequate support for 

these social processes. This support should include system-level features such as the automatic 

maintenance of change histories, the tracking of individual contributions to the network, and 

mechanisms for enforcing collaborative conventions. It should also include a 'rhetoric of hyper

media' that provides guidelines or conventions for creating hypermedia networks that will be 

useable or understandable by others who share the 'rhetoric'. Interestingly, the development of 

these conventions is a crucial issue that can only be solved by accumulated experience in using 

hypermedia systems in real-world tasks. 

Issue 7: Extensibility and tailorability 

NoteCards was designed to be an extensible system. The expectation was that users would tailor 

the generic functionality of NoteCards to better match the requirements of their application and 

their preferred interaction style. The major mechanism provided for this purpose was the 

NoteCards programmer's interface. In practice, the programmer's interface has been very suc

cessful. A number of tailored systems, both major and minor, have been built on top of 

NoteCards using this interface [Hala87]. Trigg, Moran, and Halasz [Trig87] contains a lengthy 

discussion of tailorability. in NoteCards, including examples of its use, problems with it implemen

tation, and prospects for it improvement. Therefore, no further discussion of these issues will be 

included here. 

However, one of the issues raised by Trigg et al. represents a critical challenge for future hyper

media systems. NoteCards was designed to make tailorabi!ity available to the entire range of 

users from non-programmer's to experienced system builders. The goal was to build tailoring 

mechanisms having the characteristic that small changes to the system could be accomplished with 

a small amount of work by users without extensive knowledge of programming and the system's 

implementation. This design goal was simply not met. Tailoring NoteCards remains a non-trivial 

programming task that requires some degree of expertise. This appears to be case for other 

hypermedia systems as well. The challenge, then, for the next generation of hypermedia systems 

is to discover how to enhance the 'small' tailorability of hypermedia systems, i.e., how to make it 

easy for the typical (non-programming) user to extend the system to match her task requirements 

or interaction style. 

CONCLUDING REMARKS 

Hypermedia has suddenly become quite popular. There is something alluring about the concept 

of navigating through an information network following links from node to node until you find 

something of interest. But as the current crop of hypermedia systems move into more widespread 

use, their limitations will become quite evident to serious users. The simple node and link model 

November 1987 Hypertext '87 Papers 363 



is just not rich and complete enough to support the information representation, management, and 

presentation tasks that these users will want to accomplish using their hypermedia system. This 

has been the experience with NoteCards over the last three years and there is no reason to believe 

that other systems will fare significantly better. The seven issues presented in this paper are an 

attempt to move the hypermedia model beyond simple nodes and links to a model that will better 

suit the needs and preferences of these users. In this sense, these seven issues represent an 

agenda for the next generation of hypermedia systems. 

REFERENCES 

[Date81] Date, C.J. An Introduction to Database Systems Vol. 1. Reading, 

MA:Addison-Wesley, 1981. 

[Deli86a] Delisle, N. & Schwartz, M. Neptune: a hypertext system for CAD applications. 

Proceedings of ACM SIGMOD '86, Washington, D.C., May 28-30, 1986, 132-142. 

[Deli86b] Delisle, N. & Schwartz, M. Contexts - a partitioning concept for hypertext. 
Proceedings of the Conference on Computer-Supported Cooperative Work, Austin, TX, 

December 3-5, 1986, 147-153. 

[Engl68] Englehart, D.C. & English, W. A research center for augmenting human intellect. 

Proceeding~ of 1968 FJCC, 33, Part 1, Montvale, N.J.:AFIPS Press, 1968, 395-410. 

[Fair87] Fairchild, K. F., Poltrock, S. E., & Furnas, G. W. SemNet: Three-dimensional 

graphic representations of large knowledge bases In R. Guindon (Ed.) Cognitive Science 
and its Applications for Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum 

Associates, in press. 

[Furn86] Furnas, G.W. Generalized fish-eye views. Proceedings of the 1986 ACM Conference 
of Human Factors in Computing Systems (CHI '86), Boston, MA, April 13-17, 1986, 

16-23. 

[Garg87] Garg, P.K. & Scacchi, W. A hypertext system to manage software life cycle 

documents. Paper submitted to the 21st Hawaii International Conference on Systems, 

1987. 

[Garr86a] Garrett, L. N. & Smith, K.E. Building a time-line editor from pre-fab parts: The 

architecture of an object-oriented application. Proceedings of the Conference on 
Object-oriented Programming Systems, Languages, and Applications (OOPSLA '86), 
Portiand, OR, September 29 - October 2, 1986, 202-213. 

[Garr86b] Garrett, L. N., Smith, K.E., & Myrowitz, N. lntermedia: Issues, strategies, and 

tactics in the design of a hypermedia document system. Proceedings of the Conference on 

Computer-Supported Cooperative Work, Austin, TX, December 3-5, 1986, 163-174. 

[Gold84] Goldstein, I & Bobrow, D A layered approach to software design. In D. Barstow, H. 

Shrobe, & E. Sandewall (Eds.) Interactive Programming Environments. McGraw-Hill: 

1987, pp 387-413. 

[Guid86] Guide Users Manual. Owl International, Inc. , Bellevue, WA., 1986. 

364 Hypertext '87 Papers November 1987 



[Hala87) Halasz, F.G., Moran, T.P., & Trigg, R.H. NoteCards in a Nutshell. Proceedings of 
the 1987 ACM Conference of Human Factors in Computer Systems (CHI+Gl '87), 

Toronto, Ontario, April 5-9, 1987, 45-52. 

[Lamb86) Lambert, S. & Ropiequet, S (Eds) The New Papyrus. Redmond, WA: Microsoft 

Press, 1986. 

[Lowe86] Lowe, D. SYNVIEW: The design of a system for cooperative structuring of 

information. Proceedings of the Conference on Computer-Supported Cooperative Work, 
Austin, TX, December 3-5, 1986, 376-386. 

[Meyr86] Meyrowitz, N. Intermedia: The architecture and construction of an object-oriented 

hypermedia system and applications framework. Proceedings of the Conference on 

Object-oriented Programming Systems, Languages, and Applications (OOPSLA '86), 

Portland, OR, September 29 - October 2, 1986, 186-201. 

[Mont86a] Monty, M.L. & Moran, T.P. A longitudinal study of authoring using NoteCards. 

ACM SIGCHI Bulletin, Vol. 18 No. 2, October 1986, 59-60. 

[Mont86b] Monty, M.L. Temporal context and memory for notes stored in the computer. 

ACM SIGCHI Bulletin, Vol. 18 No. 2, October 1986, 50-51. 

[Nels81] Nelson, T.H., Literary Machines, T.H. Nelson, Swarthmore, PA., 1981. 

[Robe81) Robertson, G, McCracken, D., & Newell, A. The ZOG approach to man-machine 

communication. Int. J. of Man-Machine Studies, 14, 1981, 461-488. 

[Russ87) Russell, D.M., Moran, T.P., & Jordan, D.S. The instructional design environment. 

Xerox PARC working paper, April 1987. 

[Shne87) Shneiderman, B. User interface design and evaluation for an electronic encyclopedia. 
Technical report CS-TR-1819, Dept. of Computer Science, University of Maryland, 

College Park, MD, March, 1987. 

[Smit86) Smith, J.B., Weiss, S.F., Ferguson, G.J., Bolter, J.D., Lansman, M., & Bea, D.V. 

WE: A writing environment for professionals. Technical report 86-025, Dept. of 

Computer Science, University of North Carolina, Chapel Hill, N.C., August, 1986. 

[Trig83) Trigg, R. A Network-based Approach to Text Handling for the Online Scientific 
Community. PhD thesis, Dept. of Computer Science, University of Maryland, November, 

1983. 

[Trig86) Trigg, R., Suchman, L. and Halasz, F. Supporting collaboration in NoteCards. 

Proceedings of the Conference on Computer-Supported Cooperative Work, Austin, TX, 

December 3-5, 1986, 147-153. 

[Trig87) Trigg, R.H., Moran, T.P., & Halasz, F.G. Tailorability in NoteCards. Paper to be 

presented at Interact '87, Stuttgart, West Germany, August, 1987. 

[VanLSS] VanLehn, K Theory reform caused by an argumentation tool. Xerox Palo Alto 

Research Center Technical Report, ISL-11, 1985. 

November 1987 Hypertext '87 Papers 365 



366 Hypertext '87 Papers November 1987 



DEVELOPING AND DISTRIBUTING 
HYPERTEXTTOOLS: LEGAL 
INPUTS AND PARAMETERS 

Henry W. (Hank) Jones, Ill, Esq. 

Morris, Manning & Martin, Corporateffechnology Group 
Suite 1600, East Tower, Atlanta Financial Center 
3333 Peachtree Road, Atlanta, Georgia 30326 
( 404) 233-4220 

ABSTRACT 

To realize the promise of hypertext, researchers and developers must understand how their work 
is impacted by copyright, products liability, and other sets of legal rules. Certain key legal 
problems, and corresponding possible solutions, are analyzed. 

I. INTRODUCTION 

"First thing we do, let's kill all the lawyers". -William Shakespeare 

The attention of most system designers, programmers, and computer scientists who are involved in research 
or product development activities relating to hypertext usually is focused on the functionality, human 
factors, commercialization, and other aspects of this contemplated new technology. 

Many professionals in the computing and information environments approach the identification and 
handling of legal issues as a later-stage project activity. At first view, this assumption might seem well
founded: patent applications, copyright registrations, and distribution' contracts occur only at the end of 
their activities, in the course of product fmalization and commercialization. 

This article suggests that if the promise of hypertext actually is to be realized and disseminated to users, 
then early-stage identification of legal issues and compliance with legal obligations will be necessary. 

This article also identifies primary legal pitfalls and related solutions that researchers, companies, and 
consultants should recognize in order to increase the odds of success in their activities. 

II. PROPRIETARY RIGHTS CONSIDERATIONS 

"To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and 
Inventors the exclusive Right to their respective Writings and Discoveries".-1787-U.S. Constitution, 
Art. /, sec. 8 

"[S]cientific discoveries and technological developments have made possible new forms of creative 
expression that never existed before. , . . Authors are continually finding new ways of expressing 

November 1987 Hypertext '87 Papers 367 



themselves, but it is impossible to foresee the fonns that these new expressive methods will take" .-1976-
House of Representatives Report94-1706, p. 51 (legislative history of 1976 Copyright Act) 

Many researchers and programmers approach hypertext activities largely as an opportunity to provide a new 
tool for information management, education, and other purposes to computer users, researchers, and the 
public at large. 

On the other hand, marketing executives, corporations, and other entities see hypertext as a new technology 
offering significant potential profits. · 

Regardless of one's goals and perspective--inventor or investor-recognition of the ownership rights that 
may exist in hypertext products, processes, and research is essential to understanding the environment in 
which research and product development activities are funded and managed. 

A discussion of some of the key intellectual property law considerations impacting hypertext is set forth 
below. 

A. Copyright Law Questions 

1. Background. The concept of "copyright" as a protectable economic interest-that is, as property-is 
linked with the era of Gutenberg, when the results of an author's labors were tangible, and physically 
separate from other authors' creative works. 

The 1909 U.S. Copyright Act retained the assumption of discreet creative works, designed and created by 
the initial author (or painter, composer, playwright, etc.), and thereafter experienced by the public in a 
manner determined by that initial creator. 

The development of videodiscs, computer programs, on-line electronic databases, satellite broadcasting, and 
other technologies that did not exist in the early twentieth century led to a complete overhaul of American 
copyright law in the mid-1970's. The 1976 Copyright Act, which became effective on January 1, 1978, 
specifies new "operating procedures" which regulate rights and obligations in software, user manuals, data 
bases, and other creative expression. 

The importance of copyright law to the development of hypertext tools is underscored by the fact that this 
portion of federal law regulates no~ merely the right to reproduce a work (e.g., to "copy"). In fact, a 
copyright is a bundle of five distinct, severable rights. The other four are the right to adapt or modify a 
work (i.e., to create a "derivative work"), and the rights to publicly distribute copies of a work, to display it 
(e.g., on a computer terminal), or to perform it. 

The ongoing development of new information technologies has tested the design and "coding" of this mid-
1970's legislation [0ffi86]. As researchers and companies-in software, electronic publishing, CD-ROM 
media [Jone87d], image scanners, desktop publishing [Divo87], and other information-related fields have 
learned, identifying ~d managing copyright considerations can be essential to reaping expected rewards for 
their efforts, and to avoiding disputes and disappointed expectations. [Jone87c]. 

Particularly important copyright issues in the hypertext field include: 

2. Where Will "Look and Feel" Stop (or Where Does The Code Stop And The 
"Structure, System and Organization" Start)? Copyright law only protects the author's 
"expression", but not any idea, procedure, innovation, or system. 

The five exclusive rights provided to a copyright owner under the 1976 Copyright Act do not necessarily 
constitute a broad assurance of a return on the investment of time, talent, and creativity by programmers and 
system designers. Rather, copyright law only precludes third parties from exercising one of the five 

368 Hypertext '87 Papers November 1987 



exclusive rights (i.e., reproducing, modifying, publicly distributing, publicly performing or publicly 
displaying a work) without the author's prior permission (unless the "fair use" defense is applicable; see 
below). 

Developers of videogame software [Jone83], application software with special "human interface" 
characteristics, and other information technology developers have learned that the copyright statute is not a 
clear-cut arbiter of what innovations may be freely shared within society. 

Recent litigation regarding the susceptibility to copyright protection of a software product's "look and feel'', 
and of the pagination and abstracting attributes of the Westlaw print and on-line data systems, evidences the 
lack of a concensus regarding the proper scope of copyright protection. As reported by many industry, 
computer, and software trade magazines, a number of major corporations have f'lled copyright lawsuits 
against competitors who have mimicked the screen displays of their products. Some commentators have 
suggested that lawsuits filed by Lotus Development Corporation, Digital Communications Associates, 
Inc., West Publishing Company, Broderbund Software, Inc., CADAM, Inc., and other companies may 
impair the development of new technologies, new user interfaces, and new products, and may increase 
artificially the cost of user training. 

Hypertext researchers should strive to avoid a "look and feel" dispute. Judges and juries face a heady 
"learning curve" when attempting not only to fit new information technologies within rules and categories 
established for older information media by prior legislative designs and court rulings, but also to understand 
the technology at issue. Moreover, a recent federal appellate court ruling, involving a competitive software 
product for dental laboratories written by the plaintiffs ex-employees in a different programming language 
for a different computer, has resulted in a ruling that the protected "expression" of a computer program 
includes not merely the actual code, but also the product's "structure, system and organization". [Jone & 
Dailey 86, 87a, and 87b]. 

Due to the rapid developments in this area of" computer law", product managers and attorneys must monitor 
the evolution of this issue (including progress in the Lotus lawsuits, and any results of the September · 
9d0, 1987 Copyright Office hearings on this subject). 

Moreover, companies seeking to develop and protect what they believe to be proprietary interfaces must 
take active steps to identify and retain the proprietary aspects of their developments, including maintaining 
archival records of their creative efforts, using separate copyright notices for screens, and possibly seeking 
separate copyright registrations. 

3. Where Does Hypertext "Fit"? The Copyright Act's definitions, current Copyright Office 
regulations, current copyright registration forms, and other elements of copyright protection are rule-based; 
they operate based on particular categories of creative expression. 

"Computer program", "compilation" (e.g., a database), and "collective work" (e.g., a set of data bases, or a 
collection of application products) are defmed terms, for which attorneys, businesspeople, and judges can 
evaluate, explain, and provide guidelines. 

Hypertext developers must expect to undergo the same inconveniences as developers of fum ware, compact 
discs, and other new information technologies have faced. 

4. Can The User Be An "Author"? Both hypertext and expert systems may trigger the necessity to 
grapple with an old conundrum that "computer law" practitioners have identified for many years: whether 
the original programmer of a software tool, or the user of the product, is the "author", and hence the 
copyright owner, of the creative material generated by the use of that tool. 

This issue initially was encountered by federal judges in the early 1980's, as litigation asserting 
infringement of copyrights in videogame software worked its way through the courts. The defendants in 
these cases often were accused of counterfeiting or "cloning" the ROM chips on which game-playing 

November 1987 Hypertext '87 Papers 369 



software was stored. The defendants in this novel copyright litigation argued that the screen output in those 
games was "created" by the strategic decisions, hand movements, and creativity of the game player, rather 
than the companies and individuals who created the software. Fortunately for the companies developing and 
marketing such products, the courts unifonnly held that the user was not an author for copyright law 
purposes; the parameters of the user's activities had been controlled by the initial design and coding by the 
plamtiff comparties' programmers. [Jone83]. 

Given the increased sophistication, features, and flexibility of current and contemplated hypertext tools, and 
in view of a user's creative flexibility in selecting, culling, and merging sets of information through 
searches and other information processing activities, the reproduction of these earlier court results cannot be 
assured. 

5. Will The "Fair Use" Doctrine Prevent The Stilling Of Research and Competition? 
Despite the perhaps threatening idea of federal court litigation, Copyright Office filings, and the 

involvement of lawyers, the 1976 Copyright Act does contain one element that may minimize any possible 
impediment to progress. 

The "fair use" rule is a "safe harbor" from liability for acts which otherwise would constitute copyright 
infringement Noting the societal, cultural, and academic importance of many copyrightable works, the 
U.S. Congress, in drafting the 1976 Copyright Act, endorsed the body of judge-made (i.e., "common law") 
exceptions to liability that had been enunciated under the 1909 Copyright Act The current copyright 
statute permits a judge to withhold liability, despite a company's or individual's acts in violation of a 
copyright owner's rights, acconling to the following formula: 

Notwithstanding the provisions of section 106 (which specifies the five rights of a copyright owner], the 
fair use of a copyrighted work, ... for purposes such as criticism, comment, news reporting, teaching 
(including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright 
In determining whether the use made of a work in any particular case is a fair use the factors to be 
considered shall include: 

(1) the purpose and character of the use, including whether such use is of a commercial nature or is for 
nonprofit educational purposes; 
(2) the nature of the copyrighted work; 
(3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and 
(4) the effect of the use upon the potential market for or value of the copyrighted work. 

However, it is important to note that the perspective of many researchers regarding proper delineation of the 
"public interest", as opposed to private intellectual property rights, may not be shared by the particular 
federal judge who hears the litigation arising from hypertext activities. Moreover, under the U.S. legal 
systems, a judge is required to follow prior court rulings ("res judicata"), which serve as the "operating 
system" for the maintenance and further defmition of the law. In particular, research activities targeted at 
product commercialization may have significantly reduced changes for legal immunity through the "fair use" 
doctrine. 

The moral: if you plan to reproduce, modify or display the code, properietary structure and design, or 
documentation of another developer, you may need a written license agreement. In any event, early 
discussion and coordination with copyright counsel, based on a specific review of both your planned 
activities and the materials originally created by third parties, can help identify your obligations and rights. 

370 Hypertext '87 Papers November 1987 



6. Who Me, A "Contributory Infringer"? Copyright infringement does not require the specific 
mental intent to violate the copyright law. Unauthorized exercise of any one of the five rights established 
by the copyright statute automatically constitutes infringement (unless "fair use" or one of the other 
specific, narrow statutory privileges absolves the activity). 

A corollary of this principle is that institutions and companies should also avoid indirect copyright 
infringement. 

Vendors of "copy-unlocking" software (i.e., application programs written to defeat "copy-protection" 
systems), videocassette recorders, and other equipment which enables third parties to infringe copyrights, 
have on occasion, been sued for "contributory infringement". Happily, such lawsuits are infrequent. 

Ill. PRODUCT DESIGN AND AVOIDANCE 
OF PRODUCTS LIABILITY 

"Murphy was an optimist". 

"In a network of 1000 nodes, it is easy to imagine that information could become hard to f"md or even 
forgotten altogether" .-A Survey of Hypertext, p. 48 [Conk87] 

Concerns about juries, liabilities, and insurance are not limited to developers and manufacturers of such 
products as pharmaceuticals and automobiles, or such services as neurosurgery and architecture. The 
minimization of products liability exposures - beyond being an obvious objective of most corporations and 
institutions - is a significant current goal of the managers of many information-related companies. 

For example: 

Item: In its recent public offering, Oracle Corporation chose product "bugs" and the bum-in/debugging 
process as the first source of risk to be considered by potential investors-beyond the threats to company 
revenues posed by its competition, financial requirements, and the challenge of cultivating creative talent 

Item: Industry leader Lotus Development Corporation has already been sued for the alleged failure to 
design its Symphony product in a manner that would preclude incorrect use by a customer. In the case of 
James A. Cwnmings, Inc. v. Lotus Development Corporation and International Business Machines, the 
plaintiff construction company allegedly incurred approximately $250,000 in losses from using software in 
a way that was possible (given the product's design), but that contradicted instructions specified in the user 
manual. "Computer law" specialists noted that the lawsuit raised, for the flrst time, the issue of whether 
information technology vendors must design their products so to minimize the risk of harm to users and 
third parties. 

The moral of the story is that technology designers and developers can assist their organizations in 
maintaining company profitability and reputation-in addition to helping novice users avoid difficulties in 
their data processing and management-by adopting "preventive design" techniques. [Jone88] 

For example: 

In sensitive applications, the user's commands and "path" could be trapped and available to the user on 
a real-time basis (e.g., as a "help" function). 

• To assist users in maintaining fragile data, hypertext systems might be "enhanced" by adding a number 
of "preventive" functions-such as automatic interim data saves, two-command data erasure procedures, 

and screen notices reminding system operators to back up their data onto physically separate media and 
to store such media off-site. 

November 1987 Hypertext '87 Papers 371 



• To help protect companies from unfounded claims and lawsuits (an increasing concern with the fast 
growth of "computer litigation"), product designers should keep complete records of the code delivered 
to customers (to be able to prove any later code-modification by users that introduces errors into a 
previously-working system), "update" their contracts to comply with recent court rulings (e.g., the 
September, 1985 RRX Industries, Inc. v. Lab-Con, Inc. case, in which a custom software 
prognunming company was held liable for money damages in excess of their services fees, their 
contract "boilerplate" to the contrary), and "enhance" their contracts by specifying the user's 
responsibilities for proper utilization of the product 

IV. OTHER LEGAL CONCERNS 

"There's many a slip between cup and the lip" .-Old proverb 

The legal problems and partial recommended solutions discussed above are limited to issues that seem most 
likely to confront a large number of researchers, programmers, and companies. However, the legal 
enviroment includes a number of other parameters that should be recognized. 

For example: 

• The rapid evolution of information technology has engendered a number of disputes regarding the 
meaning and impact of computer-related contracts. For example, fierce negotiations and actual 
litigation have been spawned by different interpretations (and varying economic interests) relating to the 
signifiCance of contractual commitments to supply "updates, enhancements and new versions". With 
the advent of "diskless workstations", CD-ROM-stored data bases and application software, and 

372 

other new tools and techniques, the importance of defining contract vocabulary, obligations, and 
expectations has become more important 

Disappointments regarding expected royalties have plagued creative personnel in the movie, book, and 
other industries for years. Should developers of hypertext tools who hand over their hard-wrought 
inventions to others for marketing have concerns about shortfa!ls in royalty payments? 

Absolutely. First, "per~opy" royalty schemes are threatened by advances in local area (and dispersed) 
networks, distributed data processing (including new large~omputer environment distributed 
operating system software), and new data communications protocols (such as IBM's proposed Local 
Unit 6.2 Advanced Peer-to-Peer protocol) that undercut the need for "one copy for each box". [Dyso87] 

Second, the industry is full of business relationships marted by diverging opinions regarding the 
manner and degree that a particular product should have been marketed (resulting, for example, in 
litigation about the impact of contractual or implied "best efforts" marketing obligations). 

Third, recent inteepretions of federal bankruptcy law threaten the basis of many technology licensing 
arrangements, as the trustee appointed for a company in reorganization proceedings may have the power 
to unilaterally reject prior contractual commitments. 

As Data General Corporation, Apple Computer, Inc., and other companies have learned, "antitrust and 
trade regulation" law is not a concern solely for back-room, cigar~homping monopolists of the 
industrial era. Rather, current court rulings, federal legislation, administrative standards, and state 
codes regulate advertising content, product pricing, distribution practices, and even product design. For 
example, in' certain circumstances, product "bundling" may contravene federal rules against "tying" two 
products together. Apple successfully defended its policy of prohibiting mail-order dealers, but only at 
the cost of protracted, expensive litigation, and Data General has paid out over $50,000,000 to date to 
settle litigation arising from their refusing third parties access to the interface specifications for the 
operating system for a new minicomputer. 

Hypertext '87 Papers November 1987 



• Some foreign countries eager to develop their national economies have seized upon development of the 
indigenous computer industry as a strategy for creating a stronger economic base. As a technique to 
accelerate the computer industry, a number of Latin American countries have implemented "technology 
transfer'' regimes, which limit the conditions under which software, hardware, and other information 

· technologies may be imported-and how long ownership rights and contractual agreements will be 
honored after such importation. Electing to market your product in Brazil, Venezuela, Columbia, or 
other countries may fmfeit your proprietary rights, on a world-wide basis, five years after entering that 
particular marketplace. 

V. CONCLUSION 

"Those who do not understand are doomed to repeat it".-Winston Churchill 

Copyright © 1987 Henry W. Jones, ill, Esq., Atlanta, GA. USA. All rights reserved. This article is 
provided solely for educational purposes, and only represents the author's current personal opinions, which 
should not necessarily be attributed to his clients or his firm. The author serves as a Columnist for CD
ROM Review and International Computer Law Advisor, and is a member of the Board of Editors of The 
Computer Lawyer and Software Protection. His Atlanta-based law fmn represents software, on-line 
publishing, optical storage, hardware, data communications, and other computer-related companies. 

REFERENCES 

[Conk87] 

[Divo87] 

[Dyso87] 

[Jone83] 

[Jone87a] 

[Jone87b] 

[Jone87c] 

November 1987 

Conklin, Jeff, "A Survey of{Iypertext," Microelectronics and Computer Technology 
Corporation Software Technology Program Technical Report S1P-356-86, Rev. 1, 
Austin, TX, February, 1987. 

Divoky, Diane, "Image Copyright: Are You Breaking the Law?," Publish!, August, 
1987. 

Dyson, Esther, "Text Tools: The Joy of Linking," Release 1.0, EDventure Holdings 
Inc, New York, NY, September, 1987. 

Jones, Henry W., III, "The Idea of Games, the Expression of Aliens, and the 
Underlying Computer Software: The 1976 Copyright Act and Videogarne Litigation," 
Protecting Computer Software and Games, Practicing Law Institute, November 1983 and 
1 Journal of Copyright, Entertainment and Sports Law 17, Tennessee Bar Association, 
Nashville, TN, May, 1983. 

Jones, Henry W., ill, "Preventive Law Steps for High Technology Companies: 
Maintaining Your Firm's Profitability and Viability by Pro-Active 1.egal Risk 
Management'," St Paul Fire and Marine Insurance Comapny High Technology Risk 
Management Symposium, Atlanta, GA, February, 1987 (available from author). 

Jones, Henry W., III, "Contract Vocabulary: New Industry Focus," Softshare, 
Southeastern Software Association, February, 1987. 

Jones, Henry W., III, "Copyright Protection for Information Products: Current 
Problems-and Solutions," Information Times, Information Industry Association, April, 
1987. 

Hypertext '87 Papers 373 



[Jone87d] Jones, Henry W., III, "Copyrights, Contracts and Other Legal Parameters in 
Designing, Developing, and Distributing CD-ROM Products," CD Data Report, April, 
1987. 

[Jone&Dailey86] Jones, Henry W., III, and Dailey, Michael A., "Software Copyright Debate: Federal Law 
Protects Program Design," Software Publishers Association News, September, 1986. 

[Jone&Dailey87a]Jones, Henry W., III, and Dailey, Michael A., "Whelan Associates, Inc.,v. las/ow Dental 
Laboratory, Inc.: Towards a New Definition of Copyrightable Expression," European 
Intellectual Property Review, Cambridge, U.K., February, 1987. 

[Jone&Dailey87b]Jones, Henry W., III, and Dailey, Michael A., 'Whelan Associates, Inc.,v. Jaslow 

[Offi86] 

374 

Dental Laboratory, Inc.: The Expanding Range of Copyrightable Expression," European 
Intellectual Property Review, Cambridge, U.K., May, 1987. 

Office of Technology Assessment, Congress of the United States, Intellectual Property 
Rights in an Age of Electronics and Information, U.S. Government Printing Office, 
April, 1986. 

Hypertext '87 Papers November 1987 



Software 



Abstraction Mechanisms in Hypertext 

Pankaj K. Garg 
Computer Science Department 
University of Southern California 
Los Angeles, CA 90089-0782 
garg@cse. usc.edu 

ABSTRACT 

Abstraction is the means by which information can be stored and retrieved from an information 

stMJ.ciure at different levels of detail and from different perspectives. As such, abstraction mech-

• anisms in hypertezt are interesting to study and· evaluate. In this paper we study the abstraction 

mechanisms in hypertezt from a theoretical perspective. Abstractions then become 'Various first-order 

logic formulae. Specifically we consider abstractions: sets, sequences, aggregations, generalizations, 

revisions, and information strnctures. Interesting results of this work are the definition of level of 

generality of a hypertezt node, the demonstration of revision histories as a partial order, and the 

notion of compatible-similar nodes. Also defined in this paper is the notion of primitive hypertezts 

~ersus application hypertezts, and the usage of attributes of nodes (illustrated by the use of keywords) 

across 11arious abstractions. An illustration of the concepts is given using the conte~ts mechanism 

suggested by Delisle and Schwartz [DS87}. 

1 INTRODUCTION 

The notion of abstraction has been of considerable value to the fields of progra.mining languages 

(Sha84], databases [AH84,MS82,SS77J and knowledge representation [Bra.85,SFG8.5]. In the case of 

hypertext systems, abstraction mechanisms can be useful for the following reasons: 

1. Information Relevancy: 

As Bush pointed out in his vision of the Memex system [Bus45], ~tering information to 

suit the needs of the user is important for an effective information retrieval system. Filtering 

information in a hypertext can be considered equivalent to defining views in a database or using 

a query language to retrieve information from a database. The utility of the query languages 

in databases can hardly be debated, leading us to the hypothesis that similar mechanisms will 

be fruitful for hypertext. 

2. Structure ofinformation: 

November 1987 Hypertext '87 Papers 375 



376 

This is best illustrated from the research domain where an author/reviewer wishes to look at 

the structure of an article rather than its contents. The use of outlines or table of contents 

demonstrates such a need. Note that this is a concept different from a database schema as 

the schema of a database does not change with the evolution of the database. Also, a schema 

is the structure of multiple information instances while here we are talking of the structure of 

independent information instances. 

3. Collection of Information Units: 

One of the chief uses of a hypertext as espoused by researchers in the field [Con87,Nel81,Tri83] 

is that the readers of the information in a hypertext can impose their own structure on the 

hypertext by selecting appropriate nodes. This idea is similar to the concept of aggregation in 

databases [5577]. Aggregation is the abstraction by which a collection of nodes of the hypertext 

can be collectively referenced by a single name. As pointed out by Smith and Smith [SS71], 

the collection (in aggregation) refers to an abstract real world entity instead of just beh!g an 

arbitrary collection of objects. Arbitrary collection of object~nodes can be represented as sets 

or sequences. 

4. Multiple Streams of Development: 

An important part of hypertext systems is the support that they provide for collaborative 

work [DS86,FS86, Tri83]. Most of the time, different authors of a hypertext will be working 

on different parts of the hypertext and without 'collisions'. Sometimes, however, the authors 

would be working on the same part (of the hypertext). For instance a software module might 

be developed in parallel by two programmers. In such cases it is imperative that provision 

be made for multiple authors to create their nodes and later merge their efforts. Delisle and 

Schwartz [DS86] have proposed a concept of contezts for this end. The concept of layers 

developed by Goldstein and Bobrow [GB84] is also relevant here. 

5. Domain Information rather than the information in a particular Hypertext: 

One area that (to our knowledge) has not been investigated by hypertext researchers is the con

sideration of information of the domain embedded in the hypertext as opposed to an instance 

of the information for the domain. Domain knowledge is of use to the user of the hypertext 

(author or reader) who is novice in the domain of the hypertext. For example, an author who 

is writing for a new journal-X can benefit from the fact that the editors of journal-X like the 

related work section to appear after the exposition of the main ideas of the paper. The notion 

of 'primitive links' defined by Trigg [Tri83] can be extended to the notion of primitive links 

and primitive nodes to provide mechanisms for this purpose. 

6. Keeping different revisions: 

Hypertext '87 Papers November 1987 



This aspect of hypertexts is crucial to software hypertexts1 • It involves the ability to keep 

different revisions in a manner semantically suitable for the application. In some operating 

systems, backup versions of files are kept automatically. The introduction of tools such as sees, 

res, and dilf for UNIX [UNI] has led to more sophisticated methods for revision maintenance. 

However, the use of these tools for a collection of related files is still quite laborious. In 

hypertext, on the other hand, because of the strong structural nature of the information base, 

we are in a position to define the semantics of revisions at a. level closer to the application 

domain. The utility of such a manner of keeping revisions has been pointed out by many 

researchers [Con87,DS87,Nel81]. 

In this paper we will consider the mechanisms by which these abstractions can be supported 

in a hypertext. For this purpose, a theoretical model of a hypertext is presented in Section 3. A 

brief description of set theory required for this model is given in section 2. In section 4 we discuss 

aggregations, generalizations, revisions, compatibility, and Primitive Hypertexts versus Application 

Hypertexts. In section 5 we discuss how information filtering can be supported in our model. In 

section 6 we illustrate the use of the model by providing a definition of Contexts in our framework. 

In section 7 we discuss previous work which has influenced our model and finally in section 8 we 

conclude and suggest directions for future work. 

2 MATHEMATICAL PRELIMINARIES 

We use the following notions in subsequent sections. The reader fanliliar with these can skip to 

section 3 and the reader uncomfortable with them is referred to (Sto79]. 

An object is a concept which can stand for anything depending on the context and has an identifier 

by which it is accessed or referred to. When we say A is an object we mean that there exists an 

object or thing which is referred to by the symbol A. The object may be physical (like a file or a 

text string) or may be a conceptualization (like a the tree object representing the structure of an 

article). We use A, B, ···to represent object identifiers and X, Y, Z to represent variables for object 

identifiers. 

We use the following set operations: 

1. A one place predicate, SET, such that VX(SET(X) ¢:>X is a set of objects) 

2. A function MEMBERS which maps a set object to the set of its elements. 

3. Union, U is the operator on two sets which results in a set which has elements from both the 

sets. 

1 A hypertext containing information related the development, use, and maintenance of a soft. ware system. 

November 1987 Hypertext '87 Papers 377 



378 

4. Intersection, n is the operator on two sets w?ich returns a set which has the elements common 

to both the sets. 

5. Two sets are equal iff they have the same elements. 

We define the set of finite sequences of objects, o.. The following are defined for sequence 

objects: 

1. A predicate SEQUENCE such that VX(SEQUENCE(X) *(X Eo.)) 

2. A function LENGTH from o, to non-negative integers such that LENGTH(X) =the number 

of objects in X. Note that the eXistence ofthis function implicitly defines the sequences to be 

countably infinite. 

3. A function LIST from 0 < to 0 x 0 x 0 · · · such that LIST(X) = an ordered tuple of the 

elements in X, denoted by< X1 , X2 , ... >or X1 , X 2,· ··as convenient. 

4. An operator 'in' such that (X in Y) is true if the object X is in the Sequence Y and false 

otherwise. 

We also use the notions of a partial order, 

Definition 2.1 (Partial Order) An ordered pair (S,R) where Sis a set, and R is a relation from 

S to S, is a partial order, if 

L R is asymmetric, 

2. R is refiezive, and 

3. R is transitive. 

The following definition of the cover of an object is used to determine the height of an object in 

a partial order. 

Definition 2.2 (Cover) For a partial order (S,R), an element X of S covers an element Y(# X) 

of S, if R(Y,X) and for no Z in S, 

(Z #X) 1\ (Z # Y) 1\ R(Y, Z) 1\ R(Z, X) 

This will be written as covers( X, Y, (S, R)) which can be read as "X covers Yin the partial order 

(S,R). 

The height of an object in a partial order is defined as: 

Definition 2.3 (Height) For a partial order, (S,R), the height of the objects in Sis a function 

from S to the set of natural numbers, such that: 

1. (R(X, Y) 1\ (X# Y)) =>height( X) < height(Y); and 

Hypertext '87 Papers November 1987 



2. If X covers Y then height{X)=height(Y}+1. 

Minimal objects in S are assigned the height of 1. 

3 A MODEL FOR HYPERTEXT 

Definition 3.1 A Hypertext 7), is a set consisting of, 

1. A set of primitive objects, P. and information objects, [0 ; P. n I.= 0. 

2. A set of predicates, 1r ; and 

9. A set of attributes {or properties), A. 

For a hypertext 71, Po( 'I] represents the set of primitive objects of 7), Io['l] represents the set of 

Information. objects of 7), A[71] represents the set of attributes in 7), and 1r(71] represents the set of 

predicates in 11· 

3.1 Predicates 

1r is a set of predicates. We will sometimes also refer to them as relations. '2r is composed of three 

sets: 

1. .,,, a set. of 1-place predicates which characterize objects, e.g., SET(X) is true if X is a set 

object, false otherwise. 

2. 1r2: a set of 2-place predicates such that if P(X,, X2 ) is true, then the relationship P exists 

between objects X1 and X2 , and if it is false then the relationship does not exist. 

3. "Ira: a. set containing the element 'Property' which is a 3-place predicate such that if Prop

erty( X, Y,Z) is true then object X has Z as the value ofits property Y. If Property(X,Y,Z) is 

false then the object X does not have Z as the value of property Y. 

3.2 Attributes 

Attributes of objects are properties (of objects) which can be used to identify the objects from 

clliferent perspectives. This provides a mechanism above object identifiers· to identify the objects. 

Attributes are distinguished from relationships in that, relationships exist between objects whereas 

the range· of attributes may not always be objects. For instance, the number of lines in an object 

is better treated as an attribute rather than relationships between objects. Attributes have ranges 

which are dependent on the attribute, e.g., number of lines attribute has the range natural numbers. 

In case the value of an attribute is unknown it is represented by a special symbol .L. The range set 

of a property P is denoted by RANGE(P). Sometimes attributes are inherited from other objects 

(as shown later). We define a well-attributed hypertext as one in which the attribute values of all 

November 1987 Hypertext '87 Papers 379 



380 

the objects can be determined as either a value from the range set of the attribute or as J.. We'll 

assume a well-attributed hypertext in the sequel.. 

3.3 Objects and their Instantiations 

Po is a set of distinct symbols denoting the primitive objects of TJ. ! 0 is a set of symbols which denote 

information objects (objects containing information: text, graphics, audio signals, etc.). The set 

O= P.ui. 

is called the set of objects. In the sequel when we talk of information objects we mean text-objects 

only, unless otherwise stated. 

Information objects (Io) can be related to the primitive objects (Po) by the predicate INST ANCEop 

and the function INSTANCES. INSTANCEoF(X,Y) means that X is an information object which 

is an instance of the primitive object Y. INSTANCES(X) = {Xt, X 2 , ···}means that INSTANCEoF(X1 , 

X), INSTANCEoF(X., X),···. 

Definition 3.2 A Hypertezt TJ is a strongly defined hypertezt iff 

'tX((X E Io) :;. (3Y(INSTANCEop(X, Y))) 

This captures the notion that all information objects have their primitive objects defined. Alterna

tively, all information nodes are chosen from a pre-existing pool of primitive nodes, and the user of 

the hypertext is not allowed to create a new node unless a primitive node of the same category is 

first created. In the sequel whenever we refer to hypertexts, we'll mean strongly defined hypertexts 

unless otherwise stated. 

An information object inherits the attributes of the corresponding primitive object unless the 

information object overrides the property by defining a new one. This relationship between the 

primitive objects and the information objects can be expressed by the following axiom: 

Axiom 3~1 An information object shares the attributes of the corresponding primitive object~ unless 

otherwise stated. 

'tX, Y [(X E ! 0 ) 1\ (Y E Po) A INSTANCEop(X, Y) 1\ 3Z, P(property(Y, P, Z) 1\ 

(Z E RANGE(P)) A ->3S(property(X, P, S)) :;. property( X, P, Z))] 

The information content of an information object is represented as the property INFO for the 

object. The value of the property INFO is a set containing 2-tuples (position, value) where the 

(position) is a real number identifying the position of the (value) in the information object. For 

instance, consider the following information object: 

1. A square is a 

Hypertext '87 Papers November 1987 



2. :geometrical 

3. figure which is a 

4. :rectangle 

5. (pointer to the object containing information about a rectangle). 

6. with all sides of the rectangle being equal. 

7. It can be graphically represented as: 

L 

8. h 

If this information object is referred to as SQUARE then property( sQUARE, INFO, square-info) is 

true where square info is a set object2 such that: 

members(squareinfo) = { < 1, "A square is a11 >, < 2!: geometrical>,···~ 

< 4, (IS-A, RECTANGLE) >, · · ·, < 7, (DEPICTED-AS,Figureo•;•ct) >} 

Keywords are marked in the text with a':' in front of the keyword. Links and figures are also embed

ded in the text. This automatically asserts the truth value of certain predicates in ,.,. For instance, 

if there is an object called RECTANGLE, then the above definition would assert· the relationship 

IS-A(SQUARE, RECTANGLE). 

Definition 3.3 (line) An instance of the tuple (position, value) is called a line. 

Definition 3.4 If S is a set of lines, then position{s} is the projection of the position field of the 

lines in S. 

If Sis a set of lines, then value{sJ is the projection of the value field of the lines inS. 

The position numbers are used once only. That is, even if a line is deleted, it's position number 

is not used for another line, but a new one generated as desired. 

Notice that it is not necessary that the keyword (or any line for that matter) be displayed for a 

particular presentation of the information object. It is quite possible to use a language such as the 

one presented by Shasha [Sha85] to select the lines to be presented (which are called 'fragments' by 

Shasha). 

lit could equally well have been treated a.s & sequence object 

November 1987 Hypertext '87 Papers 381 



382 

4 ABSTRACTIONS 

We now define the abstractions that can be supported based on the notions developed in the previous 

section. 

4.1 Aggregations 

Aggregation is the mechanism by which a collection of objects can be referenced by an identifier. 

For example, a. set of variable declarations coupled with a set of functions can be referxed to as a 

module in the LISP programming language. Hence we can talk about a module without having to 

bother about the details of what constitutes the module. Aggregate objects are actually Sequence 

objects with special axioms (constraints) imposed on them. 

Hence 0., the set of all aggregate objects, is a subset of 0,. Hence, all the operations defined 

for elements of Oq are valid for elements of o •. In addition, aggregations must satisfy the following 

intuitive constraints: 

Axiom 4.1 An aggregate object has unique constitu.e~ts. 

VX, Y[AGGREGATE(X) A AGGREGATE(¥) A (LIST( X) = LIST(Y)) =>(X= Y)] 

AGGREGATE is a one place predicO:te which is true if the argument object is an aggregate object. 

This axiom distinguishes simple sequences from aggregate objects. As opposed to simple sequences 

of objects, aggregate objects must correspond to some real world abstraction and therefore the same 

collection of objects should not be viewed as two different aggregate abstractions (to maintain the 

integrity of the hypertext). 

Axiom 4.2 If an aggregate object is a primitive object, then all the constituent.. of that object must 

be primitive objects. 

VX(AGGREGATE(X) A (X E Po)=? VY((Y in LIST(Y)) => (Y E Po)]) 

This axiom keeps the distance that needs to be maintained between the primitive objects and the 

information objects. If a primitive object is defining an aggregate, then it should be composed 

entirely of primitive objects and should not rely on the information that is to be filled in any of the 

primitive objects. 

The next axiom formalizes the notion of how instances of aggregate objects can be formed from 

the primitive aggregate objects. 

Axiom 4.3 The instance of an aggregate object is formed by the instances of the constituent objects. 

VX,Y [(AGGREGATE(X) A (X E INSTANCES(¥)))=? 

(AGGREGATE(¥) A (Y E Po) A VZ[(Z in LIST( X)) => 

[(Z in LIST(Y)) V 3T[(T in LIST(Y)) A Z E-INSTANCES(T)]]])] 

Hypertext '87 Papers November 1987 



Thus instances of aggxegate objects are allowed to have primitive objects as their constituents. 

This is because if we insist on instances of aggxegate objects not having primitive objects in the 

constituents then we cannot cater for the siiuation when the hypertext is partly defined, i.e., only 

some nodes of the hypertext have information stored in them and others do not. 

Notice that an aggregate object closely resembles the notion of tuples in relational databases. 

Hence we can define projections, joins, selections, etc. ior aggregations also~ The extension is quite 

straightforward and the operators required can be determined by the application. We leave this to 

the interested reader. 

4.2 Generalizations 

A Generalization is the abstraction by whieh a collection of objects is referred to by a generic 

object which captures the essential similarity between the objects. For example, a document is a 

generalization of research article, survey Mticle, lab report, etc. Notice that, unlike aggregation, 

generalization makes the individual objects loose their individualness. General objects share the 

properties of the objects that they generalize. 

By explicitly naming a generalized object we gain the following: 

1. The possibility to apply operators to generic objects: e.g., give me a list of all the documents 

written by author X (the query does not have to enumerate all the kinds of documents that 

exist in the system). 

2. The specification of attributes to generic objects, e.g., total number of documents written so 

far. 

3. The specification of relationships whieh the generic objects participate in, e.g., a document 

refers to or cites another document. 

4. The definition of default properties of the objects: unless otherwise stated assume that a 

document is written in 1987. 

One form of generalization is apparent in the definition of the INSTANCES function. It is a 

special kind of generalization in whieh a primitive object is a general object that has instances as 

specialized objects. The information object can inherit properties from the primitive object unless 

it overrides the property (Axiom 3.1). 

Generalizations are defined by a. (partial) function from 0 to 0, such that: if 

GENERALIZE(X) = Y then Y is the generalization X. Hence the sample generalization can 

be stated as: 

November 1987 

GENERALIZE(research-article) =document A 

GEN ERALIZE(review-article) =document A 

Hypertext '87 Papers 383 



384 

GEN ERALIZE(survey-article) =document A 

GENERALIZE( comment-article)= document 

Axiom 4.4 The relation GENERALIZE is asymmetric, non-reflezioe and transitive. 

The domain and range objects of GENERALIZE could be abstractions themselves. 

First we define the relationship between primitive objects and generalizations which we mentioned 

before: 

Axiom 4.5 If X is an information object which is an instance of the primitioe object Y, then Y is 

a generalization of X. 

(INSTANCEop(X, Y) ~ (GENERALIZE(X) = Y)) 

Axiom 4.6 If Y is a generalization of X, and X i• an information object and Y is a primitive 

object, then X is in the set of instances of Y. 

[[(GENERALIZE(X) = Y) A (X E I.) A (YEP.)] 

~(X E INSTANCES(Y))] 

Theorem 1 If X is a generalization of Y and Y,.. is in the instances set of Y, then Y,.. is in the 

instances set of X. 

'IX, Y, Y,..[[(GENERALIZE(Y) =X) A (Y,.. E INSTANCES(Y))] · 

~ (Y,.. E INSTANCES(X))J 

PROOF: Follows from the application of axiom 4.6 and the transitivity of the generalize relation.D 

Le=a 1 Define the relation 

GENERAL( X, Y) =[(X= Y) v (GENERALIZE(X) = Y)] 

The ordered pair ( 0, GENERAL) is a partial order. 

The proof follows from the definition of GENERALIZE as asymmetric, transitive, a.nd reflexive 

relation. 

This last lemma a.ilows us to define the level of genera.iity of an object as follows: 

Definition 4.1 {Level of Generality) The level of generality of an object X E 0, is defined as 

the height of the object in the partial order ( 0, GENERAL). 

Hypertext '87 Papers November 1987 



4.3 Revisions 

Revision of an information object is an information object which has basically the same information 

as in the original object, with a few changes. We note that revision maintenance is a form of 

abstraction because the most recent revision of an information object when viewed, hides the detail 

that there is a history associated with its existence. 

Tichy [Tic82] has used a model for a Revision Control System (RCS) for storing the history of a 

file (and a set of files) in the Unix operating system environment. We formalize the same model in 

our framework. The advantages of Tichy's model are: (1) it stores changes to information instead 

of multiple copies, and (2) allows for merging of two revisions which originated from the same file 

but changed the files in different places. 

The model starts with an information object (file) and as it is modified, creates new revisions of 

it and stores the elder objects as a set of lines to be added and deleted from the new object to get 

the old object. Graphically, this is represented as: 

1 .3 

where the triangle represents a delta. The history thus maintained is called a "trunk". The numbers 

are automatically assigned to the newer objects as they are created (uuless modified by the user). 

This is the simplest way one can maintain a history in RCS. 

The next level of complexity is introduced when "branches" are allowed in the trunk. This allows 

the development of information objects to follow different paths at the same time. Hence we could 

have a revision tree as: 

1.3 

November 1987 Hypertext '87 Papers 385 



386 

The numbering can be changed by the user with certain constraints. 

To use the model ofRCS in our framework, we define a primitive object of the type 'delta'. These 

objects will have the properties 'add' and 'delete' where add is a set of lines to be added and delete 

is a set of lines to be deleted. A revision of an information object is then a relationship between 

three objects, the old information object, the delta object, and the new information object. This we 

can translate into two relationships, (1) HAS DELTA. the relationship between the old information 

object and the delta. that is needed to create it, and (2) HAS REVISION, the relationship between 

the old information object and the new information object that is needed to create it. Clearly these 

two relationships have a correspondence with the model that underlies RCS. The arcs in the above 

diagram represent relationships, the numbering represents information objects, and the delta's are 

represented as relationship to a. delta object. Notice that the new information object itself might 

contain a delta. and a pointer to another information object. 

To formally define a model we first introduce the attribute date to the set of objects. We define 

date as: 

Definition 4.2 (Dates) For all objects X in 0, there is a property DATE in A such that Property( X, DATE, I) 

where I is a natural number. If A and B are two distinct objects and A is created before3 B, then: 

(Property( A, DATE, I,) 1\ Property(B, DATE, I,))=> (I1 < I 2 ) 

From this definition it is ea.sy to see that: 

Lemma 2 If H ASd••• is a relation from the set of objects, 0, to the set of natural numbers, N, 

such that: 

then the ordered pair (0, HAS dot•) is a total ordering. 

Now we define the relation H AS,.nision· 

Definition 4.3. If objects X andY are revisions of each other (in the sense of RCS) then H AS.,.;,;.,(X, Y), 

considered as "X has revision Y", if 

From the definition one can easily see that: 

Axiom 4~ 7 H AS'I'e11 i 6 ion. is not symmetric, is not reftezive, and is transitive~ 

'IX, Y[(X # Y) => (H AS.,,,,,.,.(X, Y) => -.H AS.,.;,;.,.(Y, X)) 1\ 

-.HAS.,.;,;.,.(X,X) 1\ 

{(H AS.,.;,;on(X, Y) 1\ H AS.,.;,;on(Y, Z)) => HAS, .. ;,;on(X, Z)} 

3 We assume that simultaneous creation is impossible 

Hypertext '87 Papers November 1987 



Next we define the notion of the "ANCESTOR" of an object. 

Definition 4.4 An object {Y) is the ancestor of an object {X) if X is zero or more steps remo~ed 

from Y by the relation HAS.,.;,;.,.. 

'IX, Y[H AS.,,"''o•(X, Y) <?[(X= Y) V H AS.,.;,;.,.(Y, X) 

V3Z(H AS.,.;,;0 ,.(Z, X) II. HAS.,...,,.,.(Z, Y))]] 

The relation H AS.,...,,.,.(X, Y) is read as "X has ancestor Y". 

Based on these definitions we can observe the following: 

Observation 4.1 If both X and Y have a revision Z, then they must share a common ancestoT". 

'IX, Y,Z(HASRBVISION(X, Z) I\ HASREVISION(Y,Z) => 

3T(HASANCESToR(X, T) I\ H ASANCESTOR(Y, T)) 

Observation 4.2 The ordered pair (0, HAS.,."'tor) is either: 

1. An equ.ivalence class if: 

'IX, Y[(X E 0) II. (Y E 0) II. (X# Y) => ~H ASoncuto.(X, Y)]; or, 

2; A parlial order. 

Let ANCESTORS(X) = {YIHAS.,.c.,,o,(X, Y)}. 

Observation 4.3 The Revision History of an object X is the partial order 

(ANCESTORS(X), H AS.,.;,;on). 

4.4 Compatibility 

We define Similar objects as objects which share a common .ancestor: 

Definition 4.5 (Similar Objects) 

'IX, Y[SIMILAR(X, Y) ¢} 3Z(HASANCESTOR(X, Z) I\ HASANCESTOR(Y, Z))] 

An obvious concern for revisions is whether two objects are compatible with each other. The 

syntactic compatibility can be checked by comparing the deltas that need to be used to derive the 

objects. If there is no conflict in the deltas and the objects share a common ancestor then the two 

objects are compatible with respect to that ancestor. This means that the objects can be combined 

using the merge operation of RCS. To check this we first define the delta-sequence as the sequence 

of deltas that needs to be combined to obtain an information object. If the delta-sequence is empty 

then the information object does not require the application of any delta. 

November 1987 Hypertext '87 Papers 387 



388 

Definition 4.6 {Delta Sequence) A delta-sequence of an object X with respect to a.n object Y, is 

the sequence of delta's that needs to be applied to X to change it into Y (in the right order). If the 

delta sequence is empty then either X= Y or X and Yare not similar objects. 

The 'application' of a. delta. simply means the removal of the 'delete' lines a.nd the addition of the 

'add' lines contained in the delta. 

Using our notions of set and sequence objects, we can define the 'add~ and 'delete' sets for the 

delta-sequence a.s follows: 

Definition 4.7 The add set of a delta-sequence, (d1,d2, ···) is defined ~s the projection on the 

(position) field of the lines in the union of the add lines of (d1 , d,, · · ·), and is represented as 

ADD((d,,d,,···)). 

The delete set of a delta-sequence, d1 , d2, • • • is defined the projection on the (position) field of 

the lines in the union of the delete lines of(d1 , d2, • • ·), and is represented as DELETE((d1 , d2 , • • ·)). 

Now we can define the notion of two compatible-similar information objects as follows, 

Definition 4.8 {Compatible-Similar) Two information objects X and Y are compatible-similar 

objects with respect to an information object Z if, 

1. HASANCESTOR(X,Z} and HASANCESTOR(Y, Z}; and 

2. If D. is the Delta sequence to change X to Z and D, is the delta sequence to change Y to Z 

then 

{ADD(D.) u DELETE( D.)} n 

{ADD(D,) U DELETE(D,)} = 0 

4.5 Primitive Hypertext and Application Hypertext 

An interesting dichotomy of perspectives on databases is provided by the "schema" of the database 

and the set of tuples "in" the database. A similar dichotomy exists in hypertexts where the first 

one corresponds to the structure of an hypertext and the second to the information in an hypertext. 

These perspectives can be offered through our model by classifying the relationships defined through 

the set 1r. 

In order to define the perspectives, we define the following: 

Definition 4.9 Relationships: A relationship is either: 

1. P{X) where P E 1r1 and P{X) is true ; the object of the relationship is X; or 

2. P(X1 , X2 ) where P E .,., and P(X1 , X2 ) is true ; the objects of the relationship are X1 and 

X2; or 

Hypertext '87 Papers November 1987 



3. Property{X, Y,Z} where Property E ""• the object X has Z as the value of property Y; the object 

of the relationship is X. 

Definition 4.10 Instance Relationships: The instance level relationships are those relationships in 

which the objects of the relationship are from I •• 

Definition 4.11 Primitive Relationships: The primitive relationships are those in which the objects 

of the relationships are from P •• 

Definition 4.12 Hybrid Relationships: The hybrid relationships are those in which the objects of 

the 2-place relationship have one object from Po and the other object from I •• 

From the definitions it is clear that, 

Lemma 3 The three sets of relationships are mutually disjoint. 

Using this formalism we can partition a hypertext such that the three partitions reflect the 

partitioning of the relationships in the hypertext. This will give us the perspectives similar to the 

schemas and sets of tuples in a relational database. 

Lemma 4 A hypertezt 71 can be considered as the union of three hypertezts: 

11I' A hypertezt which has Po[11!] = 0, Io[11I] = Io(71], A[71r] = A[71], and 7r[71I] = 1r[71]. 

11P' A hypertezt which has Io[11P] = 0, P.[11P] = Po[11], A[71P] = A[71], and 1r[11P] = 1r(71]. 

11H' A hypertezt which has P.[11r] = P0 [71], Io['1I] = 10 [11], A[w] = 0, and1r[1lz] '= ""2[71] with the 

condition that for any 2-place predicate if the objects are both from Po or both from I. then the 

value of the predicate is false. 

This proposition gives us the perspectives that we were looking for as well as other interesting 

perspectives on hypertext systems. For instance, if we want to look at the properties of primitive 

objects oniy, we can look at the set 1fa[71p]. Similarly if we want to look at the hybrid relationships 

oniy, then we can look at the set 1r(71H]· In this framework 1/P corresponds to the notion of schemas 

in databases and 111 to a particular instance of a schema. 

5 FILTERING 

Information filtering can be provided in this model from some of the abstractions defined in this 

paper. The filtering that we are going to discuss in this section is the one that is achieved by 

qualifications attached to the objects and links in the hypertext. Hence most of the other abstraction 

mechanisms are outruled by this definition. 

November 1987 Hypertext '87 Papers 389 



390 

5.1 Keywords 

Keywords have found extensive use for bibliographic information retrieval [Sal86]. In this model 

keywords can be attached to Information Objects by the KEYWORD attribute which has the range 

set as the set of strings formed with the alphabets a··· z. Keywords can be generated automatically 

or be defined manually (Sal86] but that is not the issue here. We are only interested in the fact that 

they are presented to our model as dictated by the definition of the 'line' in section 3.3. From this, 

we define the set of keywords for a information object as follows: 

Definition 5.1 (Information Objects) If X is a object and X E I0 then K is in tlie set of key

words for X iff ( n, : K) is a line of X. 

A concern for this paper is how do the keywords reflect on the abstraction mechanisms presented in 

section 4. For this end, we posit the following definitions which will aid in formalizing the notions 

of keywords for the mentioned abstractions. 

Definition 5.2 (Aggregations) If X= (X1 • • • X2 ) is an aggregate object and X is in ! 0 then the 

set of keywords for X is the union of the sets of keywords for X,··· X,. 

This refiects our intnitive notion that the aggregate object represents a collection of objects 'collec

tively'. 

Definition 5.3 (Generalizations) If X= GENERALIZE(Xt···Xn}), and there is no Y such 

that X = GENERALIZE{Y) and Y of, some X;, then the set of keywords for X is the intersection 

of the sets of keywords for X,···, Xn. 

This reflects our intuitive notion that the generalized object captures the essence of the collection that 

it generalizes. From this definition and our understanding that primitive objects are generalization 

of the instances that they have, we can draw an immediate corollary that: 

Corollary 5.1 If X is a primitive object and is related to the objects X1 • • • Xn by the relation 

INSTANCEoF then the set of keywords for X is the intersection of the sets of keywords for 

Xr···Xn. 

Definition 5.4 {Revisions) Keywords for revisions can be assembled using definition 5.1 and 

noticing that any revision of an information object is available in its full. 

If H AS.,.;,;.,(X, Y) then the keywords of X are determined by definitions 5.1 through 5.3 and 

that ofY are determined by applying the appropriate delta sequence with only the keywords. 

This gives us a clean semantics for the keywords to be used for abstract objects in the hypertext. 

The time complexity of computing the keywor.d set for any abstraction is dependent on how the set 

operations union and intersection are implemented and also on the storage mechanism for the lines 

Hypertext '87 Papers November 1987 



of an information object. But it is intuitively evident that the complexity will be polynomial in the 

number of lines in the information objects and the number of keywords in each object. 

5.2 Object Attributes 

In the previous sub-section we outlined how one particular attribute (KEYWORD) can be used to 

effectively form a filtering mechanism for information objects and their abstractions. Similarly the 

user of a hypertext can define other attributes depending on the needs of the domain for which the 

hypertext is built. For example, number of lines in an information object is also an attribute which 

can form a filtering mechanism. 

5.3 Linkages 

Linkages provide a mechanism for browsing through the structure of information rather than the 

content of the information. The links in our model have been defined as 2-place predicates between 

objects. In the definition of the INFO attribute of the information objects we have defined lines 

which carry information about the links for that object. This facilitates the definition of links across 

revisions in a manner analogous to the definition of keywords for revisions. The important question 

is how do links allow the filtering that they are intended to provide? An obvious answer is that 

the links can be used in a predicate calculus-like language to identify the appropriate objects. This 

requires further study but we hypothesize that the usage of a language such as PROLOG is apt for 

this purpose. Basically the predicates in the hypertext form the database of 2-place predicates for 

a-'-PROLOG engine. 

6 CONTEXTS: AN EXAMPLE 

In (DS87] Delisle and Schwartz have suggested the use of contexts for partitioning a hypertext. We 

frame the definition of contexts as given by them, into our formalism. They have developed two 

notions of contexts, (1) A derive model, and (2) a merge model. Since the merge model subsumes 

the derive model, we'll consider the merge model alone. 

Definition 6.1 (Contexts) A contezt, (of an hypertezt 1J is a subset o/1], where 

Merging and Instances Delisle and Schwartz define two issues with respect to this: 

1. A single object can have multiple instances in different contexts; and 

2. An object has an (global) identifier which identifies all the instances of that object in all the 

contexts, and a identifier (local) which identifies the instance of an object in a given context. 

November 1987 Hypertext '87 Papers 391 



392 

As we have seen in the model given in this paper, multiple instances of an object can be modeled 

through the primitive object and the instance object. Then the local identifier becomes the object 

identifier for the instance object and the global object becomes the primitive object for the instances. 

For this, we propose the following axiom: 

Axiom 6.1 For all objects X in a. contezt (, X is an instance object and there is a primitive object 

Yin 11 such that INSTANCEop(X, Y). 

Notice that links are not really first class objects in our model and so there is no corresponding 

notion of links for contexts, although links are embedded in different contexts through the objects 

that they relate and hence are different. Also note that this model is slightly more general than that 

of Delisle and Schwartz as they provide for only revisions of objeCts in different contexts. 

Merging and Version (Revision) Histories As pointed out by Delisle and Schwartz, the main

tenance of revisions (what they call versions) becomes semantically confusing when mixed with con

texts. We have provided a simple semantics of revisions based on the relations HAS DELTA and 

H AS,.e,ri.#ir>n· To answer their question of what we should view the revision history of an object, we 

have formally defined the revision history of an object as in observation 4.3. A simple restriction to 

belong to a particular context(s) can tune the revision history to the users' needs. 

7 RELATED WORK 

This work is largely influenced by the work by Abiteboul and Hull on a theory for semantic databases 

[AH84]. An obvious difference between their work and ours is that their notions are developed for 

a object oriented database and not for hypertext systems. As such their model does not delve into 

issues which concern with information inside an object which has been of concern to us. This also 

leads to the disparity between the two models in that IFO does not concern itself with recording 

revisions of objects or the fact of maintaining linkages across revisions. 

Tichy's work on RCS [Tic82] has had an impact on the model that we have used for revisions of 

objects. 

Much of the work in hypertext systems has influenced our ideas in this paper (Con87]. Although 

the efforts of the researchers has not been for a theoretical model (except Sasha [Sha85]), the notion 

of aggregation is similar to the notion of paths suggested by Trigg [Tri83]. The motivation for the 

notion for revisions came from the work on Contexts by Delisle and Schwartz. 

8 CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a set theoretical model of a hypertext and defined interesting 

abstractions on· it to provide mechanisms to retrieve and input information to the hypertext from 

Hypertext '87 Papers November 1987 



various perspectives and level of details. The theoretical model was built to subjugate the complexity 

of grasping the conceptualizations that are possible on hypertext nodes and links. This also gives us 

the framework to explore new ideas about abstractions on hypertext and to be able to theoretically 

evaluate the ideas. 

There axe several directions in which future work along this direction can be pursued. An obvious 

thing to do is to implement these ideas into a hypertext system. An interesting aspect of this is 

to provide visual interfaces to these abstractions. We do not discuss this issue in this paper, but 

the interested reader is referred to (BH86,GS87a]. Another direction is to enrich the notions of 

abstractions that this model provides. This could be done by fine tuning the given abstractions or 

building new ones (such as contexts) on the old ones. A third possibility (which we are investigating) 

is to see how this model could be enriched by encoding domain knowledge for particular hypertexts. 

We are pursuing this for the domain of software engineering, where a hypertext ofinformation related 

to the software system is built along with the development of the system (the system itself being 

part ofthe hypertext). The domain knowledge can be in the form of situation calculus [McC85] such 

that activities of the agents can be preceded in the hypertext. The hypertext can then become an 

active participant in the building up of itself (so to say). For example, ifit is known that in order to 

define the specifications of a software system, the agent (specifier) must give specifications A, B and 

C; and if the agent has given ouly specifications A and B; the hypertext can request the agent for 

the specification C. Or if the hypertext 'knows' that after writing out a memo agent A always sends 

it out to agent B; then it can automatically send a memo created by A to B without A having to 

.Xplicitly do it. This has led us to the notion ofintelligent Software Hypertext Systems {I-SHYS4) 

which is the subject of our future work [Gar87,GS87b]. 

9 ACKNOWLEDGMENTS 

Comments from Salah Bendifallah on earlier versions of the paper have improved the presentation. 

The work reported here has been supported by Hughes Radar Systems Group, El Segundo, under 

contract number KSR576195-SN8 and by the USC graduate school through the All-University-Pre

Doctoral Merit Fellowship. 

References 

[AH84] Serge Abiteboul and Richard Hull. IFO: A Formal Semantic Database Model(Peliminary 

Report). In Proc. A CM SIGA CT-SIGMOD Symposium on Principles of Database Systems, 

1984. 

tpronounced eye~shis 

November 1987 Hypertext '87 Papers 393 



394 

(BH86] D. Bryce and R. Hull. SNAP: A Graphic-Based Schema Manager. In Proc. of the Second 

Inti. Conf. on Data Engineering, pages 151-164, February 1986. 

[Bra85] R. Brachman. On the Epistemoligical Status of Semantic Networks. In R. J. Brachman 

and H. J. Levesque, editors, Readings in Knowledge Representation, pages 192-215, Morgan 

Kau:flnan Publishers, lnc., 95 First Street, Los Altos, CA 94022, 1985. 

(Bus45] V. Bush. As we may think. July 1945. Atlantic Monthly, no. 176, pp. 101-108. 

[Con87] Jeff Conklin. Hypertext: An Introduction'and Survey. Computer, 20(9):17--41, September 

1987. Also available as MCC Technical Report no. STP-356-86, Rev. 1. 

(DS86] N. Delisle and M. Schwartz. Neptune: a Hypertext System for CAD Applications. 1n 

Proceedings of ACM SIGMOD '86, pages 132-142, Wahington, D.C., May 1986. 

(DS87] N. Delisle and M. Schwartz. Contexts: a Partitioning Concept for Hpertexts. In Computer 

Supported Cooperative Work Conference, 1987. 

(FS86] G. Foster and M. Stefik. Cognoter, theory and practice of a colab-orative tool. In Proceed

ings of the Computer Supported Cooperative Work Conference, pages 7-15, 1986. 

(Gar87] P. Garg. Theoretical foundations for Intelligent Software Hypertext Systems. 1987. Com

puter Science Department, USC, In preparation. 

(GB84] I. P. Goldstein and D. G. Bobrow. A layered approach to software design. In D. R. 

Barst'ow, H. E. Shrobe, and E. Sandel wall, editors, Interactive Programming Environments1 

pages 387-413, McGraw-Hill Book Company, 1984. 

[GS87a] P. Garg and W. Scacchi. Software Hypertext Environments for Configured Software De

scriptions. 1987. Submitted for publication, 1987. 

(GS87b] P. Garg and Walt Scacchi. On Designing Intelligent Hypertext Systems for Information 

Management in Software Engineering. 1987. To be presented at Hypertezt '87. 

[McC85] J. McCarthy. Programs with Common Sense. In R. J. Brachman and H. J. Levesque, edi

tors, Readings in Knowledge Representation, pages 300-307, Morgan Kaufman Publishers, 

Inc., 95 First Street, Los Altos, CA 94022, 1985. 

(MS82] D. McLeod and J. M. Smith. Abstraction in Databases. In Workshop on Data Abstraction, 

Databases, and Conceptual Modeling, pages 1-7, June 1982. 

[Ne!Sl] Ted Nelson. Literary machines. 1981. Available from author, P, 0. Box 128, Swarthmore, 

PA 19081. 

Hypertext '87 Papers November 1987 



[Sal86] G. Salton. Another look at Automatic Text-Retreival Systems. Communications of the 

ACM, 29(7):648-656, July 1986. 

[SFG85] A. Sathi, M. Fox, and M. Greenberg. Theory of activity representation in project man

agement. IEEE P AMI, September 1985. Special issue on principles of knowledge based 

systems. 

[Sha84] Mary Shaw. Abstraction Techniques in Modern Programming Languages. IEEE Software, 

10-26, October 1984. 

(Sha85] D. Shasha. N etbook: A Data Model for text exploration. 1985. VLDB. 

(SS77] John M. Smith and Diane C. P. Smith. Database Abstractions: Aggregations and Gener

alizations. ACM Transactions on Database Systems, 2(2):105-133, June 1977. 

[Sto79] R. R. Stoll. Set Theory and Logic. Dover Publications, Inc., 1979. 

[Tic82] W. Tichy. Design, Implementation, and Evaluation of a Revision Control System. In 6th 

International Conference on Software Engineering, pages 58-i;r, Tokyo, Japan, 1982. 

(Tri83] · R. H. Trigg. A Network-Based Approach to Tezt Handling for the Online Scientific Com

munity. PhD thesis, Maryland Artifitial Intelligence Group, University of Maryland, 

November 1983. 

[UNI] UNIX Users ManuaL 

November 1987 Hypertext '87 Papers 395 



396 Hypertext '87 Papers November 1987 



Manipulating Source Code 
in DynamicDesign 

James Bigelow and Victor Riley 

Computer Aided Software Engineering Division 
Design Automation Group 
Tektronix, Inc. 
P.O. Box 4600, MS 94-480 
Beaverton, OR 97075 
jimbi@copper.tek.com 
victorr@copper.tek.com 

ABSTRACT 

DynamicDesign is a Computer-Aided Software Engineering environment for the C language with a 
layered system architecture for modularity and versatility. DynamicDesign is composed of facilities 
to edit hypertext objects, maneuver thorough hypertext graphs, build a hypertext graph from a set 
of existing C source files, and browse source code, documents and system requirements. This paper 
discusses the DynamicDesign facilities that deal with the source code, sourceBrowser, and source 
tree builder utilities. 

GraphBuild is a utility used to convert C source code into a hypertext source graph, based on the 
program's call tree. A data dictionary is constructed for the program that contains its local and global · 
variables . 

. The source browser allows the user to traverse, view, and edit a source code tree. Additional facilities 
for understanding and maintaining the source code and its auxiliary documentation are provided by 
the browser. 

INTRODUCTION 
DynamicDesign is a Computer-Aided Software Engineering (CASE) Environment based on hypertext (Nels81). 
DynamicDesign stores C (Kem78) source code, requirements, and documentation in a hypertext database; 
the Hypertext Abstract Machine (Deli86) (HAM) developed by Tektronix, Inc. The HAM, a medium grained, 
entity-relationship-like data model, is a transaction-based hypertext database server that allows arbitrary struc
turing of information and keeps a complete version history of both information and structure. The HAM is 
used in the layered system architecture shown in Figure 1. Dynamic Design is one of the many possible ap
plications that use the HAM by communicating through an Inter-Process Communication (!PC) mechanism. 
This method allows for extreme modularity and independence of software components and, as such, the HAM 
can be considered to be separate and distinct from DynamicDesign. 

November 1987 Hypertext '87 Papers 397 



The following paragraphs introduce the hypertext objects in the HAM, then introduce DynamicDesign and 
one of its information structures. Additional paragraphs discuss two of the utilities built into DynamicDesign, 
graphBuild and sourceBrowse. In conclusion, possible directions for development of Dynamic Design and its 
utilities are indicated. 

DynamicDesign 

HAM Interface 

!PC Link 

Hypertext Abstract Machine 

Figure 1. DynamicDesign system architecture. 

HAM CONCEPTS AND TERMINOLOGY 
The basic components of the HAM are nodes and links. Nodes provide a means to store data, and links pro
vide the relationship between the data in different nodes. The HAM allows classification of nodes and links 
by providing the ability to associate an attribute/value pair with a node or link. For example, a node may 
have an attribute name that is given a value such as Input Routine to identify the contents as the source code 
for the input routine. Information is grouped into configurations by using contexts, disjointed collections of 
nodes, links, and contexts. Since nodes and links may be thought of as directed graphs, collections of nodes, 
links, and contexts are called a graph. 

DYNAMICDESIGN-A HYPERTEXT CASE ENVIRONMENT 
DynamicDesign is a hypertext CASE environment for the C programming language and has all of its project 
components in the HAM. These include: 

• Specifications and requirements 
• Design notes and documents 
• Implementation notes 
• Source and object code 
• User documentation 

Nodes are used to contain project components; links depict the relationships between the components; and 
contexts allow groupings such as components, configurations, versions and variations. Attributes are used to 
label the types of nodes, links, and contexts. Table l shows the possible values of three attributes. 

Table 1. Three attribute• and their possible values. 

Ham Object Attribute N arne Possible Values 
requirement. spec, designNote, 

Node projectComponent design assumption, comment, source, 
object, symbolTable, documentation. 
leadsTo, comments~ refersTo, 

Link relation calls, followsFrom. implements, 
isdefinedBy, isdefinedAs · 
specifications, design doc, program doc, 

Context projectCategory user doc. implement notes, source code, 
object code, symbol tables, product 

In Dynamic Design, Nodes have an attribute, projectComponent, (which identifies the type of project compo
nent they contain). Links have an attribute, relation (which shows the type of relation the link provides). Con
texts are identified with the attribute, projectCategory. For example, sequential information may be assoc-

398 Hyper'.cxt '87 Papers November 1987 



iated by connecting two nodes with a link whose attribute, relation has a value of leadsTo. 

Figure 2. Linking specifications and source code with nodes and links. 

In Figure 2, routine I calls routine 2 so they are both stored in nodes and connected by a link having the 
attribute value calls. 

The relationship between a specification and the code that implements it can be shown with links. The node 
whose attribute, projectComponent value is spec contains a portion of the specification. A node with the at
tribute projectComponent having the value, source contains the code that implements the portions of the specifica
tion. These two nodes are related with a link that has an attribute, relation having the value, implements. 
Figure 2 show how routine "I in the code relates to paragraph I in the specification. 

DynamicDesign Project Category Interconnections 
A project component is any peice of information or data associated with a project. Broad categories for data 
placement include: 

• Specification and requirements 
• Design, program, and user documentation 
• Implementation notes 
• Source code 
• Object code 
• Products 

Within each of these categories are the actual documents, memos, papers, binaries, etc. that make up the pro
ject. By placing all the components of a project in hypertext, they are archived, recoverable, and available 
for use within other parts of the project. 

Interconnections between project components exist even in a project that uses paper documents. However, 
there is also much duplication of both effort and documentation. Additionally, many opportunities to point 
out the relationships between components are missed because the effort involved is too great for the time 
permitted. 

DynamicDesign has all the information concerning a project in its hypertext database. Contexts are used to 
group data into the categories mentioned above, and listed in Table I as possible values. In Figure 3 the lines 
used to connect the ellipses (representing contexts) show the direct interconnection and interrelationships bet
ween the data in the contexts. Due to the use of links, one piece of data can be present in several contexts. 
Therefore, a paragraph about a design may do triple duty; as a comment in the program documentation and 
as a paragraph in both the user and design documentation. 

November 1987 HYr...S:t9xt '87 Pa;=3rs 399 



Figure 3. Interconnections of project categories in DynamicDesign, 

DynamicDesign Utilities 
The emphasis herein is on the source code context and the utilities. that deal with the information structures 
in that content. The main information structure in the source code context is the source code tree, which 
can be created from existing code with the graphBuild facility. The tree can also be created or extended by 
using the SourceBrowser. ' 

SOURCE CODE GRAPH STRUCTURE 
Within the source code context, code is stored in the form of a tree. The format for the tree is based on the 
call tree for the set of C functions comprising the code, modified slightly by any C preprocessor commands 
in the source code, Variable dictionaries are created to hold all variable definitions and are linked into the 
source code tree by links from the point of reference to the point of definition. 

refers To 

refers To 

Module 
Variable 

Dictionary 
Global 

Variable 
Dictionary 

Figure 4. Source code tree built from the code in Figure 5. 

400 Hypertext '37 Papers November 1987 



Figure 4 Shows a source code graph created from the code in Figure 5 (which contains three functions: main, 
getinput and writelnt). Since main calls the other two functions, it is the root of the source code graph and 
the other two functions form the leaves. 

#define BUFFER_ SIZE 132 
#define INPUT 0 

int global_ data = 0; 
extern extern_ data; 
static int private_ count= 0; 

extern char *getinput(); 
extern int writelnt(); 

main() 
{ 

} 

int X, y; 

y = atoi(getinput()); 
X= y + 1; 
writelnt(x); 
extern_ data = 0; 

char • 
getinput() 
{ 

I* size of the I/0 buffer *I 
I* file descriptor for input *I 

I* global data, defined in this file *I 
I* global data, defined elsewhere *I 
I* private data, global to these functions *I 

static char iobuff[BUFFER _SIZE]; 

} 

if((private_count = read(INPUT,&iobuff, BUFFER_SIZE)) < 0) { 
perror("example"); 
exit( I); 

} 

return &iobuff; 

int 
writelnt(x) 

{ 

} 

int x; 

fprintf(stdout,"%d", x); 
global_ data++; 

Figure 5. Three C functions with external data. 

November 1987 Hypertext '87 Papers 401 



402 

Modifying the Tree With Conditional Compilation Statements 
The structure of the source code tree is modified by preprocessor conditional compilation statements in the 
code. These statements cause the code contained within the body of the statement to be placed in a separate 
node. For example in Figure 7 there are three nodes created from the code in Figure 6. The node labeled 
VAX code contains the VAX independent code from the body of the statement "#ifdef VAX". The node label
ed PDPll code contains the PDPll-dependent code. The last node contains the statements that preceded and 
followed the two ifdef statements in the original code. Links are created as shown in Figure 7. This type of 
link has an attribute named for the preprocessor command (ijdef, if, or ifndef, for example). The attribute 
takes on the value of the constant expression or name that is the argument to the command. 

code A 
#ifdefVAX 

VAX -dependent code 
#endif 
#ifdef PDPll 

PDPJJ-dependent code 
#endif 

codeB 

Figure 6. Example usage of preprocessor conditional commands. 

Figure 7. Example node subtree for conditionally compiled code. 

Variable Dictionaries 
Variable declarations for each scope, global, module, and function, are placed in variable dictionaries for 
each level and links are created from the points of reference back to the entry in the variable dictionary. Global 
variables such as extem_data and global_data in Figure 5 are placed into the global variable dictionary. 
Module variables, such as private_count in Figure 5 are placed in a module variable dictionary as in Figure 
4. Local variables go into a local variable dictionary. A separate dictionary is created for each module and · 
function. 

Preprocessor macro definitions are also placed in a variable dictionary and links are created from the point 
of usage to the entry in the variable dictionary. Which dictionary the macro goes into depends on its point 
of definition. If the macro is defined at the start of a file, then it is placed in the module variable dictionary, 
otherwise, it is placed in the function's local variable dictionary. For example, in Figure 5 the preprocessor 
macros BUFFER_SIZE and INPUT would be placed into the variable dictionary for this module. 

Determining What to Place in a Node 
Nodes are atomic data units, so the issue of node contents is important. If a piece of data is referenced in 
more than one place (e.g., a section of text is in both the requirements and the comments for a section of 
code) the data should be in a node by itself. However, the application that uses hypertext (by determining 
the unit of incrementality used when processing the information) is the final arbitrator of how much should 

Hyperte~t '87 Papers November 1987 



be placed in one node. For example, in the case of an incremental compiler, which can recompile a changed 
procedure individually without recompiling the entire module that contains the procedure (Schw84)(Medi81), 
the unit of incrementality is a procedure. Other compilers may enforce a larger increment, such as a module. 

GRAPHBUILD 
An existing C program can be stored in the hypertext database by importing it with graphBuild, thereby creating 
a source code tree. Using this method, conventional editors such as vi, ed, or emacs are used to write the 
program, which is then presented to graphBuild for storage in the hypertext data base. Based on the syntactic 
and semantic rules of C, graphBuild reads a source file, and uses it to create a source code tree. 

Mapping Files Into Hypertext 
For the most part, flles containing C source code fall into two categories, header files and source fLies. Ob
vious exceptions are lex and yacc files that are not covered in this version of Dynamic Design. How header 
and source files are mapped into the source code tree is discussed in the following paragraphs. In general, 
header files are used to create variable dictionaries and links with the attribute, relation with the values: refersTo, 
isdefinedAs and isdefinedBy. Source files are used to create the nodes of a source code tree. 

Header Files 
Header files provide a method to declare functions, variables, constants, and data types, so that other files 
can make use of those services declared in the header files (and defined elsewhere) by including the header 
files. Given the desire for separate compilation, header files and the keyword extern enable a function to use 
a variable that is not defined within its scope. The functionality of a header file and external references can 
be attained by an adroit use of links when the source code tree is built, thereby removing the need for either. 
By following the links from the variable reference to the variable dictionary, a compiler can discover from 
the variable dictionary entry exactly what type of variable is referenced and its scope. Because the information 
in a header file is either placed in a variable dictionary (in the case of defines) or represented by links (as 
with external variables) header files are not kept intact in the source code tree. 

External Name Problem in C 
An important issue with external names in C is ensuring consistency among declarations of the same external 
name in several files. It is a well-known deficiency in C that defining and referencing occurrences of external 
variables are difficult to 'distinguish. (Refer to C: A Reference Manual (Harb84) for a complete discussion 
of how compilers deal with the problem.) DynamicDesign simplifies the referencing problem by creating a 
link directly from a variable reference to its defining statement in the variable dictionary. By using a variable 
dictionary with links the problem of defining and referencing a variable is greatly simplified, since multiple 
ambiguous variable references don't exist. 

Mapping Source Files 
Source files contain the actual code for a program in the form of external and private data declarations and 
functions. GraphBuild, reads a source file and splits the file into variable dictionaries and source nodes. A 
source code file is considered to be a module. Since static variables declared in a file are local to the module 
and global to the functions within the module, they are placed in a module variable dictionary accessed only 
by the functions in the module. 

Mapping Functions to Hypertext Nodes 
GraphBuild attempts to place one function per node. The node has the attribute projectComponent that is 
given the value source. The node's attribute, name is given the value of the function's name. When a function 
is referenced, a link is created from the function reference to the node that contains the function and its defini
tion. The link between the function c~ll and function definition has an attribute, relation, that is given a value, 
calls. For example, in Figure 4 the three functions from Figure 5 are placed into three nodes (named for 

November 1987 Hypertext '87 Papers 403 



the functions) and the nodes are connected by links with the attribute, relation containing the value calls. 
In this manner the graph of a program is its call tree. 

One problem exists: how to handle calls to functions that have not yet been defined, and therefore do not 
have a node with which to link. If the function definition is encountered later on and a node created to hold 
it, then a link must be created from the previously encountered reference to the newly created node. GraphBuild 
keeps a list of functions encountered and their node names. When a function call is encountered one of two 
things happens: either a link is created from the position in the node where the function call is located, to 
the node holding the function definition or the location of the function call is stored so that when the function 
is defined, a link can be made to it. If the function definition is never encountered, as with library calls (e.g., 
read, perror, and.fPrintfin Figure 5) then no link will be created since there is nothing to link to. One possible 
solution is to create a dummy node named for the library the function is assumed to be defined in. This solu
tion, however, is not recommended since it is prone to error. Rather, the function is left unlinked. A report 
of unlinked functions is available at the end of processing. This feature is user-selectable at run time, by means 
of a command line flag. 

Mapping Data Declarations 
There are two types of data declarations, private and global (i.e., static and extern) and both are placed in 
variable dictionary nodes. Global declarations are placed in a node whose attribute, projectComponent is source 
and its name is global variable dictionary. Declarations private to the module are placed in a module dic
tionary named for the source file. Function declarations are handled similarly; they are placed into a dic
tionary named for the function. For example, if the source code in Figure 5 were in the file, example.c, then 
the node containing the module dictionary would be named example module dictionary. Links are created 
from a point of reference to a declaration point. The link's attribute, relation is given a value, rejersTo. 

Figure 4 shows three source code nodes and two dictionaries, global and module. There are links with the 
attribute, relation containing the value, rejersTo from the source nodes to the variable dictionary nodes, since 
each of the functions contained in the source nodes refers to a variable that is contained in the variable dic
tionary nodes. Variables are placed in global or module variable dictionary nodes by graphBuild when they 
are declared or defined external to any function (as shown at top of Figure 5). 

· Figure 8 is an expanded view of portions of two nodes from Figure 4 showing how a link with an attribute, 
relation containing the value, refersTo is attached at one end to a variable reference and at the other end to 
the definition of the variable. 

404 

ProjectComponent: source 

name: main 

ProjectComponenc source 

name: global variable dictionary 

Figure 8. Connecting variable use with declaration by a link. 

Hypertext '87 Papers Novsmtsr 1987 



SOURCE CODE BROWSER 
The source code browser is used to peruse source code trees created by GraphBuild or by the source code 
browser itself. It has the ability to traverse links to other sections of code, view or edit modules and functions, 
and answer questions about the code. Some of the questions it can answer are: 

• What is the reason behind a routine? 
• Who calls a routine? 
• What is the purpose of a variable? 
• Who uses a variable? 

Browsing the Source Code Tree 
In C source code there are several implicit connections between routines, modules, and accompanying 
documents. When viewing the source code it may be necessary to look at these connections simultaneously. 
Some example connections include: the comments explaining a specific piece of cnde, the definition of a variable 
within the code and the cnde itself, all references to a particular variable or function, the relationship between 
a function call and a function definition, and the header files that document the dependencies and interrela
tionships of global variables and functions for a module. All of these connections are explicitly represented 
by links in the source code tree rather then implicitly as in a source code listing. 

One of the main functions of the browser is to traverse the source code tree. The browser may start at the 
root or at a point in a subtree. Since the amount of information within the source code tree is often over
whelming, the browser attempts to aid the viewer by pruning the traversal tree. The pruning is controlled 
by the specification of different attribute/value pairs on the links. For example, if the viewer only wished to 
see a version of the code tailored for the VAX, then all the conditional compilation links that did not have 
that value would be hidden from the viewer. In this same manner, if the viewer only wished to see source 
code s/he had written, then code that was not personally created would not be shown. 

Requirements traceability can be of major interest when trying to prove that a system fulfills its specifications. 
Therefore, the source cnde browser also has the capability to follow links to other sections of the graph outside 
of the source code section. These other sections of the graph can be specifications, design documents, test 
specifications, documentation, or comments, which can then be viewed. Since DynamicDesign allows the 
creation of links from a specification to a design document such as a data flow diagram, as well as links from 
the design to the code implementing the design, and then from the code back to the specification, traceability 
graph cycles can be created. When the browser starts following a traceability cycle, it will choose the ap
propriate presentation capabilities for each type of node. For instance, if while viewing a source node, a designer 
wished to know what specification this code fulfilled, s/he could look for and select a traceability cycle link 
and follow it either back to the design context or back to the specification. The direction is unimportant, what 
is important is that by following the traceability cycle the designer will arrive back at the point of departure, 
thus proving that a particular requirement has been fulfilled. Conversely, the absence of traceability cycles 
shows that either that requirement has not been fulfilled or the correct linkages have not been created. 

Creating Links From Data Dictionary to Variable Dictionary and Vice Versa 
As source code and variables get added to the system, links need to be created between the definition in the 
variable dictionary and the data dictionary stored in design context. The source code browser does this 
automatically. As new code is accepted into the graph, the browser verifies that each newly defined variable 
is in the proper variable dictionary and then creates a link to the data dictionary. Conversely, the browser 
acts as a program design tool by allowing the association of modules with data flow mini-specifications. Then, 
based on the association, variables that correspond to the data dictionary entires for the mini-spec can be 
created automatically in the variable dictionary and linked back to the data dictionary. As existing code gets 
modified, consistency checks are made to verify that a deleted variable is removed from the proper variable 
dicitonary and its links are removed. 

November 1987 Hypertext '87 Pz;Jers 405 



406 

Editing Source Code 
One of the primary functions of the source code browser is to edit the source code being displayedo The browser's 
editor is able to edit not only the text of the source code but the links that form the relations between sections 
of codeo Also, the browser is able to group pieces of code together into an editable module, based on at
tribute/value pairso For instance, upon request, the browser would only present the code for a UNIX system 
for editing and the code for other systems would be hiddeno 

The editor/browser displays the links associated with the code under considerationo The manner in which 
the links are displayed is controlled by the browser and selectable by the viewero Therefore, a viewer can decide 
how, and whether or not, the link is showno Links can be represented by configurable icons or the link nameo 
Furthermore, they can be hidden from the viewer by the browser upon requesL As the code gets modified, 
the browser modifies the accompanying links to maintain consistency with the updated codeo 

Answering Questions 
A useful ability of the source code browser is its ability to take advantage of the built-in variable and function 
cross reference in the source code tree provided by the links forming the treeo The browser can query the 
source code tree to answer questions about the source code being viewedo This capability allows the viewer 
to understand the code better by quickly answering questions about such things as the calling structure, defini
tions of functions, and variable usage, without the need to stop looking at the code being viewedo This replaces 
the five-finger method of code reading, where a person ends up with all five fingers sticking into interesting 
places in a listing while the other hand is used to flip back and forth between the placeso 

The following paragraphs consider some of the more interesting questions that the source code tree and the 
browser can answer. 

Who or What Am I? 
When a function is viewed sometimes it is not easy to understand just what it's purpose iso It may be necessary 
to look at some documentation about the functiono In DynamicDesign the user asks the function "What are 
you?" and all links that have the attribute, relation with the value, comments or implements are displayedo 
If there is only one, then the contents pointed to by the link are displayedo Otherwise, the user is presented 
with the link choiceso 

For example, while viewing routine 2 in Figure 2, and selecting the routine name, then asking "What are 
you?", the two links labeled implements would be displayedo The user then has the capability to traverse either 
or both links to get to the documentaitono 

Who Calls This Function? 
When the browser is displaying a function, the user can ask to look at all other locations this function is 
called from by asking "Who calls you?"o All links entering the function whose attribute, relation have the 
value, calls are then returnedo The user then selects the location s/he is interested in and the segment of code 
containing the call is displayedo 

If the user was viewing the function, getinput{) in Figure 5 and asked "Who calls you?", the link named calls 
(in Figure 4) that connects main and getinput would be highlighted and the location of the call in main() 
would be displayedo 

What is This Variable? 
Selecting a variable and asking "What are you?", causes the browser to look in the variable dictionary, find 
the link back to the data dictionary and display the definitiono If any links happen to exist whose attribute, 
relation have the value, comments they are also returnedo The user can then select and view any of that infor
mation as well. 

By selecting the variable, global data in Figure 5 and asking "What are you?", the link refersTo (in Figure 
4) connecting writelnt and global Dictionary is highlightedo The link between the variable in the globa!Dic
tionary and the data dicitonary is then followed and the definition in the data dicitonary is displayedo 

Hypertext '87 Papers November 1987 



Who Uses This Variable? 
By selecting a Variable and asking "Who uses you?", a variable can be cross referenced. The information 
is obtained by following the link to the variable dictionary and then listing all links that point to that particular 
variable in the dictionary. The proper dictionary is selected based on the scope of the variable selected. For 
instance, by selecting the variable private_count in Figure 5 and asking "Who uses you?", the link refers To 
(in Figure 4) connecting getinput and moduleDictionary is highlighted. Any other links coming into 
private_count in the moduleDictionary with the value, refers To for the attribute, relation are also displayed. 
The user can then select the one(s) to view from that list. 

Displaying the Code 
How the code is displayed is very important to a good browser. If the code is presented in an unreadable 
fushion it will appear confusing and hard to understand to the user. Therefore it is important that the code 
be displayed in a clean, clear, and understandable format, one that is somewhat tailorable to the users desires. 

Combining #ifdef Code 
Generally, source code being developed for multiple environments has sections that are dependent on a specific 
host or operating system. Actual code may have #ifdefs listed several times within it, but the source code 
browser will partially preprocess the code to present an un-ifdefed view of the code to the user. This makes 
code reading much more understandable and the true function easier to comprehend. The user decides what 
the values for the #ifdefd sections of code are, prior to the displaying of the code. This can be accomplished 
before or while browsing a section of code. 

Viewing the Code 
After the code has been preprocessed it is formatted using a style similar to the way the UNIX* program 
indent (Thom79) formats code. UNIX-like features make viewing large amounts of code much easier. Some 
of the tailoring features include: 

• Indentation levels 
~• Alignment of comments 
~ Insertion of spaces within expressions 
• Matching of braces 
• Breaking up of declaration lists 

These features are tailorable to the users desires by modifying options in the command. This way each user 
can have the source code taylored to their own desires, with a separate format for each user. If the user does 
not wish to format the code, or if the code has already been formated these features can be disabled. 

CONCLUSION AND SUMMARY 
The preceding paragraphs have introduced a hypertext-based CASE environment, DynamicDesign, discussed 
its information structUres for storing C source code, and introduced utilities for manipulating the information. 
It is contended that hypertext provides a viable data model and offers great promise for meeting the needs 
of CASE. 

Future directions for work on DynamicDesign, or any hypertext CASE environment should include work on 
a consistent, expandable method for deciding what should be placed in a node. This method could solve pro
blems arising from situations where more than one application makes use of the same type of node each with 
different demands on the granularity. Expanded support for compilers, linkers, and other conventional tools 
would enhance the environment's usefulness, as well as expanding support for lex and yacc files and even 
other languages such as C++, Ada, or Modula2. 

Work on building systems using hypertext can focus on how to automate the creation of sequential and rela
tional links. Sequential links show that one node logically follows another and relational links show that 

* UNIX is a trademark of Bell Laboratories. 

November 1987 Hypertext '87 Papers 407 



408 

two nodes are logically related, but not sequentially. By automating the linking process based on the way 
a node is used, the users is spared repetitive linking. However, there may always be the need for a means 
of creating a link at the user's command that would point out a relationship the system has missed and only 
a user can see. 

A hypertext weakness that has not been addressed is how to represent fine-grained information. One solution 
is to create a partnership between hypertext and relational databases. A relational database can hold fine-grained 
information such as definition-use links in an incremental compiler's symbol tables. A relationally complete 
query language extends the functionality of hypertext to provide even more capabilities. 

REFERENCES 
T.H. Nelson, Literary Machines, T.H. Nelson,Swartbmore, PA., 1981. 

B.W. Kernighan and D.M. Ritchie, The C Progamming Language, Prentice-Hall, Englewood Cliffs, New Jersey, 
1978. 

N .M. Delisle and M.D. Schwartz, "Neptune: a Hypertext System for CAD Applicaitons," Proc. ACM SIGMOD 
'86, pp. 132-143, May 1986. 

M.D. Schwartz, N.M. Delisle, and V.S. Begwani,"Incremental Compilation in Magpie," Proceedings of the 
SIGPLAN '84 Symposium on Compiler Construction, vol. 19, no. 6, pp. 122-131, June 1984. 

R. Medina-Mora and P.H. Feiler, "An Incremental Programming Environment," IEEE Transactions on Soft
ware Engineering, vol. SE-7, no. 5, pp. 472-482, Sep. 1981. 

S.P. Harbision and G.L Steele, C: A Reference Manual, Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 
Section 4.8 

K. Thompson and D.M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, Murray Hills, NJ. Seventh 
Edition, 1979. 

Hypertext '87 Papers November 1007 



On Designing Intelligent Hypertext 
Systems for Information Management 
in Software Engineering 

Pankaj K. Garg and Walt Scacchi 
Computer Science Department 
University of Southern California 
Los Angeles, CA 90089-0782 
garg or scacchi@cse. usc.edu 

ABSTRACT 

Information management in large scale software engineering is a challenging problem. Hypertezt 

systems are best suited for this purpose because of the diversity in information types that is permitted 

in the nodes of a hypertezt. The integration of a hyperlezt system with software engineering tools 

results in a softwa.Ie hypertext system. We describe the design of such a system called DIF. Based 

on our ezperiences in using DIF, we recognized the need and the potential for developing a hyperlezt 

system that could utilize knowledge about its users and their software tasks and products. Such a 

system might then be able to act as an active participant in the software process, rather than being 

juist a passive, albeit useful storage facility. As sv.ch, we define an Intelligent Software Hypertezi 

System {I-SHYS1) as a software hypertezt system .which is knowledgeable about its environment and 

can use such knowledge to assist in the software process. This kn8wledge i• partly embedded in the 

design of an I·SHYS (in terms of the 'agents' that I-SHYS supporls) and parlly defined during the 

use of I-SHYS (in terms of tasks that agents perform). We present a framework for defining and 

organizing this knowledge, describe potential uses of such knowledge, identify limits of our approach, 

and suggest methods for circumventing them. 

1 INTRODUCTION 

Hypertext systems are useful for information management in large scale software engineering because 

of the diverse types of information permitted in hypertext nodes [BEH*87]. Ti all the information 

related to a software system is stored in the same hypertext then we call it a Software Hyperlezt. 

A Software Hypertext System which supports the management of a software hypertext can, in 

conjunction with various software engineering tools, provide an Integrated Software Engineering 

Environment [Hen86]. The advantage of this combination (hypertext system+ software engineering 

tools) is that one can exploit the facilities of tools for automated processing of information, while 

facilities of the hypertext system can be used for storing and retrieving information. We have 

1 Pronounced eye-shia 

November 1987 Hypertext '87 Papers 409 



410 

designed and implemented such a software life cycle Documents Integration Facility (DIF) in the 

System Factory at USC (GS88]. 

Our experiments with DIF led us to the notion of an Intelligent Software Hypertext System 

(I-S!IYS). DIF is a passive system with little explicit knowledge about its surrounding environment. 

In l-S!IYS we wish to design an active hypertext system, which participates and assists in the process 

of engineering large software systems throughout their life cycle". As such, a software hypertezt 

environment consists of 

1. The software engineering tools that process documentable software descriptions stored as a 

hypertext; and 

2. The software engineering tasks that people perform through it. 

If we encode knowledge about the hypertext environment into the hypertext system, such that the 

system can actively assist in the activities of its environment, then we get an Intelligent Hypertext 

System. For an Intelligent Software Hypertext System (1-SHYS), we have identified three perspectives 

of such knowledge: 

1. Knowledge of the capabilities and uses of software tools that the environment provides; 

2. Knowledge about the roles people play in the software process; 

3. Knowledge about the tasks and actions people perform at different stages in the software 

process. 

Before we can formalize and encode such knowledge in an l-SHYS, we need to understand the 

software process from these perspectives. This paper describes our current understanding in this 

regard. In Section 2 we present our understanding of a Software Hypertext System by giving an 

overview ofDIF. Issues about interfacing tools with a. hypertext system are discussed in this section. 

Section 3 describes the software process by categorizing the roles of agents in the process, describing 

the tasks that they perform, and detailing how their tasks can be broken down into actions performed 

on a software hypertext. It also discusses the attributes which can be used to categorize interactions. 

Finally in Section 4 we summarize the discussion and suggest future work in this direction" 

2 DIF: A SOFTWARE LIFE CYCLE DOCUMENTS INTEGRATION FACILITY 

DIF is a software hypertext system which helps integrate and manage the documents produced and 

used throughout the life cycle of software projects. It was designed for use in the System Factory, an 

experimental laboratory created at USC to study the development, use, and maintenance of large 

2For simplicity, we use the term. "software process" as shorthand for the process of engineering large software 
systems throughout their life cycle. 

Hypertext '87 Papers November 1987 



software systems [Sea86]. It has been used in the System Factory to support the software process 

for more than a dozen software systems, resulting in the creation of some 40Mbytes of software 

hyperte.xt3 • 

DIF provides an interface to a hypertext-based information storage structure and to a structured 

documentation process. A hypertext of software information is built by teams of software engineers 

over eight life cycle activities. DIF provides several features which allow users to view information 

related to a software system in an integrated manner within and across projects. The document · 

nodes are internally organized as a tree ofUnix directories and files (see Figure 1). Users ofDIF enter 

software process information into pre-defined (but redefinable) nodes of a software hypertext that 

are internally treated as files. Subsequently, all routine file management (e.g., creation of directories 

and naming of files for related document nodes) is handled by DIF. In total, the capabilities of 

DIF described below enable software engineers to document their software process in ways that 

support: (a) analysis of the consistency and completeness of formalized document nodes, (b) intra

and inter-document traceability, (c) formatting and display, (d) indexed or query-driven browsing, 

(e) documentation standards, (f) multi-version documents with/without sharable annotations, (g) 

reusable software component catalogs, and (h) online software inspections and walkthroughs. 

·The integration of software hypertext nodes as files and directories is invisible to the user of DIF. 

For instance, when entering information for the "operational requirements" of the system, the user 

does Iiot have to create the file for storing the text associated with the operational requirements; 

this chore is automatically handled by DIF. The user need ouly be concerned with creating or 

manipulating software descriptions without being concerned about how they are stored or where. 

This provides an object oriented environment of persistent software system descriptions rather than 

simply a loose collection of files and directories. This is reflective of the 'Next Generation Operating 

System' envisioned by Balzer [Bal86]. 

DIF also allows software engineers in the System Factory to develop parts of documents in parallel 

without worrying about concuiient access or integration issues. Hence person A could be writing 

the operational requirements of the target system while person B is writing the non-operational 

requirements. The individual efforts are automatically merged in the same hypertext. 

2.1 System Factory Structure 

The organizational structure supported by DIF in the System Factory is shown in Figure 2. In the 

System Factory the project manager prescribes what needs to be described in each document. In 

turn, these prescriptions implicitly represent the software process in effect within the structure of 

the software hypertext. There are also potentially several projects in the factory at the same time. 

3 We have also utilized its facilities to "publish" hard-copy, laser-printed renditions o£ this encyclopedic software 
docwnentation., where one complete printing produced a. series of listings about 4 feet tall afier binding. 

November 1987 Hypertext '87 Papers 411 



412 

0 OIAEC"TORlES 

0 Fll.ES {BTs) 

F-1 AEOUIREM6'n'S FOF\Iol 
F-2 SPECIFICATIONS FORM 
F.J ARCHITECTURAL DESIGN FORM 
F-1 SOJACECOOE f'OFI.O.I 
H-I( HAS KE'I'WOAO 

Figure 1: Hypertext of Software Documents in DIF 

Several software engineers work on each project, and all projects can be constrained to follow the 

same software (documentation) process. 

DIF supports two roles for users: a Super User role and a General User role. The two roles can 

be compared to the database administrator and end user respectively. In the Super User role, users 

define the factory structure (what p~oj~cts are in the factory and who is responsible for each), and the 

structure of the documents (what needs to be documented). In the General User role, users exploit 

DIF to create 1 modify1 and browse through the information hypertext. There are two levels at which 

a general user can operate: (1) at the information level, and (2) at the structure-of-the-information 

level. The rest of this section describes the functionalities of DIF. 

2.2 Forms and Basic Templates 

A Super User defines the forms and the Basic Templates (BTs) in the factory. One of the concerns 

of the System Factory was to ensure that all the projects have the same (standardized) structure of 

Hypertext '87 Papers November 1987 



System Factory 
Manager 

(Super User) 

Software Engineers (General Users) 

Figure 2: System Factory Structure 

documents. Thus each document is defined as a form. A form is a tree structured organization of 

Basic Templates (BTs) to be filled with information. A collection of related forms then implicitly 

models the software process, or tasks therein. For example, in the System Factory, the functional 

specifications form is shown in·Table 1. Such forms provide a way of specifying the process tasks to 

be followed by team members working on related projects. 

Section Number Section Heading 
Overview and summary of functional specification 1.0 
Informal narrative specification 2.0 
Narrative specification 2.1 
Functional diagrams 2.2 
Type lattice 2.2.1 
Functional network diagrams 2.2.2 
State~transition diagrams 2.2.3 
FOrmal specification 3.0 
Gist Processor Results 3.1 
BT Number BT Heading 

Table 1: Functional Specifications Form 

The Super User defines each form only once and all the projects inherit that form. When defining 

BTs the super user also defines the nature of information that needs to be given in each BT. This 

entails providing the attribute of the BT as being one of: 

•N arrative Text 
•Graphical Diagrams 

November 1987 

oN.uMIL Structural Specifications 
•Gist Functional Specifications 

Hypertext '87 Papers 

•C Source Code 
oExecutable Object Code 

413 



414 

This tells DIF which editor (e.g., a Gist language-directed editor) to use for a BT and which software 

tools to process the information of the BT. 

2.3 Project Information 

Super Users provide project information which consists of a list of projects and the software engineers 

working on them. This information enables DIF to cheek the read/write privileges of the users. 

General users are allowed to create, modify, and revise information related to their projects only. 

There is no restriction on reading the information of any project. Super Users have read/write 

privileges for all information. 

2.4 Information Level 

Facilities are provided in DIF for a user to enter, modify, and use the information required by the 

forms as dictated by the super use'\. Language-directed emacs-like editors are provided for all the 

formal languages that are used in the System Factory (e.g., Gist, NuMIL, and C [Sca86]). The 

general user enters the information in BTs without worrying about the files that need to be created. 

DIF automatically generates a unique filename depending on the project and the BT. 

Whole forms can be stored in the revision control system, RCS [Tic82] for backup and incremental 

revisions. Functions supported by DIF (through RCS) include: 

1. Checking in of a form. The user can ask DIF to cheek in a form into RCS. 

2. Checking out of a form. The user can check out a whole form from RCS. 

Options such as retrieving revisions through user defined identifiers, cut-<:>lf dates, etc. are available 

through the interface. This is an example of 'interface transparency' that DIF provides for the tools 

that it interfaces to (section 2.6). 

Request to process the information in a BT through a software tool can be made within DIF 

itself without entering the operating system. For example, if a BT contains C code, the user can 

request its compilation. Some such requests are handled through editor interfaces [Sta84], some are 

built into DIF (those which require the service of a System Factory tool as opposed to a Unix tool). 

Interfaces to nrolf/trolf, spell, etc. provide the user with a text processing environment akin to 

the documenters workbench (Dwb], while interfaces to mail, rn, and talk, support asynchronous and 

synchronous communications among project participants. Other tools available in the System Fac

tory (e.g., application generators, computer animation environment) [Sca86] can also be interfaced 

with DIF in a straightforward manner. 

Hypertext '87 Papers November 1987 



2.5 Structure-of-Information Level 

The structure-of-information• level allows the general user to navigate through the hypertext of 

information that is stored in D IF. 

The user ca.n navigate through the information in a project in the following ways: 

1. Links: The user (super or general) ca.n define links between BTs. The links are similar to 

the links allowed by most hypertext systems. Hence a person browsing the hypertext can 

add annotations to the currently visited BT, add links to other BTs, etc. For instance, the 

operational requirements of the system ea.n be linked up to the code/modules that support the 

capability. This, therefore, provides a mechanism for malntalning consistency a.nd traceability 

across documents. There are two key differences between the definition of links prevalent in 

hypertext literature (Con87] and those in DIF: 

• Links define relationships between existing nodes. Except for annotation links, links are 

precluded from creating new nodes. 

o Links are allowed to be operational links. This readily supports the eases where executable 

descriptions need to be linked to the source code. For example, a C code BT can be 

linked to the object code BT that represents that code. Such a link is defined in DIF as 

a.n operational link. Visiting that link results in the execution of the linked BT. Arbitrary 

shell procedure attachments to links will be supported in future versions of DIF. 

2. Keywords: For each .BT the user ea.n define keywords which describe the semantics of the 

information contained in that BT. The decision to allow for user defined keywords rather than 

providing automatically generated keywords was based on the·results of studies reported by 

researchers in information science [Sal86]. 

DIF stores the keywords associated with BTs in an Ingres relation. This allows the user of 

DIF to use the querying facilities of Ingres for navigating through documents using keywords. 

For example, the user can look for all BTs (within and across projects) which have a particular 

keyword, list the keywords of a BT, search for BTs which have keywords satisfying a pattern, 

etc. Standard funetionalities such as form-based querying are provided by DIF for users not 

trained in Que! [Que]. 

An interesting feature ofDIF is that it allows the reader of documents also to create keywords 

of their own. This allows new personnel in a project team to quickly tune the documents to 

their needs. 

4This is different from a 'database schem.a'. In a. schema the structure does not change with the information. 
whereas here the structure is dependent on the currently defined links. 

November 1987 Hypertext '87 Papers 415 



416 

3. Forms and Configurations: A Form is a tree-structured organization ofBTs. This provides 

the user with a convenient way of viewing the documents relating to each software process 

activity. 

To fully utilize the potentiafof the hypertext of information in DIF, the user can define his/her 

own configuration of BTs. A configuration is similar to a form, except that it is not enforced 

on all projects but is associated with the individual user who is browsing the documents. 

Configurations can be defined, not unlike forms, by defining the constituent BTs. Configura

tions can also be defined on the basis of the trail which a. user has followed while browsing 

through the information hypertext. Configurations a.re mainly used as a. mechanism for print

ing hardcopy documents, much like the path facility suggested by Trigg [Tri83]. 

The user information space is restricted to the project currently being 'visited' by the user. To 

use the information of another project the user has to explicitly visit that project. This means that 

the user cannot use the information level commands on the information of projects other than the 

one that is being visited. Structure-level information is available regardless of which project is being 

visited. This is done to avoid the risk of the user getting lost in the information space [Con87]. As 

an additional guidance, the current project and BT are displayed in the main menu. 

2.6 DIF+ Tools 

The basic idea in DIF is to provide a. system such th~t all the life cycle activities can be done through 

DIF itself. In this sense, DIF ca.n be considered a software engineering environment [Hen86]. With 

the progress· of the target software system through the various life cycle activities, DIF provides 

a uniform interface to access the appropriate tools as necessary, e.g.j a functiOnal specification 

analyze~ or NuMIL Processor. In the interfaces to these tools, it supports the notion of 'interface 

transparency' i.e., DIF provides unobtrusive use of the tool that it interfaces to, while providing 

meehanizms that the tool itselflacks. 

Figure 3 shows the organization of DIF with respect to the other tools in the System Factory. 

The basic set of tools comprises [Sca86J: 

1. A Gist Specification Analyzer and Simulator which facilitates the development and use of the 

formal functional specifications of software (sub)systems under development [BGW82,Sca85]; 

2. A Module Interconnection and Interface Definition processor that supports the design and 

evolution of multi-version system (module) configurations described in the NuMIL language 

[NS87b,NS87a]; 

3. An EMACS-like language-directed editing environment which helps in the construction and 

revision of structured documents and system description languages such as Gist, NuMIL and 

C;and 

Hypertext '87 Papers November 1987 



res 

Information Bank 

. 
DIF 

UNIX tools 
mail, make, 
editors, talk 
nroff/troff 

Figure 3: Organization of DIF 

GIST 
Specifications 

Analyzer 

NuMIL 
Processor 

Visualizer 

4. A system visualizer which graphically presents system configurations expressed in NuMIL 

[GS87]; 

5. Unix tools such as Res, Make, Spell, N roff/Troff, Talk and Mail. The interface to the mailing 

system helps individuals to coordinate their activities by structured messages consisting of 

BTs. 

DIF supports the notion of Extensibility in its interfaces to tools. It is simple to add new tools 

to the environment. 

Tool Options: Most tools allow for the input of "switches" to tune the behavior of the tool for 

the application at hand. For exam;_.l~e, while compiling a C program on Unix, the user can give a 

'g' option which informs the compiler that it should generate symbol table information to be used 

by the symbolic debugger. An interesting way to view the switches is to consider them as means 

of informing the tool of some aspect of the environment in which the processing of information is 

taking place. For example, in the above case, the compiler is being informed that the code being 

compiled is an experimental one and is currently being debugged. Such information is required not 

only for purposes of the switch but is also useful in other places such as reporting the status of 

the project. The hypertext system can store this information generically, and then 'automatically' 

generate appropriate switches for the compiler. As another example, consider the 'c' option of the C 

November 1987 Hypertext '87 Papers 417 



418 

compilet on the Unix system, which informs the compiler that the code in the file is part of a bigger 

system and the compiler should not load the file using a loader. This information is required at 

another level, viz. the architectural design of the system. Hence, the information need be given to 

the hypertext system only once and it can use it at multiple places. This is currently not provided 

by DIF and is planned for I-SHYS. 

2.7 Summary 

In this section we have presented an overview of a Hypertext System to manage software life cycle 

documents and suggested interesting ways in which smart interfaces to software tools can be pro

vided in such a system. Our next concern is that the process model considered by DIF (described to 

it by way of Forms and BTs) is at a level of granularity too high to provide anything but a passive 

repository and processing environment that organizes document products developed through a soft

ware process. In the following section, we describe ways of breaking down the process model into 

finer grained actions such that they can be better supported by a.n r-SRYS. The treatment in this 

paper is semi-formal; a formal presentation is given in [Gar87b]. 

3 AGENT-TASK-PRODUCT PERSPECTIVE OF THE SOFTWARE PROCESS 

DIF is a passive software hypertext system in that it waits for users to enter software descriptions 

into its network of linked nodes. However, it is incapable oiinteracting with its users to help elicit 

emerging software descriptions, nor can it explicitly represent and utilize knowledge of what roles its 

users play when performing different software process tasks. Instead, we would like to have a system 

that not only subsumes the capabilities of DIF, but does so in ways that it can e:ventually become 

an active agent that participates in the software process. Thus, such a hypertext system shonld 

be knowledgeable about its users, their tasks and products, and be able to ask/answer questions, 

simulate software process tasks, and to reason about and explain its behaviorb 

We first seek capture and represent knowledge about the 'agents' participating in the software 

process. Agents are people or intelligent systems that play well defined roles. An individual in the 

software process can play the role of more than one agent. For example, a person who has designed, 

implemented, and used a. personal database management system is at once a designer, implementor, 

manager, and a user. We consider the following four categories of agents [GLB*83]: 

1. Users: Agents who will use the target software system (end users) and/ or agents who want 

the system developed (clients). 

2~ Managers: Agents who are responsible for software project management. There are twO 

roles oi managers that we consider, agents who coordinate the activities of other agents in 

the process (Process Manager, PM), and agents who analyze and evaluate the status of the 

process (Quality-Assurance Manager, QAM). 

Hypertext "87 Papers November 1987 



3. Developers: Agents who develop the system. Their tasks involve design and innovation, where 

they transform the Users' requll:ements into a working target system. Developer agents play 

roles including Analysts, Specifiers, Designers, Implementors, Testers, and Integrators. 

4. Maintainers: Software systems are frequently modified to take care of changes in the requll:e

ments or discovery of errors in system development. Maintainers take care of such modifica

tions, but may not have participated as the system's initial developers. 

Notice that DIF considered only two categories of agents: (1) Super User (equivalent to the Manager 

and Client in the new framework), and (2) General User (equivalent to the End User, Maintainer, 

and Developers in the new framework). 

The advantage of this categorisation is that it helps us conceptualize the functions of agents 

in the process: each function viewed as a task associated with one kind of agent. This does not 

preclude the existence of interactions between agents, which become necessary when agents have 

intertwined tasks. 

The next step is to identify the software process tasks of agents and to see how an 1-SHYS can 

assist them. For this purpose we define: 

• Meta-tasks which define the nature, configuration, and possible orderings of other tasks in 

the software process. Much of this is based on our study of the software process from an 

organisational perspective (Sca84]. 

• Product tasks that agents in the software process perform, borrowing from our empirical anal

yses of software engineering [Sca81,BS87] and from definitions prevalent in the software engi

neering literature (e.g., see [Boe81]). 

• Actions that need to be performed in order to fulfill the commitments of tasks. 

• Primitive actions which can be performed on a hypertext system. 

The distinction between an action and a task is that a task represents the action of an agent 

which entails the fulfillment of some commitment [McD85J. Rene~, creation of a sorting program is 

an action; but creation of a sorting program by an· agent, A for sorting the files on .a tape, T is a 

task. 

The following sections elaborate this categorization. 

3.1 Meta-Tasks 

Meta-tasks are all performed by an agent assuming the role of a. 'Manager'. We reiterate that an 

agent does not necessarily have a one-to-one mapping with the individuals in the process. The 

following meta-tasks have been identified [Sea84, p. 46]: 

November 1987 Hypertext '87 Papers 419 



420 

• Planning(PM5 ): Detailing the tasks that need to be performed in the software process. 

• Organizing( PM): Allocating resources to the agents. 

• Staffing(PM): Assigning agents to tasks. 

• Directing(PM): Giving help to other agents in terms of what decisions to make in situations 

of uncertain or incomplete information. 

• Coordinating(PM): Getting groups of people to work collaboratively. 

• Scheduling(PM): Assigning time constraints on tasks. 

• Validating(QAM): Confirming that the running system meets the reqnirements ofthe Users. 

• Verifying(QAM): Confirming the consistency, completeness, and integrity of evolving software 

descriptions. 

Each meta-task has a. document or processable description (e.g., plans, schedules, work breakdown 

structure) associated with it. Accordingly, each meta-task needs to encode a different source of 

knowledge about the software process, and their relationship to other meta-tasks and product tasks 

in order to be capable of providing active participation. 

3.2 Product Tasks 

Product related tasks are carried out by agents assuming the role of either a. Developer, a. Maintainer, 

or a. User. Users pose reqnirements for the system and use the system. Maintainers change the system 

based on emerging reqnirements of Users. Developers build the system using requirements posed by 

the Users and guidelines suggested by PMs. Several tasks can be performed in this regard: 

1. Requirements Definition (Clients) 

2. Requirements Analysis (Analysts) 

3. Functional Specifications (Specifier) 

4. Architectural Design (Designer) 

5. Detailed Design (Designer) 

6. Implementation (Implementor) 

7. System Integration (Integrator) 

8. System Delivery (Integrator) 

5 Agent category responsible for the task 

Hypertext '87 Papers November 1987 



9. System Use (End User) 

10. Fixing bugs in the system (Maintainer) 

11. Creating revisions of the system (Maintainer) 

12. Enhancing the system (Maintainer) 

13. Creating new versions of the system (Maintainer) 

14. System bug discoveries and reporting (End User) 

15. Testing (Tester) 

16. Requesting Enhancements on the system (End User). 

The definition of these tasks can be found in any book on software engineering (e.g., see [BoeiH]). 

As before, each product task has an associated document or software description that is produced 

upon its completion. In turn, forms with computational methods attached are needed in order to 

help elicit the pertinent software inforrq.ation in order to evaluate consistency, completeness, and 

integrity of intra- and inter-tasks products. 

The tasks viewed from this viewpoint result in a task diagram as shown in Figure 4. The figure 

shows the distribution of tasks of the three agents: Maintainers, Developers, and Users, with an 

example of a task of PM and that of a specifier elaborated. For a detailed account of the process 

related tasks, the reader is referred to (SBB*86]. The intertwining of tasks of multiple agents leads 

to requirements of interaction and collaboration, as discussed in section 3.5. 

November 1987 Hypertext '87 Papers 421 



CLIENTS 

POSE 
REQUIRE~S 

PMs 
SPECIFIERS 

Develop 
Functional 

specifications 

Integrate 
and 

Test 

IMPLEM::NTORS 
DESIGNEF)S 

Develop· I , Implement 
~ Architectural C,tructur~ System 

Design Ill> specs. 

INTEGRATORS 
AND 

TESTERS 

----------- 1• SPECIFIERS r---:-:-;--, 
understand 

Requirements 
Understand· 
tunc. specs. 

Access 
Specs. Library 

L ---- t -- / 

- -_-.\%'"'--114"",.... I Develop I 
Develop I I Develop 

informal specs ---> formal specs ......... ~ specs. doc . 

....... 0 "'., "' "' .. a> ..... , ..... • ::i 

----"> WEAKDEPENDENCY 

• •••• > SlRONG DEPENDENCY 

FIGURE 4: AGENTS, TASKS, AND 
PRODUCTS 



3.3 Actions 

Actions are obtained from the definition of tasks by detailing the steps that need to be done by the 

agent in order to effectively carry out the task. 

As an example consider the Develop functional specifications task in Figure 4. This task 

can be broken down into several actions [Ben87]: 

• Understand Users' reqnirement 

• Understand functional specifications of the system 

o Develop informal specifications ofthe system 

• Access library of exemplar specifications 

• Develop formal specifications of the System 

• Develop a specifications document for the system. 

Each action can be carried out by the Specifier agent. The dependency of actions (as shown in 

Figure 4) indicates that: (1) (Weak Dependency) If action A is dependent on action B, then action 

A cannot be effectively started unless there is a successful completion of action B. This means that A 

can possibly be started before the end of action B, but the results will not be as effective as when A 

is started after B is finished. For example, a specifier can start developing the formal specifications 

before looking at a library of exemplar specifications. (2) (Strong Dependency) If A is dependent 

on B, then A cannot be started unless B has finished. For example, a specifier cannot develop the 

specifications document unless the formal and the informal specifications have been written. 

These tasks can be related to the BTs defined for the Functional Specifications Form (Table 1) 

as follows: 

• Understand users 1 requirement leads to the informal narrative specification BT 2.0j 

• Understand functional specifications and Develop intormal specifications of the 

system lead to the Narrative Specifications BT 2.1; 

• Access library of exemplar specifications and Develop formal specifications of 

the system lead to BTs 2.2 through 3.0; and 

• Develop specifications document for the system leads to the Functional Specifications 

Form, with all its BTs integrated. 

The support provided by DIF in integrating the results of multiple tasks is now clearer. But DIF 

deals with only the results of tasks, and not how tasks are performed. Hence it supports the tasks at 

a. very coarse level of granularity, ignoring the actions that compose the task. In an I-SHYS our focus 

November 1987 Hypertext '87 Papers 423 



424 

is to develop definitions of tasks in terms of the actions that compose them, such that the actions 

are simple enough to be automatically supported. As an aside, we must caution the reader that 

we are not suggesting to reduce the creative aspects of the process. Rather, we are suggesting to 

reduce its non-creative aspects which encumber creative aspects. This is in tune with the philosophy 

being pursued by Delisle and Schwartz in their definition of an Idea Processor [DS87], by the Colab 

project at XEROX, PARC (FS86] and project Nick at MCC [BCE*87). 

To see how this could be achieved, consider the action Understand Users's requirements, which 

is part of the task of Develop functional specifications. It can. be broken into finer grained 

actions as follows: 

• View the requirements document; 

• Create notes of the key points of the requirements; 

• If something is unclear, communicate with the Users to understand it better; 

• If still unclear then discuss it with fellow Developers, PMs, or Users; 

• Organize notes about the understanding. 

This leads to the definition of Primitive Actions on a hypertext as follows. 

3.4 Primitive Actions 

Consider the hypertext to consist of objects and relationships between the objects6 (Gar87a]. (In 

DIF these were BTs and links between BTs.) From the example in the previous subsection, we can 

identify the following primitive actions: 

• VIEW(REQUIREMENT)- 'look at' an information object containing a User's requirement. 

o ANNOTATE(REQUIREMENT)- attach notes of 'understanding' to an object X. 

• EXPLAIN-REQUEST(REQUIREMENT, U)- request an explanation of a requirement from 

a User agent. 

• DISCUSS(REQUIREMENT, {At, A2, ... An}) - discuss a requirement with other agents of 

the process. 

o PRINT-ANNOTATIONS(REQUIREMENTS)- organi2e and print the annotations attached 

to the requirements. 

The action Understand User's Requirements can be understood in terms of these primitive 

actions as the following diagram shows: 

6The objects are the nodes in the hypertext graph, and the relationships are the edges. 

Hypertext '87 Papers November 1987 



DISCUSS( REQUIREMENT, 
{User, PM, Developers}) 

EXPLAIN-REQUEST(REQUIREMENT, 
User) 

PRINT-ANNOTATIONS(REQUIREMENTS) 

Consider the diagram as a non-deterministic flowchart. The double lined arrows show the rela

tion 'elaboration' [SFG85] which means that the action ordering at the head of the arrow can be 

considered as the elaboration of the action at the tail of the arrow. 

The primitive actions developed in this manner can be generalized by replacing REQUIREMENT 

with an arbitrary object X. For example, we can have an action UNDERSTAND(X) which is com

posed of VIEW(X), DISCUSS(X,a), EXPLAIN-REQUEST(X,(), ANNOTATE(X), and PRINT

ANNOTATIONS(X), where a is a set of agents, and ( is the agent responsible for the creation of 

X. 

3.5 Discussion 

There are several ways that this approach can result in knowledge about software process agents, 

tasks, and products being encoded in an I-SHYS. In this subsection we discuss these issues. 

Establishing Context: The break up of tasks into actions and of actions into primitive actions 

results in the establishment of contezt [DS87] of the hypertext. For example, the Understand Users 

Requirements establishes the context in which one of the five primitive actions can be taking place. 

An 1-SHYS can therefore automatically prune out the objects and relationships that are not pertinent 

to one of these actions. Since the action of Understand Users' Requirements is carried out over 

a period of time, this can reduce the information overload on the agent, as the agent does not have 

to worry. about objects and relationships which are not relevant to his/her immediate action. In 

current practices context establishment would have to be done manually by the users of hypertext 

November 1987 Hypertext '87 Papers 425 



426 

and can lead to much semantic complexity [DS87]. 

Semantically Rich Commands: The analysis natw:ally leads to definitions of primitive actions 

which can be converted into semantically rich commands. For example, it is possible to provide 

commands such as DISCUSS(X,A) which informs the hypertext to start a discussion about object 

X with agent A. Coordination tools such as suggested by Winograd (Wm87] and Sluzier and Cash

man [SC84] can then be integrated with the hypertext system, to 'intelligently' support discussions 

between agents. Similarly there can be a command to PRINT-ANNOTATIONS(X) which instructs 

the hypertext system to organize and print the annotations attached to an object. The encoding of 

what kind of organization is required can be provided along the lines of configurations suggested in 

section 2.5. 

Task Coordination: A break down of tasks into the actions that constitute them, allows the hy

pertext system to be informed about the agents and wha.t tasks they are expected to perform. This 

allows the hypertext system to perform task coordination, by which it can trigger demons in case ac

tions which were supposed to be done are not done, or if performing an action requires a response from 

an agent. For example, if agent A, performs the action EXPLAIN-REQUEST(REQUIREMENT, 

Ur), then agent Ur is expected to respond with either an explanation, denial, or an alternative 

suggestion [Win87]. If U1 does not respond within a certain time framework then a demon can be 

fired which suggests to At to either: abandon the request, send a complain to a manager, or ask 

someone else. There are a whole set of such communication acts which arise in the course of a 

software process and which need automated support for their coordination [Ked83]. 

Interactions: As we saw in the previous examples, there are actions which explicitly require 

the intervention of other agents. For example, the action EXPLA~-REQUEST(X,A) requests the 

explanation of object X by agent A. To support such interactions we have identified the following 

attributes ofinteractions which can possibly influence the nature of support required by them: 

Agents: The categories and number of agents that interact in completing product or meta-tasks. 

Communicated-object: descriptive object which is the focus of-interaction. 

Signal: medium or language used for the interaction. The various forms of signal of interaction that 

we consider are: (1) natural language, (2) figures and graphs, (3) formal language (which can be 

subjected to automated semantic analysis), and ( 4) semi-formal language (language which has a 

mixture of natural language, figures, graphs, and formal language). 

Time: time period over which the interaction is carried out. We distinguish (1) duration of interac

tions as being either long or short, or (2) whether the interaction is synChronous or asynchronous. 

Hypertext '87 Papers November 1987 



Space: the geographical relationship of agents interacting. This can be either: (1) distributed, implying 

that the interacting agents are geographically dispersed and therefore cannot engage in face to face 

discussions; or (2) local, meaning that the interacting agents are in the same geographical location 

and therefore can engage in face to face discussion. 

Each of the interaction attributes has an inJiuence on the functionalities demanded of the hyper

te:rl system. Most ofthe functionalities can be trivially mapped from the value of the attribute. For 

example, a interaction carried out synchronously requires a computer mediated real time conferencing 

support. Similarly a interaction carried out asynchronously requires some structured mail support 

[MGL*87]. The advantage of encoding this information into an I-SBYS is that in a complex process 

such as the software process, the demands on the functionalities of the hypertext system can change 

depending on the stage at which the process is. If the hypertext system 'knows' about this, it can 

change itself to meet the requirements imposed by the stage of the process. 

4 SUMMARY AND FUTURE WORK 

In this paper we have described a Software Hypertext System DIF. We have then shown how notions 

of a Software Hypertext System can be extended to the concept o( an Intelligent Software Hypertext 

System (I-SBYs), by studying the environment ofi-SBYS from a tools, tasks, and interaction frame

work. Implementation of parts of I-SBYS are in progress using KnowledgeCraft on the TI Explorer 

LISP machine. We are also building a theoretical model of 1-SBYS using an extension of the theory 

of Situation Calculus [McD85,Gar87b] 

There is a limitation in the approach presented in this paper for the construction of r-sBYS. The 

limitation has been suggested by the results of empirical studies of the software process (Sca84,BS87]. 

An assumption made in systems such as I-SBYS is that the software process is a closed system wherein 

the tools used in the process, the tasks performed in the process, and the interaction patterns of 

the process, can be defined a priori. Empirical investigations of the process, however, indicate that 

the software process is an ope11 system [Hew86] where the tasks and interactions are determined 

by complex relationships between the process, the agents in the process, the setting in which the 

process is carried out, and the product which is being developed. These concepts are illustrated by 

categorizing the tasks and interactions as: 

• Primary Tasks versus Articulation Tasks [BS87,Gas86], and 

o Routine Interaction versus Non-routine interaction [Gas86]~ 

Prirn':"'Y tasks are the tasks prescribed by the policies of the process. Al:ticulation tasks are a 

non-deterministic sequence of actions that must be performed in order to effectively carry out a 

primary task. Articulation tasks emerge when primary tasks descriptions are incomplete to handle 

November 1987 Hypertext '87 Papers 427 



428 

llllexpeeted ciJ:cumstances such as when breakdowns, foul-ups, or resource bottlenecks suddenly 

emerge. An example will make this clearer7 : 

Suppose that the primary task of an agent is to print a report detailing an understand· 

ing of the functional specifications of a system. Suppose that the agent has developed a 

complete understanding, and in order to print the report the nse of a text-editor and a 

text-formatter are required. Also suppose that the agent is not familiar with any of the 

text editors available. Then in order to accomplish the primary task (that of printing a 

report) the agent has to accomplish the articulation task of understanding a text editor. 

In parallel to the notions of primary tasks and articulation tasks, we distinguish between two 

kinds of interactions: 

1. Routine interactions, and 

2. Non-routine interaction. 

A routine interaction occurs as paxt of the 'ideal~ software process and not because of situations 

peculiar to particular settings. Programming, considered as an interaction between implementor9 

editor, and compiler is a routine interaction. Non-routine interactions emerge when primary software 

process tasks depart from expectation or plan. For example, negotiations for competing resources 

by multiple agents may be a. non-routine interaction. Ideally a programmer should be able to follow 

Wirth's step-wise refinement paradigm and develop efficient 'literate programs' [Knu84]. But in 

. real world situations, progress is not readily smooth and thus the programmer might have to try 

non-routine interactions (e.g., discuss issues with associates) to develop the final program. 

Systems such as 1-SHYS can provide support for Primary tasks and Routine interactions. For 

supporting Articulation tasks and Non-routine interaction, the approach suggested in this paper 

fails. As an alternative, one can explore the use of Case Based Reasoning. If we analyze articulation 

tasks and non-routine interaction, we find that these can be successfully accomplished by agents 

who have had similar experiences before. Case Based Reasoning provides a framework by which 

experiences of several agents can be encoded in a knowledge based system and the system can provide 

suggestions to the agents by examining the actions of agents who were faced with similar situations 

before. Encoding such knowledge requires a set of empirical studies which acquire knowledge about 

articulation tasks and non-routine interaction in various projects. It requires a framework in which 

to encode such knowledge such that similarity-reasoning can be performed on present situations to 

the situations in past cases. Our group has started efforts in this direction [Ben87',J az87]. 

7 This example is the essence of a more detailed example presented in [BS87] 

Hypertext '87 Papers November 1987 



5 ACKNOWLEDGMENTS 

The ideas in this paper have benefited from discussions with Salah Bendifallah and Abdulaziz Jazzar. 

Comments from Salah Bendifallah on earlier versions of the paper have improved the presentation. 

The work reported here has been supported through research grants or contracts with AT&T Infor

mation Systems, TRW Systems Engineering Design and Development, Hughes Radar Systems Group 

under contract number KSR576195-SN8, ffiM through the Socrates project at USC, and MDA 903-

81-C-0331 from DARPA to USC/lSI. In addition, the first author acknowledges the support provided 

by the USC graduate school through the All-University-Pre-Doctoral Merit Fellowship. 

References 

[Ba186] R. Balzer. Living in the Next Generation Operating System. In Proceedings of the 1Oth 

World Computer Conference, IFIP Congress, Dublin, Ireland, September 1986. 

(BCE*87] M. Begeman, P. Cook, C. Ellis, M. Grat; G. Rein, and T. Smith. PROJECT NICK: Meet

ings Augmentation and Analysis. In Computer Supported Cooperative Work Conference, 

1987. 

(BEH087] T. BiggerstaJf, C. Ellis, F. Halasz, C. Kellog, C. Richter, and D. Webster. Information 

Management Challenges in the Software Design Process. Technical Report STP-039-87, 

MCC, Software Technology Program, January 1987. 

[Ben87] S. Bendifallah. Understanding Software Specifications Work: An Empirical Analysis. 

PhD thesis, Computer Science Department, U niveristy of Southern California, December 

1987. Forthcoming. 

(BGW82] R. Balzer, N. Goldman, and D. Wile. Operational specification as the basis for rapid 

prototyping. ACM SIGSOFT Software Engineering Notes, 7(5):3-16, 1982. 

[Boe81] B. Boehm. Software Engineering Economics. Prentice Hall, Englewood Cllifs, NJ, 1981. 

[BS87] S. Bendifallah and W. Scacchi. Understanding Software Maintenance Work: An Empir

ical Analysis. IEEE Transactions on Software Engineering, SE-13, March 1987. 

(Con87] Jeff Conklin. Hypertext: An Introduction and Su:rvey. Computer, 20(9):17-41, Septem

ber 1987. Also available as MCC Technical Report no. STP-356-86, Rev. 1. 

(DS87] 

(Dwb] 

November 1987 

N. Delisle and M. Schwartz. Contexts: a Partitioning Concept for Hpertexts. In Com

puter Supported Cooperative Work Conference, 1987. 

Documenters Work Bench. UNIX Documentation. 

Hypertext '87 Papers 429 



430 

[FS86] G. Foster and M. Stefik. Cognoter, theory and practice of a colab-orative tool. In 

Proceedings of the Computer Supported Cooperative Work Conference, pages 7-15, 1986. 

[Gar87a] P. Garg. Abstraction Mechanisms in Hypertext. 1987. To be presented at Hypertezt '87. 

[Gar87b] P. Garg. Theoretical foundations for Intelligent Software Hypertext Systems. 1987. 

Computer Science Department, USC, In preparation. 

[Gas86J L. Gasser. The integration of computing and routine work. ACM Transactions on Office 

Information Systems, 4{3):205-225, July 1986. 

[GLB*83] C. Green, D. Luckam, R. Balzer, T. Cheatham, and C. Rich. Report on a Knowledge 

Based Software Assistant. Technical Report KES.U.83.2, Kestrel Institute, June 1983. 

(GS87] 

[GS88] 

P. Garg and W. Scacchi. Software Hypertext Environments for Configured Software 

Descriptions. 1987. Submitted for publication, 1987. 

P. Garg and W. Scacehi. A Hypertext System for Software Life Cyde Documents. Jan

uary 1988. To Appear in Proceedings of the 21st Hawaii International Conference on 

System Sciences. 

[Hen86] P. Henderson, editor. Proceedings of the ACM SIGSOFT/SIGPLAN Software Engi

neering Symposium on Practical Software Development Environments. ACM, SIG~LAN 

notices, voL 22, no. 1, Palo Alto, California, Dee. 9-11, 1986. 

[Hew86] C. Hewitt. Offices are open systems. A CM Transactions on Office Information Systems, 

4(3):271-287, July 1986. 

(Jaz87] A. Jazzar. A Model for Managing Software Documents. PhD thesis, Univeristy of South

ern California, December 1987. Computer Science Department, Forthcoming. 

(Ked83] B. I. Kedzierski. Knowledge-Based Communication and ManagemeJt Support in a System 

Development Environment PhD thesis, University of Southwestern Louisiana, November 

1983. Avialable as Kestrel Institute Technical Report KES.U.83.3 kestrel Institute Palo 

Alto California. 

[Knu84] D. E. Knuth. Literate Programming. The Computer Journa~ 27{2):97-111, 1984. 

[McD85] D. McDermott. Reasoning about plans. In J. R.Hobbs and R. C. Moore, editors, Formal 

Theorie• of the Common Sense World, pages 269-317, Able.x Publishing Corporation, 

Norwood, New Jersey, 1985. 

(MGL*87] T. W. Malone, K. R. Grant, K Lai, R. Rae, and D. Rosenblitt. Semi-structured messages 

are surprisingly useful for computer-supported coordination. In Computer Supported 

Cooperative Work Conference, 1987. 

Hypertext '87 Papers November 1987 



(NS87a] K. Naryanaswamy and W. Scacchi. Database Foundation to support Software Systems 

Evolution. The Journal of Systems and Software, 7(1):37-49, March 1987. 

[NS87b] K. Naryanaswamy and W. Scacchi. Maintaining Configurations of Evolving Software 

Systems. IEEE Transactions on Software Engineering, SE-13(3):324-334, March 1987. 

[Que] 

[Sal86] 

Ingres Reference ManuaL Unix 4.2BSD Documentation. 

G. Salton. Another look at Automatic Text-Retreival Systems. Communications of the 

ACM, 29(7):648-656, July 1986. 

[SBB*86] W. Scacchi, S. Bendifallah, A. Bloch, S. Choi, P. Garg, J. Skeer, and M. J. Turner. 

[SC84] 

[Sca81] 

[Sca84] 

[Sca85] 

[Sca86] 

Modelling the Software Process: A Knowledge Based Approach. 1986. System Factory 

Unpublished Manuscript. 

S. Sluzier and P. M. Cashman. XCP: An Experimental Tool for Supporting Office Pro

cedures. In IEEE 1984 Proceedings of the First International Conference on Of}'U!e Au

tomation, lEEE Computer Society, Silver Spring MD, 1984. 

W. Scacchi. The Process of Innovation in Computing: A Stv.dy of the Social Dynamics 

of Computing. PhD thesis, Department of Computer Science, University of California, 

Irvine, 1981. 

W. Scacchi. Managing software engineering projects: a social analysis. IEEE Trans. 

Software Eng., SE-10(1):49-59, January 1984. 

W. Scacchi. Software specification engineering: an approach to the construction of evolv

ing system descriptions. 1985. Research Report USC/Information Sciences Institute 

Marina Del Rey CA in preparation. 

W. Scacchi. A Software Engineering Environment for the System Factory Project. In 

Proc. 19th Hawaii Intern. Conf. System Sciences, 1986. 

[SFG85] A. Sathi, M. Fox, and M. Greenberg. Theory of activity representation in project man

agement. IEEE PAM!, September 1985. Special issue on principles of knowledge based 

systems. 

[Sta84] 

[Tic82] 

November 1987 

R. Stallman. EMACS: The Extensible, Customizale, Self-Documenting Display Editor. 

In D. R. Barstow, H. E. Shrobe, and E. Sandelwall, editors, Interactive Programming 

Environments, pages 300-325, McGraw-Hill Book Company, 1984. 

W. Tichy. Design, Implementation, and Evaluation of a Revision Control System. In 6th 

International Conference on Software Engineering, pages 58-67, Tokyo, Japan, 1982. 

Hypertext "87 Papers 431 



432 

[Tri83] R. H. Trigg. A Network-Based Approach to Tezt Handling for the Online Scientific 

Community. PhD thesis, Maryland Axtifttial Intelligence Group, Uuiversity of Maryland, 

November 1983. 

[Wm87] T. W"mograd. A langnage/action perspective on the design of cooperative work. In 

Computer Supported Cooperative Work Conference, 1987. 

Hypertext '87 Papers November 1987 



AUTHOR·s 

INDEX 



A u r H o R 's I N o E x 

Akscyn, Robert .....•.............••................... Knowledge Systems lncorporated .................................••.•............•........... 1 

Anderson, Kenneth T .......................••................•. Brown University ...........................••••..................•...................... 67 

Bader, Gall ............................................................. Brown University ..........•.•.............•...............•••••......................... 67 

Beeman, William 0 . .............................................. Brown University ...............••..................•.................................... 67 

Begeman, Michael L ....................•................................. MCC ..•••.•................................••.................................•.... 247 

Bell, Brigham ....................•...............•............ The University of Colorado .............................................••............... 215 

Bigelow, James ....•.•............•...•........................ Tektronix, Incorporated ...•.................•................................•••........ 397 

Bolter, Jay David ...............................•.......... University of North Carolina ............•.•...............................•.•.............. 41 

Brown, P.J ................................ Workstations Umited and the University of Canterbury ........................................... 33 

Campbell, Brad ................................................. Tektronix, lncorporated ................................................................... 21 

Charney, Davida ...................................... The Pennsylvania State University ........................................................ 109 

Chimera, Rick ................................................ Carnegie Mellon University .............................................................. 121 

Collier, George H ....................................... Bell Communications Research .......................................................... 269 

Conklin, Jeff .................................................................... MCC ............................................................................... 247 

Crane, Gregory .................................................... Harvard University .................................................................. , .... 51 

Ferguson, Gordon J .................................... University of North Carolina ............................................................. 195 

Fox, Barbara .................................................. The University of Colorado .............................................................. 215 

Frlsse, M.D., Mark E .......................... Washington University School of Medicine .................................................... 51 

Garg, Pankaj K • ........................................ University of Southern California .................................................. 375,409 

Gillespie, Terllyn ........................................... Carnegie Mellon University .............................................................. 121 

Gomez, Louis ............................................. Bell Communications Research .......................................................... 175 

Goodman, Joseph M •....................................... Tektronix, Incorporated ................................................................... 21 

Halasz, Frank G .............................................................. MCC ............................................................................... 345 

HamrnwOhner, Rainer .................................. The University of Constance ............................................................. 155 

Irish, Peggy M ........................................... Xerox Palo Alto Research Center ........................................................... 89 

Jones Ill, Henry W ........................................ Moffis, Manning, and Martin ............................................................. 367 

November 1987 Hypertext '87 Papers 433 



Joyce, Michael .............................................. University of North Carolina .......•..................................••................... 41 

Kaufer, David ................................................ Carnegie Mellon University ............................................................. 121 

King, Roger ..••....•...........................•............... The University of Colorado .................•......•.........................•........... 215 

Landauer, Thomas K • ...•............................ Bell Communications Research .......................................................... 175 

Landow, George P • ...........•................................... Brown University .............••..........................••........................... 331 

Larkin, Jame .......................................................... Brown University ........................................................................ 67 

lewis, Clayton ............................................... The University of Colorado ..............•.•............................................. 215 

Marshall, Catherine C •............................ Xerox Speciallnfonnation Systems ....................•..•.•.......................••.... 253 

McClard, Anne P . .................................................. Brown University ........................................................................ 67 

McCracken, Donald ................................. Knowledge Systems Incorporated ..•........................••........................••..•... 1 

McQuillan, Patrick .....................•..........................• Brown University ••.............................................•........................ 67 

Neuwirth, Christine ....................................... Carnegie Mellon University ..........•..•..................•••..•••...................... 121 

Oren, Tlm .......................•............................. App/e Computer, Incorporated ..................•...••••........................••....... 291 

·Raskin, Jef ......................................................... Information Appliance .•.............................•.................................. 325 

Raymond, Darrell, R . ........................................ University of Waterloo ....................................................•............. 143 

Remde, Joel R . ........................................... Bell Communications Research .••.........................•.........................•... 175 

Riley, Victor ...................................................... Tektronix, lncorporated ....................................•...•.•...................... 397 

Scacchl, Walt ......................•..................... University of Southern California ..•.....•........•................•••.................... 409 

Shields, Mark ......................................•.................. Brown University .....••............................•.••................................. 67 

Shnelderman, Ben ............................•........... The University of Maryland .............................................................. 189 

Smith, John B ............................................... University of North Carolina ............................................................. 195 

Smolensky, Paul ........................................... The University of Colorado .............................................................. 215 

Thiel, Ulrich .................................................. The University of Constance ............................................................. 155 

Tampa, Frank Wm . ............................................ University of Waterloo .................................................................. 143 

Trigg, Randall H ........................................ Xerox Palo Alto Research Center ........................................................... 89 

Walker, Janet H ............................................... Symbolics Incorporated ................................................................ 307 

Weiss, Stephen F • ........................................ University of North Carolina ............................................................. 195 

Yoder, Elise .............................................. Knowledge Systems Incorporated ............................................................. 1 

434 Hypertext '87 Papers November 1987 




