
Back Office
Developer Guide

Store360
Release 7.2.0 LA February 2006

Confidential

This document and the information it contains are the property of 360Commerce, Inc. This
document contains confidential and proprietary information that is not to be disclosed to
other parties. The information in this document may not be used by other parties except in
accordance with a written agreement signed by an officer of 360Commerce, Inc.

©2005 360Commerce. All rights reserved. 360Commerce and third-party specifications are sub-
ject to change without notice. Although every precaution has been taken in the preparation of
this paper, 360Commerce assumes no responsibility for errors or omissions, and no warranty or
fitness is implied. 360Commerce shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the use of the information contained in
this paper. Trademarks: 360Commerce (both word and logo), 360Store, 360Enterprise,
Unleashed, Warm-Start Optimization. All terms mentioned in this paper that may be trade-
marks or service marks have been appropriately capitalized or otherwise designated.
11400 Burnet Road, Suite 5200, Austin, Texas 78758
(512) 491-2600 • (800) 897-8663 • (512) 491-0078 (fax)

www.360Commerce.com

http://www.360commerce.com

TABLE OF CONTENTS
Preface xvii

Chapter 1: Architecture
Overview 1-1

Tier Organization 1-1
Client Tier 1-2
Middle Tier 1-2

Model 1-2
View 1-3
Controller 1-4

Struts Configuration 1-4
Application Services 1-4

Data Tier 1-5
Dependencies in Application and Commerce Services 1-5
Example of Operation 1-6

Chapter 2: Coding Your First Feature
Overview 2-1
Related Materials 2-1
Before You Begin 2-1
Extending Transaction Search 2-1

Item Quantity Example 2-2
Web UI Framework 2-2

Create a New JSP file 2-2
Add Strings to Properties Files 2-3
Configure the sideNav Tile 2-3

Configure Action Mapping 2-4
Add Code to Handle New Fields to Search Transaction Form 2-5
Create a Struts Action Class 2-6
Add Method to Base Class 2-6

Verify Application Manager Implementation 2-7
Add Business Logic to Commerce Service 2-8

Create a Class to Create the Criteria Object 2-8
Add New Criteria to the Service 2-10
Handle SQL Code Changes in the Service Bean 2-11

Chapter 3: Development Environment
Overview 3-1
Using the Apache Ant Build Tool 3-1
Prerequisites for the Development Environment 3-2
Setting Up the Development Environment 3-2
Run and Configure Back Office 3-5

Chapter 4: Application Services
Overview 4-1
Application Service Architecture 4-2
T a b l e o f C o n t e n t s iii

Application Manager Mapping 4-3
Extending an Application Manager 4-4
Creating a New Application Manager 4-4
Application Manager Reference 4-5

Dashboard Manager 4-5
Dependencies 4-5

EJournal Manager 4-5
Dependencies 4-5

ItemManager 4-5
Dependencies 4-5

Report Manager 4-6
Dependencies 4-6

Store Manager 4-6
Dependencies 4-6

StoreOps Manager 4-6
Dependencies 4-6

Task Manager 4-6
Dependencies 4-6

Chapter 5: Commerce Services
Overview 5-1

Commerce Services in Operation 5-2
Creating a New Commerce Service 5-3

Calendar Service 5-3
Database Tables Used 5-3
Interfaces 5-3
Extending This Service 5-4
Dependencies 5-4
Tier Relationships 5-4

Code List Service 5-4
Database Tables Used 5-4
Interfaces 5-4
Extending This Service 5-6
Dependencies 5-6
Tier Relationships 5-6

Currency Service 5-6
Database Tables Used 5-6
Interfaces 5-6
Extending This Service 5-7
Dependencies 5-7
Tier Relationships 5-7

Customer Service 5-7
Database Tables Used 5-8
Interfaces 5-8
Extending This Service 5-8
Dependencies 5-8
Tier Relationships 5-8

Employee/User Service 5-8
Database Tables Used 5-8
i v B a c k O f f i c e D e v e l o p e r G u i d e

Interfaces 5-8
Extending This Service 5-9
Dependencies 5-9
Tier Relationships 5-9

File Transfer Service 5-9
Database Tables Used 5-9
Interfaces 5-9
Extending This Service 5-10
Dependencies 5-10
Tier Relationships 5-10

Financial Totals 5-10
Database Tables Used 5-10
Interfaces 5-10
Extending This Service 5-11
Dependencies 5-11
Tier Relationships 5-11

Item Service 5-11
Database Tables Used 5-11
Interfaces 5-12
Extending This Service 5-13
Dependencies 5-13
Tier Relationships 5-14

Parameter Service 5-14
Database Tables Used 5-14
Interfaces 5-14
Extending This Service 5-15
Dependencies 5-15
Tier Relationships 5-15

Party Service 5-15
Database Tables Used 5-15
Interfaces 5-15
Extending This Service 5-15
Dependencies 5-15
Tier Relationships 5-16

POSlog Import Service 5-16
Database Tables Used 5-17
Interfaces 5-18
Extending This Service 5-18
Dependencies 5-18
Tier Relationships 5-18

Post-Processor Service 5-18
Database Tables Used 5-18
Interfaces 5-19
Extending This Service 5-19
Dependencies 5-19
Tier Relationships 5-19

Pricing Service 5-19
Database Tables Used 5-19
Interfaces 5-20
T a b l e o f C o n t e n t s v

Extending This Service 5-21
Dependencies 5-21
Tier Relationships 5-21

Reporting Service 5-21
Database Tables Used 5-21
Interfaces 5-22
Extending This Service 5-22
Dependencies 5-22
Tier Relationships 5-22

Store Directory Service 5-22
Database Tables Used 5-22
Interfaces 5-23
Extending This Service 5-23
Dependencies 5-23
Tier Relationships 5-24

Store Service 5-24
Database Tables Used 5-24
Interfaces 5-24
Extending This Service 5-25
Dependencies 5-25
Tier Relationships 5-25

Store Ops Service 5-25
Database Tables Used 5-25
Interfaces 5-25
Extending This Service 5-27
Dependencies 5-27
Tier Relationships 5-27

Tax Service 5-27
Database Tables Used 5-27
Interfaces 5-27
Extending This Service 5-28
Dependencies 5-28
Tier Relationships 5-28

Time Maintenance Service 5-28
Database Tables Used 5-28
Interfaces 5-28
Extending This Service 5-30
Dependencies 5-30
Tier Relationships 5-31

Transaction Service 5-31
Database Tables Used 5-31
Interfaces 5-32
Extending This Service 5-32
Dependencies 5-32
Tier Relationships 5-33

Workflow/Scheduling Service 5-33
Database Tables Used 5-33
Interfaces 5-33
Extending This Service 5-33
v i B a c k O f f i c e D e v e l o p e r G u i d e

Dependencies 5-33
Tier Relationships 5-34

Chapter 6: Store Database
Overview 6-1
Related Documentation 6-1
Database/System Interface 6-2
ARTS Compliance 6-3
Bean-managed Persistence in the Database 6-3

Chapter 7: Extension Guidelines
Overview 7-1

Audience 7-1
Application Layers 7-2

UI 7-2
Application Manager 7-2
Commerce Service 7-2
Algorithm 7-3
Entity 7-3
DB 7-3

Extension and Customization Scenarios 7-3
Style and Appearance Changes 7-3
 Additional Information Presented to User 7-3
Changes to Application Flow 7-4
Access Data from a Different Database 7-5
Change an Algorithm used by a Service 7-6

Extension Strategies 7-6
Extension with Inheritance 7-7
Replacement of Implementation 7-8
Service Extension with Composition 7-9
Data Extension through Composition 7-11

Chapter 8: General Development Standards
Basics 8-1

Java Dos and Don’ts 8-1
Avoiding Common Java Bugs 8-2
Formatting 8-2
Javadoc 8-3
Naming Conventions 8-4
SQL Guidelines 8-4

DB2 8-5
MySQL 8-5
Oracle 8-6
PostgreSQL 8-6
Sybase 8-6

Unit Testing 8-7
Architecture and Design Guidelines 8-7

AntiPatterns 8-8
Designing for Extension 8-9
T a b l e o f C o n t e n t s vii

Common Frameworks 8-10
Internationalization 8-10
Logging 8-10

Guarding Code 8-11
When to Log 8-11
Writing Log Messages 8-11

Exception Messages 8-11
Heartbeat or Life cycle Messages 8-12
Debug Messages 8-13

Exception Handling 8-13
Types of Exceptions 8-13
Avoid java.lang.Exception 8-14
Avoid Custom Exceptions 8-14
Catching Exceptions 8-14

Keep the Try Block Short 8-14
Avoid Throwing New Exceptions 8-15
Catching Specific Exceptions 8-15
Favor a Switch over Code Duplication 8-15
v i i i B a c k O f f i c e D e v e l o p e r G u i d e

LIST OF TABLES
Table P-1 Conventions xviii
Table 4-1 Application Manager Mapping 4-3
Table 5-1 POSLog Import Service Database Tables 5-17
Table 6-1 Related Documentation 6-1
Table 8-1 Common Java Bugs 8-2
Table 8-2 Naming Conventions 8-4
Table 8-3 DB2 SQL Code Problems 8-5
Table 8-4 Oracle SQL Code Problems 8-6
Table 8-5 Common AntiPatterns 8-8
L i s t o f T a b l e s ix

x B a c k O f f i c e D e v e l o p e r G u i d e

LIST OF FIGURES
Figure 1-1 High-Level Architecture 1-2
Figure 1-2 Tiles in a 360Commerce Application 1-4
Figure 1-3 Application Manager as Facade for Commerce Services 1-5
Figure 1-4 Dependencies in Back Office 1-6
Figure 1-5 Operation of Back Office 1-7
Figure 2-1 Item Quantity Criteria JSP Page Mock-up 2-3
Figure 4-1 Application Manager in Operation 4-2
Figure 4-2 Example Application Service Interactions 4-3
Figure 5-1 Commerce Services in Operation 5-2
Figure 6-1 Commerce Services, Entity Beans, and Database Tables 6-2
Figure 7-1 Application Layers 7-2
Figure 7-2 Managing Additional Information 7-4
Figure 7-3 Changing Application Flow 7-4
Figure 7-4 Accessing Data from a Different Database 7-5
Figure 7-5 Accessing Data from an External System 7-6
Figure 7-6 Application Layers 7-6
Figure 7-7 Sample Classes for Extension 7-7
Figure 7-8 Extension with Inheritance 7-7
Figure 7-9 Extension with Inheritance: Class Diagram 7-8
Figure 7-10 Replacement of Implementation 7-9
Figure 7-11 Extension with Composition: Class Diagram 7-10
Figure 7-12 Extension with Composition 7-11
Figure 7-13 Data Extension Through Composition 7-12
Figure 7-14 Data Extension Through Composition: Class Diagram 7-13
L i s t o f F i g u r e s xi

x i i B a c k O f f i c e D e v e l o p e r G u i d e

LIST OF CODE SAMPLES
Code Sample 2-1 transaction_tracker.xml: SideNav Option List and Roles 2-3
Code Sample 2-2 Example Definition Tags for tiles-transaction_tracker.xml 2-4
Code Sample 2-3 Struts Action Configuration for Item Quantity 2-4
Code Sample 2-4 New Instance Fields 2-5
Code Sample 2-5 Getter and Setter Methods for New Instance Fields 2-5
Code Sample 2-6 Code to Add to Validate Method 2-6
Code Sample 2-7 New Validation Method 2-6
Code Sample 2-8 Call a New Method to Get Item Quantity Criteria 2-6
Code Sample 2-9 getLineItemQuantityCriteria Method Implementation 2-7
Code Sample 2-10 LineItemQuantityCriteria.java 2-8
Code Sample 2-11 SearchCriteria.java 2-10
Code Sample 2-12 addToFromClause() Method 2-11
Code Sample 2-13 addToWhereClause() Method 2-12
Code Sample 2-14 setBindVariables() method 2-12
Code Sample 5-1 CalendarServiceIfc.java: Methods 5-3
Code Sample 5-2 CodeListServiceIfc.java: Methods 5-4
Code Sample 5-3 CurrencyIfc.java: Some Methods 5-6
Code Sample 5-4 CustomerServiceIfc.java: Methods 5-8
Code Sample 5-5 EmployeeServiceIfc.java: Some Methods 5-8
Code Sample 5-6 FileTransferServiceIfc.java: Methods 5-9
Code Sample 5-7 FinancialTotalsServiceIfc.java 5-10
Code Sample 5-8 ItemServiceIfc.java: Some Methods 5-12
Code Sample 5-9 ParameterServiceIfc.java: Sample Methods 5-14
Code Sample 5-10 PostProcessorServiceIfc.java: Some Methods 5-19
Code Sample 5-11 PricingServiceIfc.java: Some Methods 5-20
Code Sample 5-12 ReportingServiceIfc.java: Methods 5-22
Code Sample 5-13 StoreDirectoryIfc.java: Some Methods 5-23
Code Sample 5-14 StoreServiceIfc.java 5-24
Code Sample 5-15 StoreOpsServiceIfc.java: Some Methods 5-25
Code Sample 5-16 Ifc.java: Some Methods 5-27
Code Sample 5-17 TimeMaintenanceServiceIfc.java: Some Methods 5-28
Code Sample 5-18 TransactionServiceIfc.java: Some Sample Methods 5-32
Code Sample 6-1 ItemPriceDerivationBean.java: ejbStore Method 6-3
Code Sample 8-1 Header Sample 8-2
Code Sample 8-2 SQL Code Before PostgresqlDataFilter Conversion 8-6
Code Sample 8-3 SQL Code After PostgresqlDataFilter Conversion 8-6
Code Sample 8-4 Wrapping Code in a Code Guard 8-11
Code Sample 8-5 Switching Graphics Contexts via a Logging Level Test 8-11
Code Sample 8-6 JUnit 8-12
Code Sample 8-7 Network Test 8-14
Code Sample 8-8 Network Test with Shortened Try Block 8-14
Code Sample 8-9 Wrapped Exception 8-15
Code Sample 8-10 Declaring an Exception 8-15
Code Sample 8-11 Clean Up First, then Rethrow Exception 8-15
L i s t o f C o d e S a m p l e s xiii

Code Sample 8-12 Using a Switch to Execute Code Specific to an Exception 8-16
Code Sample 8-13 Using Multiple Catch Blocks Causes Duplicate Code 8-16
x i v B a c k O f f i c e D e v e l o p e r G u i d e

L i s t o f C o d e S a m p l e s xv

x v i B a c k O f f i c e D e v e l o p e r G u i d e

PREFACE

Audience

This document is intended for 360Store® Back Office developers who develop code for a Back Office
implementation.

Goals

Developers who read this document should be able to:

• Extend Back Office classes
• Create a Back Office UI screen

Feedback

Please e-mail feedback about this document to 360University@360Commerce.com.

Trademarks

The following trademarks may be found in 360Commerce® documentation:

• 360Commerce, 360Store and 360Enterprise are registered trademarks of 360Commerce Inc.
• Unleashed is a trademark of 360Commerce Inc.
• BEETLE is a registered trademark of Wincor Nixdorf International GmbH.
• Dell is a trademark of Dell Computer Corporation.
• IBM, WebSphere and SurePOS are registered trademarks or trademarks of International Business Machines

Corporation in the United States, other countries, or both.
• IceStorm is a trademark of Wind River Systems Inc.
• InstallAnywhere is a registered trademark of Zero G Software, Inc.
• Internet Explorer and Windows are registered trademarks or trademarks of Microsoft Corporation.
• Java is a trademark of Sun Microsystems Inc.
• Linux is a registered trademark of Linus Torvalds.
• Mac OS is a registered trademark of Apple Computer, Inc.
P r e f a c e xvii

• Netscape is a registered trademark of Netscape Communication Corporation.
• UNIX is a registered trademark of The Open Group.

All other trademarks mentioned herein are the properties of their respective owners.

Text Conventions

The following table shows the text conventions used in this document:

Table P-1 Conventions
Sample Description
Courier Text Filenames, paths, syntax, and code
Bold text Emphasis
<Italics and angle
brackets>

Text in commands which should be supplied by
the user
x v i i i B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 1

ARCHITECTURE

Overview
This chapter describes the main layers of the application, and goes into some detail about the middle
tier’s use of a model-view-controller (MVC) pattern. The remainder of this overview covers the top-level
tier organization of the application and how the application relates to other 360Commerce applications in
an enterprise environment. This guide assumes a basic familiarity with the J2EE specification and
industry standard software design patterns.
The architecture of Back Office reflects its overriding design goals:

• Well-defined and decoupled tiers
• Use appropriate J2EE standards
• Leverage other open standards where possible

Tier Organization
The architecture of Back Office uses client, middle, and data tiers. The client tier is a Web browser; the
middle tier is deployed on an application server; and the data tier is a database deployed by the retailer.
The middle tier is organized in an MVC design pattern, also called a Model 2 pattern. This chapter
focuses on the middle tier and the model, view, and controller layers that it is divided into.
A r c h i t e c t u r e 1- 1

1-2
Figure 1-1 High-Level Architecture

Client Tier
The client system uses a Web browser to display data and a GUI generated by the application. Any
browser which supports JavaScript, DHTML, CSS, and cookies can be used. In practice, only a few
popular browsers are tested.

Middle Tier
The middle tier of the application resides in a J2EE application server framework on a server machine.
The middle tier implements the MVC pattern to separate data structure, data display, and user input.

Model
The model in an MVC pattern is responsible for storing the state of data and responding to requests to
change that state which come from the controller. In Back Office this is handled by a set of Commerce
Services, which encapsulates all of the business logic of the application. The Commerce Services talk to
the database through a persistence layer of entity beans.

B ro w s e r S tru ts
(C o n tro l le r)

J S P (V ie w)

C lie n t t ie r W e b T ie r A p p lic a t io n T ie r

S tru ts A c t io n
C la s s e s

S e s s io n
B e a n s

D T O s
E n t ity
B e a n s

A R T S
D a ta S to re

C o n f ig

D a ta T ie r

P h y s ic a l
B o u n d a ry

T e c h n ic a l
B o u n d a ry

P ro c e d u ra l
C o n n e c t io n

D a ta
C o n n e c t io n
B a c k O f f i c e D e v e l o p e r G u i d e

Commerce Services are components that have as their primary interface one or more session beans,
possibly exposed as Web services, which contain the shared retail business logic. Commerce Services
aggregate database tables into objects, combining sets of data into logical groupings. Commerce Services
are organized by business logic categories rather than application functionality. These are services like
Transaction, Store Hierarchy, or Parameter that would be usable in any retail-centric application.
These services in turn make use of a persistence layer made up of entity beans. Each Commerce Service
talks to one or more entity beans, which map the ARTS standard database schema. Using the bean-
managed persistence (BMP) pattern, each entity bean maps to a specific table in the schema, and knows
how to read from and write to that table. The Commerce Services thus insulate the rest of the application
from changes to the database tables. Database changes can be handled through changes to a few entity
beans.
The Commerce Services architecture is designed to facilitate changes without changing the product code.
For example:

• You can replace a specific component’s implementation. For example, the current Store Hierarchy
service persists store hierarchy information to the ARTS database. If a customer site has that
information in an LDAP server, the Store Hierarchy could be replaced with one that connected to the
LDAP. The interface to the service need not change.

• You can create a new service that wraps an existing service (keeping the interface and source code
unchanged), but adds new fields. You might create My Customer Service, which uses the existing
Customer Service for most of its information, but adds some specific data. All that you change is the
links between the Application Manager and the Customer Service.

For more information, see Chapter 5, “Commerce Services.”

View
The view portion of the MVC pattern displays information to the user. In Back Office this is performed
by a Web user interface organized using the Struts/Tiles framework. Using Tiles for page layout allows
for greater reuse of the user interface components to enhance the extensibility and customization of the
user interface.
To make the view aware of its place in the application, the Struts Actions call into the Application
Manager layer for all data updates, business logic, and data requests. Any code in the Struts Actions
should be limited to formatting data for the Java server pages (JSPs) and organizing data for calls into the
Application Manager layer.
Java Server Pages deliver dynamic HTML content by combining HTML with Java language constructs
defined through special tags. Back Office’s pages are divided into Tiles which provide navigation and
page layout consistency.
A r c h i t e c t u r e 1- 3

1-4
Figure 1-2 Tiles in a 360Commerce Application

Controller
The controller layer accepts user input and translates that input into calls to change data in the model
layer, or change the display in the view layer. Controller functions are handled by Struts configuration
files and Application Services.

Struts Configuration
The application determines which modules to call upon an action request based on the struts-config.xml
file.There are several advantages to this approach:

• The entire logical flow of the application is in a hierarchical text (xml) file. This makes it easier to
view and understand, especially with large applications.

• The page designer does not need to read Java code to understand the flow of the application.
• The Java developer does not need to recompile code when making flow changes.

Struts reads the struts-config.xml once, at startup, and creates a mapping database (a listing of the
relationships between objects) that is stored in memory to speed up performance.

Application Services
The application services layer contains logical groupings of related functionality specific to the Back
Office application components, such as Store Operations. Each grouping is called an application
manager. These managers contain primarily application logic. Retail domain logic should be kept out of
these services and instead shared from the Commerce Services tier.
The application services use the Session Facades pattern; each Manager is a facade for one or more
Commerce Services. A typical method in the Application Services layer aggregates several method calls
from the Commerce Services layer, allowing the individual Commerce Services to remain decoupled
from each other. This also strengthens the Web user interface tier and keeps the transaction and network
overhead to a minimum.

header

nav1

nav2

body

footer
B a c k O f f i c e D e v e l o p e r G u i d e

For example, the logic for assembling and rendering a retail transaction into various output formats are
handled by separate Commerce Services functions. However, the task of creating a PDF file is modeled
in the EJournal Manager, which aggregates those separate Commerce Service functions into a single user
transaction, thus decreasing network traffic and lowering maintenance costs.
For more information, see Chapter 4, “Application Services.”
Figure 1-3 Application Manager as Facade for Commerce Services

Data Tier
The Data tier is represented by a database organized using the ARTS standard schema. Customer
requirements determine the specific database selected for a deployment. For more information, see
Chapter 6, “Store Database.”

Dependencies in Application and Commerce
Services
The following diagram shows representative components Application Services and Commerce Services.
Arrows show the dependencies among various components.

B ro w s e r S tru ts
(C o n t ro l le r)

J S P (V ie w)

C lie n t t ie r W e b T ie r A p p lic a t io n T ie r

S tru ts A c t io n
C la s s e s

S e s s io n
B e a n s

D T O s
E n t ity
B e a n s

A R T S
D a ta S to re

C o n f ig

D a ta T ie r

P h y s ic a l
B o u n d a ry

T e c h n ic a l
B o u n d a ry

P ro c e d u ra l
C o n n e c t io n

D a ta
C o n n e c t io n
A r c h i t e c t u r e 1- 5

1-6
Figure 1-4 Dependencies in Back Office

Example of Operation
The following diagram describes a trip through the Back Office architecture, starting from a user’s
request for specific information and following through until the system’s response is returned to the
user’s browser.

UI Services

ViewTransactionAction

JSP

Application Services

EJournalManagerBean

Commerce Services

TransactionServiceBean

TransactionBean

ParameterServiceBean

ARTS Database
B a c k O f f i c e D e v e l o p e r G u i d e

Figure 1-5 Operation of Back Office

Application Server

Application Manager Layer Commerce Services Layer

HTTP/Servlet Server

Browser

SearchTransactionForm.java

- Validates the form data

- Hands control to a specific
action class specified in Struts
configuration

User enters a date range in
Transaction Tracker JSP, asking for
transactions from 5/4/2003 to 5/5/

2004

1

Browser sends criteria to HTTP
server as URI

TransactionServiceBean

Runs SQL code to request
a set of transactions

Ejournal Manager Bean

SearchTransactionAction.java

2

3

4

6

JSP results page

HTML

ARTS Database

 Servlet engine converts JSP tags
 to HTML

5

Persistence Layer

Entity Bean

7

8

9

10

11

12

13

14

15
A r c h i t e c t u r e 1- 7

1-8
 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 2

CODING YOUR FIRST FEATURE

Overview
This chapter describes how to add a feature to Back Office using a specific example based on extending a
search page within the application’s Web-based UI. The example is a simple extension of an existing
search criteria page to allow it to search on additional criteria.

Related Materials
See the _resources directory provided with your Back Office documentation for sample requirements
documents for the project described in this chapter.
See “Example of Operation” on page 1-6 for a diagram that shows a search query’s trip through the Back
Office architecture and the Transaction Tracker to return transaction data.

Before You Begin
Before you attempt to develop new Back Office code, set up your development environment as described
in the preceding chapter. Verify that you can successfully build and deploy an .ear file.

Extending Transaction Search
This section explores the extension of transaction search features through the creation of a new criteria
page. The changes required to implement this functionality interact with the user interface and the
internals of the Back Office system. This example takes you through the process of implementing a new
search criteria page, under the assumption that you have been asked to develop a page that allows a user
to screen transactions according to new criteria.
C o d i n g Y o u r F i r s t F e a t u r e 2- 1

2-2
Note: Paths in this chapter are assumed to start from your local source code tree, checked out from the
source code control system.

Item Quantity Example
As an example of how to extend Back Office, this chapter refers to a new search criteria page called Item
Quantity. This new page is an addition to the Transaction Tracker tab. The existing interface offers a side
navigation bar with options to search by Item, Transaction, Sales Associate, Customer, and others. Item
Quantity is a new option on this side navigation bar; it looks much like the Item page but allows the user
to set a quantity value and search for transactions whose quantity of any item compares appropriately to a
chosen quantity (i.e., greater than, greater than or equal to, less than, etc.).
This example shows how:

• A new user interface can be created
• Search criteria is collected from the end user
• Data is handed off from one layer of the interface to another
• SQL queries are handled and modified

The following procedures offer general steps followed by specific examples.

Web UI Framework
To add a new search criteria page, you must create a new JSP file for the page, edit workflow and Struts/
Tiles configuration files to register the page, and add appropriate classes to handle the page.

Create a New JSP file
Create a new JSP file and edit its content. You can start with a copy of an existing criteria page and add
input fields for the new data you intend to factor into your search. Plan your string usage to reference
property files for internationalization purposes.
To create ItemQuantityCriteria.jsp, make a copy of ItemCriteria.jsp. Establish input fields to collect store
numbers, item numbers, item quantity, and the item quantity limit operator (the operator that determines
how to compare a transaction’s item quantities with the item quantity criteria).
B a c k O f f i c e D e v e l o p e r G u i d e

Figure 2-1 Item Quantity Criteria JSP Page Mock-up

Add Strings to Properties Files
Add references to any new strings to appropriate properties files.
For example, to add “Item Quantity Information” and “Item Quantity” column labels, edit the
/webmodules/i18n/ui/src/com/_360commerce/webmodules/i18n/transaction.properties file.
to add these entries:

transaction.centej.itemquantitycrit.header=Item Quantity Information
transaction.centej.itemquantitycrit.label.itemquantity=Item Quantity

Configure the sideNav Tile
To add the new JSP page to the side navigation bar in the Transaction Tracker tab, you configure the
sideNav tile. Using Struts/Tiles conventions, edit the file /webmodules/transaction/ui/deploy/360/tiles-
transaction_tracker.xml, making the following edits:

• Add an entry to the <putList name="sideNav"> tag to add your new page name to the list of options on
the side navigation bar.

• Set the security role for this new option by adding an element tag in the appropriate location in the
<putList name="sideNavRoles"> tag. You can use the element <add value="BLANK"/> if no role has yet been
defined.

• Add a destination URL to be activated when your new page name is clicked.
The following code sample shows where to add tags:
Code Sample 2-1 transaction_tracker.xml: SideNav Option List and Roles
<putList name="sideNav">

 <add value="By"/>
 <add value="Item"/>
C o d i n g Y o u r F i r s t F e a t u r e 2- 3

2-4
 ...add your new tag here...
 <add value="Transaction"/>
 <add value="Sales Associate"/>
 <add value="Customer"/>
</putList>
<putList name="sideNavRoles">
 <add value="BLANK"/>
 <add value="search_by_item"/>
 ...add your new tag here...
 <add value="search_by_trans"/>
 <add value="search_by_assoc"/>
 <add value="search_by_cust"/>
</putList>
<putList name="sideNavURLs">
 <add value="BLANK"/>
 <add value="centralizedElectronicJournal/ejItemSearch.do"/>
 ...add your new tag here...
 <add value="centralizedElectronicJournal/ejTransactionSearch.do"/>
 <add value="centralizedElectronicJournal/ejSalesAssociateSearch.do"/>
 <add value="centralizedElectronicJournal/ejCustomerSearch.do"/>
</putList>

Finally, add a set of definition tags to define your JSP page’s title, help URL, and body layout. The
following code sample offers an example.
Code Sample 2-2 Example Definition Tags for tiles-transaction_tracker.xml

<definition name="centralizedElectronicJournal.ejItemQuantitySearch" extends="ejournal">
 <put name="sideNavIndex" value="Item Quantity"/>
 <put name="title" value="Search By Item Quantity"/>
 <put name="helpURL" value="centralizedElectronicJournal/help.do#searchbyitem"/>
 <put name="body" value="centralizedElectronicJournal.ejItemQuantitySearch.layout"/>
 </definition>

<!-- the following definition defines the layout for the JSP’s body, as called out above --!>

<definition name="centralizedElectronicJournal.ejItemQuantitySearch.layout"
extends="ejournal.search.layout">
 <put name="resetSearchURL" value="/centralizedElectronicJournal/ejItemQuantitySearch.do"/>
 <put name="searchTitle" value="Search By Item Quantity"/>
 <put name="searchAction" value="/centralizedElectronicJournal/
searchTransactionByItemQuantity.do"/>
 <put name="expandSections" value="itemQuantityCriteria"/>
 <put name="searchCriteria1" value="/centralizedElectronicJournal/
ItemQuantityCriteria.jsp"/>
 <put name="searchCriteria2" value="/centralizedElectronicJournal/transactionCriteria.jsp"/
>
 <put name="searchCriteria3" value="/centralizedElectronicJournal/resultsCriteria.jsp"/>
 </definition>

Configure Action Mapping
Configure action mapping in one of the struts configuration files so that Struts knows how to handle your
new JSP page.
The following example shows how the Item Quantity page could be configured. The file is
/webmodules/transaction/ui/deploy/360/struts-transaction_tracker_actions.xml. The code sets up the
system to request an item quantity search and forwards results to standard result routines, automatically
displaying the transaction details (through showDetails.do) if only one result is returned, and otherwise
displaying a standard transaction list.
Code Sample 2-3 Struts Action Configuration for Item Quantity
B a c k O f f i c e D e v e l o p e r G u i d e

<action path="/centralizedElectronicJournal/ejItemQuantitySearch"
type="com._360commerce.webmodules.transaction.ui.StartSearchAction">
<forward name="success" path="centralizedElectronicJournal.ejItemQuantitySearch"/>

</action>

<action path="/centralizedElectronicJournal/searchTransactionByItemQuantity"
type="com._360commerce.webmodules.transaction.ui.SearchTransactionByItemQuantityAction"
name="searchTransactionForm"
scope="request"
input="/centralizedElectronicJournal/ejItemQuantitySearch.do">

 <forward name="oneResult" path="/centralizedElectronicJournal/showDetails.do"/>
 <forward name="multipleResults" path="centralizedElectronicJournal.ejTransactionSearchResults"/>
</action>

Add Code to Handle New Fields to Search Transaction Form
Since you have added new search fields for the Item Quantity and Item Quantity Operator, you must add
code for handling these fields and their validation to the
webmodules/transaction/ui/src/com/_360commerce/webmodules/transaction/ui/SearchTransactionForm.java file.

1. Add the instance fields for any fields you have added to the criteria page, and use the same names
as the input field names you defined in your JSP page, so that the fields can be automatically
populated via retrospection. Note an additional static constant for the search based on line item
quantity.

Code Sample 2-4 New Instance Fields
 private String itemQuantityLimitOperator;
 private int itemQuantityLimit;

 public static final String ITEM_QUANTITY_LIMIT_OPERATOR =
 "itemQuantityLimitOperator";

 public static final String ITEM_QUANTITY_LIMIT =
 "itemQuantityLimit";
 public static final String SEARCH_BY_ITEM_QUANTITY_CRITERIA =
 "searchByItemQuantityCriteria";
 private Boolean searchByItemQuantityCriteria;

2. Define corresponding getter and setter methods for the instance fields.
Code Sample 2-5 Getter and Setter Methods for New Instance Fields
 public Boolean getSearchByItemQuantityCriteria()
 {
 return searchByItemQuantityCriteria;
 }

 public void setSearchByItemQuantityCriteria(Boolean
 searchByItemQuantityCriteria)
 {
 this.searchByItemQuantityCriteria =
 searchByItemQuantityCriteria;
 }

 public String getItemQuantityLimitOperator()
 {
 return itemQuantityLimitOperator;
 }

 public void setItemQuantityLimitOperator(String
 itemQuantityLimitOperator)
 {
 this.itemQuantityLimitOperator = itemQuantityLimitOperator;
C o d i n g Y o u r F i r s t F e a t u r e 2- 5

2-6
 }

 public int getItemQuantityLimit()
 {
 return itemQuantityLimit;
 }

 public void setItemQuantityLimit(int itemQuantityLimit)
 {
 this.itemQuantityLimit = itemQuantityLimit;
 }

3. Add the validation for the item quantity limit value to check that the input was a valid number and
was greater than zero. To do this add the following code in the validate method and then provide
the method implementation. The method implementation uses an error message key to look up the
actual error message description.

Code Sample 2-6 Code to Add to Validate Method

 if (getSearchByItemQuantityCriteria().booleanValue())
 {
 validateSearchByItemQuantityCriteria(errors);
 }

Code Sample 2-7 New Validation Method

 private void validateSearchByItemQuantityCriteria(ActionErrors
 errors)
 {
 if (getItemQuantityLimit() <= 0)
 {
 errors.add("searchItemQuantityLimit",
 new ActionError("error.ejournal.search.itemquantity.
 itemquantitylimitvalue"));
 }
 }

4. Store any error messages for validation in /centraloffice/deploy/wepapp/classes/
ApplicationResources.properties.
In the item quantity example, you might store an error message description as follows:

error.ejournal.search.itemquantity.itemquantitylimitvalue=Item quantity limit value must be a
valid number and greater than zero.

Create a Struts Action Class
Create a Struts action class to act as a controller for the JSP you created.
For Item Quantity, create an action class using the filename SearchTransactionByItemQuantityAction.java,
in the directory webmodules/transaction/ui/src/com/_360commerce/webmodules/transaction/ui/. You can start
by copying and modifying SearchTransactionByItemQuantityAction.java.

Add Method to Base Class
Add code to the base search class, SearchTransactionAction.java, to establish a get method for the new
criteria:

1. Add a line to call a new method.
Code Sample 2-8 Call a New Method to Get Item Quantity Criteria
searchCriteria = new SearchCriteria(getTransactionCriteria(searchTransactionForm,
B a c k O f f i c e D e v e l o p e r G u i d e

request.getParameterValues(
 "transactionType")),

getTenderCriteria(searchTransactionForm),

getSalesAssociateCriteria(searchTransactionForm),

getLineItemCriteria(searchTransactionForm),

getLineItemQuantityCriteria(searchTransactionForm),

getCustomerCriteria(searchTransactionForm),

getSignatureCaptureCriteria(searchTransactionForm));

2. Add the method implementation.
Code Sample 2-9 getLineItemQuantityCriteria Method Implementation
 /**
 * Returns a LineItemQuantityCriteria object based on values
 * from a SearchTransactionForm.
 *
 */
 protected LineItemQuantityCriteria
 getLineItemQuantityCriteria(SearchTransactionForm form)
 {
 if (form.getSearchByItemQuantityCriteria().booleanValue())
 {
 criteria = new LineItemQuantityCriteria();

 if (StringUtils.isNotEmpty(form.getItemNumber()))
 {
 criteria.setItemNumber(form.getItemNumber());
 }

 if (StringUtils.isNotEmpty(form.getItemQuantityLimitOperator()))
 {
 criteria.setItemQuantityLimitOperator(form.getItemQuantityLimitOperator());
 }

 if (form.getItemQuantityLimit() > 0)
 {
 criteria.setItemQuantityLimit(form.getItemQuantityLimit());
 }
 }

 return criteria;
 }

Verify Application Manager Implementation
Verify that the application manager appropriately calls for information from Commerce Services. In the
Item Quantity search criteria example, the EJournalManagerBean.java class is used. This class already
contains the necessary method implementation for a getTransactions() method.
C o d i n g Y o u r F i r s t F e a t u r e 2- 7

2-8
Add Business Logic to Commerce Service
Create a Class to Create the Criteria Object
You must create a new class in the Commerce Services layer to handle the creation of the new
ItemQuantityCriteria object type, adding instance fields for the fields you added. The class should
provide the following:

• Variables for required criteria fields
• Boolean flags to indicate (to the data layer) whether a given attribute should be included in a query
• Getter and setter methods for the new fields
• Use() and reset() methods

The example below, established in
\suite\transaction\src\com_360commerce\commerceservices\transaction\LineItemQuantityCriteria.java
handles these requirements.
Code Sample 2-10 LineItemQuantityCriteria.java
 private String itemNumber;
 private String ItemQuantityLimitOperator;
 private int ItemQuantityLimit;
 private boolean searchByItemNumber;
 private boolean searchByItemQuantity;

 /**
 * Returns the itemNumber to include in the
 * search criteria.
 *
 * @return String
 */
 public String getItemNumber()
 {
 return itemNumber;
 }

/**
 * Sets the itemNumber.
 * @param itemNumber The itemNumber to set
 */
public void setItemNumber(String itemNumber)
{

this.itemNumber = itemNumber;
 searchByItemNumber = true;

}

 /**
 * Returns the itemQuantityLimit to include in the
 * search criteria.
 *
 * @return String
 */
 public int getItemQuantityLimit()
 {
 return ItemQuantityLimit;
 }

/**
 * Sets the itemNumber.
 * @param itemNumber The itemQuantityLimit to set
B a c k O f f i c e D e v e l o p e r G u i d e

 */
public void setItemQuantityLimit(int ItemQuantityLimit)
{

this.ItemQuantityLimit = ItemQuantityLimit;
 searchByItemQuantity = true;

}

 /**
 * Returns the itemQuantityLimitOperator to include in the
 * search criteria.
 *
 * @return String
 */
 public String getItemQuantityLimitOperator()
 {
 return ItemQuantityLimitOperator;
 }

/**
 * Sets the ItemQuantityLimit.

* @param ItemQuantityLimit The ItemQuantityLimitOperator to
* set

 */

public void setItemQuantityLimitOperator(String
 ItemQuantityLimitOperator)

{
this.ItemQuantityLimitOperator =

 ItemQuantityLimitOperator;
 }

 /**
 * Returns the searchByItemNumber.
 * @return boolean
 */
 public boolean isSearchByItemNumber()
 {
 return searchByItemNumber;
 }

 /**
 * Returns the searchByItemQuantity.
 * @return boolean
 */

 public boolean isSearchByItemQuantity()
 {
 return searchByItemQuantity;
 }
 /**
 *
 * Indicates whether line item count criteria should be
 * included in a database query.
 *
 * @return boolean
 *
 */
 public boolean use()
 {
 return (isSearchByItemQuantity());
 }
 /**
 *
* Resets criteria values to defaults and isSearchBy flags to
C o d i n g Y o u r F i r s t F e a t u r e 2- 9

2-1
* false.
 *
 */
 public void reset()
 {
 itemNumber = null;
 ItemQuantityLimitOperator = null;
 ItemQuantityLimit = 0;
 searchByItemNumber = false;
 searchByItemQuantity = false;
 }

Add New Criteria to the Service
The new criteria you have added must be included in the class that processes search criteria. For
transactions, this class is
\suite\transaction\src\com_360commerce\commerceservices\transaction\SearchCriteria.java.
To make LineItemQuantityCriteria work, add it to the variable declarations and the constructors and add
new getter and setter methods, as shown in the highlighted portions of the following code sample:
Code Sample 2-11 SearchCriteria.java
public class SearchCriteria implements Serializable
{
 private TransactionCriteria transactionCriteria;
 private TenderCriteria tenderCriteria;
 private SalesAssociateCriteria salesAssociateCriteria;
 private LineItemCriteria lineItemCriteria;
 private LineItemQuantityCriteria lineItemQuantityCriteria;
 private CustomerCriteria customerCriteria;
 private SignatureCaptureCriteria signatureCaptureCriteria;

 public SearchCriteria()
 {
 this(null, null, null, null, null,null);
 }

 public SearchCriteria(TransactionCriteria transactionCriteria,
 TenderCriteria tenderCriteria,
 SalesAssociateCriteria
 salesAssociateCriteria,
 LineItemCriteria lineItemCriteria,
 LineItemQuantityCriteria lineItemQuantityCriteria,
 CustomerCriteria customerCriteria)

 {
 this(transactionCriteria,
 tenderCriteria,
 salesAssociateCriteria,
 lineItemCriteria,
 lineItemQuantityCriteria,
 customerCriteria,
 null);
 }

public SearchCriteria(TransactionCriteria transactionCriteria,
 TenderCriteria tenderCriteria,
 SalesAssociateCriteria
 salesAssociateCriteria,
 LineItemCriteria lineItemCriteria,
 LineItemQuantityCriteria
 lineItemQuantityCriteria,
0 B a c k O f f i c e D e v e l o p e r G u i d e

 CustomerCriteria customerCriteria,
 SignatureCaptureCriteria
 signatureCaptureCriteria)

 {
 setTransactionCriteria(transactionCriteria);
 setTenderCriteria(tenderCriteria);
 setSalesAssociateCriteria(salesAssociateCriteria);
 setLineItemCriteria(lineItemCriteria);
 setLineItemQuantityCriteria(lineItemQuantityCriteria);
 setCustomerCriteria(customerCriteria);
 setSignatureCaptureCriteria(signatureCaptureCriteria);
 }

...

 public LineItemQuantityCriteria getLineItemQuantityCriteria()
 {
 return lineItemQuantityCriteria;
 }

 public void
 setLineItemQuantityCriteria(LineItemQuantityCriteria
 lineItemQuantityCriteria)
 {
 this.lineItemQuantityCriteria = lineItemQuantityCriteria;
 }

Handle SQL Code Changes in the Service Bean
The service bean creates the SQL code that pulls data from the database. Add code to the appropriate
ServiceBean.java file to append new criteria to the From clause and the Where clause.
To make the Line Item Quantity Criteria work, edit the
\suite\transaction\src\com_360commerce\commerceservices\transaction\TransactionServiceBean.java
file as follows:

1. Add a method call to append to the From clause.
query.append(addToFromClause(searchCriteria.getLineItemQuantityCriteria()));

2. Add the method implementation for the addToFromClause() method.
Code Sample 2-12 addToFromClause() Method
 /** LineItemQuantityCriteria Criteria
 *
 */
 private String addToFromClause(LineItemQuantityCriteria
 criteria)
 {
 StringBuffer buffer = new StringBuffer();
 if (criteria != null && criteria.use())
 {
 buffer.append(" JOIN TR_LTM_RTL_TRN ON TR_LTM_RTL_TRN.ID_STR_RT = TR_TRN.ID_STR_RT AND
TR_LTM_RTL_TRN.ID_WS = TR_TRN.ID_WS AND TR_LTM_RTL_TRN.DC_DY_BSN = TR_TRN.DC_DY_BSN AND
TR_LTM_RTL_TRN.AI_TRN = TR_TRN.AI_TRN ");
 buffer.append(" JOIN TR_LTM_SLS_RTN ON TR_TRN.ID_STR_RT = TR_LTM_SLS_RTN.ID_STR_RT AND
TR_TRN.ID_WS = TR_LTM_SLS_RTN.ID_WS AND TR_TRN.DC_DY_BSN = TR_LTM_SLS_RTN.DC_DY_BSN AND TR_TRN.AI_TRN =
TR_LTM_SLS_RTN.AI_TRN ");
 buffer.append(" JOIN AS_ITM ON TR_LTM_SLS_RTN.ID_ITM = AS_ITM.ID_ITM ");
 buffer.append(" JOIN AS_ITM_STK ON AS_ITM.ID_ITM = AS_ITM_STK.ID_ITM ");
 buffer.append(" JOIN ID_IDN_PS ON AS_ITM.ID_ITM = ID_IDN_PS.ID_ITM ");
C o d i n g Y o u r F i r s t F e a t u r e 2- 11

2-1
 }
 return buffer.toString();
 }

3. Add a method call to append to the Where clause.
query.append(addToWhereClause(searchCriteria.getLineItemQuantityCriteria()));

4. Add the method implementation for the addToWhereClause() method.
Code Sample 2-13 addToWhereClause() Method
 addToWhereClause(searchCriteria.getLineItemQuantityCriteria())
 as below.

 /**
 *
 */

 private String addToWhereClause(LineItemQuantityCriteria
 criteria)
 {

 StringBuffer query = new StringBuffer("");
 if (criteria != null && criteria.use())
 {
 if ((criteria.getItemNumber() != null && criteria.getItemNumber().length() > 0))
 {
 query.append(" AND TR_LTM_SLS_RTN.ID_ITM_POS="+criteria.getItemNumber());
 }

 if (criteria.isSearchByItemQuantity())
 {
 query.append(" AND
TR_LTM_SLS_RTN.QU_ITM_LM_RTN_SLS"+criteria.getItemQuantityLimitOperator()+"?");
 }
 }
 return query.toString();
 }

5. Add a call to a method to bind the variables in the SQL query.
n = setBindVariables(ps, n, searchCriteria.getLineItemQuantityCriteria());

6. Add the method implementation for the setBindVariables() method.
Code Sample 2-14 setBindVariables() method
setBindVariables(ps, n,
 searchCriteria.getLineItemQuantityCriteria()) as below.

 /**
 *
 */
 private int setBindVariables(PreparedStatement statement,
 int index,
 LineItemQuantityCriteria criteria)
 throws SQLException
 {
 if (criteria != null && criteria.use())
 {
 if (criteria.isSearchByItemQuantity())
 {
 if (getLogger().isDebugEnabled())
 bindVariables.add(criteria.getItemQuantityLimit()+"");
 statement.setInt(index++,
 criteria.getItemQuantityLimit());
2 B a c k O f f i c e D e v e l o p e r G u i d e

 }
 }
 return index;
 }
C o d i n g Y o u r F i r s t F e a t u r e 2- 13

2-1
4 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 3

DEVELOPMENT ENVIRONMENT

Overview
This chapter describes how to set up a single-user development environment for Back Office. The setup
described here provides all the files, tools, and resources necessary to build and run the Back Office
application.
When you complete the steps in this chapter, you will have a local development workspace with the
ability to compile the application, and an application server installation to which you can deploy the Back
Office application.
This chapter assumes that you are using the JBoss application server and the MySQL database (version
4.104 or later). These are free open-source tools whose footprint is well suited for an individual developer
environment. You may use different tools for deployment.
Your development environment may use different tools, and you may develop variations on this
procedure. Specific property file settings, in particular, may need to be modified in your environment.

Using the Apache Ant Build Tool
360Commerce uses the Apache Ant build tool to compile builds. Ant uses build information defined in
various build.xml files and properties files. Each top-level directory in the source control system contains
a build.xml file that specifies a variety of targets, or build tasks, for use with Ant.
Since each module depends on other modules, a \build directory is included whose build.xmlfile contains
targets designed to build the entire system. You can build modules individually if you built them in the
correct dependency order.
Properties files (such as build.properties) contain values that are used by Ant when it processes tasks.
Individual properties can exist in multiple files. The first setting processed by Ant is the one that is used;
properties are like constants which cannot be changed once set.
D e v e l o p m e n t E n v i r o n m e n t 3- 1

3-2
Prerequisites for the Development
Environment
The following software resources must be licensed, installed, and configured before you set up the Back
Office development environment as described in the next section. Where a software version is specified,
use only the specified version.

• A source control system, with access to a copy of the Back Office source code.
• A database server and database. The default database name is bo01. You should have access to the

database server; you need its connection URL, user name and password.
Depending on your organization’s preferences, you may need to install the database server yourself,
get a qualified database administrator to install it for you, or you may access a database server installed
on another machine. The instructions in this chapter work for a local or remote database.

• JDK 1.4.1. Downloads and instructions are available at http://sun.com. The JAVA_HOME environment
variable needs to be set in the OS and the %JAVA_HOME%\bin directory needs to be added to the path.

Setting Up the Development Environment
Follow these steps to set up a Back Office development environment on your computer system. Paths in
these instructions refer to directories in your local source code workspace, unless otherwise specified.

1. Check out each of the following directories from your source code control system to your local
working directory:
• thirdparty
• 360common
• commerceservices
• suite
• webmodules
• backoffice_ee
• build
• user

2. Install Apache Ant 1.5.4.
Get it from the \thirdparty module’s \dist directory. The version stored there includes some
additional .jar files required for the tool to work with 360Commerce software. More information
on Ant is available at http://ant.apache.org/.
Set the ANT_HOME environment variable to the name of the directory you installed Ant in, and add the
%ANT_HOME%\bin directory to the PATH environment variable.
B a c k O f f i c e D e v e l o p e r G u i d e

http://sun.com
http://ant.apache.org

3. Install JBoss 3.2.1.
Get it from the \thirdparty module’s \dist directory. More information on JBoss is available at
http://jakarta.com.
Set the ANT_HOME environment variable to the name of the directory you installed Ant in, and add the
%ANT_HOME%\bin directory to the PATH environment variable.

4. Copy the sample build.properties file from \user\examples to your user directory (such as c:\
Documents and Settings\username on a Windows system).

5. Change the value of test.envs in the build.properties file in your user directory to point to the \
user directory in your workspace.
Code Sample 3-1 build.properties: Setting test.envs Property
#Generic build stuff
deprecation=off

#test stuff
test.envs=<workspace>/user/${ant.project.name}/jboss

6. Edit the user.properties file in the \user\backoffice\jboss directory to point to the correct database
and deployment directory.
Code Sample 3-2 user.properties: Editing Database Property
my props
db.product=<database_name>
jboss.deploy.dir=C:/jboss-3.2.1/server/default/deploy

7. Edit the log4j.properties file in the \user\backoffice\jboss directory to point to the appropriate log
location in your workspace.
Code Sample 3-3 log4j.properties: Editing Log Location
... code omitted here...
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d %-5p [%c] %m%n
log4j.appender.R.File=C:/eclipse/workspace/user/jboss/test.log
...code omitted here...

This change causes logs created when you run functional tests to end up in an appropriate location.
8. Edit the mysql.properties file in the \user\db\ directory as follows, making sure the properties

shown in bold have the correct values.
Code Sample 3-4 mysql.properties: Editing Database Properties
mysql
db.product=mysql
db.version=4.0
db.jdbc-driver=com.mysql.jdbc.Driver
db.jdbc-jar=<mysql directory path>/mysql-connector-java-3.0.8-stable-bin.jar
db.datafilter=com._360commerce.datafilters.MySQLDataFilter
db.jdbc-url=jdbc:mysql://localhost:3306/bo01
db.user=<username>
db.password=<password>

9. From a command prompt, change to the \build directory and execute the following command:
ant backoffice_ee

This compiles Back Office based on the instructions in build.xml and the settings in
build.properties. The compile process generates a backoffice.ear file located in the dist directory.
D e v e l o p m e n t E n v i r o n m e n t 3- 3

http://jakarta.com

3-4
10. From a command prompt, change to the \backoffice_ee directory and execute the following
command:
ant create_db

This causes the system to run a series of SQL scripts to create the database tables and seed data.
11. From a command prompt, execute the following command:

ant deploy

This copies the backoffice.ear file to the <JBOSS_HOME>\default\deploy directory.
12. Copy the contents of your \backoffice_ee\appservers\jboss\3.2.1\server directory to the

<JBOSS_HOME>\server directory.
These files configure JBoss. They include:
• JMS queue definitions
• Default security
• Quartz properties
• Data source definitions
• Executable .jar files for database connections and third-party applications
• Modified startup script

13. Copy appropriate .jar files for your database from the \suite\3rdparty\special_jars\ directory to
the <JBOSS_HOME>\server\default\lib directory.
For example, if you are using MySQL, copy the mysql-connector-java-3.0.8-stable-bin.jar file; this
installs the Connector/J JDBC driver.

14. Define the data source for the correct database in JBoss by editing a data source file found in the
<JBOSS_HOME>\server\default\deploy directory. The data source file has a filename of the form
<databasename>-ds.xml.

For example, for MySQL, the filename is mysql-ds.xml.
• Uncomment the jndi-name tag and modify the value to jdbc/DataSource.
• Uncomment the connection-url tag and specify the correct hostname or IP address for your

database.
• Update the user-name and password tag values to include the correct database username and

password.
The following code sample illustrates these changes:
Code Sample 3-5 Sample MySQL Data Source Configuration

<datasources>
 <local-tx-datasource>
 <jndi-name>jdbc/DataSource</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/bo01</connection-url>
 <driver-class>org.gjt.mm.mysql.Driver</driver-class>
 <user-name>username</user-name>
 <password>password</password>
 </local-tx-datasource>
</datasources>
B a c k O f f i c e D e v e l o p e r G u i d e

15. Define the secondary data source in other-ds.xml. Edit it as you did the data source file named after
your database type; it should be identical, except that the <jndi-name> tag should read <jndi-
name>jdbc/Other</jndi-name>.

16. Delete all files named *-ds.xml in the <JBOSS_HOME>\server\default\deploy directory except for these:
• other-ds.xml

• hsql-ds.xml
• The one for your database (if you are using MySQL, keep the mysql-ds.xml file)

Run and Configure Back Office
To verify the setup and provide it with configuration data, run the Back Office application using the
following steps:

1. Start JBoss with a run script from its \bin directory:
c:\<JBOSS_HOME>\bin\run.bat (for Windows)
or
<JBOSS_HOME>/bin/run.sh (for Linux)

2. Load parameter by issuing the following command:
ant load_parameters

3. In a browser, load the following URL to display Back Office and verify that it works.
http://localhost:8080/backoffice

4. Log in to the application with the default login (username pos, password pos) to verify that it
works.
D e v e l o p m e n t E n v i r o n m e n t 3- 5

http://localhost:8080/backoffice

3-6
 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 4

APPLICATION SERVICES

Overview
Application Services have the job of requesting information from Commerce Services and returning that
information to the Web UI in a format that can be displayed by it.
360Commerce implements application services in the form of application managers. Application
managers aggregate services from multiple Commerce Services into a smaller number of interfaces, and
correspond generally to a specific portion of the application user interface.
The presence of the Application Services layer offers opportunities for customization that can make your
implementation of Back Office more stable across upgrades. This pattern optimizes network traffic, as
requests for multiple Commerce Services tend to be funneled through a smaller number of application
managers.
These services contain primarily application logic. Business logic should be kept out of these services
and instead shared from the Commerce Services tier. In many cases the only function of an Application
Service method is to call one or more Commerce Services. Each manager is a facade for one or more
Commerce Services. A typical method in the Application Services layer aggregates several method calls
from the Commerce Services layer, allowing the real retail business components to remain decoupled
from each other.
Application managers are called by Struts Action classes to execute functionality that ultimately derives
from Commerce Services. Struts Action classes should not call Commerce Services directly.
Figure 4-1, “Application Manager in Operation” on page 4-2 shows how an Application Manager
functions within the application.
A p p l i c a t i o n S e r v i c e s 4- 1

4-2
Figure 4-1 Application Manager in Operation

Application Service Architecture
The following diagram shows the relationship between the user interface, the application services, and
the Commerce Services.

Application Server

Application Manager Layer
Commerce Services Layer

Browser

TransactionServiceBean

Runs SQL code to request
a set of transactions

Ejournal Manager Bean

Calls Commerce Service to get
info; packages requested info for
the UI

HTML

User enters a date range in
Transaction Tracker JSP, asking for
transactions from 5/4/2003 to 5/5/

2004

1

Browser sends criteria to
HTTP server as URI

2 HTTP/Servlet Server

Processes HTTP requests
Calls Application Manager
Renders returned data as HTML

3

4

6

5

7

B a c k O f f i c e D e v e l o p e r G u i d e

eports
Figure 4-2 Example Application Service Interactions

Application Manager Mapping
Table 4-1 shows how individual Application Managers map to various parts of the application.

Table 4-1 Application Manager Mapping
Tab Manager API Functions
Home Dashboard

Manager
DashboardManagerIfc.java Manipulating the employee task list on the

Dashboard
Reports Report Manager ReportManagerIfc.java Displaying, executing, and scheduling the r

User Interface Logic Application Logic Business Logic

UI Services Application
Services

Commerce Services
A p p l i c a t i o n S e r v i c e s 4- 3

4-4

yees

iscount

 tills
Extending an Application Manager
The application manager layer provides an opportunity for customizing application behavior without
changing the underlying Commerce Services. Some examples of reasons to extend or modify an
application manager include:

• To change content that comes from Commerce Services. You can remove data or change how it is
handled, formatted, or displayed by changing the logic in the application manager.

• You can provide additional data to your JSPs via the application managers, either by supplying data
that comes from existing Commerce Services functions but is not displayed by the default user
interface, or by calling new, custom Commerce Services.

• When you add input fields to the user interface, you must make sure that the appropriate application
manager knows about those fields and knows how to handle them. If you are extending search criteria,
for example, the application manager has to be able to pass those criteria on to the Commerce Service
layer.

Creating a New Application Manager
The following steps outline the requirements for making a new application manager:

1. Make new EJB.jar for the application manager.
• New directory \webmodules\<new_app_manager_name>
• build.xml file for ant configurations
• \app directory that contains \classes, \deploy, \dist, \src and \test directories
• \ui directory that contains Struts/Tiles .jsp files

2. Edit application configuration files
• Edit build.xml file for \backoffice to add your new module to the suite.modules property list
• application.xml: add a tag for your EJB to the list of EJBs, as manager_name-admin-ejb.jar

Admin Task Manager TaskManagerIfc.java Scheduling tasks
Employee
Manager

EmployeeManagerIfc.java Managing security groups, users, and emplo

Pricing Pricing Manager PricingManagerIfc.java Managing price changes, promotions, and d
rules

Item Item Manager ItemManagerIfc.java Searching for items
Store Ops Store Ops

Manager
StoreOpsManagerIfc.java Opening and closing the store, registers, and

Table 4-1 Application Manager Mapping
Tab Manager API Functions
B a c k O f f i c e D e v e l o p e r G u i d e

3. Edit UI files
Create UI references in Struts configuration files, as described in Chapter 2, “Coding Your First Feature.”

Application Manager Reference
All of the managers are stateless session facades which provide functionality in a UI-centric form to be
called by Struts Action classes associated with various JSPs. The topics in this section describe the
individual application managers.

Dashboard Manager
Provides functions for displaying and manipulating the employee task list on the Dashboard, displayed
when users click the Home tab in the user interface.

Dependencies
• Workflow/Scheduling Service
• Reporting Service
• Employee/User Service

EJournal Manager
EJournal Manager handles functionality related to the Transaction Tracker tab in the user interface. It
allows searches for transactions based on a variety of criteria and combinations of criteria.

Dependencies
• Parameter Service
• Tender Service
• Transaction Service
• Customer Service
• Store Directory
• Reporting Service

ItemManager
Item Manager handles item search functions for the Item tab in Back Office.

Dependencies
• Item Service
A p p l i c a t i o n S e r v i c e s 4- 5

4-6
• Store Directory

Report Manager
Provides functions for displaying, executing, and scheduling the reports, as well as managing lists of user
favorite reports. Supports the application’s Reports tab.

Dependencies
• Workflow/Scheduling Service
• Store Directory
• Reporting Service
• ReportGroupTaskExecutionMDB

Store Manager
Provides the ability to read and write information about a store to and from the database. This includes
store address and store hierarchy information.

Dependencies
• Workflow/Scheduling Service
• Store Directory
• Employee/User Service

StoreOps Manager
Provides store operations functions. This includes Start of Day, End of Day, and Deposit operations, as
well as opening and closing registers and opening and reconciling tills. This manager handles tasks for
the Store Ops tab in Back Office.

Dependencies
• StoreOps Service
• Parameters Service
• Currency Service

Task Manager
Handles workflow and displays job information.

Dependencies
• Workflow Service
B a c k O f f i c e D e v e l o p e r G u i d e

• File Transfer Service
A p p l i c a t i o n S e r v i c e s 4- 7

4-8
 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 5

COMMERCE SERVICES

Overview
The topics in this chapter describe each of the available Commerce Services. The Commerce Services in
Back Office provide the model component of the MVC pattern; they store the state of data and respond to
requests to change that state which come from the controller. The Commerce Services are intended to
encapsulate all of the business logic of the application. They are built as session beans, sometimes
exposed as Web services, which contain the shared retail business logic. Commerce Services aggregate
database tables into objects, combining sets of data into logical groupings. They are organized by
business logic categories rather than application functionality. These are services like Transaction, Store
Hierarchy, or Parameter, which could be used with any retail-centric application. The Commerce
Services talk to the database through a persistence layer of entity beans, described in Chapter 6, “Store
Database.”
For each service, this chapter includes a description, a listing of the database tables used by the service,
plus notes on extending the service and a list of dependencies on other services. The database tables listed
are those which are updated by the service directly, excluding any services merely accessed by the
service, or which are updated through other services.
This chapter covers the following services:

• Calendar Service
• Code List Service
• Currency Service
• Customer Service
• Employee/User Service
• File Transfer Service
• Financial Totals
• Item Service
• Parameter Service
• Party Service
• POSlog Import Service
C o m m e r c e S e r v i c e s 5- 1

5-2
• Post-Processor Service
• Pricing Service
• Reporting Service
• Store Directory Service
• Store Service
• Store Ops Service
• Tax Service
• Time Maintenance Service
• Transaction Service
• Workflow/Scheduling Service

Commerce Services in Operation
Figure 5-1, “Commerce Services in Operation” on page 5-2 shows how the Commerce Services function
within the application.
Figure 5-1 Commerce Services in Operation

Application Server

Application Manager Layer
Commerce Services Layer

Browser

TransactionServiceBean

Runs SQL code to request
a set of transactions

HTML
User enters a date range in

Transaction Tracker JSP, asking for
transactions from 5/4/2003 to 5/5/

2004

1

Browser sends criteria to
HTTP server as URI

2
HTTP/Servlet Server

4

ARTS Database

Persistence Layer

Entity Bean

9

10
3

11

6

5

7

8

B a c k O f f i c e D e v e l o p e r G u i d e

Creating a New Commerce Service
To create a new Commerce Service, use the following basic steps:

1. Make a new EJB.jar with the following components:
• New directory \suite\<new_service_name>
• A build.xml file for ant configurations
• \classes, \deploy, \dist, \src and \test directories

2. Edit application configuration files
• Edit the build.xml file for \backoffice to add the module to the suite.modules property list
• application.xml: add a tag for the EJB to the list of EJBs

3. Edit Application Service and UI files.
• Update Application Service to call methods in the Commerce Service.
• Create UI references in Struts configuration files.

Calendar Service
Package of business-calendar-related functionality for reporting.

Database Tables Used
• CA_CLD (Calendar)
• CA_CLD_LV (Calendar Level)
• CA_CLD_PRD (Calendar Period)
• CA_PRD_RP_V4 (Calendar Reporting Period V4)

Interfaces
Access the service through CalendarServiceIfc.java:
Code Sample 5-1 CalendarServiceIfc.java: Methods
CalendarReportRangeDTO getReportingPeriods(int calendarId, CalendarLevel level, Date startDate, Date
endDate) throws RemoteException, FinderException;
Collection getReportingPeriodsAllLevels(int calendarId, Date transactionTime) throws RemoteException,
FinderException, CreateException;
void createCalendar(int id, String name) throws RemoteException, CreateException;
void removeCalendar(int id) throws RemoteException, RemoveException;
C o m m e r c e S e r v i c e s 5- 3

5-4
Extending This Service
You could extend this service to change how dates are handled. For example, the default service provides
year, month, week, and day as units for reporting. You might want to add quarters to this list. Doing so
would require adding code to the service to handle resolving data to the new unit. If, on the other hand,
you merely wanted to remove one of these units, for example to remove reporting by week, you could do
so by changing the database alone.

Dependencies
None.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Code List Service
The Code List Service allows Web applications to retrieve code lists from various sources:

• Inventory codes
• Advanced Pricing codes
• POS Department codes
• Suspended Transactions codes

Database Tables Used
ID_LU_CD (CodeList)

Interfaces
Access this interface through CodeListServiceIfc.java. The following code sample shows the available
methods:
Code Sample 5-2 CodeListServiceIfc.java: Methods

public interface CodeListServiceIfc
{

 /**
 * Retrieve the inventory Reason Codes
 */
 public Collection getInventoryCodeList() throws RemoteException, FinderException;

 /**
B a c k O f f i c e D e v e l o p e r G u i d e

 * Retrieve reason codes by store and description
 * @param storeId
 * @param description
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 public Collection getReasonCodeByStoreAndDescription(String storeId, String description) throws
RemoteException, FinderException;

 /**
 * Retrieve reason codes by store and description and group
 * @param storeId
 * @param description
 * @param group
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 public Collection getReasonCodeByStoreAndDescriptionAndGroup(String storeId, String description,
String group) throws RemoteException, FinderException;

 /**
 * Retrieve reason code value for a given entry name
 * @param storeId
 * @param description
 * @param group
 * @param entryName
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 public ReasonCodeDTO getReasonCodeByName(String storeId, String description, String group, String
entryName) throws RemoteException, FinderException;

 /**
 * Retrieve reason code for a given entry value
 * @param storeId
 * @param description
 * @param group
 * @param entryValue
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 public ReasonCodeDTO getReasonCodeByValue(String storeId, String description, String group, String
entryValue) throws RemoteException, FinderException;

 /**
 * Retrieve default reason code in a group
 * @param storeId
 * @param description
 * @param group
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 public ReasonCodeDTO getDefaultReasonCode(String storeId, String description, String group) throws
RemoteException, FinderException;

 /**
 * Returns a collection of PosDepartmentDTOs.
 * @return Collection of PosDepartmentDTO
 * @throws RemoteException
C o m m e r c e S e r v i c e s 5- 5

5-6
 * @throws FinderException
 */
 public Collection getPosDepartments() throws RemoteException, FinderException;

 DBUtilsIfc getDBUtils() throws RemoteException;

}

Extending This Service
You can add additional codes to the system without extending this service, as it simply retrieves the set of
codes that exist.

Dependencies
None.

Tier Relationships
The functionality of this service is the same whether it is used in Central Office or Back Office.

Currency Service
The Currency Service allows you to query for the base local currency setting (from the database). It also
handles addition of currency, including currency in multiple denominations.

Database Tables Used
• CO_CNY (Currency List)
• CO_RT_EXC (Exchange Rates)

Interfaces
Access this interface through CurrencyIfc.java. The following code sample shows a few of the available
methods:
Code Sample 5-3 CurrencyIfc.java: Some Methods
/**
 Adds this object to another CurrencyIfc object. <P>
 @param addCurrency object
 @return new value as object
 */
 //---
 public CurrencyIfc add(CurrencyIfc addCurrency);

 //---
 /**
B a c k O f f i c e D e v e l o p e r G u i d e

 Subtracts CurrencyIfc object from this object. <P>
 @param subCurrency object
 @return new value as object
 */
 //---
 public CurrencyIfc subtract(CurrencyIfc subCurrency);

 //---
 /**
 Multiplies this object times another CurrencyIfc object. <P>
 @param multCurrency object
 @return new value as object
 */
 //---
 public CurrencyIfc multiply(CurrencyIfc multCurrency);

 //---
 /**
 Multiplies this object times another CurrencyIfc object. <P>
 @param multCurrency object
 @return new value as object
 */
 //---
 public CurrencyIfc multiply(BigDecimal multCurrency);

Extending This Service
The default service supports U.S. dollars, Canadian dollars, Mexican pesos, Japanese yen, and British
pounds (pound sterling); it could be extended to handle additional currencies, and to allow the addition of
multiple currencies to each other, with appropriate handling of exchange rates.
The service could also be extended to connect to a ASP to get exchange rates or other currency
information.

Dependencies
None.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office;
however, it is currently only used by Back Office.

Customer Service
The Customer Service is used to locate customers' information. Typically this information is displayed as
additional details to a transaction.
C o m m e r c e S e r v i c e s 5- 7

5-8
Database Tables Used
PA_CT (Customer)

Interfaces
Access the service through CustomerServiceIfc.java:
Code Sample 5-4 CustomerServiceIfc.java: Methods
public CustomerDTO getCustomer(String customerID) throws RemoteException, SearchException;

Extending This Service
In a deployment, you could extend this service by connecting it to a Customer Relationship Management
(CRM) application. The service encapsulates the 360Commmerce customer data function so that other
portions of the application do not have to change should such a connection be implemented.

Dependencies
Party Service.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Employee/User Service
Searches for employees and updates their details, including security permissions.

Database Tables Used
• CO_ACS_GP_RS (GroupResourceAccess)
• CO_GP_WRK (WorkGroup)
• PA_EM (Employee)

Interfaces
Access the service through EmployeeServiceIfc.java, which offers methods for finding, adding, and
updating employee records. The following code sample provides some examples:
Code Sample 5-5 EmployeeServiceIfc.java: Some Methods
 /**
 * Finds the employee with the specified employee ID.
B a c k O f f i c e D e v e l o p e r G u i d e

 *
 * @param employeeId the ID of the employee to find.
 * @return A DTO containing the employee data.
 * @throws RemoteException
 */
 EmployeeDTO getEmployee(String employeeId) throws EmployeeNotFoundException, RemoteException;

 /**
 * Finds the employees whose first and last names begin with the specified strings.
 *
 * @param firstName the beginning characters of the employee's first name.
 * @param lastName the beginning characters of the employee's last name.
 * @return an array of DTO's containing data about employees that match the search criteria.
 * @throws RemoteException
 */
 EmployeeDTO[] searchEmployees(String firstName, String lastName) throws RemoteException;

Extending This Service
You could extend this service by replacing it with a connection to a personnel database or application,
such as an LDAP system.

Dependencies
Party Service.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

File Transfer Service
The File Transfer Service passes arbitrary files from one component of the system to another. It stores the
files in the database.

Database Tables Used
• FILE_SET (File Set)
• FILE_SET_ITEM (File Set Item)

Interfaces
Access the service through FileTransferIfc.java:
Code Sample 5-6 FileTransferServiceIfc.java: Methods
public interface FileTransferServiceIfc
C o m m e r c e S e r v i c e s 5- 9

5-1
{
 FileSetDTO createFileSet(String name, String description) throws RemoteException;

 FileSetDTO getFileSet(int id) throws RemoteException;

 FileSetDTO addItemToFileSet(int id, FileSetItemDTO fileSetItemDTO) throws RemoteException;

 FileSetDTO removeItemFromFileSet(int id, String fileName) throws RemoteException;

 DistributionPayload getDistributionPayload(String source) throws RemoteException;

}

Extending This Service
If your project has a particularly optimized solution for storing files on a server, you might want to
replace this service with your own solution.

Dependencies
Store Directory.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Financial Totals
This service provides functions for getting financial totals for transactions and till history. Each type of
transaction and history has an associated Financial Total calculator to derive the various values in the
Financial Totals classes from the particular transaction type.

Database Tables Used
This service does not have persistent storage of its own; it relies on data from other services.

Interfaces
Access the service through FinancialTotalsServiceIfc.java. The following code sample shows the
available methods:
Code Sample 5-7 FinancialTotalsServiceIfc.java

FinancialTotalsIfc getFinancialTotals(Collection transactions) throws
FinancialTotalCalculationException, RemoteException;

 TransactionFinancialTotalsDTO getFinancialTotals(TransactionDTO dto) throws
FinancialTotalCalculationException, RemoteException;
0 B a c k O f f i c e D e v e l o p e r G u i d e

 TillHistoryFinancialTotalsDTO getFinancialTotals(TillHistoryDTO tillHistory, TillTenderHistoryDTO[]
tillTenderHistory) throws FinancialTotalCalculationException, RemoteException;

 UpdatedTillHistoryFinancialTotalsDTO getFinancialTotalsAtReconcile(WorkstationDTO workstation,
TillHistoryDTO tillHistory, TillTenderHistoryDTO[] tillTenderHistory, TenderAmountDTO endFloat,
TenderAmountDTO[] tillCounts) throws FinancialTotalCalculationException, RemoteException;

 FinancialUtilIfc getFinancialUtil() throws RemoteException;

Extending This Service
You could extend this service to perform additional financial aggregations. You could add calculators for
additional transaction types or alter the existing calculators.

Dependencies
• Item Service
• Currency Service
• Transaction Service

Tier Relationships
The functionality of this service is the same whether it is used in Central Office or Back Office.

Item Service
The Item Service provides item creation, item search, and item record maintenance. Includes the ability
to import item information: a flat file or XML file of item information is imported and can then be
processed immediately or scheduled for later upload. The Item Service can take one of three actions on
each item listed in an import: Add, Update, or Delete.

Database Tables Used
• AS_ITM (Item)
• AS_ITM_RTL_STR (Retail Store Item)
• AS_ITM_STK (Stock Item)
• CO_CLN_ITM (Item Collection)
• CO_CLR (Item Color)
• CO_STYL (Item Style)
• CO_SZ (Item Size)
• CO_UOM (Item Unit Of Measure)
C o m m e r c e S e r v i c e s 5- 11

5-1
• ID_IDN_PS (POS Identity)

Interfaces
Use ItemServiceIfc.java, which offers methods to get, update, and import items, search for items, and to
get specific information about items, such as units of measure, available colors, and available locations.
Code Sample 5-8 ItemServiceIfc.java: Some Methods

 /**
 * @param itemID
 */
 ItemDTO getItem(String itemID) throws RemoteException, FinderException;

 /**
 * updates the passed in dto, including possibly changing default data
 *
 * @param dto
 */
 void updateItem(ItemInfoDTO dto) throws RemoteException;

 /**
 * Imports items to the database.
 *
 * @param content - Content containing items to be processed.
 */
 void importItem(String content) throws RemoteException;

 /**retrieves an item by its full key, if the item isn't found it returns default item data
 *
 * @param storeID
 * @param posItemID
 */
 ItemInfoDTO getAllItemInfo(String storeID, String posItemID, String itemID) throws RemoteException;

 /** retrieves item data, the collection may contain 0-n iteminfodtos
 *
 * @param storeID
 * @param posItemID
 */
 Collection searchForItems(Collection storeIDs, ItemSearchCriteria criteria) throws RemoteException;

 /**
 * @param storeID
 * @param description
 */
 Collection findByDescription(String storeID, String description) throws RemoteException,
FinderException;

 /**
 * @param storeID
 * @param itemID
 */
 Collection findByPOSItemID(String storeID, String posItemID) throws RemoteException,
FinderException;

 /**
 * Returns a collection of ColorDTOs representing all the available colors for items.
 *
 */
 Collection getAvailableColorsForItems() throws RemoteException, FinderException;
2 B a c k O f f i c e D e v e l o p e r G u i d e

 /**
 * Returns a collection of UnitOfMeasureDTOs representing all the available sizes for items.
 *
 */
 Collection getAvailableUnitOfMeasuresForItems() throws RemoteException, FinderException;

 /**
 * Returns a collection of SizesDTOs representing all the available sizes for items.
 *
 */
 Collection getAvailableSizesForItems() throws RemoteException, FinderException;

 /**
 * Returns a collection of StylesDTOs representing all the available styles for items.
 *
 */
 Collection getAvailableStylesForItems() throws RemoteException, FinderException;

 /**
 * Returns a collection of LocationDTOs representing all the available locations for items at a
given store.
 *
 */
 Collection getAvailableLocationsForItems(String storeID) throws RemoteException, FinderException;

 /**
 * Finds a collection of MerchandiseClassificationDTOs that an item can belong to.
 * @return
 * @throws RemoteException
 * @throws FinderException
 */
 Collection getMerchandiseClassifications() throws RemoteException, FinderException;

 /**
 * Keys used for importing items.
 *
 * currently maps to the ItemFileTableDef fields
 */
 String ITEM_ADD = "ADD";
 String ITEM_DELETE = "DEL";
 String ITEM_UPDATE = "CHG";
}

Extending This Service
You could extend this service to add item information not carried by the default service. You could
change it to delegate to a merchandising system for item classification and/or item information. Either of
these changes could be made by replacing the default service with a new one which adds the new material
and references the default service for the rest of its data.

Dependencies
Party Service.
C o m m e r c e S e r v i c e s 5- 13

5-1
Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.
Central Office does not make use of as many of the available functions as Back Office does; currently,
only Back Office can update and add items. However, Central Office can import items.

Parameter Service
Stores application configuration data and provides methods for creating and distributing that data to store
systems.

Database Tables Used
• PARAMETER (Parameter)
• PARAMETER_SET (Parameter Set)
• PARM_EDITOR (Parameter Editor)
• PARM_GROUP (Parameter Group)
• PARM_SET_PARM (Parameter Set Member)
• PARM_SET_TYPE (Parameter Set Type)
• PARM_TYPE (Parameter Type)
• PARM_VAL_PROP (Parameter Possible Values)
• PARM_VALIDATOR (Parameter Validator)
• PARM_VALUE (Parameter Value)
• VAL_PROP_NAME (Validator Property Name)
• VAL_TYPE (Validator Type)

Interfaces
Methods for the service can be found in ParameterServiceIfc.java:
Code Sample 5-9 ParameterServiceIfc.java: Sample Methods
 ParameterSetDTO getMasterSet() throws RemoteException;

 ParameterSetDTO getMasterSet(String group) throws RemoteException;

 Set getDistributionSets() throws RemoteException;

 ParameterSetDTO getParameterSet(int id) throws RemoteException;

 ParameterSetDTO getParameterSet(int id, boolean retrieveParameters) throws RemoteException;

 void deleteParameterSet(int id) throws RemoteException;
4 B a c k O f f i c e D e v e l o p e r G u i d e

 ParameterIfc getApplicationParameter(String param, String defaultValue) throws RemoteException;

 ParameterIfc getApplicationParameter(String param, List defaultValues) throws RemoteException;

Extending This Service
Parameters can be added or removed without changing the Parameter Service, by importing a new master
set of parameters.

Dependencies
None.

Tier Relationships
When used in Back Office, this service distributes parameters to Back Office itself and to Point-of-Sale.
When used in Central Office, the service distributes parameters to Central Office, Back Office, and Point-
of-Sale.

Party Service
The Party Service collects shared party data like addresses, phone number and other contact information.
Parties are any person or entity that is a party to a transaction, such as an employee, store, or vendor.

Database Tables Used
• LO_ADS (Address)
• PA_CNCT (Contact)

Interfaces
The Party Service has no explicit interface file; it is a collection of entities, such as Address and Contact.

Extending This Service
This service could be extended to connect to a third-party contact database to collect its data.

Dependencies
None.
C o m m e r c e S e r v i c e s 5- 15

5-1
Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

POSlog Import Service
Imports POSlog-formatted XML into the database.
6 B a c k O f f i c e D e v e l o p e r G u i d e

_T
x

K_T

)

)
CHN (T
e

K_T

e

x

L
e

st
)
L
n
)

Database Tables Used
Table 5-1 POSLog Import Service Database Tables
• AS_DRW_WS

(Workstation
Drawer)

• AS_ITM_UNK
(Unknown Item)

• AS_LY (Layaway)
• AS_TL (Till)
• AS_WS

(Workstation
• CA_DY_BSN

(Business Day)
• CA_PRD_RP

(Reporting Period
• CO_MDFR_CMN

(Commission
Modifier)

• CO_MDFR_RTL_PRC (
Retail Price
Modifier)

• CO_MDFR_SLS_RTN_
TX (Sale Return Tax
Modifier)

• CO_MDFR_TX_EXM (
Tax Exemption
Modifier)

• DO_CNT_PHY
(Physical Count
Document)

• DO_CR_STR (Store
Credit)

• DO_CRD_GF (Gift
Card)

• LE_HST_STR
(Store History)

• LE_HST_STR_SF_TND
(Store Safe Tender
History)

• LE_HST_STR_TND
(Store Safe Tender)

• LE_HST_TL (Till
History)

• LE_HST_TL_TND
(Till Tender History)

• LE_HST_WS
(Workstation
History)

• LE_HST_WS_TND
(Workstation Tender
History)

• LE_LTM_MD_TND
(Tender Media Line
Item)

• LO_ADS (Address)
• LO_EML_ADS (E-

mail Address)
• OR_LTM (Order

Line Item)
• OR_LTM_MDFR_RPRC

 (Order Line Item
Retail Price
Modifier)

• OR_ORD (Order)
• ORGN_CT

(Business Customer)
• PA_CNCT (Contact)
• PA_CT (Customer)
• PA_ID_PRTY_GEN

(Party ID
Generation)

• PA_PHN (Phone
Number)

• PA_PRTY (Party)
• TR_ADS_SLS_RTN

(Sale Return Line
Item Address)

• TR_CNT_INV
(Inventory Count
Transaction)

• TR_CTL (Control
Transaction)

• TR_FN_ACNT
(Financial

Accounting
Transaction)

• TR_ITM_CPN_TND (Co
upon Tender Line
Item)

• TR_LON_TND
(Tender Lone
Transaction)

• TR_LTM_ALTR
(Alteration Line
Item)

• TR_LTM_CHK_TND (C
heck Tender Line
Item)

• TR_LTM_CR_STR_TN
D (Store Credit Line
Item)

• TR_LTM_CRDB_CRD_
TN (Credit Debit
Tender Line Item)

• TR_LTM_DSC
(Discount Line Item)

• TR_LTM_GF_CF_TND
(Gift Certification
Tender Line Item)

• TR_LTM_GF_CRD_TN
D (Gift Card Tender
Line Item)

• TR_LTM_PHY_CNT (P
hysical Count Line
Item)

• TR_LTM_PRCH_ORD_
TND (Purchase
Order Tender Line
Item)

• TR_LTM_PYAN
(Payment On
Account Line Item)

• TR_LTM_RTL_TRN (R
etail Transaction
Line Item)

• TR_LTM_SLS_RTN (Sa
le Return Line Item)

• TR_LTM_SLS_RTN
X (Sale Return Ta
Line Item)

• TR_LTM_SND_CH
ND (Send Check
Tender Line Item

• TR_LTM_TND
(Tender Line Item

• TR_LTM_TND_
ender Change Lin
Item)

• TR_LTM_TRV_CH
ND (Travelers
Check Tender Lin
Item)

• TR_LTM_TX (Ta
Line Item)

• TR_PKP_TND
(Tender Pickup
Transaction)

• TR_RCV_FND
(Funds Receipt
Transaction)

• TR_RTL (Retail
Transaction)

• TR_SLS_PS_NO
(POS No Sale
Transaction)

• TR_STR_OPN_C
(Store Open Clos
Transaction)

• TR_TL_OPN_CL
(Till Open Close
Transaction)

• TR_TRN
(Transaction)

• TR_VD_PST (Po
Void Transaction

• TR_WS_OPN_C
(Workstation Ope
Close Transaction
C o m m e r c e S e r v i c e s 5- 17

5-1
Interfaces
The functions of the POSlog Import Service are encapsulated within the Transaction Service; if you need
to call for a POSlog Import, do it through the Transaction Service.

Extending This Service
You could extend this service to capture additional custom POSLog elements which are not part of the
base ARTS IXRetail XML standard.

Dependencies
None.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Post-Processor Service
The Post-Processor Service provides a service interface for processing transactional data after it is
received and storing the information in summary tables. Post-processing serves as a performance
enhancement for reports.

Database Tables Used
• LE_SMY_CT (CustomerSummary)
• LE_SMY_CT_DMOG (CustomerDemographicSummary)
• LE_SMY_MRHRC_EM (EmployeeMerchandiseSummary)
• LE_SMY_PS_DPT_EM (EmployeePosDepartmentSummary)
• LE_SMY_ITM_SLS (ItemSalesSummary)
• LE_SMY_MRHRC_SLS (MerchandiseHierarchySalesSummary)
• LE_SMY_OPR (OperatorSummary)
• LE_SMY_PS_DPT (POSDepartmentSummary)
• LE_SMY_PRDV (PriceDerivationRuleSummary)
• LE_SMY_OPR_TMACV (OperatorTimeActivitySummary)
• LE_SMY_WS_TMACV (WorkstationTimeActivitySummary)
• LE_SMY_WS (WorkstationSummary)
8 B a c k O f f i c e D e v e l o p e r G u i d e

Interfaces
This service offers an extremely simple interface: there is only one method, processTransactions(). Access
this service through PostProcessorServiceIfc.java:
Code Sample 5-10 PostProcessorServiceIfc.java: Some Methods
public interface PostProcessorServiceIfc
{
 void processTransactions() throws RemoteException;

}

Extending This Service
This service is designed to support a variety of post-processors, which can be created as separate objects.
You can extend this service by adding additional post-processors.

Dependencies
• Calendar Service
• Financial Totals Service
• Transaction Service

Tier Relationships
This functionality is present in both Back Office and Central Office. However, because there are
currently no reports in Central Office which rely on the Post Processors, this service is disabled in Central
Office.

Pricing Service
The Pricing service offers functions for requesting pricing rules, modifying them, and creating new ones.

Database Tables Used
• MA_PRC_ITM (ItemPriceMaintenance)
• MA_ITM_PRN_PRC_ITM (PermanentPriceChangeItem)
• TR_CHN_PRN_PRC (PermanentPriceChange)
• MA_ITM_TMP_PRC_CHN (TemporaryPriceChangeItem)
• TR_CHN_TMP_PRC (TemporaryPriceChange)
• CO_EL_PRDV_DPT (DepartmentPriceDerivationRuleEligibility)
C o m m e r c e S e r v i c e s 5- 19

5-2
• CO_EL_PRDV_ITM (ItemPriceDerivationRuleEligibility)
• CO_PRDV_ITM (ItemPriceDerivation)
• CO_EL_MRST_PRDV (MerchandiseStructurePriceDerivationRuleEligibility)
• TR_ITM_MXMH_PRDV (MixAndMatchPriceDerivationItem)
• RU_PRDV (PriceDerivationRule)
• RU_TY_PRDV (PriceDerivationRuleType)
• CO_EV (Event)
• CO_MNT_ITM (ItemMaintenanceEvent)
• CO_EV_MNT (MaintenanceEvent)
• AS_ITM_RTL_STR (Retail Store Item)

Interfaces
Access this interface through PricingServiceIfc.java. The following code sample shows a few of the
available methods:
Code Sample 5-11 PricingServiceIfc.java: Some Methods
{
 void importPricing(String content) throws RemoteException;

 AdvancedPricingRuleDTO createAdvancedPricingRule(String storeID,
 int
priceDerivationRuleTypeId, String name,

Date effectiveDate,
Date expirationDate,

ComparisonBasis
sourceBasis, ComparisonBasis targetBasis) throws RemoteException, AdvancedPricingRuleException;

 AdvancedPricingRuleDTO getAdvancedPricingRule(String store, int id) throws RemoteException,
AdvancedPricingRuleException;

 void removeAdvancedPricingRule(String store, int id) throws RemoteException,
AdvancedPricingRuleException;

 Collection getAllPricingRuleTypesForStore(String storeID) throws RemoteException;

 Collection findAdvancedPricingRules(AdvancedPricingRuleSearchCriteria criteria) throws
RemoteException, AdvancedPricingRuleSearchException;

 void endAdvancedPricingRule(String storeId, int id) throws RemoteException,
AdvancedPricingRuleException;

 Collection findPricingPromotions(PricingPromotionSearchCriteria pricingPromotionSearchCriteria)
throws RemoteException, PricingPromotionNotFoundException;
 PricingChangeDTO updateTemporaryPriceChange(PricingChangeDTO pricingChangeDTO) throws
RemoteException,PricingChangeException;
 java.util.HashMap findPricingPromotion(String promotionId, String storeId) throws RemoteException,
PricingPromotionNotFoundException;

 PricingPromotionSearchCriteria getItemDetails(String eventId, String itemId, String storeId) throws
RemoteException,ItemNotFoundException, ItemIneligibleException;

 Collection findPricingChanges(PricingChangeSearchCriteria pricingChangeSearchCriteria) throws
RemoteException, PricingChangeSearchException, PricingChangeException;
0 B a c k O f f i c e D e v e l o p e r G u i d e

 void addSourceToAdvancedPricingRule(int pricingRuleID, String storeID, String sourceId, BigDecimal
comparisonValue) throws RemoteException, AdvancedPricingRuleException;

 void addTargetToAdvancedPricingRule(int pricingRuleID, String storeID, String targetId, BigDecimal
reduction, int limitCount) throws RemoteException, AdvancedPricingRuleException;

 void removeSourceTargetFromAdvancedPricingRule(int pricingRuleID, String storeID, String[]
sourceIds, String[] targetIds) throws RemoteException, AdvancedPricingRuleException;

 void removeTargetFromAdvancedPricingRule(int pricingRuleID, String storeID, String targetId) throws
RemoteException, AdvancedPricingRuleException;

 void removeSourceFromAdvancedPricingRule(int pricingRuleID, String storeID, String sourceId) throws
RemoteException, AdvancedPricingRuleException;

Extending This Service
You could extend this service to add additional pricing functions or to draw data from a different source,
such as a marketing database that tracks upcoming price promotions.

Dependencies
• Item Service
• Workflow Service

Tier Relationships
When used in Back Office, all of the Pricing functionality is available. When used in Central Office,
Import pricing is not available.

Reporting Service
The Reporting Service is a framework for creating and exporting reports, managing users’ favorite
reports, and maintaining collections for scheduling. The service supports XSL and Crystal reports. The
service uses the i-net Crystal Clear EJB to process report definitions created with Seagate Software's
Crystal Reports.
Export formats include HTML, CSV, PDF and TXT.

Database Tables Used
• EXECUTED_REPORT (Executed Report)
• FAVORITE_REPORT (Favorite Report)
• REPORT_CONFIG (Report Configuration)
• REPORT_CONFIG_PARAMETER (Report Configuration Parameters)
C o m m e r c e S e r v i c e s 5- 21

5-2
• REPORT_CRITERIA (Report Criteria)
• REPORT_GROUP (Report Group)
• REPORT_RECIPIENT (Report Recipient)

Interfaces
The Reporting Service includes methods for report creation and report type. It is contained within
ReportingServiceIfc.java:
Code Sample 5-12 ReportingServiceIfc.java: Methods
String createReport(Handle handle, ReportCriteriaIfc reportCriteria);
String getType();

Extending This Service
The Reporting Service can be easily extended to support new XSL and Crystal Reports. Report
definitions are database driven. The report definitions contain a name, report implementation (Java class
or Crystal Report template), report parameters, and report types.

Dependencies
• Workflow/Scheduling Service
• Store Service
• Store Ops Service
• Calendar Service

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Store Directory Service
This service provides access to the directory of stores in the enterprise.

Database Tables Used
• CO_STRGP_FNC (RetailStoreGroupFunction)
• ST_ASCTN_STRGP_STR (AssociatedRetailStoreStoreGroup)
• CO_STRGP_LV (RetailStoreGroupLevel)
• CO_STRGP (RetailStoreGroup)
2 B a c k O f f i c e D e v e l o p e r G u i d e

• ST_ASCTN_STRGP (AssociatedRetailStoreGroup)

Interfaces
Use StoreDirectoryIfc.java, which offers more than 20 methods. These include methods for getting paths
to stores, the current store’s node in the hierarchy, or a set of stores based on some set of search criteria.
Code Sample 5-13 StoreDirectoryIfc.java: Some Methods

 /**
 * Get all of the store hierarchies on the system. This is just the store hierarchy alone, no
 * individual store(s) underneath of group node.
 * @return HierarchyNodeIfc if any exists, else null
 * @throws RemoteException
 */
 HierarchyNodeIfc getStoreHierarchies() throws RemoteException;

 /**
 * Return the hierarchy node that the store belongs to. This hierarchy node will also have a list
of
 * ancestors of the store represented by storeId.
 * @param storeId
 * @return HierarchyNodeIfc or null if the store does not belong to any store hierarchy
 * @throws RemoteException
 * @throws FinderException
 */
 HierarchyNodeIfc getStoreItsStoreHierarchy(String storeId) throws RemoteException, FinderException;

 StoreDTO getStore(String storeID) throws RemoteException, FinderException;

 /**
 * gets all the stores for a given selection criteria
 *
 * @return a ArrayList of string store ids
 */
 Collection getStores(StoreSelectionCriteria criteria) throws RemoteException;

 Collection getStores(StoreSelectionCriteria criteria, boolean returnEmpty) throws RemoteException;

 String getGroupName(HierarchyNodeKey key) throws RemoteException;

 /**
 *

Extending This Service
You could replace this service with a connection to an existing database of stores, if your enterprise
already maintains this information in another form.

Dependencies
Parameter Service.
C o m m e r c e S e r v i c e s 5- 23

5-2
Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Store Service
Look up and maintain store attributes, store hierarchy information and store history.

Database Tables Used
• CA_DY_BSN (Business Day)
• CA_PRD_RP (Reporting Period)
• CO_STRGP (Store Group)
• CO_STRGP_FNC (Store Group Function)
• CO_STRGP_LV (Store Group Level)
• EMPLOYEE_HIERARCHY_ASSN (Employee Hierarchy Association)
• LE_HST_STR (Store History)
• LE_HST_STR_SF_TND (Store Safe Tender History)
• LE_TND_STR_SF (Store Safe Tender)
• PA_STR_RT (Retail Store)
• ST_ASCTN_STRGP (Associated Retail Store Group)
• ST_ASCTN_STRGP_STR (Associated Retail Store Group Store)

Interfaces
Use StoreServiceIfc.java, which provides one method:
Code Sample 5-14 StoreServiceIfc.java
public interface StoreServiceIfc
{
 /**
 * Returns list of WorkstationDTOs
 * @param storeId
 * @return
 * @throws RemoteException
 */
 List getAllWorkstations(String storeId) throws RemoteException;
}

4 B a c k O f f i c e D e v e l o p e r G u i d e

Extending This Service
If your enterprise needs additional store information not carried by the default service, you could extend
this service to include the new data.

Dependencies
Parameter Service.

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.

Store Ops Service
This service provides functions for opening and closing the store, as well as other store operations.

Database Tables Used
The service depends on other services for its data and does not access persistent storage directly.

Interfaces
Use StoreOpsServiceIfc.java, which includes methods for opening and closing the store plus querying
whether the store is currently open, opening and closing a specific workstation, and handling tills:
Code Sample 5-15 StoreOpsServiceIfc.java: Some Methods
public interface StoreOpsServiceIfc
{
 /**
 * @param storeId the store id
 * @return a store status dto
 * @throws StoreStatusNotFoundException
 * @throws RemoteException
 */
 public StoreStatusDTO getStoreStatus(String storeId) throws StoreStatusNotFoundException,
RemoteException;

 /**
 * This method encapsulates all of the business logic for opening a
 * workstation, a.k.a register. Here is the list of the operations that take
 * place to open a workstation:
 * 1.update the workstation status
 * 2.create a Register Open transaction
 * 3.create a workstation history record

 *
 * @param storeID
 * @param workstationID
 * @throws RemoteException
C o m m e r c e S e r v i c e s 5- 25

5-2
 */
 public void openWorkstation(String storeID, String workstationID, Date businessDay) throws
RemoteException;

 /**
 * This method encapsulates all of the business logic for closing a
 * workstation, a.k.a register. Here is the list of the operations that take
 * place to open a workstation:
 * 1.update the workstation status
 * 2.create a Register Close transaction
 * 3.create a workstation history record

 *
 * @param storeID
 * @param workstationID
 * @throws RemoteException
 */
 public Hashtable closeWorkstation(String storeID, String workstationID, Date businessDay) throws
RemoteException;

 /**
 * @param storeID
 * @param businessDay
 * @param openOperatingFundsBalance
 * @throws CurrencyCreationException
 * @throws CurrencyTypeNotFoundException
 * @throws RemoteException
 */
 public void openStore(String storeID, Date date, BigDecimal openOperatingFundBalance)

throws CurrencyCreationException, CurrencyTypeNotFoundException, RemoteException;

 /**
 * @param storeID
 * @param businessDay
 * @param openOperatingFundsBalance
 * @throws CurrencyCreationException
 * @throws CurrencyTypeNotFoundException
 * @throws RemoteException
 */
 public Hashtable closeStore(String storeID, Date date, BigDecimal closeOperatingFundBalance)

throws CurrencyCreationException, CurrencyTypeNotFoundException, RemoteException;

 /**
 * This is the service method to open a store. Specifically, the following steps
 * happen in opening a store:
 * 1. create a store open transaction.
 * 2. update the safe
 * 3. create tender media lineitem
 * 4. update store history
 *
 * @param storeID
 * @param businessDay
 * @param openOperatingFundsBalance
 * @throws CurrencyCreationException
 * @throws CurrencyTypeNotFoundException
 * @throws RemoteException
 */

public void openStore(String storeID, Date businessDay, CurrencyDTO openOperatingFundsBalance)
 throws RemoteException;

 /**
 * This is the service method to close a store.
 *
6 B a c k O f f i c e D e v e l o p e r G u i d e

 * @param storeID
 * @param businessDay
 * @param closeOperatingFundsBalance
 * @throws CurrencyCreationException
 * @throws CurrencyTypeNotFoundException
 * @throws RemoteException
 */

public Hashtable closeStore(String storeID, Date businessDay, CurrencyDTO
closeOperatingFundsBalance)
 throws RemoteException;

Extending This Service
You could extend or modify this service to change how stores are opened, closed, or reconciled.

Dependencies
Parameter Service.

Tier Relationships
This service is used only in Back Office.

Tax Service
The Tax service allows you to import tax information from a tax file.

Database Tables Used
• CO_GP_TX_ITM (TaxableGroup)
• PA_ATHY_TX_PSTL (TaxAuthorityPostalCode(Deprecate))
• PA_ATHY_TX (TaxAuthority)
• RU_TX_GP (TaxGroupRule)
• RU_TX_RT (TaxGroupRule)

Interfaces
Access this interface through TaxServiceIfc.java. There is only one method, importTaxFile():
Code Sample 5-16 Ifc.java: Some Methods
public interface TaxServiceIfc {
 public void importTaxFile(String content) throws RemoteException, TaxAuthorityException,
TaxableGroupException, TaxRuleException;
}

C o m m e r c e S e r v i c e s 5- 27

5-2
Extending This Service
You could replace this service with one to import tax information from a different source. If you want this
service to perform other functions when importing a tax file, you could wrap this service with one of your
own creation, calling this service to perform the tax file import.

Dependencies
Party Service.

Tier Relationships
This service is used only in Back Office.

Time Maintenance Service
The Time Maintenance Service provides an interface to functions which manage employee work time
data. This includes clock in/out, editing, creating, and confirming employee time.

Database Tables Used
• ADT_LOG (AuditLog)
• CO_CONF_EM_TM_ENR (EmployeeConfirmedTimeEntry)
• CO_EM_TM_ENR (EmployeeTimeEntry)
• CA_WRK_WK (WorkWeekConfirm)

Interfaces
Access this interface through TimeMaintenanceServiceIfc.java. The following code sample shows a few of
the available methods:
Code Sample 5-17 TimeMaintenanceServiceIfc.java: Some Methods
public interface TimeMaintenanceServiceIfc
{
 /**
 * Returns an EmployeeTimeEntryDTO for the passed in user that represents the last time entry
 * the employeeID made.
 *
 * @param employeeID
 * @return
 * @throws RemoteException
 * @throws CreateException
 */
 EmployeeTimeEntryDTO getLastEmployeeTimeEntryForEmployee(String employeeID) throws RemoteException,
FinderException;
8 B a c k O f f i c e D e v e l o p e r G u i d e

 /**
 * Adds either an IN or OUT entry associated with a timestamp for the current user.
 *
 * @param employeeTimeEntryDTO
 * @return
 * @throws RemoteException
 * @throws CreateException
 */
 void addTimeEntry(EmployeeTimeEntryDTO employeeTimeEntryDTO) throws RemoteException,
CreateException;

 /**
 * Check whether the TimeEntries for the week for the period of startOfWeek - endOfWeek are
complete.
 * Returns true if there are no unmatched entries for the week.
 *
 * @param retailStoreId
 * @param startOfWeek
 * @param endOfWeek
 * @return
 * @throws RemoteException
 * @throws TimeMaintenanceException
 */
 Boolean checkComplete(String retailStoreId, Week week) throws RemoteException,
TimeMaintenanceException;

 /**
 * Check whether the time entries for the week have been confirmed.
 * Return true if the time entries for the week have been confirmed.
 *
 * @param retailStoreId
 * @param startOfWeek
 * @param endOfWeek
 * @return
 * @throws RemoteException
 * @throws TimeMaintenanceException
 */
 Boolean checkConfirmed(String retailStoreId, Week week) throws RemoteException,
TimeMaintenanceException;

 /**
 * Perform a Confirm of the week's time maintenance.
 *
 * @param retailStoreId
 * @param week
 * @throws RemoteException
 * @throws TimeMaintenanceException
 * @throws ConfirmException
 */
 void confirm(String retailStoreId, Week week) throws RemoteException, TimeMaintenanceException,
ConfirmException;

 /**
 * Perform validation of whether time maintenance can be confirmed on the given week for the store.
 * Prior to validation matchTimeEntries() is called to sweep in any new time entries. Then
validation is performed
 * and if any confirm rules are violated a corresponding exception is thrown.
 *
 * @param retailStoreId
 * @param week
 * @throws RemoteException
 * @throws TimeMaintenanceException
 * @throws ConfirmException
 */
C o m m e r c e S e r v i c e s 5- 29

5-3
 void validateConfirm(String retailStoreId, Week week) throws RemoteException,
TimeMaintenanceException, ConfirmException;

 /**
 * Retrieve an EmployeeTimeSummaryDTO for an employee and a date range.
 *
 * @param employeeId
 * @param retailStoreId
 * @param dateRange
 * @return
 * @throws RemoteException
 * @throws TimeMaintenanceException
 */
 EmployeeTimeSummaryDTO getEmployeeTimeSummary(String employeeId, String retailStoreId, DayRange
dateRange) throws RemoteException, TimeMaintenanceException;

 /**
 * Retrieve the EmployeeTimeSummaryDTO array for mulptiple employee and a date range.
 *
 * @param employeeIds
 * @param retailStoreId
 * @param dateRange
 * @return
 * @throws RemoteException
 * @throws TimeMaintenanceException
 */
 EmployeeTimeSummaryDTO[] getEmployeeTimeSummaries(String[] employeeIds, String retailStoreId,
DayRange dateRange) throws RemoteException, TimeMaintenanceException;

 /**
 * Make edits to employeeTimeEntries based on the EmployeeDailyHoursDTO parameter.
 * This may include add, mark deleted or edit
 *
 * @param hours
 * @param retailStoreId
 * @param week
 * @throws RemoteException
 * @throws TimeMaintenanceException
 */
 void editEmployeeHours(EmployeeDailyHoursDTO hours, String retailStoreId, Week week) throws
RemoteException, TimeMaintenanceException;

 /**
 * Return the next sequential id to use for creation of EmployeeConfirmedTimeEntry
 * @return
 * @throws RemoteException
 */
 String getNextEmployeeConfirmedTimeEntryId() throws RemoteException;
}

Extending This Service
You could extend this service to add additional time maintenance functions, or to connect to a different
application (other than Back Office) to supply time tracking information.

Dependencies
Calendar Service.
0 B a c k O f f i c e D e v e l o p e r G u i d e

Tier Relationships
This service is expected to be used only with Back Office, although its functionality would work from
either Back Office or Central Office.

Transaction Service
Searches for transactions and E-journals based on transaction, customer or item information.

Database Tables Used
• AS_ITM (Item)
• AS_ITM_STK (Stock Item)
• CO_MDFR_CMN (Commission Modifier)
• CO_MDFR_RTL_PRC (Retail Price Modifier)
• ID_IDN_PS (POS Identity)
• JL_ENR (Journal Entry)
• LE_LTM_MD_TND (Tender Media Line Item)
• LO_ADS (Address)
• PA_CNCT (Contact)
• PA_CT (Customer)
• TR_CTL (Control Transaction)
• TR_LON_TND (Tender Lone Transaction)
• TR_LTM_CHK_TND (Check Tender Line Item)
• TR_LTM_CRDB_CRD_TN (Credit Debit Tender Line Item)
• TR_LTM_RTL_TRN (Retail Transaction Line Item)
• TR_LTM_SLS_RTN (Sale Return Line Item)
• TR_LTM_TND (Tender Line Item)
• TR_PKP_TND (Tender Pickup Transaction)
• TR_RTL (Retail Transaction)
• TR_SLS_PS_NO (POS No Sale Transaction)
• TR_STR_OPN_CL (Store Open Close Transaction)
• TR_TL_OPN_CL (Till Open Close Transaction)
• TR_TRN (Transaction)
• TR_VD_PST (Post Void Transaction)
C o m m e r c e S e r v i c e s 5- 31

5-3
• TR_WS_OPN_CL (Workstation Open Close Transaction)

Interfaces
The file TransactionServiceIfc.java contains a number of methods for accessing the service. These include
transaction creation, search result, and others.
Code Sample 5-18 TransactionServiceIfc.java: Some Sample Methods
 /** Retrieves a transaction's type.
 *
 * @param transactionKey
 * @return TransactionType
 */
 TransactionType getType(TransactionKey transactionKey)
 throws RemoteException, InvalidTypeException,
 ObjectNotFoundException;

 /** Retrieves a transaction data transfer object given a TransactionKey as input.
 *
 * @param transactionKey
 * @return RetailTransactionDTO
 */
 TransactionDTO retrieveTransaction(TransactionKey transactionKey)
 throws RemoteException, ObjectNotFoundException,
 InvalidTypeException;

 /** Retrieves a set of ejournal information given ejournal search criteria as input.
 *
 * @param storeSelectionCriteria
 * @param ejournalCriteria
 * @param startIndex
 * @return returnLimit
 */
 EJournalSearchResultDTO getEJournals(
 StoreSelectionCriteria storeSelectionCriteria,
 EJournalCriteria ejournalCriteria, int startIndex, int returnLimit)
 throws RemoteException, SearchResultSizeExceededException;

Extending This Service
You would need to extend this service if you wanted to add new transaction types or new ways of
searching for transactions.

Dependencies
• Parameter Service
• Customer Service
• Item Service
• Store Service
2 B a c k O f f i c e D e v e l o p e r G u i d e

Tier Relationships
The functionality of this service is the same whether it is used within Central Office or Back Office.
Although full functionality is available to both applications, Central Office tends to import transactions
while Back Office tends to export them, due to the intended use of the applications.

Workflow/Scheduling Service
Create and edit tasks, schedule tasks, track task approval. Even for tasks which should be scheduled
immediately, the Workflow/Scheduling Service provides task tracking features.

Database Tables Used
• CO_EVT_MSG (Job Event Messages)
• FILE_SET (File Set)
• FILE_SET_ITEM (File Set Item)
• SCHEDULE (Schedule)
• TASK (Task)
• TASK_DESTINATION_STATUS (Task Destination Status)
• TASK_HISTORY (Task History)
• TASK_NOTIFICATION_RECIPIENT (Task Notification Recipient)
• TASK_REVIEW (Task Review)
• WORKFLOW_CONFIGURATION (Workflow Configuration)

Interfaces
The Workflow Service’s methods are defined in WorkflowServiceIfc.java. They include methods for task
creation, notification, task destination, and more.

Extending This Service
Extend this service by adding new task types. You would need to add the new task type to the workflow
configuration table, add a map to execute the task, and add a user interface to allow the task type to be
created.

Dependencies
• Parameter Service
• Store Service
C o m m e r c e S e r v i c e s 5- 33

5-3
Tier Relationships
This service is the same whether it is used within Central Office or Back Office; either application calls
the service to schedule tasks.
4 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 6

STORE DATABASE

Overview
360Store Back Office uses an ARTS-compliant database. Data is stored and retrieved by entity beans in a
bean-managed persistence pattern, so the system makes database calls from the entity bean code.
A single entity bean exists for each database table, and handles reads and writes for that table. Each entity
bean contains the necessary methods to create, load, store, and remove its object type.
The Back Office application writes data to the Store database, a repository for transaction information for
a single store.

Related Documentation
The following related sources provide specific information about the database for your use when
developing code.

Table 6-1 Related Documentation
Source Description
ARTS Database
Standard

See http://www.nrf-arts.org/ for a description of the ARTS
database standard.

Data Dictionary Contains table and column definitions for the database used to
store Back Office data. See the _resources directory provided
with your Back Office documentation.

Database Diagrams See the _resources directory for diagrams which show the
relationships between various tables in the database schema.
S t o r e D a t a b a s e 6- 1

http://www.nrf-arts.org/

6-2
Database/System Interface
As described in Chapter 1, “Architecture,” a persistence layer of entity beans represents the database
tables to the rest of the system. One bean represents each table. Figure 6-1 illustrates these relationships.
Figure 6-1 Commerce Services, Entity Beans, and Database Tables

Each commerce service communicates with one or more entity beans, and each entity bean
communicates with one database table. Although there are exceptions, in general only one commerce

Central Office DB

Commerce Services

ServiceSB

ServiceSB

Entity Bean1 Entity Bean2 Entity Bean 3

Table 1 Table 3
Table 2
B a c k O f f i c e D e v e l o p e r G u i d e

service communicates with an entity bean; other services request the information from the relevant
service rather than talking directly to the entity bean. For example, if the Customer Service needs
information provided by the Item Bean, it makes a request to the Item Service.

ARTS Compliance
When new code is added or features are added, modified, or extended, database plans should be evaluated
to ensure that new data items fit the ARTS schema. Complying with the standards increases the
likelihood that extensions can migrate into the product codebase and improves code reuse and
interoperability with other applications.

Note: Because the ARTS standard continues to evolve, older code may contain deviations from the
standard or may be compliant only with an earlier version of the standard. 360Commerce
continues to evaluate ARTS compliance with each release of its software.

Bean-managed Persistence in the Database
In general, the system uses standard J2EE bean-managed persistence techniques to persist data to the
360Store database. Each of the entity beans that stores data requires JDBC code in standard ejbLoad,
ejbStore, ejbCreate, and ejbRemove classes. However, there are some differences worth noting:

• All SQL references are handled as constant fields in an interface.
• Session and entity beans extend an EnterpriseBeanAdapter class. Special extensions for session and

entity beans exist. These contain common code for logging and a reference to the 360Commerce
DBUtils class (which provides facilities for opening and closing data source connections, among other
resources).

Code Sample 6-1 ItemPriceDerivationBean.java: ejbStore Method
public void ejbStore() throws EJBException
 {
 ItemPriceDerivationPK key = (ItemPriceDerivationPK) getEntityContext().getPrimaryKey();
 getLogger().debug("store");
 PreparedStatement ps = null;
 Connection conn = null;
 if (isModified())
 {
 getLogger().debug("isModified");
 try
 {
 conn = getDBUtils().getConnection();
 ps = conn.prepareStatement(ItemPriceDerivationSQLIfc.STORE_SQL);
 int n = 1;
 ps.setBigDecimal(n++,getReductionAmount().toBigDecimal());
 ps.setBigDecimal(n++,getDiscountPricePoint().toBigDecimal());
 getDBUtils().preparedStatementSetDate(ps, n++, getRecordCreationTimestamp());
 ps.setBigDecimal(n++,getReductionPercent().toBigDecimal());
 getDBUtils().preparedStatementSetDate(ps, n++, getRecordLastModifiedTimestamp());
 ps.setInt(n++, key.getPriceDerivationRuleID());
S t o r e D a t a b a s e 6- 3

6-4
 ps.setString(n++, key.getStoreID());
 if (ps.executeUpdate() != 1)
 {
 throw new EJBException("Error storing (" + getEntityContext().getPrimaryKey() +
")");
 }
 setModified(false);
 }
 catch (SQLException ex)
 {
 getLogger().error(ex);
 throw new EJBException(ex);
 }
 catch (Exception ex)
 {
 getLogger().error(ex);
 throw new EJBException(ex);
 }
 finally
 {
 getDBUtils().close(conn, ps, null);
 }
 }
 }
B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 7

EXTENSION GUIDELINES

Overview
This document describes the various extension mechanisms available in the Commerce Services
framework. There are multiple forces driving each extension that determine the correct strategy in each
case.
The product has four distinct layers of logic:

• UI layer—a Struts/Tiles implementation utilizing Actions for processing UI requests and JSP pages
with Tiles providing layout.

• Application Manager—a session facade for the UI (or external system) that models application
business methods. May or may not be reusable between applications. Remote accessibility.

• Commerce Service—session facade for the service that models coarse-grained business logic that
should be reusable between applications.

• Persistence—Entity beans that are fine-grained and consumed by the service. The entities are local to
the service that controls them.

Audience
This chapter provides guidelines for extending the 360Commerce Enterprise applications. The guidelines
are designed for three audiences:

• Members of customer architecture and design groups can use this document as the basis for their
analysis of the overall extension of the systems.

• Members of 360commerce’s Technology and Architecture Group can use this document as the basis
for analyzing the viability of the overall extension strategy for enterprise applications.

• Developers on the project teams can use this document as a reference for code-level design and
extension of the product for the solution that is released.
E x t e n s i o n G u i d e l i n e s 7- 1

7-2
Application Layers
The following diagram describes the general composition of the enterprise applications. The sections
following describe the purpose and responsibility of each layer.
Figure 7-1 Application Layers

UI
The user interface (UI) framework consists of Struts Actions, Forms, and Tiles, along with Java server
pages (JSPs).

• Struts configuration
• Tiles definition
• Style sheets (CSS)
• JSP pages
• Resource bundles for i18N

Application Manager
The Application Manager components are coarse-grained business objects that define the behavior of
related Commerce Services based on the application context.

• Session Beans
• View Beans for the UI

Commerce Service
A commerce service is a fine grained component of reusable business logic.

• Session Beans
• Data Transfer Objects (DTOs)

UI

User

Application
Manager

EntityCommerceServ ice

DB

Alogrithm
B a c k O f f i c e D e v e l o p e r G u i d e

Algorithm
An SPI-like interface defined to allow more fine grained pieces of business functionality to be replaced
without impacting overall application logic. For reference, review the various POJO “calculator” classes
that are contained in the Financial Totals Commerce Service.

Entity
Fine-grained entity beans owned by the commerce service. The current strategy for creating entity beans
in the commerce service layer is BMP.

DB
The 360Commerce enterprise applications support the ARTS standard database schema. The same tables
referenced by Central Office and Back Office are a superset of the tables that support Point-of-Sale.

Extension and Customization Scenarios

Style and Appearance Changes
This should only present minor changes to the UI layer of the application. These type of changes, while
extremely common, should represent minimal impact to the operation of the product. Typical changes
could be altering the style of the application (fonts/colors/formatting) or the types of messages that are
displayed.
Application impact:

• Struts configuration (flow)
• Tile definition
• Style Sheet
• Minor JSP changes, such as moving fields
• Changing static text through resource bundles

 Additional Information Presented to User
This is one of the more common extensions to the base product: allowing for the full life cycle
management of information required by a particular customer that is not represented in the base product.
If the information is simply presented and persisted then we can choose a strategy that simply updates the
UI and Persistent layer and passes the additional information through the service layer.
However, if the application must use the additional information to alter the business logic of a service,
then each layer of the application must be modified accordingly.
E x t e n s i o n G u i d e l i n e s 7- 3

7-4
This scenario generally causes the most pervasive changes to the system; it should be handled in a
manner that can preserve an upgrade path.
Figure 7-2 Managing Additional Information

Application impact:

• JSP pages
• View Beans
• Struts configuration
• UI Actions
• UI Forms
• Application Manager
• Commerce Service
• Entity
• Database Schema

Changes to Application Flow
Sometimes a multi-step application flow can be rearranged or customized without altering the layers of
the application outside of the UI. These changes can be accomplished by changing the flow of screens
with the struts configuration.
Figure 7-3 Changing Application Flow

Customer Information Customer Information Custom

Name

Address

Name

User

Custom ViewProduct View

Step 1 Step 2 Step 3

User1
B a c k O f f i c e D e v e l o p e r G u i d e

Application impact:

• Struts configuration

Access Data from a Different Database
This customization describes accessing the same business data from a different database schema. No new
fields are added or joined unless for deriving existing interface values. This scenario would most likely
not be found isolated from the other scenarios.
Figure 7-4 Accessing Data from a Different Database

Application impact:

• Entity Beans
• Database Schema

Step 1a Step 2aStep 3a

User2

Actor1

«TransactionServiceIfc»
:TransactionService

«CustomerServiceIfc»
:AcmeCustomerServiceImpl

:TransactionDTO :AcmeCrmSystemAdapter :CrmCustomer

getTransaction(id)

getCustomer(id)

getCustomer(id)

User

Application
Manager

EntityCommerceServ iceUI
«product»

DB

«custom»
DB
E x t e n s i o n G u i d e l i n e s 7- 5

7-6
Access Data from External System
This customization involves replacing an entire Commerce Service with a completely new
implementation that accesses an external system.
Figure 7-5 Accessing Data from an External System
Application impact:

• Deployment Configuration – replacing Commerce Service implementation with custom
implementation.

Change an Algorithm used by a Service
 Assuming the UI is held constant, but values such as net totals or other attributes are derived with
different calculations, it is advantageous to replace simply the algorithm in question, as the logic flow
through the current service does not change.
Figure 7-6 Application Layers

Application impact:

• Algorithm
• Application Configuration

Extension Strategies
Refer to the following diagram as a subset of classes for comparison purposes.

UI

User

Application
Manager

EntityCommerceServ ice

DB

«product»
Alogrithm

«custom»
Alogrithm
B a c k O f f i c e D e v e l o p e r G u i d e

Figure 7-7 Sample Classes for Extension

Extension with Inheritance
This strategy involves changing the interfaces of the service itself, perhaps to include a new finder
strategy or data items unique to a particular implementation. For instance, if the customer information
contained in base product does not contain data relevant to the implementation, call it CustomField1.
Figure 7-8 Extension with Inheritance

customer::CustomerServ ice

+ getCustomer(int) : CustomerDTO

customer::
CustomerDTO

- id: int

+ CustomerDTO(int)
+ getId() : int
+ setId(int) : void

customer::CustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO

«interface»
customer::CustomerServiceIfc

+ getCustomer(int) : CustomerDTO

customer::
CustomerViewBean

- id: int

+ getId() : int
+ setId(int) : void

customer::CustomerManager

+ getCustomer(int) : CustomerViewBean

«interface»
customer::CustomerManagerIfc

:CustomerManager :CustomerViewBean :CustomerService :CustomerEntity :CustomerDTO

POS
«entity»

CustomerDTO:= getCustomer(id)

findByPrimaryKey(id)

CustomerDTO:= toDTO()

CustomerDTO(id)
E x t e n s i o n G u i d e l i n e s 7- 7

7-8
All of the product code would be extended (the service interface, the implementation, the DTO and view
beans utilized by the service, the UI layers and the application manager interface and implementation) to
handle access to the new field.
Figure 7-9 Extension with Inheritance: Class Diagram

Replacement of Implementation
This strategy involves keeping the existing product interfaces to the service intact, but utilizing a new
implementation. This strategy is suggested for when the entire persistence layer for a particular service is
changed or delegated to an existing system.
The following diagram demonstrates the replacement of the product Customer Service implementation
with an adapter that delegates to an existing CRM solution for that is the system of record for customer
information for the retailer.
This provides access to the data from the existing services that depend on the service interface.

«interface»
customer::CustomerServiceIfc

+ getCustomer(int) : CustomerDTO

«interface»
customer::CustomerManagerIfc

customer::AcmeCustomerServ ice

+ getCustomer(int) : AcmeCustomerDTO

«interface»
customer::AcmeCustomerServiceIfc

customer::AcmeCustomerManager

~ getCustomer(int) : AcmeCustomerViewBean

«interface»
customer::AcmeCustomerManagerIfc

customer::AcmeCustomerViewBean

- customField: String
- id: int

+ getId() : int
+ setId(int) : void
+ getCustomField() : String
+ setCustomField(String) : void

customer::CustomerViewBean

- id: int

+ getId() : int
+ setId(int) : void

customer::AcmeCustomerDTO

- customField: String

+ getCustomField() : String
+ setCustomField(String) : void

customer::AcmeCustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : AcmeCustomerDTO

customer::
CustomerDTO

- id: int

+ CustomerDTO(int)
+ getId() : int
+ setId(int) : void
B a c k O f f i c e D e v e l o p e r G u i d e

Figure 7-10 Replacement of Implementation

Service Extension with Composition
This method is preferred adding features and data to the base product configuration. This is done with
Composition, instead of inheritance.
For specific instances when you need more information from a service that the base product provides, and
you wish to control application behavior in the service layer, it is suggested to use this extension strategy.
The composition approach to code reuse provides stronger encapsulation than inheritance. Using it keeps
explicit reference to the extended data/operations in the code that needs this information. Also, the new
service contains rather than extends the base product. This allows for less coupling of the custom
extension to the implementation of the base product.

Actor1

«TransactionServiceIfc»
:TransactionService

«CustomerServiceIfc»
:AcmeCustomerServiceImpl

:TransactionDTO :AcmeCrmSystemAdapter :CrmCustomer

getTransaction(id)

getCustomer(id)

getCustomer(id)
E x t e n s i o n G u i d e l i n e s 7- 9

7-1
Figure 7-11 Extension with Composition: Class Diagram

customer::AcmeCustomerManager

~ getCustomer(int) : AcmeCustomerViewBean

«interface»
customer::AcmeCustomerManagerIfc

CustomerViewBean
customer::

AcmeCustomerViewBean

- customField: String
- id: int

+ getId() : int
+ setId(int) : void
+ getCustomField() : String
+ setCustomField(String) : void

«interface»
customer::AcmeCustomerServiceIfc

customer::AcmeCustomerServ ice

+ getCustomer(int) : AcmeCustomerDTO customer::AcmeCustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : AcmeCustomerDTO

customer::AcmeCustomerDTO

- customField: String

+ getCustomField() : String
+ setCustomField(String) : void

«interface»
customer::CustomerServiceIfc

+ getCustomer(int) : CustomerDTO

customer::CustomerServ ice

+ getCustomer(int) : CustomerDTO

customer::CustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO

customer::
CustomerDTO

- id: int

+ CustomerDTO(int)
+ getId() : int
+ setId(int) : void
0 B a c k O f f i c e D e v e l o p e r G u i d e

Figure 7-12 Extension with Composition

Data Extension through Composition
This strategy describes having the entity layer take responsibility for mapping extra fields to the database
by aggregating the custom information and passing it through the service layer. This approach assumes
that the extra data is presented to the user of the system and persisted to the database, but is not involved
in any service layer business logic.
This scenario alters the UI layer (JSP/Action/ViewBean) and add a new ApplicationManager method to
call assemble the ViewBean from the extensible DTO provided by the replaced Entity bean. Slight
modifications to the Service session bean may be necessary to support the toDTO() and fromDTO
(ExtensibleDTOIfc dto) methods on the Entity bean, depending on base product support of extensions on
the particular entity bean.

• Create the new ApplicationManager session facade.
• Create the new ViewBeans required of the UI.
• Create new Entity bean that references the original data to construct a base product DTO that

additionally contains the custom data using the extensible DTO pattern.
• Create new DTO based on the extensible DTO pattern.
• Create new JSP pages to reference the additional data.
• Change the deployment descriptors that describe which implementation to use for a particular Entity

bean.
• Change the new Struts configuration and Action classes that reference the customized Application

Manager Session facade.

:CustomerService :CustomerEntity

:CustomerDTO

POS
«entity»

:AcmeCustomerManager :AcmeCustomerViewBean :AcmeCustomerService :AcmeCustomerEntity :AcmeCustomerDTO

AcmeCustomerViewBean:= getCustomer(id)

CustomerDTO:= getCustomer(id)

findByPrimaryKey(id)

CustomerDTO:= toDTO()

CustomerDTO(id)

AcmeCustomerDTO:= getCustomer(id)
findByPrimaryKey(id)

AcmeCustomerDTO:= toDTO()
E x t e n s i o n G u i d e l i n e s 7- 11

7-1
• If necessary change the Commerce Service Session facade to give control of the toDTO and fromDTO
methods to the Entity bean and not assemble/disassemble the DTO in this layer as it does not give a
good plug point for the Extensible DTO’s.

The following diagram describes the life cycle of the data throughout the request.
Figure 7-13 Data Extension Through Composition

The following class diagram describes the various classes created.
2 B a c k O f f i c e D e v e l o p e r G u i d e

Figure 7-14 Data Extension Through Composition: Class Diagram

customer::
CustomerDTO

- id: int

+ CustomerDTO(int)
+ getId() : int
+ setId(int) : void

customer::
AcmeCustomerDTO

- customField: String

+ getCustomField() : String
+ setCustomField(String) : void

customer::AcmeCustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO
+ fromDTO(AcmeCustomerDTO) : void

customer::CustomerService

+ getCustomer(int) : CustomerDTO

customer::CustomerEntity

+ findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO
+ fromDTO() : void

customer::AcmeCustomerManager

~ getCustomer(int) : AcmeCustomerViewBean «interface»
customer::CustomerServiceIfc

+ getCustomer(int) : CustomerDTO

shared::ExtensibleDTO

~ extensions: Map

+ getExtensions() : Map
+ setExtensions(Map) : void

«interface»
shared::ExtensibleDTOIfc

+ getExtensions() : Map
E x t e n s i o n G u i d e l i n e s 7- 13

7-1
4 B a c k O f f i c e D e v e l o p e r G u i d e

C H A P T E R 8

GENERAL DEVELOPMENT STANDARDS
The following standards have been adopted by 360Commerce product and service development teams.
These standards are intended to reduce bugs and increase the quality of the code. The chapter covers
basic standards, architectural issues, and common frameworks. These guidelines apply to all
360Commerce applications.

Basics
The guidelines in this section cover common coding issues and standards.

Java Dos and Don’ts
The following dos and don’ts are guidelines for what to avoid when writing Java code.

• DO use polymorphism.
• DO have only one return statement per function or method; make it the last statement.
• DO use constants instead of literal values when possible.
• DO import only the classes necessary instead of using wildcards.
• DO define constants at the top of the class instead of inside a method.
• DO keep methods small, so that they can be viewed on a single screen without scrolling.
• DON’T have an empty catch block. This destroys an exception from further down the line that might

include information necessary for debugging.
• DON’T concatenate strings. 360Commerce products tend to be string-intensive and string

concatenation is an expensive operation. Use StringBuffer instead.
• DON’T use function calls inside looping conditionals (for example, while (i <=name.len())). This calls

the function with each iteration of the loop and can affect performance.
• DON’T use a static array of strings.
• DON’T use public attributes.
• DON’T use a switch to make a call based on the object type.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 1

8-2
Avoiding Common Java Bugs
The following fatal Java bugs are not found at compile time and are not easily found at runtime. These
bugs can be avoided by following the recommendations in Table 8-1.

Formatting
Follow these formatting standards to ensure consistency with existing code.

Note: A code block is defined as a number of lines proceeded with an opening brace and ending with
a closing brace.

• Indenting/braces—Indent all code blocks with four spaces (not tabs). Put the opening brace on its own
line following the control statement and in the same column. Statements within the block are indented.
Closing brace is on its own line and in same column as the opening brace. Follow control statements
(if, while, etc.) with a code block with braces, even when the code block is only one line long.

• Line wrapping—If line breaks are in a parameter list, line up the beginning of the second line with the
first parameter on the first line. Lines should not exceed 120 characters.

• Spacing—Include a space on both sides of binary operators. Do not use a space with unary operators.
Do not use spaces around parenthesis. Include a blank line before a code block.

• Deprecation—Whenever you deprecate a method or class from an existing release is deprecated, mark
it as deprecated, noting the release in which it was deprecated, and what methods or classes should be
used in place of the deprecated items; these records facilitate later code cleanup.

• Header—The file header should include the PVCS tag for revision and log history.
Code Sample 8-1 Header Sample
/* *

 Copyright (c) 1998-2003 360Commerce, Inc. All Rights Reserved.

 Log

* */
package com._360commerce.samples;

// Import only what is used and organize from lowest layer to highest.
import com.ibm.math.BigDecimal;
import com._360commerce.common.utility.Util;

//--

Table 8-1 Common Java Bugs
Bug Preventative Measure
null pointer
exception

Check for null before using an object returned by another method.

boundary
checking

Check the validity of values returned by other methods before using them.

array index out of
bounds

When using a value as a subscript to access an array element directly, first
verify that the value is within the bounds of the array.

incorrect cast When casting an object, use instanceof to ensure that the object is of that type
before attempting the cast.
B a c k O f f i c e D e v e l o p e r G u i d e

/**
 This class is a sample class. Its purpose is to illustrate proper
 formatting.
 @version $Revision$
**/
//--
public class Sample extends AbstractSample
implements SampleIfc
{
 // revision number supplied by configuration management tool
 public static String revisionNumber = "$Revision$";
 // This is a sample data member.
 // Use protected access since someone may need to extend your code.
 // Initializing the data is encouraged.
 protected String sampleData = "";

 //---
 /**
 Constructs Sample object.
 Include the name of the parameter and its type in the javadoc.
 @param initialData String used to initialize the Sample.
 **/
 //---
 public Sample(String initialData)
 {
 sampleData = initialData;
 // Declare variables outside the loop
 int length = sampleData.length();
 BigDecimal[] numberList = new BigDecimal[length];

 // Precede code blocks with blank line and pertinent comment
 for (int i = 0; i < length; i++)
 {
 // Sample wrapping line.
 numberList[i] = someInheritedMethodWithALongName(Util.I_BIG_DECIMAL_ONE,

 sampleData,
 length - i);

 }
 }
}

Javadoc
• Make code comments conform to Javadoc standards.
• Include a comment for every code block.
• Document every method’s parameters and return codes, and include a brief statement as to the

method’s purpose.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 3

8-4
Naming Conventions
Names should not use abbreviations except when they are widely accepted within the domain (such as the
customer abbreviation, which is used extensively to distinguish customized code from product code).
Additional naming conventions follow:

SQL Guidelines
The following general guidelines apply when creating SQL code:

• Keep SQL code out of client/UI modules. Such components should not interact with the database
directly.

• Table and column names must be no longer than 18 characters.

Table 8-2 Naming Conventions
Element Description Example
Package Names Package names are entirely lower case

and should conform to the documented
packaging standards.

com.extendyourstore.packagename
com.mbs.packagname

Class Names Mixed case, starting with a capital letter.
Exception classes end in Exception;
interface classes end in Ifc; unit tests
append Test to the name of the tested
class.

DatabaseException
DatabaseExceptionTest
FoundationScreenIfc

File Names File names are the same as the name of
the class.

DatabaseException.java

Method Names Method names are mixed case, starting
with a lowercase letter. Method names
are an action verb, where possible.
Boolean-valued methods should read
like a question, with the verb first.
Accessor functions use the prefixes get
or set.

isEmpty()
hasChildren()
getAttempt()
setName()

Attribute Names Attribute names are mixed case, starting
with a lowercase letter.

lineItemCount

Constants Constants (static final variables) are
named using all uppercase letters and
underscores.

final static int NORMAL_SIZE =
400

EJBs—entity Use these conventions for entity beans,
where ‘Transaction’ is a name that
describes the entity.

TransactionBean
TransactionIfc
TransactionLocal
TransactionLocalHome
TransactionRemote
TransactionHome

EJBs—session Use these conventions for session beans,
where ‘Transaction’ is a name that
describes the session.

TransactionService
TransactionAdapter
TransactionManager
B a c k O f f i c e D e v e l o p e r G u i d e

• Comply with ARTS specifications for new tables and columns. If you are creating something not
currently specified by ARTS, strive to follow the ARTS naming conventions and guidelines.

• Document and describe every object, providing both descriptions and default values so that we can
maintain an up-to-date data model.

• Consult your data architect when designing new tables and columns.
• Whenever possible, avoid vendor-specific extensions and strive for SQL-92 compliance with your

SQL.
• While Sybase-specific extensions are common in the code base, do not introduce currently unused

extensions, because they must be ported to the DataFilters and JdbcHelpers for other databases.
• All SQL commands should be uppercase because the DataFilters currently only handle uppercase.
• If database-specific code is used in the source, move it into the JdbcHelpers.
• All JDBC operations classes must be thread-safe.

To avoid errors:

• Pay close attention when cutting and pasting SQL.
• Always place a carriage return at the end of the file.
• Test your SQL before committing.

The subsections that follow describe guidelines for specific database environments.

DB2
Table 8-3 shows examples of potential problems in DB2 SQL code.

MySQL
MySQL does not support sub-selects.

Table 8-3 DB2 SQL Code Problems
Problem Problem Code Corrected Code
Don’t use quoted integers or
unquoted char and varchar
values; these cause DB2 to
produce errors.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1,
FIELD2) VALUES ('5', 1020);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1,
FIELD2) VALUES (5, '1020');

Don’t try to declare a field
default as NULL.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NULL,
 FIELD2 CHAR(4) NOT NULL
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4) NOT NULL
);
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 5

8-6
Oracle
Table 8-4 provides some examples of common syntax problems which cause Oracle to produce errors.

PostgreSQL
PostgreSQL does not currently support the command ALTER TABLE BLAH ADD PRIMARY KEY. However, it does
support the standard CREATE TABLE command with a PRIMARY KEY specified. For this reason, the
PostgresqlDataFilter converts SQL of the form shown in Code Sample 8-2 into the standard form shown
in Code Sample 8-3.
Code Sample 8-2 SQL Code Before PostgresqlDataFilter Conversion
CREATE TABLE BLAH
(
 COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
);

ALTER TABLE ADD PRIMARY KEY (COL1, COL2)

Code Sample 8-3 SQL Code After PostgresqlDataFilter Conversion
CREATE TABLE BLAH
(
 COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
 PRIMARY KEY (COL1, COL2)
);

Note: There must be a new line and “(“ after the CREATE TABLE command for the PostgresqlDataFilter’s
conversion to work, properly formatting the SQL.

Sybase
Sybase does not throw errors if a table element is too large; it truncates the value. If using a
VARCHAR(40), use less than 40 characters.

Table 8-4 Oracle SQL Code Problems
Problem Problem Code Corrected Code
Blank line in code
block causes error.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)

);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);

When using NOT
NULL with a default
value, NOT NULL
must follow the
DEFAULT statement.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NOT NULL DEFAULT
0,
 FIELD2 VARCHAR(20)
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER DEFAULT 0 NOT
NULL,
 FIELD2 VARCHAR(20)
);

In a CREATE or
INSERT, do not place
a comma after the
last item.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20),
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);
B a c k O f f i c e D e v e l o p e r G u i d e

Unit Testing
For details on how to implement unit testing, see separate guidelines on the topic. Some general notes
apply:

• Break large methods into smaller, testable units.
• Although unit testing may be difficult for tour scripts, apply it for Java components within the Point-

of-Sale code.
• If you add a new item to the codebase, make sure your unit tests prove that the new item can be

extended.
• In unit tests, directly create the data/preconditions necessary for the test (in a setup() method) and

remove them afterwards (in a teardown() method). JUnit expects to use these standard methods in
running tests.

Architecture and Design Guidelines
This section provides guidelines for making design decisions which are intended to promote a robust
architecture.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 7

8-8
AntiPatterns
An AntiPattern is a common solution to a problem which results in negative consequences. The name
contrasts with the concept of a pattern, a successful solution to a common problem. The following
AntiPatterns introduce bugs and reduce the quality of code.

Table 8-5 Common AntiPatterns
Pattern Description Solution
Reinvent the
Wheel

Sometimes code is developed in an
unnecessarily unique way that
leads to errors, prolonged
debugging time and more difficult
maintenance.

The analysis process for new features
provides awareness of existing solutions
for similar functionality so that you can
determine the best solution.
There must be a compelling reason to
choose a new design when a proven
design exists. During development, a
similar pattern should be followed in
which existing, proven solutions are
implemented before new solutions.

Copy-and-paste
Programming,
classes

When code needs to be reused, it is
sometimes copied and pasted
instead of using a better method.
For example, when a whole class is
copied to a new class when the
new class could have extended the
original class. Another example is
when a method is being overridden
and the code from the super class is
copied and pasted instead of
calling the method in the super
class.

Use object-oriented techniques when
available instead of copying code.

Copy-and-paste
Programming,
XML

A new element (such as a Site class
or an Overlay XML tag) can be
started by copying and pasting a
similar existing element. Bugs are
created when one or more pieces
are not updated for the new
element. For example, a new
screen might have the screen name
or prompt text for the old screen.

If you copy an existing element to create
a new element, manually verify each
piece of the element to ensure that it is
correct for the new element.
B a c k O f f i c e D e v e l o p e r G u i d e

Designing for Extension
This section defines how to code product features so that they may be easily extended. It is important that
developers on customer projects whose code may be rolled back into the base product follow these
standards as well as the guidelines in Chapter 7, “Extension Guidelines.”

• Separate external constants such as database table and column names, JMS queue names, port
numbers from the rest of the code. Store them in (in order of preference):
- Configuration files
- Deployment descriptors
- “Constant” classes/interfaces

• Make sure the SQL code included in a component does not touch tables not directly owned by that
component.

• Make sure there is some separation from DTO and ViewBean type classes so we have abstraction
between the service and the presentation.

• Consider designing so that any fine grained operation within the larger context of a coarse grain
operation can be factored out in a separate “algorithm” class, so that it can be replaced without
reworking the entire activity flow of the larger operation.

Project
Mismanagement/
Common
Understanding

A lack of common understanding
between managers, Business
Analysts, Quality Assurance and
developers can lead to missed
functionality, incorrect
functionality and a larger-than-
necessary number of defects. An
example of this is when code does
not match Functional
Requirements, including details
like maximum length of fields and
dialog message text.

Read the Functional Requirement before
you code. If there is disagreement with
content, raise an issue with the Product
Manager. Before you consider code for
the requirement finished, all issues must
be resolved and the code must match the
requirements.

Stovepipe Multiple systems within an
enterprise are designed
independently. The lack of
commonality prevents reuse and
inhibits interoperability between
systems. For example, a change to
till reconcile in Back Office may
not consider the impact on Point-
of-Sale. Another example is a
making change to a field in the
360Store database for a Back
Office feature without handling the
Point-of-Sale effects.

Coordinate technologies across
applications at several levels. Define
basic standards in infrastructures for the
suite of products. Only mission-specific
functions should be created
independently of the other applications
within the suite.

Table 8-5 Common AntiPatterns
Pattern Description Solution
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 9

8-1
Common Frameworks
This section provides guidelines which are common to the 360Commerce applications.

Internationalization
The following are some general guidelines for maintaining an internationalized code base which can be
localized when needed. Refer to other documents for detailed instructions on these issues.

• All displayable text must be referenced from the appropriate resource bundle and properties file, so
that the text can be changed when needed.

• Numbers, currency, and amounts must be displayed using Java internationalization conventions, so
that appropriate symbols and number dividers can be used for the current locale.

• Formats and conventions related to dates, times and calendars are locale sensitive. All the date, time
and calendar related operations must use DateFormat, SimpleDateFormat and Calendar classes,
instead of the Date class. Remove hardcoded dates (mm/dd/yyyy, etc). Use the formats available as
part of the DateFormat class.

• Properties in the application.properties file specify default and supported locales:
default_locale=en_US
supported_locales=en_US,fr_CA,en_CA

• Help files for new screens must be created in the appropriate locale directory, and pos\config\ui\help\
helpscreens.properties must be updated.

• Display database driven locale sensitive data according to the current locale.

Logging
360Commerce’s systems use Log4J for logging. When writing log commands, use the following
guidelines:

• Use calls to Log4J rather than System.out from the beginning of your development. Unlike
System.out, Log4J calls are naturally written to a file, and can be suppressed when desired.

• Log exceptions where you catch them, unless you are going to rethrow them. This is preserves the
context of the exceptions and helps reduce duplicate exception reporting.

• Logging uses few CPU cycles, so use debugging statements freely.
• Use the correct logging level:

- FATAL—crashing exceptions
- ERROR—nonfatal, unhandled exceptions (there should be few of these)
- INFO—life cycle/heartbeat information
- DEBUG—information for debugging purposes

The following sections provide additional information on guarding code, when to log, and how to write
log messages.
0 B a c k O f f i c e D e v e l o p e r G u i d e

Guarding Code
Testing shows that logging takes up very little of a system’s CPU resources. However, if a single call to
your formatter is abnormally expensive (stack traces, database access, network IO, large data
manipulations, etc.), you can use Boolean methods provided in the Logger class for each level to
determine whether you have that level (or better) currently enabled; Jakarta calls this a code guard:
Code Sample 8-4 Wrapping Code in a Code Guard
 if (log.isDebugEnabled()) {
 log.debug(MassiveSlowStringGenerator().message());
 }

An interesting use of code guards, however, is to enable debug-only code, instead of using a DEBUG
flag. Using Log4J to maintain this functionality lets you adjust it at runtime by manipulating Log4J
configurations.
For instance, you can use code guards to simply switch graphics contexts in your custom swing
component:
Code Sample 8-5 Switching Graphics Contexts via a Logging Level Test
protected void paintComponent(Graphics g) {

 if (log.isDebugEnabled()) {
 g = new DebugGraphics(g, this);
 }

 g.drawString("foo", 0, 0);
}

When to Log
There are three main cases for logging:

• Exceptions—Should be logged at an error or fatal level.
• Heartbeat/Life cycle—For monitoring the application; helps to make unseen events clear. Use the

info level for these events.
• Debug—Code is usually littered with these when you are first trying to get a class to run. If you use

System.out, you have to go back later and remove them to keep. With Log4J, you can simply raise the
log level. Furthermore, if problems pop up in the field, you can lower the logging level and access
them.

Writing Log Messages
When Log4J is being used, any log message might be seen by a user, so the messages should be written
with users in mind. Cute, cryptic, or rude messages are inappropriate. The following sections provide
additional guidelines for specific types of log messages.

Exception Messages
A log message should have enough information to give the user a good shot at understanding and fixing
the problem. Poor logging messages say something opaque like “load failed.”
Take this piece of code:

try {
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 11

8-1
 File file = new File(fileName);
 Document doc = builder.parse(file);

 NodeList nl = doc.getElementsByTagName("molecule");
 for (int i = 0; i < nl.getLength(); i++) {
 Node node = nl.item(i);
 // something here
 }

} catch {
 // see below
}

and these two ways of logging exceptions:

} catch (Exception e){
 log.debug("Could not load XML");
}

} catch (IOException e){
 log.error("Problem reading file " + fileName, e);
} catch (DOMException e){
 log.error("Error parsing XML in file " + fileName, e);
} catch (SAXException e){
 log.error("Error parsing XML in file " + fileName, e);
}

In the first case, you'll get an error that just tells you something went wrong. In the second case, you're
given slightly more context around the error, in that you know if you can't find it, load it, or parse it, and
you're given that key piece of data: the file name.
The log lets you augment the message in the exception itself. Ideally, with the messages, the stack trace,
and type of exception, you'll have enough to be able to reproduce the problem at debug time. Given that,
the message can be reasonably verbose.
For instance, the fail() method in JUnit really just throws an exception, and whatever message you pass
to it is in effect logging. It’s useful to construct messages that contain a great deal of information about
what you are looking for:
Code Sample 8-6 JUnit
if (! list.contains(testObj)) {
 StringBuffer buf = new StringBuffer();
 buf.append("Could not find object " + testObj + " in list.\n");
 buf.append("List contains: ");
 for (int i = 0; i < list.size(); i++) {
 if (i > 0) {
 buf.append(",");
 }
 buf.append(list.get(i));
 }
 fail(buf.toString());
}

Heartbeat or Life cycle Messages
The log message here should succinctly display what portion of the life cycle is occurring (login, request,
loading, etc.) and what apparatus is doing it (is it a particular EJB are there multiple servers running, etc.)
These message should be fairly terse, since you expect them to be running all the time.
2 B a c k O f f i c e D e v e l o p e r G u i d e

Debug Messages
Debug statements are going to be your first insight into a problem with the running code, so having
enough, of the right kind, is important.
These statements are usually either of an intra-method-life cycle variety:
 log.debug("Loading file");
 File file = new File(fileName);
 log.debug("loaded. Parsing...");
 Document doc = builder.parse(file);
 log.debug("Creating objects");
 for (int i ...

or of the variable-inspection variety:
 log.debug("File name is " + fileName);
 log.debug("root is null: " + (root == null));
 log.debug("object is at index " + list.indexOf(obj));

Exception Handling
The key guidelines for exception handling are:

• Handle the exceptions that you can (File Not Found, etc.)
• Fail fast if you can’t handle an exception
• Log every exception with Log4J, even when first writing the class, unless you are rethrowing the

exception
• Include enough information in the log message to give the user or developer a fighting chance at

knowing what went wrong
• Nest the original exception if you rethrow one

Types of Exceptions
The EJB specification divides exceptions into the following categories:
JVM Exceptions—You cannot recover from these; when one is thrown, it’s because the JVM has
entered a kernel panic state that the application cannot be expected to recover from. A common example
is an Out of Memory error.
System Exceptions—Similar to JVM exceptions, these are generally, though not always, “non-
recoverable” exceptions. In the commons-logging parlance, these are “unexpected” exceptions. The
canonical example here is NullPointerException. The idea is that if a value is null, often you don't know
what you should do. If you can simply report back to your calling method that you got a null value, do
that. If you cannot gracefully recover, say from an IndexOutOfBoundsException, treat as a system
exception and fail fast.
Application Exceptions—These are the expected exceptions, usually defined by specific application
domains. It is useful to think of these in terms of recoverability. A FileNotFoundException is sometimes
easy to rectify by simply asking the user for another file name. But something that's application specific,
like JDOMException, may still not be recoverable. The application can recognize that the XML it is
receiving is malformed, but it may still not be able to do anything about it.
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 13

8-1
Avoid java.lang.Exception
Avoid throwing the generic Exception; choose a more specific (but standard) exception.

Avoid Custom Exceptions
Custom exceptions are rarely needed. The specific type of exception thrown is rarely important; don’t
create a custom exception if there is a problem with the formatting of a string
(ApplicationFormatttingException) instead of reusing IllegalArgumentException.
The best case for writing a custom exception is if you can provide additional information to the caller
which is useful for recovering from the exception or fixing the problem. For example, the
JPOSExceptions can report problems with the physical device. An XML exception could have line
number information embedded in it, allowing the user to easily detect where the problem is. Or, you
could subclass NullPointer with a little debugging magic to tell the user what method of variable is null.

Catching Exceptions
The following sections provide guidelines on catching exceptions.

Keep the Try Block Short
The following example, from a networking testing application, shows a loop that was expected to require
approximately 30 seconds to execute (since it calls sleep(3000) ten times):
Code Sample 8-7 Network Test
 for (int i = 0; i < 10; i++) {
 try {
 System.out.println("Thread " + Thread.currentThread().getName() + " requesting number " +
i);
 URLConnection con = myUrl.openConnection();
 con.getContent();
 Thread.sleep(3000);
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 }

The initial expectation was for this loop to take approximately 30 seconds, since the sleep(3000) would be
called ten times. Suppose, however, that con.getContent() throws an IOException. The loop then skips the
sleep() call entirely, finishing in 6 seconds. A better way to write this is to move the sleep() call outside
of the try block, ensuring that it is executed:
Code Sample 8-8 Network Test with Shortened Try Block
 for (int i = 0; i < 10; i++) {
 try {
 System.out.println("Thread " + Thread.currentThread().getName() + " requesting number " +
i);
 URLConnection con = myUrl.openConnection();
 con.getContent();
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 Thread.sleep(3000);
 }
4 B a c k O f f i c e D e v e l o p e r G u i d e

Avoid Throwing New Exceptions
When you catch an exception, then throw a new one in its place, you replace the context of where it was
thrown with the context of where it was caught.
A slightly better way is to throw a wrapped exception:
Code Sample 8-9 Wrapped Exception
1: try {
2: Class k1 = Class.forName(firstClass);
3: Class k2 = Class.forName(secondClass);
4: Object o1 = k1.newInstance();
5: Object o2 = k2.newInstance();
6:
7: } catch (Exception e) {
8: throw new MyApplicationException(e);
9: }

However, the onus is still on the user to call getCause() to see what the real cause was. This makes most
sense in an RMI type environment, where you need to tunnel an exception back to the calling methods.
The better way than throwing a wrapped exception is to simply declare that your method throws the
exception, and let the caller figure it out:
Code Sample 8-10 Declaring an Exception
 public void buildClasses(String firstName, String secondName)
 throws InstantiationException, ... {

 Class k1 = Class.forName(firstClass);
 Class k2 = Class.forName(secondClass);
 Object o1 = k1.newInstance();
 Object o2 = k2.newInstance();
 }

However, there may be times when you want to deal with some cleanup code and then rethrow an
exception:
Code Sample 8-11 Clean Up First, then Rethrow Exception
 try {
 someOperation();
 } catch (Exception e) {
 someCleanUp();
 throw e;
 }

Catching Specific Exceptions
There are various exceptions for a reason: so you can precisely identify what happened by the type of
exception thrown. If you just catch Exception (rather than, say, ClassCastException), you hide
information from the user. On the other hand, methods should not generally try to catch every type of
exception. The rule of thumb is the related to the fail-fast/recover rule: catch as many different exceptions
as you are going to handle.

Favor a Switch over Code Duplication
The syntax of try and catch makes code reuse difficult, especially if you try to catch at a granular level. If
you want to execute some code specific to a certain exception, and some code in common, you're left
with either duplicating the code in two catch blocks, or using a switch-like procedure. The switch-like
procedure, shown below, is preferred because it avoids code duplication:
G e n e r a l D e v e l o p m e n t S t a n d a r d s 8- 15

8-1
Code Sample 8-12 Using a Switch to Execute Code Specific to an Exception
 try{
 // some code here that throws Exceptions...
 } catch (Exception e) {
 if (e instanceof LegalException) {
 callPolice((LegalException) e);
 } else if (e instanceof ReactorException) {
 shutdownReactor();
 }
 logException(e);
 mailException(e);
 haltPlant(e);
 }

This example is preferred, in these relatively rare cases, to using multiple catch blocks:
Code Sample 8-13 Using Multiple Catch Blocks Causes Duplicate Code
 try{
 // some code here that throws Exceptions...
 } catch (LegalException e) {
 callPolice(e);
 logException(e);
 mailException(e);
 haltPlant(e);
 } catch (ReactorException e) {
 shutdownReactor();
 logException(e);
 mailException(e);
 haltPlant(e);
 }

Exceptions tend to be the backwater of the code; requiring a maintenance developer, even yourself, to
remember to update the duplicate sections of separate catch blocks is a recipe for future errors.
6 B a c k O f f i c e D e v e l o p e r G u i d e

	Table of Contents
	Preface
	Architecture
	Overview
	Client Tier
	Middle Tier
	Data Tier
	Dependencies in Application and Commerce Services
	Example of Operation

	Coding Your First Feature
	Overview
	Related Materials
	Before You Begin
	Extending Transaction Search

	Development Environment
	Overview
	Using the Apache Ant Build Tool
	Prerequisites for the Development Environment
	Setting Up the Development Environment
	Run and Configure Back Office

	Application Services
	Overview
	Application Service Architecture
	Application Manager Mapping
	Extending an Application Manager
	Creating a New Application Manager
	Application Manager Reference

	Commerce Services
	Overview
	Calendar Service
	Code List Service
	Currency Service
	Customer Service
	Employee/User Service
	File Transfer Service
	Financial Totals
	Item Service
	Parameter Service
	Party Service
	POSlog Import Service
	Post-Processor Service
	Pricing Service
	Reporting Service
	Store Directory Service
	Store Service
	Store Ops Service
	Tax Service
	Time Maintenance Service
	Transaction Service
	Workflow/Scheduling Service

	Store Database
	Overview
	Related Documentation
	Database/System Interface
	ARTS Compliance
	Bean-managed Persistence in the Database

	Extension Guidelines
	Overview
	Application Layers
	Extension and Customization Scenarios
	Extension Strategies

	General Development Standards
	Basics
	Architecture and Design Guidelines
	Common Frameworks

