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Abstract: 
We apply some modern malhematical methods of global analysis to a series of stu :lies undertaken by Belinskii, Khalatnikov and Lifschitz (BKL) to 

elucidate the structure of space-time near a general cosmological singularity. A b:ief summary of BKL's large body of work on inhomogeneo~s 
cosmological models is given Oheir work on homogeneous models is not under discussion here). Various theorems are proven and analyses of a 
mathematical and physical nature are made to show that the constructions of BKL cannot be general and in some cases do not give Lorentz manii~olds. We 
conclude that although the work of BKL has led to very significant advances in our understanding of the dynamics of homogeneous cosmological model.~. 
the local techniques they employ do not extend to give us reliable information about the global structure of generic space-times. A detailed discussion ~f 
stability, generality, function counting, linearization stability, physical singularities and fictilious singularities is given together with an outline of variou~ 
physical considerations which might be useful in future studies of the structure of generic space-times. 

'Any problem which is non-linear in character, which involves mo1~ 
than one coordinate system, or where structure is initially defined in 
the large, is likely to require considerations of topology and group 
theory for its solution'. 

- M. Morse 

'Approximation methods are of no avail since one never kaow~ 
whether or not there exists to a particular, ~ proximate solution an 
exact solution.. ' 

- A. Einsteir, 

1. Introduction 

The aim of this paper is to compare some results of global analysis with the general cosmological 
singularity studies undertaken by the collaboration of Belinskii, Khalatnikov, Lifschitz (BKL) and 
coworkers over the period 1961-72 [1-15, 73, 74]. By employing global techniques we are able to show 
that their conclusions and constructions concerning the feneral (inhomogeneous) singularity structure 
are either incorrect or do not describe the generic case. We shall stress the power and generality of the 
topological methods introduced into gravitation physics by Penrose [19], and use them ~o draw into 
question certain features of the localized description adopted by BKL by displaying a number of 
theorems concerning the large-scale structure of space-time. 

The importance of ascertaining the structural form of generic cosmological space-times is unques- 
tioned. Knowledge of the nature of such inhomogeneous and anisotropic cosmological models would 
undoubtedly shed light upon: (a) the origin and relative likelihood of the observed large scale structure in 
the Universe; (b) the origin and entropy content of the microwave background radiation: (c) the 
presence or absence of horizons near a general singularity; (d) the possible effects of particle creation 
near t,l "- 10-43; (e) the binding energy of the universe; and (f) chaotic gravitational collapse. 

The large body of work performed by BKL on inhomogeneous cosmologies has concentrated upon 
the use of local differential techniques to conclude that two of the most general spatially homogeneous 
metrics of Bianchi types VIII and IX contain all the essential dyna'~aaical features of a general integral of 
the Einstein equations in some open neighbourhood. This work began in 1961 motivated by the 
Landau-Komar-Raychaudhuri [14, 20, 21] discovery of an appare~.,tly inevitable singular infinity in thc 
Einstein equations for the density of the universe some finite time ago with respect to a set of freely- 
falling coordinates. A series of studies argued initially that such "singularities" were in general either 
fictitious-related only to the breakdown of the accompanying coordinate system, or unstable, created 
by the special symmetries of those simple models investigated exactly [6]. The general structure of such 

P t ,- 
' ' f i c t i t i o u s ' '  singularities was investigated using local and43 ses together with a function countin~ criterion 
to establish their relative generality. 
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Elsewhere, studies of this "apparent singularity" proceeded using global techniques of differential 
topology to describe the conformal structure of space-time This programme was initiated by Penrose 
and [I9] produced: rigorous results of a very general but less dynamically detailed character [22]. In 
~ c u l a r  it revealed that, contrary to the BKL conclusions, the singularities arising in the cosmological 
problem were in fact physically real, coordinate independent and completely general features of the 
universal gravitational field [23, 61]. 

The early conflict between the results of these two distinct approaches to the cosmological problem is 
now well known and BKL in particular have discussed the relevance of the global theorems [12, 73]. 
However, following this initial debate concerning the physical reality of the singularity these two 
approaches do not seem to have again encountered common ground. We feel that it is essential that the 
subsequent results obtained using these different methodologies be confronted again in order to reveal 
the limitations and pitfalls of basing analyses upon the local structure alone or upon some ap- 
proximation scheme. The question is particularly apposite since BKL have pursued a long programme 
of work to establish the form of the general (inhomogeneous) cosmological behaviour near a physical 
singularity using the "Mixmaster" evolution as a paradigm. The results of this work have been widely 
quoted in the literature as representing the general solution to the Einstein equations near a 
cosmological singularity. In this later work similar techniques to those which had previously led to 
incorrec, conclusions regarding the reality of physical singularities have continued to be employed. We 
shall ~kow that many of the later conclusions drawn with regard to inhomogeneous cosmologies are also 
false and in addition we shall reformulate many of the problems investigated in more precise and 
well-defined fashion. We proceed as follows: In section 2 a summary is given of the concepts and 
mathematical machinery required to formulate later results. In particular precise definitions are given of 
stable and generic solutions to the field equations; the function counting technique is rigorously 
formulated and the correspondence between the Penrose and BKL notions of physical singularity 
indicated. Sections 3 and 4 give th~ principal theorems and between them we divide the BKL work into 
two periods, designated pre- and post-Penrose, reflecting the slight change of emphasis in these studies 
following emergence of the singularity theorems. In each of these sections we give a brief reshm6 of the 
arguments and conclusions of their original papers before commenting upon their results in the light of 
recent developments in global analysis. In section 5 additional considerations are described, some of 
which are concerned with the innate limitations of an approximation method such as the one used by 
BKL. Others are merely aimed to highlight certain features which must be encompassed by any analysis 
of the structure of a generic singularity, whether global or local. Finally a brief conclusion is drawn up: 
we feel that the local approach to the analysis of singularities used by BKL to study homogeneous 
space-times does not appear to give correct descriptions of generic, inhomogeneous space-times. 

Notatwn. Unless otherwise specified the notation will be that of Hawking and Ellis [61]. In particular 
1 

the Einstein equations are Rab-~gabR =8~;'T.~b. Also hab is the induced metric on a spacelike 
hype,-s,1,-face and ,,. is the ev~rlnslc rn.rvatnr~ af  th e hypersufface. A a  • ~ . * a L  / ~ . a [ )  , L . . a .  A a ~  • ~ , . * ~  ~ . , b q , , ~ . a . ~ . . , . . L  - . I A  

2. Definitions and mathematical background 

2.1. Space-time, stability and generality 

The object of study in this paper is a space-n'me, which is defined to be a pair, (M, g), where M is a 
real, four-dimensional, orientable and connected C ~ Hausdorff manifold without boundary and g is a C" 
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(C 2 would be sulficient), Lorentz metric defined on M. (M, g) is C ~ inextendible and space and time 
orientable [63]. 

The only physically interesting properties of space-times are those which are stable, i.e., those 
properties which still occur when the initial data is perturbed slightly. To be more precise: 

Definition 1 [64]. A space-time property will be said to be D-stable (or more simply, stable) about a 
spacelike hypersufface S with initial data (h',lh, o ,, X,,t,. ,g,.~) if the property exists in all space-times 
maximally developed from the initial data (h.~,)¢,~,, ~,~) in some open neighbourhood of the initial data 
(h~, " X~b, ~o)  on S in the original space-time. Here ~p~,~ denotes the non-gravitational fields and their 
derivatives on S. We use the original metric h'~b on S to define a distance function and hence a topology 
on the space of all initial data on S, i.e., we use the C ~ open topology on S, see refs. [64] and [65] for 
more details. 

It is of course possible for a space-time property to be stable and yet be of no physical interest: 
stability is a necessary but not a smficient condition for physical relevance. For example, a property 
could be stable only in a aeighbourhood of initial data sets corresponding to presently highiy anisotropic 
universes. Since the actual universe is n v apparently almost isotropic such a property could not occur 
in our universe. A sufficient condition for a stable property to be of physical interest is the requirement 
that the property be generic [65], (or general). Roughly speaking, a stable property is generic if it occurs 
near every initial value set on S. More precisely: 

Definition 2. A space-time property will be said to be generic to (maximally extended) space-times 
evolved from a spaceliKe hypersurface S if the property is open dense on the space of all initial data 
(h.~,, X,,h, ~.~) on S, where h,,, is positive definite and the non-gravitational fields ~li~ are restricted in 
some specified way to "physically realistic" fields. (The Einstein equations, various equations of state. 
etc. are assumed to hold on the evolved space-times.) 

We shall occasionally speak of "generic" (or general) space-times. By this phrase we shall mean that 
the properties of the space-time structures under discussion are generic in the set of al! initial data 
which allow the given structures to exist. For example, if we speak of "the properties of singularities in 
genetic space-times", we shall be talking about those properties of singularities which exist in an open 
dense subset of all initial data which evolve singularities. 

There are several topologies one could use on initial data space in order to define the concepts of 
"stable" and "'genetic". The topolog'~es used in the above definitions are probably sufficiently fine so 
that properties which are stable and/or gener~c by the above definitions would be respectively s'.able 
and/or generic in any other reasonable topology. However, for certain applications one might want to 
use a coarser topology. For example, the above topology does not distinguish between variations of the 
initial data due purely to coordinate transformations, and variations of the true gravitational degrees of 
freedom. Thus~ it might happen that a space-time property is stable under small variations of the true 
gravitational degrees of freedom, and yet is unstable by the above definition because the property 
depends in some way on the coordinate system, or rather on the choice of the initial hypersurface 
from which the space-time is evolved. 

In this paper we shall be concerned with prot~erties which continue to exist in D-(S) ~' taen the data 
on S is perturbed. (D-(S) is the past maximal Cauchy development of S; see HE [61] p:a~t: 201 or below 
for the definition.) Clearly the questi,.n of which properties are stable in this sense is goi:~g to depend on 
which S is chosen. Two hypersurfaces 3 and S' are said to have the same initial data i~, the space of true 
gravitational degrees of freedom if D(S) is isometric to D(S'), even though D-(S) is ;,,,t isometric to 
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D-(S'), where D(S)-=-D+(S)UD-(S) and D+(S) is the future Cauchy development of S. Thus we shall 
want a finer topology than the topology on the space of the true gravitational degrees of freedom; we 
shill sometimes wish to say that a property is unstable if it is unstable in the quotient topology defined 
b~ the top01ogy used in the above definition of stability modulo the following identification: two initial 
data sets on S, (hub, Xab, 00~), (/~ab, ,~ab, ~Ci~) are said to be the same if D-(S) is isometric to 15-(S), and we 
shill not distinguish between diffeomerphisms of the initial data which preserve the isometry D-(S)"- 
15"(S), We shall call the notion of stability with this topology past D-stable. In theorem 5 below (section 
4), the existence of synchronous coordinate system (based on S) which reaches the singularity will be 
shown to be both D-unstable and past D-unstable. We shall also show that the BKL "generar' solution 
with a physical singularity is unstable to infinitesimal perturbations of the true gravitational degrees of 
freedom. 

The initial data will be imposed on a surface S called a pa,'tial Cauchy surface, which is defined to be a 
C 2 space-like boundaryless hypersufface which no timelike o~' null curve intersects more than once. The 
past Cauchy development D-(S) of S is the set of all points p such that all future-directed timelike or 
null curves intersect S. The Cauchy development D÷(S) is defined analogously. If the Cauchy 
development D(S)-- D-(S)UD +(s) is the entire space-time, then (74, g) is said to be globally hyperbolic 
and S is called a Cauchy surface. 

2.2. Singularities 

The following definitions make precise the notions of physical and fictitious singularities in our usage. 

Definition 3. A timelike geodesic generator y of a synchronous coordinate system will be said to 
terminate in a fictitious singularity at the point p on y if p is a point conjugate (see HE [61] p. 100) to S 
along y, where S is a C 2 spacelike hypersurface which is orthogonal to all timelike geodesic generators 
of the synchronous coordinate system [109]. (S is a t = constant slice of the coordinate system.) 

Intuitively speaking, there is a fictitious singularity at p if the timelike geodesics ~vhich are orthogonal 
to S and close to y, intersect y at p forming ," caustic of the geodesic congruence. 

This definition corresponds to that used by BKL. 

Definition 4. A non-spacelike geodesic y will be said to terminate in a physical singularity if y is 
incomplete. 

It is interesting to notethat by the above definition 4, a physical singularity need not correspond to a 
divergence of curvature invariants (such as RabR ab, R, etc.), as the finite limit of proper time is 
approached along y. That is, y need not terminate in a scalar polynomial curvature singularity (s-p 
curvature singularity). However, Clarke [67] has shown that if the space-time is inextendible (to a 
certain order of diffentiability) and if the space-time curvature tensor does not approach type D ia the 
limit, then a physical singularity corresponds to a p-p curvature singularity. That is, some component of 
the curvature tensor in a frame parallel propagated, (p-p), along y must diverge as the physical 
singularity is approached along y. Now Siklos [62] has shown that p-p curvature singularities which are 
not s-p curvature singularities are a set of measure zero in the space of all homogeneous initial data. 
This strongly suggests that in physically realistic space-times s-p and p-p curvature singularities are 
equivalent. 

The term "physical singularity" is used by BKL [8] to mean s-p curvature singularity. Thus the work 
of Siklos and Clarke shows that, in any physically realistic space-time, the BKL definition of physical 
singularity is probably equivalent to that of definition 4. 
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With the conceptual machinery introduced in the preceding paragraphs of this section it is easy to 
prove a simple singularity theorem. 

Theorem 1. Let S be a Cauchy surface with a , ~  > C > 0 ,  where C is a constant, and suppose 
R,bV~IP->0 for all timelike vectors V ~. Then all inextendible timelike geodesics terminate in the past 
in a physical singularity. 

Proof. Landau and Lifschitz [75] have shown (using the Landau-Komar-Raychaudhuri equation) that 
R,t, WV~>-0 and X] -> C > 0  implies every past-directed timelike geodesic y orthogonal to S must 
encounter a fictitious singularity (i.e. there must be a point conjugate to S along y) within a distance 3/C 
of S, providing y does not terminate in a physical singularity first. Since S is a Cauchy surface, (M, g) is 
globally hyperbolic. Using global analysis it can be shown (HE [61] p. 217) that to each point 
q in D-(S) there is a timelike geodesic orthogonal to S which is of maximal proper time length l~rom S 
to q, and which contains no fictitious singularity between S and q (that is, the synchronous coordinate 
system can be contained from S to q). Since every timelike past-directed geodesic orthogonal to S has 
either termir~ated in a physical singularity or encountered a fictitious singularity within a d~;tance 3/C 
this means that any timelike geodesic which has a length to the past of S greater than 3/C must leave 
D-(S~.. But, S is a Cauchy surface and, by definition of Cauchy surface, all inextendible timelike curves 
hit S and pass into D-(S). Furthermore, since (M, g) is globally hyperbolic, D(S) (-D÷(S) UD-(S)) is the 
entire space-time, and so a timelike curve entering D-(S) never leaves it. Thus, all inextenclible timelike 
geodesics terminate in the past in a pny..i-"! singularity. Q.E.D. 

2.3. Function counting 

It appears that the first attempts to make function counting a rigorous criteria for characterizing 
solutions to sets of differential equations were those of Einstein [120. 121]. In the 1955 editit:n of his 
book "The Meaning of Relativity" he introduced the notion of the strength of a system of differential 
equations as a means of analysing both the generality and compatibility of entire sets of field equations. 
His intuitive idea was that 'the smaller the number of free data consistent with the system of field 
equation, the stronger is the system'. To quantify this idea he first expanded all the dependent field 
variables in Taylor series and then determined the number of relations among the various nth order 
coefficients that are imposed by the differential equations themselves. In general the number of 
coefficients in the nth order expansion of an analytic function on an N-dimensional manifold is 

I N" ( n + N + l ) !  

Takin~ into account remaining coordinate transformations, the number of constraints which limit the 
way in which the initial data may be chosen can also be evaluated combinatorically and subtr~c'~cd fro~a 
IN]. This gives Z,,, the number of free coefficients of order n. where Z, must be non-~legativc for the: 
equations in the system to be compatible. Einstein found that for the systems hc evaluated, including 
the vacuum Einstein equations, the limit as n --, ~c of Z,,/[,~] is O(n ~) and he defined the strength t~f the 
system to be the coefficient of n t in this limit. The larger the value of this coetticient the more weakl\ 

constrained is the system of equations. 
The BKL studies use the function counting criterion to establish the gener~lity of their metrics zlnd 

approximations. We now give a precise formulation of this technique for vacuum space-ti~ncs ,.~l~ich ,,,,'ill 

be sufficient for our present investigations. 
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If S is a C 2 spacelike partial Cauchy surface, then it will have a unique maximal Cauchy development 
D(S), which will coincide with the entire space-time (M, g) if (M, g) is globally hyperbolic. If the matter 
equations are well-posed and if the Einstein equations hold, then D(S) is uniquely and completely 
dete~ined by the initial data on S. It has been rigorously shown by York [70] and by Fischer and 
M~d~n  [76] that for matter-free closed universes away from initial data with symmetries, the initial 
data for the Einstein equations can be completely defined by four functions of three variables. That is, 
there is locally a diffeomorphism from the space of pairs of symmetric three-tensors (h,b, ,Yah) on a 
compact spacelike hypersufface S (where hab and a'~b satisfy the empty space Einstein equations and 
tensor fields which differ only by a coordinate transformation are identified) onto the Hilbert space 
consisting of four arbitrary functions of three variables. (As will be shown in theorem 7 below, there is 
no such ditteomorphism near spacetimes with symmetries.) Thus, these four functions define D(S) 
uniquely and completely. 

However, (M, g) may not be globally hyperbolic-indeed, global hyperbolicity is not a stable 
property for all initial data sets, since in any neighbourhood of Schwarzschiid initial data there t_ 
Reissner-Nordstrom initial data and Reissner-Nordstrom space is not globally hyperbolic. Thus, the 
four functions specified on S may not be sufficient to determine cempletely the entire structure of 
(M, g). For example, if a timelike singularity occurs to the future of a partial Cauchy surface S, then 
four functions given on S will determine D(S), but additional functions must be given to specify what 
emerges from the timelike singularity (roughly speaking, a casual curve y is said [99, 107] to terminate 
in a timelike singularity if there is an observer for which y is initially in his future but later in his past). 
Thus, if a space-time contains a timelike singularity then more than four independent functions must in 
general be given in order to define the space-time. In particular, if a space-time contains a timelike 
singularity, then a demonstration that g is defined by four independent, arbitrary, functions of three 
variables does not imply that the properties of g are "generic" in any meaningful sense. 

What happens in the timelike singularity case is that although four independent functions are 
sufficient to determine a stable non-globally hyperbolic solution locally, they are insufficient to determine 
it globally. Some additional information must be supplied to determine the global structure. This 
information will usually be of a global nature, and so local awtalyses such as the BKL approach will give 
no indication that information beyond four functions is required. What a local analysis does is use four 
functions to determine a solution in some small coordinate neighbourhood, and then piece together 
neighbourhoods which cover the entire space-time. Matching conditions are imposed in an attempt to 
prevent additional information from entering. However, it could be that these coordinate neighbour- 
hoods could be matched in inequivalent ways, Or that a given coordinate neighbourhood could be 
matched at the same point to any one of several inequivalent other neighbourhoods. As an example at 
the first possibility, recall that opposite erds of a square can be iclentified in one way to form a cylinder 
but in another way to form a M6bius strip. A second example is Taub space, which has two different 
analytic extensions into NUT space, depending on which family of null geodesics is assumed to go 
through the boundary between Taub space and NUT space ([61] p. 170). The exterior Schwarzschild 
solution provides an example of the second possibility. There arc.' many "" t_- extensions through the event 
horizon besides the analytic Kruskal extension [ll6-119]. The' requirement that a region be in the 
Cauchy development of another is much stronger than merely requiring that the region be an extension 
of another. The additional information required in the timelike singularity case would probably be due 
to the second possibility. 

Since non-globally hyperbolic space-times require in general more than four independent functions 
for their complete specification, one might be tempted to regard such space-times as more "general" 
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than globally hyperbolic space-times. However, this ,'~eed not be the case. The relative degree of 
"generaiity" of a space-time property is determined primarily by the relative "size" of the region in 
initial date space for which the property holds in the space-times maximally develcped and extended 
from initial data "points" in the region. To define " '" " st,e , we must of course put a measure on initial 
data space, and the problem of which is the best measure to use is still unsolved. In particular, the 
relative sizes of the two initial data space regions which respectively evolve globally hyperbolic and 
non-globally hyperbolic space-times is unknown. It is even possible that the non-globally hyperbolic 
region is vastly greater in size for any reasonable measure, and yet all the "physically realistic" initial 
data sets lie in the globally hyperbolic region. Penrose has conjectured that all physically realistic initial 
data sets lie in the globally hyperbolic region. He calls this conjecture the postulate of strong cosmic 
censorship [99]. 

If it is in fact the case that physically realistic space-times are not globally hyperbolic, then the degree 
of generality of a property will in reality be determined by both the generality of the property in the 
initial data region, and by the generality of the property in what we might call "extension space". That 
is, by the relative "number" of extensions from a given D(S) which have the property compared to the 
"number" of extensions which do not. 

The foregoing discassion of generality in non-globaUy hyperbolic space-times is of course very vague, 
but it will suffice for our purposes, since we are cencerned in this paper primarily with properties 
defined in D(S). To discuss stability and generality properly in non-globally hyperbolic space-times one 
really should use the notion of G-stability [64]. 

It was remarked above that in general a stable solution of the empty space Einstein equations ~s 
defined in D(S) by four independent functions given on S. However, the topology of S will sometimes 
impose global constraints on these functions. For example, suppose S has the topology of the 
three-torus and suppose we choose one of the independent functions to be the trace of the extrinsic 
curvature of S. If we were to set X~ = 0, then one might expect that we wculd be free to set 3 more 
functions arbitrarily on S. (In fact, in York's initial value scheme [70], the condition X~ = 0 is regarded 
as a mere coordinate condition on xhe space-time; one still has four functions free.) 

This is not true in general. Schoen and Yau have shown [71] that if the strong energy condition holds. 
and g~ = 0 on an S with topology T ~, then the entire space-time is flat. That is, if the topology is T ~, then 
the entire space-time geometry is determined by the single condition X~ = 0. 

This illustrates a key problem: in order to show that the general initial value problem has been 
well-posed, one must show that the four functions of three variables (or more generally, the arbitrary 
number of functions of an arbitrary number of variables) are in fact independent and that they 
completely parameterize the initial value space ~ (see ref. [76] for a precise definition of ~). Now all 
possible four functions of three variab',:~ on ': form a W" Hilbert space Y( (that is, Y~ is a Sobolev space 
W' -see "el. [611 p. 234 for a defin;~ion of W*. We will choose s >- 3 so that the maximal development 
will be unique [IIXl]). Thus ~ can be parameterized by four ;ndependent functions of ~e if and only if 
there is a local diffeomorphism f: ~--, ~. The map f will be a local diffeomorphism if and only if the 
~__.L~, ,~,,.:..,,:,.,~ r~f ,,~ f ;~ l,,,,~u,~ I-1 and onto ~ (In a finite number of dimensions this is equivalent 
F l l i ~ I b l l l i ~ t  11dlV.,l I Y G I L I I ' ~ . ,  I L . P l  V l  I.~, . - , - - , . , ,~ - - . .  Ir . . . .  

to requiring that the Jacobian of the transformation be non-zero. See ref. [111] for a discussion of thi~ 
point and the definition of the Frechet derivative.) The usual way of demonstrating that Df is locally 1-1 
and onto is to first show that Df is an elliptic operator with trivial kernal (this shows that Df is I-1), and 
to then prove that the adjoint operator D*f also has trivial kernal. By the Fredholm Alternative 
Theorem [105], this implies that Df is locally 1-.1 and onto. 

Fischer, Marsden and Moncrief have shown [77] that Df will be 1"1 and onto a neighbourhood U of 
~e if and only if the space-time which is evolved from a point in ~ is linearization stable. 
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2.4. Linearization stability 

BKL express their "general" metric in terms of a series expansion (see sections 3 and 4 for details 
and references), and they focus attention on the first order terms. This procedure raises the question of 
whether the series converges. In particular, is the first order term a good approximation to the actual 
metric? One way of attacking these questions is to ask "Is the space-time linearization stable?" 

If a space-time is linearization stable, then the first two terms of the expansion 

gab gOab+•glab + 2 2 -" 6 gab + " " " 

where gab and gob a r e  solutions to the full Einstein equations, and g,t,h is a solution to the iinearized 
equations, can be completed to a convergent expansion. That is, there exists a neighbourhood (in 
solution space) of the original metric g°b such that every metric g~h in the neighbourhot d can be 
expressed in terms of a convergent power series, with g~h + ~g~h being a good first order appro'amation to 
gab- 

Fischer and Marsden [68], together with Moncrief [69] have shown that g~,[h is linear~zation stable if 
and only if gO b has no Killing fields. (Their theorem assumes that (M, go) contains a compact Cauchy 
surface, and that Tab-0.  Nothing is known about the linearization stability properties of non- 
asymptotically flat, open universes.) Thus, if gO b contains Killing fields, then there exist solutions g~h to the 
linearized equations such that g o b +  ~glab cannot be completed to a convergent series: the expression 
go b -I- Eglab is not a good first order approximahon to a real solution g,,h to the full Einstein equations. Such 
solutions glab tO the linearized equations are called spurious perturbations. In particular, if one is perturbing a 
Bianchi model, the linearized equations will have solutions which are spurious perturbations 

It is possible that there exist solutions g~b to the linearized equations such that g~,lh + 6g~,h can be 
completed to a convergent series even though g~b is not linearization stable, Fischer, Marsden and 
Moncrief [77] have shown that a given g la b is not a spurious perturbation if and only if g~  satisfies a 
certain 2nd order constraint (integrals of the Taub conserved quantity vanish' i.e., g~h satisfies the 
equation in Theorem 2 of ref. [791). Thus, if g~b contains Killing fields, then each solution g~,b to the 
linearized equations must be checked to see if it is a real and not a spurious perturbation by checking if 
it satisfies a certain complicated equation. 

Fischer, Marsden and Moncrief [77] have shown that a sufficient condition for the existence of 
non-spurious solutions to the linearized equations is the existence of a maximal spacelike hypersurface 
(or more generally, a g a = constant hypersurface) with a Killing field tangent to the hypersurface. Thus, 
the Bianchi models have both spurious and non-spurious perturbations. 

The above discussion on iinearization stability applied to the matter-free case, which is sufficient for 
our purposes since BKL also restricted their arguments in most cases to the matter-free case. 
Nevertheless, if should be mentioned that the presence of matter can affect linearization stability. For 
example, D'Eath has shown [112] if the matter is in the form of a perfect fluid, and the equations for the 
fluid and the space-time geometry are formulated in such a way as to form an unconstrained 
Hamiltonian system, then the space-time is linearization stable even if Killing vectors are present. 
However, if these equations are formulated in terms of a constrained Hamiltonian system and the 
constraints generate gauge transformations (as would be the case if the fluids were represented by 
Schutz potentials [113]), then as in the empty-space case the space-time is linearization unstable if it 
contains Killing vectors [114]. Furthermore, a closed universe with Killing vectors is linearization 
unstable if the matter is in the form of gauge fields or scalar fields [78]. Thus the question of 
lineafization stability in the presence of matter depends on the way the ma~.ter tensor is represented. 
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3. Pre-Penrose work of BKL 

This period of work by BKL before the proof of the singularity theorems we shall take to encompass 
the following pieces of published work by the Soviet school [1-9, 74]. A summary of the principal 
conclusions of [1--4, 74] is contained in the well-known review [6]. Although chronologically the paper [8] 
belongs in the post-Penrose period, we include it here using acknowledgement of the existence of 
physical singularities as the criterion for admission~ The paper [4] will also be discussed in section 5 
since it is useful as an example of the ambiguity of local coordinate dependent techniques. Various parts 
of the work in [ 1-9, 74] are quoted and regarded as canonical in the most recent edition of the text-book 

1141. 
For ease of subsequent discussion we categorize and briefly s~ammarize the principal ideas and 

conclusions of this body of work before making some comments in the light of global methods, qhe 
central ideas are: (1) The mathematical methodology; (2) ohysical singularities; (3) fictitious sin- 
gularities, we  now treat these in turn. 

3. I. Mathematical methodology 

Local series techniques and function counting. 

Resum6. The goal of the programme was to elucidate the nature of the general cosmological solution 
to the Einstein equations. They explain ['~()l, "By general solution we mean a solution in which the 
physical arbitrariness is determined by four arbitrary functions of three spatial coordinates in vacuum 
and by eight such functions in a space with matter". The manner in which such a solution is soughl: is 
described by Lifschitz [81], "Assuming the existence of a singularity we must find in its neighbourhtT,od 
the widest class of solutions and then judge by the number of arbitrary functions whether it is ~Ihe 
general solution". Local series methods were employed to expand the field equations in power series 
within a small neighbourhood of the Friedmann and Kasner metrics; the cardinality of these so'utit,n~ 
being then ascertained by calculating the number e,f arbitrary functions remaining after the coordinate 
system was fixed. Thus it was claimed that such a neighbourhood of the Kasner metric near a regular 
point was generic [6, 141. These local series techniques were used throughout the analyses of [1-9, 74] in 
the treatment of the general structure problem and in fact also in the later work; see section 4. 

Comments. We begin by pointing out that, in the light of definitions 1 and 2 of section 2 the s,at~:d 
aim of the BKL programme is actually to find a stable rather than a generic singularity structure. In the 
work tit. d above, series techniques were employed to construct local neighbourhoods around particular 
solutions on initial hypersurfaces where four 'arbitrary' functions of the three spatial variables would 
specify the metric. Referring back to section 2 we point out that for such a methodology '~o succeed the 
space-time must of course be - ' - ' - - "  . . . . . .  ,__,._ . , _ n  : . . .  , - , , .n .~ , .  ¢,-,.- ~ . . . .  f , , n o t i , a n ~  tc~ r c w n n l e t e l v  a n d  glovany hypctt, od~, a ,u  u, u,u,.~ ,v, . . . . . . . . . . . . . . . . . . . . . . . .  t . . . . .  . ....... 
uniquely specify the development of the entire space-time they must be given on a global Cauchv 
surface. In addition, if part of the initial singularity were of timelike character then four arbitrary 
functions of three variables given on any spacelike hypersurface would be inadequate to develop the 
entire space-time; see section 2. BKL also use the four function criterion locally to claim small 
neighbourhoods can be representative of the generic global case if they may be specified by four such 
independent functions of three variables. We point out th~,t their claira is unjustified, a,; the following 

illustrates: 
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I III 

( { , )  , ~ ,  ' S 

MatChing 

Fig. 1. Initial data specified on non-overlapping regions St and 
$2 determines evolution only in the triangular regions. The 
"'?" region is contingent upon the matching conditions be- 
tween these two regions. The symbols ~1, ~2 are defined in 
subsection 4.3. 

/ A ~  ~--singularity 

_ ~ / . ,  \ S2 ........ S 

$1 
Fig. 2. Data given on $2 cannot be 'generic' in any 
meaningful sense if the development of S2 is to reach 
the singularity. A sufficiently large change of the initial 
data on 52 will change it into that data appropriate to 
the neighbourhood St, whose development does not 
reach the singularity. 

Fig. 1 is a generic Penrose diagram for any space-time with event horizons (or particle horizons for the 
time reverse of fig. 1). 

If data is specified on the two adjacent neighbourhoods $1 and S~ of the hypersurface S then we can 
determine only what lies in the triangular developments of Si and S3. Now as can be seen from fig. 1, 
most of the information about the singularity lies in region "?" whose properties can be determined 
only when we have information about the matching region. Thus, a study of $1 will not reveal anything 
about the large scale structure of the singularity; this global structure is conticgent upon the matching 
conditions between S~ and $3 on S. We have stressed that BKL seek a stable rather than a generic data 
set of S. Now suppose we can pick a neighbourhood overlapping S~ and S3, then by taking a suitable 
number of such overlaps we can sweep out the structure of the entire singularity. However, this can be 
done only if the solution we have constructed in $1 is not merely stable but has the same properties on a 
neighbourhood (in solution space) of large finite size rather than merely an infinitesimal neighbourhood, 
and this is evidently not the case for BKL's constructions as can be seen from fig. 2. 

We note that even if four functions of three varial,~es are given on a global Cauchy surface they 
must be shown to be independent by proving that the map from true-degrees-of-freedom space into the 
Hilbert space of four functions of three variables is locally a dilieomorphism. Ibis does not appear to 
have been done by BKL, and indeed we shall demonstrate below (theorem 6) that no such 
diffeomorphism exists near homogeneous closed universes. Finally, we remark that it is desirable that 
any series technique display an accompanying convergence condition which may be explicitly checked. 
BKL have not done this and we shall see in what follows that their series representations evidently 
diverge from any real solutions to the Einstein equations since they lead globally to the construction of 
artefacts which cannot in fact even be space-times. 

3.2. Physical singularities 

Resume: Motivated by the Landau-Komar-Raychaudhuri [14, 20, 21] discoverv that the dete:minant 
of the spacelike three-metric of a synchronous coordinate system must vanish at some finite time in the 
past, it was argued [6] that this result displayed only the tendency for the coordinate volume described 
in the synchronous reference system of geodesics to disappear. Thus it was felt that no conclusions 
drawn from it regarding infinities in physical quantities could be invariant in general, as [82], "this 
singularity which is inevitable in the synchronous system is actually fictitious in the general case". In 
their work [83], "a physical singularity is taken to be a singularity which appears in scalar quantities, 
with a direct physical meaning, such as the energy density of the matter, or in second-o~-der invariants of 
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the curvature tensor...". Regarding exact solutions, like Friedmann's which manifestly contain such 
physical singularities it was judged that these [84], " . . .  have a generality which is insufficient to take 
into account arbitrary, initial conditions". They claim that such physical singularities may in general be 
removed from these special space-times since [84], "there exist small perturbations of a type such that 
their superposition leads to the vanishing of the singularity, tiffs means that it should go over into a 
fictitious singularity as a result of the perturbation". It was thought that when the geodesic congruence 
forming the synchronous reference system became singular a transformation could always be made to a 
new synchronous system and this used to trace the evolution of the space-time until that in turn also 
broke down, and so o n . . .  ad infinitum. No consideration of the global behaviour in the limit for this 
procedure was given and they draw the [85] " . . .  conclusion that the general solution has no true 
singularity" using these local arguments. 

Comments. These early conclusions of BKL concerning physical singularities have received much 
comment in earlier work [25] :and thus we shall not labour our discussion of this point. The most 
instructive discussion of these results is that of MacCallura [26] who stresses how the vital question of 
what occurs in the limit of these successive synchronous coordinate system exchanges was not 
considered. The result, now well known, is that a real physical singularity inevitably occurs in general 
and this is precisely stated by the Hawking-Penrose theorem [23, 61]. We have given in section 2 an 
argument for the equivalence, in practice, of the Penrose and BKL definitions (see section 2). of 
physical singularity and this clarifies some ambiguities that still seem to exist over this question [14]. 

3.3. Fictitious singularities 

ResumE. It was concluded from the arguments described above that the general solution could 
contain only a fictitious singularity generated by the geometric specification of a particular coordinate 
system, and which would disappear upon transfer to another synchronous reference system. BKL then 
proceeded to determine the nature of the general solution to the vacuum gravitational field equations 
containing a fiCl;tiOus singularity. Local series expansions of the Einstein equations were used to 
analytically construct such a solution and it was claimed that the fictitious singularity was. in the general 
(four function) case, simultaneous. Thus, it was claimed [86], "the general solution to the equations of 
gravitation can also be represented (by suitable choice of the synchronous frame) in a form in which 
the singularity is simultaneous for all of space". Belief in the validity of these results was maintained in 
later analyses since it was necessary to have such a synchronous coordinate grid which could be 
followed all the way into the singularity, breaking down simultaneously everywhere, in order to 
meaninefully apply local analyses to the singularity problem. The result is also described as canonical in 
the latest edition of the text [14] and by Belinskii [15]. The literature thus gives the impression that 
BKL still believe this construction to be valid even though they no longer believe their original 
~ r m l m o n t c  nominal  t ho  o.~i~tenco nf  nhwiczl singu!arizies. 

C,w ~_ omments. It is with regard to the above cited assertions that the application of ~lobal techniques t,~ 
BKL's results become particularly interesting since this work is still claimed to be general [151. We nox~ 
v:,ve two theorems which demonstrate, that: (i) In a universe with non-compact space sections the 
simultaneous fictitit, us singularity BKL claim to have constructed can only occur on a hypersufface 
which !: not a global Cauchy surface; thus four arbitrary ]'unctions of three variables are insu~cient to 
establish generality; (ii) In the compact case we prove an even stronger result: that it is simply impossibh 
for every geodesic of a synchronous coordinate system to terminate in a fictitious singularit3 ~. 
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Theorem 2. Let S be a spacelike boundaryless C 2 hypersurface of a space-time (M, g). Suppose that 
the synchronous coordinate system generated by the timelike geodesics orthogonal to S terminates in a 
simult~eous fictitious singularity. Then S is non-compact and furthermore S is not a Cauchy surface for 
(M, g): 

R~oof. We first note that S can be assumed to be a partial Cauchy surface, by the remarks of HE [61] 
p. 273. To fix ideas we assume that the simultaneous fictitious singularity occurs to the future of S at the 
time to as measured in the synchronous coordinate system. Since a given geodesic generator y of the 
synchronous coordinate system encounters a fictitious and not a physical singularity at the point p at 
proper time to, and since (M, g) has no boundary, it follows that the geodesic segment y can be 
extended beyond the point p. However, by the corollary on page 217 of HE [61], to each point 
q E D+(S) there is a future-directed timelike geodesic curve orthogonal to S from S to q which does not 
contain any point conjugate to S between S and q. Since there is a point conjugate to S along every 
timelike geodesic orthogonal to S at proper time to, it follows that no point in the extension of y beyond 
p can lie in D+(S). If S were a Cauchy surface, then all points to the future of S would have to lie in 
D+(S). Thus S is not a Cauchy surface. 

To show that S is non-compact, we proceed as in the proof of theorem 4 of HE [61] (p. 273). The 
region of space-time S~[0, to], which is swept out by the synchronous coordinate system would be 
compact if S were compact. By the argument above, S~)[0, t,,] contains D+(S), (and hence D+(S) and 
H+(S)). Thus H+(S) and I)+(S) would be compact. Consider a point q E H+(S). Since every past-directed 
non-spacelike curve from q to S would consist of a (possibility zero) null geodesic segment in H +(S) and 
then a non-spacelike curve in D+(S), it follows that d(S, q) would be less than or equal to to. Thus, as d 
is lower semi-continuous, one could find an infinite sequence of points r, E D+(S) converging to q such 
that d(S, r, ) converged to d(S, q). To each r, there will be a segment of a timelike geodesic generator of 
the synchronous coordinate system. Since S®[0, to] is compact there is a segment of a timelike geodesic 
generator of the synchronous coordinate system which is a limit curve of the segments defined by the r, 
sequence. By continuity this geodesic has length d(S, q) and future endpoint on q. Thus to every point 
q E H+(S) there would be a segment of a timelike geodesic generator yq of the synchronous coordinate 
system from S to q, with yq having length d(S, q). Now let q, E H+(S) lie to the past of q on the same null 
geodesic generator A of H+(S). Joining the geodesic of length d(S, q,) from S to q, to the segment of A 
between q, and q, one would obtain a non-spacelike curve of length d(s, q,) from S to q which could be 
varied to give a longer curve between these endpoints (proposition 4.5.10, HE [61]). Thus d(S, q), 
q E H+(S), would strictly decrease along every past-directed generator of H+(S). By proposition 6.5.2 [61], 
such generators could have no past endpoints, and so d(S, q) cannot have a minimum. However, as d(S, q) is 
lower semi-continuous in q, it must have a minimum on the compact set H+(S). Thus if S is compact, it is not 
possible for all synchronous coordinate system generators to terminate in a fictitious singularity. Q.E.D. 

If a space-time (M, g) contains a non-compact Cauchy surface then it may be possible to find a partial 
Cauchy surface ~,,rh t h n t  t h P  ~ x r n t ' h r a n a l l c  oaarr l[n~t~  c , , e t ~ m  r ~ r t h r ~ a ~ r ~ l  t ~  t h l e  h . . . . . . . . .  ~ , ,  * . . . . .  ;,-,,~*,~,- 

~ l l  ~ i & ~  ~ i lwe~  ~+'+le7 III'II~II'ILq~-/II'K-/K~I's~I '~"K./ ' l lJ l ' Ibll l l l~l , l+qk,t '  + + ~ I ~ + ~ I L ~ . ' I l l  q l J l L l l I L + l ~ s k J l l l l J l l  tl, qU I l l l l+~ .~  I I I ~ I , 3 q ~ , . I ~ I I I , , I I L U ~ . , ~ . '  L 1 b , . , l l l l l l l 4 F d l L ~ , , ~  

in a simultaneous fictitious singularity. For example, consider the partial Cauchy surface S deli.~e0 ",," b ~ .  

x4 <0; x 2 + x 2 + x~-  x 2 = - 1 in Minkowski space [61]; for this hyperboloid X~ = - 3 at all point,, .,;ee fig 
3. 

This partial Cauchy surface is a Cauchy surface for the past light cone of the origin of coo:dinates in 
Minkowski space. All timelike geodesics normal to this partial Cauchy surface terminate in a simul- 
taneous fictitious singularity at the origin. Although S is a Cauchy surface for the past light cone. it is 
not a Cauchy surface for the entire Minkowski space. 
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0 

$ 

Past null 
cone of 0 

Fig. 3. S is a spacelike hypersurface in Minkowski space. S is a Cauchy surface for 1-(0), but only a partial Cauchy surface for the entire space-time. 
The origin O is a simultaneous fictitious singularity in the synchronous coordinate system generated by the timelike geodesics orthogonal to S. 

Theorem 3. Let S be a compact spacelike boundaryless C 2 hypersurface of a space-time ',M, g). Then 
it is not po~ible for every timelike geodesic generator of the synchronous coordinate system formed bv 
the timelike geodesics orthogonal to S to terminate in a fictitious singularity to the future of S. (A 
similar theorem can be proven with 'future' replaced by 'past'.) 

Proof. Suppose on the contrary, that all timelike geodesic generators of the synchronous coordinate 
system do terminate in a fictitious singularity to the future of S. By definition of fictitious singularity. 
this means that every timelike geodesic ~/ orthogonal to S can be extended into the future until it 
reaches a point p E ), which is conjugate to S. By proposition 7.24 of Penrose [72], the location of the 
first conjugate point p to S varies continuously with 7, and thus the proper time distance t to the first 
conjugate point to S along the timelike geodesics orthogonal tc~ S is a continuous function of S. Since S 
is compact and t(S) is continuous, we can renormalize proper time along the timelike geodesics normal 
to S so that t(S)= t,,. Let/3 :S@[0, t,,]--, M be the differentiable map which takes a point pES a distance 
s E [0, t.] up the future-directed geodesic through p orthogonal to S. Then /3 (S@[0, t,,l) would be 
compact and would contain 13+(S), for reasons given in theorem 2; the remainder of the proof is the 
same as the latter part of the proof of theorem 2 above. Q.E.D. 

A slight modification of the proofs of theorems 1 and 2 will show that if the geodesics normal to a 
spacelike Cauchy surface S terminate in a simultaneous singularity, then for all the geodesics this 
singularity must be physical, not fictitious. If the hypersurface S is just a partial Cauchy surface, or if S 
is a hypersurface with boundary, then it can be shown that if some of the geodesics terminating iv a 
future si,aultaneous singularity in fact terminate in fictitious singularities, then the fictitious singularities 
are ,n J+(H*(S)), and hence the structure (and even the existence) of these singularities i,~ nt~t 
determined by the four functions given on S. 

IZinally we notice, as an aside, that in later work th'e desire to construct a simultaneous, i,hysi(',~l 
singu!arity possibly springs from these claims regarding the existence of a general .dmultaneous lic~itiet~s 
singulal;ty. It seems as though whenever in their non-generic solutions BKL obtained a physical 
singularity at the point where the synchronous coordinate system broke down, it was claimed in the 
generic case this physical singularity would be converted into a fictitious singularity. After the 
singularity theorems were proven they abandoned this claim. However. the methodology of using a 
synchronous reference system which could be continued all the way into a physical singularity was 

retained. 
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4. Post.Penrose work of BKL 

Following acceptance of the singularity theorems [73] BKL concentrated upon constructing the 
generflsolution to Einstein's equations near a physical spacelike singularity. This work appears in the 
four papers [10-13] and is briefly described in the textbook [14]. (Note we are not here discussing any of 
the work on homogeneous models [12,14], which is of a different nature.) Again we divide our 
discussion as follows: (1) physical singularities, (2) the 'gener,a! solution', (3) methodology, (4) future 
singularities. 

4.1. Physical singularities 

The Kompanyeets metric. 

Resumd. The aim of this work was to [87] "investigate a general solution containing a simultaneous 
physical singularity in time". It was argued that a metric which was first studied by Kompanyeets [66] is 
sufficiently arbitrary to represent an interval of the general solution corresponding to a period of 
Kasner-like evolution. It is shown how such a metric admits the homogeneous Bianchi VIII and IX 
metrics as particular specializations and thus it is claimed that the oscillatory structure of these 
homogeneous models provides a behaviourai paradigm for the general case. An approximation 
technique relying on local Fourier series expansions is employed. Continuing this analysis [12], it was 
argued in [13] that the interchange of Kasner periods takes place in a quantitatively similar fashion to 
the Taub-Bianchi II [26] bounce law which describes a single oscillation in the 'Mixmaster-like' cases of 
homogeneous Bianchi types VIII and IX. The single structure constant governing the bounce-inducing, 
curvature anisotropy is assumed to take on a spatial variation in general, as a manifestation of the 
inhomogeneity. It is also felt that [88] "The generality of the oscillatory solution gives one a basis for 
assuming that the singularity reached by a finite body in its collapse below the event horizon in the 
comoving reference frame has this same character". 

Comments. As quoted above, BKL claim to have constructed a simultaneous physical singularity in 
space. The following theorem proves that, for black hole singularities in asymptotically fiat space, such a 
construction can only occur on a hypersurface ~vhich is not a global Cauchy surface, and thus more than 
the four arbitrary functions BKL display would be necessary to characterize the entire space-time. 

Theorem 4. Let (M, g) be a weakly asymptotically simple and empty space-time, and let S be a 
spacelike C 2 hypersurface. If every timelike geodesic orthogonal to S is incomplete to the future of S, 
with every such geodesic having the same proper time length in J+(S), then S is not a Cauchv surface for 
(M, g). 

/ '~  . . . .  k . . . . .  ..¢,~,~,~ ¢ , . , . .  [ i ~ t  , X  . t , , , _  r x +  , - -  r ~ + l o  ~ x  . . . k  . . . .  I . . . . .  : . . , , I . , ~ -  : -  ~ .~C ~ n n ¢  "[¢ S w e r e  a %.,,gtu~.,ily aulltlvi.,g~ i.1ol ~il~,l, ~ ) ,  Lllg; l l  o,- k... ~ ~ o ,  ivi),  W l l g ; l g ;  i . ~ i o a u l g ;  i• ttlLl~.g;ll 111 s p a c e  A Eo, o.]. RI. 

M = M UOM (see HE [61] p. 222 for notation). If to is the limit to the proper time length of the timelikc 
geodesic orthogonal to S, we can find a timelike curve greater than to by choosing the future endpoint of 
y sufficiently close to 5 +. But, this contradicts the corollary on p. 217 of HE [61] and the assumption 
that S is a Cauchy surface which implies y C D+(S). Q.E.D. 

We can extend this theorem with the following result which applies to open universes containing a 
black hole. 
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Theorem 5. Let .:M, g) be a space-time which contains a future incomplete timelike geodesic and a 
future complete timelike geodesic. Then there does not exist a C" spacelike hypersurface S such that 

(i) Every timelike geodesic orthogonal to S has the ~ a m e  proper time length in J÷(S); 
(ii) S is a Cauchy surface. 
Proof. This is an obvious modification of the proof of theorem 3. 

For the case of a past cosmological singularity, it is also true that even if the space-time is globally 
hyperbolic, it is possible that a hypersurface with a synchronous coordinate system for which the 
singularity is simultaneous might not be a Cauchy surface for the whole space-time. For example, in the 
open Friedmann universe we can pick a single point on the singularity and consider a congruence of 
timelike geodesics emerging from this point such that this congruence fills the future light cone of the 
point, as in fig. 4. 

The t = constant surfaces of this congruence are partial Cauchy surfaces and in this synchronous 
coordinate system the singularity occurs simultaneously at t = 0. However, the t = constant surfaces are 
not Cauchy surfaces for the entire space-time and the coordinate system allows us to analyse only the 
structure of a single point on the singularity boundary (C-boundary; see ref. [107] for more details). 

The above example shows that even when a Cauchy surface is present the BKL construction may 
allo-,, one to see only a minute part of the singularity structure. The following example [58] shows that if 
no Cauchy surface exists then the BKL construction could omit the most interesting portions of the 

t = constant  r /  ~ 
I \ 

Fig. 4. A synchronous coordinate system with a simultaneous 
past physical singularity in an open Friedman universe. The 
t = constant surfaces provide a coordinate system allowing us 
to analyse the structure of only a single point on the sin- 
gularit~ boundary (C-boundary). 

sinqularity 

identify 

_ Q 

Fig. 5. Penrose d~agram for a spherically symmetric gravita- 
tional collapse configuration which violates cosmic censorship. 
This diagram is adapted from Yodzis et al. [58]. The surface 
QP in both diagrams is identified. The synchronou~ coordinate 
system generated from S has a simultaneous physical sin- 
gularity to the future of S. The entire Cauchy development of 
S does not include the interesting portion of the singularity.. 
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singularity, i.e. the timelike portions. In fig. 5, the partial Cauchy surface S has a siraultaneous 
singdarity in D÷(S) and the BKL procedure tells us that this singularity has the same structure as the 
Sehwarzschild singularity. However, as is obvious from the figure the singularity structure of the entire 
space:time is radically different from Schwarzschild. Note that D(S) intersects no portion of the 
singularity; initial data on S cannot even hint at the existence of the timelike singularity structure. 

The above examples apply to open cosmological and black hole type singularities respectively. More 
generally, we can show that for all physical singularities the simultaneous physical singularity is in fact 
not a stable property of any hypersurface in any space-time with particle horizons. 

Theorem 6. Let S be a C 2 spacelike, boundaryless hypersurface in a space-time (M, g). Suppose S is a 
partial Cauchy surface with the, property that every timelike geodesic orthogonal to S terminates in a 
physical singularity in J-(S) at the same proper time t. Then, this property is not a stable property (in 
either the D-stable or past D-stable topology) of any initial data set, (h.b, X.,b, O(,)), such that for the set" 

m 

(1) There exists an open neighbourhood U in S with U compact such that at least one inextendible 
past-directed timelike geodesic a orthogonal to S remains in int D-(U). 

(2) There exists at least one inextendible past-directed timelike geodesic ~/orthogonal to S satisfying 
~ n J - ~ ) = ~ .  

Proof. We can change the initial data infinitesimally (in either the D-stable or past D-stable topology) 
so that the new initial data on S is the same as would be obtained by deforming S N U into the past, 
keeping c~ o~hogonal to the deformation and not changing S outside of U. This will change the time 
needed for a to reach the singularity, but by (2) it will not change the length of y. Thus in the new 
initial data, the singularity no longer occurs at the same proper time t (see fig. 6). Q.E.D. 

It should be emphasized that the above proof of instability of the simultaneity of the singularity 
depends crucially on the topology chosen in initial data space. The topology used in the proof of 
theorem 6 is not the usual topology of true-degrees-of-freedom space [76]. In particular the theorem 
explicitly assumes that a particular hypersurface is chosen upon which to impose initial data; we have 
not been able to prove that when the true degrees of freedom are varied, a synchronous coordinate 
system with a simultaneous physical singularity ceases to exist. What could happen is that when the true 
degrees of freedom are varied, such a coordinate system continues to exist but its t '= constant sl;ces 
move away globally from the t -  constant slices in the original coordinate system; see fig. 7. 

U 

/ J - ( U )  l J S" J ' ( U ) ~  
• / I  

Fig. 6. Figure for the proc)f of theorem 6. 

c o o r d i n a t e  s y s i e m  
changed 

, I 
; U I 

I 

I ." ": i 
' J ' ( U )  ".. I °.°" | 

.. .. ! 
i '. I ! ." - - . |  

s i n g u l a r i t y  chon~Iod 
Fig. 7. The BKL "general" metric cannot be stable. If the 
initial data is changed in the small region U, tnis changes 
the time to the singularity in a much larger region. Since 
the singularity is required to be simultaneous, this neces- 
sarily changes the metric in an initial region larger than U 
However, this necessary change does not occur when the 
BKL metric is perturbed. 
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This global movement must  occur if a synchronous coordinate system with a simultaneous singularity 
continues to exist under variation of the true degrees of freedom, since we expect that a small, localized 
(in U) variation would cause a change in the time to the singularity (as measured in the original 
coordinate system in the region outside J-(U)). If the singularity is to remain simultaneous, the 
coordinate system must therefore change globally; in particular, the relationship between the induced 
metric in the t = constant slices and the extrinsic curvature must change in a large region when the 
functions defining the true degrees of freedom are changed locally in U. 

This does not occur in the BKL "general" metric, which has the form [73] 

ds 2 = d t2 - (a21 ,1~  + b~m,m~ + c2n~n~)dx  " dx  a (1) 

with 

a = t m, b = t m, c = t r~ 

p, + p,  + p ,  = p~ + p~ + p~ = 1. tO~ 

Vectors l,., m,,, n,, together with the scalars pt, pz, p., are functions of the space coordinates only. Clearly 
a small, localized change in these vectors and scalars (subject to the constraints (2) and the field 
equations) will not cause a global change in the metric (1). A similar argument applies even if we only 
wish to claim validity for (1) inside a small neighbourhood S (see fig. 1), whose past Cauchy 
development includes part of the past singularity. We can then choose the small, localized region U to 
be a small region of S,. Tb.us the BKL metric does not  possess the necessary properties of a stable 

metric expressed in a synchronous coordinate system with a simultaneous physical singularity. 
We have not been able to prove or disprove the existence in general of a synchronous coordinate 

system with a simultaneous past singularity. However, we have been able to prove that (f such a 
coordinate system exists in a closed universe, then it is unique. 

~...]ot~ a co.rn..pact C" Proposition 1 Suppose (M,g) is globally hyperbolic, and suppose there ~', .... 
boundaryless spacelike hypersurface S such that the past-directed timeiike geodesics orthogonal to S 
form a synchrenous coordinate system every timelike geodesic generator of which terminates in a 
physical singularity at the same  proper time to. Then, this synchronous coordinate system is unique: 
there is no synchronous coordinate system in (M, g) covering all or part of (/V, g) which has compact 
spacelike sections and which terminates in a simultaneous past physical singularity. 

Proof. Suppose on the contrary that another such synchronous coordinate system existed. Let S' be a 
t '=  constant spacelike sectioa of this other coordinate system with S'C D-(S). (Primes will denote 
quanti*~es associated with the other synchronous coordinate system. Unprimed quantities are quantities 
associated with the synchronous coordinate system based on S.) Since the two coordinate systems do 
not c3incide, there exists a t = constant section St of the unprimed system such that I*(s~)nS' and 
i-(S,) NS' are non-empty; see fig. 8. By the coro!!a~ on page 217 of HE [61 !, (and by the compactness 
of S' and St which implies S' and $1 and Cauchy surfaces; see [110]) there exists a non-zero l,.~ngth 
timelike geodesic segment r of maximal length from St to O-(St) f"lS', and a non-zero length timelike 
geodesic segment 1"+ of maximal length from $1 to D+(St) f3S '. Since ~'_ and z. are of maximal lengtb, 
they must be orthogonal to both $1 and S' [104]. That is, both zl and z+ are segments of timelike 
geodesic generators of both synchronous coordinate, systems. But the time to the singularity from S' is 
t + 0ength of r+) as measured along the primed generator of which z+ is a part, and t - (length of rt) as 
measured along the primed generator of which r_ is a part. This contradicts the fact that the time is t' 

along both gener3tors. Q.E.D. 
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geodesic through center of star 

of length d(p,J'(p)) 

Fig. 8. Figure for the proof of proposition 1. 

poet singu~rity 

Fig. 9. Penrose diagram for a spherically symmetric space-time containing a 
"cusp" in the past singularity, in this space-time there is no synchronous 
coordinate system with simultaneous past singularity in any neighbourhood of 
the entire singularity. The Eardley foliation is only C t-. 

Since such a coordinate system is unique (if it exists) we might expect it to coincide with other 
unique, geometrically defined coordinate systems. For example, in the homogeneous 'Mixmaster' 
universe, the synchronous coordinate system with a simultaneous physical singularity does exist and the 
t = constant hypersurfaces coincide with the X~ = constant hypersurfaces. Now Goddard has shown 
[105] that if a ~'$ = constant foliation of space-time exists, then this foliation is unique. Marsden and 
Tipler have shown [100] that generic Wheeler universes-globally hyperbolic closed universes with 
all-encompassing past and future singularity; see ref. [104] for a precise definition-whose singularities 
are of the strong curvature type [101], probably possess a foliation of ~,~ = constant hypersurfaces. Since 
all physically realistic globally hyperbolic closed universes are expected to be of the Wheeler type, and 
since genetic singularities are expected to be of the strong curvature type (the Schwarzschild, 
Friedmann, and even the BKL "generic" singularity is of this type), it follows that all physically realistic 
globally hyperbolic closed universes can probably be foliated by X[: = constant Cauchy surfaces. 

However, the hypersurfaces of this foliation will not in general coincide with the t = constant 
hypersurfaces of a synchronous coordinate system with a simultaneous past singularity (assuming such a 
system exists). From the Landau-Komar-Raychaudhuri equation, it follows that a necessary condition 
for these two sets of hypersurfaces to coincide is R a b N a N  b + KabKab = constant over each hypersurface, 
where N a is the unit normal to the hypersurface. The condition holds in homogeneous universes, but it 
clearly would not hold in general. 

Although we have not been able to prove it rigorously, we believe that a synchronous coordinate 
system with a simultaneous past singularity will not exist in stable, inhomogeneous space-times with an 
all-encompassing past singularity no matter how close one goes to the singularity. Eardley [60] has 
attempted to construct such a system by taking level surfaces of the function d(p, J-(p)), for all points 
pEM. (For a precise definition of the function d see HE [61] p. 2i5.) If d(p,J-(p)), is finite for all 
p E M (i.e., if the past singularity is all-encompassing) then this construction will exist, will be unique, 
and will probably coincide with a synchronous coordinate system having a simultaneous past singularity, 
if such a system exists. However, the Eardley construction will in general give only C'- b~persurfaces, 
not the C 2 hypersurfaces which are needed to define a synchronous coordinate system. 

To see why in general the Eardley construction will not generate a synchronous coordinate system, 
see fig. 9. This figure is a Penrose diagram for a spherically symmetric but inhomogeneous space-time 
with an all-encompassing past singularity-one can regard it as a cosmology which has a homogeneous 
matter distribution except for a single, spherically symmetric star. The star causes a "cusp" in the past 
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singularity, the presence of the cusp being detected by the fact that the timelike geodesics of length 
d(p, J-(p)) for all events p in the centre of the star, lie not through the centre of the star, but a little to 
the side. Since the space-time is spherically symmetric, there will be infinitely many timelike geodesics of 
length d(p,J-(p)) from the singularity to the point p, one geodesic through each point of a sphere 
surrounding p. However, if the geodesics of length d(p,J-(p)), for all p sufficiently close to the 
singularity, are to define a synchronous coordinate system, there must be a unique geodesic from the 
singularity to the point p. Since approach to the singularity would in general increase inhomogeneities 
rather than smooth them out, we would expect such cusps to occur in generic singularities, causing the 
geodesics of length d(p,J-(p)) to be non-unique. (The absence of spherical symmetry would not 
necessarily invalidate this argument.) 

Misner [25] has given essentially the same argument for doubting " . . .  that synchronous coordinate 
systems can be chosen in such a way that they reach the singular points of the solution." Misner pointed 
out that a synchronous coordinate system would survive for only about the free-fall time through an 
inhomogeneity of space-time; for a synchronous coordinate system covering the sun this is about an 
hour, nat the 10 m years required if the coordinate system were capable of extension to the initial 
singularity. He went on to emphasize: "It does not help to choose the initial hypcrsufface of a 
synchronous coordinate system closer to the singularity, since the generic solution which resembles our 
Universe now will, if extrapolated back toward the singularity, be even more irregular near the 
singularity, so synchronous coordinates will then extend an even sm:,ller fraction of the required 
distance to the singularity :han now". Misner directed the above argument against the BKL pre-Penrose 
work, but it applies even more forcibly against the BKL post-Penrose work. 

it should be noted that the above arguments do not rule out the local existence of a synchr,'mous 
coordinate system with a simultaneous singularity- any geodesic y of length d(p, J~ (p)) from p into the 
singularity has a geodesic congruence in an infinitesimal neighborhood of y such that the congruence 
defines a synchronous coordinate system with a simultaneous physical singularity. In fact. it is the 
existence of such a local congruence that allowed Tipler [lO11 to obtain limits to the rate of grov, th ,~1 
curvature near generic singularities. The above arguments do, however, strongly indicate that such a 
synchronous coordinate system is unlikely to exist over a region of sufficient size to give any global 
information about the singularity. 

4.2. The general solution 

Resumd. The results described in subsection 4.1 above [89] led to a claim, "'that the general solution 
desci'bing one era is close to the solutions for the homogeneous models of types VIII and IN depending 
on whether the function p(x, y) vanishes or no t . . .  The type of model approximating the structurc of 
space can change from point to point". They claim their analysis reveals no essential structural 

ui,,c,s~:s ,,n~, I I(}l, so far ;, caq h,, s,:~t,-,i ,~nlv thai differences between compact and non-compact - . . . . . . . .  ~ "" , . . . . . . . . . . . . . . . . .  
there is no ducct connection with the finite or infinite nature of the space . . . " .  

Comments. BKL claim that roughly the general behaviour appears "Bianchi type VIII or IX-like" 
locally according as a certain arbitrary two-dimensional function p(x, y) is zero or non-zero respectively. 
However, since the type IX-like case has compact topology the arbitrary functions specifying it should 
be globally periodic. No such restriction on the behaviour of the arbitrary functions in these two distinct 
cases arises in their calculations [12]. It also appears ad hoc that the homogeneous Bianchi VIII and IN 
models are chosen as paradigms for the general case. Although they are indeed specified by four 
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arbitrary constants on a t = constant hypersurface so are the Bianchi VI, and VII, models [92]. BKL 
feel [i2,14] that only the VIII and IX models exhibit an oscillatory phase yet recent work using modern 
techniques in the qualitative theory of autonomous differential systems by Peresetskii [91] claims that in 
general VIb and VIIh metrics also exhibit an oscillatory phase in the presence of matter motion relative 
to the synchronous reference system. Thus there appear no grounds for #eking either VIII or XI 
models as genetic amongst the homogeneous models. 

Furthermore, the following theorem shows that a stable solution which is parameterized by four 
arbitrary functions of three variables cannot exist close to any dosed spatially homogeneous universe. 
In particular, contrary to the above-mentioned claims of BKL, such a stable solution cannot admit a 
spatially homogeneous closed universe as a special case, 

Theorem 7. Suppose (hab, ,~ab) is a point in the true-degrees-of-freedom space c¢ of the empty-space 
Einstein equations. If (hab, Xab) is given on a compact spaeelike hypersurface S and has Killing vectors, 
then it is not possible to parameterize any neighborhood of (h~t,, X~b) in ~ with four functions of three 
variables. That is, there does not exist a diffeomorphism from a neighborhood of (h~,, X,.) in ~ on to  a 
neighborhood of the W ~ (s -> 3) Hilbert space ~" of four functions of three variables. Furthermore, this 
result holds locally on S; that is, it also holds for a solution (h~b, X~b) given just on a neighborhood U of 
S, provided (hab, Xab) given on U can be extended to a solution on the whole of S. 

Proof. fI'he above theorem, its proof, and its significance were worked out jointly by the authors and 
Professor Jerrold E. Marsden. The authors would like to thank Professor Marsden for his help.) Fischer, 
Marsden, and Moncrief have shown [77] that if a solution (h~,, X~b) on a compact S to the empty-space 
Einstein equations has Killing vectors, then the solution space c~ is not differentiable (in the Freehet 
sense) at the point (h~b, X.-,). This rules out the possibility of a diffeomorphism from ~ Io ~e in a 
neighborhood of (h,b,X~,). Furthermore, the Fischer-Marsden-Moncrief result holds locally on S. 
Q.E.D. 

As discussed in subsection 2.4 on linearization stability, what happens near solutions with Killing 
vectors is that the four functions parameterize non-solutions as well as solutions. At (ha,, X,,,), the 
non-solutions are tangent to the spurious perturbations of the iinearized equations. Since the non- 
spurious perturbations must satisfy a constraint which is not imposed on the spurious perturbat:ons, it 
follows that these spurious perturbations are open dense in the space of solutions to the linearized 
equations. Thus the set of tangent directions of the non-solutions parameterized by the four functions is 
open dense at (hab, Xab). Thus in this sense the true solutions near (h,,,/~'ab) are a set of "measure zero" 
in the set of all "solutionsi' parameterized by the four functions. More precisely, in the language of 
subsection 2.1 it is generic for a metric such as the BKL metric (1) not to satisfy the Einstein equations 
near (hab, Xab). This shows that the BKL power series almost everywhere does not converge to a true 
solution near (hab, X~b). 

AS stated in theorem 6, these results hold even if (hat,, Xat,) is given only on a neighborhood U of S, 
provided the solution on a neighborhood can be extended to a solution of the whole of S. This assertion 
actually does not have too much content since the initial value equations are elliptic and hence would 
probably give a unique extension from U to the whole of S. However, it does point out ccrtain defects 
in a method which attempts to piece together a global solution on S from solutions in small 
neighborhoods: if the method patches together approximately homogeneous neighborhoods, then the 
conclusions of theorem 6 are avoided only if the errors made in the patching procedure strongly 
influence the evolution of the initial data (see also subsections 4.3 and 5.3 oa this point). 
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The requirement that the map from ~ to ~ be a diffeomorphism and that h' be a W' space with 
s >- 3 is a necessary requirement if one assumes that the metric tensor varies differentiably as one varies 
the four functions, and this differentiability is necessary if one wants to do analysis on the sl:ace of 
solutions. It can be shown, however, that a local homeomorphism from ~ to ~ always exists (M.W. 
Hirsch, private communication). 

The question of whether theorem 6 holds for non-compact S is unsolved in general. It is known [77 i 
that if S is asymptotically flat, then the theorem is false; there does exist a local diffeemorphism from ~r 
to Yt' near a solution with Killing vectors. Whether or not the structure of ~ near a non-compact 
homogeneous solution resembles the compact case is not known. 

4.3. Mathematical methodology 

Resumd. BKL claim to be using a local approximation and construction technique so that [891. "'the 
general s'~lution obtained is valid only in a certain limited interval of s c (time). We can therefore alwav~ 
separate in space a region S, bounded in z at the initial instant sc~, and a region S, at the instant ¢_,. such 
that the initial perturbations from the regions outside S, do not have time to influence the character of 
the solution in S~ at the instant .~., (see fig. 1). Thus, if we use a Fourier expansion in the region S~. then 
it can be assumed that the solution obtained in this manner will actually be general for all instants of 
time in the interval ¢ t -  ¢2 and in a certain bounded region of z. the dimensions of which are determined 
by those ot $2 at the final instant ¢., of the era". By further considerations of their local approximations 
in different asymptotic regions of a Kasner period they go further and [931 "conclude that the 
subsequent behaviour of the solution in the general case (after going outside ti~e region of applicability t~f 
the approximation constructed by us) will be qualitatively the same as in the particular cz~sc of tlac 
metric (of type IX)". Concerning the validity of the series expansions. Belinskii claims [151. "'theft in 
physically significant situations convergence or the asymptotic property of the series is always guaran- 
teed to that extent which is required. I think that the convergence requirement could :~t w~r~t onl\ 
impose some weak restrictions, such as inequalities, on the arbitrary parameters which appear in on: 
solution". 

Comments..On some occasions BKL claim to be deriving a local description of the singularity 
structure. In subsection 3.1 above we disp!ayed how thc knowledge of four function data on small 
neighborhoods is insufficient to derive the structure of the entire singularity unless the solutions are 
either essentially generic, or stable in a large, finite neighborhood of solution space. Since BKL have 
obtai-,ed only stable solutions-i.e, solutions whose basic structure does not change when the data is 
perturbed infinitesimally-their techniques cannot give a complete description of the s,t~gularity 
structure; see subsection 3.1 and fig. 1. 

in the consiruction of the A...:...,.,..,, r,,~h~,,;,,,,~ ,,,,,r long tim~ intervals claimed by BKL. the number U ~ l . , l l l a t ~ l  J U ~ , , l i i a t  ~r t , v u l  ~ ,  * , ~ .  . . . . . . . . . . .  

of required coordinate transformations becomcs infinite as the singularity is approached. (Incrc~singl~ 
more frequent transformations to smaller regions being required to maintain the approximation.! In 
essence this procedure is the same as approximating the sphere by a sequence of planes and concluding 
that the earth is fiat. What is happening in both cases is that each time a coordinate transformation is 
made, an approximation is also made and this approximation introduces de facto new initial data into 
the solution. These new initial data change the time evolution of the solution and invalidate the function 

counting argument. 
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4.4. Future singularities 

Resume. Regarding the existence of singu ~rities in the future for the general case it is claimed that 
[88], "a  singularity in the ~uture can have :~h~sical meaning only if it is reachable for arbitrary initial 
~nditions assigned at some preceding mc a~. ,t ,,f time. Clearly there is no reason why the distribution 
of matter and field that was reached at SO:he moment in the process of e¢olutiot~ of the universe should 
have corresponded to the precise conditions required for the appearance of so:he particular solution of 
the Einstein equations',, it is claimed that [94] "the existence of a general solution possessing a 
singularity does not therefore preclude the existence of other general solutions that do not have a 
singularity. For example, there is no reason to doubt the existence of a general solution, without 
singularities, that describes a stable isolated body with not too large a mass". These views were also 
reiterated by Belinskii recently [15]. 

Comment. The following theorem of Hawking shows that for certain sets of initial data the extstence 
of a future cosmological singularity in a closed universe is a stable property of the initial data. The work 
of subsection 2.2 indicates (but does not rigorously prove) that there is an equivalence between the BKL 
and Penrose notions of singularity. 

Theorem (HE [61] p. 272). Space-time is not future timelike geodesically complete if 
(i) Rab V ~ V b >-- 0 for every non-spacelike vector V ~. 

(ii) There exists a compact spacelike three-surface S (without edge). 
(iii) The unit normals to S are everywhere converging on S. 
This theorem established that singularities occur in the future for a set of Cauchy data which is not of 

measure zero, for condition (iii) is an open condition. One can vary the normals slightly and they woula 
still be everywhere expanding. 

5. Further considerations 

In the previous sections 3 and 4 we have displayed a number of comments concerning limitations 
inherent to the BKI  methodology as applied, to the generic behaviour of solutions in cosmology and 

1 ~ J ' • ° gravitational m,tapse near their respective singularities. We shall now turn to consider some additional, 
physical que,,tions that must be faced ~.~l any description of the generic cosmological solution to the 
Einstein equations. 

5.1. The definition of inhomogeneity 

The property of spatial (in)homogeneity is not an unambiguous notion. Early work [27] and virtually 
all recent work on physical or 'applied' cosmology has concentrated upon the Newtonian concept of 
'differenti:d homogeneity' [27, 31], defined by the absence of spatial gradients in all scalar, vector and 
tensor components of physical quantities. MacCaUum [28] has argued very convincingly that such a 
definition is both too restrictive and intuitively unreasonable when compared with one obtained by 
using invariance properties under a 3-parameter group of motions. Such an explicitly coordinate 
independent criterion generates the Bianchi classification of homogeneous spaces [26,29, 30]. The 
evaluation of inhomogeneities solely by examining the spatial variation in metric and other physical 
quantities is clearly not in,/ariant. For, in this approach the 'homogeneity' is determined by an 
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observer inferring equal values of a physical variable at different places simultaneously. However, 
special relativity shows such a simultaneity to be dependent upon the observer's relative motioa. Thus 
the perceived presence and nature of the spatial gradient in a physically varying quantity depends upon 
the velocity four vector of the flow lines of the matter. In the cosmological context it is found that man~ 
Bianchi (group) homogeneous universes contain spatial gradients in physically observable quantities 
[31,96]. Often BKL seem to use these two notions of homogeneity interchangeably and without 
distinction making it difficult to detect purely coordinate induced irregularities. 

5.2. Types of inhomogeneity 

The influence of inhomogeneous structure and motion in general relativity is expected to be strong in 
the light of the remarkable self-interacting non-linearity and hyperbolic evolution structure of the 
gravitational field equations. However, BKL restrict their discussion to that which we label "passive 
inhomogeneity', wherein the irregularity allowed is of an entirely algebraic nature. By this we mean that 
the spatial variation appears decoupled from the temporal evolution and is manifested principally via 
integration constants. Having appeared in the constraint equations to determine an initial configuration 
it plays no dynamic r61e in the evolution equations. Thereby, the irregularities are 'homogeneously 
propagated'. Such a notion can be made precise using a Hamiltonian representation [e.g. 32]. Roughly, 
this means that the spatial derivatives do not occur in the evolution equations for the metric(l): see 
subsection 4.1. We feel that these restrictions are unnatural since the space and time dimensions appear 
on an equal footing within the hyperbolic equations of the theory. Consideration only of such passix, e 
inhomogeneities, although necessary for tractability, also sufficiently dilutes the notion of in- 
homogeneity so that description of many interesting and dynamically important features could be 
eliminated by hypothesis. The absence of such features as black hole formation, non-cosmological 
trapped surfaces [106], strong gravitational wave interaction together with their related phenomena, 
seems intuitively unappealing and can probably be associated with the non-general nat~_,re of their 
'general' solutions revealed in sections 3 and 4. We have seen above how local techniques may 
inevitably reveal a homogeneous structure and we shall also see below how this passive inhomogeneity 
might lead to the erroneous physical assumption of an approximate superposition principle. 

Our experiences with other non-linear field theories have taught us to expect new features peculiar to 
inhomogeneous situations [34,35]. This leads us to pose the following problem: Do all stable in- 
homogeneous cosmological space-times have homogeneous specializations, and are all spatially homo- 
geneous universes iinearization stable? An exposition of this exceedingly subtle mathematical notion is 
given in subsection 2.4 where we explain why the homogeneous (Bianchi) models contain "spurious 
perturbations' in their perturbation spectra and thus why further checks are necessary to ensure that 
perturbations remain in the vicinity of a space-time. 

5.3. Curvature dominated singularities and coordinate coverings 

In this subsection we explain with exanipies what type of approximation . . . . . .  ~' ;,,o,m,~A ~tUL~Utlt~ t l t ~  j ~ o t t t ~  

physically and also give some examples of the vacuous natme of conclusions drawn from some local 
coordinate dependent methods. Firstly, we confine attention to the final paper of the "general solution" 
programme [13], in which it is argued, for example, that t!~e generic cosmology displays interchange of 
Kasner regimes in essentially identical fashion to the Taub-Bianchi II model. The local technique of 
analysis confines attention to some small coordinate patch from which it is deduced that there exist a 
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succession of periods, ,A~r, during which the spatial curvature anisotropy is dynamically negligible, 
interspersed by briefer periods during which these curvature anisotropy effects change the expansion 
rates under a Kasner transformation. Thus.. it is claimed that the mere spatial variation of the group 
structure constant determining the curvatute anisotropy in the local region is suffcient to describe all 
~ global consequences of this behaviour for the dynamics. This seems dubious and is an artefact of 
considering only the 'passive inho'aaogeneity' described above in subsection 5.2. If the space-time is 
generic one expects the spatial cur,rature anisotropy to vary strongly from region to region. In picking 
o n e  small coordinate covered region to establish the existence of a series of intervals in which the 
cur~ature is unimportant BKL neglect to consider that the interval appropriate for one such region will 
in general differ from thalt during which others are free of curvature anisotropy effects. We expect the 
collective gravitational Coulomb effect of other regions to severely perturb the original neighborhood 
being examined because of this lack of synchronization. There is no evidence that a scenario in which 
different regions behave as indepenaent Mixmaster-like models is stable. Indeed it has been shown by 
Barrow and Carr [36] that unl,.ss inhomogeneities are bound there are complex effects arising through 
the non-linear coupling of the density fluctuations with the background anisotropy which dominate the 
local dynamics. A more f amiiliar example of the problem arises in the use of so called 'self-modelling' 
solutions in describing the formation of spherically symmetric protogalaxies e1~bedded in a background 
Friedmann universe [37-40]. These analyses are in the spirit of the BKL method. By using them we gain 
information only of the evolution of one protogalactic clump relative to the background into the 
non-linear regime; but not of the mutual interaction between differe:at regions. However, N-body 
simulations [41,42] reveal that these latter effects are completely dominant in the non-linear regime. 
Another familiar example from non-linear physics is the enhanced efficiency of shockwave formation 
obtained via the mutual interaction of members of a wave ensemble relative to shock formation solely 
~4a the self-interaction of one wave. 

We have shown in sections 3 and 4 how a local coordinate dependent technique fails to give a 
complete description of the global and local structure of a space-time in general. Here we point out 
some further amtfiguities of the technique which make one suspect the method to be very 
hazardous. BKL's local approach is equivalent to producing a coordinate covering of the generic metric 
structure of space-time. They have claimed for example [12] that small deviations from homogeneous 
Bianchi type VIII and IX models constitute such a covering (see section 4). Although we have shown in 
sections 3 and 4 that the arguments leading to this conclusion arc: incorrect we also point out that even if 
such a statement could be established it would give us essentially no real information about the 
space-time structure at all. One can cover a space-time with a coordinate patching derived from any 
other space-time so long as these coordinate patches are sufficiently small. In particular there always 
exists a covering in which the 'general' solution appears approximately homogeneous on small enough 
coordinate neighborhoods; and indeed such a local approach applied to the surface of the earth once 
com~inced us that the earth was flat. The following examples specificaliy illustrate the ambiguities of this 
procedure: 

(i) Tolman-Bondi metrics [43-44]. Locally these look like dust-filled Friedmann models and a 
covering of the space-time by Friedmann patches can be generated [37]. However, the global and 
singularity structures of the two are markedly different. 

(ii) Szekeres metrics. A local covering may be generated by Kantowski-Sachs [46] like patches, yet 
again the global structures are quite distinct. 

(iii) Einstein-Rosen-Gowdy metrics [47, 48]. Liang [49] has approximately analysed the behaviour ol 
these space-times when matter is present. Specifically, in the radiation filled case he displays two 
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coverings of the space-time by Friedmann-like and Kasner-like patchings. They lead to quite dirlcrcn~ 
representations and dynamical descriptions, both apparently c~,nsistent wi,h the approximation tech- 
nique, 

(iv) Kompanyeets metric [66]. The Kompanyeets metric was covered by a certain local covering to 
claim it was general in the post-Penrose work of BKL, However in 1965 Khalatnikov [4] produced 
another local covering based on local series expansions to claim that this metric did not represent the 
general solution. Thus one covering gave a metric containing two arbitrary, functions and another four. 

5.4. The vacuum assumption 

It has long been stressed by BKL that in the vicinit" of th~ cosmological singularity one may usual!~ 
neglect the influence of the stress-energy terms with respect to the geometric terms in the Einstein 
equations [16]. This important idea motivated the later work of Eardley. Sachs and Liang [49-50} ~,,ho 
developed the more rigorous notion of a velocity-dominated singularity. Although BKL's assumption of 
Weyl curvature domination is probably quite satisfactory for the high density regime near the 
singularity in the p = 0 or p = p[3 states required in the Hagedorn statistical bootqrap [511 theory' or 
asymptoticaUy free, coloured SU(3) invariant gauge theory (QCD) [521" there is an important and 
physically relevant case in which it is not. Shouid the asymptotic behaviour of matter be that of the 
'stiff' Zeldovich form, p = p, describing baryons interacting via a spin-l vector meson field [5.~5t~]. the~ 
the structure qualitatively changes. BKL have pointed out that the generic solution can nov, be 
dominated by the matter-field distribution so the stress tensor strongly influences the singularit~ 
structure [94]. In particular, the oscillatory Mixmaster behaviour evident in the homogeneous ~acuum 
Bianchi Mill and IX models near the singularity need not persist in a stiff matter era. The influence of 
this matter can be stronger than that of the spatial curvature anisotropy and perturbations ,,iron,." 
enough to permute the expansion rates can be suppressed. In this case the expansion s,:alc,, ,.'an ,~tl f.dl 
off monotonically on approach to the singularity. Such a situation is quite compelling on m~v, ¢,ti~.'~ 
grounds and has been described in detail by Barrow i56]. 

It is also interesting to consider the global constraints placed upon co,,moiogical m,,dcl, i,~ the' 
vacuum assumption. Do, for instance, all generic vacuum solutions have matter-filled analogues, and 
vice-versa? And, in what way does the presence of matter affect the global structure of cosrnc, logical 
space-times? Indeed this first feature of 'evacuation stability" occurs for the most general matter-fi~Icd 
cosmological space-times so far known, the Szekeres metrics [47-571. These inhomogeneous dust-fi~tcd 
universes have no cosmological vacuum specialization, reducing to the Schwarzschild space-time ~h¢'~ 
the matter content is removed. The example given in section 2 regarding the instability of the gk+~H~S 
hyperbolic character of the Schwarzschild metric on addition of electric charge is also a good example o~ 
t~.e sensitive balat~ce between the global structure and the matter content of a space-time. \Vc .d,,o no~< 
that there are no non-flat singularity-free asymptotically flat ,.~olutions to the vacu.m ITit~.,tci, c,.tu:~,,~. 
[108], though there are such solutions if matter is present. 

5.5. Entropy and generality 

Here we draw attention to the argument of Barrow and Mat:ner [5~.5~t cmpha,,i,-i~g ~h,~ ¢h< 
observation t f  the specific radiation entropy of the universe from the micro~vt,~c background radiation. 
in conjunctio;I with the second law of thermodynamics..,,trongly indicates that "he universe ha.', ~lc,,cr 
been dominat ~.d by any form of irregularity energy near the past singularity. The pre:c~:t emrop~ k'~cl 
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places a fundamental upper limit upon the amount of dissipation that can have occurred in the past and 
hen~ On the allowed deviations from the isotropic Friedmann metric. The presence of many highly 

~ssipative mechanisms near the singularity and the rapid divergence of the anisotropy energy, 
R , with scale factor R, on approach to the singularity indicate that the earlier irregularities are 

d~ssipated the more entropy is produced. This argument encompasses hath classical and quantum 
arxl argues strongly against our present universe being the remr ant of a generic set of initial 

conditions. In particular, 'Mixmaster-like' oscillations and the accompanying level of anisotropy energy 
would be highly efficient generators of entropy near the singularity whenever the expansion is not 
dominated by the isotropic matter content. This is one indication of the importance of non-gravitational 
considerations in deciding the manner in which our universe is geometrodynamically non-generic*. 

We may also make a speculative connection between these ideas and those of Penrose regarding the 
entropy of the gravitational field. Penrose has conjectured [97] that the Weyl curvature tensor measures 
the entropy of the space-time geometry in some sense. This would in fact explain the quiescent initial 
singularity required by the low radiation entropy of the universe since the initial big-bang singularity 
would correspond to a minimum entropy state of the free gravitational field with zero Weyl component 
of the curvature and thus to dynamics dominated by the Ricci tensor (low gravitational entropy state). 
This is sufficient to guarantee that the initial state be Friedmann-like and therefore not highly 
dissipative. If this conjecture were true, it would of course also indicate the singularity in the future of a 
closed universe to be of an essentially different dynamical character to that in the past since it must 
correspond to a state of high 'gravitational entropy' with the now dominant Weyl tensor terms in the 
curvature ensuring h~ghly anisotropic and inhomogeneous dynamics in the final collapse. These 
considerations, if correct, ihus relegate considerations of the generic dynamics of the Einstein equations 
to the haure evolution of the universe and will be discussed in more detail by the authors elsewhere 
lgsl. 

6. Conclusions 

In the foregoing pages we have rigorously defined certain, previously vague, pieces of methodology 
essential to an analysis of the general solution to the Einstein equations near a cosmological singularity. 
We have used this machinery specifically to analyse in detail the methods and conclusions of the long 
programme of work by Belinskii, Lifschitz and Khalatnikov concerning the structure of the general 
solution to the Einstein equations near a cosmological singularity. Our principal conclusions may be 
summarized as follows: 

(i) We give a detailed comparative discussion of various local and global notions of stability and 
generality. We show that the BKL approach examines only stable rather than generic solutions to the 
cosmological problem. 

(ii) A rigorous formulation of the function counting criterion to establish the generality of space- 
times in the metaspace of ,1.~" •, ~,.,,,..,,~,_*~" "'~'";"~,,,,~,,..., ;~,., g~,,,~n.... . . . .  In particular, the global properties required of a 
space-time in order to establish the generality of vacuum solutions by four arbitrary three-dimensional 
(unctions are given. The neglect of such considerations by BKL has led them to construct four-function 

"The detai~s of the arguments connecting the radiation entropy.per baryon and the anisotropy energy must be modilied if very close to the Planck 
tnnc. ba~on non-conmrving interactions occur. Sucn interactions, for example, are anticipated in the latest grand unified gauge theory based on the 
SU~5~ gauge group [95, 122 1231. 
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'solutions' which cannot be general. A discussion of generality in space-times width timelike singularmc, 
is given; no function counting criteria presently exists to establish generality in this case. 

(iii) A discussion of the linearization stability of the Einstein equations is given and it is noted, in 
particular, that there exist 'spurious' perturbations of all the homogeneous Bianchi .type universes and 
additional calculations must be performed before reliable information ,can be extracted from pertur- 
bation studies of Bianchi type VIII and IX metrics. 

(iv) The probable equivalence between the BKL notion of "singuladty" involving infinities in the 
curvature invariants and that of Penrose specifying geodesic incompleteness is indicated for the 
cosmological problem. The ideas of fictitious and physical singularities are rigorously defined. 

(v) The early 'pre-singularity theorem' work of BKL regarding the construction of general fictitious 
singularities was examined and theorems proved showing the results claimed by BKL usine local -~ ~ 
approximations to be incorrect. Specifically, contrary to their claims, global analysis reveals that it is 
impossible for every geodesic of a synchronous coordinate system to terminate at a fictiT;ous singularit.x 
in a space-time with a compact hypersurface. In a space-time without a compact hypersurface it is 
impossible for a t = constant hypersurface of a synchronous coordinate system x~'ith a sir~aultane~us 
fictitious singularity to be a global Cauchy surface. These results demonstrate how the locai series 
techniques led to the construction of artefacts which were, in the compact case n~,t: exe~ 
space-times. 

(vi) A discussion was given displaying the limitations and pitfalls of using local techniques to build up 
a large-scale picture of the singularity structure. Examples are given to show how this approach ma~ 
enable us only to examine the structure of a single point on the singularity boundarx' e~en ~kcn ~hc 
space-time is globally hyperbolic. 

(vii) In later work BKL claimed to have established the "general" (in the function countm,,' ,c~,cl 
behaviour of the Einstein equations to be of "Mixmaster" character having a simultancou,, ~h~c.~l 
singularity. We show that in many cases apparently encompassed by their artalvsis ,,uch a ck~im ~, 
impossible since a simultaneous physical singularity could only occur in the Cauch~ dcxelopmc~ ,q :~ 
hypersurface which is not a Cauchy surfz'ce for the entire space-time and thu.,, m , , r c  that~ l,,ur :~rb~r.,.r~ 
three-dimensional functions would be necessary to specify it in general. We also argue ibut do m~t 
prove) that the simultaneity of a physical singularity in asyncbronous coordinate sx, stem is not a stable 
property of space-time. In particular, we show that the form of their "'general solution" ~ith a 
simultaneous physical singularity is inconsistent with the supposed stability of the simuitancitx. \Ve a~,,~ 
show that a stable closed universe cannot be parameterized by four functions of three ~ariablc,, near ~ 
homogeneous space-time. 

(viii) A number of physical objections are raised to local anal,¢ses and to the conclusion dra~ ~ 1r,~m 
them, namely, that the general cosmological behaviour appears to be of Bianchi type VIII or IX-~ikc 
character from place to place. The limitations and implications of the vacuum assumpti,~ ~c.~.~ ~:I:. ~ 
singularity are considered together with possible global constraints placed upon the space-time ,,truc~u,,c 
due to the presence of matter. 

(ix) It is argued that observational evidence indicates the initial state of the utUxcr.,e ~,~ ha\ c b~'~'.~ ,,: 
a dynamically non-generic character and some conjectures made wbich might explain thi~, 

(x) Various recent claims by BKL regarding future cosmological singularities ,~.ad the po,,,,ibiti~,, ,,~ 
singularity-tree general solutions to the Einstein equations are shown to be unfounded ~hc~ c\ami~cd 
globally. 
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These investigations lead us to suspect that the successful programme of investigation pursued by 
neral structure of homogeneous cosmological models employing local, coor- 
mnnot be successfully and naturally extended to build up a reliable picture of 
space-times. Local analyses are confronted with many difficulties when 

combined with the use of approximation methods and a global approach may be mandatory if correct 
~ unam.biguous information about the generic, singular structure of space-time is to be obtained. 
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