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ABSTRACT

RECTILINEAR CROSSING NUMBERS OF COMPLETE GRAPHS WITH SPECIFIC NESTED

SEQUENCE OF CONVEX HULLS

By

Lorena Mercedes López

Master of Science in Mathematics

Let P be a set of n points in the plane. Draw all segments joining pairs of points in P . We are interested
in the number of segment-intersections, or crossings, in such a drawing. For a fixed n, the problem of
minimizing the number of crossings over all sets of n points in the plane is a famous unsolved problem in
Combinatorial Geometry. Paul Turán posed the problem for complete bipartite graph because as a prisoner
in a concentration camp, Turán’s job was to transport bricks using a railway system - the rail crossings made
it extremely ineffective because the bricks would often fall. We consider a variation of Turán’s problem.
We classify all sets of n points into classes according to the sizes of their convex layers and consider the
minimum number of crossings over sets within the same class. We bound the minimum number of crossings
for every class with two convex layers finding its exact value when the inner layer has one or two points and
a full classification of the optimal sets. We also give exact values of the minimum number of crossings for all
classes with up to 8 points, and bounds for classes with 9 points.
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Chapter 1

Introduction

In this thesis we explore the rectilinear crossing number of a drawing. This is a variation of an open problem
in combinatorics, which originated a long time ago, and although no precise date is given, we know mathe-
maticians have worked on the crossing number of graphs for a long time. In the original problem, given a set
of points, or vertices, in the plane, you are interested in finding the amount of times the edges, joining each
pair of points, intersect each other. There is no restriction as to the amount of vertices, their arrangement nor
the types of edges. There are many variations of this problem; some explore the crossing number of a graph
on a box when only certain vertices are joined, graphs whose vertices are along the crest of a book with edges
on the pages of that book, and others investigate the crossings of graphs on a plane with different restrictions.
It is invigorating to attempt to understand the different types of graphs and drawings of a graph because they
open another world of mathematics. In addition to the beauty and wonder, this has several applications –
some of the more common applications are found in VLSI.

In this thesis, we focus on specific drawings in which every pair of vertices is joined by an edge represented by
a straight line segment. We also only explore certain arrangements the vertices - we ask that the vertices are
in convex layers, and we bound the crossing number for any amount of points for the specified convex layers.
Ideal results would be to find the exact crossing number for every fixed sequence of convex layers; however,
it is difficult to achieve this. Consequently, we find the exact crossing number for all possible arrangements
of up to 8 points, and provide general bounds for arrangements with two convex layers.

The focus of Chapter 2 is to provide a fundamental knowledge of the concepts used throughout the rest of the
thesis. Definitions, examples, and results are provided with regards to what was known about some crossing
numbers. The topological crossing and rectilinear crossing numbers of the complete graph and complete
bipartite graph are defined. We also briefly mention known conjectures, these crossing numbers, and its
applications.

In Chapter 3, we focus on a few more topics before explaining the path this thesis will take. We illustrate the
ideas we will use for achieving our results, and how the sets of points will be considered all throughout.

Furthermore, once the ideas are established in the previous chapter, Chapter 4 will illustrate the results. The
focus of the thesis is rectilinear crossing number (RCN) of the complete graph; consequently, results for this
will be illustrated. The first section is trivial, but necessary for the proofs that will follow. The second and
third sections specify and prove the general lower and upper bound on the RCN of classes with two layers,
respectively. The following section describes an implication of the theorems from the previous two sections,
which provides the exact crossing number for any arrangement with 1 point in the second layer.

This chapter is broken down into sections, and each is directed to present the exact RCN for some classes.
In this chapter, we focus on detailing the exact crossing number for arrangement with at most 8 points, and
bounds for classes with 9 points. Tables illustrate the exact values, constructions are provided, and some
proofs are included to bound the remaining cases.

1



Chapter 2

Crossing Numbers

2.1 Graphs

A graph G is a nonempty ordered pair (V (G), E(G)) where V (G) is a set of vertices and E(G) is a set of
edges in which each edge is an unordered pair of vertices. The following

V (G) = {1, 2, 3, 4, 5, 6} and E(G) = {{1, 4}, {1, 6}, {2, 5}, {3, 5}, {4, 6}, {5, 6}, {1, 1}}

are examples of a set of vertices and a set of edges, respectively. This is an example of a graph G =
(V (G), E(G)) with 6 vertices and 7 edges. [5]

A simple graph is a graph having no loops – edges connecting a vertex to itself – or multiple edges (an
edge that appears multiple times in the same graph). Graphs are usually represented by drawings in the
plane: the vertices are points and edges are lines or curves joining the vertices. (A more precise definition of
drawings is given below.) In Figure 2.1 (left), G is not a simple graph because it has the loop {1,1}, however,
H = (V (H), E(H)) where

V (H) = {A,B,C,D,E} and E(H) = {{A,C}, {A,E}, {B,D}, {B,E}, {C,D}, {D,E}}

is a simple graph.

The complete graph on n vertices Kn is a graph in which each pair of distinct vertices is joined by an edge.
A graph where the set of vertices is partitioned into two classes and only edges from one class to the other
are included is known as a bipartite graph.

A complete bipartite graph is a graph in which the set of vertices is partitioned into two classes and all edges
from one class to the other are included – edges between the points of one of the sets of vertices are not part
of the graph. If the classes have sizes n and m, then the complete bipartite graph is called Kn,m.

2.2 Drawings of a graph

Graphs are usually visualized by drawings in the plane. More precisely, a drawing D of a graph G, in the
plane, is a representation of G such that the vertices are represented by distinct points and the edges are
represented by Jordan arcs that connect the corresponding two vertices. Figure 2.1 shows a drawing of the
graphs G and H above.

Figure 2.1: A drawing D of G (left). A drawing D of H (right).

Graphs could be used to describe many situations – telephones could be depicted as points, and telephone lines
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as lines joining telephones together; or points could be representations of mathematicians with edges joining
pairs of mathematicians that have published together. Drawings ease the understanding of the structure of
a graph. Yet, any graph has infinitely many drawings and some drawings are more helpful than others in a
given situation. Topological graph theory studies the drawings of a fixed graphG. We ask that in any drawing
the following conditions hold. (a) Two edges intersect each other at most a finite number of times, (b) no
three edges have a common point other than a vertex, (c) any edge intersects exactly two vertices, namely the
endpoints it connects, and (d) two edges can not have partial overlap. See Figure 2.2.

infinitely many concurrent one edge whose partially overlapping
intersections edges interior contains a vertex edges

Figure 2.2: Forbidden configurations for a drawing.

A drawing of a graph in which only straight line segments are used is called a rectilinear drawing. (See
Figure 2.3.) Figure 2.4 shows a drawing of a complete rectilinear bipartite graph K3,4.

Figure 2.3: Complete rectilinear (and topological) drawing of K5 (left). Complete topological (non rectilin-
ear) drawing of K5 (right).

Figure 2.4: A complete rectilinear bipartite graph, K3,4.

3



2.3 Crossing number of a graph

Any two edges in a graph satisfy at least one of the following (See Figure 2.5): (a) they are incident (they
share a vertex), (b) they are disjoint (they have nothing in common), (c) they are tangent (they touch at exactly
one point), or (d) they cross (they intersect at a point) and then we say they form a crossing.

(a) incident edges (b) disjoint edges (c) tangent edges (d) intersect at a point

Figure 2.5: Drawings of a graph and crossings.

Among all drawings of a graphG, we are interested in the ones with the least number of crossings. We define
the crossing number of a graph G as

cr(G) = min{cr(D) : D is a drawing of G}.

We abuse notation (commonly done) and use cr(D) to denote the crossings in a drawing, and use cr(G) to
denote the minimum number of crossings over all drawings of a graph G.

Figure 2.3 shows drawings of K5. Kuratowski’s Theorem implies that any drawing of K5 has at least one
crossing, namely cr(K5) ≥ 1. Figure 2.6c shows a drawing with one crossing so cr(K5) ≤ cr(D3) = 1
therefore cr(K5) = 1. Figure 2.7 shows some drawings of graphs with 5 points and the number of crossings
for each drawing. Note that in Figure 2.7, the second drawing has no crossings, and so we know that the
minimum number of crossings for three points is 0 thus cr(G) = 0.

(a) cr(D1) = 1 (b) cr(D2) = 3 (c) cr(D3) = 1

Figure 2.6: Number of crossings Cr(Di) for different drawings Di of graphs with 5 points.

In the first two drawings of Figure 2.7, all edges are drawn as straight line segments. In 1963, Hill and Harary
defined the rectilinear crossing number (RCN) of a graph G, denoted cr(G) as the minimum number of
crossings among all drawings of a graph G where every edge is a straight line segment [7].

We concentrate on cr(Kn), cr(Kn), cr(Kn,m), cr(Kn,m).

2.3.1 The topological crossing number of the complete graph, cr(Kn)

Anthony Hill, a British artist who considered himself a “constructivist working as a geometric formalist,”
explored different types of geometrical and combinatorial objects, which lead him to write dozens of papers
in graph theory. Hill started by drawing random sets of points in the plane, joined each pair with a curve, and

4



cr(D1) = 8 cr(D2) = 0 cr(D3) = 8 cr(D4) = 7

Figure 2.7: Number of crossings in a drawing of a graph.

investigated the number of times the curves intersected [3]. Essentially, Hill was interested in the crossing
number of the complete graph [7].

Hill conjectured that the exact value of the crossing number of Kn is

cr(Kn) = Z(n) :=
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
=

{
1
64 (n− 1)2(n− 3)2, n odd
1
64n(n− 4)(n− 2)2, n even

Hill constructed drawings of Kn with exactly Z(n) crossings giving the upper bound of Z(n) on cr(n).
Proving that Z(n) is a lower bound is a very famous problem in combinatorics. The only known exact values
of cr(Kn) for n ≥ 5 are [3]

n 5 6 7 8 9 10 11 12
cr(Kn) 1 3 9 18 36 60 100 150

and the best known lower bound is 0.8594Z(n) ≤ cr(n), De Klerck et al.

Simulations between interconnections can be represented as a graph embedding problem in which one can
determine the amount of crossings in a VLSI (Very Large Scale Integration) chip. In these problems you are
studying the connections between a set of points and another. In a book embedding, the nodes of the graph
G are mapped to the spine of a book and the edges of G are mapped onto pages so the edges on the same
page do not cross [4]. A k-page book drawing is a drawing where all the vertices are on a line ` (the spine)
and each edge is fully contained in one of the k-half planes (pages) defined by `. Similarly to the definition
of cr(n), the k-page crossing number, denoted by νk(Kn) is the minimum number of crossings determined
by a k-page book drawing of Kn.

2.3.2 The topological crossing number of the complete bipartite graph, cr(Kn,m)

The problem of determining the crossing number of the complete bipartite graph can be traced back to World
War II when Paul Turán’s job, as a prisoner in a concentration camp, was to transport bricks from the kilns to a
storage connected by a railway system, which crossed in multiple places. The transportation was not difficult;
however, when the carts would go through these intersection, some carts would jump, fall and conceivably
some bricks break. This created problems because each prisoner had to load a certain amount of carts, and
their day would get delayed if any of the bricks would break. Turán realized that there should, ideally, be
fewer crossings, but the solution seemed to be very difficult [3]. Formally, he had to minimize the number
of crossings in Kn,m, where n was the number of kilns and m was the number of storage yards. Later,
after the war ended, Turán presented the problem to mathematicians in Poland. The topologist, Kazimirez
Zarankiewicz conjectured that

5



cr(Kn,m) =
⌊n
2

⌋⌊n− 1

2

⌋ ⌊m
2

⌋⌊m− 1

2

⌋
. (2.1)

but his conjecture still remains open [3].

2.3.3 The RCN of the complete graph, cr(Kn)

In his paper, Hill defined the rectilinear crossing number, and compared the known values for the minimum
crossing number of a complete graph and the rectilinear crossing number of a complete graph. He found a
formula for (cr)(Kn), shown below, which is an upper bound. [7].

n 2 3 4 5 6 7 8 9 10
cr(Kn) 0 0 0 1 3 9 18 36 60
cr(Kn) 0 0 0 1 3 9 19 36 63

Hill conjectured that the rectilinear crossing number cr(Kn) exceeds cr(Kn) for n = 8 and all n ≥ 10.
These problems have shown to be extremely difficult. As an example, the exact values of cr(Kn) are only
known for n ≤ 27 and the upper third of these values were discovered only within the last couple of years
[1].

2.3.4 The RCN of the complete bipartite graph cr(Kn,m)

Turán’s brick factory problem is an example of a bipartite graph, but now, we only look at graphs in which
every pair of vertices is joined by an edge represented by a straight line segment. These graphs are the same
as the topological bipartite graph in the sense of its properties. Consequently, the results are the same, and
Equation 2.1 still holds.

6



Chapter 3

Problem Statement

We are interested in drawings with few edge-crossings. In this case, it is enough to consider good drawings
of a graph, that is, drawings that satisfy the following: 1) Any two disjoint edges intersect at most once, 2) an
edge contains a vertex if and only if it is one of its endpoints, and 3) any two incident edges do not intersect
at a point other than their common end point.

In a non-good drawing, it is conceivable to have two edges that intersect two or more times. If this is
true then small perturbations can eliminate crossings without affecting the rest of the drawing. (See [8] for
examples on small perturbations and [9] for a formal definition of good drawings.) Thus the original drawing
did not achieve the minimum number of crossings as it could have more crossings than the new drawing;
consequently, the original drawing may be disregarded. Furthermore, with these modifications, it is proven
that the drawings that achieve the minimum number of crossings are good drawings and our attention can be
restricted to only good drawings.

We are interested in the minimum number of crossings among a special class of rectilinear drawings of the
complete graph.

All sets of points considered throughout this thesis are finite, in general position, and in the plane.

3.1 Convex Hull

Let P be a set of points. A point x ∈ P is called an extreme point of P if there is a line m through x that
leaves the rest of P on the same side of m. The convex hull of P is the smallest convex set that contains P ;
consequently, the set of external points is the set of vertices of the convex hull. Partition the set P into convex
hull layers, or simply layers, as follows: The first layer, denoted by L1(P ), is the convex hull of P ; and for
j > 1 the jth layer of P , denoted by Lj(P ), is the convex hull of P −

⋃j−1
i=1 Li(P ). Note that the layers are

disjoint subsets of P and each nonempty layer consists of at least three points, except perhaps for the most
inner one which may have 1 or 2 points. Thus if P has n points, then there are at most dn/3e nonempty layers.
We say that P belongs to the class [|L1(P )|, |L2(P )|, . . . , |Lk(P )|] , where k is the largest index such that
Lk (P ) is nonempty and |L1(P )|+ |L2(P )|+ . . .+ |Lk(P )| = |P |. We are interested in finding the minimum
number of crossings over all sets P in the same class. We use the notation cr [C] = cr [n1, n2, . . . , nk] for
the minimum crossing number over all sets P is the class [C] = [n1, n2, . . . , nk]. Note that

cr (n) = min {cr [n1, n2, . . . , nk] : n1, n2, . . . , nk−1 ≥ 3, nk ≥ 1, n1 + n2 + . . .+ nk = n} . (3.1)

We partition the collection of all n-points sets into a finite number of classes according to their convex layers
and restrict the function cr to each class as previously described.

In chapter 4, we consider classes with two nonempty layers, that is, classes of the form [p, q] with p ≥ 3 and
q ≥ 1. We present explicit constructions to provide upper bounds for cr [p, q], and prove that for q = 1 and 2
these constructions are optimal, thus finding the exact value of cr [p, 1] and cr [p, 2]. We also bound cr [p, q]
for all q ≥ 3. Finally, in chapter 5, we find the exact value of cr [C], for any class [C] with at most 8 points,
and include the drawings of optimal constructions.

7



Chapter 4

Results: RCN for classes with one or two layers

We start with some definitions. Let P be a set of n points. Any line l that divides the set P in almost half is
called a halving line of P , that is, there are

⌊
n
2

⌋
point of P on one side of l and

⌈
n
2

⌉
point on the other. (See

Figure 4.1)

Figure 4.1: Left. A set with 8 points, so each line halves the set leaving 4 points on each side. Right. A set
with 9 points, so each line halves the set leaving 3 points on one side and 5 on the other.

The previous definition is the typical definitions of a halving line. However, a special case of halving lines is
when the line passes through two points of P . A line l passing through two points of P that divides the rest
of the set P in half is a halving line of P , and there are

⌊
n
2

⌋
− 1 points of P on one side of l and

⌈
n
2

⌉
− 1

points on the other. (See Figure 4.2.)

Figure 4.2: Some halving lines of two sets. Left. A set with 10 points, so each halving line leaves 4 points on
each side. Right. A set with 7 points, so each halving line halves 3 points on one side and 2 on the other.

Let B be a finite set of points in convex position. The interior of B is the interior of the convex hull of
B. Suppose now that B has exactly p points. Label the vertices of B from 1 to p in counter-clockwise
order. For odd p and for every 1 ≤ i ≤ p consider the triangle Ti with vertices i, i + p+1

2 (modp), and
i + p−1

2 (modp). (See Figure 4.3.) Let CB be the intersection of T1, T2, T3, . . . , Tp. Similarly, for even p
and for every 1 ≤ i ≤ p consider the quadrilateral Qi with vertices i, i + p

2 − 1(modp), i + p
2 (modp), and

i + p
2 + 1(modp). Let CB be the intersection of all Q1, Q2, Q3, . . . , Qp. In both cases, the region CB is

called the center region of B. The open regions obtained by drawing all lines joining two points of B are

8



called the cells of B. While the center region of a set B may be empty (See Figure 4.4), it is never empty
when B is the set of vertices of a regular polygon. In fact, in this case CB has a nonempty interior.

Figure 4.3: The center regions of two sets. Left. p odd. Right. p even.

Figure 4.4: Points in convex position with an empty center region.

4.1 One Layer

A set P has exactly one nonempty layer if and only if it is in convex position. In this case, any subset of 4
points generates exactly one crossing. Then

cr [n] =

(
n

4

)
. (4.1)

4.2 Lower bound on the RCN of point sets with two layers

In order to achieve a lower bound for cr(C), we considered all possible locations of the points in the set.

We consider the class [p, q] with p ≥ 3 and q ≥ 1, that is, sets with exactly two nonempty layers, and give a
general lower bound for the class [p, q].

9



Theorem 1 For any p ≥ 3 and q ≥ 1,

cr [p, q] ≥
(
p

4

)
+

(
q

4

)
+
p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
q +

⌊
p− 1

2

⌋⌈
p− 1

2

⌉(
q

2

)
. (4.2)

Proof. Let P be a set in the class [p, q], B = L1 (P ), and I = P − B. Then B and I are in convex position
and I is contained in the interior of B. As four points create a crossing if and only if they are in convex
position, we classify all subsets of four points S of P into four types, and for each type we check under
which conditions S is in convex position. (See Figure 4.5.) We then give a lower bound on the number of
sets S, or equivalently, on the number of crossings, of each type.

Figure 4.5: Crossing types.

Type 1. S ⊆ B (Type 1a) or S ⊆ I (Type 1b). Any set of four points p1, p2, p3, p4 ∈ B or q1, q2, q3, q4 ∈ I
is in convex position asB and I are both convex. Hence, there are

(
p
4

)
crossings corresponding to sets S ⊆ B

and
(
q
4

)
corresponding to sets S ⊆ I . This gives a total of exactly

(
p

4

)
+

(
q

4

)
(4.3)

crossings of Type 1.

Type 2. Three points of S are in B and the other is in I . For each point z ∈ I , this reduces to counting the
number of crossings given by (4.12) – found in the proof of Theorem 3 – that are determined by three points
of B and z, as done for the class [p, 1] in Theorem 3 . That is, there are at least

p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
q (4.4)

crossings of this type, with equality if and only if I is contained in the center region of B.

Type 3. Two points of S are in B and the other two are in I . Suppose S = {p1, p2, q1, q2} with p1, p2 ∈ B

10



and q1, q2 ∈ I . Let Ri and Li be the sets of points of B to the right and left, respectively, of the directed line
q1q2. We have two possible types of crossings generated by S. (a) Type 3a: the segments p1qi and p2qi+1

intersect, where the indices are taken mod2; and (b) Type 3b: the segments q1q2 and p1p2 intersect.

Type 3a may happen only if p1 and p2 are on the same side of the line q1q2. Note that both sets Ri ∪ {q1, q2}
and Li ∪ {q1, q2} are in convex position (with q1 and q2 consecutive points along the boundary) and thus S
generates a crossing of Type 3a whenever p1 and p2 are on the same side of q1q2, namely, whenever {p1, p2}
is contained in Ri or in Li. This gives a total of exactly(

|Ri|
2

)
+

(
|Li|
2

)
(4.5)

crossings of Type 3a. Since |Ri|+ |Li| = p,(
|Ri|
2

)
+

(
|Li|
2

)
≥
(
bp/2c
2

)
+

(
dp/2e
2

)
=

⌊
p− 1

2

⌋⌈
p− 1

2

⌉
, (4.6)

with equality if and only if the line through any pair of points in I halves B.

Note that there are sets P for which there are no crossings of Type 3b. Namely, whenever I is contained in a
single cell of B. Therefore the number of crossings of Type 3 is at least

⌊
p− 1

2

⌋⌈
p− 1

2

⌉(
q

2

)
, (4.7)

and this lower bound is achieved if and only if the line through any pair of points in I is a halving line of B
and I is contained in a single cell of B.

Type 4. One point of S is in B and the other three are in I . Since there are sets P that do not generate
crossings of this type, we just bound the crossings of this type by 0. For example, if P = B ∪ I is a set
of points in the class [10, 3] (See Figure 4.6), with B fully contained in the shaded regions, then this set
will have no crossings of Type 4. Namely, any subset of 4 points S will not create a convex quadrilateral.
Recall that any four points in convex position creates a crossing. Consequently, there will not be any convex
quadrilateral that would create a crossing. In general for any set of points, if the first layer is fully contained
in the shaded regions, there will be no crossings of Type 4.

Figure 4.6: A set P of points in the class [10, 3] first layer P fully contained within the shaded regions
generated by second layer Q.

Adding the lower bounds (4.3), (4.4), and (4.7) for types 1, 2, and 3, respectively, yields the result.
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4.3 Upper bound on the RCN of point sets with two layers

Now we give an upper bound for cr [p, q] by providing an explicit construction that achieves the lower bounds
on the number of crossings of Types 1-3 in the previous proof.

Theorem 2 For any p ≥ 3 and q ≥ 1,

cr [p, q] ≤
(
p

4

)
+

(
q

4

)
+
p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
q +

⌊
p− 1

2

⌋⌈
p− 1

2

⌉(
q

2

)
+
⌈p
2

⌉(q
3

)
. (4.8)

Proof. We present an explicit construction achieving the corresponding bound. Let P be the set in the class
[p, q] such that P = B ∪ I , where B is the set of vertices of a regular p-gon and I is a set of q points in
convex position in the center region CB of B as described below. We label the vertices of B from 1 to p in
counter-clockwise order.

Partition B into the two almost-equal-size sets

X =

{
x ∈ B : x = 1 or

⌈
p+ 3

2

⌉
≤ x ≤ p

}
and Y =

{
y ∈ B : 2 ≤ y ≤

⌈
p+ 1

2

⌉}
. (4.9)

Consider an arc of circleA passing through 1 and
⌈
p+3
2

⌉
, contained in the interior of the triangle with vertices

1,
⌈
p+1
2

⌉
, and

⌈
p+3
2

⌉
, such that A intersects CB and flat enough so that the line through any two points in

A ∩ CB separates X and Y. (See Figure 4.7.) Finally, let I be any q points on A ∩ CB contained on a
single cell of B. Note that, since the line through any two points of I separates X and Y , |X| = dp/2e,
|Y | = bp/2c, and X ∪ Y = B, any line passing through two points of I halves B.

Figure 4.7: Upper bound construction for a class with two layers. Left. p odd. Right. p even. All points of I
must be in the same cell of B.

We count the crossings generated by P , or equivalently, the number of subsets S of P of size four in convex
position. Expression (4.3) always represents the number of crossings of Type 1. The bound (4.4) on type 2
crossings is achieved because I is contained in CB . Because the line through any two points in I halves B
and I is contained in a single cell of B, the bound (4.7) on the Type 3 crossings is achieved by P . Finally, to
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bound the crossings of Type 4, suppose that S = {p1, q1, q2, q3} with p1 ∈ B and q1, q2, q3 ∈ I . Note that
X ∪ {q1, q2, q3} is itself in convex position and so there are at least

⌈p
2

⌉(q
3

)
(4.10)

crossings of Type 4. (Note that this is the exact number of crossings of Type 4. Indeed, if p1 ∈ Y and q2 is
between q1 and q3 along the arc A, then q2 is in the interior of4p1q1q3 and thus S is not in convex position.)
Adding (4.3), (4.4), (4.7), and (4.10), and noting that cr [p, q] ≤ cr(P ) by definition of cr [p, q], yields the
result.

The bounds in Theorems 1 and 2 match when q = 1 and q = 2. The exact value of cr [p, 2], together with the
sets achieving it, are included in Theorem 4.

4.4 Exact RCN for classes with two layers and at most 2 points in the second layer

We first determine the exact value of cr[p, 1], that is, sets with two nonempty layers having 1 point in their
second layer, because we prove that each consecutive convex layer, starting with the second one, must be
contained within the center region of the first layer. Furthermore, we determine the exact value of cr[p, 2].
We then investigate what the bounds for configurations of points in [p, 3]; we do this in order to improve the
previous bounds.

Theorem 3 For any p ≥ 3,

cr [p, 1] =

(
p

4

)
+
p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
. (4.11)

Moreover, P ∈ [p, 1] is an optimal configuration if and only if L2 (P ) is contained in the center region of P .

Proof. Let P = B ∪ {z} be a set in the class [p, 1] where B is a set of p points in convex position and z is
a point in the interior of B that is not collinear with any pair of vertices in B. Below, we bound the number
of crossings in P . Note that, as in the case of one layer (convex position, see Equation 4.1) there are exactly(
p
4

)
crossings generated by four points in B. It remains to count the number of crossings generated by three

points in B and the point z. We claim that there are at most

p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉

(4.12)

such crossings. Label the vertices of B from 1 to p in counter-clockwise order. Let i be a fixed vertex of B
and let ri be the number of points in B to the right of the ray iz. (See Figure 4.8.) For all 1 ≤ k ≤ p color the
segment zk blue (dashed), and if k 6= i, color the segments ik red (solid). We count the blue-red crossings
for each 1 ≤ i ≤ p.

First we consider the blue-red crossings that occur on the right of−→iz . Each blue segment (z, i+ ri − t) where
0 ≤ t ≤ ri − 1, intersects the t red segments (i, i+ ri − t′) where 0 ≤ t′ ≤ t− 1. This gives a total of

ri−1∑
t=0

t =

(
ri
2

)
(4.13)

blue-red crossings on the right of −→iz . Similarly, but considering that there are p − ri − 1 points of B on the
left of −→iz , each blue segment (z, i+ ri + t+ 1), where 0 ≤ t ≤ p − ri − 2, intersects the t red segments
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Figure 4.8: Counting blue-red crossings for the proof of Theorem 3. Blue = dashed, red = solid.

(i, i+ ri + t′), where 1 ≤ t′ ≤ t. Thus the number of blue-red crossings that occur to the left of −→iz is

p−ri−2∑
t=0

t =

(
p− ri − 1

2

)
. (4.14)

Adding over all points i in B, and dividing by 2 (because each crossing is counted twice, specifically, once
per each endpoint of the segment joining two points in B), we obtain the total number of crossings created
by z and three other points in B. Namely,

1

2

p∑
i=1

((
ri
2

)
+

(
p− ri − 1

2

))
≥ 1

2

p∑
i=1

((⌊p−1
2

⌋
2

)
+

(⌈p−1
2

⌉
2

))
=
p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
. (4.15)

To show that this bound is tight and to find all optimal sets, note that the previous inequality is an identity
if and only if for each 1 ≤ i ≤ p the value of ri is

⌊
p−1
2

⌋
or
⌈
p−1
2

⌉
. This happens if and only if z is in the

center region CB of B. In particular, equality is achieved when B is the set of vertices of a regular p-gon and
z is a point in the center region of B that is not collinear with any pair of vertices in B.

Theorem 4 For each p ≥ 3,

cr [p, 2] =

(
p

4

)
+ p

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
+

⌊
p− 1

2

⌋⌈
p− 1

2

⌉
. (4.16)

Moreover, P ∈ [p, 2] with L2 (P ) = {x, y} is an optimal set if and only if L2 (P ) is contained in the center
region of P , xy halves P , and the segment xy is contained in a single cell of L1 (P ).

Proof. The arrangement of the points follows the restrictions implemented in Theorems 1 and 2, thus the
identity holds.
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4.5 What’s next?

The following table summarizes the lower bounds used in Theorem 1 for the number of crossings of Types 3
and 4 and the required conditions to achieve the bounds. Here the set P ∪ Q belongs to the class [p, q] with
first layer P and second layer Q.

crossings Lower bound used in Theorem 1 Conditions to achieve bound
I Type 3a

⌊
p−1
2

⌋ ⌈
p−1
2

⌉
xy halves P

II Type 3b 0 Q is fully contained in a
single cell generated by P

III Type 4 0 P is fully contained in the
shaded region generated by {x, y, z} ⊆ Q

Table 4.1: Summary of the lower bounds used in Theorem 1 for the number of crossings of Types 3 and 4.

For q = 1 and q = 2, it is possible to simultaneously achieve all these bounds as shown in Theorem 3 and
4. However, it is no loner possible for q > 2. We analyze the case q = 3, which could potentially be used to
understand the general case, q > 2.

First we analyze what happens if II and III (but no necessarily I), in the table above, are satisfied.

Theorem 5 If a set P ∪Q ∈ [p, 3] with first layer P and second layer Q has no crossings of Types 3b and 4,
then P ∪Q has at most 1

2

(
p−1
3

) [
15
(
p−1
3

)
+ 1
]

crossings of Type 3a.

Proof. Just as in Theorem 1, we will consider subsets of 4 points (1 point from P and 3 from Q) from the set
of points. There may or may not be crossings of this type. In order to restrict this type of crossings to 0, the
sum of all possible crossings generated by the points must be minimized.

We considered an arrangement of p points in the first layer as in Figure 4.6, and denoted the number of points
in each of the 3 shaded regions as x, y, z where x + y + z = p. Thus we are interested in minimizing the
number of crossings

f(x, y) =

(
x

2

)
+

(
p− x
2

)
+

(
y

2

)
+

(
p− y
2

)
+

(
x+ y

2

)
+

(
p− x− y

2

)
which result in having 1

3p points in each of the shaded cells. This can only be achieved if the total amount of
points is divisible by 3.

For any number of points p in the first layer, if p ≡ 1 mod 3, equivalently p = 3k+1 for any positive integer
k, the three closest solutions are

(
p−1
3 , p+2

3

)
,
(
p+2
3 , p−13

)
,
(
p−1
3 , p−13

)
. All three yield the same minimum

number of crossings, namely, 1
2

(
p−1
3

) [
15
(
p−1
3

)
+ 1
]
.

Now if p ≡ 2 mod 3, equivalently p = 3k + 2 for any positive integer k, the three closest solutions are(
p−2
3 , p+1

3

)
,
(
p+1
3 , p+1

3

)
,
(
p+1
3 , p−23

)
, and the minimum number of crossings for all these tree solutions is

1
2

[
15
(
p−2
3

)2
+ 11

(
p−2
3

)
+ 2
]
.

Since the total number of points is an integer, solutions are restricted to the closest possible integer solu-
tion. The three closest solutions to the real valued minimum form a triangle and the actual minimum is the
varicenter of such triangle.

There are fewer crossings for p ≡ 2 mod 3 than for p ≡ 1 mod 3.

Now, we analyze what happens if I and II are satisfied.
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Theorem 6 If a set P ∪Q ∈ [p, 3] with first layer P and second layer Q has at most
⌊
p−1
2

⌋ ⌈
p−1
2

⌉
crossings

of Types 3a and no crossings of Type 3b, then P ∪ Q has at most p
2 (for p is even) and p−3

2 (for p odd)
crossings of Type 4.

Proof. We minimize the number of crossings of Type 4 when we included points in the unshaded regions
from Figure 4.6; let the number of points in those sections be A, B, C, respectively. Also, let the number of
points in the other three unshaded regions be D, E, F . (See Figure 4.9.). We must ensure that the each pair
of points from Q halves P . Consequently, we have the following three equations.

1. B + C + E = A+D + F = p
2

2. A+ F + C = B +D + E = p
2

3. A+B +D = C + E + F = p
2

where A+B + C +D + E + F = p. We want to minimize the sum D + E + F .

Figure 4.9: Lines `i for i ∈ {1, 2, 3} are halving lines, and the letters A,B, . . . , F represent the amount of
points in each of the sections generated by the lines panned by Q.

With these requirements, and provided that p is even, we get the following results. Equation 2 and 3 imply
that A = E, Equation 1 and 3 imply that B = F , and Equation 1 and 2 imply that C = D. Moreover,
together with Equation 3, C = D implies that D + E + F = p

2 .

Now, for p odd, each pair of points from Q must also halve P , and we still require that A + B + C +
D + E + F = p. However, for this choice of p, there are different cases to consider. The following table
summarizes the results for the different cases in which “+” and “−” represent the amount of points p+1

2 and
p−1
2 , respectively, on either side of the halving lines `1 and `2. (See Figure 4.9)

Case A B C D + E + F

I `1: + −
A = E + 1 B = F + 1 C = D + 1 p−3

2`2: + −

II `1: − +
A = E + 1 B = F C = D p−1

2`2: + −

III `1: + −
A = E B = F + 1 C = D p−1

2`2: − +

IV `1: − +
A = E B = F C = D − 1 p+1

2`2: − +
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We must ensure that the three lines spanned by the points in Q are halving lines. Without loss of generality,
we can say `3 is a halving line in the following way: A+B +D = p+1

2 and C + E + F = p−1
2 , namely

A+B +D = C + E + F + 1 =
p+ 1

2
. (4.17)

With this assumption, we have 4 different cases for the amount of points on either side of the halving lines `1
and `2. Similar to p even, in each case we get three different equations – including Equation 4.17.

For Case I with halving line `1, we get

B + C + E = A+D + F + 1 =
p+ 1

2
(4.18)

and with halving line `2, we get

A+ F + C = B +D + E + 1 =
p+ 1

2
(4.19)

Finally, with Equations 4.17 and 4.19 we get A = E + 1, with Equations 4.17 and 4.18 we get B = F + 1
and with Equations 4.18 and 4.19 we get C = D + 1. Moreover, using Equation 4.19 we get the desired
result D + E + F = p−3

2 .

In a similar manner we obtain the results stated in the table above for the remaining Cases II, III, and IV.

Recall that with 3 points in the second layer, Theorem 1 given the following general lower bound.

cr [p, 3] ≥
(
p

4

)
+

(
3

4

)
+
p

2

⌊p
2
− 1
⌋ ⌈p

2
− 1
⌉
3 +

⌊
p− 1

2

⌋⌈
p− 1

2

⌉(
3

2

)
.

Note that Theorem 5 gives a better lower bound than Theorem 1 in the case when the maximum number of
points from the first layer, p are completely contained in the shaded regions from Figure 4.6.

Also, Theorem 6 gives a better lower bound than Theorem 1 in the case the when number of halving lines of
a set of points P ∪Q, spanned by Q, is maximized.

Now, we set up the general case – the case when I and II are satisfied from Table 4.5. We want to minimize
the number or crossings of Types 3a and 4. Given that A+B + C +D + E + F = p, let

f(A,B,C,D,E, F ) =

(
B + E + C

2

)
+

(
D +A+ F

2

)
+

(
B +D + E

2

)
+

(
C + F +A

2

)

+

(
C + E + F

2

)
+

(
A+B +D

2

)
+D + E + F.

This case is slightly more tricky, so we only provide our attempts. We first consider(
a

2

)
+

(
p− a
2

)
= a2 − ap+ p2 − p

2

and so we have the following three equations.
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(B + E + C)2 − p(B + E + C) + p2−p
2

(C + F +A)2 − p(C + F +A) + p2−p
2

(A+B +D)2 − p(A+B +D) + p2−p
2

Thus,

f(A,B,C,D,E, F ) = (B+E+C)2+(C+F+A)2+(A+B+D)2−p(B+E+C+C+F+A+A+B+D)

+3

(
p2 − p

2

)
+D + E + F.

The following attempt was to consider p2 = (A+B + C +D + E + F )2, so f becomes

p2 − 2(FD + FE +DE)− 2(AE +BF + CD) +A2 +B2 + C2

−p [2(A+B + C) +D + E + F ] + 3

(
p2 − p

2

)
+D + E + F

We also looked at the arrangements with 4 points in Q. We determined different Vi cells, just as in Figure 5.3
(right), which would result in less Type 4 crossings. In order to maintain the maximum amount of halving
lines, the set of points must be arranged in clusters in convex position as the ones in Figure 4.4, and the center
region would be empty. Consequently, this arrangement does not yield the best result.
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Chapter 5

Exact RCN for classes with at most 9 points

Tables 5.1 and 5.2 provide the values for sets of points some classes with at most 9 points. We use Theorems
3 and 4 to obtain some of the values; some remaining values are proved below.

5.1 Up to 5 points

3 points 4 points 5 points
cr [3] = 0 cr [4] = 1 cr [5] = 5

cr [3, 1] = 0 cr [4, 1] = 3
cr [3, 2] = 1

Table 5.1: Exact values for sets with 3, 4 or 5 points.

Figure 5.1: Optimal configurations for all classes with up to 5 points.

5.2 6,7, or 8 points

For classes with 6, 7, or 8 points more work is needed. The exact crossing numbers are summarized in the
following table.

6 points 7 points 8 points
cr [6] = 15 cr [7] = 35 cr [8] = 70

cr [5, 1] = 10 cr [6, 1] = 27 cr [7, 1] = 56
cr [4, 2] = 7 cr [5, 2] = 19 cr [6, 2] = 45
cr [3, 3] = 3 cr [4, 3] = 15 cr [5, 3] = 33

cr [3, 4] = 9 cr [4, 4] = 28
cr [3, 3, 1] = 9 cr [3, 5] = 21

cr [4, 3, 1] = 27
cr [3, 4, 1] = 20
cr [3, 3, 2] = 19

Table 5.2: Exact values for sets with 6, 7 or 8 points.

The exact values for classes of the form [n] , [p, 1] , and [p, 2] are given by (4.1), Theorem 3 and 4, respectively.
All upper bounds are given by the optimal constructions shown in Figure 5.2.

By (3.1), cr [Cn] ≥ cr (n) for any class [Cn] on n points. Using the following table of known values of
cr (n) [6],

n 3 4 5 6 7 8
cr (n) 0 0 1 3 9 19

, (5.1)
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Figure 5.2: Optimal sets for all classes with 6, 7, or 8 points.
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we obtain the corresponding lower bounds for the classes

[3] , [3, 1] , [3, 2] , [3, 3] , [3, 4] , [3, 3, 1] , and [3, 3, 2] . (5.2)

The following theorem takes care of the lower bounds for the remaining classes.

Theorem 7 Lower bounds for classes with 6, 7, or 8 points not covered by (3.1), (4.1), or Theorems 3 or 4.

1. cr [5, 3] ≥ 33. 4. cr [4, 4] ≥ 28.

2. cr [4, 3, 1] ≥ 27. 5. cr [3, 4, 1] ≥ 20.

3. cr [4, 3] ≥ 15. 6. cr [3, 5] ≥ 21.

(5.3)

Proof. Let P be a finite set of points. Denote by B = L1 (P ) and I = P − B the sets of boundary and
interior points of P , respectively. For each class above, we take an arbitrary set P in the class and prove that
it determines at least as many crossings as indicated by (5.3).

For the first two cases we use an average argument. We consider all subsets of P obtained by deleting one
point and bound below their number of crossings. We compensate for the overcounting which results when
some crossings are counted more than once, and the ceiling of the average is the resulting lower bound.

1. Let P ∈ [5, 3]. For each x ∈ B, the set P − {x} contains at least 4 points in its convex hull, namely, all
the points in B − {x}. Then P − {x} belongs to one of the classes [4, 3] , [5, 2] , [6, 1] or [7]. Hence,

cr (P − {x}) ≥ min {cr [4, 3] , cr [5, 2] , cr [6, 1] , cr [7]} = 15. (5.4)

On the other hand, for each x ∈ I the set P − {x} always belongs to the class [5, 2] and thus

cr (P − {x}) ≥ cr [5, 2] = 19. (5.5)

When we add the number of crossings over all subsets of P of size 7 (that is, all subsets of the form P −{x}),
each crossing of P is counted exactly 4 times. This is because a crossing is generated by a set S of 4 points
in P and there are exactly

(
8−4
3

)
= 4 subsets of P of size 7 containing S. Therefore,

cr (P ) =
1

4

∑
x∈P

cr (P − {x}) ≥ 1

4
(5 (15) + 3 (19)) =

132

4
= 33. (5.6)

2. Let P ∈ [4, 3, 1]. Suppose that Q = P − L1 (P ) = {q1, q2, q3, q4}. Then P − {qj} ∈ [4, 3] for all
1 ≤ j ≤ 4, and thus cr (P − {qj}) ≥ 15. Label the points of L1 (P ) in clockwise order by p1, p2, p3, p4.
For each 1 ≤ i ≤ 4, if the 4 pi−1pipi+1 (where the indices are taken mod4) contains at least one point of
Q in its interior, then P − {pi} has at least 4 points in its convex hull, that is,

cr (P − {pi}) ≥ min {cr [7] , cr [6, 1] , cr [5, 2] , cr [4, 3]} = 15. (5.7)

Note that at least two (out of the four) triangles of the form pi−1pipi+1 must contain points of Q in their
interior. For the vertex pi of the other two triangles, the most we can guarantee is that cr (P − {pi}) ≥
cr (7) = 9. Then

cr (P ) =
1

4

 4∑
i=1

cr (P − {pi}) +
4∑

j=1

cr (P − {qj})

 ≥ 1

4
(2 (15) + 2 (9) + 4 (15)) =

108

4
= 27.
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For the last four classes, we generalize the classification of the crossings of P in the proof of Theorem 1. For
a crossing S = {a, b, c, d} of P , say ab intersects cd, the classification is as follows.

S is of type Condition
1 {a, b, c, d} ⊆ B or {a, b, c, d} ⊆ I
2 {a, b, c} ⊆ B and d ∈ I
3a {a, c} ⊆ B and {b, d} ⊆ I
3b {a, b} ⊆ B and {c, d} ⊆ I
4 a ∈ B and {b, c, d} ⊆ I

(5.8)

The following table summarizes the number of crossings of each type guaranteed by the proof of Theorem 1
for any set P in the corresponding class. Whenever B is a set of 4 points, we denote by b the number of lines
spanned by I leaving two points of B on each side, these lines are called balanced, and by u the number of
lines spanned by I leaving three points of B on one side and one point on the other, these lines are called
unbalanced. Note that b+ u =

(|I|
2

)
. Finally, let f denote the number of crossings of type 4.

Class Type 1 Type 2 Type 3i Lower bound Need to show
[4, 3] 1 6 2b+ 3u = 6 + u cr (P ) ≥ 13 + u+ f ≥ 15 u+ f ≥ 2
[4, 4] 2 8 2b+ 3u = 12 + u cr (P ) ≥ 22 + u+ f ≥ 28 u+ f ≥ 6
[3, 4, 1] 3 0 10 cr (P ) ≥ 13 + f ≥ 20 f ≥ 7
[3, 5] 5 0 10 cr (P ) ≥ 15 + f ≥ 21 f ≥ 6

(5.9)

Now we look at each of the classes separately to prove the corresponding inequality in the last column above.

Figure 5.3: The cells of I and the least number of crossings generated by adding a point to a given cell.

3. Let P ∈ [4, 3]. We have to show that u + f ≥ 2. Figure 5.3(left) shows the cells of I. Adding a point to
S1 ∪ S2 ∪ S3 creates a crossing of Type 4 (with the boundary of I), whereas adding a point to V1 ∪ V2 ∪ V3
does not generate crossings of this type.

If two or more points of B are in S1 ∪ S2 ∪ S3, then f ≥ 2. Figure 5.4 shows all possible positions of B
with at most one point of B in S1 ∪ S2 ∪ S3. All positions have been considered because by symmetry, we
can assume, without loss of generality, that S1, S2, S3, as well as V1, V2, V3 in Figure 5.3, play the same roll.
Thus, the case of having 3 points in V1 and one in S2 is the same as having 3 points in V3 and one in S1.
Now, all possible distributions of the 4 points have been considered with at most one in S1, S2, S3 (and the
rest in V1, V2, V3) ensuring that all the points are in convex position.
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In the first four cases there is one point of B in S1 ∪ S2 ∪ S3 and thus f ≥ 1, but also there is at least one
unbalanced line making u ≥ 1. In the last case f = 0 since B ⊂ V1 ∪ V2 ∪ V3, however two unbalanced
lines are forced (in this case, the solid lines), making u ≥ 2. In all cases u+ f ≥ 2.

Figure 5.4: Possible arrangements when at most one point of B is in S1 ∪ S2 ∪ S3. Thick lines represent
unbalanced lines forced by the position of B with respect to the cells of I .

4. Let P ∈ [4, 4]. We have to show that u + f ≥ 6. Figure 5.3(right) shows the relevant cells of I . Adding
any one point from the first layer to S1 ∪ S2 ∪ S3 creates 4 crossings of type 4 (with the segments generated
by I), adding a point to V1 ∪ V2 ∪ V3 generates 2 crossings of type 4, and adding any one point to E1 ∪ E2

does not generate any crossing of type 4. So if there is at least one point of B in S1 ∪ S2 ∪ S3 ∪ S4 and a
different point of B in S1 ∪ S2 ∪ S3 ∪ S4 ∪ V1 ∪ V2 ∪ V3 ∪ V4, then f ≥ 4 + 2 = 6. Similarly, if there are
at least 3 points in V1 ∪ V2 ∪ V3 ∪ V4, then f ≥ 2 + 2 + 2 = 6. We assume then that either there is one
point of B in S1 ∪ S2 ∪ S3 ∪ S4 and the other three are in E1 ∪ E2, or there are at most 2 points of B in
V1 ∪ V2 ∪ V3 ∪ V4 and the rest are in E1 ∪ E2. Figure 5.5 shows all possible distributions of B among the
cells of I satisfying our assumption.

Figure 5.5: Possible positions of B with respect to the cells of I satisfying the required assumptions. Thick
lines represent unbalanced lines.

In the first case, there is one point of B in V1 ∪ V2 ∪ V3 ∪ V4 and three points of B in E1 ∪ E2. This forces
four unbalanced lines implying u ≥ 4. In all other cases, when there is one point of B in S1 ∪ S2 ∪ S3 ∪ S4

or two points of B in V1 ∪ V2 ∪ V3 ∪ V4, we have f ≥ 4. In all these cases, two unbalanced lines are forced
giving u ≥ 2. Therefore u+ f ≥ 6.
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5. Let P ∈ [3, 4, 1]. We have to show that f ≥ 7. Let x be the point in L3 (P ). Add x to the interior of
L2 (P ) in Figure 5.3(right). The number of crossings of type 4 added by a new point in each of the cells of
L2 (P ) changes according to whether x is in one of the two shaded triangles in Figure 5.6 . Note that if at
least one point ofB is in S1∪S2∪S3∪S4 then f ≥ 7, and if two ore more points ofB are in V1∪V2∪V3∪V4
then f ≥ 4 + 4 = 8.

Figure 5.6: Adding the point x ∈ L3 (P ).

On the other hand, as B is the convex hull of P , B cannot be separated from the rest of P by a line. For
instance,B cannot be contained inE1∪E2 as it would be separated from the rest of P by the line `. Therefore,
the only remaining possibility is that there is one point of B in each of the cells E1, E2, and V2. But this
means that f ≥ 2 + 2 + 4 = 8 or f ≥ 1 + 1 + 5 = 7.

6. Let P ∈ [3, 5]. We have to show that f ≥ 6. For an illustration, we consider Figure 5.3(right), and
introduce the point x ∈ L2 (P ). Note that x must belong to S1 ∪S2 ∪S3 ∪S4. We divide this into two cases:
x ∈ S1 ∪ S2 or x ∈ S3 ∪ S4. Figure 5.7 shows the changes on the number of crossings of Type 4 that a point
of B generates depending on the cell it occupies.

Figure 5.7: Adding the fifth point of L2 (P ).

If at least one point ofB is in S1∪S2∪S3∪S4, then f ≥ 6. If two or more points ofB are in V1∪V2∪V3∪V4,
then f ≥ 3 + 3 = 6. Then assume that there is at most one point of B in V1 ∪ V2 ∪ V3 ∪ V4. As before,
since B is the convex hull of P , then it cannot be separated from other points in P by a line. Therefore, the
only remaining case is when there is exactly one point of B in each of the cells V2, E1, and E2. This requires
a more detailed analysis of the crossings of Type 4 added by a point in one of these regions. For instance,
a point y ∈ V2 adds 3 crossings if all segments from y to the points in I do not intersect the interior of I .
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Otherwise, it adds 6 crossings. The same happens when y ∈ E1 or y ∈ E2, adding 3 crossings instead of 0.
This means that either f = 3 or f ≥ 6. But f = 3 implies that cr (P ) = 18 which is impossible since it is
known that cr (8) = 19. Therefore f ≥ 6.

5.3 9 points

From our previous constructions, we introduce an extra point in the center region so that our new set consists
of 9 points. We explore all possible locations of this new point within the center region. By (3.1), cr [Cn] ≥
cr (n) for any class [Cn] on n points, so cr [C9] ≥ cr(9) = 36. For each of the different values of p and q
the constructions are within the bounds in Theorems 1 and 2. Table 5.3 shows the RCN, the best bounds we
know for classes with 9 points.

One Layer Two Layers Three Layers
cr [9] = 126 (4.1) cr [8, 1] = 106 Thm. 3 cr [5, 3, 1] ≤ 56

cr [7, 2] = 86 Thm. 4 cr [4, 4, 1] ≤ 50
cr [6, 3] = 72 Thm. 8 cr [4, 3, 2] ≤ 46
cr [5, 4] ≤ 56 cr [3, 5, 1] ≤ 41
cr [4, 5] ≤ 48 cr [3, 4, 2] ≤ 38
cr [3, 6] ≤ 45 cr [3, 3, 3] ≤ 36

Table 5.3: RCN for 9 points

5.3.1 Lower bound for the class [6, 3]

Theorem 8 cr[6, 3] = 72

Proof. Figure 5.8 shows a set in the class [6, 3] with 72 crossings proving that cr[6, 3] ≤ 72.

Figure 5.8: A set of points in the class [6, 3] with 72 crossings.

Now, to prove the lower bound (cr[6, 3] ≥ 72), let D be a drawn in the class [6, 3] with the first layer P
and the second layer {a, b, c}. Since, cr[6, 2] = 45, we have cr(P ∪ {a, b}) ≥ 45, cr(P ∪ {a, c}) ≥ 45
and cr(P ∪ {b, c}) ≥ 45. Also, cr(P ) = 15 and cr[6, 1] = 27, from Equation 4.1 and 5.2, respectively.
Consequently, cr(D) ≥ 3(45)− 3(27− 15)− 27 = 72.

The remaining drawings in Figure 5.9 show the upper bound for all the different classes of 9 points as shown
in Table 5.3.
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Figure 5.9: Constructions to show the upper point for classes with 9 points.
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