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Abstract

The GEN Corporation in Japan has pioneered the development of a novel compact aerial
vehicle known as the GEN-H4 helicopter. The vehicle uses two contra rotating coaxial rotors
for flight. Although conventional single rotor helicopter dynamics has been widely studied,
there has been little academic study done on coaxial rotors and their mutual interaction.
Also, the rotor blades have a fixed pitch and do not have a swash plate mechanism like other
helicopters. The control of the helicopters motion is achieved by tilting the rotor shaft and
shifting weight. This further complicates the dynamics of the vehicle motion, as conventional
helicopters are modeled as a single rigid body. Previous research at Shinshu University had
developed a mechanical model of the unmanned version of the vehicle. The present study
aims to incorporate the rotor aerodynamics with the model, and include effects of the blade

profile and motion of the helicopter on the forces and moments produced by the rotor.
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1 Introduction

The GEN Corporation in Japan has developed a unique design for a helicopter known as the
GEN-H4. The vehicle lifts with the aid of two contra rotating coaxial rotors. The torque
generated by each rotor cancels out since the rotors rotate in opposite direction. This allows
the vehicle to be have net zero yaw moment. Conventional single rotor helicopters use a tail
rotor to cancel the torque of the single rotor. Hence they consume power which does not
provide lift to the vehicle. The coaxial rotors on the other hand both produce thrust to lift
the vehicle. They are therefore also much more compact than one single rotor to lift the

same weight.

The two rotors are powered by four special lightweight engines manufactured by the GEN
corporation. The aerodynamic environment of the two rotors is not the same, since the
lower rotor is significantly affected by the down wash of the upper rotor. Therefore, the two
rotors operate at different rotation speeds to correct the yaw moment. This is made possible
by the differential gear box transmission to the coaxial shaft from the four engines. The
four engines allow redundancy in case of any engine failure during flight. An electronic gyro

sensor gives feedback to the engine control unit to change the rotation speeds of the rotors.

The four engines and the transmission are known as the ‘Mission Unit’. This mission unit
is pivoted about a hinge so that it can be tilted in any direction forwards or sidewards.
This tilting is accomplished by the control bar in the manned version, or by servos in the
unmanned version. Due to the tilt of the rotor, the thrust vector of the coaxial rotors is
changed and provides a horizontal force for the vehicle’s motion. In conventional helicopters,
the shaft has a fixed direction with respect to the fuselage. The horizontal forces are pro-
duced by changing the flapping of the blades. This is done by changing the pitch angle
of the blades, using a swash plate mechanism. This is a complicated mechanical assembly
containing rotating and non rotating units. The GEN-H4 helicopter has fixed pitch rotor
blades which eliminates the need for the intense maintenance associated with a rotor hub
with a swash plate. However the dynamics of the vehicle are made complex due to shift in

displacement and orientation of the mission unit during flight.



1.1 Previous Research

There is a lack of literature on coaxial rotor aerodynamics in general. The recent develop-
ment of the Sikorsky X2 helicopter has increased research on such vehicles, but the unique
design of the GEN-H4 sets it apart from them.

Previous work at Shinshu University on the GEN-H4 helicopter developed a mechanical
model of the unmanned version of the vehicle using the Velocity Transformation Method.
The vehicle was modeled as 4 separate rigid bodies: the ‘Frame Unit’, the ‘Mission Unit’,

the upper rotor blades, and the lower rotor blades.

The rotor thrust was obtained using momentum theory for a constant chord and pitch
angle blade. The blades were assumed to have a pre-cone flap angle. The root of the blade
was assumed to have an angular spring and damper system to represent the elasticity of the

flexible blade.

The results of the study showed an excellent match of the simulation with the experimental

results.

1.2 Objectives of Research

Based on the previous work done at Shinshu University, the following aims were identified

to achieve during the research period.
e Include effects of linear twist and taper of the blades on the aerodynamics
e Identify the blade stiffness and mass properties
e Introduce a non uniform inflow model on the rotor

e Conduct a preliminary stability and control analysis on the vehicle

1.3 Organization of Report

The report is organized in the following manner:



Section 2 gives important details about the blade geometry, which is used to calculate

important parameters of the blade mass distribution.

Section 3 details the simple finite element analysis done to idealize the blade and

validate the geometrical approximations made in the previous section.
Section 3 gives a closed form solution of the rotor aerodynamic in forward flight.

Section 4 integrates the rotor model with the mechanical motion of the body. The

impact of the forward speed on the controls was studied.
Section 5 contains a simple study of the stability and control response in hover.

Section 6 gives a summary of the results of the study and discusses future work.



2 Blade Model
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Figure 1: Blade Plan-form

The blade plan-form used on the vehicle is shown in Fig. 1. The net rotor radius of the
vehicle is 2.0m. The length of the blade is 1.88m, while the rest is the attachment from the
rotor shaft to the rotor blade .

The chord of the rotor blade from the root initially increases from 62 mm to 129 mm till a
point 155 mm from the root. The chord then decreases to the tip to 35 mm. The thickness
of the blade decreases uniformly from 28 mm at the root till 4.2 mm at the tip. The twist
of the blade is linear and decreases by 6.4 degrees from the root to the tip. The blade pitch
angle at a location 3/4th of the rotor radius from the shaft is 10 degrees.

2.1 Idealization

The rotor blade is idealized with an offset and a linear chord distribution as shown in Fig. 2.
The ratio of the offset distance with respect to the rotor radius (R) is e. The radial location

is non dimensionalized as 7 = r/R. Hence the non dimensional radial location of the tip is

given by:
N L R—of fset
Ttip:E:Tzl—e
We can now define the chord distribution as:
c=co+ocr (1)
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Figure 2: Blade Idealization
Also the the thickness distribution is defined as:
t=ty+ 7 (2)
Similarly, the blade pitch angle is given as:
0 =0y+ 617 (3)

2.2 DMass

The total mass of the blade is 1.17 kg. This includes a concentrated mass at the tip. Hence

the total mass can be written as:

Miotal = Mblade + Meip (4)

The rest of the mass of the blade is assumed to be of uniform density. Therefore, the mass

of the blade can be written as the following, where p denotes density and V' denotes volume:

Mplade = Pblade Vilade (5)

The cross-section of the blade is an airfoil. This shape is assumed to be constant over the
complete blade. The area of the cross-section is assumed to be proportional to the product
of the chord and thickness, with a constant shape coefficient fgi, foi:

Aairfoil (6)

c.t

fairfoil =

10



The volume element at a radial location on the blade is the product of the area of cross-

section with the elemental width:

d‘/blade = Am’,«fm'l.dT = fmrfm'l.c.t.R.df (7)

This is now integrated from the blade root to the tip to obtain the total volume:
l1—e
Vilade = / fairfm'z.C.t.R.df =
0

1—e 1—e
fairfoilR/ (Co —+ 0177).@0 + tlf).df = fairfoilR/ [Coto + (Clto + Cotl)f + 01151772].(177
0 0

(1-¢),  (1-¢
2 3

Vitade = fairfoi R(1 — €) [Coto + (c1to + coth) + ity (8)

2.3 Center of Gravity

The center of gravity of the total blade can be calculated as per the following method.

L
X o f(] r.dm o mbladeXcg,blade + mtip~L
cg,total — — (9)
Myotal Mplade T Myip

The center of gravity of the uniformly distributed mass of the blade can be obtained as:

L L
Piade Jo 7-@Votade [y 7-AVhiade
Milade Vitade

Xcg,blade - (10)

The integral in the numerator of the above expression is obtained as:

L l1—e
/ 7.dViiade = fairfoit B / 7(co + 7). (to + t17).dr
0 0

l—e
= faz'rfm;lRZ/ [Cotof + (Clto + Cotl)f2 + Clt1f3].df
0

—e)? (1—e)? 1—e)
+ (Clto + Cotl) + Cltl

t > (1
7.AViiade = fairfoit I~ | coto
0

11



Hence, the center of gravity of the blade is found to be:

(1—¢) +(01t0+00t1)(1_6 : +C1t1<1_46)3 (12
12

1—e 1—e)?
000

colo 5
Xcg,blade =R

Coto + (Clto + Cotl)

Note that this is only dependent on the geometry of the blade. We can now define the ratio

of the tip mass and the blade mass as:

o= 13
Htip Mplade ( )
Therefore, the net center of gravity of the blade can be found as:

cot 1—e 1—e)?

% + (crto + COtl)( ) + 01?51( 1 )

=) A=) | " Hur
Coto -+ (Clto + Cot1> 9 + Cltl 3
Xcg,t@tal = R(]- - 6) (14)

L+ pgip

It can be clearly seen is that the center of gravity of the total blade is dependent only on
the ratio of the tip and blade masses.

By experiment, the center of gravity of the blade was found to be located at 0.74 m from
the root. By using this location, the mass ratio was calculated. The final values obtained

from the above expressions are shown in Table 1.

2.4 Mass Moment of Inertia

The mass moment of inertia of the total blade, about the flapping axis at the root, can be

calculated as per the following method.

L
Jtatal = / T2dmblade + mtipL2 (15)
0

12



Parameter Value
R 2.0m
L 1.725m
e 0.1375
Co 0.129m
c1 —0.109m
to 0.0260m
t —0.0253m
1 0.208
Miotal 1.17kg
Mplade 0.969kg
Myip 0.201kg

Table 1: Calculated Parameters for Rotor Blade

The integral in the above expression is obtained as:

L l1—e
/ TZC“/blade = fairfoile/ fQ(CO + C1F>.(t0 + tlf)df
0 0

l—e
= fairfoilRS/ [Cot0f2 + (Clto + C()tl)f3 + Cltlfﬂ.d’?
0

/ r2~d‘/blade - fairfoilRS |:COtO( 3 €> + (CltO + COtl) ( A e) + Cltl ( 5 e) :| (16)
0

The shape factor and blade density can be eliminated by using the expressions in Equations

5 and 8:

L 3 4 5
1—e 1—e¢ 1—e
pblade/ 2 dVitade = Poiade fairfoit R [Coto< + (cito + COtl)( + 01t1( 5 ) }
0
cot 1—e 1—e)?
% + (c1to + COt1>( 1 ) + C1t1( 5 )
= mbladeRZ(l — 6)2 (1 — 6) (1 — 6)2 (17)

coto + (c1to + coty) 5 + ity 3

The inertia of the blade calculated from these equations is given in Table 2.

13



Jblade O.437/<:g.m2
Jtotal 1036kgm2

Table 2: Inertia Calculation

EL/EI, | —3.762
EL/EI, | 5.301
EI/EI, | —3.316
EI/EI, | 0.7768

Table 3: Bending stiffness coefficient ratios

2.5 Area Moment of Inertia

For estimating the elasticity of the rotor blade in flap, the area moment of inertia of each
cross-section becomes very important. The cross-sectional area moment of inertia is assumed
to be proportional to the product of the area and the square of the blade thickness. The

proportional constant is called ¢4 f0i. Hence,

I = gairfoil(fairfoilCt)~t2 (18)

The bending stiffness is known as EI, of which we assume the elastic constant E is uniform

for the entire blade. This gives us the bending stiffness as a function of the radial location:

EI = EGuirfoit fairfoit(co + a17) (to + t17)°
_ E 3 3 2\ = 2 2\ =2 3 2\ =3 34
- gairfoilfairfoil [Coto + (Clto + BCOtltO)T + (360t0t1 + BCltlto)T + (Cotl + 3C1t0t1)7" + cltlr ]
= Ely + EI,7 + EL7 + EL7# + EIL7

cp 3t 2 ot 3 at?\ . ot
=B |1+ =+ )7+3( 2+ )P+ (A2+3 2 )P+ ()7 (19)
Co to tO Coto tO COtO COtO

It can be clearly seen that the bending stiffness is a fourth order polynomial in the radial
location 7. It is proportional to a single parameter Elj, while the rest of the coefficients
can be easily calculated from the geometric parameters of thickness and chord length. The

ratios of the different coefficients is given in Table 3.

14
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Figure 3: Blade Deflection Experiment

3 Finite Element Analysis

A simple finite element model for the blade was made based on the previous chapter. The

Euler-Bernoulli beam bending theory was applied in this model.

3.1 Experiment

An experiment was conducted on the blade to estimate the blade stiffness, and validate the
finite element model. In the first part of the experiment, the blade was fixed at the root and
deflections due to the blade weight at various locations were measured. In the second set of
experiment, the blade was loaded with weights and the resulting deflections were measured.

The results of the experiment are plotted in Fig. 3. The blade loading is given in Table 4.

3.2 Formulation

The Euler-Bernoulli theory for beam bending tells us:
d? d?
el ( E [_w> =g (20)

dz? dx?

15



Section | Radial Location r (m) | Load (kg)

1 0.295 0.465
2 0.53 0.545
3 0.73 0.6

4 0.93 0.9

5 1.13 0.785
6 1.33 0.735
7 1.53 0.655
8 1.73 0.32

Table 4: Blade Loading

Where, E1 is the stiffness at the location x from the root, and w is the deflection due to the

load g. We use a test function u and integrating by parts:

L Py dw L Pw\ dul® d Ew\ 1*
EI-——" iy = d EI— ) =| — | = (EI— 21
/0 dx? dx? * /0 S {( d$2> dx}o [dx ( dx2> UL 21)

Now we assume the deflection to be a summation of basis functions ¢;, with coefficients «;:
2N+2

WFE = Z a;¢i(T) (22)

The test function is assigned as a basis function also:

u = ¢;(x) (23)

The choice of basis functions is such that they are double differentiable, which means they

must be at least cubic polynomials. The normalized polynomials chosen are:

b(©) =€ -1+ 16— 1) (24)
Ba(€) = 56— 17 + 56— 1) (25)
By(e) = S +17 - (€ +1)° (26)
Bul€) = —5(E+ 17+ 76+ 1) (27)

16



Figure 4: Basis Functions

Where € lies between —1 to 1 in each element, with the endpoints as the nodes. The basis
functions can be visualized in Fig. 4.

The blade was divided into 9 elements based on the nodes on which the loads were

applied.
éai /OL E](f;fzj Cf;qb; dx = iai /OL Q¢idx+izN; o {(E]fj;) d%} i% l < Cf;j;) %}:
(28)
For each element, the following stiffness matrix was formed:
ma4ika:1ﬁEms>ﬁ?fZ?<zﬁ3% (29)

Where L; is the length of the i** element. Similarly the load matrix was formed:

[mﬂ:ﬁ=/<sw( )s (30)

I;

The integrals of the above are calculated using the Gauss-Legendre quadrature. The integral

17



Order | Roots &; | Weights W (¢;) Example

0 0 2 [ aode = 2a0 = 2.£(0)

1 0 2 I (a0 + ai&)de = 2ag = 2(ag + a,.0) = 2.£(0)
11 (a0 + ar€ + ax€?)dE = 2a0 + 2a,/3

2 _\%7\% 1,1 = 1.(ap + a1 /V3 + ay/3) + 1.(ap — a1 /3 + ay/3)

= 1Lf(=1/V3) + Lf(1/V3)
fjl(ag + a1€ + asf? + a3€3)dE = 2ag + 2a,/3
= 1.(ag + a1/V3 + az/3 + a3/ V/27)
+1.(ap — a1/V3 + az/3 — as/V/27)
LA 1/VE) + LAV)

1,1

Table 5: Gauss Legendre Integration

of a polynomial function over a given domain is equal to the sum of the product Gauss-

Legendre weights with the value of the function at the roots.

[ 1= st W, &y

The mapping of the local £ to the global radial location x is:

i—1

2(,8) = 3100) + (1+¢)

k=1

= (32)

The element matrices were then combined to form the global stiffness and load matrices.

K(J,L) = K(J, L)+ kj, (33)
F(J)=F(J)+ fi (34)

We are then left with the following system:

[K](2N+2)x(2N+2){06}(2N+2)x1 = [F](2N+2)x1 (35)

The boundary conditions are imposed appropriately in the load matrix and the system is

18
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Figure 5: Blade Deflection Simulation

solved to obtain the coefficients a. The unknown parameter in this simulation is the stiffness
parameter El,. By varying its value, the deflections were matched with the experimental
results. It was found that Ely = 2200 gave good results as shown in Fig. 5.

First the deflections from the two experiments were fit with a linear curve. This gave us:
e Without Load: w(r) = 0.00787 % r — 0.00362
e With Load: w(r) = 0.0759  r — 0.028

The flap deflection is obtained from the slope of the line, by taking the inverse tangent:
e Without Load: = 0.0078698rad
e With Load: 8 = 0.07575rad

For both the conditions, a virtual offset can be assumed where the blade has zero deflection.

These two values turn out to be:
e Without Load: e* = 0.460m

e With Load: e* = 0.369m

19



The net moments at the virtual offset location comes out to be:

e Without Load: M = 3.5374Nm
o With Load: M = 32.1231Nm

The estimate of the spring constant is then obtained from:

Ky=—
B
e Without Load: Kz = 449.5Nm/rad

e With Load: Kp = 424.0Nm/rad

20
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4 Rotor Aerodynamics

The coordinate systems were defined as shown in Fig. 6 The hub fixed coordinate system of
the upper rotor is {X,,Y,, Z,}. The transformation of the blade azimuth location at v to
{X, Y Z!'} is:

ur U

X', costp siny 0 X
Y'.| = |—siny cosyp 0] X |Y, (37)
7. 0 0 1 Z,

The transformation of the blade flapping upwards with an angle 8 to {X”,,Y",, Z" .} is:

X", cosf 0 sinf X',
v, l=1 0o 1 o |x]|y, (38)
Z" —sinf 0 cospf A

This gives the overall transformation as:

Xu cosfcosty —sinty sin 5 cos X",
Y,| = |cosfsiny costp  sinfFsiney | X | Y, (39)
Zy —sin 3 0 cos 3 zZ",
X n
M g -

» X
B T u
Yu ’Yu - \ ~ XuI
Y
?}‘
o\
Al Z
Y u
Z L'
u u

Figure 6: Rotor Coordinate Systems
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4.1 Forward Flight

Assuming that the blade rotates clockwise, the angular velocity of a blade element is:

=07+ 5}7’ = —Qsinﬂf(” + BY” + QCOSBZ" (40)

If the offset is not considered, the position vector of the element is:

7F=rX" (41)

This gives us the velocity as:

T=& x7=rQcos BY" —r32" (42)

I3

—)

X 4 \Z
u u

Figure 7: Hub Motion

The hub velocity can be divided into two components as shown in Fig. 7:

p=ort (43)
A= VS”;Z—O‘R” (44)

which gives us the speed of the air:
Toir = —pQLRX + MQRZ (45)
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Figure 8: Blade Element

The relative velocity of Air over the blade becomes:

Urel = Vair — U
= —QR(pcostpcos B + Asin )X
+QR(pusine — 7 cos 5)Y”
+QR(Ncos B — pcostsin f + 75*) 2"

The approximation is made that

B —0 = cosf~ 1 , sinff ~ [

The relative perpendicular and tangential components of air with respect to blade become:

~ Up
= — = —_ 7 (3% 4
Up o A — ppcosyy + 703 (46)
- Ur .
UT—ﬁ—r—ysm@D (47)

The forces on each blade element can be seen in Fig. 8. The lift and drag are approxi-
mated to the following:

1
dL =

= 5pUrca(0 = ¢) (48)

1
dD = épU%cC'DO (49)
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dF'xn 0 0

dFyn | = |—=dLsin¢p —dDcos¢| = |—¢dL — dD
dFzn dDsin¢ — dL cos ¢ odD — dL
dFx costy —siny [Lcosy 0
dFy | = |Bsiny cosy fsiny | X |—¢dL —dD
dFy -3 0 1 —dL
dM =7 x dF
dMx 0
dMY == —TdFZ//
dMZ ’I"dF "
dMxn cosy —siny [cosy 0
dMyn | = |Bsiny cosyp  Gsiny | X | —=rdFzn
dMZN —6 0 1 TdFYN

4.1.1 Assumptions in Geometry

We assume a linear taper and twist in the blade:

c=cy+cir

0 =0y + 0,7

The rotor flap is assumed to be as the first harmonic in the rotor revolutions:

ﬁ = BO + ﬁlc COSw + ﬁlsSinw
B = QB cos ) — PBresine)

The derivatives are normalized with the rotation speed of the rotor:
5* = Bls COST/J - Blcsjnd}
5** = _510 COS ’QZ} - ﬁlsSinw
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4.1.2 Forces

The rotor forces are averaged over one revolution to obtain:

Fy = (N,OQ22R3aco> [3A4ﬁlc N 506610 g g 4, (uQA ﬁlc) o (%)\ - %)]

3
4 (NPQQQR?’CLCl) |:/\§lc + BOS/BIC _H (ﬁo + 516) +90 ( 510) ( ﬁlc):|

_ (NpngSC_D°“> [C_O + ﬁ]
2

5 3 (61)

P - (N pQ22R3aco >

3ABis  3Aubo | Bobre  phicPis 3ufo  Bis 1B ubo  Bis 1B
[ 4 g T H b = =5 P i T N A N
N <NpQ2R3acl)
2
Aﬁls 3)‘:“/60 ”260510 /60ﬁlc M/Blcﬁls p“ﬁO /615 “2/818 3#’50 /615 “2/818
- + - - + 6o s + 6, e
2 4 2 8 6 2 4 4 8 5} 6
(62)
B NpQ®R3acy 1 u? 1 u? A
FZ__(T bolzt3 ) T0\itT) 3
NpQ?R3acy 1 P 1 P A
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Figure 9: Rotor Flapping Model

4.1.3 Moments

NKsp,
My = ——2‘36 ! (64)
Kppie
My = % (65)
2 4
M, — (NpQQR co) 9
N b 128 pbisBo | B B 3uPBr. 1SR, GoA 01 1 p?
AN _ Ple | Pls c s 204 AN oo (2o B
{a(2 > 1 3 "R T8 16 16 3 4 P37
N <NpQZR4cl> "
2
N Aube B wbisBo | Br. | Bl | 1B | 1B O 6 1w
AN _ Ple s 4 7 Ple ERAUAR A RS AR (e il
[a(s 35 6 T T8 Tt T 1 s Do \51 %
(66)

4.2 Rotor Flapping

The blade is assumed to be rigid with a root spring at the hub center to account for the

flexibility of the blade. The blade flapping differential equation is formed, and solved for

26



each of the terms in the flapping assumption.

o paR? 1 psing 1 psing .
YA {00(4 3 ) T\57 1
n

~ aR*p cos 1 sin si
el G e o R o
pacoR* 1 2usiny  p?sin?e 1 [LSIH’QD ,u sm2@/z A )\,usmw
= Oo | ~ — + +01 | < =
2J, 4 3 2 5 2 3
paci R* 1 psinty  p?sin? 1 2psiny ,u sm2@/) A /\,u smw
N 0, ( = A
0 l“ (5 > T3 TG 5 Ve
(67)

This gives us the following:

B paR* 1 P 1 P A 1 u? 1
BO_QJZ,(D}Q%F |:Co{90<4+ 4>+61(5+ 6 3 + 90 5+ 6 —|—91 6"—

5, = Ak + BoA pp
3 k2 4+ &%
¢ k% + &% pr

Here:

Kpg
Jp§2?

WRF—1+WNRF_1+

- (=) g4
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CEREDSGR e

The above forces and moments are for a clockwise rotating rotor (viewed from above). The
forces for an anticlockwise rotating rotor can be found by simply taking the mirror image as

shown in the following Fig. 10.

Hence:

Fx Fx
Fy = | — Fy (77)
FZ FZ

Counter—Clockwise Clockwise
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MX _MX

My - My
MZ _MZ

Counter—Clockwise

4.3 Inflow Model

There are two models used in the report. The uniform inflow model is based on the momen-

tum theory and is used in the closed form solution of the forces and moments used above. It

also shows an accurate method to obtain the inflow, compared to the approximations used

in the old analysis.

4.3.1 Uniform Inflow

The induced component of the inflow is obtained from momentum theory as the following:

Cr
)\7; —
217+ O+ )2
A=A+ N

At hover we know that:

M= Ny = \/?

Hence the induced inflow can be written in this form:

1

Al =
Vit (4 A
Where:

\s
=2

(2 Ah
w=1

A

A
=25

c )‘h

4.3.2 Newton’s Method for solving \;

Let us define a function:

1

29
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(79)

(80)

(81)

(82)
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The partial derivative with respect to A} is:
of AL+ AT

P 1 3
S ORE

(87)

This function is zero when the A} is converged. Using Newton’s method, the consecutive

values of A\! in each iteration can be obtained from the following:

Ao = (Ao — (38)

of
(@)

It was observed that since the function f is smooth and well behaved, the convergence of the

solution came in just a few (3-4) iterations.

4.3.3 Drees Model

The Drees Model essentially assumes a non uniform distribution of inflow over the rotor in
forward flight. The inflow calculated from the uniform inflow model is labeled as A\g. The

inflow at a particular radial location and azimuth is given as :

A= Ao+ AT cosyy + A7 siny (89)

The two components of the inflow distribution are given by:

A= Ao — Ao (90)

4 9 AN\
M= (=N [[1=242 1 -0 == 91
= |05+ () -3 o)

4.3.4 Upper - Lower Rotor Interaction

The upper and lower rotor interaction is quantized by a factor K. This represents the speeding

up of the upper rotor inflow which acts as a climb inflow to the lower rotor.

Q
Ac,lower - KAO,uppeTQ_U (93)
L
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An analytic approximation of this interaction factor is dependent on the rotor spacing:
2H/D

V1+4H?/D?

K=1+

(94)

For the current rotor spacing of H = 0.19m, and rotor diameter D = 4.0m, the interaction
factor is found to be K = 1.095

4.4 Full Model

It is possible to numerically integrate the elemental loads without taking assumptions such
as small flap angles into account. So in this case, for each azimuth location, the forces and
moments are added as per the Gauss-Legendre integration scheme shown earlier. The steps

followed are:
L.r=(01-¢e)(1+&)/2
2. c=cy+cqr
3. 0="00+ 0,7
4. N = Ao+ A cosy + AT sin
5. Up = — [y SINY + f1, cOS Y + e + T cos
6. Up = —p,sintpsin B — p, costpsin B + Acos 8+ B*(ecos B + 7)
7. ¢ = tan Y (Up/Ur)
8. v — QR(U2 + U2)
9. dL = (1/2)pv*ca(f — ¢)
10. dD = (1/2)pv*cChp,

The forces and moments are integrated using the Gauss-Legendre weights. The blade flap-

ping differential equation is given by:

(Jo+MpX geR cos ﬂ)ﬁ = Maeroa— K (B—Ppre) — (Jo+MpX ge R cos 6)(92—52) sin B—J,3% cos 3
(95)
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Figure 11: Upper Rotor Forces in forward flight of 5m/s

For example, the exact loads on the rotor can be seen in Fig. 11. The forces are calculated
at a forward speed of 5m/s without any pitch tilt. It is clear that there is a large oscillatory

load in the vertical direction at a frequency of nearly 14 Hz.
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5 Forward Flight Equilibrium

The vehicle in forward flight and equilibrium is shown in Fig. 12.

L 0

Figure 12: Forward Flight Model

The net mass of the upper and lower rotor is clumped with the mass of the mission
unit at A. The point C is the universal joint about which the rotor shaft is allowed to tilt
by (dg,04). The point B clumps the mass of the frame unit. It is assumed that the frame
attached to C does not rotate with respect to the earth fixed coordinate system. This means

that the payload in the frame does not have any different attitude during flight.
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The CG location with respect to C can be obtained as:
_ MpXnipt + MaLac sin by

X = 96
9 MA + MB ( )
Y,cg _ MB}/shift + MALAC COS 59 sin (5(;5 (97)
My + Mp
Zuy = MpLpc — MyL sc cos dg cos dg (98)
My + Mg
5.1 Equilibrium
The coordinate transformation from the tilted A frame to the C frame is given by:
Xo cos 0 0 —sin dy X4
Yo | = | —sindgsindy, cosdy —cosdgsindy| X [ Yy (99)
Zo sindgcosdy sindg  cosdp cosdy Z 4

The forces on the upper and lower rotor are clumped and transformed to the C frame for

force balance. The other forces are from gravity and drag on the vehicle.

Fx 0 —%pV2(7TR2)(fA + fB)
FY = FUpper + FLower + 0 + 0 (100)
), (Ma+ Mp)g | 0 .

Similarly, the net moment at the CG is calculated as:

Mx
MY = MUpper+MLower _I'/rcg—U X FUpper+rcg—L X FLower+Tcg—A X FDrag,A"'rcg—B X FDTag,B
M

z C

(101)

Equilibrium is that point at which the net force and moment at the center of gravity becomes

Zero.

5.2 Particle Swarm Optimization

We have six unknowns to solve for in the net force and moment equations. These unknowns

are:
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1. Upper Rotor Rotation speed: €y

2. Lower Rotor Rotation speed: €,

3. Forward Shift of Frame Unit: X,z
4. Side-ward Shift of Frame Unit: Y,z
5. Forward tilt of Mission Unit: dg

6. Side-ward tilt of Mission Unit: o,

At equilibrium, the net forces and moments are zero, so we define an objective function:

f=F2+ F24+F;+ M2+ M2+ M3 (102)

The unknown values become the parameters to optimize at a particular forward speed so
that the objective function is minimized. For this we use the Particle Swarm Optimization

technique.

5.3 Algorithm

The following algorithm is used to find the optimum values of the controls, given a forward

velocity V:

1. Initialize 30 particles. The first particle is an initial user guess. The other particles
are randomly given values in a given domain of about+10% RPMs, £0.1rad tilt and
+0.1m shifts.

2. Each particle is given its personal best optimum value as the calculated value of the
optimum function at the given controls. A global best value is calculated by finding

the minimum of them.
3. A tolerance of the optimum function is set to 10710,
4. Then the personal and global best optimum function of the particles are found.

5. A velocity for each particle is found for each control as: V,,.; = 0.5V,,+2.Rand.(pbest —
P,) + 2.Rand.(gbest — P,)
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6. The new position for each particle is found for each control as: P, 1 = P, + V11

7. This is repeated till the global best meets the tolerance required, and the global best

particle is found to be optimum controls at equilibrium.

5.4 Results

The relation between the control inputs and the forward speed was plotted. The analysis of
the results gives us an important indication of limits in forward speed.

An important limit is the region of reverse stall in the rotor. The region can be seen as the
one with the darkest blue shade in the Fig.13. This region is seen to be a significant portion
of the rotor at 10 m/s, especially in the lower rotor. The blade tilt and flap can also be seen

in this figure.

The reverse stall region is approximately circular. At the points on the circumference, the
tangential speed is zero. Hence, the diameter of this region is found by equating the forward
speed and the speed due to rotation:

V =Qd (103)

To keep this region as small as possible, it is important to have a high angular speed in
forward flight. This can be achieved by reducing the pitch angle of the blades. However,

this will increase the power requirement at hover.

The control inputs required at different forward speeds are plotted in Figs. 14-19. It can
be seen that the rotor RPM decreases with forward speed. It does not significantly depend
on the stiffness of the rotor blade, except at high speeds. Similarly, the forward tilt of the
rotor is nearly independent of the stiffness of the blades. However, the sideways tilt is very
dependent on the forward speed. In fact, for some mean values of the spring constant, the
control reverses as speed increases. For flexible blades (K = 200), the tilt is roughly constant
for speeds above 5m/s, implying that the control is easier. A very stiff blade will require
large tilts. The forward shift in CG can be limited by using more flexible blades. The same

conclusion is for the sideways shift.

The rotor power is not a limit to forward speed, since the maximum power is used at hover.
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(a) Isometric View

(c) Side View

(d) Lower Rotor Bottom View

Figure 13: Rotor Angle of Attack at 10 m/s (36 km/hr) Forward Flight
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Figure 15: Pitch tilt variation in forward flight
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Figure 17: X shift variation in forward flight
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6 Hover Stability and Control Analysis

At hover, the helicopter is assumed to be perfectly vertical. There is no shift in the frame

unit and no tilt of the mission unit. The model is shown in Fig. 20.

T, IU
[ “r'--\. 1
A
0 '."'L I
I 1 Q L ]
i |

Figure 20: Hover Model

6.1 2D Simple Model

At equilibrium, the total thrusts of the rotor are equal to the total weight of the system.

(ma+mp+my+mp)g="Ty, + 1L, (104)
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To simplify, the total mass is defined to be: my = my + mp + my + my, We now assume

that the system is perturbed in the three quantities:

e Forward velocity: u
e Pitch Attitude of Vehicle: 0

e Pitch rate of Vehicle: ¢

The equations of motion of the system can be written as:
mT’ll = —mrg sin0 — TUD A ﬁlcu — TLO A 6101 (105)

JYq = NKﬁ A ﬁlcu + NKB A ﬁlcl + chfUTUo A ﬁlcu + chfLTLD A Blcl (1O6>

The forward force generated is assumed to be due to a tilt of the rotor tip path plane, which

corresponds to a change in flap angle coefficient of ..

The net change in moment on the center of gravity comes from two sources for each ro-
tor. One is due to the moment due to blade flap. This is equivalent to the moment on the
root spring. The other is due to the moment generated by the forward force of the rotor

acting at a distance L.,y and L, from the center of gravity.

The change in flap angle can be written as:

0B 0B 0B .
A 1+ 1
Pre ou " Jq 1 aq 1 (107)

The derivatives are obtained for a simple rotor model, with a constant chord and blade

8/816 o 8 2CT )\o 1
o (Q—R) [E * ﬂ (sg T 1) (108)

Here C'r is the equilibrium thrust coefficient, o is the rotor solidity, a is the lift curve slope,

pitch angle.

Ao 18 the rotor inflow and S, is the coupling parameter. The magnitude of S, indicates the
amount of cross-coupling between the forward and sidewards motion. The cross-coupling

parameter is defined as:
8Kpg

¢ LT

(109)
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The lock number v of the blade is given as:

pacR*
= 110
=7 (110)
The derivative with respect to angular motion is
B (1 Se+ 2 (8L 20T+§ (1)
o  \Q/) | S2+1 QR ) | oa 4

Similarly, the derivative with respect to rate of angular motion is
1
85_10 (L) (8 S (112)
dq 2 )\~ /) [S2+1

In State-Space form, the equations of motion can be written as:

U U
(M] {q| =[K] |q (113)
0 0
Where: »
aﬁlcu 1lc
mT (Tuo aq + 1_’[0 8ql O
Ml=1|0 Jy— <ozu8%1q.c“ + o ag;cl> 0 (114)
0 0 1
and ) »
_ <T“o Bﬁalucu + Tlo% _ (T“o alglgu + Tu%) —mrg
lc 0 C lc 0 c
(K] = (Ozua%—u“ + oq%) <ozu8%—q“ + o /;;l) 0 (115)
0 1 0
Where
a=NKg+ LT, (116)

To solve for the equilibrium conditions we use:
T, = prQ2R*Cy, (117)
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and
Q, = pr2R*Cy, (118)

The blade element momentum theory with uniform inflow gives us:

oa (60 A
Cr == (5 - 5) (119)

C
O, = kCpA + 2 - (120)
The inflow for the lower rotor is assumed to be:
Q,
A=A, + kA, — (121)
97
Using this for the lower rotor we get:
—b—+D
Crp=—— (122)

Where:

b= —2 {(JTu + %“ CQTu (2 - k%—j) + (%)2} (123)
D=4 (%)2 [CTu {2+ (k%)Q} 42 (%) CzTu {2 - (k%)} + (%)1 (124)

To obtain the hover equilibrium RPM ratio €, = %“;0, the moment equilibrium equation in

non dimensional form reduces to:

Ca, = Cau, % (125)

As Cy, is also a function of the RPM ratio, the above equation is solved iteratively to obtain

the equilibrium RPM ratio of the rotors. Once the equilibrium RPM ratio is known, the
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thrust equation can be used to obtain the upper and lower rotor neutral RPMs as:

mrg

O, = _
N V prRi(Cr,, + Q2Cr,,))
Qu, = QLY (127)

(126)

The parameters used for this calculation are in Table 6. The value of the average blade pitch
angle # and the coaxial rotor interference were adjusted to get the rotation speeds close to
the ones seen in experiments. The rest of the parameters calculated are given in Table 7.
For the given parameters, the equilibrium rotation speeds are Q,, = 87.64rad/s and €, =
88.13rad/s. Given these values, one can also obtain the thrust sharing between the rotors.
In the given case, the upper rotor generates 61.8% while the lower rotor generates about

38.1% of the total thrust. The cross-coupling parameter S¢ of each rotor was calculated to
be:

o So, =0.172
o S¢ = 0.170

The mass matrix was found to be:

166.0 —0.0745 0
(M] = 0 16726 0
0 0 1

and the stiffness matrix was:

—0.0028 0.0820 —1.6285
[K] =1000.0 | 0.0067 —0.1983 0
0 0.001 0

The eigenvalues of the system matrix A = [M]~1.[K] were obtained as:
e -1.4016
e 0.0996 + 0.5192 1

e 0.0996 - 0.5192 1
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Parameter Value
mr 166.0kg
g 9.81m/s?
N 2
Kj 645.0Nm/rad
Lap 0.899m
Lar 0.2m
S 0.19m
mp 100.0kg
Jy 1.036kgm?
JB 90.0kgm?
Ja 40.0kgm?
Co 0.129m
c1 —0.109m
R 2.0m
L 1.725m
R 2.0m
p 1.205kg/m?
0 8.6°
a 5.73/rad
1.25
K 1.15

Table 6: Parameters used for Simulation
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Parameter Formula Value
Ay $(2co+(L/R))L 0.1414m?
my N(1.17) + 3.7 6.04kg
ma 66.0 — 2m, 53.92kg
0% % 3.770kgm?
o " 0.0225
Legy Lapma+(LaptLar)mrt+(Lap+Lar+S)me 0.379m,
mp
Leg— Lagp+ L +5— Legy 0.910m
ch—l Lag+ Lap — ch—b 0.720m
ch—a LAB — ch—b 0.520m
Jy Jp+mpLl,_,+ Ja+maLlZ, ,+m. L2, _,+m.L2, _, | 167.077kg.m’
2
oa oaf ca)?
Cr, {m +y/ 22 4y w 0.00216
- or, 0.0329
C “Cr | oCp, 0.884 x 107
qu \/i + 8 : X

Table 7: Calculated Parameters in Simulation
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The corresponding eigenvectors were (u, g, 6):

e (—0.9752,0.1802, —0.1286)

e (0.9981,—0.0267 + 0.0108i,0.0105 — 0.05344)

e (0.9981,—0.0267 — 0.0108¢,0.0105 + 0.05344)

The positive eigenvalue shows that the vehicle is unstable.

6.2 3D Simple Model

The above model was extended to include both roll and pitch motions of the vehicle. This

incorporates the coupling between the forward and sideways motion. The equations of motion

can now be written as:

mTU = —ng SIIIQ - TUO A 61% - TLO A /8101

mpl = mpgsin ¢ — Ty, A /Blsu -1, A 5151
Jxp=—-NKgA Brs, — NKg A Brs, — Leg-vTu, A Brs, — Leg—1T1, A P,

qu = NK,B A ﬁlcu + NK,B A Blcl + chfUTUo A 51% + chfLTLo A Blcl

In State-Space form, the equations of motion can be written as:

RSN Rt OB
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(129)
(130)
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Where:

and

mr

o o o o O

0

mr

o o o O

T,

8/810u + 7”[

o~ Jp

T,

aﬁlsu + 7—1[

Yo~ Jp

Jx + (aﬁ@;“ +a

8ﬁlcl
o 6])

8ﬂlsl
o ap

aﬁlsl
l p

86 cy aﬁlc
- (C“ua;p Tt

0

K3
Ko

K43

0
1
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aﬁ leq
T, 2%

8515u
T, %%

85 Su
(0

851cl

+ T, %

8615[

+ 11, %

941

S1

+Oél g

OP1cy
Jy — (Ozu% +

1
0

0

661(3l
dq

)

o = O O O O

_ o O o o O

(133)
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Where

Ky = — (Tuo 85117
Kip = — (Tuo agz%
K3 = — (Tuo ag;:“
Ky = — (Tuo 8?1;"
Ko = — (T% 05;«8“
Ky = — (Tuo agj“
Koy = — (Tuo ag;“
Koy = — (Tuo ag;s“
K3 = — (au agi“
Ky = — (au agiju
Ky = — (au aggu
Ky = — (au agquu
i = (g
Ky = (au agzc“
Ky = (au ag;;“
Ko — <au 02;%

20

(135)
(136)
(137)
(138)
(139)
(140)
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The flap angle partial derivatives are obtained to be:

OBre  OBis (1) |1— SC% 8ScLey \ | 2CT
8p_8q_(§> S2 41 _(QR)[oa+
0Bre 0B _ (1N St T|  (8Ly) [20r
oq  Op __(§> S2 41 _<QR)[E+
e OB 1 8 Se
ag —  op __(W) (5) [S&+J
e OBy (1 8 1
o 0q (@ (5) {Szﬂ}
o o (YA ()
ou ov QR oa 4 S2 41
0B, _aﬁls__(i) [@+§] ( 5. )
ov ou QR oa 4 S2+1

(151)

(152)

(153)
(154)
(155)

(156)

The parameters are strongly dependent on the coupling parameter S.. A small coupling

factor is desirable for easier control and stability. Hence blades should have increased elas-

ticity /flexibility and a larger radius. The mass distribution should be such that the inertia

of the blade is increased.

The calculated matrices from the above expressions are given as:

—1.6285

_166 0 0.4351  —0.0745 0
0 166 0.0745 0.04351 0
M) = 0 0 167.2572 1.0533 0
0 0 —1.0533 167.2572 0
0 0 0 0 1
0 0 0 0 0
and
-—0.0028 0.0005 —0.0045 0.0820
—0.0005 —0.0028 —0.0820 —0.0045
(K] = 1000.0 —0.0011 —0.0067 —0.1983 —0.0110
0.0067 —0.0011 0.0110 —0.1983
0 0 0 1
0 0 1 0
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The eigenvalues of the system matrix A = [M]~![K] are:
e (0.1459 £ 0.5011:
e 0.0524 £ 0.5409¢
e —1.401 £ 0.0153¢
The corresponding eigenvectors are: (u,v,p,q,0,®)

e —0.70587,0.7058, —0.0166 + 0.0107z, —0.0107 — 0.0166¢, —0.0363 + 0.0108¢, 0.0108 +
0.0363:

0.7058:,0.7058, —0.0166—0.0107%, —0.0107+40.01667, —0.0363—0.0108, 0.0108 —0.036 3¢

e —(0.7057,0.70572, —0.0042 — 0.0211z, —0.0211 + 0.00427,0.0039 + 0.03947, —0.0394 +
0.0039:

e —(0.7057,—-0.7057:, —0.0042 + 0.0211%, —0.0211 — 0.00427, 0.0039 — 0.0394¢, —0.0394 —
0.0039¢

e 0.6896, —0.6896¢, —0.0026—0.1273¢, —0.1273+0.0026¢, 0.0909—0.0008, 0.0008+0.0909¢

e 0.6896,0.68967, —0.0026 + 0.12737, —0.1273 — 0.0026¢, 0.0909 4 0.0008z, 0.0008 — 0.0909:

The positive real parts of the eigenvalues show that the system is unstable in those modes.

6.2.1 Heave Damping

In the heave degree of freedom, there is thrust acting upwards from each of the rotors and

the weight of the vehicle acting downwards:
mrZ = =T, —T; + mpg (157)
Perturbations from equilibrium give us the following equations:
mz=—T,—T, (158)
The perturbation in thrust can be obtained as:

T, +T; = pnR* |Q2 Cr, + Q1 Cr (159)
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Where

A, = = {/\uo (k) + \/ A2 (k)% + 204

2

Cr, =

We need to define a term as shown below:

(8C’Tl ) :
T z
0z

The momentum theory gives us the lower rotor inflow as:

2\,

¢ =

Note that:

o

Another factor is defined as per the following:

And then we can get the derivatives as:

BE

The mass factor is given as:

EIE

a+ 8\,

o
~ \oa+ 16X,

)

ST 1k
) (o
0z 0z
mr
pm R3

oa =
= \/ A2 (k) + 20y,

Cr,
Ao, = || e
2
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In dimensional form:

w:—( ! ) [Qi (ﬁ) + Q7 (8%)} w (170)
s, '\ 0z °\ 0z

After calculating using the previous parameters:

w = —0.2927w

6.3 Control Analysis

For the hover state, the following four control inputs are identified:
1. Tilt Forward of Mission Unit dy
2. Tilt Side-ward of Mission Unit d4
3. Shift Forward of Frame Unit X5
4. Shift Side-ward of Frame Unit Y, s

The contribution of the tilt is only to the forward and side-ward forces only, while the shift

creates a moment about the center of gravity. The complete dynamic equations can be

written as: L _
U U
) v (59
P p 04
(M) |" | = [K] +[C] (171)
q q Xohift
0 0 Yinie
9] 9]
The control matrix is found to be:
_ng 0 .
0 mprg 0 0
0 0 0 mp |2 % g
[C] = ( T> (172)
0 0 —mp ( _ g-g) g 0
0 0 0
| 0 0 0 0 ]




After the calculation, we obtain:

(16285 0 0 0

0 16285 0 0
0 0 0 13710
[C]=
0 0  —1371.0 0
0 0 0 0
0 0 0 0

The controllability of the system can be found by comparing the rank of the system matrix
and the controllability matrix, which for the current calculation, turns out to be 6 for both.

Hence the system is unstable, yet controllable in hover.
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7 Conclusions

7.1 Results

The following are the key conclusions of the study:

e The blade mass distribution and geometry plays a key role in the rotor flapping be-

havior.

e The finite element analysis can help predict the mass and stiffness distribution for a

required spring constant.

e The rotor aerodynamics accounts for the linear taper and twist, so can be used to

design new blades.

e The forward flight results show that the spring constant determines the cross-coupling

behavior of the rotor at forward flight.
e The blade flapping causes large oscillatory loads on the vehicle.

e The vehicle is unstable in hover, but controllable.

7.2 Future Work

The following are some areas which need to be addressed in the future:

e The stability and control analysis should be extended for forward flight and general

maneuvers.

e The rotor hub forces and moments should be made more accurate to account for reverse

stall and inflow so that the simulation matches more accurately.

e The inflow model needs to account for the inertia of the air. This can be approximated

by using a low pass filter.
e The rotor model should also include the rotation speed of the hub as well.

e The current analysis uses a quasi static approach for the aerodynamic forces. Using

unsteady aerodynamics for the blades will improve the prediction of rotor loads.

o6



Experiments with less stiff blades will be useful to match simulation results.
Experiments with a smaller fixed pitch and faster rotors need to be done.

The control mechanism will benefit with a power steering or fly by wire system due to

the very small control inputs required in the shift and tilt in forward flight.

The blade aerodynamic cross-section can be optimized to increase forward flight. The
sections close to the root should have high stall angles, while the sections near the tip
should have high lift to drag ratios.

According to the requirements of the GEN corporation, a full mathematical model of
the vehicle will be useful to get characteristics such as Autorotation capability and

predict handling and flying qualities in all maneuvers.
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