
Introduction to Locality-Sensitive
Hashing

Tyler Neylon

521.2018

[Formats: html | pdf | kindle pdf]

Locality-sensitive hashing (LSH) is a set of techniques that
dramatically speed up search-for-neighbors or near-duplication
detection on data. These techniques can be used, for example, to
filter out duplicates of scraped web pages at an impressive speed,
or to perform near-constant-time lookups of nearby points from
a geospatial data set.

Let’s take a quick look at other types of hash functions to get
a bird’s-eye view of what counts as a hash function, and how
LSH fits into that world. A traditional use for hash functions
is in hash tables. As a reminder, the hash functions used in
a hash table are designed to map a piece of data to an integer
that can be used to look in a particular bucket within the hash
table to retrieve or delete that element. Many containers with

http://tylerneylon.com/a/lsh1/lsh_post1.html
http://tylerneylon.com/a/lsh1/lsh_post1.pdf
http://tylerneylon.com/a/lsh1/lsh_post1_for_kindle.pdf

Figure 1: A preview of LSH in action. Only hash collisions were
used to find the weights in this image — no pairwise distances
were explicitly computed.

string keys, such as JavaScript objects or Python dictionaries, are
based on hash tables. Although hash tables might not guarantee
constant-time lookups, in practice they effectively provide them.

There are other classes of hash functions as well. For example, the
SHA-1 cryptographic hash function is designed to be difficult to
reverse, which is useful if you want to store someone’s password as
a hashed value. Hash functions like these are called cryptographic
hash functions.

Hash functions typically have these key properties:

• They map some type of input, such as strings or floats, to
discrete values, such as integers.

• They’re designed so that two inputs will result in hash
outputs that are either different or the same based on key
properties of the inputs.

Here’s how LSH fits in: Locality-sensitive hash functions are
specifically designed so that hash value collisions are more likely
for two input values that are close together than for inputs that
are far apart. Just as there are different implementations of
secure hash functions for different use cases, there are different
implementations of LSH functions for different data types and
for different definitions of being close together. I’ll use the terms
neighbors or being nearby to refer to points that we deem “close
enough” together that we’d want to notice their similarity. In
this post, I’ll give a brief overview of the key ideas behind LSH
and take a look at a simple example based on an idea called
random projections, which I’ll define in section 2 below.

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function

1 A human example

It will probably be much easier to grasp the main idea behind
LSH with an example you can relate to. This way we can build
some intuition before diving into those random projections that
we’ll use in the next section.

Suppose you have a million people from across the United States
all standing in a huge room. It’s your job to get people who live
close together to stand in their own groups. Imagine how much
time it would take to walk up to each person, ask for their street
address, map that to a lat/long pair, then write code to find
geographic clusters, and walk up to every person again and tell
them how to find the rest of their cluster. I cringe just thinking
about the time complexity.

Here’s a much better way to solve this problem: Write every U.S.
zip code on poster boards and hang those from the ceiling. Then
tell everyone to go stand under the zip code where they live.

Voila! That’s much easier, right? That’s also the main idea
behind LSH. We’re taking an arbitrary data type (a person, who
we can think of as a ton of data including their street address),
and mapping that data into a set of discrete values (zip codes)
such that people who live close together probably hash to the
same value. In other words, the clusters (people with the same
zip code) are very likely to be groups of neighbors.

A nice benefit of the zip code approach is that it’s parallel-
friendly. Instead of requiring a center of communication, every

person can walk directly to their destination without further
coordination. This is a bit surprising in light of the fact that the
result (clusters of neighbors) is based entirely on the relationships
between the inputs.

Another property of this example is that it is approximate: some
people may live across the street from each other, but happen
to have different zip codes, in which case they would not be
clustered together here. As we’ll see below, it’s also possible
for data points to be clustered together even when they’re very
far apart, although a well-designed LSH can at least give some
mathematical evidence that this will be a rare event, and some
implementations manage to guarantee this can never happen.

2 Hashing points with projections

In this section, I’ll explain exactly how a relatively straightforward
LSH approach works, explore some key parameters for this LSH
system, and review why this technique is an order of magnitude
faster than some other approaches.

Let’s start with an incredibly simple mathematical function that
we can treat as an LSH. Define h1 : R2 → Z for a point x =
(x1, x2) ∈ R2 by

h1(x) := bx1c;

that is, h1(x) is the largest integer a for which a ≤ x1. For
example, h1((3.2,−1.2)) = 3.

Let’s suppose we choose points at random by uniformly sampling
from the origin-centered circle C with radius 4:

C := {(x, y) : x2 + y2 ≤ 42}.

Suppose we want to find which of our points in C are close
together. We can estimate this relationship by considering points
a, b ∈ C to be clustered together when h1(a) = h1(b). It will be
handy to introduce the notation a ∼ b to indicate that a and b
are in the same cluster. With that notation, we can write our
current hash setup as

a ∼ b ⇐⇒ h1(a) = h1(b).

Figure 2 shows an example of such a clustering.

You can immediately see that some points are far apart yet
clustered, while others are relatively close yet unclustered. There’s
also a sense that this particular hash function h1 was arbitrarily
chosen to focus on the x-axis. What would have happened with
the same data if we had used instead h2(x) := bx2c? The result
is figure 3.

While neither clustering alone is amazing, things start to work
better if we use both of them simultaneously. That is, we can
redefine our clustering via

Figure 2: Twenty points chosen randomly in a circle with radius
4. Each point x is colored based on its hash value h1(x).

Figure 3: The same twenty points as figure 1, except that we’re
using the y values (instead of x values) to determine the hash-
based cluster colors this time around.

Figure 4: The same twenty points clustered via two different
hashes — one using bxc, the other using byc. As before, points
are colored based on which cluster they’re in; a cluster is the set
of all points who share both their bxc and their byc values.

a ∼ b ⇐⇒

h1(a) = h1(b), and
h2(a) = h2(b).

(1)

Our same example points are shown under this new clustering in
figure 4.

This does a much better job of avoiding clusters with points
far apart, although, as we’ll see below, we can still make some
improvements.

2.1 Randomizing our hashes

So far we’ve defined deterministic hash functions. Let’s change
that by choosing a random rotation matrix U (a rotation around
the origin) along with a random offset b ∈ [0, 1). Given such a
random U and b, we could define a new hash function via

h(x) := b(Ux)1 + bc,

where I’m using the notation (vec)1 to indicate the first coordinate
of the vector value vec. (That is, the notation (Ux)1 means the
first coordinate of the vector Ux.) This function is the random
projection I referred to earlier.

It may seem a tad arbitrary to use only the first coordinate here
rather than any other, but the fact that we’re taking a random
rotation first means that we have the same set of possibilities,
with the same probability distribution, as we would when pulling
out any other single coordinate value.

A key advantage of using randomized hash functions is that any
probabilistic statements we want to make about performance
(e.g., “99% of the time this algorithms will give us the correct
answer”) applies equally to all data, as opposed to applying to
some data sets but not to others. As a counterpoint, consider
the way quicksort is typically fast, but ironically uses O(n2)
time to sort a pre-sorted list; this is a case where performance
depends on the data, and we’d like to avoid that. If we were
using deterministic hash functions, then someone could choose

the worst-case data for our hash function, and we’d be stuck
with that poor performance (for example, choosing maximally-far
apart points that are still clustered together by our h1 function
above). By using randomly chosen hash functions, we can ensure
that any average-case behavior of our hash functions applies
equally well to all data. This same perspective is useful for hash
tables in the form of universal hashing.

Let’s revisit the example points we used above, but now apply
some randomized hash functions. In figure 4, points are clustered
if and only if both of their hash values (from h1(x) and h2(x))
collide. We’ll use that same idea, but this time choose four
rotations U1, . . . , U4 as well as four offsets b1, . . . , b4 to define
h1(), . . . , h4() via

hi(x) := b(Uix)1 + bic. (2)

Figure 5 shows the resulting clustering. This time, there are 100
points since using more hash functions has effectively made the
cluster areas smaller. We need higher point density to see points
that are clustered together now.

It’s not obvious that we actually want to use all four of our hash
functions. The issue is that our clusters have become quite small.
There are a couple ways to address this. One is to simply increase
the scale of the hash functions; for example, set:

h̃i(x) := hi(x/s),

https://en.wikipedia.org/wiki/Universal_hashing

Figure 5: One hundred random points clustered using four ran-
dom hash functions as defined by (2). Points have the same
color when all four of their hash values are the same. Each set
of parallel light gray lines delineates the regions with the same
hash value for each of the hi() functions.

where s is a scale factor. In this setup, larger s values will result
in larger clusters.

However, there is something a bit more nuanced we can look at,
which is to allow some adaptability in terms of how many hash
collisions we require. In other words, suppose we have k total
hash functions (just above, we had k = 4). Instead of insisting
that all k hash values must match before we say two points are
in the same cluster, we could look at cases where some number
j ≤ k of them matches. To state this mathematically, we would
rewrite equation (1) as

a ∼ b ⇐⇒ #{i : hi(a) = hi(b)} ≥ j. (3)

Something interesting happens here, which is that the a ∼ b
relationship is no longer a clustering, but becomes more like
adjacency (that is, sharing an edge) in a graph. The difference
is that, in a clustering, if a ∼ b and b ∼ c, then we must have
a ∼ c as well; this is called being transitively closed. Graphs
don’t need to have this property. Similarly, it’s no longer true
that our similarity relationship a ∼ b is transitively closed.

It may help your intuition to see this new definition of a ∼ b
in action on the same 100 points from figure 5. This time, in
figure 6, there are twenty random hashes, and we’re seeing the
graphs generated by equation (3) using cutoff values (values of
j) of 6, 7, 8, and 9. The top-left graph in figure 6 has an edge
drawn between two points a and b whenever there are at least 6
hash functions hi() with hi(a) = hi(b), out of a possible 20 used

hash functions.

In fact, we can visualize all possible cutoff values of 6 or higher —
these are values of j in equation (3) — using a single image with
weighted edges, as seen in figure 7. Keep in mind that we haven’t
explicitly computed any pairwise distances to arrive at this data.

There’s another fun way to build intuition for what information
our hashes provide. Let’s visualize regions of the circle where all
points have the same number of hash collisions with a given query
point. We can do this by showing an example query point q, and
shading each region based on the number of hash collisions the
region’s points have with q; this is shown in figure 8. Every point
in each shaded region has the same hash values for all the hash
functions used. The first part of figure 8 shows a scaled version
of the two-hash system (using h1() and h2(), similar to figure 4)
that we saw before; the second part uses 5 random hashes. The
darkest region contains points p where all hash values collide, so
hi(p) = hi(q) for all i. In a lightly shaded region that equation
will only hold true for a smaller subset of the hash functions hi().

The second part of figure 8 (with 5 hashes) shows nicer behavior,
and I’ll try to explain why. Imagine that we were drawing
these same images for some theoretically perfect LSH setup
that somehow managed to match point q to every point p with
||p−q|| ≤ r for some radius r; all other points were not matched.
For that perfect LSH setup, images like figure 8 would show a
fixed-size circle with center at q that moved along with q. With
that in mind as the perfect LSH result, notice that the second
part in figure 8 is much closer to this ideal than the first part.

Figure 6: A set of 100 random points with graph edges drawn
according to (3). There are 20 random hash functions used. The
top-left graph uses the cutoff value j = 6. The remaining three
graphs, from top-left to bottom-right, have cutoff values j = 7, 8,
and 9 respectively; this means each graph is a subgraph (having
a subset of the edges) of the previous one.

Figure 7: The same 100 random points from figure 6, this time
rendered with edge weights that depend on how many hash
collisions are present between any two points. A black edge
represents the maximum of 20 hash collisions; the lightest edge
represents only 6 hash collisions.

Keep in mind that lookups within the shaded regions are no
longer linear searches through data, but rather the intersection
of k hash table lookups — that is, lookups of nearby points are
significantly faster.

It may further help your intuition to see how weighted edges
connecting a point to its neighbors, like those in figure 7, change
as a single query point moives. This is the idea behind figure 9,
where weighted edges are drawn between a moving query point
and 100 random points. Notice that the edge weightings make
intuitive sense: they tend to connect strongly to very close
neighbors, weakly to farther neighbors, and not at all to points
beyond a certain distance.

2.2 Choosing values of j

So far, we’ve seen that we can use hash lookups to find nearby
neighbors of a query point, and that using k different randomized
hash functions gives us much more accurate lookups than if we
used a single hash function. An interesting property of figure 7
and figure 9 is that we used different numbers of hash collisions
— via the variable j — to discover different degrees of similarity
between points. In many applications, such as finding near
duplicates or close geospatial points, we only want a binary
output, so we have to choose a particular value for j. Let’s
discuss how to choose good values for j.

Suppose k is fixed. How can we decide which value of j is best?

Figure 8: The first part shows the regions where points would be
matched by either two (dark regions) or just one (lighter shade)
hash collision with the moving query point q. The second part
shows the analogous idea for 5 random hash functions; in the
latter case, the lightest shaded region indicates 3 hash collisions.

Figure 9: Edges weighted by how many hash collisions are present
between the moving query point and 100 random points. Darker
edges indicate more hash collisions. This image uses 12 random
hashes, and requires at least 6 hash collisions for an edge to
appear.

To answer this question, let’s temporarily consider what a perfect
function would do for us. We’ll call this function search(q). In
an ideal world this function returns all points within a fixed
distance of the query point. We could visualize this as an
n−dimensional sphere around the query point q. A call to
search(q) ought to return all the indexed points p that live
within this sphere.

Let’s move from that idealized algorithm into our fast-but-
approximate world of locality-sensitive hashes. With this
approach, there is no exact cutoff distance, although we keep
the property that nearby neighbors are very likely to be in the
returned list and distant points are very likely to be excluded.
Since our hash functions are randomized, we can think of the
neighbor relationship p ∼ q as being a random variable that
has a certain probability of being true or false once all our
parameters are fixed (as a reminder, our main parameters are j
and k).

Now consider what great performance looks like in the context of
this random variable. Ideally, there is some distance D such that

||p− q|| < D − ε ⇒ P (p ∼ q) > 1− δ;
||p− q|| > D + ε ⇒ P (p ∼ q) < δ.

In other words, this distance D acts like a cutoff for our approx-
imate search function. Points closer than distance D to query
point q are returned, while points farther are not.

I wrote a Python script to calculate some of these probabilities for
the particular parameters k = 10 and d = 2 (d is the dimension-
ality of the points), and for various values of j. In particular, I
restricted my input points to certain distances and measured the
probability that they had at least j hash collisions for different j
values. If you’re familiar with conditional probabilities, then this
value can be written as:

P
(
p ∼j q

∣∣∣∣ ||p− q|| = D
)
,

where I’ve written p ∼j q to denote that points p and q have at
least j hash collisions.

Using this Python script, I’ve visualized the collision behavior of
p ∼j q for various j in figure 10. I’ll go into more detail about
what each tick on the box plot indicates, but the intuition is
that shorter box plots are better because in this visualization a
shorter box plot indicates a smaller range of uncertainty.

The most interesting element of this graph is that the best value
of j appears to be j = 6. You might have guessed that your best
LSH approach is to insist that all of your random hashes must
collide before you consider two points to be neighbors, but this
measurement shows that intuition to be false.

So what exactly did we measure in figure 10? A traditional box
plot visualizes the 25th and 75th percentiles of a set of scalar
data points as the boundaries of the box. Often the median (50th
percentile) is also shown within the box, but we don’t include

Figure 10: Intuitively, each box plot represents the distances at
which points p, q will achieve mixed results (sometimes classified
as nearby, other times as not) from our LSH setup. A very
short box plot is ideal because it indicates a smaller range of
uncertainty. In other words, a short box plot corresponds to a
setting in which most pairs of points are correctly classified by an
LSH system as nearby or far apart based on their actual distance.

an analogous mark in figure 10. The “whiskers” at either end
may indicate the minimum and maximum values, or something
similar such as the extreme values after removing outliers.

In our case, we have one box plot for each value of j, and each
plot has been normalized so that the bottom whiskers all align at
value 1. (I’ll explain why this is useful in a moment.) The bottom
whisker indicates the distance between p and q so that p ∼j q
is true 99% of the time. The bottom of the box is the relative
distance at which p ∼j q is true 75% of the time. Continuing in
this pattern, the box top corresponds to the distance at which we
get collisions 25% of the time, and the top whisker is the distance
at which we get collisions 1% of the time. Since the box plots
are all normalized (meaning that the distances per j value have
all been divided through by the smallest distance), it’s easy to
visually see the ratio of each box plot position versus its smallest
distance. In other words, it’s easy to see which distance range is
smallest.

Because I love math and precision, I’m going to provide one
last definition to formalize the idea of figure 10. Given a value
s ∈ (0, 1), define the distance Ds as the value satisfying the given
equation:

P
(
p ∼j q

∣∣∣∣ ||p− q|| = Ds

)
= s,

where p ∼j q means that #{i : hi(p) = hi(q)} ≥ j. Intuitively,
if ε is close to zero, then the distance Dε is large because the
probability of p ∼j q is small. The value of D1/2 is the perfect

distance so that p ∼j q happens half of the time, and D1−ε is a
small distance where p ∼j q happens almost all the time. Using
this definition, the four values shown in each box plot of figure 10,
from bottom to top, are:

D.99/D.99, D.75/D.99, D.25/D.99, D.01/D.99.

2.3 Why an LSH is faster

So far we’ve been sticking to 2-dimensional data because that’s
easier to visualize in an article. However, if you think about
computing 10 hashes for every 2-dimensional point in order to
find neighbors, it may feel like you’re doing more work than the
simple solution of a linear search through your points. Let’s
review cases where using an LSH is more efficient than other
methods of finding nearby points.

There are two ways an LSH can speed things up: by helping you
deal with a huge number of points, or by helping you deal with
points in a high-dimensional space such as image or video data.

2.3.1 An LSH is fast over many points

If you want to find all points close to a query point q, you could
execute a full linear search. A single-hash LSH can give you
results in constant time. That’s faster.

Things are slightly more complex for higher values of j and k.
If you keep j = k, then your LSH result is a simple intersection
of k different lists, each list being the set of hash collision points
returned by a given randomized hash function hi(). Finding this
intersection can be sped up by starting with the smallest of these
lists and shrinking it by throwing out points not present in the
other lists. This throwing-out process can be done quickly by
using hash-table lookups to test for inclusion in the point lists,
which are basically constant time. The running time of this
approach is essentially O(mk), where m is the length of the
shortest list returned by any of your hash functions hi(). This
running time is very likely to be an order of magnitude faster
than linear search.

2.3.2 An LSH is faster for high-dimensional points

There is a beautiful mathematical result called the Johnson-
Lindenstrauss lemma which shows that random projections
(which is what we’re using in our hi() functions) are amazingly
good at preserving point-wise distances (Dasgupta and Gupta
2003). As a result of this, you can often use a much smaller
number of hash functions than your dimensionality d to set up
an effective LSH system.

In particular, if you have n points, then you can use on the order
of log(n) hash functions and still achieve good results. With the
j = k approach from the last section, a lookup would require
O(m log(n)) time, where m is the length of the smallest list

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

returned by your hash functions. Even if you wanted to take the
more complex approach of setting j < k, you would still gain
a speedup even on pairwise comparisons. Normally it requires
O(d) time to compute the distance between two points. Using
k ≈ log(n) hashes, it would instead take O(log(n)) time to
compute the number of hash collisions between two points.

To show how significant this last speedup can be, imagine looking
for copyright violations among movie files that are 1GB each.
There have been about 500,000 movies made in the United States
so far. With these numbers, we would require looking at 2 billion
numeric values of data to directly compare two video files, versus
looking at about 210 numeric values of data to compare their LSH
values. (The value 210 is twice the expression 8 log(500, 000),
which is a simplified suggested value for k from the Johnson-
Lindenstrauss lemma.) The LSH approach here is about 10
million times faster.

3 Other data types and approaches

This article has focused on numeric, 2-dimensional data because
it’s easier to visualize. Locality-sensitive hashes can certainly
be used for many data types including strings, sets, or high-
dimensional vectors.

Yet another ingredient to throw into the mix here is a set of
techniques to boost performance tht treat an LSH as a black box.
My favorite approach here is to simply perform multiple lookups

on a hash system, each time using q + ε as an input, where q is
your query value, and ε is a random variable centered at zero
(Panigrahy 2006).

There’s a lot more that can be said about LSH techniques. If
there is reader interest, I may write a follow-up article explaining
the details of min-wise hashing, which is a fun case that’s simul-
taneously good at quickly finding nearby sets as well as nearby
strings (Broder et al. 2000).

Hi! I hope you enjoyed my article. As you can see, I love
building systems that get the most out of data. If you’d like
to work together on a machine learning project, I’d love to
hear from you. My company, Unbox Research, has a small
team of talented ML engineers. We specialize in helping
content platforms make more intelligent use of their data,
which translates to algorithmic text and image comprehension
as well as driving user engagement through discovery or
personalization. Email me at tyler@unboxresearch.com.

References

Broder, Andrei Z, Moses Charikar, Alan M Frieze, and Michael
Mitzenmacher. 2000. “Min-Wise Independent Permutations.”
Journal of Computer and System Sciences 60 (3). Elsevier:

mailto:tyler@unboxresearch.com

630–59.

Dasgupta, Sanjoy, and Anupam Gupta. 2003. “An Elementary
Proof of a Theorem of Johnson and Lindenstrauss.” Random
Structures & Algorithms 22 (1). Wiley Online Library: 60–65.

Panigrahy, Rina. 2006. “Entropy Based Nearest Neighbor Search
in High Dimensions.” In Proceedings of the Seventeenth An-
nual Acm-Siam Symposium on Discrete Algorithm, 1186–95.
Society for Industrial; Applied Mathematics.

	A human example
	Hashing points with projections
	Randomizing our hashes
	Choosing values of j
	Why an LSH is faster
	An LSH is fast over many points
	An LSH is faster for high-dimensional points

	Other data types and approaches
	References

