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ABSTRACT 
 
 

Public transit has emerged as a socially acceptable sustainable transportation 

solution to the urban ills of 21st century cities. Understanding the factors that affect public 

transit ridership is of great need to transit agencies, planners, and policy makers.  The 

literature suggests two main avenues for improving transit ridership in the US context. 

One option is to create Transit Oriented Developments (TOD) that mimic historically 

strong transit land-uses and built environments, including high densities of populations, 

jobs, and pedestrian friendliness. The other suggests that in the modern American sunbelt 

cities, populations, jobs, and activity centers are scattered throughout the metro area and 

therefore transit ridership should seek to increase the access and catchment areas of rail 

stations by improving non-pedestrian modes like local bus connectivity and parking 

facilities. 

This study focuses on the MARTA system in Atlanta, GA in the Sunbelt region of 

the US. Using demographic, land-use, service characteristics, and origin-destination rail 

transit ridership data, a multilevel (mixed-effects) linear regression direct demand 

ridership model was created to statistically test the significance and influence of these 

factors on average daily ridership. The study sought to understand whether TOD factors 

or non-pedestrian factors showed greater significance, however a different outcome was 

found. In the case of MARTA, jobs and bus connectivity were the most significant 

positive predictors of ridership. Requiring a rail transfer, the overall MARTA travel time, 

median household income, and WalkScore® were found to be significant and have a 

negative effect on ridership. This result was not the either-or finding that was expected 
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and proposed, but did allow for the conclusion that in the Atlanta context the most 

important factor is connecting people to jobs in a dispersed and polycentric metro area. 

Hence, some TOD aspects (mainly job density at stations) and non-pedestrian 

accessibility (mainly bus connectivity) are critical determinants of ridership on MARTA.  
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CHAPTER ONE 
 

INTRODUCTION 
 

Improving sustainable transportation through cities and regions is a 21st century 

necessity. The convergence of accelerating global warming (IPCC, 2018), the negative 

effects of climate change, mass urbanization, congestion, and influx of populations to 

cities warrants effective and efficient mass transit systems that minimize environmental 

impacts and maximize socio-economic gains. Improving public transit and encouraging 

the development of supportive land-use and built-environment attributes around and near 

stations has moved to the forefront to help combat these urban ills in the United States 

(Ewing & Cervero, 2010). Weak social and political support for policies aimed at 

transferring the social costs of externalities from automobile usage onto drivers has made 

this combined land-use/transit policy a second-best option (Giuliano & Hanson, 2017).  

The share of trips taken by public transit in the U.S has increased to 2.5% of all 

trips from 1.9% in 2009 according to the 2017 National Household Travel Survey. Yet, it 

remains vastly overshadowed by the 82.6% of trips taken by the far less sustainable 

private automobile (McGuckin & Fucci, 2018). The share of trips taken by public transit 

remained roughly stagnant throughout the 1990’s and into the 2000’s, but between 2010 

and 2014, following the Great Recession, there were several years of record setting 

public transit ridership. However, overall transit patronage has begun to fall again and 

thus cause concern among transit agencies and urban sustainability advocates (NTD, 

2017; Schmitt, 2018). Understanding the factors that are affecting the rises and falls in 
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public transit ridership, and more specifically what factors are responsible for ridership 

on U.S rapid-transit systems, is therefore of great necessity to transit agencies and policy 

makers.  

There is disagreement in the literature as to whether external factors (e.g. land 

use, the built environment, socioeconomics, and demographics) or internal transit service 

quality factors (e.g. frequency, speed, network alignment, service coverage, and fare) 

have a greater effect on transit ridership, and which would be a more feasible avenue for 

policy intervention (Taylor, Miller, Iseki, & Fink, 2009; Thompson, Brown, & 

Bhattacharya, 2012). Those who find external factors to be the primary drivers of 

ridership suggest transit should attempt to mimic the characteristics and metropolitan 

structure of historically strong transit cities – compact, high density, and serving a strong 

central business district or a well-connected set of sub-centers. The modern solution in 

transit planning is the creation of Transit Oriented Developments (TODs) which seek to 

create these conditions in localized areas surrounding rapid transit stations. However, 

many thriving modern American metro areas came of age with the automobile and 

therefore have a metropolitan structure that is sprawling, low density, and poly-centric, 

especially in the American Sunbelt region (Brown & Thompson, 2008a). In these 

systems, the internal transit service quality factors appear to drive transit ridership. They 

appear most strongly related to travel time and connection to decentralized employment 

and destinations (Brown, Thompson, Bhattacharya, & Jaroszynski, 2014; Thompson et 

al., 2012).  
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Historically, public transit patronage was estimated simply as a modal split 

component of the region travel demand ‘four-step’ model. However, the four-step model 

has multiple problems including a dependence on existing trends, computation and data 

intensity, and coarse levels of detail (Miller, 2017). Within the last few decades, a new 

methodology for predicting transit ridership has emerged which uses multiple regression 

in direct-demand models of ridership.  

Direct demand models allow for simultaneous evaluation of many independent 

variables that can assess impacts on ridership at a fine grain spatial level. Direct-demand 

models typically use station-level passenger counts as the dependent variable and the 

station as the unit of analysis. In all but the largest transit systems, the total number of 

stations is too low to include enough independent variables to produce a model with 

strong predictive power. To bypass this issue, either multiple transit systems are 

examined cross-sectionally or more sophisticated statistical techniques must be 

employed.  

Instead of using station level passenger counts, this study will use station origin-

destination (O-D) passenger flow counts. This data is more difficult to obtain due to the 

necessity of specific automatic fare collection technology being used by the transit 

agency, but when it is available it allows for the delineation between attributes that 

produce trips, those that attract trips, and the transit service quality in-between. 

Additionally, the number of unique observations in a system is nearly the station count 

squared, which provides adequate observations for a thorough investigation of ridership 
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factors for an individual system (Duncan, 2010). Only four studies from the literature 

have employed O-D direct demand models to investigate ridership factors: two in Asia, 

one on the Bay Area Rapid Transit system in the San Francisco Bay area, and one on 

Metrorail in the greater Washington DC metro area.  

The transit agency that will serve as the case study for this research is the 

Metropolitan Atlanta Rapid Transit Authority (MARTA). MARTA is the primary transit 

operator in the greater Atlanta, Georgia metropolitan area and the system consists of 

heavy-rail transit and extensive local bus service. Atlanta is a typical sunbelt metropolis 

and ranks as the second most sprawling metro area according to the Smart Growth 

America Measuring Sprawl Report (2014). MARTA is one of the few U.S agencies that 

uses automatic fare collection technology and therefore collects both origin and 

destination information for every trip. As such, it is an ideal case to study the relevance of 

external and internal factors in a large, dispersed metro area.  

In seeking to improve our understanding of transit ridership factors in U.S. rapid 

systems this study aims to answer three research questions: 

- RQ1: Using an origin-destination direct demand model, what factors significantly 

influence MARTA rapid transit ridership?  

 

- RQ2. Do non-pedestrian access factors to MARTA stations (e.g.  Park & Ride, 

Bus Connectivity) show a stronger effect on ridership than TOD factors (e.g. 

Pedestrian friendliness, Densities)?  
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- RQ3. What significance does the downtown Central Business District (CBD) play 

in predicting ridership in Atlanta?  

 

The next section presents a review of the literature surrounding general public transit 

ridership factors, specifically along the three major categories related to: 1- land use/built 

environment; 2- socioeconomics and demographics; 3- and transit service quality factors. 

A review of transit planning theories and research-oriented modeling follows, discussing 

the four-step model and direct-demand models of ridership, both at the station level and 

for O-D flows. Then, findings from the four studies on O-D modeling will be discussed 

in detail. A discussion on metropolitan structure, service orientation and access, and 

travel behavior concludes the literature review. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

Public Transportation 

Public transit stands apart from other modes of city travel primarily due to its 

collective nature. Though there is some flexibility in the term, the definition that Walker 

(2011) presents provides a clear set of guidelines for what is typically considered public 

transit. Public transit is transportation that is publicly open to all paying customers 

(common-carrier), it utilizes a vehicle on a set scheduled route, and it carries multiple 

passengers who have varying origins or destinations. This eliminates some modes that 

may at times be confused with public transit like walking or cycling, carpools, and taxis. 

These modes all violate at least one of the criteria and are primarily individual forms of 

transportation. Additionally, this study will not discuss paratransit. Though a necessary 

and regular part of American transit, it is not designed, planned, or analyzed in a manner 

congruous with traditional fixed-route scheduled service.  

  The literature classifies public transit with respect to stop spacing and service 

into categories including local, express, and rapid transit (Transit Capacity and Quality of 

Service Manual, 2013). Local service, usually provided by city buses, stops at the 

greatest number of locations (Grava, 2003). Express service operates on the other end of 

the spectrum, stopping farther apart at areas such as park-and-rides and central business 

districts (CBD). Express service can also use city buses or high-floor intercity charter 
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buses. Rapid-transit serves the greatest capacity of riders and operates on a fixed route 

with regularly spaced stops, larger catchment areas, and greater fixed infrastructure to 

delineate the ‘station’.  

The mode designated as rapid-transit for the purpose of this study is Heavy-rail 

transit (HRT), though Light-rail Transit (LRT) and Bus-rapid transit (BRT) are also 

typical forms of rapid-transit. HRT (also known as metro) uses rail car sets with steel 

wheels on steel rails and is powered by an electrified ‘third’ rail for quick acceleration 

and braking (Vuchic, 2005). HRT has level-boarding height platforms with multiple wide 

doors and operates on exclusive grade-separated guideways (Grava, 2003).  

General Ridership Factors 

The vast majority of transit agencies in the US experienced a fall in transit 

ridership in the past year (NTD, 2017). As transit agencies and policy makers try to 

maintain patronage and plan for urban growth, understanding the factors that affect 

public transit ridership becomes a necessary first step to reversing this downward trend. 

As such, the literature is full of studies attempting to determine the most relevant and 

significant attributes to maintaining and encouraging new transit ridership. The following 

sections discuss the general categorizations of public rapid-transit ridership factors as 

found in the relevant literature.  

Internal and External Factors 

The literature typically places factors that influence transit ridership into two 

categories: external factors and internal factors (Taylor, Brian & Fink, 2002; Taylor et al., 
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2009). The external/internal categorization describes the level of control the transit 

system and its managers have over the factor. External factors encompass all of those 

factors which fall outside of the traditional role of the transit agency and transit planners. 

External factors can be broken down into two categories: socioeconomic factors and 

land-use / built-environment factors. Internal factors, those which are directly influenced 

by the transit service provider, include the details and quality of service provision, and 

are easier to ascertain directly for study from the agencies. Common internal factors are 

fare policy, train frequency, network design, service windows, and alignment. Each of 

these major ridership factor categories are defined and discussed in the following 

sections.  

Land-Use and the Built Environment 

 When considering the role that land-use and the built environment plays in travel 

behavior (not limited to just transit ridership), the most common set of factors cited are 

known as the 5D’s, originally laid out by Cervero and Kockelman (1997) and updated by 

Ewing (2010). The three original factors were Density, Diversity, and Design. 

Destination accessibility and Distance to transit were later added.  

Density can refer to several specific categories such as population, job, dwelling 

units, or floor area measures, but the key operational component is that it is measured as 

variable of interest over unit of area. Diversity measures the entropy of land-uses in the 

specified area, also described as the level of land-use mix. Design attempts to quantify 

the effect that urban form has on travel or ridership at a station or stop. This factor is 
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often operationalized and measured as any number of physical factors that would produce 

a more pedestrian oriented environment (as opposed to an auto-oriented environment). 

These measures can include intersections per unit area, average block size, sidewalk 

continuity and coverage, and other aspects like trees or pedestrian crossings.  

Additionally, other multi-dimensional indices have been created with the intent to 

capture ‘pedestrian friendliness’ such as WalkScore®. Destination accessibility typically 

uses a gravity model to measure the relative ease of access to trip attractors such as job 

opportunities within the system. For traditional transit cities focused on serving 

productive CBDs, this means that destination accessibility is highest closer to the center, 

and lower in the more distant stations. Distance to transit is a literal measure from work 

or residential addresses to the station in question, either in straight-line or street-network 

distance.  

 The D’s have been tested across many studies and in a variety of different ways 

and with varied results. However, the majority of these studies have found positive 

statistical significance but relatively small magnitude of individual effects of land-use 

and the built environment affecting ridership when assessing both large meta-analyses 

and wide breadth case studies (Ewing & Cervero, 2010; Taylor et al., 2009) 

Demographic and Socioeconomic Factors 

 Demographic and socioeconomic factors have been extensively investigated in 

the transit ridership literature, so much so that ‘Demographics’ has sometimes been 

considered the 6th ‘D’. In a review of the 2001 National Household Transportation 
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Survey, it was found that racial minorities, and those with lower incomes and lower 

vehicle ownership relied on public transportation at far greater rates than others (Pucher 

& Renne, 2003). However, when considering more recent data on rapid-transit systems in 

Atlanta, Los Angeles, and New York, those making above $75,000 a year made up a 

significant portion of rail transit riders, likely due to the concentration of wealth 

surrounding central rapid-transit stations. (Schweitzer, 2017). However, those who rode 

the bus for some part of their journey did not show this same trend.  

Also, employment variables and the economic vitality of a metro area are often 

strongly correlated with overall ridership, with some studies showing total job counts in 

an area with a stronger effect than the total number of residents in an area. (Duncan, 

2010; Taylor, Miller, Iseki, & Fink, 2003). Vehicle ownership or availability is also key 

factor and is consistently identified as having a strong and negative influence on 

ridership, particularly in the US (Ramos-Santiago & Brown, 2016). These external 

socioeconomic factors are certainly outside of the control of transit agencies (though not 

necessarily policy makers), but are often found significant and predictive, which leads 

them to be used as controls in statistical regression analyses of transit ridership.  

Transit Service Quality 

 Though some of the literature finds the strength of external factors to be greater 

for predicting rapid transit ridership, several studies—both case studies and meta-

analyses—have found that internal factors can also have a significant effect (Boisjoly et 

al., 2018; Kain & Liu, 1999; Taylor et al., 2009). These studies investigated the roles that 
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transit service quantity, quality, and cost have on ridership. Quantity was measured in the 

forms of headway, operating hours, and vehicle revenue miles traveled. Service quality 

was determined by measures such as ridership survey results, on-time performance, as 

well as general levels of transit system connectivity. Fares were also examined as both 

full cost and cost per mile.  

The findings corresponded to common thoughts on how ridership would respond. 

Specifically, better frequency and timeliness and lower fares, especially per mile, are 

associated with higher transit patronage following from a microeconomic rational 

utilitarian model where riders seek to minimize costs and maximize benefits (Ramos-

Santiago, 2018; Taylor, Miller, Iseki, & Fink, 2009; Walker, 2011).  In a pair of cases in 

Houston and San Diego, transit service improvements and fare reductions were cited to 

have protected agencies from national trends of large losses in passengers and actually 

showed an uptick in patronage (Kain & Liu, 1999). Also, Thompson et al. (2012) cite the 

transit success in Broward County, Florida that demonstrates none of the typical land use 

characteristics that are associated with strong ridership, but remains a successful (bus) 

transit system by serving decentralized populations and employment centers.  

 The literature does not offer a single vector of explanatory variables as the 

complete determinant factor of transit ridership (Boisjoly et al., 2018), and some studies 

even consider individual interacting terms in the analysis (Duncan, 2010). Taylor et al. 

(2009) found that transit ridership variation is primarily affected by factors outside of the 

transit agency’s control, not with any one determining factor, but a combination of 
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regional geography, metropolitan economy, population characteristics, and auto 

infrastructure characteristics. However, they note that fare levels and service frequency 

make an impact on ridership.  

These findings, and those of Ewing & Cervero (2010) suggest that increasing 

densities of employment and population and diverse land uses, which are associated with 

TOD, increased transit patronage – but they note that it is because of the ease of transit 

access. The findings of Brown & Thompson (2008b) suggest that transit productivity is 

related to an agency’s ability to serve a multi-destinational region by better matching the 

transit network design to the metropolitan poly-centric structure. Though the factors that 

Ewing & Cervero and Brown & Thompson cite for increasing ridership are different, the 

core issue – access to, and access from provided by the transit system – is still the same.  

In order for patrons to utilize the rapid transit system, and the access it provides 

generally, the stations must themselves be accessible. This ‘modal access’ to the station 

can be in the form of walking/biking, which would be benefit from TOD characteristics, 

or it could be via connecting bus feeders or park & ride which would benefit those 

patrons in decentralized metropolitan areas. In professional planning circles TOD is seen 

as a strong remedy for strengthening both communities as well as transit patronage 

(Dittmar & Ohland, 2012). However, park & ride specifically has been shown to draw 

more ridership than replacing the parking spaces with TOD in the San Francisco Bay area 

in for some stations (Duncan, 2010), and Ramos-Santiago (2018) showed that local and 

feeder bus accounted for roughly a third of all rapid-transit passenger’s station access 
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mode in the Los Angeles area. This suggests that additional consideration should be 

given to ‘internal’ multi-modal transit service quality factors – specifically with regards 

to park and rider and bus connectivity factors - when examining transit systems in 

decentralized metro areas.  

Transit Planning and Research-Oriented Ridership Models 

 The following section discusses transit ridership forecasting models and 

associated inferential analysis methods identified in the literature review. First the 

traditional four-step model is presented.  Then direct-demand models and variants related 

to station-level boarding counts and Origin-Destination (O-D) trip flows are discussed. 

Traditional Four Step Modeling 

 The traditional four step model has been the primary method by which 

Metropolitan Planning Organizations (MPO) planned for and predicted regional travel 

behavior since federal legislation required that transportation planning be “continuous, 

comprehensive, and cooperative” (McNally, 2000). Much like MPOs, the four-step 

model is designed to be regional in scope, and to depend on Transit Activity Zones 

(TAZ) as its unit of analysis to predict flows and modal splits of urban transportation. 

Additionally, its process typically favors large capital-intensive projects since it focuses 

on extrapolating future travel demand needs from current trip count data and is most 

effective in planning for highway expansions and auto improvements. (Cervero, 2006).  

 The four-step model is a trip-based approach that uses the sequential steps of trip 

generation, trip distribution, modal split, and network assignment to model urban travel 
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demand (Miller, 2017). The trip generation step estimates the total number of trips being 

generated from and attracted to each TAZ in a specified unit of time. This is often done 

by estimating the number of working age residents living in a TAZ to serve as 

originators, and counting the number of jobs and other activity centers which act as 

destinations. The second step, trip distribution, allocates the generated trips via a spatial 

‘Newtonian gravity’ model. The gravity model is similar in form to Newton’s universal 

law of gravitation. It is a distance decay function that models trips between TAZs as 

inversely proportional to the square (or other estimated decay factors) of the distance (or 

time) between them, but proportionally attractive to the total number of generated and 

attracted trips between the two TAZs (Vuchic, 2005).  

Once the trips flows are allocated between TAZs, the modal split step occurs. 

Modal split divides the flows among the possible modes, typically between auto and 

transit, but can include biking and walking shares as well. Modal split uses probabilities 

modeled on the basis of ‘discrete choice’ models where each trip’s mode is decided based 

on micro-economic theory of ‘utility-maximizing’ behavior (Miller, 2017). The final 

step, network or trip assignment, determines the routes that each of modal splits between 

zones will take. This should be an iterative process that seeks a ‘user-optimal’ 

equilibrium, to account for congestion along the network. Once the stable routes are 

allocated and determined, planners have network segment flows and corresponding 

volumes that can be used for predictive planning purposes.  
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Though the four-step model has legitimate theoretical underpinnings, for 

predicting travel behavior in modes other than automobiles, it is especially poor.  Due to 

the sizes of TAZs, which can range from the census block group level to the tract level, 

analysis occurs at a coarse grain of perspective. This requires an aggregation of flows, 

and assigns them to major thoroughfare routes, which in turn typically suggests 

expansions of highways, and neglects neighborhood or stop characteristics and especially 

TAZ internal movements. Additionally, the four-step modeling process is very data 

intensive, requiring substantial travel survey data for probabilistic modal splits, historical 

traffic counts for route assignments, and continuous calibrations and computational 

power which means that it is typically only undertaken when substantial resources are 

available (Cervero, 2006; McNally, 2000). These issues have pushed transit agencies and 

scholars to seek other methods to model the effects that external and internal factors have 

on transit ridership, both in terms of resolution as well as associated costs.  

Direct Demand Modeling 

 To compensate for the multiple limitations and issues associated with of the four-

step model, specifically with respect to predicting and planning for rapid-transit ridership, 

alternate methods to model the relationships between local land-use, built environment, 

socio-demographics, transit service characteristics (including multi-modal connectivity), 

and their effects on transit patronage have been investigated. An alternate methodology 

that has emerged in the literature in the past few decades is direct-demand modeling 

(DDM). DDM models require less data intensity (as compared to the four-step method), 

offer a view of how specific variables interact with transit ridership use while including 
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control variables, and can be run with fairly ubiquitous and affordable statistical software 

and GIS programs (Cervero, 2006; Ramos-Santiago, 2018; Ramos-Santiago & Brown, 

2016).  

 Direct demand models typically use multiple regression, though other statistical 

modeling methods have been tested and used over time (Durning & Townsend, 2015; 

Ramos-Santiago, 2018). Most direct demand models measure transit ridership at the 

station level, often using average weekday boardings as the dependent variable. A set of 

external and internal variables expected to affect ridership are then statistically tested to 

determine significance and model predictive power. Users of direct demand models have 

noted that it is not as all-encompassing as the four-step method, but does offers 

straightforward and easy to interpret results. Direct demand modeling is sometimes 

referred to as ‘Sketch Planning’ since if being used to asses a new project, quick results 

and generalizations can be computed and explained to policy makers with a level of 

simplicity not found in more complicated modeling procedures (Gutiérrez, Cardozo, & 

García-Palomares, 2011; Zhao, Deng, Song, & Zhu, 2014).  

Though the station-level unit of analysis for direct demand ridership models 

allows for investigations into the effects of land-use and built environment, 

socioeconomic, and transit service quality factors, there is a significant methodological 

drawback due to small number of rapid transit stations in any one American transit 

system. These small numbers of observations pose degrees of freedom constraints on the 

number of variables that can be included in the analysis, thereby lowering the explanatory 
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power of the model (Cervero, Murakami, & Miller, 2010; Duduta, 2013). Researchers 

have worked past this hurdle through a variety of methods including combining cross-

sectional data from multiple agencies (Guerra & Cervero, 2011; Kuby, Barranda, & 

Upchurch, 2004; Parsons Brinkerhoff, 1996; Ramos-Santiago & Brown, 2016), using 

international rapid transit systems in Korea, Spain, and Mexico with substantially greater 

number of stations (Duduta, 2013; Gutiérrez et al., 2011; Sohn & Shim, 2010), or 

applying additional statistical methods such as bootstrapping (Chen & Zegras, 2016; 

Durning & Townsend, 2015).   

Origin – Destination Direct Demand Modeling 

 As direct-demand models have proliferated through the literature, a small set of 

studies on transit ridership have shifted from the station-level unit of analysis to an 

Origin-Destination trip flow analysis. The advantages of this shift in unit of analysis and 

outcome variable are threefold.  First, by using station-to-station passenger flows as 

opposed to simple boarding counts at a station, those attributes associated with generating 

trips and those attributes that attract trips can be isolated and evaluated simultaneously in 

a generalized linear model (Choi, Lee, Kim, & Sohn, 2012; Duncan, 2010; Iseki, Liu, & 

Knaap, 2018; Zhao et al., 2014). Next, the service quality between stations can be 

investigated through measures of impedance in travel time or distance that can be 

factored into the analysis. Finally, in a very practical manner, for a rapid-transit system 

with roughly 40 stations the analysis would be severely limited in the scope of degrees of 

freedom. However, for a system of 40 stations, there are 1,560 unique origin-destination 

pairs, since given N stations, it follows that there are N(N-1) pairs. This near squaring of 
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the total number of observations allows for more modest sized transit systems to be 

modeled in a standalone fashion while not sacrificing the exploratory variable capacity of 

the multivariate regression analysis.  

Table 2.1 shows an overview of the four O-D studies. Two of the studies are on 

American systems: BART in San Francisco, CA and Metrorail in Washington, DC. The 

other two studies are on Asian metro systems in Nanjing, China and Seoul, South Korea. 

Three of the studies used average weekday ridership as the dependent variable as is 

common even among non-origin-destination direct demand models. The Metrorail study 

instead used passenger miles traveled citing that the utility of a trip grows with distance 

traveled and therefore has a higher demand. This gives those factors associated with those 

longer trips greater influence (Iseki et al., 2018). Additionally, three of the studies 

divided the origin-destination passenger flows through temporal means using morning 

peak travel, afternoon peak travel, and off-peak travel. This allowed for the significance 

of the ridership factor in question to be understood as either an attractor (at the 

destination) or producer (at the origin) of ridership, but also to investigate how those 

effects change with time of day peak flows.  

All four models included some measures of external socioeconomics / 

demographics, land-use/built environment, and internal transit service quality variables. 

As expected from the literature, population and employment factors generally showed 

significant impact on transit ridership, specifically in the expected temporal flows: higher 

populations at origins and employment at destinations in morning peaks, and vice versa 
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in afternoon peaks. Special activity generators such as stadiums, universities, and CBD 

dummy variables also proved significant in studies where they were considered. Transit 

service quality variables performed generally as expected: bus connectivity was positive 

and significant in all studies and ridership was higher when traversing the same route by 

another mode took a greater amount of time.  

In the US context, this was compared to automobile travel which is the main 

competitor of transit. In both of the Asian studies, ridership had a significant negative 

relationship with total trip distance, but the BART study did not show significance. For 

all studies that included a park and ride variable (auto in America, bike in China), there 

was positive trip generation from those stations.  

 Overall the four O-D models are fairly similar in methodology and findings. The 

models appear most effective when using averaged weekday riders, a multilevel (mixed-

effects) model, and include variables from all three major categories: 

socio/demographics, land-use/built environment, and transit service quality. They all 

offer more specific insights from their O-D data than station-level models because they 

are able to discern the significance of ridership on a specific system with less station 

observation points (O-D flows instead of stations). This allows origin-destination models 

to offer a hybrid middle-ground solution between the data and computationally intensive 

four step model and the sketch planning direct demand ridership models (Duncan, 2010). 
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Metropolitan Structure, Service Orientation, and Travel Behavior 

 Sprawl and urban decentralization, though not confined exclusively to those 

metropolitan American cities who have come of age in the freeway or postindustrial era, 

have certainly left their mark on their lasting metropolitan structure (Muller, 2017). Gone 

are the days that cities could be modeled as concentric zones with the CBD at their heart. 

Instead, dispersed ‘urban realms’ have taken over to describe the poly-centric metropolis 

(Hartshorn & Muller, 1989). Regions and metro areas have now had many qualities 

quantified and measured in an attempt to define the elusive ‘sprawl’. One popular method 

stems from a seminal work by Ewing, Pendall, and Chen (2002) which attempted to 

quantify sprawl at the metropolitan area level. They created a ‘Sprawl Index’ which uses 

four factors: residential density, neighborhood mixes (jobs, homes, and services), the 

relative strength of CBDs and other activity centers, and the overall street network 

accessibility. Their method has since been adopted by Smart Growth America. Further, 

and more relevant to this study, a similar methodology was employed shortly after to 

directly capture the transportation impacts of sprawl on metropolitan areas (Ewing, 

Pendall, & Chen, 2003). The authors found that sprawling areas underperformed in many 

categories, including transit patronage, which corroborates the assumptions about 

external factors from the ridership literature. 

 This follows the vein of literature and common thinking that suggests that transit 

demand is mostly tied to those dense, streetcar suburb, walkable cities that developed 

prior to rise of the automobile (Pucher & Renne, 2003). However, there are authors who 

take issue with the assessment that transit is doomed to underperform in the suburbs of 
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sunbelt and postindustrial cities and instead see opportunities and evidence of transit 

growth (Mees, 2010; Thompson, Brown, Sharma, & Scheib, 2006; Wang & Woo, 2017). 

Additionally, work by Brown & Thompson (2008) on the performances of multi-

destinational versus CBD focused radial transit systems, showed that in metropolitan 

statistical areas (MSA) between 1-5 million with multi-destinational transit systems fared 

better on all three performance indicators measured: riding habits, service productivity, 

and cost-effectiveness.  

Brown & Thompson (2008) define radial systems as those whose core function is 

to connect suburbs to employment in the CBD, while multi-destinational systems attempt 

to connect all important destinations to one another while understanding the lesser value 

of the CBD and the greater prevalence of dispersed employment centers. This line of 

inquiry leads to a suggestion by Brown & Thompson that even with decentralization of 

employment and increased poly-centricity in metropolitan areas, transit service quality 

factors should be able to affect transit patronage and potentially serve as effective policy 

levers. Those factors, as previously discussed in the literature review, often involve 

providing access to rapid transit stations for patrons who live and work in dispersed 

metro areas. This means orienting rapid transit networks to sprawling and dispersed 

metro regions and expanding the overall catchment area served at the station by 

providing auto-oriented infrastructure (park & ride) and local bus connectivity as 

opposed to, or in combination with more TOD localized density and land use mix 

solutions.  
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Authors:
Duncan

2010 
System

BART, California, USA

Dependent Variable ln(averaged weekday 
riders)

Time of Day AM Peak Midday PM Peak
AM Peak PM Peak AM 

Peak
Off Peak PM 

Peak
Number of Observations 1,482 2,000 2,000 2,000 2970 2970 6904 6720 6949

Time Period of Analysis 2002 2011 2012

Methodology
Multiplicative & Multilevel- 

∏ 
Station Buffer Delimitation 1 mi, Dstance Decay

Power of Model (R2 ) 0.769 0.772 0.793 0.811 0.829 0.486 0.528 0.447

Population �.o �.d � �

Employment �.d � � �.d �.o
Night & weekend Jobs �

Employment Density �.d �.d n.s �.o
% Nonwhite, Renters n.s

 Median Household Income n.s  -

Office Area �.d �.o �.d �.o
Commercial Area �.d

Residential Density � �.o �.o �.d �.o � �.d

Special Activity Generators �.d, Stadium �.d - 
Uni

� - Uni � - Uni �.d - 
educ

� - educ-
/shop

Road Denisty  ( linear mt. w/n PCA ) �

Pedestrian Conn.( intersection density) n.s
CBD (dummy) �.d �.d �.d �.o

Pedestrian Friendly Intersections �

Service Frequency � �.d �.d
Travel Time n.s  -  -  -  -  -

Auto Travel Time/Transit Travel Time �

Transfer Time  -  -
Alternate: Bus Travel Time � � � � n.s �

Alterantaive: Aut Travel Time � � � � � �

Alternative: Auto  Travel  Time per mile
Bus conections (# of routes) � � � � � � � � �

Terminal Station (dummy) n.s �.d � �

Transfer Station (dummy) � �

Transfers (#)  -  -  -
1/ Road Distance between Stations �

Distance to CBD o. -
�.d �.o n.s n.s

Interstation Spacing d. -
�.o

Fare, *Fare per track mile - * - * - * -
Bicycle Park and Ride n.s � �

Number of Park&Ride Spaces �.o, - .d �.o n.s n.s
Number of Park & Ride Users � � �

Parking Cost at Destination Station n.s � �

� -
Positive and Significant, Negative and Significant

800mt Euclidean 0.5 mile walkshed

Multiplicative - ∏ , (Poisson aslo)

2010

Not Significant, p  > 0.10 
n.s. .d

At Dest Only
.o 

At Origin Only

Metrorail, Washington DC, 
USA

Multiplicative - ∏ 

Averaged Weekday 
Riders

Zhao, et al.
2014

Nanjing Metro, Jiangsu 
Province, China

Iseki, et al.
2018

ln(Passenger Miles Traveled)

2014

Multiplicative - ∏ 

Choi, et al.
2012

Seoul Metro, Seoul, South Korea

Averaged Weekday riders
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Table 2.1 - O-D Ridership Factors from the International Literature 
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CHAPTER THREE 
 

STUDY AREA AND RESEARCH QUESTIONS 
 
 

Case selection Criteria and Description 

The focus of this study will be on the Metro Atlanta Rapid Transit Authority 

(MARTA) in Atlanta, GA. Atlanta is Georgia’s capital and most populous city, and is the 

principal city of both the Atlanta-Sandy Springs-Roswell, GA metro statistical area and 

the Atlanta urbanized area. The Atlanta-Sandy Springs-Roswell MSA ranks 220th out of 

221 for the most sprawling MSA in the Smart Growth America Measuring Sprawl Report 

(2014). Also, Atlanta ranks 4th in North America for the worst traffic congestion in 2017 

(INRIX, 2018) with drivers spending 10% of their total driving time in congestion. The 

Atlanta urbanized area includes 2,645 square miles with a population of 4.5 million, and 

is the 9th largest UZA in the US (US Census, 2010). Atlanta is considered the capitol of 

the ‘New South’ and is at the core of the Piedmont Atlantic Megaregion (Regional Plan 

Association, 2008). Atlanta is the epitome of a sprawling, auto-oriented, decentralized 

sunbelt metropolis and therefore poses a useful case-study for heavy-rail rapid transit 

ridership factors in a large polycentric dispersed region.   

MARTA was created by an act of the Georgia General Assembly in 1965 and is 

the primary provider of transportation in the Atlanta metro area. MARTA operates 4 

heavy rail rapid transit lines, 38 stations, and over 100 local bus routes. The service area 

stretches across 3 counties (Fulton, DeKalb, and Clayton) and covers an area of 573 miles 
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and a population of 1.5 million (MARTA, 2018). A schematic transit map of the 

MARTA heavy rail System can be seen in Figure 3.1.  

Research Questions 

This study attempts to answer three research questions about transit ridership 

factors and characteristics of the MARTA system. 

RQ1. Using an origin-destination direct demand model, what factors significantly 

influence MARTA rapid transit ridership? 

As cited by Duncan (2010), origin destination data is exceptionally rare among US transit 

systems. At the time of his writing, Metrorail, BART, and MARTA were the only heavy-

rail operators that used automated fare card technology that capture both boarding and 

alighting stations. As cited in the literature review, origin-destination models have 

recently been constructed for both BART and Metrorail, but no such model exists for 

MARTA.  

RQ2. Do non-pedestrian access factors to MARTA stations (e.g.  Park & Ride, Bus 

Connectivity) show a stronger effect on ridership than TOD factors (e.g. Pedestrian 

friendliness, Densities)? 

Using the results of the O-D direct demand model, and given that the Atlanta-Sandy 

Springs MSA ranks 220th out of 221 for sprawling MSAs, do the ideas that Brown, et al. 

(2012; 2014) suggest as being most important for transit ridership – serving as many 

dispersed population and employment centers – hold true? Or, does the model suggest 
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that TOD related factors still seem to be most influential in determining overall rapid-

transit heavy-rail ridership? Atlanta is a useful case study in this respect due to its sprawl 

and several specific characteristics of the MARTA system: bus connectivity is provided 

at almost every station, large park and ride facilities are available at some, and high 

densities exist at others.  

 

RQ3. What significance does the downtown Central Business District (CBD) play in 

predicting ridership in Atlanta?  

 

The literature and travel theory suggest that the CBD should play a major role in transit 

ridership, especially given the cross shaped structure of the MARTA where the CBD is 

the geometric center of the system. However, a previous investigation of Atlanta by 

Brown et al. (2014) highlights the falling importance of the CBD in a region with major 

suburbanization and dispersal of employment centers.  

 

The answers to these research questions will result in policy suggestions to increase the 

rapid-transit ridership of MARTA. Either MARTA should embrace its decentralized 

nature and seek to maximize access via park and ride and bus connectivity, attempt to 

improve and increase its TODs and the strength of the CBD, or possibly a combination of 

both.  
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        (MARTA, 2018) 

 

  

Figure 3.1 - MARTA Rail System Map 
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CHAPTER FOUR 
 

RESEARCH DESIGN, METHODOLGY, & DATA 

 The research design for this study is quantitative and focuses on a single case-

study to investigate the three research questions. The research will seek first to determine 

what factors affect heavy-rail transit ridership in a sprawling American sunbelt 

metropolis. Second, it will attempt to determine whether internal factors related to 

decentralized access to stations (e.g. connecting bus service, park & ride) prove more 

significant than traditional TOD external factors. Finally, it will seek to gauge the 

importance of the CBD on ridership. Ridership factors chosen from the transit literature 

were identified, modeled, and then were iteratively tested for significance and magnitude 

through statistical analysis – specifically, a cross-classified multi-level generalized linear 

regression model using station OD ridership flow data as the outcome variable.  

 The study focuses on the MARTA Transit system, in Atlanta, GA. Atlanta is a 

major sprawling sunbelt metro area that came of age in the automobile era. However, 

different than many other sunbelt cities, Atlanta began constructing the MARTA heavy-

rail rapid transit system in the 1970s. Today, MARTA consists of 4 heavy-rail transit 

lines that bisect the city North-South and East-West roughly paralleling major interstates, 

and also operates an extensive network of connecting local bus service. The system 

services multiple counties and cities throughout the sprawling polycentric metro Atlanta 

area.  
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 The sample for this analysis includes 1406 O-D pair flows based on all 38 heavy-

rail rapid transit stations in the MARTA system. Since the sample size would be far too 

small to investigate the numerous explanatory factors of interest if only station level data 

were used, and since MARTA collects origin and destination flow data through 

automated fare collection, ridership was sampled as unlinked passenger trip flows 

between all possible combinations of origin and destination stations. These origin-

destination flows serve as the unit of analysis for this study. Ridership, for the purposes 

of this study, will be defined as the one-way flow, or count, of unlinked trips between 

MARTA heavy-rail transit station O-D pairs. Average daily ridership data in the form of 

unlinked trip flows between station pairs were obtained for the entire 2017 year, the most 

recent year of data available at the time of this study.  

To answer research question 1, a cross-classified multi-level (mixed-effects) 

linear regression model is constructed with average daily ridership between O-D station 

pairs during 2017 as the dependent variable. This model follows the statistical 

methodology employed by both Duncan (2010) and Iseki et al (2018). As both studies 

note, the nature of OD data poses statistical complexity different than that of typical 

direct demand model. A multi-level model is employed to deal with the two types (levels) 

of explanatory factors.  

The first level relates to the explicit OD pair explanatory variables (like travel 

time between the pair), whereas the second level relates to the specific station variables 

within the pair (like employment or park & ride spaces). In addition to this complexity, 
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each individual OD pair nests into two sets of observational clusters on the second level: 

one with all other pairs that share the same origin station, and one with all other pairs that 

share the destination station. This nesting requires statistical cross-classification to be 

used in the model and is done so by including random effects terms for both the origin 

and destination station clusters. Therefore, the model will take generalized form given by 

equation 1, taking the same form used by Iseki et al (2018), but lacking their stratification 

by time of day specification.  

𝑅"# = 	𝜃 + 𝛼 ∗ 𝑋"# + 𝛽 ∗ 𝑌" + 𝛾 ∗𝑊# + 𝑏0" + 𝑐0" + 𝑑"#       

Where:  

- 𝑅"# is the dependent variable, passenger counts between Origin (i) and Destination (j) 

- 𝜃 is the model intercept 

- 𝛼 is the vector of OD pair variable coefficients (level 1) 

- 𝑋"# is the vector of OD pair variables, like travel time between the OD pair (level 1) 

- 𝛽 is the vector of Origin station variable coefficients (level 2 – class 1) 

- 𝑌" is the vector of Origin station variables, like station area population (level 2 – class 

1) 

- 𝛾 is the vector of Destination station variable coefficients (level 2 – class 2) 

- 𝑊# is the vector of Destination station variables, like intersection density (level 2 – 

class 2)  

- 𝑏0" , 𝑐0", and 𝑑"# are the origin, destination, and OD pair residuals vectors  
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To construct the model, a set of explanatory variables are chosen from a review of 

the transit ridership theory and literature, then others are iteratively tested to produce a 

robust generalized linear regression that has strong predictive power and variables with 

high significance and low collinearity. Candidate explanatory variables are listed in Table 

4.1 and are informed by the literature review.  

The explanatory variables are divided into three vectors found throughout the 

ridership literature: external land-use built-environment variables (6 candidate variables), 

external socioeconomic/demographic variables (4 candidate variables), and internal 

transit service quality variables (12 candidate variables). The variables are expressed at 

one of two levels. Level 1 variables are ‘OD pair’ specific variables like travel time 

between the specific pair. Level 2 variables are ‘station’ variables and are expressed for 

both origin and destination stations. The model assumes that average weekday O-D pair 

trip flows are a function of these three explanatory variable vectors and provides an 

understanding of statistical significance, direction of association, and magnitude.  
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Table 4.1 – Candidate Explanatory Variables 
 

 
 

 The data for the explanatory variables were collected to correspond to the most 

recent available data and to match the 2017 MARTA heavy-rail transit ridership data. For 

the land-use built-environment variables, the station catchment and delineation areas are 

computed by using network distance of 0.5 mi as suggested throughout the literature 

(Gutiérrez et al., 2011; Kuby et al., 2004). This is accomplished using GIS software to 

produce a network using ESRI Business Analysts streets data to create 0.5-mile 

walksheds surrounding each station. This method is chosen over a Euclidean buffer 

Dependent Variable Level Data Source
Average Weekday Trips between Station Pairs OD Pair MARTA (2017)

Independent Variables Explanatory Vector Category Level Data Source

Population in 0.5mi walkshed External - Land Use/Built Environment Station US Census ACS 5yr (2016)
Jobs in 0.5 walkshed External - Land Use/Built Environment Station US DOL OnTheMap (2017)
WalkScore® External - Land Use/Built Environment Station WalkScore® (2018)
Airport Station (0-1 binary) External - Land Use/Built Environment Station MARTA (2017)
Special Generator Count External - Land Use/Built Environment Station MARTA (2017)
CBD Station (0-1 binary) External - Land Use/Built Environment Station MARTA (2017)

NonWhite Population Percentage External - Socioecon/Demographics Station US Census ACS 5yr (2016)
0 Vehicle Household Availability External - Socioecon/Demographics Station US Census ACS 5yr (2016)
Avg. Household Auto Availability External - Socioecon/Demographics Station US Census ACS 5yr (2016)
Median Household Income External - Socioecon/Demographics Station US Census ACS 5yr (2016)

MARTA Station Pair Travel Time Internal - Transit Service OD Pair MARTA GTFS (2017)
MARTA Station Pair Travel Distance Internal - Transit Service OD Pair MARTA (2017)
Auto Travel Time between Stations Internal - Transit Service OD Pair CDX Technologies (2019)
Auto Travel Time / MARTA Travel Time Internal - Transit Service OD Pair CDX Technologies (2019)/ MARTA
MARTA Transfer Required (0-1 binary) Internal - Transit Service OD Pair MARTA (2017)

Number of Park & Ride Spaces Available Internal - Transit Service Station MARTA (2017)
Average Weekday Parking Spaces Utilized Internal - Transit Service Station MARTA R&A Survey (2017)
Number of connecting Bus Lines to station Internal - Transit Service Station MARTA GTFS (2017)
Number of Buses per day Internal - Transit Service Station MARTA GTFS (2017)
Route Miles of connecting Bus Lines to station Internal - Transit Service Station MARTA GTFS (2017)
Bus Miles Driven connecting to Station (VMT) Internal - Transit Service Station MARTA GTFS (2017)
Terminal Station (0-1 binary) Internal - Transit Service Station MARTA (2017)

*Bold variables included in initial model specification
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delineation which can produce less favorable results by ignoring local street networks and 

including data that is not in the real pedestrian walkshed service area.  

These walksheds are then used in tandem with US Census population and US 

Department of Labor ‘On the Map’ employment data to calculate station area populations 

and jobs to be included in the model. These factors are included extensively throughout 

the ridership literature and are especially relevant to the question of whether TOD factors 

are most important. Next, WalkScore® data will be used as an index measure of built 

environment pedestrian friendliness in a similar manner as used by Ramos-Santiago 

(2018). Additionally, a count of special generators including sports venues, conference 

centers, museums, hospitals, and major universities were included.  

The Hartsfield-Jackson Atlanta airport is included as a stand-alone binary 

(dummy) variable as its own special generator. The airport is a massive influence on the 

southeastern US region as a whole, and is hypothesized to be a strong special generator 

for the MARTA system, and therefore should be separated and controlled for in the 

model. Finally, to address research question 3, a dummy variable to delineate the 6 CBD 

stations at the core of the MARTA system is included.  

 Socioeconomic and demographic factors are found significant intermittently 

throughout the station-level ridership literature. They are included in the model as 

candidate control variables since they do not directly apply to the research questions of 

the study. Four station level variables are included: non-white population percentage, 

average household auto availability, 0 vehicle households, and median household income 
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as informed by the literature review. All of the data for these factors comes from the US 

Census American Community Survey (ACS) 2016 which is the most recent year data is 

available. These factors were measured for the populations inside the 0.5 mile pedestrian 

walkshed area surrounding each station.  

 The largest number of candidate variables falls into the 3rd ridership factors vector 

– internal transit service quality variables. This category contains two levels of variables 

– OD pair specific variables and station level variables.  

The OD pair specific variables describe the quality of the transit (and their 

alternatives) between the specific two stations. There are 5 candidate variables in this 

group: MARTA travel time, MARTA travel distance, Auto travel time between stations, 

Auto travel time divided by MARTA travel time, and a binary variable for whether a 

transfer is required on the trip. The MARTA data for these variables comes from 

MARTA General Transit Feed Specification (GTFS) 2017 data and the drive time was 

calculated with the CDX Technologies software and Bing maps.  

These candidate variables which relate to travel time/distance and auto 

competition are especially unique to OD pair modeling. They allow for comparison 

between the competitive modes, and since the auto is the main competitor in large 

sprawling US metropolises the travel time between stations is a necessary and useful 

inclusion. Transfers are also continually cited as highly important (if not the most 

important) to transit riders (Walker, 2011), above and beyond simple travel time 
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calculations. Due to the layout of the MARTA, only 1 heavy-rail transfer is ever required 

to complete a journey so transfers are measured as a binary variable in the model.  

The remaining 7 candidate variables are especially relevant to this study as they 

not only apply to research question 1, but include variables of interest for research 

question 2 – since they include those explanatory variables that relate to the non-

pedestrian access to the rapid transit stations. The variables are: utilization of park & ride 

spaces, the number of connecting bus lines to the station, the number of buses that arrive 

at the station per day, a summation of the bus-route miles that connect to the station, and 

binary variables for if the station is a terminal or CBD station.  

Park & ride availability and usage are found in the literature to reflect the much 

greater catchment area than the auto provides. The data comes from MARTA Research & 

Analysis (2017) which tracks parking availability and utilization as required by Federal 

Transit Authority. The next three variables, number of bus lines, number of buses per 

day, and number of route miles of connecting bus lines, seek to measure the non-

pedestrian access to the system via MARTA local buses. For connecting bus access to the 

station, the traditional measures found throughout the direct-demand literature are the 

number of connecting bus routes to the station or the number of buses that arrive at the 

station per day. That data is included in the MARTA GTFS 2017 data and is included in 

this study. However, to further investigate the effects of connecting a decentralized and 

sprawling metro area via multi-destinational transit service a new candidate variable is 

proposed for this study. In addition to simply counting the routes or buses serving a 
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station, the route-miles of bus service, as determined from GIS software and MARTA 

GTFS data for 2017, is included. This measure should capture those stations that serve as 

the portal to larger MARTA local bus service catchment areas being served by the longer 

and more frequent routes. Finally, a binary variable for terminal stations is included to 

serve as a control variable as it appears significant through some of the literature. This 

data comes from MARTA. 

The data was collected and compiled for all of the specified variables. Due to the 

nature of the variables, both Duncan (2010) and Iseki et al. (2018) natural log 

transformed both their dependent and continuous independent variables before modeling. 

They found that this gave better model fits as well as allowed for log-log interpretations 

of the results. Tests were performed on the data to determine if there existed unacceptable 

multicollinearity which would violate the regression model assumptions and skew the 

results. It was determined that several variables were unacceptably collinear. This inclued 

obvious cases such as MARTA travel time and MARTA travel distance, and number of 

connecting bus lines, buses per day, bus route miles, and bus miles traveled, but it also 

included other less obvious relationships like the one between population and number of 

0 vehicle households. After selecting a single variable for those cases of collinearity, a 

subset of the candidate variables were designated for the initial model and specific 

collinear variables were noted as to be only individually included in the model during the 

iterative process.  
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After the initial modeling, an iterative process of adding, examining, and 

removing or modifying variables was used to determine what combination of factors 

should be included for the best fit model. The best fit model was identified as the most 

parsimonious model with strong predictive power, fit, variable significance, and 

theoretical backing. The best fit model then was used to offer answers to the research 

questions by analyzing the final inclusion, significance, magnitudes, and directionality 

between variables.  

 In regards to research design validity, issues of internal and external validity 

could arise in this research design under a few scenarios. If the model had produced 

results that were exclusively and exceptionally different than what the literature suggests, 

face validity could be an issue since the transit ridership theory literature is well 

documented. Internal validity should not pose an issue unless the explanatory variables 

display high degrees of collinearity. Finally, the study could suffer from issues of 

construct validity, as not all of the phenomenon under question lend themselves to easy 

measurement. Specifically, the concept of ‘pedestrian friendliness’ is captured through 

the use of a composite and proprietary WalkScore ® index, however it is possible that the 

design ‘D’ as examined in the literature review is not being appropriately captured 

through this score.  

As noted in previous DDM studies collinearity was an issue with some variables, 

but no two collinear variables were included in models simultaneously. Instead, variables 

that measured similar phenomena were iterated through the model to determine which 
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best fit. Additionally, especially low power of prediction models should be noted as such, 

with additional interest in what explanatory factors were missed in the candidate ridership 

variables. Finally, though this study seeks to generalize about decentralized station access 

factors like auto and bus connectivity as opposed to traditional TOD factors, the interest 

is in those cities that are similar in sprawl and polycentricism to Atlanta. Generalizing 

further than that, or to cities with vastly different transit infrastructure (like no tunneled 

heavy-rail), would likely increase issues of external validity.  

 The results of the modeling process are documented in the following section.  
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CHAPTER FIVE 

RESULTS  

 

 Data was obtained for all the candidate variables of interest. Table 5.1 presents 

descriptive statistics for the variables of interest. An initial model was specified, coded, 

and run using the Lme4 and LmeTest packages in R which are designed to handle 

generalized linear multi-level (mixed-effects) models. The initial model included all of 

the variables included in Table 5.1, with the exception of Avg. HH vehicles, Buses per 

Day, and Bus miles traveled, each of which was excluded due to issues of high 

correlation (>0.7). The variables that offered a better fit were instead used – Median HH 

income and connecting bus lines. This model also included random effects terms based 

on the origin station clustering and the destination clustering (to account for the cross-

classification of the data).  

This initial model had an Akaike Information Criteria (AIC) score of 2027 which 

is an estimator used in multi-level (mixed-effect) modeling to describe the quality of the 

model in terms relative to other models. It also had a marginal R2 value of 0.495 which 

describes the predictive power of the fixed effects (the variables of interest included), and 

a conditional R2 of 0.855 which describes the power of the model as a whole (including 

both the fixed effects and the cross-classified random effects). Though the initial model 

was not poor in terms of power and fit, few of the variables showed statistical 

significance. This led to an iterative process of removing those variables that did not 

seem to be significant to the model to find a best fit model.  
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Table 5.1 - Descriptive Statistics of Variables of Interest 
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The results of the best fit model are shown in Table 5.2. The best fit model has 

predictive power values, R2 marginal and conditional, very similar to the initial model, 

but offers a better overall fit via the AIC score of 2015 (and a much better AIC than the 

null, 2859) Also, the model is composed of variables that all (but one) offer statistical 

significance at the 0.05 level or greater. The decision to include the random effects terms 

to capture the nesting of the cross-classified origin station and destination station is also 

validated in the results. In the best fit model, the R2 marginal shows that the fixed effects 

variables provide 48% of the power, but by including the random effects terms the R2 

conditional rises to 85%, meaning that the random effects offer the model a substantially 

better predictive power and fit.  
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Table 5.2 - Best Fit Model Results 

 

  

The strongest predictor of the dependent variable, average daily ridership, is 

whether or not a MARTA transfer is required to complete the trip. It had the highest t-

score, and the expected negative sign, as transfers are cited in the literature as a major 

detractor to ridership. Following transfers, the number of bus lines connecting to the 

station at both the origin and destination were significant, had expected (+) signs, and had 

high coefficients. All of the bus related variables were tried in the modeling process 

Model Results 

Random Effects Variance St. Dev.
Origin Station 0.227 0.4764
Desintation Station 0.2843 0.5332
Residual 0.1954 0.4421

Fixed Effects: Ind. Variables Level Coef Std. Error t Value Pr (>|t|)

(Intercept) 7.593 1.399 5.428 0.000 ***
OD Pair Variables

Transfer Required [0-1] OD -0.786 0.032 -24.854 0.000 ***
ln (MARTA Travel Time) [min] OD -0.068 0.022 -3.083 0.002 **

Origin Station Variables
ln (Jobs in 0.5 mi walkshed) Station 0.170 0.052 3.244 0.002 **
ln (WalkScore®) Station -0.282 0.127 -2.216 0.033 *
ln (Med. HH Income in walkshed) Station -0.274 0.080 -3.404 0.002 **
ln (Num. Bus Lines) Station 0.616 0.135 4.574 0.000 ***

Desintation Station Variables
ln (Jobs in 0.5 mi walkshed) Station 0.181 0.059 3.091 0.004 **
ln (WalkScore®) Station -0.286 0.142 -2.014 0.051 -
ln (Med. HH Income in walkshed) Station -0.249 0.090 -2.771 0.009 **
ln (Num. Bus Lines) Station 0.597 0.150 3.972 0.000 ***

Model AIC BIC R2m R2c
Null Model (Rand. Eff. Only) 2859.5 2880.5 - 0.748
Fitted Model 2015.4 2088.9 0.479 0.856
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(number of connecting bus lines, buses per day, bus route miles, and the constructed bus 

miles traveled), but the number of connecting bus lines proved to fit best in the model. 

Since both the dependent and independent variables have been log transformed, the 

coefficient can be interpreted as an elasticity. This means that an increase in the number 

of bus lines connecting to the origin station by 10% would correspond with an increase in 

daily ridership of 6.16%.  

Job counts in the station walkshed at both the origin and destination are also 

positive and significant, with coefficients of 0.17 and 0.18 respectively. Median 

household income was found to be significant and negative, which corresponds with the 

transit literature. MARTA travel time was also found to be significant and negative as 

expected from the transit theory. Finally, WalkScore® was found to be negative and 

significant at the origin, but just over the threshold to insignificant in the model at the 

destination. It was retained in the model since it was very close, and when an Anova test 

for type III error in mixed-effect models was performed in R on the model (another 

statistical method to approximate significance of a mixed-effects model), it did show 

significance at the 0.05 level. The WalkScore® result was the only variable to remain in 

the model that performed differently than expected by lowering expected ridership rather 

than increasing it, though the literature was more mixed on its effect than with the other 

variables. There is no clear answer in this study as to why the contribution to ridership 

would be negative for a higher WalkScore®.  However, it is possible that there was some 

issue with collinearity (0.56) between WalkScore® and job counts which produced the 
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negative relationship, or simply the score did not adequately capture the design 

phenomenon as described in the transit ridership literature.  

 Post processing diagnostics tests and plots were performed on the results of the 

model. Figure 5.1 shows the Normal Q-Q plot and the Fitted vs Residuals plots. The Q-Q 

plot follows the linear trend line closely and the Fitted vs. Residuals plot shows a tight 

band around the horizontal 0 with a random but equal dispersal. These diagnostic plots 

show that the results are acceptable and do not violate the assumptions of the modeling 

process. Additionally, the correlation chart for the independent variables is presented in 

Figure 5.2. None of the variables are unacceptably correlated, with the highest correlation 

value being 0.57.  

 A discussion of the implications of the results of the modeling process follows in 

the next section.  
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Figure 5.1 - Normal Q-Q Plot & Fitted vs Residuals Plot 
 

 
 
 
 
 

Figure 5.2 - Correlation Chart 
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CHAPTER SIX 
 

DISCUSSION 
 

 In the previous section the results of the best fit model are described numerically 

and with respect to the modeling process. This section will interpret the findings in terms 

of the research questions, as well as address those variables that did not prove significant 

and worth inclusion in the best fit model.  

 The best fit model serves as the primary answer to research question 1: What 

factors significantly influence MARTA ridership. The model showed that jobs in the 

station walkshed and the number of connecting bus routes both are significant and 

positive factors predicting MARTA ridership, with the strongest positive elasticity going 

to number of bus lines. The MARTA travel time, whether or not a transfer was required, 

median household income, and WalkScore® were all found to be significant and 

negative. Transfers were far more powerful in dissuading trips than overall MARTA 

travel time, and median household income had the expected negative effect that the 

literature suggested.  

 Those candidate variables that were not found to be statistically significant are 

also a component of the answer to RQ1. Population in the walkshed was tested as a count 

variable, a density variable, and with categorization by Jenks natural breaks, but never 

came up as significant in any model. Neither the airport station binary variable nor the 

CBD station variable showed significance either, though they were hypothesized to be 

important in the Atlanta context. It is possible that since the Atlanta airport has such 
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notoriety (being the world’s busiest airport) the perception of transit to and from it is 

greater than the actual reality of the effect it has on the MARTA system. 

 Nonwhite percentage and vehicle availability factors also did not appear in the 

best fit model. They were iterated through the model both while including and excluding 

median household income, but ultimately they did not improve the fit nor show 

significance in any iteration. This once again differentiates the MARTA/Atlanta case 

from those in the literature that find that race and auto availability are major predictors of 

transit ridership. Figure 6.1 shows the median household income by station, as well as the 

½ mile station walksheds used throughout the analysis.  
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Figure 6.1 - Median Household Income and 1/2-mile Station Walksheds Map 
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Also conspicuously absent from the final model is any factor related to driving or 

parking. Drive time was not found significant, nor was a hybrid variable of drive time 

divided by the MARTA travel time which would attempt to capture the time penalty that 

MARTA riders incur versus those who drive. Parking utilization was also not found to be 

significant, even though a large percentage of stations have parking areas and some are 

used thoroughly (one station had 2,217 out of 2,341 parking spaces utilized, or 90%). 

This suggests that even though there exists rather large parking infrastructure and the 4th 

worst traffic in North America (INRIX, 2018), the MARTA system performance does not 

depend on travel mode substitution from the auto. This aligns with the lack of 

significance of the drive time divided by MARTA travel time variable in the model.  

 Research question 2: Do non-pedestrian access factors to MARTA stations show a 

stronger effect on ridership than TOD factors, was framed to be an either-or answer, 

however the findings from this study fall somewhere in between. Non-pedestrian access 

was defined as arriving at the station via a car and using the park and ride or by MARTA 

bus. The model strongly suggests that many riders are utilizing the bus system to reach 

main-haul rapid-transit service, and that the greater the number of connecting bus lines, 

the higher the ridership both at the origin and destination stations. However, by parking 

not showing significance (nor any of the auto variables), it appears that parking 

infrastructure doesn’t play a significant role in overall system ridership. Figure 6.2 shows 

the MARTA heavy rail system as well as the connecting bus routes to the stations. 
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It is appropriate to note that the structure of the MARTA bus system is 

specifically designed to function as the model predicted. Almost all of the 100+ bus lines 

originate from and then return to a MARTA heavy rail station (or connect multiple 

stations), allowing those who need to transfer direct non-pedestrian access to the main 

trunk heavy rail lines. In other cities where the feeder bus system has a different service 

orientation, it would be expected that the bus system may not have such a direct and 

positive effect on rail transit ridership.  

On the other side of the question, TOD factors were defined as population 

density, job density, and pedestrian friendliness (estimated by WalkScore® in this study). 

Population did not show significance in any form (total count, density, or categorization 

by Jenks natural), but is considered a major component of TODs. However, jobs in the 

walkshed showed significance and the expected positive sign and correlation, following 

the TOD expectations. Interestingly, WalkScore® showed a negative effect, insinuating 

that the pedestrian friendliness of the area is not of importance to ridership, and in a small 

way may substitute for transit or dissuade riders. It is also possible that WalkScore® may 

not be a suitable measure of the land-use / built-environment as the design ‘D’ is trying to 

capture and creates a construct validity issue.  In future research it would be useful to 

either break the WalkScore® index into its constituent parts and test them independently, 

or to use a more direct measure such as intersection density inside the station walkshed.  
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Figure 6.3 shows the jobs within the station walksheds, as well as the jobs throughout the 

metro Atlanta region. Figure 6.4 shows the Station WalkScore®. 
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Figure 6.2 - Number of Connecting Bus Lines to Station Map 
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Figure 6.3 - Jobs in Station Walkshed Map 
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Figure 6.4 - Station WalkScore Map 
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This study suggests that in the case of Atlanta, the answer is not exclusively TOD 

or non-pedestrian access specifically that is driving. Instead it seems that MARTA is 

primarily serving those who use the buses to move throughout the dispersed metro area to 

get to centers of activity (as measured by the station area job count). This reflects a 

conclusion much more similar to that of Brown & Thompson (Brown & Thompson, 

2008) wherein the utility of a transit system is serving the dispersed centers of activity 

and jobs, as opposed to the traditional TOD literature. However, this is not to suggest that 

TODs should be discouraged in the MARTA system, but that TOD development must 

include strong job creation (as opposed to focusing on housing at a higher rate) and that 

stations must retain and improve connectivity to the bus system, and thus improve bus 

service levels as well.  

 Building off that conclusion, the answer to research question 3: What significance 

does the downtown Central Business District (CBD) play in predicting ridership in 

Atlanta, is that the CBD does not play a statistically significant role. It is certainly 

important from a structural role; Five Points station, which is the center station in the 

system has the greatest number of riders daily by a large margin, and most riders who 

transfer lines will do so at Five Points. But when considering the CBD holistically, it 

does not have a significant effect of the OD ridership flows. Figure 6.5 shows a heatmap 

of the average daily ridership throughout the entire system.  
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Figure 6.5 - Average Daily Ridership Heatmap 
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CHAPTER SEVEN 
 

CONCLUSION 
 

 As transit agencies all throughout the US face declining ridership, and impetus for 

increasing ridership grows due to climate change, congestion, and urbanization, 

understanding the factors that affect ridership is fundamental to the successful planning, 

performance, and longevity of US transit. However, the literature and current planning 

thought is split on the issue of what is the primary driver of transit ridership. Some 

contend that the aspects of older, historically successful systems are the major 

components and they seek to replicate these attributes by planning Transit Oriented 

Developments with high population and job densities, mix of uses, and pedestrian 

friendliness.  

Others contend, especially for younger systems in the Sunbelt, that the historic 

radial model of the city where jobs and demand were focused on the Central Business 

District is not accurate. Instead they suggest a view of metro areas as dispersed clusters of 

activity that transit should attempt to connect. These competing ideals were examined in 

this study for the metropolitan Atlanta area, focusing on the factors that affect MARTA 

ridership.  

 Three research questions were outlined to investigate not only which factors were 

significant, but also to attempt to understand what the most appropriate approach would 

be for MARTA when considering TOD vs non-pedestrian connectivity and a dispersed 

polycentric or CBD focused metro area.  
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 The study utilized an origin-destination direct demand model with average daily 

ridership as the dependent variable. A multilevel (mixed-effects) cross-classified 

generalized linear regression model was employed to statistically test candidate variables 

from the transit ridership literature to determine the factors’ significance, magnitude, and 

directionality. An initial model based in theory was tested, then the model was explored 

and iterated to develop a best fit model. This best fit model was the best intersection of 

parsimony, significance of factors, explanatory power, and overall linear fit. The model 

showed that the number of jobs in a half mile station walkshed and the number of 

connecting bus lines to the station to be positive and significant factors of ridership. It 

also showed significantly that transfers, median household income, MARTA travel time, 

and WalkScore® reduce ridership, although issues of construct validity may exist for the 

multi-dimensional WalkScore measure. All other candidate variables were found to be 

insignificant. These notably included drive time, population around stations, parking 

utilization, and CBD stations.  

 The findings suggest that it is not an either-or situation in Atlanta when it comes 

to TOD vs non-pedestrian connectivity. From the model, MARTA is shown to be serving 

bus riding patrons who are attempting to reach destinations with high densities of jobs 

(which can also be seen as activity). This finding does not in any way explicitly 

discourage TOD implementation, but highlights the necessity to ensure that the 

development is one that includes jobs and activity centers as its primary function (as 

opposed to population density and proximity to the station, or pedestrian friendliness). It 

also requires that MARTA continue to provide good connectivity between the heavy-rail 
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and local bus modes of the transit system. This has been a tenet of MARTA transit 

planning in the past, and must remain so as MARTA plans new TODs and station and 

system upgrades.  

 Finally, the findings do suggest that the dispersed polycentric model of the city 

more aptly describes the metropolitan Atlanta region where MARTA operates. Figure 7.1 

helps to visualize this phenomenon by overlaying the employment data with the 

connecting bus line data.  The CBD variable showed no statistical significance, and 

employment centers seemed to be the major external factor driving transit demand. 

Though the results of the O-D direct demand model are specific to the MARTA system, 

they align with the growing body of evidence that suggests transit in younger cities must 

respond to the suburbanization of jobs, and attempt to serve as many of the nodes of 

activity as possible by making good use of their bus networks to avoid further declines in 

ridership.  
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Figure 7.1 - Employment and Bus Connectivity Map 
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CHAPTER EIGHT 

FUTURE RESEARCH 

 The findings of this study offer a pair of lines of future research. The first comes 

from the tension between creating an ‘urban place’ node in the city with tenets of TOD 

and specifically including high concentrations of jobs, while still proving the 

‘transportation node’ aspects of physical capacity to support many intersecting bus lines 

and smooth transfers from bus to rail. This is often looked past in the literature as the 

either/or policies tend to focus on creating pedestrian friendly TODs or improving 

multimodal transportation service quality. However, if the solution exists, it comes from 

good urban design. Focusing on how to incorporate the most valuable assets of both 

urban places and transportation hubs simultaneously would be an insightful stand-alone 

research project.  

 Another line of further research lies with the connection between bus service 

connectivity and rail transit ridership. Though this study found that connecting bus 

service had a significant and positive impact on ridership, it would be interesting to dive 

deeper into this relationship. Specifically, a study that sought to quantify the increase in 

rail ridership from various types of bus service improvements would be of great use to 

transit planners who must make such decisions. A study could assess pre and post rail 

ridership data from various types of improvements like frequency increases, routing 

changes, vehicle upgrades, or station/transfer infrastructure and look for differences in 

the elasticity of resulting rail ridership. The relationship between the bus service and rail 
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transit ridership is obviously significant, but further study could illuminate the expected 

results of various improvements.  
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