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In Chapter 4, we introduced the exponential function y = ex and the natural logarithm 
function y = ln x, and we studied their most important properties. It is by no means 

clear that these functions have any substantial connection with the physical world. How-
ever, as this chapter will demonstrate, the exponential and natural logarithm functions 
are involved in the study of many physical problems, often in a very curious and unex-
pected way.

5.1	 Exponential Growth and Decay

5.2	 Compound Interest

5.3	 Applications of the Natural Logarithm Function 
to Economics

5.4	 Further Exponential Models

Applications of the Exponential  
and Natural Logarithm Functions

5
chapter

Exponential Growth
You walk into your kitchen one day and you notice that the overripe bananas that you 
left on the counter invited unwanted guests: fruit flies. To take advantage of this pesky 
situation, you decide to study the growth of the fruit flies colony. It didn’t take you too 
long to make your first observation: The colony is increasing at a rate that is propor-
tional to its size. That is, the more fruit flies, the faster their number grows.

To help us model this population growth, we introduce some notation. Let P(t) 
denote the number of fruit flies in your kitchen, t days from the moment you first 
noticed them. A very important fact that we learned about derivatives tells us that

the rate of change of P(t) is P′(t).

5.1 Exponential Growth and Decay

“The derivative is a rate 
of  change.” See Sec. 1.7, 
p. 107.

FOR REVIEW
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5.1  Exponential Growth and Decay  255

Translating into mathematical language our observation that the rate of change of P(t) 
is proportional to P(t), we obtain the equation

	 rate of change	 proportional to P(t)

P′(t)  =   k P(t),
$%& $'%'&

where k is a positive constant of proportionality. If we let y = P(t), the equation 
becomes

	 y′ = ky.� (1)

Equation (1) expresses a relationship between the function y and its derivative y′. Any 
equation expressing a relationship between a function and its derivatives is called a 
differential equation. Differential equations will be discussed in greater detail in 
Chapter 10.

A solution of (1) is any function whose derivative is equal to k times itself. This is 
clearly a new type of equation unlike any algebraic equation that we have encountered 
earlier. To find a solution, we recall a useful derivative from Section 4.3.

Let C and k be any constants, and let y = Cekt. Then, y′ = Ckekt.

(We use the independent variable t instead of x throughout this chapter. The reason 
is that, in most applications, the variable of our exponential function is time.) Note 
that

	 y

y′ = Ckekt = k # Cekt = ky.

Hence, y = Cekt is a solution of (1). The converse is also true in the following sense.

$%&

Theorem 1  Exponential Function Solution of a Differential Equation  The function 
y = Cekt satisfies the differential equation

y′ = ky.

Conversely, if y = f (t) satisfies the differential equation y′ = ky, then, y = Cekt for 
some constant C.

In biology, chemistry, and economics, if, at every instant, the rate of increase of a quan-
tity is proportional to the quantity at that instant, as expressed by (1) (with k 7 0), then 
the quantity is said to be growing exponentially or is exhibiting exponential growth. The-
orem 1 justifies this terminology, since, in this case, the quantity is an exponential func-
tion. The proportionality constant k is also called the growth constant.

EXAMPLE 1 Solving a Differential Equation  Determine all functions y = f (t) such that y′ = .3 y.

SOLUTION The equation y′ = .3y has the form y′ = ky with k = .3. Therefore, according to Theo-
rem 1, any solution of the equation has the form

y = Ce0.3t,

where C is a constant.�  Now Try Exercise 3

Note that even if the constant k is known in Example 1 (k = .3), the equation y′ = .3y 
has infinitely many solutions of the form y = Ce0.3t, one for each choice of the arbitrary 
constant C. For example, the functions y = e0.3t, y = 3e0.3t, and y = 6e0.3t are all 

d
dx

 (e g (x)) = e g (x)g′(x)

See Sec. 4.3, p. 233.

FOR REVIEW

M06_GOLD7774_14_SE_C05.indd Page 255  09/11/16  7:31 PM localadmin /202/AW00221/9780134437774_GOLDSTEIN/GOLDSTEIN_CALCULUS_AND_ITS_APPLICATIONS_14E1 ...

SAMPLE

FOR REVIEW BY POTENTIAL ADOPTERS ONLY

© 2018 Pearson Education. All rights reserved.



256  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

The condition P(0) = 6 in Example 2 is called an initial condition. The initial 
condition describes the initial size of the population, which, in turn, can be used to 
determine a unique solution of the differential equation. Fig. 1 shows many solutions 
of the differential equation y′ = .3y but only one goes through the point (0,  6) and so 
satisfies the initial condition y(0) = 6. For future reference, we state the following 
useful result.

solutions that correspond to the choices C = 1, 3, and 6, respectively. (See Fig. 1.) The 
fact that a differential equation has infinitely many solutions allows us to select a par-
ticular solution that fits the situation under study. We illustrate this important fact by 
returning to our fruit flies problem.

y 5 6e0.3t

y 5 3e0.3t

y(0) 5 6 

y(0) 5 3 
y(0) 5 1

y 5 e0.3t

t

y

1 32 4

5

0

10

15

20

Figure 1  Some solutions 
of y′ = .3y.

EXAMPLE 2 Exponential Growth of a Fruit Flies Population  Let y = P(t) denote the number of 
fruit flies in the kitchen, t days since you first observed them. It is known that this spe-
cies of flies exhibits exponential growth with growth constant k = .3. Suppose that the 
initial number of fruit flies is 6.
(a)	 Find P(t).
(b)	 Estimate the number of fruit flies after 7 days.

SOLUTION (a)	 Because y = P(t) exhibits exponential growth with growth constant k = .3, it satis-
fies the differential equation

y′ = .3y.

We are also told that the initial number of fruit flies is 6. That is, at time t = 0, there 
are 6 fruit flies. Hence, P(0) = 6. From Example 1, the differential equation 
y′ = .3y has infinitely many solutions of the form y = Ce0.3t, but only one of these 
solutions will satisfy the condition P(0) = 6. Indeed, taking t = 0 in P(t) = Ce0.3t, 
we get

6 = P(0) = Ce(0.3)(0) = Ce0 = C.

Thus, C = 6 and so P(t) = 6e0.3t.
(b)	 After 7 days, we have

P(7) = 6e0.3(7) = 6e2.1 ≈ 48.997.

Thus after 7 days, there are approximately 49 fruit flies in the kitchen.
 Now Try Exercise 19

Theorem 2  Solution of a Differential Equation with Initial Condition
The unique solution, y = P(t), of the differential equation with initial condition,

y′ = ky,  y(0) = P0,

is y = P(t) = P0ekt.

M06_GOLD7774_14_SE_C05.indd Page 256  09/11/16  7:32 PM localadmin /202/AW00221/9780134437774_GOLDSTEIN/GOLDSTEIN_CALCULUS_AND_ITS_APPLICATIONS_14E1 ...

SAMPLE

FOR REVIEW BY POTENTIAL ADOPTERS ONLY

© 2018 Pearson Education. All rights reserved.



5.1  Exponential Growth and Decay  257

The following examples illustrate different ways to determine the constants C and 
k in exponential growth problems arising in real-world situations.

EXAMPLE 3 A Differential Equation with Initial Condition  Solve y′ = 3y, y(0) = 2.

SOLUTION Here, k = 3 and P0 = 2. By Theorem 2, the (unique) solution is y = 2e3t. Note the ini-
tial condition on the graph of the solution in Fig. 2.

 Now Try Exercise 13

y

2122 21

1

2

3

4

5 y 5 2e3t

y(0) 5 2

t
0

Figure 2  Unique solution 
of y′ = 3y, y(0) = 2.

EXAMPLE 4 Exponential Growth  A colony of fruit flies grows at a rate proportional to its size. At 
time t = 0, approximately 20 fruit flies are present. In 5 days there are 400 fruit flies. 
Determine a function that expresses the size of the colony as a function of time, mea-
sured in days.

SOLUTION Let P(t) be the number of fruit flies present at time t. By assumption, P(t) satisfies a dif-
ferential equation of the form y′ = ky, so P(t) has the form

P(t) = P0ekt,

where the constants P0 and k must be determined. The values of  P0 and k can be 
obtained from the data that give the population size at two different times. We are 
told that

P(0) = 20,  P(5) = 400.

The first condition immediately implies that P0 = 20, so

P(t) = 20ekt.

Using the second condition, we have

	  P(5) = 20ek(5) = 400
	  e5k = 20 Divide by 20.
	  5k = ln 20	  Take ln of each side.

	  k =
ln 20

5
≈ .60.

So, using the values of P and k, we get

P(t) = 20e0.6t.

This function is a mathematical model of  the growth of  the colony of  flies. (See 
Fig. 3.)

ex and ln x are inverse of 
each other: ln ex = x and 
eln x = x. See Sec. 4.4.

FOR REVIEW

M06_GOLD7774_14_SE_C05.indd Page 257  09/11/16  7:32 PM localadmin /202/AW00221/9780134437774_GOLDSTEIN/GOLDSTEIN_CALCULUS_AND_ITS_APPLICATIONS_14E1 ...

SAMPLE

FOR REVIEW BY POTENTIAL ADOPTERS ONLY

© 2018 Pearson Education. All rights reserved.



258  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

The initial size P0 of the population was not given in Example 5. But we were able 
to determine the growth constant because we were told the amount of time required for 
the colony to double in size. Thus, the growth constant does not depend on the initial 
size of the population. This property is characteristic of exponential growth.

400
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f 
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1 5
Time (days)

20
t

y

y 5 20e0.6t

Figure 3  A model for 
a colony of fruit flies 
as a function of time 
t Ú 0.  Now Try Exercise 20

EXAMPLE 5 Determining the Growth Constant  A colony of fruit flies is growing according to the 
exponential law P(t) = P0ekt, and the size of the colony doubles in 9 days. Determine 
the growth constant k.

SOLUTION We do not know the initial size of the population at t = 0. However, we are told that the 
colony doubles in 9 days. Mathematically this is represented by P(9) = 2P(0); that is,

	  P0ek(9) = 2P0

	  e9k = 2   Divide by P0 ≠ 0.
	  9k = ln 2 	  Take ln of each side.

	  k =
ln 2
9

≈ .077.  Solve for k.�  
Now Try Exercise 21

EXAMPLE 6 Working with a Differential Equation  The initial size of the colony in Example 5 was 100.
(a)	 How large will the colony be after 41 days?
(b)	 How fast will the colony be growing at that time?
(c)	 At what time will the colony contain 800 fruit flies?
(d)	 How large is the colony when it is growing at the rate of 200 fruit flies per day?

SOLUTION (a)	 From Example 5, we have P(t) = P0e0.077t. Since P(0) = 100, we conclude that

P(t) = 100e0.077t.

Therefore, after 41 days, the size of the colony is

P(41) = 100e0.077(41) = 100e3.157 ≈ 2350 fruit flies.

(b)	 Recall from Example 5 that k = .077. Since the function P(t) satisfies the differen-
tial equation y′ = .077y,

P′(t) = .077P(t).

In particular, when t = 41,

P′(41) = .077P(41) = (.077) (2350) ≈ 181.

Therefore, after 41 days, the colony is growing at the rate of about 181 fruit flies 
per day.
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5.1  Exponential Growth and Decay  259

(c)	 	 100e0.077t = 800	 Set P(t) = 800.
	       e0.077t = 8	 Divide by 100.
	        .077t = ln 8	 Take ln of each side.

	               t =
ln 8
.077

≈ 27 days.	 Solve for t.

(d)	 When the colony is growing at the rate of 200 fruit flies per day, P′(t) = 200. As in 
(b), we use the differential equation P′(t) = .077P(t) and set P′(t) = 200. Then,

200 = .077P(t),

P(t) =
200
.077

≈ 2597.

Therefore, there are 2597 fruit flies in the colony when it is growing at the rate of 
200 fruit flies per day.�  Now Try Exercise 23

EXAMPLE 7 Exponential Decay  The decay constant for the radioactive element strontium 90 is 
l = .0244, where time is measured in years. How long will it take for a quantity P0 of 
strontium 90 to decay to one-half its original mass?

SOLUTION Since l = .0244, we have

P(t) = P0e-0.0244t.

Next, set P(t) equal to 12P0 and solve for t:

P0e-0.0244t = 1
2P0

e-0.0244t = 1
2 = .5     Divide by P0.

 -.0244t = ln .5     Take ln of each side.

 t =
ln .5

-.0244
≈ 28 years.    Solve for t.

 Now Try Exercise 35

Exponential Decay
To solve the differential equation y′ = ky when the constant k is negative we can still 
appeal to Theorem 1 and obtain the solution y = Cekt, where k is negative and C is an 
arbitrary constant. In this case, we are dealing with a negative exponential growth, or 
exponential decay. An example of exponential decay is given by the disintegration of a 
radioactive element such as uranium 235. It is known that, at any instant, the rate at 
which a radioactive substance is decaying is proportional to the amount of the sub-
stance that has not yet disintegrated. If P(t) is the quantity present at time t, then P′(t) 
is the rate of decay. Since P(t) is decreasing, P′(t) must be negative. Thus, we may write 
P′(t) = kP(t) for some negative constant k. To emphasize the fact that the constant is 
negative, k is often replaced by -l, where l is a positive constant (l is the Greek lower-
case letter lambda). Then, P(t) satisfies the differential equation

P′(t) = -lP(t).

By Theorem 1, the solution has the form

P(t) = P0e-lt

for some positive number P0. We call such a function an exponential decay function. 
The constant l is called the decay constant.
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260  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

The half-life of a radioactive element is the length of time required for a given 
quantity of that element to decay to one-half its original mass. Thus, strontium 90 has a 
half-life of about 28 years. It takes 28 years for it to decay to half its original mass and 
another 28 years for it to decay to 14 its original mass, another 28 years to decay to 18, and 
so forth. (See Fig. 4.) Notice from Example 7 that the half-life does not depend on the 
initial amount P0.

A
m
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28

1
4

56

Time (years)

P0

1
2 P0

P0

t

y

P(t) 5 P0e
20.0244t

Figure 4  Half-life of radioactive strontium 90.

EXAMPLE 8 Half-Life and Decay Constant  Radioactive carbon 14 has a half-life of about 5730 
years. Find its decay constant.

SOLUTION If P0 denotes the initial amount of carbon 14, the amount after t years will be

P(t) = P0e-lt.

After 5730 years, P(t) will equal 12P0. That is,

P0e-l(5730) = P(5730) = 1
2P0 = .5P0.

Solving for l gives

 P0e-l(5730) = .5P0

 e-5730l = .5     Divide by P0.
 -5730l = ln .5     Take ln of each side.

 l =
ln .5

-5730
≈ .00012.    Solve for l.

 Now Try Exercise 37

One problem connected with above ground nuclear explosions is the radioactive 
debris, or fallout, that contaminates plants and grass, the food supply of animals. Stron-
tium 90 is one of the most dangerous components of radioactive debris because it has a 
relatively long half-life. Also, it is chemically similar to calcium and is absorbed into the 
bone structure of animals (including humans) who eat contaminated food. Iodine 131 is 
also produced by nuclear explosions, but it presents less of a hazard because it has a 
half-life of 8 days. See Exercise 41.

Radiocarbon Dating
Knowledge about radioactive decay is valuable to archaeologists and anthropologists 
who want to estimate the age of objects belonging to ancient civilizations. Several differ-
ent substances are useful for radioactive-dating techniques; the most common is radio-
carbon, 14C. Carbon 14 is produced in the upper atmosphere when cosmic rays react 
with atmospheric nitrogen. Because the 14C eventually decays, the concentration of 14C 
cannot rise above certain levels. An equilibrium is reached where 14C is produced at the 
same rate as it decays. Scientists usually assume that the total amount of 14C in the bio-
sphere has remained constant over the past 50,000 years. Consequently, it is assumed 
that the ratio of 14C to ordinary nonradioactive carbon 12, 12C, has been constant 

• � ln x 6 0 if  0 6 x 6 1, so 
ln (.5) 6 0.

•  ln 
1
x
= -ln x so

   ln (.5) = ln 11
22 = -ln 2

•  ln 2 ≈ .69.

See the graph of  y = ln x, 
p. 237.

FOR REVIEW
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5.1  Exponential Growth and Decay  261

during this same period. (The ratio is about one part 14C to 1012 parts of 12C.) Both 14C 
and 12C are in the atmosphere as constituents of carbon dioxide. All living vegetation 
and most forms of animal life contain 14C and 12C in the same proportion as the atmo-
sphere because plants absorb carbon dioxide through photosynthesis. The 14C and 12C 
in plants are distributed through the food chain to almost all animal life.

When an organism dies, it stops replacing its carbon; therefore, the amount of 
14C begins to decrease through radioactive decay, but the 12C in the dead organism 
remains constant. The ratio of 14C to 12C can be later measured to determine when the 
organism died.

EXAMPLE 9 Carbon Dating  A parchment fragment made from animal skin was discovered that 
had about 80% of the 14C level found today in living matter. Estimate the age of the 
parchment.

SOLUTION We assume that the original 14C level in the parchment was the same as the level in liv-
ing organisms today. Consequently, about eight-tenths of the original 14C remains. 
From Example 8 we obtain the formula for the amount of 14C present t years after the 
parchment was made from an animal skin:

P(t) = P0e-0.00012t,

where P0 = initial amount. We want to find t such that P(t) = .8P0:

P0e-0.00012t = .8P0

e-0.00012t = .8     Divide by P0.
 -.00012t = ln .8     Take ln of each side.

 t =
ln .8

-.00012
≈ 1860 years old.    Solve for t.

 Now Try Exercise 47

C

T0
t

y

y 5 Ce2lt

Figure 5  The time constant T  in 
exponential decay: T = 1>l.

1.	 (a)	 �Solve the differential equation P′(t) = -.6P(t), P(0) = 50.
(b)	 Solve the differential equation P′(t) = kP(t), P(0) = 4000, 

where k is some constant.
(c)	 Interpret the meaning of P(2) = 100P(0), where t is in 

hours.
(d)	 Find the value of k in part (b) for which P(2) = 100P(0).

2.	 	Under ideal conditions a colony of Escherichia coli bacteria 
can grow by a factor of 100 every 2 hours. If 4000 bacteria are 
present initially, how long will it take before there are 1 mil-
lion bacteria?

Check Your Understanding 5.1 Solutions can be found following the section exercises.

Thus the parchment is about 1860 years old.

The Time Constant
Consider an exponential decay function y = Ce-lt. Figure 5 shows the tangent line to 
the decay curve when t = 0. The slope there is the initial rate of decay. If the decay pro-
cess were to continue at this rate, the decay curve would follow the tangent line, and y 
would be zero at some time T . This time is called the time constant of the decay curve. 
It can be shown (see Exercise 52) that T = 1>l for the curve y = Ce-lt. Thus, l = 1>T  
and the decay curve can be written in the form

y = Ce-t>T.

If we have experimental data that tend to lie along an exponential decay curve, the 
numerical constants for the curve may be obtained from Fig. 5. First, sketch the curve 
and estimate the y-intercept, C. Then, sketch an approximate tangent line, and from this, 
estimate the time constant, T . This procedure is sometimes used in biology and medicine.
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In Exercises 1–10, determine the growth constant k, then find all 
solutions of the given differential equation.

	 1.	 y′ = y	 2.	 y′ = .4y

	 3.	 y′ = 1.7y	 4.	 y′ =
y
4

	 5.	 y′ -
y
2
= 0	 6.	 y′ - 6y = 0

	 7.	 2y′ -
y
2
= 0	 8.	 y = 1.6y′

	 9.	
y
3
= 4y′	 10.	 5y′ - 6y = 0

In Exercises 11–18, solve the given differential equation with initial 
condition.

11.	 y′ = 3y, y(0) = 1	 12.	 y′ = 4y, y(0) = 0

13.	 y′ = 2y, y(0) = 2	 14.	 y′ = y, y(0) = 4

15.	 y′ - .6y = 0, y(0) = 5	 16.	 y′ -
y
7
= 0, y(0) = 6

17.	 6y′ = y, y(0) = 12	 18.	 5y = 3y′, y(0) = 7

19.	 Population with Exponential Growth Let P(t) be the popula-
tion (in millions) of a certain city t years after 2015, and sup-
pose that P(t) satisfies the differential equation

P′(t) = .01P(t), P(0) = 2.

(a)	 Find a formula for P(t).
(b)	 What was the initial population, that is, the population 

in 2015?
(c)	 Estimate the population in 2019.

20.	 Growth of a Colony of Fruit Flies A colony of fruit flies exhibits 
exponential growth. Suppose that 500 fruit flies are present. 
Let P(t) denote the number of fruit flies t days later, and let 
k = .08 denote the growth constant.
(a)	 Write a differential equation and initial condition that 

model the growth of this colony.
(b)	 Find a formula for P(t).
(c)	 Estimate the size of the colony 5 days later.

21.	 Growth Constant for a Bacteria Culture A bacteria culture 
that exhibits exponential growth quadruples in size in 
2 days.
(a)	 Find the growth constant if  time is measured in days.
(b)	 If  the initial size of the bacteria culture was 20,000, what 

is its size after just 12 hours?

22.	 Growth of a Bacteria Culture The initial size of a bacteria cul-
ture that grows exponentially was 10,000. After 1 day, there 
are 15,000 bacteria.
(a)	 Find the growth constant if  time is measured in days.
(b)	 How long will it take for the culture to double in size?

23.	 Using the Differential Equation Let P(t) be the population (in 
millions) of a certain city t years after 2015, and suppose that 
P(t) satisfies the differential equation

P′(t) = .03P(t), P(0) = 4.

(a)	 Use the differential equation to determine how fast the 
population is growing when it reaches 5 million people.

(b)	 Use the differential equation to determine the population 
size when it is growing at the rate of 400,000 people per year.

(c)	 Find a formula for P(t).
24.	 Growth of Bacteria Approximately 10,000 bacteria are placed 

in a culture. Let P(t) be the number of bacteria present in the 
culture after t hours, and suppose that P(t) satisfies the dif-
ferential equation

P′(t) = .55P(t).

(a)	 What is P(0)?
(b)	 Find the formula for P(t).
(c)	 How many bacteria are there after 5 hours?
(d)	 What is the growth constant?
(e)	 Use the differential equation to determine how fast the 

bacteria culture is growing when it reaches 100,000.
(f)	 What is the size of the bacteria culture when it is growing 

at a rate of 34,000 bacteria per hour?
25.	 Growth of Cells After t hours there are P(t) cells present in a 

culture, where P(t) = 5000e0.2t.
(a)	 How many cells were present initially?
(b)	 Give a differential equation satisfied by P(t).
(c)	 When will the initial number of cells double?
(d)	 When will 20,000 cells be present?

26.	 Insect Population The size of a certain insect population is 
given by P(t) = 300e0.01t, where t is measured in days.
(a)	 How many insects were present initially?
(b)	 Give a differential equation satisfied by P(t).
(c)	 At what time will the initial population double?
(d)	 At what time will the population equal 1200?

27.	 Population Growth Determine the growth constant of a popu-
lation that is growing at a rate proportional to its size, where 
the population doubles in size every 40 days and time is mea-
sured in days.

28.	 Time to Triple Determine the growth constant of a popula-
tion that is growing at a rate proportional to its size, where the 
population triples in size every 10 years and time is measured 
in years.

29.	 Exponential Growth A population is growing exponentially 
with growth constant .05. In how many years will the current 
population triple?

30.	 Time to Double A population is growing exponentially with 
growth constant .04. In how many years will the current popu-
lation double?

31.	 Exponential Growth The rate of growth of a certain cell cul-
ture is proportional to its size. In 10 hours a population of 
1 million cells grew to 9 million. How large will the cell culture 
be after 15 hours?

32.	 World’s Population The world’s population was 5.51 billion on 
January 1, 1993, and 5.88 billion on January 1, 1998. Assume 
that, at any time, the population grows at a rate proportional 
to the population at that time. In what year will the world’s 
population reach 7 billion?

33.	 Population of Mexico City At the beginning of 1990, 20.2 mil-
lion people lived in the metropolitan area of Mexico City, and 
the population was growing exponentially. The 1995 popula-
tion was 23 million. (Part of the growth is due to immigra-
tion.) If  this trend continues, how large will the population be 
in the year 2010?

EXERCISES 5.1
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5.1  Exponential Growth and Decay  263

(a)	 What is the population in 2020?
(b)	 When is the population 10 million?
(c)	 How fast is the population growing in 2020?
(d)	 When is the population growing at the rate of 275,000 

people per year?

35.	 Radioactive Decay A sample of 8 grams of radioactive mate-
rial is placed in a vault. Let P(t) be the amount remaining 
after t years, and let P(t) satisfy the differential equation 
P′(t) = -.021P(t).
(a)	 Find the formula for P(t)
(b)	 What is P(0)?
(c)	 What is the decay constant?
(d)	 How much of the material will remain after 10 years?
(e)	 Use the differential equation to determine how fast the 

sample is disintegrating when just 1 gram remains.
(f)	 What amount of radioactive material remains when it is 

disintegrating at the rate of .105 gram per year?
(g)	 The radioactive material has a half-life of 33 years. How 

much will remain after 33 years? 66 years? 99 years?

36.	 Radioactive Decay Radium 226 is used in cancer radiotherapy. 
Let P(t) be the number of grams of radium 226 in a sample re-
maining after t years, and let P(t) satisfy the differential equa-
tion

P′(t) = -.00043P(t),  P(0) = 12.

(a)	 Find the formula for P(t).
(b)	 What was the initial amount?
(c)	 What is the decay constant?
(d)	 Approximately how much of the radium will remain after 

943 years?
(e)	 How fast is the sample disintegrating when just 1 gram 

remains? Use the differential equation.
(f)	 What is the weight of the sample when it is disintegrating 

at the rate of .004 gram per year?
(g)	 The radioactive material has a half-life of about 1612 

years. How much will remain after 1612 years? 3224 
years? 4836 years?

37.	 Decay of Penicillin in the Bloodstream A person is given an 
injection of 300 milligrams of penicillin at time t = 0. Let 
f (t) be the amount (in milligrams) of penicillin present in the 
person’s bloodstream t hours after the injection. Then, the 
amount of penicillin decays exponentially, and a typical for-
mula is f (t) = 300e-0.6t.
(a)	 Give the differential equation satisfied by f (t)
(b)	 How much will remain at time t = 5 hours?
(c)	 What is the biological half-life of the penicillin (that is, the 

time required for half  of a given amount to decompose) 
in this case?

38.	 Radioactive Decay Ten grams of a radioactive substance with 
decay constant .04 is stored in a vault. Assume that time is mea-
sured in days, and let P(t) be the amount remaining at time t.
(a)	 Give the formula for P(t)
(b)	 Give the differential equation satisfied by P(t).
(c)	 How much will remain after 5 days?
(d)	 What is the half-life of this radioactive substance?

39.	 Radioactive Decay The decay constant for the radioactive ele-
ment cesium 137 is .023 when time is measured in years. Find 
its half-life.

40.	 Drug Constant Radioactive cobalt 60 has a half-life of 5.3 
years. Find its decay constant.

41.	 Iodine Level in Dairy Products If  dairy cows eat hay contain-
ing too much iodine 131, their milk will be unfit to drink. 
Iodine 131 has half-life of 8 days. If  the hay contains 10 times 
the maximum allowable level of iodine 131, how many days 
should the hay be stored before it is fed to dairy cows?

42.	 Half-Life Ten grams of a radioactive material disintegrates to 
3 grams in 5 years. What is the half-life of the radioactive ma-
terial?

43.	 Decay of Sulfate in the Bloodstream In an animal hospital, 
8 units of a sulfate were injected into a dog. After 50 minutes, only 
4 units remained in the dog. Let f (t) be the amount of sulfate 
present after t minutes. At any time, the rate of change of f (t) is 
proportional to the value of f (t). Find the formula for f (t).

44.	 Radioactive Decay Forty grams of a certain radioactive ma
terial disintegrates to 16 grams in 220 years. How much of this 
material is left after 300 years?

45.	 Radioactive Decay A sample of radioactive material decays 
over time (measured in hours) with decay constant .2. The 
graph of the exponential function y = P(t) in Fig. 7 gives the 
number of grams remaining after t hours. [Hint: In parts (c) 
and (d) use the differential equation satisfied by P(t).]
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Figure 6 

34.	 A Population Model The population (in millions) of a state t 
years after 2010 is given by the graph of the exponential func-
tion y = P(t) with growth constant .025 in Fig. 6. [In parts (c) 
and (d) use the differential equation satisfied by P(t).]
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Figure 7 
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264  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

(a)	 How much was remaining after 1 hour?
(b)	 Approximate the half-life of the material.
(c)	 How fast was the sample decaying after 6 hours?
(d)	 When was the sample decaying at the rate of .4 grams 

per hour?

46.	 Rate of Decay A sample of radioactive material has decay con-
stant .25, where time is measured in hours. How fast will the 
sample be disintegrating when the sample size is 8 grams? For 
what sample size will the sample size be decreasing at the rate 
of 2 grams per day?

47.	 Carbon Dating In 1947, a cave with beautiful prehistoric wall 
paintings was discovered in Lascaux, France. Some charcoal 
found in the cave contained 20% of the 14C expected in living 
trees. How old are the Lascaux cave paintings? (Recall that the 
decay constant for 14C is .00012.)

48.	 King Arthur’s Round Table According to legend, in the fifth 
century King Arthur and his knights sat at a huge round table. 
A round table alleged to have belonged to King Arthur was 
found at Winchester Castle in England. In 1976, carbon dat-
ing revealed the amount of radiocarbon in the table to be 91% 
of the radiocarbon present in living wood. Could the table 
possibly have belonged to King Arthur? Why? (Recall that the 
decay constant for 14C is .00012.)

49.	 Radioactive Decay A 4500-year-old wooden chest was found 
in the tomb of the twenty-fifth century b.c. Chaldean king 
Meskalumdug of Ur. What percentage of the original 14C 
would you expect to find in the wooden chest?

50.	 Population of the Pacific Northwest In 1938, sandals woven 
from strands of tree bark were found in Fort Rock Creek Cave 
in Oregon. The bark contained 34% of the level of 14C found 
in living bark. Approximately how old were the sandals? 
[Note: This discovery by University of Oregon anthropologist 
Luther Cressman forced scientists to double their estimate of 
how long ago people came to the Pacific Northwest.]

51.	 Time of the Fourth Ice Age Many scientists believe there have 
been four ice ages in the past 1 million years. Before the tech-
nique of carbon dating was known, geologists erroneously be-
lieved that the retreat of the Fourth Ice Age began about 25,000 
years ago. In 1950, logs from ancient spruce trees were found 
under glacial debris near Two Creeks, Wisconsin. Geologists 
determined that these trees had been crushed by the advance 
of ice during the Fourth Ice Age. Wood from the spruce trees 
contained 27% of the level of 14C found in living trees. Approx-
imately how long ago did the Fourth Ice Age actually occur?

52.	 Time Constant Let T  be the time constant of the curve 
y = Ce-lt as defined in Fig. 5. Show that T = 1>l. [Hint: 

Express the slope of the tangent line in Fig. 5 in terms of C 
and T . Then, set this slope equal to the slope of the curve 
y = Ce-lt at t = 0.]

53.	 Differential Equation and Decay The amount in grams of a cer-
tain radioactive material present after t years is given by the 
function P(t). Match each of the following answers with its 
corresponding question.

		  Answers
a.	 Solve P(t) = .5P(0) for t.
b.	 Solve P(t) = .5 for t.
c.	 P(.5)
d.	 P′(.5)
e.	 P(0)
f.	 Solve P′(t) = -.5 for t.
g.	 y′ = ky
h.	 P0ekt, k 6 0

		  Questions
A.	 Give a differential equation satisfied by P(t).
B.	 How fast will the radioactive material be disintegrating in 

1
2 year?

C.	 Give the general form of the function P(t).
D.	 Find the half-life of the radioactive material.
E.	 How many grams of the material will remain after 12 year?
F.	 When will the radioactive material be disintegrating at the 

rate of 12 gram per year?
G.	 When will there be 12 gram remaining?
H.	 How much radioactive material was present initially?

54.	 Time Constant and Half-life Consider an exponential decay 
function P(t) = P0e-lt, and let T  denote its time constant. 
Show that, at t = T , the function P(t) decays to about one-
third of its initial size. Conclude that the time constant is 
always larger than the half-life.

55.	 An Initial Value Problem Suppose that the function P(t) satis-
fies the differential equation

y′(t) = -.5y(t),   y(0) = 10.

(a)	 Find an equation of the tangent line to the graph of 
y = P(t) at t = 0. [Hint: What are P′(0) and P(0)?]

(b)	 Find P(t).
(c)	 What is the time constant of the decay curve y = P(t)?

56.	 Time to Finish Consider the exponential decay function 
y = P0e-lt, with time constant T . We define the time to finish 
to be the time it takes for the function to decay to about 1% of 
its initial value P0. Show that the time to finish is about four 
times the time constant T .

	 1.	 (a)	 Answer: P(t) = 50e-0.6t. Differential equations of the 
type y′ = ky have as their solution P(t) = Cekt, where C 
is P(0).

(b)	 Answer: P(t) = 4000ekt. This problem is like part (a) 
except that the constant is not specified. Additional 
information is needed if we want to determine a specific 
value for k.

(c)	 After 2 hours, the initial population increased 100-fold.

(d)	 Answer: P(t) = 4000e2.3t. From the solution to part (b), 
we know that P(t) = 4000ekt. We are given that 
P(2) = 100P(0) = 100(4000) = 400,000. So,

 P(2) = 4000ek(2) = 400,000
 e2k = 100
 2k = ln 100

 k =
ln 100

2
≈ 2.3.

Solutions to Check Your Understanding 5.1
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5.2  Compound Interest  265

	 2.	 Let P(t) be the number of bacteria present after t hours. We 
must first find an expression for P(t) and then determine the 
value of t for which P(t) = 1,000,000. From the discussion at 
the beginning of  the section, we know that P′(t) = k # P(t). 
Also, we are given that P(2) (the population after 2 hours) is 
100P(0) (100 times the initial population). From part (d) of 
the previous problem, we have an expression for P(t):

P(t) = 4000e2.3t.

Now we must solve P(t) = 1,000,000 for t:

 4000e2.3t = 1,000,000
 e2.3t = 250
 2.3t = ln 250

 t =
ln 250

2.3
≈ 2.4.

Therefore, after 2.4 hours, there will be 1,000,000 bacteria.

Continuous Compounding
The subject of compound interest was introduced in Section 0.5, where we derived a 
formula for the compound amount in a savings account if interest is compounded at 
stated intervals of time per year (compound periods). In an era of online banking, it is 
possible to compound interest every month, or every day, or every hour, or perhaps 
even more frequently. We say that interest is compounded continuously if the number 
of compound periods per year is increased indefinitely. As we will show momentarily, if 
interest is compounded continuously, your savings account will grow exponentially, 
much like the fruit flies in your kitchen, or the bacteria in a petri dish (Sec. 5.1).

Let P0 denote your initial deposit in dollars (also called the principal amount), r 
the annual rate of interest, and y = A(t) the compound amount or balance in your 
savings account at the end of time t, where t is measured in years. Even though it is dif-
ficult to describe A(t), it is not difficult to describe its rate of change at any time t. 
Indeed, since the interest rate is r, if at time t you have A(t) dollars in the account, then 
the account is growing at a rate of r times A(t) dollars per year. Since the rate of change 
is A′(t) , we get

	 [rate of change]

A′(t)  = r * A(t).

Thus, the balance in your savings account satisfies the differential equation and initial 
condition

	 A′(t) = rA(t),  A(0) = P0.	 (1)

The solution of this equation follows from Theorem 2 of the previous section:

	 A(t) = P0ert.	 (2)

This is the continuous compound interest formula. It gives the balance of your 
savings account or the compound amount after t years, when interest is compounded 
continuously.

The formula A(t) = P0ert contains four variables. (Remember that the letter e rep-
resents a specific constant, e = 2.718 c.) In a typical problem, we are given values for 
three of these variables and must solve for the remaining variable.

$%&

5.2 Compound Interest

EXAMPLE 1 Continuous Compound Interest  One thousand dollars is invested at 5% interest com-
pounded continuously.
(a)	 Give the formula for A(t), the compound amount after t years.
(b)	 How much will be in the account after 6 years?
(c)	 After 6 years, at what rate will A(t) be growing?
(d)	 How long is required for the initial investment to double?

Compound interest was 
introduced in Sec. 0.5,  
pp. 35–38.

FOR REVIEW
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266  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

SOLUTION (a)	 P0 = 1000 and r = .05. By the continuous compound formula (2), A(t) = 1000e0.05t.
(b)	 A(6) = 1000e0.05(6) = 1000e0.3 ≈ $1349.86.
(c)	 Rate of growth is different from interest rate. Interest rate is fixed at 5% and does 

not change with time. However, the rate of growth A′(t) is always changing. Since 
A(t) = 1000e0.05t, A′(t) = (1000) # (.05)e0.05t = 50e0.05t. So, after 6 years,

A′(6) = 50e0.05(6) = 50e0.3 ≈ 67.49 dollars per year.

After 6 years, the investment is growing at the rate of $67.49 per year.
There is an easier way to answer part (c), given that we have already calculated 

A(6). Since A(t) satisfies the differential equation A′(t) = rA(t),

A′(6) = .05A(6) = .05 # 1349.86 ≈ $67.49 per year.

(d)	 We must find t such that A(t) = $2000. So we set 1000e0.05t = 2000 and solve for t.

 1000e0.05t = 2000   Given equation.
 e0.05t = 2   Divide by 1000.

 ln e0.05t = ln 2   Take ln of each side.
 .05t = ln 2   ln e0.05t = .05t.

 t =
ln 2
.05

≈ 13.86 years  Solve for t.�
 Now Try Exercise 1

NOTE The calculations in Example 1(d) would be essentially unchanged after the first step if  the 
initial amount of the investment were changed from $1000 to any arbitrary amount P. 
When this investment doubles, the compound amount will be 2P. So, we set 2P = Pe0.05t 
and solve for t as we did previously to conclude that, at 5% interest compounded con-
tinuously, any amount doubles in about 13.86 years.  

EXAMPLE 2 Appreciation of a Painting  Pablo Picasso’s The Dream was purchased in 1941 for a 
war-distressed price of $7000. The painting was sold in 1997 for $48.4 million, the sec-
ond highest price ever paid for a Picasso painting at auction. What rate of interest com-
pounded continuously did this investment earn?

SOLUTION Let P0ert be the value (in millions) of the painting t years after 1941. Since the initial 
value is .007 million, P0 = .007. Since the value after 56 years is 48.4 million dollars, 
.007er(56) = 48.4. Now solve for r:

 .007er(56) = 48.4   Given equation.

 er(56) =
48.4
.007

≈ 6914.29   Divide by .007.

 r(56) = ln (6914.29)   Take ln of each side.

 r =
ln (6914.29)

56
≈ .158  Solve for r.

Therefore, as an investment, the painting earned an interest rate of about 15.8%.
 Now Try Exercise 17

Ordinary Versus Continuous Compounding
How much is gained from continuous compounding as opposed to ordinary compound-
ing? Our intuition tells us that if we compound interest frequently enough, then the 
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5.2  Compound Interest  267

compound amount should be close to the compound amount from continuous com-
pounding. Let A(t) denote the continuous compound amount that we derived in (2), 
and let B denote the compound amount if we use m compound periods per year. In 
Section 0.5, we derived the formula

	 B = P0a1 +
r
m
b

mt
.	 (3)

For instance, suppose that $1000 is invested at 6% interest for 1 year, and that interest is 
compounded once per year. In formula (3), this corresponds to P0 = $1000, r = .06, 
m = 1, and t = 1 year. The amount at the end of one year is

B = P0(1 + r)1 = 1000(1 + .06) = $1060.

If interest is compounded quarterly (m = 4),

B = P0a1 +
r
4
b

4t
= 1000a1 +

.06
4

b
4
≈ $1061.36.

If interest is compounded monthly (m = 12),

B = P0a1 +
r

12
b

12t
= 1000a1 +

.06
12

b
12

≈ $1061.68.

If interest is compounded continuously, we use (2) and get

A = P0ert = 1000e0.06(1) ≈ $1061.84.

Table 1 contains these results along with the one for daily compounding for 1 year.

Table 5.1  Effect of Increased Compounding Periods

Frequency of Compounding Annually Quarterly Monthly Daily Continuous

m 1 4 12 365

Balance after 1 year ($) 1060.00 1061.36 1061.68 1061.83 1061.84

Comparing the results from Table 1, we note that continuous compounding yields only 
one cent more than the result of the daily compounding. Consequently, frequent com-
pounding (such as every hour or every second) will produce, at most, 1 cent more in 
our case.

In many computations, it is simpler to use the formula for interest compounded 
continuously than the formula for ordinary compound interest. In these instances, it is 
commonplace to use interest compounded continuously as an approximation to ordi-
nary compound interest.

Negative Interest Rates
In 2015, some European banks began “paying” negative interest on short-term deposits 
to encourage customers to invest their savings. Let -r denote the negative interest rate, 
P0 the principal amount, and A(t) the compound amount after time t in years. To 
describe the account in this case, we modify equation (1) as follows:

	 A′(t) = -rA(t),  A(0) = P0,	 (4)

where the minus sign indicates that A′(t) , the rate of change of the compound amount 
A(t) , is negative. Using Theorem 2, Sec. 5.1, we see that the solution is an exponentially 
decaying function

	 A(t) = P0e-rt.	 (5)
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EXAMPLE 3 Negative Interest Rate  In 2015, The Swiss National Bank used a negative interest rate 
of -.75% on savings deposits. A customer makes an initial deposit of 10,000 Swiss 
Francs (SFr).
(a)	 What is the formula for A(t), the balance in SFr after t years?
(b)	 How much money is in the account after 2 years?

SOLUTION (a)	 Use (5) with r = 0.0075 and P0 = 10,000:

A(t) = 10,000e-0.0075t.

(b)	 After 2 years, the balance is

A(2) = 10, 000e-0.0075(2) ≈ 9851.12 SFr.

Thus, the balance decreased by about 49 Swiss Francs in 2 years.�

	 P = Ae-rt.� (6)

The concept of the present value of money is an important theoretical tool in business 
and economics. Problems involving depreciation of equipment, for example, may be 
analyzed by calculus techniques when the present value of money is computed from (2), 
using continuously compounded interest.

EXAMPLE 4 Present Value  Suppose you want to invest some amount of money now (i.e., the pres-
ent value) so that you have $5000 in 2 years. Assume you can earn 12% compounded 
continuously. How much would you need to invest? Find the present value of $5000 to 
be received in 2 years if money can be invested at 12% compounded continuously.

SOLUTION Use formula (6) with A = 5000, r = .12, and t = 2.

 P = 5000e-(0.12)(2) = 5000e-0.24

 ≈ $3933.14 �  Now Try Exercise 19

Present Value
If P dollars are invested today, the formula A = Pert gives the value of this investment 
after t years (assuming continuously compounded interest). We say that P is the pres-
ent value of the amount A to be received in t years. If we solve for P in terms of A, we 
obtain

A Limit Formula for e
We have defined continuous compounding as the limit of ordinary compounding if the 
number of compound periods per year increases indefinitely. So, if we let m tend to 
infinity in (3), the formula for ordinary compounding, we should get (2), the formula 
for continuous compounding. In other words,

lim
mS ∞

P0a1 +
r
m
b

mt
= P0ert.

In this formula, take P0 = 1, r = 1, t = 1, and get

	 lim
mS ∞

a1 +
1
m
b

m
= e1 = e.	

This gives a limit formula for the number e that can be used to approximate the number 
e, and can be verified with the help of a calculator.
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5.2  Compound Interest  269

1.	 One thousand dollars is to be invested in a bank for 4 years. 
Would 8% interest compounded semiannually be better than 
73

4% interest compounded continuously?

2.	 A building was bought for $150,000 and sold 10 years later 
for $400,000. What interest rate (compounded continuously) 
was earned on the investment?

Check Your Understanding 5.2 Solutions can be found following the section exercises.

	 1.	 Savings Account Let A(t) = 5000e0.04t be the balance in a sav-
ings account after t years.
(a)	 How much money was originally deposited?
(b)	 What is the interest rate?
(c)	 How much money will be in the account after 10 years?
(d)	 What differential equation is satisfied by y = A(t)?
(e)	 Use the results of parts (c) and (d) to determine how fast 

the balance is growing after 10 years.
(f)	 How large will the balance be when it is growing at the 

rate of $280 per year?

	 2.	 Savings Account Let A(t) be the balance in a savings account 
after t years, and suppose that A(t) satisfies the differential 
equation

A′(t) = .045A(t),  A(0) = 3000.

(a)	 How much money was originally deposited in the account?
(b)	 What interest rate is being earned?
(c)	 Find the formula for A(t).
(d)	 What is the balance after 5 years?
(e)	 Use part (d) and the differential equation to determine 

how fast the balance is growing after 5 years.
(f)	 How large will the balance be when it is growing at the 

rate of $270 per year?

	 3.	 Savings Account Four thousand dollars is deposited in a savings 
account at 3.5% yearly interest compounded continuously.
(a)	 What is the formula for A(t), the balance after t years?
(b)	 What differential equation is satisfied by A(t), the balance 

after t years?
(c)	 How much money will be in the account after 2 years?
(d)	 When will the balance reach $5000?
(e)	 How fast is the balance growing when it reaches $5000?

	 4.	 Savings Account Ten thousand dollars is deposited in a savings 
account at 4.6% yearly interest compounded continuously.
(a)	 What differential equation is satisfied by A(t), the balance 

after t years?
(b)	 What is the formula for A(t)?
(c)	 How much money will be in the account after 3 years?
(d)	 When will the balance triple?
(e)	 How fast is the balance growing when it triples?

	 5.	 Investment Analysis An investment earns 4.2% yearly interest 
compounded continuously. How fast is the investment grow-
ing when its value is $9000?

	 6.	 Investment Analysis An investment earns 5.1% yearly inter-
est compounded continuously and is currently growing at 
the rate of  $765 per year. What is the current value of  the 
investment?

	 7.	 Continuous Compound One thousand dollars is deposited in 
a savings account at 6% yearly interest compounded continu-
ously. How many years are required for the balance in the ac-
count to reach $2500?

	 8.	 Continuous Compound Ten thousand dollars is invested at 
6.5% interest compounded continuously. When will the invest-
ment be worth $41,787?

	 9.	 Technology Stock One hundred shares of a technology stock 
were purchased on January 2, 1990, for $1200 and sold on 
January 2, 1998, for $12,500. What rate of interest compound-
ed continuously did this investment earn?

	10.	 Appreciation of Art Work Pablo Picasso’s Angel Fernandez de 
Soto was acquired in 1946 for a postwar splurge of $22,220. The 
painting was sold in 1995 for $29.1 million. What yearly rate of 
interest compounded continuously did this investment earn?

11.	 Investment Analysis How many years are required for an in-
vestment to double in value if  it is appreciating at the yearly 
rate of 4% compounded continuously?

12.	 Doubling an Investment What yearly interest rate (compounded 
continuously) is earned by an investment that doubles in 10 years?

13.	 Tripling an Investment If  an investment triples in 15 years, 
what yearly interest rate (compounded continuously) does the 
investment earn?

14.	 Real Estate Investment If  real estate in a certain city appre-
ciates at the yearly rate of 15% compounded continuously, 
when will a building purchased in 2010 triple in value?

15.	 Negative Interest Rates Suppose that the bank in Example 3 
increased its fees by charging a negative annual interest rate of 
-.9%. Find the balance after two years in a savings account if  
P0 = 10, 000 SFr.

16.	 Negative Interest Rates How is the account in Exercise 15 
changing when the balance is 9,500 SFr?

17.	 Real Estate Investment A farm purchased in 2000 for $1 mil-
lion was valued at $3 million in 2010. If  the farm continues to 
appreciate at the same rate (with continuous compounding), 
when will it be worth $10 million?

18.	 Real Estate Investment A parcel of land bought in 1990 for 
$10,000 was worth $16,000 in 1995. If  the land continues to 
appreciate at this rate, in what year will it be worth $45,000?

19.	 Present Value Find the present value of $1000 payable at the 
end of 3 years, if  money may be invested at 8% with interest 
compounded continuously.

20.	 Present Value Find the present value of $2000 to be received 
in 10 years, if  money may be invested at 8% with interest com-
pounded continuously.

21.	 Present Value How much money must you invest now at 4.5% 
interest compounded continuously to have $10,000 at the end 
of 5 years?

22.	 Present Value If  the present value of $1000 to be received in 
5 years is $559.90, what rate of interest, compounded continu-
ously, was used to compute this present value?

EXERCISES 5.2
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270  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

23.	 Comparing Two Investments Investment A is currently worth 
$70,200 and is growing at the rate of 13% per year compounded 
continuously. Investment B is currently worth $60,000 and is 
growing at the rate of 14% per year compounded continu-
ously. After how many years will the two investments have the 
same value?

24.	 Compound Interest Ten thousand dollars is deposited in a 
money market fund paying 8% interest compounded continu-
ously. How much interest will be earned during the second 
year of the investment?

25.	 Differential Equation and Interest A small amount of money is 
deposited in a savings account with interest compounded con-
tinuously. Let A(t) be the balance in the account after t years. 
Match each of the following answers with its corresponding 
question.

		  Answers
a.	 Pert      b.  A(3)      c.  A(0)      d.  A′(3)
e.	 Solve A′(t) = 3 for t.
f.	 Solve A(t) = 3 for t.
g.	 y′ = ry
h.	 Solve A(t) = 3A(0) for t.

		  Questions
A.	 How fast will the balance be growing in 3 years?
B.	 Give the general form of the function A(t).
C.	 How long will it take for the initial deposit to triple?
D.	 Find the balance after 3 years.
E.	 When will the balance be 3 dollars?
F.	� When will the balance be growing at the rate of 3 dollars 

per year?
G.	 What was the principal amount?
H.	 Give a differential equation satisfied by A(t).

26.	 Growth of a Savings Account The curve in Fig. 1 shows the 
growth of money in a savings account with interest com-
pounded continuously.
(a)	 What is the balance after 20 years?
(b)	 At what rate is the money growing after 20 years?
(c)	 Use the answers to parts (a) and (b) to determine the 

interest rate.

(c)	 Use the answers to parts (a) and (b) to determine the 
interest rate.

(d)	 When is the balance $300?
(e)	 When is the balance increasing at the rate of $12 per year?
(f)	 Why do the graphs of A(t) and A′(t) look the same?

28.	 When $1000 is invested at r% interest (compounded continu-
ously) for 10 years, the balance is f (r) dollars, where f  is the 
function shown in Fig. 3.
(a)	 What will the balance be at 7% interest?
(b)	 For what interest rate will the balance be $3000?
(c)	 If  the interest rate is 9%, what is the growth rate of the 

balance with respect to a unit increase in interest?

t

y

20

200

600

1000

slope 5 54

Figure 1  Growth of money in a savings 
account.

27.	 Savings Account The function A(t) in Fig. 2(a) gives the balance 
in a savings account after t years with interest compounded 
continuously. Figure 2(b) shows the derivative of A(t).
(a)	 What is the balance after 20 years?
(b)	 How fast is the balance increasing after 20 years?

t

y

10 20

(a)

30

50

150

250

350

y 5 A(t)

t

y

10 20

(b)

30

2

6

10

14

y 5 A9(t)

Figure 2 

r

y

1 3 5 7 9 11 13

1000

2000

3000

4000

y 5 f(r)

y 5 f9(r)

Figure 3  Effect of interest rate  
on balance.

 TECHNOLOGY EXERCISES 

	29.	 Verify that lim
mS ∞

a1 +
1
m
b

m
= e by taking m increasingly 

		  large and noticing that a1 +
1
m
b

m
 approaches 2.718.

	30.	 Verify that daily compounding is nearly the same as continu-
ous compounding by graphing y = 100[1 + (.05>360)]360x, 
together with y = 100e0.05x in the window [0, 64] by 
[250, 2500]. The two graphs should appear the same on the 
screen. Approximately how far apart are they when x = 32? 
When x = 64?

M06_GOLD7774_14_SE_C05.indd Page 270  09/11/16  7:32 PM localadmin /202/AW00221/9780134437774_GOLDSTEIN/GOLDSTEIN_CALCULUS_AND_ITS_APPLICATIONS_14E1 ...

SAMPLE

FOR REVIEW BY POTENTIAL ADOPTERS ONLY

© 2018 Pearson Education. All rights reserved.



5.3  Applications of the Natural Logarithm Function to Economics  271

	31.	 Internal Rate of Return An investment of  $2000 yields pay-
ments of $1200 in 3 years, $800 in 4 years, and $500 in 5 years. 
Thereafter, the investment is worthless. What constant rate of 
return r would the investment need to produce to yield the 
payments specified? The number r is called the internal rate of 
return on the investment. We can consider the investment as 

consisting of three parts, each part yielding one payment. The 
sum of the present values of the three parts must total $2000. 
This yields the equation

2000 = 1200e-3r + 800e-4r + 500e-5r.

		  Solve this equation to find the value of r.

1.	 Let us compute the balance after 4 years for each type of 
interest.

8% compounded semiannually: Use the formula at the be-
ginning of this section. Here P = 1000, r = .08, m = 2 
(semiannually means there are two interest periods per 
year), and t = 4 . Therefore,

A = 1000a1 +
.08
2

b
2 #4

= 1000(1.04)8 ≈ $1368.57.

73
4% compounded continuously: Use the formula A = Pert, 

where P = 1000, r = .0775, and t = 4. Then,

A = 1000e(0.0775) #4 = 1000e0.31 ≈ $1363.43.

Therefore, 8% compounded semiannually is better.

	 2.	 If  the $150,000 had been compounded continuously for 10 
years at interest rate r, the balance would be 150,000er #10. The 
question is at what value of r will the balance be $400,000? We 
need to solve an equation for r.

150,000er #10 = 400,000

er #10 ≈ 2.67

r # 10 = ln 2.67

r =
ln 2.67

10
≈ .098

Therefore, the investment earned 9.8% interest per year.

Solutions to Check Your Understanding 5.2

In this section, we consider two applications of the natural logarithm to the field of eco-
nomics. Our first application is concerned with relative rates of change and the second 
with elasticity of demand.

In 2015, the price of eggs began to climb due to a shortage of supply caused by the 
Avian flu, commonly known as bird flu. The average price of one dozen eggs rose to 
$2.80 and was increasing at the rate of $1.20 per year. At the same time, the price of a 
new compact car rose to $12,500 and was increasing at the rate of $1100 per year. As a 
consumer, you want to know which price is increasing more quickly. It is not meaning-
ful to say that the car price is increasing faster simply because $1100 is larger than $1.20. 
We must take into account the vast difference between the actual cost of a car and the 
cost of one dozen eggs. A more meaningful basis of comparison of price increase is the 
percentage rate of increase, which compares the rate of change with the actual price. 
We can say that, in 2015, the price of one dozen eggs is increasing at the percentage rate

[rate of increase]
[actual price]

=
1.2
2.8

≈ .43 = 43% per year.

At the same time, the price of a new compact car is increasing at the percentage rate

[rate of increase]
[actual price]

=
1100

12,500
≈ .09 = 9% per year.

Thus, the price of one dozen eggs is increasing at a faster percentage rate than the price 
of a new compact car.

The concept of percentage rate of change is useful to economists. To state a general 
definition, let us recall that the rate of change of a function is given by its derivative. We 
can now introduce the following useful concept.

5.3 Applications of the Natural Logarithm Function 
to Economics
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272  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

The relative rate of change of f (t) is also called the logarithmic derivative of f (t), 
because of the derivative formula you saw in Section 4.5:

	
d
dt

 ln [  f (t)] =
f ′(t)
f (t)

	 (2)

DEFINITION    For a given function f (t), the relative rate of  change of f (t) per 
unit change of t is defined to be

	
[rate of change]
[actual value]

=
f ′(t)
f (t)

.� (1)

The percentage rate of  change is the relative rate of change of f (t) expressed as a 
percentage.

EXAMPLE 1 Log Derivative and Relative Rate of Change  Find the logarithmic derivative and then 
compute the relative rate of change and percentage rate of change at the given value of t.
(a)	 f (t) = t3 + 2t2 - 11, t = 1.
(b)	 f (t) = e1t, t = 4.

SOLUTION (a)	 Differentiating f (t), we find f ′(t) = 3t2 + 4t. So, from (2), the logarithmic deriva-
tive of f  is

f ′(t)
f (t)

=
3t2 + 4t

t3 + 2t2 - 11
.

When t = 1,

f ′(1)
f (1)

=
7

-8
= -  

7
8
= -.875.

Thus, when t = 1, the relative rate of change of f (t) with respect to t is -.875, 
which corresponds to a percentage rate of change of -87.5%. (A negative percent-
age corresponds to a decrease of 87.5%.)

(b)	 Because of the exponential in f (t), we can simplify our computations by using (2). 
The logarithmic derivative is

 
d
dt

 ln[  f (t)] =
d
dt

 ln[e1t]

 =
d
dt

 (1t )     Because ln(e1t) = 1t

 =
1

21t
.

When t = 4, the logarithmic derivative is equal to

1
214

=
1
4
= .25.

Thus, when t = 4, the relative rate of change of f (t) is .25, and so the percentage 
rate of change is 25%.�  Now Try Exercise 3

Economists often use percentage rates of change when discussing the growth of 
various economic quantities, such as national income or national debt, because such 
rates of change can be meaningfully compared.
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SOLUTION Since

f  ′(t) = .7 - .22t + .03t2,

we see that

 
f ′(3)
f (3)

=
.7 - .22(3) + .03(9)

13.2 + .7(3) - .11(9) + .01(27)
=

.31
14.58

≈ .021

 
f ′(9)
f (9)

=
.7 - .22(9) + .03(81)

13.2 + .7(9) - .11(81) + .01(729)
=

1.15
17.88

≈ .064.

So on January 1, 2008 (t = 3), the economy is predicted to grow at a relative rate of 
about 2.1% per year. On January 1, 2014 (t = 9), the economy is predicted to be still 
growing, but at a relative rate of about 6.4% per year.�  Now Try Exercise 9

EXAMPLE 2 Gross Domestic Product  A certain school of economists modeled the nominal gross 
domestic product of the United States at time t (measured in years from January 1, 2005) 
by the formula

f (t) = 13.2 + .7t - .11t2 + .01t3,

where f (t) is measured in trillions of dollars. (See Fig. 1.) What was the predicted per-
centage rate of growth (or decline) of the economy at t = 3 and t = 9?

321
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54 76 8 9
t

y

Figure 1 

EXAMPLE 3 Constant Relative Rate of Change  If the function f (t) has a constant relative rate of 
change k, show that f (t) = Cekt for some constant C.

SOLUTION We are given that

f ′(t)
f (t)

= k.

Hence, f ′(t) = kf (t). But this is just the differential equation satisfied by the exponential 
function (Theorem 1, Section 5.1). Therefore, we must have f (t) = Cekt for some  
constant C.�

Elasticity of Demand
In Section 2.7, we considered demand equations for companies and for entire industries. 
Recall that a demand equation expresses, for each quantity x to be produced, the mar-
ket price that will generate a demand of exactly x. For instance, the demand equation

	 p = 150 - .01x	
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274  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

says that, to sell x units, the price must be set at 150 - .01x dollars. To be specific, to sell 
6000 units, the price must be set at 150 - .01(6000) = $90 per unit.

The demand equation may be solved for x in terms of p to yield

	 x = 100(150 - p).	

This last equation gives quantity in terms of price. If we let the letter q represent quan-
tity, the equation becomes

	 q = 100(150 - p).	

This equation is of the form q = f ( p), where, in this case, f ( p) is the function 
f ( p) = 100(150 - p). In what follows, it will be convenient to always write our demand 
functions so that the quantity q is expressed as a function f ( p) of the price p.

Usually, raising the price of a commodity lowers demand. Therefore, the typical 
demand function q = f ( p) is decreasing and has a negative slope everywhere. (See Fig. 2.)
But does raising the price typically also lowers revenue? The answer is “sometimes yes, 
and sometimes no.” But how can we predict the answer to this important question? By 
using a concept called elasticity of demand.

Recall that the derivative f ′( p) compares the change in the quantity demanded 
with the change in price. By way of contrast, the concept of elasticity is designed to com-
pare the relative rate of change of the quantity demanded with the relative rate of change 
of price.

Let us be more explicit. Consider a particular demand function q = f ( p). From our 
interpretation of the logarithmic derivative in (1), we know that the relative rate of 
change of the quantity demanded with respect to p is

(d>dp) f ( p)
f ( p)

=
f ′( p)
f ( p)

.

Similarly, the relative rate of change of price with respect to p is

(d>dp)p
p

=
1
p

.

Hence, the ratio of the relative rate of change of the quantity demanded to the relative 
rate of change of price is

[relative rate of change of quantity]
[relative rate of change of price]

=
f ′( p)>f ( p)

1>p
=

pf ′( p)
f (  p)

.

Since f ′( p) is always negative for a typical demand function, the quantity pf ′( p)>f ( p) 
will be negative for all values of p. For convenience, economists prefer to work with 
positive numbers, and therefore, the elasticity of demand is taken to be this quantity 
multiplied by -1.

D
em

an
d

q

p
0 Price

q 5 f(p)

Figure 2 

Elasticity of Demand  The elasticity of  demand E( p) at price p for the demand 
function q = f ( p) is defined to be

E( p) =
-pf ′( p)

f ( p)
.

EXAMPLE 4 Elasticity of Demand  The demand function for a certain metal is q = 100 - 2p, where 
p is the price per pound and q is the quantity demanded (in millions of pounds).

(a)	 What quantity can be sold at $30 per pound?
(b)	 Determine the function E( p).
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5.3  Applications of the Natural Logarithm Function to Economics  275

(c)	 Determine and interpret the elasticity of demand at p = 30.
(d)	 Determine and interpret the elasticity of demand at p = 20.

SOLUTION (a)	 In this case, q = f ( p), where f ( p) = 100 - 2p. When p = 30, we have 
q = f (30) = 100 - 2(30) = 40. Therefore, 40 million pounds of the metal can be 
sold. We also say that the demand is 40 million pounds.

(b)	 E( p) =
-pf ′( p)

f ( p)
=

-p(-2)
100 - 2p

=
2p

100 - 2p

(c)	 The elasticity of demand at price p = 30 is E(30).

E(30) =
2(30)

100 - 2(30)
=

60
40

=
3
2

.

When the price is set at $30 per pound, a small increase in price will result in a rela-
tive rate of decrease in quantity demanded of about 3

2 times the relative rate of 
increase in price. For example, if the price is increased from $30 by 1%, the quantity 
demanded will decrease by about 1.5%.

(d)	 When p = 20, we have

E(20) =
2(20)

100 - 2(20)
=

40
60

=
2
3

.

When the price is set at $20 per pound, a small increase in price will result in a rela-
tive rate of decrease in quantity demanded of only 2

3 of the relative rate of increase 
of price. For example, if the price is increased from $20 by 1%, the quantity 
demanded will decrease by 23 of 1%.�  Now Try Exercise 21

Elasticity, Price and Revenue
The significance of the concept of elasticity may perhaps be best appreciated by a study 
of how revenue, R( p), responds to change in price. Let’s start by expressing the revenue 
function as a function of price:

R( p) = f ( p) # p,

where f ( p) is the demand function. Differentiate R( p) using the product rule and get:

 R′( p) =
d
dp

 [  f ( p) # p] = f ( p) # 1 + p # f ′( p)

 = f ( p) c1 +
pf ′( p)
f ( p)

d 	 Factor f ( p).

 = f ( p) [1 - E( p)]. 	 Because E( p) = -  
pf ′( p)
f ( p)

.� (3)

This equation relates the rate of change of revenue to elasticity of demand. Note that if 
E( p) = 1 then R′( p) = 0. The cases E( p) 6 1 and E( p) 7 1 have interesting implica-
tions. Let us introduce a terminology used by economists.

DEFINITION   Elastic and Inelastic Demand  We say that demand is elastic at price 
p0 if  E( p0) 7 1 and inelastic if  E( p0) 6 1.

Now, suppose that demand is elastic at some price p0. Then E( p0) 7 1 and 1 - E( p0) 6 0. 
Since f ( p) is always positive, we see from (3) that R′( p0) 6 0. Therefore, by the first 
derivative rule, R( p) is decreasing at p0. So, an increase in price will result in a decrease 
in revenue, and a decrease in price will result in an increase in revenue. In a similar way, 
we can show that if demand is inelastic, then R′( p) will be positive. In this case, an 
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276  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

increase in price will result in an increase in revenue, and a decrease in price will result in 
a decrease in revenue. This can be summarized as follows.

Elasticity Rule  When demand is elastic (E( p) 7 1), the change in revenue is in the 
opposite direction of the change in price. And, when demand is inelastic (E( p) 6 1), 
the change in revenue is in the same direction of the change in price.

As noted previously, when E( p0) = 1, then, from (3), R′( p0) = 0, and so p0 is a criti-
cal value of R.

EXAMPLE 5 Elasticity of Demand  Figure 3 shows the elasticity of demand for the metal in Example 4:

E
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y

E

p
0 25 50

1

Price

E(p) , 1
Demand is
inelastic.

E(p) . 1
Demand is

elastic.

E(p) 5 1

E(p) 5 .
2p

100 2 2p

                                             Figure 3 

(a)	 For what values of p is demand elastic? Inelastic?
(b)	 Find and plot the revenue function for 0 6 p 6 50.
(c)	 Verify the elasticity rule by analyzing how revenue responds to an increase in price 

when demand is elastic or, respectively, inelastic.

SOLUTION (a)	 In Example 4(b), we found the elasticity of demand to be

E( p) =
2p

100 - 2p
.

Let us solve E( p) = 1 for p.

 
2p

100 - 2p
= 1   Given equation.

 2p = 100 - 2p  Multiply by 100 - 2p.
 4p = 100   Add 2p to both sides.
 p = 25   Divide by 4.

By definition, demand is elastic at price p if E( p) 7 1 and inelastic if E( p) 6 1. 
From Figure 4, we see that demand is elastic if 25 6 p 6 50 and inelastic if 
0 6 p 6 25.

(b)	 Recall that

[revenue] = [quantity] # [price per unit].
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5.3  Applications of the Natural Logarithm Function to Economics  277

Using the formula for demand (in millions of pounds) from Example 4, we obtain 
the revenue function

R = (100 - 2p) # p = p(100 - 2p) (in millions of dollars).

This is a parabola opening down with p-intercepts at p = 0 and p = 50. Its maxi-
mum is located at the midpoint of the p-intercepts, or p = 25. (See Fig. 4.)
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                                       Figure 4 

(c)	 In part (a), we determined that demand is elastic for 25 6 p 6 50. For p in this 
price range, Figure 4 shows that an increase in price results in a decrease in revenue, 
and a decrease in price results in an increase in revenue. Hence, we conclude that, 
when demand is elastic, the change of revenue is in the opposite direction of the 
change in price. Similarly, when demand is inelastic (0 6 p 6 25), Figure 4 shows 
that the change of revenue is in the same direction as the change in price.

 Now Try Exercise 23

The current toll for the use of a certain toll road is $2.50. A study 
conducted by the state highway department determined that, with 
a toll of p dollars, q cars will use the road each day, where 
q = 60,000e-0.5p.

1.	 Compute the elasticity of demand at p = 2.5.

2.	 Is demand elastic or inelastic at p = 2.5?

3.	 If the state increases the toll slightly, will the revenue increase 
or decrease?

Check Your Understanding 5.3 Solutions can be found following the section exercises.

Find the logarithmic derivative and then determine the percentage 
rate of change of the functions at the points indicated.

	 1.	 f (t) = t2 at t = 10 and t = 50

	 2.	 f (t) = t10 at t = 10 and t = 50

	 3.	 f (x) = e0.3x at x = 10 and x = 20

	 4.	 f (x) = e-0.05x at x = 1 and x = 10

	 5.	 f (t) = e0.3t2
 at t = 1 and t = 5

	 6.	 G(s) = e-0.05s2
 at s = 1 and s = 10

	 7.	 f ( p) = 1>( p + 2) at p = 2 and p = 8

	 8.	 g( p) = 5>(2p + 3) at p = 1 and p = 11

	 9.	 Percentage Rate of Growth The annual sales S (in dollars) of a 
company may be approximated by the formula

S = 50,0002e1t,

		  where t is the number of years beyond some fixed reference 
date. Use a logarithmic derivative to determine the percentage 
rate of growth of sales at t = 4.

	10.	 Percentage Rate of Change The price of wheat per bushel at 
time t (in months) is approximated by

f (t) = 4 + .001t + .01e-t.

		  What is the percentage rate of change of f (t) at t = 0? t = 1? 
t = 2?

11.	 Price of Ground Beef The wholesale price in dollars of 
one pound of ground beef is modeled by the function 
f (t) = 3.08 + .57t - .1t2 + .01t3, where t is measured in years 
from January 1, 2010.
(a)	 Estimate the price in 2011 and find the rate in dollars per 

year at which the price was rising in 2011.
(b)	 What is the percentage rate of increase of the price of one 

pound of beef in 2011?
(c)	 Answer parts (a) and (b) for the year 2016.

12.	 Price of Pork The wholesale price in dollars of one pound of 
pork is modeled by the function f (t) = 1.4 + .26t - .1t2 + 
.01t3, where t is measured in years from January 1, 2010.
(a)	 Estimate the price in 2012 and find the percentage rate of 

increase of the price in 2012?
(b)	 Answer part (a) for the year 2017.

EXERCISES 5.3
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For each demand function, find E( p) and determine if demand is 
elastic or inelastic (or neither) at the indicated price.

13.	 q = 700 - 5p, p = 80

14.	 q = 600e-0.2p, p = 10

15.	 q = 400(116 - p2), p = 6

16.	 q = (77>p2) + 3, p = 1

17.	 q = p2e-(p + 3), p = 4

18.	 q = 700>( p + 5), p = 15

19.	 Elasticity of Demand Currently, 1800 people ride a certain com-
muter train each day and pay $4 for a ticket. The number of 
people q willing to ride the train at price p is q = 600(5 - 1p). 
The railroad would like to increase its revenue.
(a)	 Is demand elastic or inelastic at p = 4?
(b)	 Should the price of a ticket be raised or lowered?

20.	 Elasticity of Demand An electronic store can sell 
q = 10,000>( p + 50) - 30 cellular phones at a price p dollars 
per phone. The current price is $150.
(a)	 Is demand elastic or inelastic at p = 150?
(b)	 If  the price is lowered slightly, will revenue increase or 

decrease?

21.	 Elasticity of Demand A movie theater has a seating capacity of 
3000 people. The number of people attending a show at price 
p dollars per ticket is q = (18,000>p) - 1500. Currently, the 
price is $6 per ticket.
(a)	 Is demand elastic or inelastic at p = 6?
(b)	 If  the price is lowered, will revenue increase or decrease?

22.	 Elasticity of Demand A subway charges 65 cents per person 
and has 10,000 riders each day. The demand function for the 
subway is q = 2000190 - p.
(a)	 Is demand elastic or inelastic at p = 65?
(b)	 Should the price of a ride be raised or lowered to increase 

the amount of money taken in by the subway?

23.	 Elasticity of Demand A country that is the major supplier of 
a certain commodity wishes to improve its balance-of-trade 
position by lowering the price of the commodity. The demand 
function is q = 1000>p2.
(a)	 Compute E( p).
(b)	 Will the country succeed in raising its revenue?

24.	 Show that any demand function of the form q = a>pm has 
constant elasticity m.

Relative Rate of Change of Cost A cost function C(x) gives the total 
cost of producing x units of a product. The elasticity of cost at 
quantity x, Ec (x), is defined to be the ratio of the relative rate of 
change of cost (with respect to x) divided by the relative rate of 
change of quantity (with respect to x).

25.	 Show that Ec (x) = x # C′(x)>C(x).

26.	 Show that Ec is equal to the marginal cost divided by the aver-
age cost.

27.	 Let C(x) = (1>10)x2 + 5x + 300. Show that Ec (50) 6 1. 
(Hence, when 50 units are produced, a small relative increase 
in production results in an even smaller relative increase in to-
tal cost. Also, the average cost of producing 50 units is greater 
than the marginal cost at x = 50.)

28.	 Let C(x) = 1000e0.02x. Determine and simplify the formula 
for Ec (x). Show that Ec (60) 7 1, and interpret this result.

 TECHNOLOGY EXERCISES 

	29.	 Consider the demand function q = 60,000e-0.5p from Check 
Your Understanding 5.3.
(a)	 Determine the value of p for which the value of E( p) is 1. 

For what values of p is demand inelastic?
(b)	 Graph the revenue function in the window [0, 4] by 

[-5000, 50,000], and determine where its maximum value 
occurs. For what values of p is the revenue an increasing 
function?

1.	 The demand function is f ( p) = 60,000e-0.5p.

 f ′( p) = -30,000e-0.5p

 E( p) =
-pf ′( p)

f ( p)
=

-p(-30,000)e-0.5p

60,000e-0.5p =
p
2

 E(2.5) =
2.5
2

= 1.25

2.	 The demand is elastic, because E(2.5) 7 1.

3.	 Since demand is elastic at $2.50, a slight change in price 
causes revenue to change in the opposite direction. Hence, 
revenue will decrease.

Solutions to Check Your Understanding 5.3

Terminal Velocity  After jumping out of an airplane, a skydiver falls at an increas-
ing rate. However, the wind rushing past the skydiver’s body creates an upward force 
that begins to counterbalance the downward force of gravity. This air friction finally 
becomes so great that the skydiver’s velocity reaches a limiting speed called the terminal 
velocity. If we let y(t) be the downward velocity of the skydiver after t seconds of free 
fall, a good mathematical model for y(t) is given by

	 y(t) = M(1 - e-kt),	 (1)

5.4 Further Exponential Models
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5.4  Further Exponential Models  279

where M  is the terminal velocity and k is some positive constant. (See Fig. 1.) When t is 
close to zero, e-kt is close to 1, and the velocity is small. As t increases, e-kt becomes 
small, and so y(t) approaches M .
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Terminal velocity: M

t

v

v 5 M(1 2 e2kt)

                                    Figure 1  Downward velocity of a skydiver.

EXAMPLE 1 Velocity of a Skydiver  Show that the velocity given in equation (1) satisfies the 
equations

	 y′(t) = k[M - y(t)], y(0) = 0.	 (2)

SOLUTION From (1) we have y(t) = M - Me-kt. Then,

y′(t) = Mke-kt.

However,

k[M - y(t)] = k[M - (M - Me-kt)] = kMe-kt,

so the differential equation y′(t) = k[M - y(t)] holds. Also,

	 y(0) = M - Me0 = M - M = 0.�  Now Try Exercise 3

The differential equation (2) says that the rate of change in y is proportional to the 
difference between the terminal velocity M and the actual velocity y. It can be shown that 
the only solution of (2) is given by the formula in (1). We summarize this useful fact as 
follows.

Solution of a Differential Equation  The unique solution of the differential equation 
and initial condition

y′(t) = k(M - y(t)), y(0) = 0   is

	 y(t) = M(1 - e-kt)

The two equations (1) and (2) arise as mathematical models in a variety of situa-
tions. Some of these application are described next.

The Learning Curve  Psychologists have found that, in many learning situations, a 
person’s rate of learning is rapid at first and then slows down. Finally, as the task is 
mastered, the person’s level of performance reaches a level above which it is almost 
impossible to rise. For example, within reasonable limits, each person seems to have a 
certain maximum capacity for memorizing a list of nonsense syllables. Suppose that a 

The line y = M  is a hori-
zontal asymptote. See  
Sec. 2.1, p. 137.

FOR REVIEW
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subject can memorize M  syllables in a row if given sufficient time—say, an hour—to 
study the list but cannot memorize M + 1 syllables in a row even if allowed several 
hours of study. By giving the subject different lists of syllables and varying lengths of 
time to study the lists, the psychologist can determine an empirical relationship between 
the number of nonsense syllables memorized accurately and the number of minutes of 
study time. It turns out that a good model for this situation is

f (t) = M(1 - e-kt)

for some appropriate positive constant k. (See Fig. 2.)
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                                      Figure 2  Learning curve, f (t) = M(1 - e-kt).

The slope of this learning curve at time t is approximately the number of additional 
syllables that can be memorized if the subject is given 1 more minute of study time. 
Thus, the slope is a measure of the rate of learning. The differential equation satisfied by 
the function y = f (t) is

y′ = k(M - y),  f (0) = 0.

This equation says that, if the subject is given a list of M  nonsense syllables, the rate of 
memorization is proportional to the number of syllables remaining to be memorized.

Diffusion of Information by Mass Media  Sociologists have found that the dif-
ferential equation (2) provides a good model for the way information is spread (or “dif-
fused”) through a population when the information is being publicized constantly by 
mass media, such as television or online. (Source: Introduction to Mathematical Sociol-
ogy.) Given a fixed population P, let f (t) be the number of people who have already 
heard a certain piece of information by time t. Then, P - f (t) is the number who have 
not yet heard the information by time t. Also, f ′(t) is the rate of increase of the number 
of people who have heard the news (the “rate of diffusion” of the information). If the 
information is being publicized often by some mass media, it is likely that the number of 
newly informed people per unit time is proportional to the number of people who have 
not yet heard the news. Therefore,

	 f ′(t) = k[P - f (t)].	 (3)

Assume that f (0) = 0 (that is, there was a time t = 0 when nobody had heard the news). 
Then, the solution box following Example 1 shows that

	 f (t) = P(1 - e-kt).	 (4)

(See Fig. 3.)
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Time

Population: P

t

y

y 5 P(1 2 e2kt)
number of people who
have heard the news

Figure 3  Diffusion of infor-
mation by mass media.

EXAMPLE 2 Diffusion of Information  The news of the resignation of a public official is broadcast 
frequently by internet news media and television stations. Also, one-half of the residents 
of a city have heard the news within 4 hours of its initial release. Use the exponential 
model (4) to estimate when 90% of the residents will have heard the news.

SOLUTION We must find the value of k in (4). If P is the number of residents, the number who have 
heard the news in the first 4 hours is given by (4), with t = 4. By assumption, this num-
ber is half the population. So,

 12P = P(1 - e-k #4)
 .5 = 1 - e-4k   Divide by P.

 e-4k = 1 - .5 = .5   Solve for e-4k.
 ln(e-4k) = ln(.5)   Take ln.

 -4k = ln(.5)

 k = -
1
4

 ln(.5)   Solve for k.

 ≈ .173

Note that

-
1
4

 ln(.5) = -
1
4

 lna1
2
b =

1
4

 ln(2).

So the model for this particular situation is

f (t) = P(1 - e-kt), where k =
ln 2

4
.

Now we want to find t such that f (t) = .90P. We solve for t:

 .90P = P(1 - e-kt)
 .90 = 1 - e-kt

 e-kt = 1 - .90 = .10
 -kt = ln .10

 t =
ln .10

-k
= -4 

ln .10
ln 2

≈ 13.29.

Therefore, 90% of the residents will hear the news in 13.3 hours of its initial release.
 Now Try Exercise 7

Intravenous Infusion of Glucose
The human body both manufactures and uses glucose (blood sugar). Usually, there is a 
balance in these two processes, so the bloodstream has a certain equilibrium level of 
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glucose. Suppose that a patient is given a single intravenous injection of glucose, and let 
A(t) be the amount of glucose (in milligrams) above the equilibrium level. Then, the 
body will start using up the excess glucose at a rate proportional to the amount of excess 
glucose; that is,

	 A′(t) = -lA(t),	 (5)

where l is a positive constant called the velocity constant of elimination. This con-
stant depends on how fast an individual patient’s metabolic processes eliminate the 
excess glucose from the blood. Equation (5) describes a simple exponential decay 
process.

Now suppose that, instead of a single shot, the patient receives a continuous intra-
venous infusion of glucose. A bottle of glucose solution is suspended above the patient, 
and a small tube carries the glucose down to a needle that runs into a vein. In this case, 
there are two influences on the amount of excess glucose in the blood: the glucose being 
added steadily from the bottle and the glucose being removed from the body by meta-
bolic processes. Let r be the rate of infusion of glucose (often, from 10 to 100 milligrams 
per minute). If the body did not remove any glucose, the excess glucose would increase 
at a constant rate of r milligrams per minute; that is,

	 A′(t) = r.	 (6)

Taking into account the two influences on A′(t) described by (5) and (6), we can write

	 A′(t) = r - lA(t).	 (7)

Define M  to be r>l, and note that initially there is no excess glucose; then,

A′(t) = l(M - A(t)),  A(0) = 0.

As stated in the solution box following Example 1, a solution of this differential equa-
tion is given by

	 A(t) = M(1 - e-lt ) =
r
l

 (1 - e-lt ).	 (8)

Note that M  is the limiting value of the glucose level. Reasoning as in Example 1, we 
conclude that the amount of excess glucose rises until it reaches a stable level. (See 
Fig. 4.)
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Figure 5  Logistic growth.
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Figure 4  Continuous infusion of glucose.

Logistic Growth
The model for simple exponential growth discussed in Section 5.1 is adequate for 
describing the growth of many types of populations, but obviously, a population can-
not increase exponentially forever. The simple exponential growth model becomes 
inapplicable when the environment begins to inhibit the growth of the population. 
The logistic growth curve is an important exponential model that takes into account 
some of the effects of the environment on a population. (See Fig. 5.) For small values 
of t, the curve has the same basic shape as an exponential growth curve. Then, when 
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the population begins to suffer from overcrowding or lack of food, the growth rate 
(the slope of the population curve) begins to slow down. Eventually, the growth rate 
tapers off to zero as the population reaches the maximum size that the environment 
will support. This latter part of the curve resembles the growth curves studied earlier 
in this section.

The equation for logistic growth has the general form

Logistic Growth

	 y =
M

1 + Be-Mkt  ,� (9)

where B, M , and k are positive constants. We can show that y satisfies the differential 
equation

	 y′ = ky(M - y).	 (10)

The factor y reflects the fact that the growth rate (y′) depends in part on the size y of the 
population. The factor M - y reflects the fact that the growth rate also depends on how 
close y is to the maximum level M .

The logistic curve is often used to fit experimental data that lie along an S-shaped 
curve. Examples are given by the growth of a fish population in a lake and the growth 
of a fruit fly population in a laboratory container. Also, certain enzyme reactions in 
animals follow a logistic law. One of the earliest applications of the logistic curve 
occurred in about 1840, when the Belgian sociologist P. Verhulst fit a logistic curve to 
six U.S. census figures, 1790 to 1840, and predicted the U.S. population for 1940. His 
prediction missed by fewer than 1 million people (an error of about 1%).

EXAMPLE 3 Logistic Growth  A lake is stocked with 100 fish. After 3 months, there are 250 fish. A 
study of the ecology of the lake predicts that the lake can support 1000 fish. Find a for-
mula for the number P(t) of fish in the lake t months after it has been stocked.

SOLUTION The limiting population M  is 1000. Therefore, we have

P(t) =
1000

1 + Be-1000kt.

At t = 0 there are 100 fish, so that

100 = P(0) =
1000

1 + Be0 =
1000
1 + B

.

Thus, 1 + B = 10, or B = 9. Finally, since P(3) = 250, we have

250 =
1000

1 + 9e-3000k

1 + 9e-3000k = 4

e-3000k =
1
3

-3000k = ln
1
3

k ≈ .00037.

Therefore,

	 P(t) =
1000

1 + 9e-0.37t.�  Now Try Exercise 9
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An Epidemic Model
It will be instructive to actually “build” a mathematical model. Our example concerns the 
spread of a highly contagious disease. We begin by making several simplifying assumptions:

1.	 The population is a fixed number P, and each member of the population is suscep-
tible to the disease.

2.	 The duration of the disease is long, so that no cures occur during the time period 
under study.

3.	 All infected individuals are contagious and circulate freely among the population.
4.	 During each time period (such as 1 day or 1 week), each infected person makes c 

contacts, and each contact with an uninfected person results in transmission of the 
disease.

Consider a short period of time from t to t + h. Each infected person makes c # h 
contacts. How many of these contacts are with uninfected persons? If f (t) is the number 
of infected persons at time t, then P - f (t) is the number of uninfected persons, and 
[P - f (t)]>P is the fraction of the population that is uninfected. Thus, of the c # h con-
tacts made,

c P - f (t)
P

d # c # h

will be with uninfected persons. This is the number of new infections produced by one 
infected person during the time period of length h. The total number of new infections 
during this period is

f (t) c P - f (t)
P

d  ch.

But this number must equal f (t + h) - f (t), where f (t + h) is the total number of 
infected persons at time t + h. So,

f (t + h) - f (t) = f (t) c P - f (t)
P

d  ch.

Dividing by h, the length of the time period, we obtain the average number of new infec-
tions per unit time (during the small time period):

f (t + h) - f (t)
h

=
c
P

  f (t)[P - f (t)].

If we let h approach zero and let y stand for f (t), the left-hand side approaches the rate 
of change in the number of infected persons, and we derive the following equation:

	
dy
dt

=
c
P

 y(P - y).	 (11)

This is the same type of equation as that used in (10) for logistic growth, although the 
two situations leading to this model appear to be quite dissimilar.

Comparing (11) with (10), we see that the number of infected individuals at time t 
is described by a logistic curve with M = P and k = c>P. Therefore, by (9), we can 
write

f (t) =
P

1 + Be-ct.

B and c can be determined from the characteristics of the epidemic. (See Example 4.)
The logistic curve has an inflection point at that value of t for which f (t) = P>2. 

The position of this inflection point has great significance for applications of the logistic 
curve. From inspecting a graph of the logistic curve, we see that the inflection point is 
the point at which the curve has greatest slope. In other words, the inflection point cor-
responds to the instant of fastest growth of the logistic curve. This means, for example, 
that, in the foregoing epidemic model, the disease is spreading with the greatest rapidity 
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5.4  Further Exponential Models  285

precisely when half the population is infected. Any attempt at disease control (through 
immunization, for example) must strive to reduce the incidence of the disease to as low 
a point as possible, but, in any case, at least below the inflection point at P>2, at which 
point the epidemic is spreading fastest.

EXAMPLE 4 Spread of an Epidemic  The Department of Public Health monitors the spread of an 
epidemic of a particularly long-lasting strain of flu in a city of 500,000 people. At the 
beginning of the first week of monitoring, 200 cases had been reported; during the first 
week, 300 new cases are reported. Estimate the number of infected individuals after  
6 weeks.

SOLUTION Here, P = 500,000. If f (t) denotes the number of cases at the end of t weeks, then,

f (t) =
P

1 + Be-ct =
500,000

1 + Be-ct.

Moreover, f (0) = 200, so

 200 =
500,000
1 + Be0 =

500,000
1 + B

.

 200(1 + B) = 500,000
 1 + B = 2500

 B = 2499.

Consequently, since f (1) = 300 + 200 = 500, we have

 500 = f (1) =
500,000

1 + 2499e-c,

 500(1 + 2499e-c) = 500,000
 1 + 2499 e-c = 1000

 2499 e-c = 999

 e-c =
999
2499

≈ .4.

so -c ≈ ln(.4) or c ≈ .92. Finally,

f (t) =
500,000

1 + 2499e-0.92t

and

f (6) =
500,000

1 + 2499e-0.92(6) ≈ 45,000.

After 6 weeks, about 45,000 individuals are infected.�  Now Try Exercise 11

This epidemic model is used by sociologists (who still call it an epidemic model) to 
describe the spread of a rumor. In economics, the model is used to describe the diffusion 
of knowledge about a product. An “infected person” represents an individual who pos-
sesses knowledge of the product. In both cases, it is assumed that the members of the 
population are themselves primarily responsible for the spread of the rumor or knowl-
edge of the product. This situation is in contrast to the model described earlier, in which 
information was spread through a population by external sources, such as online news 
outlets, radio, and television.

There are several limitations to this epidemic model. Each of the four simplifying 
assumptions made at the outset is unrealistic in varying degrees. More complicated 
models can be constructed that rectify one or more of these defects, but they require 
more advanced mathematical tools.
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1.	 A sociological study was made to examine the process by 
which doctors decide to adopt a new drug. The doctors were 
divided into two groups. The doctors in group A had little 
interaction with other doctors and so received most of their 
information through mass media. The doctors in group B 
had extensive interaction with other doctors and so received 

most of their information through word of mouth. For each 
group, let f (t) be the number who have learned about the 
new drug after t months. Examine the appropriate differ-
ential equations to explain why the two graphs were of the 
types shown in Fig. 6. (Source: Sociometry.)

Check Your Understanding 5.4 Solutions can be found following the section exercises.

Group A

P

Group B

P

Figure 6  Results of a sociological study.

	 1.	 Consider the function f (x) = 5(1 - e-2x), x Ú 0.
(a)	 Show that f (x) is increasing and concave down for all 

x Ú 0.
(b)	 Explain why f (x) approaches 5 as x gets large.
(c)	 Sketch the graph of f (x), x Ú 0.

	 2.	 Consider the function g(x) = 10 - 10e-0.1x, x Ú 0.
(a)	 Show that g(x) is increasing and concave down for 

x Ú 0.
(b)	 Explain why g(x) approaches 10 as x gets large.
(c)	 Sketch the graph of g(x), x Ú 0.

	 3.	 If  y = 2(1 - e-x), compute y′ and show that y′ = 2 - y.

	 4.	 If  y = 5(1 - e-2x), compute y′ and show that y′ = 10 - 2y.

	 5.	 If  f (x) = 3(1 - e-10x), show that y = f (x) satisfies the differ-
ential equation

y′ = 10(3 - y),  f (0) = 0.

	 6.	 Ebbinghaus Model for Forgetting A student learns a certain 
amount of material for some class. Let f (t) denote the per-
centage of the material that the student can recall t weeks 
later. The psychologist Hermann Ebbinghaus found that this 
percentage of retention can be modeled by a function of the 
form

f (t) = (100 - a)e-lt + a,

		  where l and a are positive constants and 0 6 a 6 100. Sketch 
the graph of the function f (t) = 85e-0.5t + 15, t Ú 0.

	 7.	 Spread of News When a grand jury indicted the mayor of a 
certain town for accepting bribes, the newspaper, online news 
outlets, radio, and television immediately began to publicize 
the news. Within an hour, one-quarter of the citizens heard 
about the indictment. Estimate when three-quarters of the 
town heard the news.

	 8.	 Examine formula (8) for the amount A(t) of excess glucose in 
the bloodstream of a patient at time t. Describe what would 
happen if  the rate r of  infusion of glucose were doubled.

	 9.	 Spread of News A news item is spread by word of mouth to a 
potential audience of 10,000 people. After t days,

f (t) =
10,000

1 + 50e-0.4t

		  people will have heard the news. The graph of this function is 
shown in Fig. 7.
(a)	 Approximately how many people will have heard the news 

after 7 days?
(b)	 At approximately what rate will the news spread after 

14 days?
(c)	 Approximately when will 7000 people have heard the 

news?
(d)	 Approximately when will the news spread at the rate of 

600 people per day?
(e)	 When will the news spread at the greatest rate?
(f)	 Use equations (9) and (10) to determine the differential 

equation satisfied by f (t).
(g)	 At what rate will the news spread when half  the potential 

audience has heard the news?

	10.	 Concentration of Glucose in the Bloodstream Physiologists usu-
ally describe the continuous intravenous infusion of glucose in 
terms of the excess concentration of glucose, C(t) = A(t)>V , 
where V  is the total volume of blood in the patient. In this 
case, the rate of increase in the concentration of glucose due 
to the continuous injection is r>V . Find a differential equation 
that gives a model for the rate of change of the excess concen-
tration of glucose.

11.	 Spread of News A news item is broadcast by mass media to a 
potential audience of 50,000 people. After t days,

f (t) = 50,000(1 - e-0.3t)

			  people will have heard the news. The graph of this function is 
shown in Fig. 8.
(a)	 How many people will have heard the news after 10 days?
(b)	 At what rate is the news spreading initially?
(c)	 When will 22,500 people have heard the news?

EXERCISES 5.4
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5.4  Further Exponential Models  287

(d)	 Approximately when will the news spread at the rate of 
2500 people per day?

(e)	 Use equations (3) and (4) to determine the differential 
equation satisfied by f (t)

(f)	 At what rate will the news spread when half  the potential 
audience has heard the news?

12.	 Glucose Elimination Describe an experiment that a doctor 
could perform to determine the velocity constant of elimina-
tion of glucose for a particular patient.

t

y

2 4 6 8 10
(a)

(b)

12 14 16 18

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t

y

100
200

300
400

500

600

700

800

900

1000

2 4 6 8
9.78

10 12 14

y 5 f(t)

y 5 f 0(t)

y 5 f 9(t)

16 18

Figure 7  

t

y

5 10 15

5000

10000

15000

20000

35000

40000

25000

30000

45000

50000

y 5 f 9(t)

y 5 f(t)

Figure 8  

 TECHNOLOGY EXERCISES 

	13.	 Amount of a Drug in the Bloodstream After a drug is taken 
orally, the amount of the drug in the bloodstream after t hours 
is f (t) = 122(e-0.2t - e-t) units.
(a)	 Graph f (t), f ′(t), and f ″(t) in the window [0, 12] by 

[-20, 75]
(b)	 How many units of the drug are in the bloodstream after 

7 hours?
(c)	 At what rate is the level of drug in the bloodstream in-

creasing after 1 hour?
(d)	 While the level is decreasing, when is the level of drug in 

the bloodstream 20 units?
(e)	 What is the greatest level of drug in the bloodstream, and 

when is this level reached?
(f)	 When is the level of drug in the bloodstream decreasing 

the fastest?

	14.	 Growth with Restriction A model incorporating growth 
restrictions for the number of bacteria in a culture after t days 
is given by f (t) = 5000(20 + te-0.04t).
(a)	 Graph f ′(t) and f ″(t) in the window [0, 100] by [-700, 300].
(b)	 How fast is the culture changing after 100 days?
(c)	 Approximately when is the culture growing at the rate of 

76.6 bacteria per day?
(d)	 When is the size of the culture greatest?
(e)	 When is the size of the culture decreasing the fastest?

1.	 The difference between transmission of information by 
mass media (Group A) and by word of mouth (Group B) is 
that in Group B the rate of transmission depends not only 
on the number of people who have not yet received the 
information, but also on the number of people who know 

the information and therefore are capable of spreading it. 
Therefore, for Group A, f ′(t) = k[P - f (t)], and for Group 
B, f ′(t) = kf (t)[P - f (t)]. Note that the spread of informa-
tion by word of mouth follows the same pattern as the 
spread of an epidemic.

Solutions to Check Your Understanding 5.4
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288  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

KEY TERMS AND CONCEPTS EXAMPLES
5.1 Exponential Growth and Decay

•	 The solutions of the differential equation y′ = ky are all of  
the form y = Cekt, where C is an arbitrary constant.

•	 If k 7 0, the solution is an exponential growth function, and  
k is called the growth constant.

•	 If k 6 0, write k = -l, then the solution, y = Ce-lt, is an 
exponential decay function, and the constant l is called the 
decay constant.

•	 The unique solution of the differential equation y′ = ky with 
initial condition y(0) = P0 is the function y = P0ekt.

•	 The differential equation y′ = .02y has infinitely many 
solutions. They are all of the form y = Ce0.02t , where C is an 
arbitrary constant.

•	 The unique solution of the differential equation with initial 
condition, y′ = 3y, y(0) = 413, is y(t) = 413e3t.

•	 Radioactive cobalt has a decay constant l = .13. If 2 grams of 
cobalt is present, let P(t) be the number of grams remaining 
after t years. Then y = P(t) satisfies y′ = -.13y, y(0) = 2. The 
formula for P(t) is P(t) = 2e-0.13t.

5.2 Compound Interest
When the interest rate is compounded continuously in a savings 
account, the account grows exponentially. If r is the annual 
interest rate, P0 the initial deposit, and y = A(t) the balance in 
the account after t years, then y satisfies the equation

y′ = ry, y(0) = P0

and is given by

y = A(t) = P0ert.

Present Value If P dollars are invested today, then A = Pert 
gives the value of this investment after t years. We say that P is 
the present value of the amount A to be received in t years. We 
have P = Ae-rt.

An amount of $2000 dollars is deposited in an account that earns 
6% annual interest rate, compounded continuously.

(a)	 Give a formula for A(t), the compound amount in the 
account after t years.

(b)	 How long is required for the amount to reach $3000?

To answer (a), we appeal to the solution of the differential 
equation y′ = .06y, y(0) = 2000. Then, A(t) = 2000e0.06t.
(b) To find t, we set A(t) = 3000 and solve for t:

 2000e0.06t = 3000

 e0.06t =
3000
2000

=
3
2

 ln[e0.06t] = lna3
2
b

 .06t = lna3
2
b

 t =
ln(3

2 )
.06

≈ 6.8 years.

5.3 �Applications of the Natural Logarithm Function 
to Economics

The relative rate of change of a function is

f ′(t)
f (t)

.

We note that this is also 
d
dt

 [ln( f (t))].

The percentage rate of change is the relative rate of change 
expressed as a percentage.

The value of an investment t years later is approximated by the 
formula

f (t) = 10,000e 
t

t + 1.

Determine the percentage rate of change of the investment when 
t = 1 and when t = 5.

The percentage rate of change is given by 
f ′(t)
f (t)

=
d
dt

 [ln( f (t))]. 
In our case,

 ln( f (t)) = ln[10,000e 
t

t + 1 ]

 = ln(10,000) + ln[e 
t

t + 1 ] = ln(10,000) +
t

t + 1

 
d
dt

 [ln( f (t))] =
d
dt

 c ln(10,000) +
t

t + 1
d = 0 +

d
dt

 c t
t + 1

d ,

because ln(10,000) is a constant, its derivative is 0. Now, by the 
quotient rule,

d
dt

 c t
t + 1

d = (t + 1) - t

(t + 1)2 =
1

(t + 1)2.

Summary CHAPTER 5
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KEY TERMS AND CONCEPTS EXAMPLES
So,

f ′(t)
f (t)

=
d
dt

 [ln( f (t))] =
1

(t + 1)2.

When t = 1,

f ′(1)
f (1)

=
1

(1 + 1)2 =
1
4
= .25 = 25%.

When t = 5,

f ′(5)
f (5)

=
1

(1 + 5)2 =
1
36

≈ .03 = 3%.

5.4 Further Exponential Models

Several applications are discussed in this section, where the 
exponential function plays a central role: the velocity of a 
skydiver; the learning curve; exponential growth applications 
with a limiting capacity, such as a population of fish in a lake 
with a maximum capacity; the spread of an epidemic in a limited 
environment; the diffusion of information by mass media. These 
applications are modeled by one of the two following differential 
equation: y′ = k(M - y) and y′ = ky(M - y).

In a model of diffusion of information by mass media, the num-
ber of people who have heard a certain piece of information by 
time t is denoted by y = f (t), where f (t) satisfies the differential 
equation y′ = .2(1 - y), y(0) = 0. The solution of this differen-
tial equation is given following Example 1 of Sec. 5.4. It is 
f (t) = 1000(1 - e-0.2t).

Fundamental Concept Check Exercises

	 1.	 What differential equation is key to solving exponential 
growth and decay problems? State a result about the solution 
to this differential equation.

	 2.	 What is a growth constant? A decay constant?

	 3.	 What is meant by the half-life of a radioactive element?

	 4.	 Explain how radiocarbon dating works.

	 5.	 State the formula for each of the following quantities:
(a)	 The compound amount of P dollars in t years at interest 

rate r, compounded continuously
(b)	 The present value of A dollars in n years at interest rate r, 

compounded continuously

	 6.	 What is the difference between a relative rate of change and a 
percentage rate of change?

	 7.	 Define the elasticity of demand, E( p), for a demand function. 
How is E( p) used?

	 8.	 Describe an application of the differential equation 
y′ = k(M - y).

	 9.	 Describe an application of the differential equation 
y′ = ky(M - y).

CHAPTER 5 

Review Exercises

	 1.	 Atmospheric Pressure The atmospheric pressure P(x) (mea-
sured in inches of mercury) at height x miles above sea level 
satisfies the differential equation P′(x) = -.2P(x). Find the 
formula for P(x) if the atmospheric pressure at sea level is 29.92.

	 2.	 Population Model The herring gull population in North 
America has been doubling every 13 years since 1900. Give a 
differential equation satisfied by P(t), the population t years 
after 1900.

	 3.	 Present Value Find the present value of $10,000 payable at 
the end of 5 years if money can be invested at 12% with inter-
est compounded continuously.

	 4.	 Compound Interest One thousand dollars is deposited in a 
savings account at 10% interest compounded continuously. 

How many years are required for the balance in the account 
to reach $3000?

	 5.	 Half-Life The half-life of the radioactive element tritium is 12 
years. Find its decay constant.

	 6.	 Carbon Dating A piece of charcoal found at Stonehenge con-
tained 63% of the level of 14C found in living trees. Approxi-
mately how old is the charcoal?

	 7.	 Population Model From January 1, 2010, to January 1, 2017, 
the population of a state grew from 17 million to 19.3 million.
(a)	 Give the formula for the population t years after 2010.
(b)	 If this growth continues, how large will the population be 

in 2020?
(c)	 In what year will the population reach 25 million?

CHAPTER 5 
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290  CHAPTER 5  Applications of the Exponential and Natural Logarithm Functions 

	 8.	 Compound Interest A stock portfolio increased in value from 
$100,000 to $117,000 in 2 years. What rate of interest, com-
pounded continuously, did this investment earn?

	 9.	 Comparing Investments An investor initially invests $10,000 
in a risky venture. Suppose that the investment earns 20% 
interest, compounded continuously, for 5 years and then 6% 
interest, compounded continuously, for 5 years thereafter.
(a)	 How much does the $10,000 grow to after 10 years?
(b)	 The investor has the alternative of an investment paying 

14% interest compounded continuously. Which invest-
ment is superior over a 10-year period, and by how 
much?

	10.	 Bacteria Growth Two different bacteria colonies are growing 
near a pool of stagnant water. The first colony initially has 
1000 bacteria and doubles every 21 minutes. The second col-
ony has 710,000 bacteria and doubles every 33 minutes. How 
much time will elapse before the first colony becomes as large 
as the second?

	11.	 Population Model The population of a city t years after 1990 
satisfies the differential equation y′ = .02y. What is the 
growth constant? How fast will the population be growing 
when the population reaches 3 million people? At what level 
of population will the population be growing at the rate of 
100,000 people per year?

	12.	 Bacteria Growth A colony of bacteria is growing exponen-
tially with growth constant .4, with time measured in 
hours. Determine the size of the colony when the colony is 
growing at the rate of 200,000 bacteria per hour. Deter-
mine the rate at which the colony will be growing when its 
size is 1 million.

	13.	 Population Model The population of a certain country is 
growing exponentially. The total population (in millions) in t 
years is given by the function P(t). Match each of the follow-
ing answers with its corresponding question.

		  Answers
a.	 Solve P(t) = 2 for t.
b.	 P(2)
c.	 P′(2)
d.	 Solve P′(t) = 2 for t.
e.	 y′ = ky
f.	 Solve P(t) = 2P(0) for t
g.	 P0ekt, k 7 0
h.	 P(0)

		  Questions
A.	 How fast will the population be growing in 2 years?
B.	 Give the general form of the function P(t).
C.	 �How long will it take for the current population to 

double?
D.	 What will be the size of the population in 2 years?
E.	 What is the initial size of the population?
F.	 When will the size of the population be 2 million?
G.	 �When will the population be growing at the rate of 2 mil-

lion people per year?
H.	 Give a differential equation satisfied by P(t).

14.	 Radioactive Decay You have 80 grams of a certain radioactive 
material, and the amount remaining after t years is given by 
the function f (t) shown in Fig. 1.
(a)	 How much will remain after 5 years?
(b)	 When will 10 grams remain?
(c)	 What is the half-life of this radioactive material?
(d)	 At what rate will the radioactive material be disintegrat-

ing after 1 year?
(e)	 After how many years will the radioactive material be 

disintegrating at the rate of about 5 grams per year?

15.	 Compound Interest A few years after money is deposited into 
a bank, the compound amount is $1000, and it is growing at 
the rate of $60 per year. What interest rate (compounded con-
tinuously) is the money earning?

16.	 Compound Interest The current balance in a savings account 
is $1230, and the interest rate is 4.5%. At what rate is the com-
pound amount currently growing?

17.	 Find the percentage rate of change of the function 
f (t) = 50e0.2t2

 at t = 10.

18.	 Find E(p) for the demand function q = 4000 - 40p2, and 
determine if demand is elastic or inelastic at p = 5.

19.	 Elasticity of Demand For a certain demand function, 
E(8) = 1.5. If the price is increased to $8.16, estimate the per-
centage decrease in the quantity demanded. Will the revenue 
increase or decrease?

20.	 Find the percentage rate of change of the function 

f (p) =
1

3p + 1
 at p = 1.

21.	 Elasticity of Demand A company can sell q = 1000p2e-0.02(p + 5) 
calculators at a price of p dollars per calculator. The current 
price is $200. If the price is decreased, will the revenue increase 
or decrease?

22.	 Elasticity of Demand Consider a demand function of the form 
q = ae-bp, where a and b are positive numbers. Find E(p), 
and show that the elasticity equals 1 when p = 1>b.

23.	 Refer to Check Your Understanding 5.4. Out of 100 doctors 
in Group A, none knew about the drug at time t = 0, but 66 
of them were familiar with the drug after 13 months. Find the 
formula for f (t).

t

y

10 151

10

210

20

50

60

30

40

70

80

y 5 f 9(t)

y 5 f(t)

5

Figure 1  
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26.	 Bacteria Growth A certain bacteria culture grows at a rate 
proportional to its size. If 10,000 bacteria grow at the rate of 
500 bacteria per day, how fast is the culture growing when it 
reaches 15,000 bacteria?

24.	 Height of a Weed The growth of the yellow nutsedge weed is 
described by a logistic growth formula f (t) of type (9) in 
Section 5.4. A typical weed has length 8 centimeters after 
9 days and length 48 centimeters after 25 days and reaches 
length 55 centimeters at maturity. Find the formula for 
f (t).

25.	 Temperature of a Rod When a rod of molten steel with a 
temperature of 1800°F is placed in a large vat of water at 
temperature 60°F, the temperature of the rod after t 
seconds is

f (t) = 60(1 + 29e-0.15t)°F.

		  The graph of this function is shown in Fig. 2.
(a)	 What is the temperature of the rod after 11 seconds?
(b)	 At what rate is the temperature of the rod changing after 

6 seconds?
(c)	 Approximately when is the temperature of the rod 200°F?
(d)	 Approximately when is the rod cooling at the rate of 200°F 

per second?

t

y

500

1500

1000

y 5 f 9(t)

y 5 f(t)

15 20105

Figure 2  
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