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Abstract—Image morphing has proven to be very successful
at deceiving facial recognition systems. Such a vulnerability
can be critical when exploited in an automatic border control
scenario. Recent works on this topic rely on dedicated algorithms
which require additional software modules deployed alongside an
existing facial recognition system. In this work, we address the
problem of morphing detection by using state-of-the-art facial
recognition algorithms based on hand-crafted features and deep
convolutional neural networks. We show that a general-purpose
face recognition system combined with a simple linear classifier
can be successfully used as a morphing detector. The proposed
method reuses an existing feature extraction pipeline instead of
introducing additional modules. It requires neither fine-tuning
nor modifications to the existing recognition system and can
be trained using only a small dataset. The proposed approach
achieves state-of-the-art performance on our morphing datasets
using a 5-fold cross-validation.

Index Terms—face recognition, biometric anti-spoofing, face
morphing, deep learning

I. INTRODUCTION

The detection of biometric counterfeits, commonly known
as anti-spoofing, is a very active field of research. In recent
years a variety of methods have been proposed for protecting
facial recognition systems [1], [2]. In this work, we consider
the so-called morphing attack using machine-readable travel
documents (eMRTDs) [3]. It can be performed by enrolling
with a tampered image obtained from morphing the face
of a legitimate document owner (accomplice) with the face
of a reasonably similar looking impostor. When successful,
the attacked facial recognition system positively matches the
tampered template, stored in the eMRTD, with the live image
of an impostor.

Although some research has been done on morphing detec-
tion using dedicated algorithms [4]–[7], there is no work ad-
dressing the capabilities of current face recognition algorithms
for explicit protection against morphing. The advantage of this
approach is that it can be deployed with minimal effort by
reusing precomputed high-level features from face recognition
or verification tasks.

We examine four publicly available face recognition meth-
ods that achieve state-of-the-art performance on the challeng-
ing Labeled Faces in the Wild (LFW) [8] dataset. Three of
them are based on modern deep neural network architectures
and one uses hand-crafted image features in a multi-scale
approach.

(a) Original image (b) Morphed image (c) Morphing artifacts

Fig. 1. Most prominent morphing artifacts reveled by subtracting the original
destination image (a) from the morphed image (b). Source: [9].

We make two contributions. First, we show that facial fea-
tures computed by a general-purpose face recognition system
can be reused for morphing detection. Second, we propose a
combined system for morphing detection and face verification
which achieves high performance on our own automatically
generated morphing dataset.

II. RELATED WORK

The threat of a morphing attack in a border control scenario
using eMRTD and commercial face recognition software was
first identified by Ferrara et al. [3]. Several studies have been
done on the vulnerability of modern face recognition methods
to morphing attacks [10]–[12].

More recent publications [5], [13] have addressed the spe-
cific problem of morphing detection and proposed methods
for both the generation of morphs and for the detection of
manipulation traces in images. Asaad et al. [7] showed that
Local Binary Patterns (LBP) can be successfully applied to
morphing detection. A similar approach was proposed by
Raghavendra et al. [5] using a Support Vector Machine (SVM).
However, there is no information available about the face
verification performance of those methods. Deep learning
based morphing detectors have been proposed independently
by Seibold et al. [6] and Raghavendra et al. [4]. However, they
require fine-tuning of the neural network, a fairly large dataset
and special hardware to be deployed. Alternative approaches
based on image degradation and Benford features extracted
from quantized DCT coefficients of JPEG-compressed morphs
were proposed by Neubert [14] and Makrushin et al. [13]
respectively.
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TABLE I
PERFORMANCE OF FOUR STATE-OF-THE-ART FACE RECOGNITION AND

VERIFICATION METHODS ON THE LFW DATASET UNDER THE
UNRESTRICTED PROTOCOL.

LFW Benchmark

Method Accuracy [%]

DLib [15] 99.1
FaceNet [16] 99.2
VGG-Face [17] 97.3
High-Dim LBP [18] 95.2

III. METHODS

In this section, we will describe four publicly available
feature extraction algorithms which achieve state-of-the-art
performance on the challenging LFW dataset. Next, we will
shortly describe the classifier used in our experiments. Finally,
we will propose an architecture that combines face verification
and morphing detection.

A. Feature Extraction

1) FaceNet: FaceNet is a framework for face recognition
and clustering originally proposed by Schroff et al. [19].
The implementation used in our experiments is based on the
Inception-ResNet-v1 architecture introduced by Szegedy et al.
[16]. Instead of a pure inception model, as described in the
original paper, Szegedy et al. combined inception modules
and residual connections in one network. The feature extractor
expects a 160×160 pixel input image and returns an 1792-
dimensional embedding. The network was trained on a subset
of the MS-Celeb-1M dataset [20] containing about 4 million
images distributed over 51k classes.

2) Dlib: DLib is a machine learning toolkit designed for
real-world applications [15]. It contains a face matching mod-
ule based on the ResNet-34 architecture introduced by He et
al. [21]. The version used in our experiments has only 29
convolutional layers as opposed to 34 in the original network.
In addition, the number of filters per layer has been reduced
by half and the input layer was resized to 150×150 pixels. The
output layer was also resized and returns a 128-dimensional
embedding. The network was trained using metric learning
on a dataset of about 3 million images and 7485 identities.
Whereby a large number of images was acquired using the
Internet and nearly a half stemmed from FaceScrub [22] and
VGG-Face [17] datasets.

3) VGG-Face: VGG-Face is a face descriptor introduced
by Parkhi et al. [17] along with a large-scale dataset of the
same name. It is based on the VGG-Very-Deep-16 convolu-
tional neural network (CNN) as described in [23]. Unlike the
previous two networks, the VGG-Very-Deep-16 has a linear
topology with 16 convolutional layers. The input layer of the
network expects a 224×224 pixels image, whereas the output
layer, which is the last layer before the softmax, returns a
feature vector of 4096 dimensions. The network was trained
on the VGG-Face dataset which contains about 2.6 million

images distributed over 2622 classes. The version used in our
experiments was trained as a classifier using a softmax layer.

4) High-Dim LBP: In contrast to the above methods, we
also evaluate a non-deep-learning approach based on Local
Binary Patterns [24]. Chen et al. [18] introduced a high-
dimensional face feature extraction method which achieves
state-of-the-art performance on the LFW dataset (Tab. I). The
implementation used in our experiments is based on the DLib
toolkit and can be summarized in five steps:

1) Rectify the input image based on five facial landmarks
(eyes, nose, and mouth corners).

2) Build an image pyramid of the normalized facial image.
3) At each scale, extract fixed-size image patches centered

around each landmark.
4) Divide each patch into a grid of 4×4 cells and encode

each cell by an LBP descriptor.
5) Finally, concatenate all descriptors to form a high-

dimensional feature vector.
This method outputs a 99120-dimensional feature vector and
does not require any training or parameter adjustment.

B. Classification

Morphing detection is a binary classification problem. Given
an input image, we want to decide whether it was manipulated
by morphing with another image or not. We train a Support
Vector Machine [25] on the high-level facial features to solve
this classification problem. Since our training data has a high
dimensionality, mapping it to an even higher dimensional space
will not improve the performance [26]. We, therefore, use the
linear kernel in all our experiments, which leaves us with only
one free parameter to adjust.

C. Combined Approach

As we will show later in the results section, there is an
inverse relationship between the performance in morphing
detection and face verification. Methods which performed
poorly on the morphing detection task were very good at
face verification and vice versa. Therefore, we make the
assumption that those tasks might complement each other and
propose a combined architecture. Figure 2 shows one possible
implementation of this approach. We first compute the facial
features by passing reference and query images to one of the
four described methods. Then, we use the output vectors to
compute the Euclidean distance for the face verification task.

TABLE II
OVERVIEW OF FOUR FACE FEATURE EXTRACTION METHODS, THEIR

ARCHITECTURES AND INPUT/OUTPUT SIZES.

Method Architecture Input Output

DLib [15] ResNet-29 150× 150 128
FaceNet [16] Inception-ResNet-v1 160× 160 1792
VGG-Face [17] VGG-16 224× 224 4096
High-Dim LBP [18] Multi-Scale LBP 40× 40∗ 99120
∗Size of the image patch centered around each landmark.
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Input image(s)

Face Processing Method

Facial Features

L2 Distance Support Vector Machine

Face Verification Morphing Detection

∧

Decision

Fig. 2. The figure shows our approach for combining face verification and
morphing detection in one system. Face Processing Method can be replaced
by one of the introduced methods: FaceNet [19], DLib [15], VG-Face [17] or
High-Dim LBP [18].

In addition, the reference image vector is passed to the SVM
which outputs the decision for the morphing detection task.
The binary decisions from both these tasks are combined to
produce the final decision, either an acceptance or rejection of
the individual.

IV. EXPERIMENTS

In this section, we will describe the preparation procedure
of our dataset, as well as the methodology and metrics used
for evaluation.

A. Dataset

We use the Multi-PIE [9] dataset as the basis for our own
automatically generated facial morphs. The exact procedure
will be described in the next section. We chose the Multi-
PIE dataset because the conditions under which its data was
collected were similar to those prescribed for eMRTDs. The
original dataset contains images of 337 subjects from four
different sessions - including variations in viewpoint, illumi-
nation, and expression. In this work, we only consider images
with a neutral pose, facial expression, and frontal illumination.

We generate the facial morphs automatically by using the
splicing-morph method described in [11]. It relies on the DLib
shape predictor for localizing facial landmarks and Poisson
blending for the refinement of boundary regions. The morphs
are generated with a constant blending factor of 0.5. We only
use images from session one and restrict ourselves to subjects
that appear in at least one more session. Furthermore, we only
consider subjects not wearing glasses and those belonging to
the same gender, in order to avoid unnatural image artifacts.

The evaluation dataset is organized into 5 train-test splits
such that undesired correlations between train and test sets
are avoided. The generation process can be summarized in the
following steps.

1) Divide the dataset D into 5 disjoint sets

D = {Si|Si ∩ Sj = ∅} ,∀ i, j ∈ 〈1, 5〉 ∧ j 6= i

2) Select and morph identity pairs (Ii, Ij) within each set
such that i 6= j

3) Create test set Testi such that Testi = Si

4) Create training set Traini such that

Traini = {Sj |1 ≤ j ≤ 5 ∧ j 6= i}

Additionally, we create a dataset for the combined approach
as described in the Methods section. We use the remaining
images from session two to four for this purpose and replace
the facial morphs with the corresponding destination image.
This dataset is aimed to simulate the query image in a genuine
access control scenario.

B. Methodology

We conduct four different experiments, morphing detection,
its combination with face verification and repeat those two
for features from lower layers of each CNN. Those layers
represent lower level image features, which might be better
suited for detecting morphing artifacts. They are extracted from
the conv7, Mixed 6a and conv 5 2 layer of DLib, FaceNet
and VGG-Face respectively.

C. Performance Metrics

We evaluate the proposed approaches in the context of
morphing detection by using the following evaluation metrics.

FAR :=
|Accepted morphs|
|All morphed images|

(1)

The False Acceptance Rate (FAR) is synonymous to the Morph
Acceptance Rate (MAR) and therefore the most important
measure from the security point of view.

FRR :=
|Rejected genuine individuals|
|All genuine individuals|

(2)

The False Rejection Rate (FRR), on the other hand, measures
the usability of a biometric system.

ACC :=
|Correctly classified images|
|All classified images|

(3)

The last measure is the Accuracy (ACC), which we mainly
use for comparing face verification performance with the LFW
benchmark.

V. RESULTS

We present our results for morphing detection and its
combination with face verification separately. All results were
obtained using a 5-fold cross-validation. We report the average
performance and standard deviation for each method. The
evaluation data was preprocessed by performing an L2 normal-
ization of the feature vectors. We set the penalty parameter C
of the SVM to 1 since other values did not improve the overall
results.
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A. Morphing Detection

Table III summarizes the results for morphing detection
while reusing the features originally computed for face ver-
ification. The best result was achieved by the LBP descriptor,
which is the worse method in terms of face verification perfor-
mance (see Table I for comparison). In the next experiment,
we only evaluated the CNN based methods. Table IV shows
the results obtained by extracting features from lower layers of
the particular network. The best results were achieved by the
VGG-Face descriptor. Although we observe an improvement
over the results in Table III, and the number of features is
now comparable to the high-dimensional LBP approach, there
is still a large performance gap between these two methods.

B. Face Verification and Morphing Detection

In this experiment, we combined the decisions from both
tasks, and present our findings for a hybrid system. In order
to perform face verification on the MultiPIE dataset, we first
have to find an optimal threshold for each method. Table
V summarized the results and thresholds obtained using the
original dataset. Table VI and VII show the results for two
different image sets. The first set (session 1) covers a pure
morphing detection task, whereas the second set (session 2 to
4) simulates a real access control scenario in the presence of a
morphing attack. The best results were once again achieved by
the high-dimensional LBP descriptor, but the performance of
the CNN based methods improved significantly on both sets.

We also evaluated our hybrid approach by using features
from lower layers of each CNN and combine the results with
face verification decisions. These experiments are carried out
only on the CNN based methods. The findings are once again
presented for two different image sets, from session 1 (Tab.
VIII) and sessions 2 to 4 (Tab. IX). The best results are
now achieved by FaceNet, closely followed by the remaining
methods, DLib and VGG-Face.

VI. CONCLUSIONS

We showed that a general-purpose face recognition algo-
rithm, as deployed in many biometric systems, can be used to
detect morphing attacks. The advantage of this approach is that
it can be deployed with minimal effort by reusing precomputed
high-level features. The combination of face verification and
morphing detection achieved even better results, especially for

TABLE III
RESULTS USING A 5-FOLD CROSS-VALIDATION WITH LINEAR KERNEL AND

PENALTY TERM C = 1. THE FEATURES WERE OBTAINED FROM THE
OUTPUT LAYER OF THE RESPECTIVE METHOD.

Morphing Detection Performance

Method ACC [%] FAR [%] FRR [%]

DLib [15] 77.2± 5.2 23.0± 5.7 20.9± 5.8
FaceNet [16] 79.5± 9.1 20.6± 10.2 18.3± 7.0
VGG-Face [17] 83.2± 3.5 16.0± 4.1 26.1± 7.3

High-Dim LBP [18] 99.2± 0.8 0.3± 0.7 7.0± 4.4

TABLE IV
RESULTS USING A 5-FOLD CROSS-VALIDATION WITH LINEAR KERNEL AND

PENALTY TERM C = 1. THE FEATURES WERE OBTAINED FROM THE
CONV7, MIXED 6A AND CONV 5 2 LAYER RESPECTIVELY.

Morphing Detection Performance

Method ACC [%] FAR [%] FRR [%] dim(·)

DLib [15] 87.3± 4.6 12.4± 5.3 15.7± 8.1 ∼ 40k
FaceNet [16] 90.3± 1.3 9.3± 1.5 13.0± 6.1 ∼ 25k
VGG-Face [17] 93.6± 1.6 6.1± 1.6 10.4± 2.1 ∼ 100k

the deep learning based methods, which can be attributed to
their better face verification performance.

Although convolutional neural networks performed signifi-
cantly worse, in comparison to the LBP based method, they
are still able to provide some protection against morphing
attacks. Moreover, by extracting features from lower layers
the results could be further improved at the expense of higher
data dimensionality. On the other hand, the LBP descriptor
achieved impressive results and almost met the requirements
for biometric systems prescribed by Frontex [27]. It also
achieved respectable performance on the face verification task,
and therefore constitute a good trade-off between morphing
protection and face verification performance.
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