

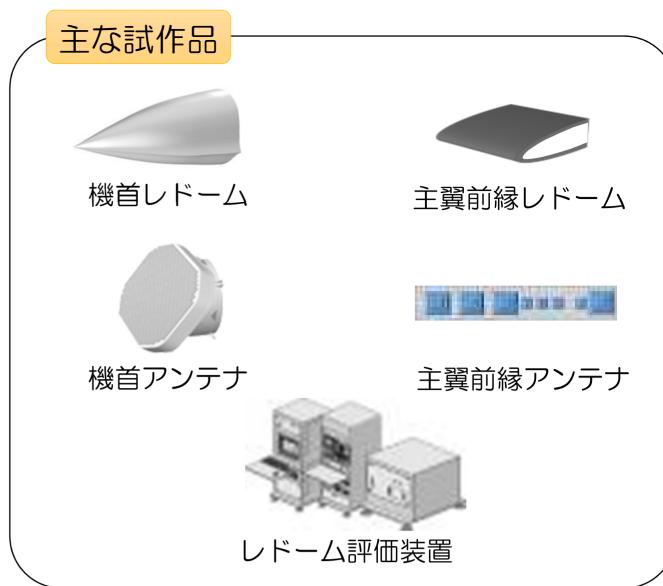
ステルス戦闘機用レドームに関する研究

目的

戦闘機のステルス化を追求するうえで必須となる低被探 知性を考慮※したレドームを実現するため、高出力レーダ等 による加熱への耐熱性や透過性に優れた材料の検討及びス テルス形状に合わせた複雑形状技術について研究する。

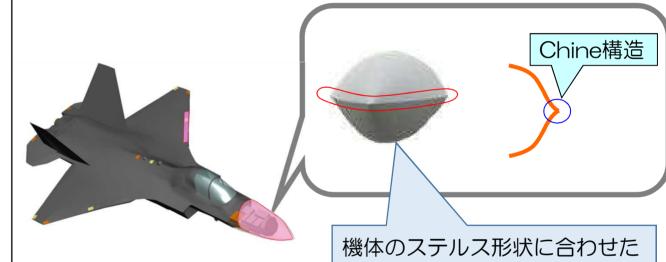
必要性

ステルス性確保のためのレドーム複雑形状及びレドーム 形状に起因するレーダ探知性能の低下、広覆域化に伴う不 要波への対応等、将来戦闘機実現に向けた課題解決に本研 究の実施は必要不可欠である。


諸外国との 比較		本研試	F-35 レドーム	T-50 レドーム (PAK-FA)					
			0						
周波数範囲		X帯 (広帯域)	X帯	X帯					
レドーム 層構成		多層サンド イッチ	多層サンド イッチ	多層サンド イッチ(推測)					
高速巡航対応 (耐熱性)		あり	あり	あり					
複雜形状		あり	あり	あり					
構造		複合材	複合材	複合材 (推測)					
電波適合性	位相補正	あり	不明	不明					
	クラッタ 低減	あり	不明	不明					

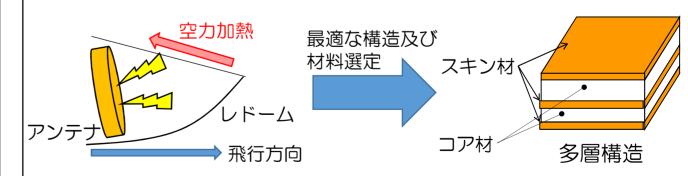
※ F-35及びT-50のレドームの出典はインターネット及びジェーン年鑑

https://www.prnewswire.com/news-releases/general-dynamicsawarded-24-million-f-35-lightning-ii-gun-system-contract-138398149.html


事業線表

計画線表											
年度	H27	H28	H29	H30	R1	R2	R3				
実施	/		研究	試作		,					
実施内容					Ē	近内試懸	è				

技術課題



戦闘機イメージ図

形状とする必要がある

耐環境性技術

将来戦闘機で想定される高出力レーダによる誘電加熱 及び高速時の空力加熱に耐えうる耐熱性を有する。

電波適合性技術

レーダの高出力、広帯域及び広覆域化への対応

- ・レドームによるアンテナパターン崩れの補正
- 高い透過率
- 不要波による性能低下の低減