Convex functions

Definition $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

for all $x, y \in \text{dom } f$, and $\theta \in [0, 1]$.

Convex functions

Definition $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(heta x + (1 - heta)y) \leq heta f(x) + (1 - heta)f(y)$$

for all $x, y \in \text{dom } f$, and $\theta \in [0, 1]$.

- ▶ f is concave if −f is convex
- f is strictly convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f$, $x \neq y$, $\theta \in (0, 1)$.

Convex function: examples on R

- ▶ affine: *ax* + *b*
- exponential: $e^{\alpha x}$, for any $\alpha \in R$
- powers:
 - x^a on R_{++} , for $a \ge 1$ or $a \le 0$
 - $-x^a$ on R_{++} , for $0 \le a \le 1$
- powers of absolute value: $|x|^p$ on R, for $p \ge 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- negative logarithm: $-\log x$ on R_{++}
- $\blacktriangleright x \log x \text{ on } R_{++}$

Convex function: affine functions

Affine functions are both convex and concave

▶ affine function in *R*^{*n*}:

$$f(x) = a^T x + b$$

▶ affine function in $R^{m \times n}$:

$$f(X) = \operatorname{tr}(A^{\mathsf{T}}X) + b = \langle A, X \rangle + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b$$

Convex function: norms

All norms are convex

▶ norms in R^n :

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

for all $p \ge 1$

• norms in $R^{m \times n}$:

- Frobenius norm: $||X||_F = \langle X, X \rangle^{1/2}$
- spectral norm: $\|X\|_2 = \sigma_{max}(X) = (\lambda_{max}(X^T X))^{1/2}$

Operator norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on \mathbb{R}^m and \mathbb{R}^n , respectively. The operator norm of $X \in \mathbb{R}^{m \times n}$, induced by $\|\cdot\|_a$ and $\|\cdot\|_b$, is defined to be

$$||X||_{a,b} = \sup \{||Xu||_a \mid ||u||_b \le 1\}$$

► Spectral norm (ℓ₂-norm):

$$\|X\|_2 = \|X\|_{2,2} = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Max-row-sum norm:

$$\|X\|_{\infty} = \|X\|_{\infty,\infty} = \max_{i=1,\cdots,m} \sum_{j=1}^{n} |X_{ij}|$$

Max-column-sum norm:

$$\|X\|_1 = \|X\|_{1,1} = \max_{j=1,\cdots,n} \sum_{i=1}^m |X_{ij}|$$

Dual norm

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup \{z^T x \mid ||x|| \le 1\}.$$

• $z^T x \leq ||x|| ||z||_*$ for all $x, z \in \mathbb{R}^n$

- ▶ The dual of the ℓ_p -norm is the ℓ_q -norm, where 1/p + 1/q = 1
- The dual of the ℓ_2 -norm on $R^{m \times n}$ is the nuclear norm,

$$\begin{split} \|Z\|_{2*} &= \sup \ \{ \operatorname{tr}(Z^{\mathsf{T}}X) \mid \|X\|_2 \leq 1 \} \\ &= \sigma_1(Z) + \dots + \sigma_r(Z) = \operatorname{tr}(Z^{\mathsf{T}}Z)^{1/2}, \end{split}$$

where r = rank Z.

Restriction of a convex function to a line

 $f: R^n \to R$ is convex iff $g: R \to R$,

$$g(t) = f(x + tv) \quad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex for any $x \in \text{dom } f$, $v \in R^n$

So we can check the convexity of a function with multiple variables by checking the convexity of functions of one variable

Restriction of a convex function to a line: example

Show that $f: S_{++}^n \to R$ with $f(X) = \log \det X$ is concave.

Proof.

Define $g : R \to R$, g(t) = f(X + tV) with dom $g = \{t \mid X + tV \succ 0\}$, for any $X \succ 0$ and $V \in S^n$.

$$\begin{split} g(t) &= \log \det(X + tV) \\ &= \log \det(X^{1/2}(I + tX^{-1/2}VX^{-1/2})X^{1/2}) \\ &= \sum_{i=1}^n \log(1 + t\lambda_i) + \log \det X \end{split}$$

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $X^{-1/2}VX^{-1/2}$. Hence g is concave for any $X \succ 0$ and $V \in S^n$, so is f.

Extended-value extensions

Definition If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, we define its extended-value extension $\tilde{f} : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ by

$$ilde{f}(x) = \left\{ egin{array}{cc} f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f \end{array}
ight.$$

By this notation, the condition

$$ilde{f}(heta x + (1 - heta)y) \leq heta ilde{f}(x) + (1 - heta) ilde{f}(y) \quad orall heta \in [0, 1]$$

is equivalent to the two conditions:

- dom f is convex
- ► $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y) \quad \forall \theta \in [0, 1]$

First-order conditions

Theorem (first-order condition)

If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then f is convex if and only if **dom** f is convex and

 $f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in \operatorname{dom} f$

First-order conditions

Theorem (first-order condition)

If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then f is convex if and only if **dom** f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in \operatorname{dom} f$$

- local information (gradient) leads to global information (convexity)
- f is strictly convex if and only if **dom** f is convex and

$$f(y) > f(x) + \nabla f(x)^T (y - x), \quad \forall x, y \in \operatorname{dom} f, x \neq y$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First-order condition: proof

Proof.

Suppose f(x) is convex. Then

$$\begin{split} & f(x + \theta(y - x)) - f(x) \leq \theta(f(y) - f(x)), \quad \forall \theta \in [0, 1] \\ & \lim_{\theta \to 0} \frac{f(x + \theta(y - x)) - f(x)}{\theta} \leq f(y) - f(x) \\ & \Longrightarrow \quad \nabla f(x)^{\mathsf{T}}(y - x) \leq f(y) - f(x) \end{split}$$

Suppose the first-order condition holds. Let $z = \theta x + (1 - \theta)y$. Then

$$f(x) \ge f(z) + \nabla f(z)^{T} (x - z)$$

$$f(y) \ge f(z) + \nabla f(z)^{T} (y - z)$$

$$\implies \theta f(x) + (1 - \theta) f(y) \ge f(z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

which is true for any $\theta \in [0, 1]$, so f is convex.

Second-order conditions

Theorem (second-order condition)

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, then f is convex if and only if **dom** f is convex and its Hessian is positive semidefinite, i.e.,

 $\nabla f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Second-order conditions

Theorem (second-order condition)

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, then f is convex if and only if **dom** f is convex and its Hessian is positive semidefinite, i.e.,

 $\nabla f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f$

• if $\nabla f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex

Second-order conditions: proof Proof.

Suppose f is convex. Because f is twice differentiable, we have

$$f(x + \delta x) = f(x) + \nabla f(x)^T \delta x + \frac{1}{2} \delta x^T \nabla^2 f(x) \delta x + R(x; \delta x) \|\delta x\|^2$$

where $R(x; \delta x) \to 0$ as $\delta x \to 0$. Because f is convex, by the first-order condition, $f(x + \delta x) \ge f(x) + \nabla f(x)^T \delta x$. Hence

$$\delta x^T \nabla^2 f(x) \delta x + R(x; \delta x) \|\delta x\|^2 \ge 0$$

for any δx . Let $\delta x = \epsilon d$. Taking $\epsilon \to 0$ yields $d^T \nabla^2 f(x) d \ge 0$ for any d, thus $\nabla^2 f(x) \succeq 0$.

▶ Suppose $\nabla f(x) \succeq 0 \ \forall x \in \text{dom } f$. Then for any $x, y \in \text{dom } f$ and some $z = \theta x + (1 - \theta)y$ with $\theta \in [0, 1]$,

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(z)(y - x)$$

$$\geq f(x) + \nabla f(x)^{T}(y - x)$$

By the first-order condition, f is convex.

Some special cases

• quadratic function: $f(x) = \frac{1}{2}x^T P x + q^T x + r$, where $P \in S^n$

$$abla f(x) = Px + q$$
 $abla^2 f(x) = P$

convex if $P \succeq 0$

• least-squares: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b)$$
 $\nabla^2 f(x) = 2A^T A$

convex for any A

• quadratic-over-linear: $f(x, y) = x^2/y$

$$\nabla^2 f(x) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Some special cases: log-sum-exp

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

 $\max\{x_1, \dots, x_n\} \le f(x) \le \max\{x_1, \dots, x_n\} + \log n$, so f can be viewed as a differentiable approximation of the max function.

Proof.

$$\nabla^{2} f(x) = \frac{1}{(1^{T} z)^{2}} ((1^{T} z) \operatorname{diag}(z) - zz^{T}) \quad (z_{k} = \exp x_{k})$$

$$\implies v^{T} \nabla^{2} f(x) v = \frac{1}{(1^{T} z)^{2}} \left(\sum_{i=1}^{n} z_{i} \sum_{i=1}^{n} z_{i} v_{i}^{2} - (\sum_{i=1}^{n} z_{i} v_{i})^{2} \right)$$

$$= \frac{1}{(1^{T} z)^{2}} (\|a\|_{2}^{2} \|b\|_{2}^{2} - \langle a, b \rangle^{2}) \ge 0$$

where $a = (\sqrt{z_1}, \cdots, \sqrt{z_n})$, $b = (\sqrt{z_1}v_1, \cdots, \sqrt{z_n}v_n)$, for any v.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Some special cases: geometric mean

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on R_{++}^n is concave Proof.

$$\nabla^{2} f(x) = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} (n \operatorname{diag}^{2}(q) - qq^{T}) \quad (q_{i} = 1/x_{i})$$

$$\implies v^{T} \nabla^{2} f(x) v = -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} \left(\sum_{i=1}^{n} 1 \sum_{i=1}^{n} v_{i}^{2} q_{i}^{2} - (\sum_{i=1}^{n} q_{i} v_{i})^{2} \right)$$

$$= -\frac{\prod_{i=1}^{n} x_{i}^{1/n}}{n^{2}} (\|\boldsymbol{a}\|_{2}^{2} \|\boldsymbol{b}\|_{2}^{2} - \langle \boldsymbol{a}, \boldsymbol{b} \rangle^{2}) \leq 0$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

where $a_i = 1$, $b_i = q_i v_i$ for any v, so $\nabla^2 f(x) \preceq 0$.

Epigraph and sublevel set

 α -sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{x \in \mathsf{dom} \ f \mid f(x) \leq \alpha\}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Jensen's inequality and extensions

basic inequality: if f is convex, then for any $\theta \in [0, 1]$,

$$f(heta x + (1 - heta)y) \leq heta f(x) + (1 - heta)f(y)$$

extension: if f is convex, then

$$f(\mathsf{E}[z]) \leq \mathsf{E}[f(z)]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for any random variable z.

Using Jensen's inequality: deriving Holder's inequality

$$egin{array}{ll} heta \log a + (1- heta) \log b \leq \log(heta a + (1- heta)b) \ & \Longrightarrow \ a^ heta b^{1- heta} \leq heta a + (1- heta)b \quad orall a, b \geq 0, heta \in [0,1] \end{array}$$

Applying this with

$$a = rac{|x_i|^p}{\sum_j |x_j|^p}$$
 $a = rac{|y_i|^p}{\sum_j |y_j|^p}$ $heta = 1/p$

yields

$$\left(\frac{|x_i|^p}{\sum_j |x_j|^p}\right)^{1/p} \left(\frac{|y_i|^p}{\sum_j |y_j|^p}\right)^{1/q} \le \frac{|x_i|^p}{p\sum_j |x_j|^p} + \frac{|y_i|^p}{q\sum_j |y_j|^p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

and summing over *i* yields Holder's inequality.

Operations preserving convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

- composition
- minimization
- perspective

positive weighted sum & composition with affine function

- f is convex $\implies \alpha f$ is convex for any $\alpha \ge 0$
- f_1, f_2 are convex $\implies f_1 + f_2$ is convex (extends to infinite sums, integrals)
- f is convex $\implies f(Ax + b)$ is convex

Examples:

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^m \log(b_i - a_i^T x)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\blacktriangleright f(x) = \|Ax + b\|$$

Pointwise maximum

If f_1, \dots, f_m are convex, then $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ is convex

examples

- ▶ piecewise-linear function: $f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$ is convex
- sum of *r* largest components of $x \in R^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[n]}$$

is convex $(x_{[i]}$ is *i*th largest component of x)

Pointwise supremum

If f(x, y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in A} f(x, y)$$

is convex

In terms of epigraph:

epi
$$g = \bigcap_{y \in A}$$
epi $f(\cdot, y)$

Examples

• support function of a set: $S_C(x) = \sup_{y \in C} y^T x$

$$f(x) = \sup_{y \in C} \|x - y\|$$

• $\lambda_{\max}(X) = \sup_{\|u\|_2=1} u^T X u$ where $X \in S^n$ is convex

Minimization

If f(x, y) is convex in (x, y) and C is a convex nonempty set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x, y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0 \quad C \succ 0$$

Because

$$g(x) = \inf_{y} f(x, y) = x^{T} (A - BC^{-1}B^{T}) x$$

is convex, the Schur complement $A - BC^{-1}B^T \succeq 0$

► distance to a set: $dist(x, S) = inf_{y \in S} ||x - y||$ is convex if S is convex

Minimization: proof

Proof.

Suppose $x_1, x_2 \in \text{dom } g$. Given $\epsilon > 0, \exists y_1, y_2 \in C$ such that $f(x_i, y_i) \leq g(x_i) + \epsilon$. Hence for any $\theta \in [0, 1]$,

$$egin{aligned} g(heta x_1 + (1 - heta) x_2) &= \inf_{y \in \mathcal{C}} f(heta x_1 + (1 - heta) x_2, y) \ &\leq f(heta x_1 + (1 - heta) x_2, heta y_1 + (1 - heta) y_2) \ &\leq heta f(x_1, y_1) + (1 - heta) f(x_2, y_2) \ &\leq heta g(x_1) + (1 - heta) g(x_2) + \epsilon \end{aligned}$$

which holds for any $\epsilon > 0$. Thus

$$g(\theta x_1 + (1-\theta)x_2) \leq \theta g(x_1) + (1-\theta)g(x_2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Composition with scalar functions

Composition of $g : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

Use:

$$\nabla^2 f(x) = h'(g(x))\nabla^2 g(x) + h''(g(x))\nabla g(x)\nabla g(x)^{\mathsf{T}}$$

f is convex if

- g convex, h convex, \tilde{h} nondecreasing
 - example: $\exp g(x)$ is convex if g is convex
- g concave, h convex, \tilde{h} nonincreasing
 - example: 1/g(x) is concave if g is concave and positive

Composition with vector functions

Composition of $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x) = h(g_1(x), \cdots, g_k(x)))$$

when n = 1:

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

- f is convex if
 - g_i convex, h convex, \tilde{h} nondecreasing in each argument
 - example: $\sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i is convex
 - ▶ g_i concave, h convex, \tilde{h} nonincreasing in each argument
 - example: $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i is concave and positive

Perspective

The perspective of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^{n+1} \to \mathbb{R}$,

$$g(x,t) = tf(\frac{x}{t})$$
 dom $g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$

f is convex $\implies g$ is convex.

For t > 0,

$$(x,t,s)\in {\operatorname{epi}}\ g \Longleftrightarrow f(x/t)\leq s/t \Longleftrightarrow (x/t,s/t)\in {\operatorname{epi}}\ f$$

Hence epi g is the inverse image of epi f under the perspective mapping

examples:

►
$$f(x) = x^T x \implies g(x, t) = x^T x/t$$
 is convex for $t > 0$
► $f(x) = -\log x \implies g(x, t) = t\log t - t\log x$ is convex on R^2_{++}

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The conjugate function

the conjugate of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} y^T x - f(x)$$

Figure: Conjugate function

The conjugate function: examples

• negative logarithm $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} xy + \log x = \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

▶ strictly convex quadratic $f(x) = 1/2x^T Qx$ with $Q \in S_{++}^n$

$$f^*(y) = \sup_{x} y^T x - 1/2x^T Q x$$
$$= \frac{1}{2} y^T Q^{-1} y$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The conjugate function: properties

Properties:

- ► *f*^{*} is convex
- f is convex and closed (i.e., epi f is closed) $\implies f^{**} = f$.
- Frechel's inequality: $f(x) + f^*(y) \ge x^T y$
 - Example: with $f(x) = (1/2)x^T Qx$ with $Q \in S_{++}^n$, we have

$$x^{T}y \leq (1/2)x^{T}Qx + (1/2)y^{T}Q^{-1}y$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convexity with respect to generalized inequalities

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if dom f is convex and

$$f(heta x + (1 - heta)y) \preceq_{\kappa} heta f(x) + (1 - heta)f(y) \quad \forall x, y \in \operatorname{dom} f, \theta \in [0, 1]$$

Convexity with respect to generalized inequalities

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) \preceq_{\kappa} \theta f(x) + (1 - \theta)f(y) \quad \forall x, y \in \operatorname{dom} f, \theta \in [0, 1]$$

example:
$$f: S^m \to S^m$$
 with $f(X) = X^2$ is S^m_+ -convex
Proof.
for fixed $z \in R^m$, $z^T X^2 z = ||Xz||_2^2$ is convex in X, i.e.,

$$z^{\mathsf{T}}(\theta X + (1-\theta)Y)^{2}z \leq \theta z^{\mathsf{T}}X^{2}z + (1-\theta)z^{\mathsf{T}}Y^{2}z \quad \forall X, Y \in S^{\mathsf{m}}$$
$$\implies (\theta X + (1-\theta)Y)^{2} \leq \theta X^{2} + (1-\theta)Y^{2}$$

Quasiconvex functions

Definition A function f(x) is **quasiconvex** if $\forall x, y \in \text{dom } f$,

$$f(heta x + (1 - heta)y) \le \max\{f(x), f(y)\} \quad orall heta \in [0, 1]$$

Theorem

f(x) is quasiconvex if and only if every level set of f is convex.

Quasiconvex functions: level sets

Theorem

f(x) is quasiconvex if and only if every level set of f is convex.

Proof.

1. Suppose f is quasiconvex. Suppose $x, y \in \text{dom } f$ belongs to level set $S_a = \{x \mid f(x) \le a\}$. Then

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\} \le a$$

Thus $\theta x + (1 - \theta)y \in S_a$ for all $\theta \in [0, 1]$, so S_a is convex.

2. Suppose every level set of f is convex. For any $x, y \in \text{dom } f$, let $a = \max\{f(x), f(y)\}$. Clearly $x, y \in S_a$. Because S_a is convex, $\theta x + (1 - \theta)y \in S_a$ for any $\theta \in [0, 1]$. Thus f is quasiconvex.