Convex functions

Definition
$f: R^{n} \rightarrow R$ is convex if dom f is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f$, and $\theta \in[0,1]$.

Convex functions

Definition
$f: R^{n} \rightarrow R$ is convex if dom f is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f$, and $\theta \in[0,1]$.

- f is concave if $-f$ is convex
- f is strictly convex if dom f is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, x \neq y, \theta \in(0,1)$.

Convex function: examples on R

- affine: $a x+b$
- exponential: $e^{\alpha x}$, for any $\alpha \in R$
- powers:
- x^{a} on R_{++}, for $a \geq 1$ or $a \leq 0$
- $-x^{a}$ on R_{++}, for $0 \leq a \leq 1$
- powers of absolute value: $|x|^{p}$ on R, for $p \geq 1$
- negative logarithm: $-\log x$ on R_{++}
- $x \log x$ on R_{++}

Convex function: affine functions

Affine functions are both convex and concave

- affine function in R^{n} :

$$
f(x)=a^{T} x+b
$$

- affine function in $R^{m \times n}$:

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\langle A, X\rangle+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

Convex function: norms

All norms are convex

- norms in R^{n} :

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for all $p \geq 1$

- norms in $R^{m \times n}$:
- Frobenius norm: $\|X\|_{F}=\langle X, X\rangle^{1 / 2}$
- spectral norm: $\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2}$

Operator norms

Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on R^{m} and R^{n}, respectively. The operator norm of $X \in R^{m \times n}$, induced by $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, is defined to be

$$
\|X\|_{a, b}=\sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}
$$

- Spectral norm (ℓ_{2}-norm):

$$
\|X\|_{2}=\|X\|_{2,2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2}
$$

- Max-row-sum norm:

$$
\|X\|_{\infty}=\|X\|_{\infty, \infty}=\max _{i=1, \cdots, m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

- Max-column-sum norm:

$$
\|X\|_{1}=\|X\|_{1,1}=\max _{j=1, \cdots, n} \sum_{i=1}^{m}\left|X_{i j}\right|
$$

Dual norm

Let $\|\cdot\|$ be a norm on R^{n}. The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}
$$

- $z^{T} x \leq\|x\|\|z\|_{*}$ for all $x, z \in R^{n}$
- The dual of the ℓ_{p}-norm is the ℓ_{q}-norm, where $1 / p+1 / q=1$
- The dual of the ℓ_{2}-norm on $R^{m \times n}$ is the nuclear norm,

$$
\begin{aligned}
\|Z\|_{2 *} & =\sup \left\{\operatorname{tr}\left(Z^{T} X\right) \mid\|X\|_{2} \leq 1\right\} \\
& =\sigma_{1}(Z)+\cdots+\sigma_{r}(Z)=\operatorname{tr}\left(Z^{T} Z\right)^{1 / 2}
\end{aligned}
$$

where $r=\boldsymbol{r a n k} Z$.

Restriction of a convex function to a line

$f: R^{n} \rightarrow R$ is convex iff $g: R \rightarrow R$,

$$
g(t)=f(x+t v) \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex for any $x \in \operatorname{dom} f, v \in R^{n}$
So we can check the convexity of a function with multiple variables by checking the convexity of functions of one variable

Restriction of a convex function to a line: example

Show that $f: S_{++}^{n} \rightarrow R$ with $f(X)=\log \operatorname{det} X$ is concave.
Proof.
Define $g: R \rightarrow R, g(t)=f(X+t V)$ with dom $g=\{t \mid X+t V \succ 0\}$, for any $X \succ 0$ and $V \in S^{n}$.

$$
\begin{aligned}
g(t) & =\log \operatorname{det}(X+t V) \\
& =\log \operatorname{det}\left(X^{1 / 2}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right) X^{1 / 2}\right) \\
& =\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)+\log \operatorname{det} X
\end{aligned}
$$

where $\lambda_{1}, \cdots, \lambda_{n}$ are the eigenvalues of $X^{-1 / 2} V X^{-1 / 2}$. Hence g is concave for any $X \succ 0$ and $V \in S^{n}$, so is f.

Extended-value extensions

Definition

If $f: R^{n} \rightarrow R$ is convex, we define its extended-value extension $\tilde{f}: R^{n} \rightarrow R \cup\{\infty\}$ by

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f\end{cases}
$$

By this notation, the condition

$$
\tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y) \quad \forall \theta \in[0,1]
$$

is equivalent to the two conditions:

- $\operatorname{dom} f$ is convex
- $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \quad \forall \theta \in[0,1]$

First-order conditions

Theorem (first-order condition)
If $f: R^{n} \rightarrow R$ is differentiable, then f is convex if and only if dom f is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y \in \operatorname{dom} f
$$

First-order conditions

Theorem (first-order condition)
If $f: R^{n} \rightarrow R$ is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y \in \operatorname{dom} f
$$

- local information (gradient) leads to global information (convexity)
- f is strictly convex if and only if dom f is convex and

$$
f(y)>f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y \in \operatorname{dom} f, x \neq y
$$

First-order condition: proof

Proof.

- Suppose $f(x)$ is convex. Then

$$
\begin{aligned}
f(x+\theta(y-x))-f(x) & \leq \theta(f(y)-f(x)), \quad \forall \theta \in[0,1] \\
\lim _{\theta \rightarrow 0} \frac{f(x+\theta(y-x))-f(x)}{\theta} & \leq f(y)-f(x) \\
\Longrightarrow \nabla f(x)^{T}(y-x) & \leq f(y)-f(x)
\end{aligned}
$$

- Suppose the first-order condition holds. Let $z=\theta x+(1-\theta) y$. Then

$$
\begin{aligned}
& f(x) \geq f(z)+\nabla f(z)^{T}(x-z) \\
& f(y) \geq f(z)+\nabla f(z)^{T}(y-z) \\
& \Longrightarrow \theta f(x)+(1-\theta) f(y) \geq f(z)
\end{aligned}
$$

which is true for any $\theta \in[0,1]$, so f is convex.

Second-order conditions

Theorem (second-order condition)
If $f: R^{n} \rightarrow R$ is twice differentiable, then f is convex if and only if dom f is convex and its Hessian is positive semidefinite, i.e.,

$$
\nabla f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f
$$

Second-order conditions

Theorem (second-order condition)
If $f: R^{n} \rightarrow R$ is twice differentiable, then f is convex if and only if dom f is convex and its Hessian is positive semidefinite, i.e.,

$$
\nabla f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f
$$

- if $\nabla f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Second-order conditions: proof

Proof.

- Suppose f is convex. Because f is twice differentiable, we have

$$
f(x+\delta x)=f(x)+\nabla f(x)^{T} \delta x+\frac{1}{2} \delta x^{T} \nabla^{2} f(x) \delta x+R(x ; \delta x)\|\delta x\|^{2}
$$

where $R(x ; \delta x) \rightarrow 0$ as $\delta x \rightarrow 0$. Because f is convex, by the first-order condition, $f(x+\delta x) \geq f(x)+\nabla f(x)^{T} \delta x$. Hence

$$
\delta x^{T} \nabla^{2} f(x) \delta x+R(x ; \delta x)\|\delta x\|^{2} \geq 0
$$

for any δx. Let $\delta x=\epsilon d$. Taking $\epsilon \rightarrow 0$ yields $d^{T} \nabla^{2} f(x) d \geq 0$ for any d, thus $\nabla^{2} f(x) \succeq 0$.

- Suppose $\nabla f(x) \succeq 0 \forall x \in \operatorname{dom} f$. Then for any $x, y \in \operatorname{dom} f$ and some $z=\theta x+(1-\theta) y$ with $\theta \in[0,1]$,

$$
\begin{aligned}
f(y) & =f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \\
& \geq f(x)+\nabla f(x)^{T}(y-x)
\end{aligned}
$$

By the first-order condition, f is convex.

Some special cases

- quadratic function: $f(x)=\frac{1}{2} x^{T} P x+q^{T} x+r$, where $P \in S^{n}$

$$
\nabla f(x)=P x+q \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$

- least-squares: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b) \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex for any A

- quadratic-over-linear: $f(x, y)=x^{2} / y$

$$
\nabla^{2} f(x)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$

Some special cases: log-sum-exp

log-sum-exp: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex
$\max \left\{x_{1}, \cdots, x_{n}\right\} \leq f(x) \leq \max \left\{x_{1}, \cdots, x_{n}\right\}+\log n$, so f can be viewed as a differentiable approximation of the max function.
Proof.

$$
\begin{aligned}
\nabla^{2} f(x) & =\frac{1}{\left(1^{\top} z\right)^{2}}\left(\left(1^{T} z\right) \operatorname{diag}(z)-z z^{T}\right) \quad\left(z_{k}=\exp x_{k}\right) \\
\Longrightarrow v^{T} \nabla^{2} f(x) v & =\frac{1}{\left(1^{\top} z\right)^{2}}\left(\sum_{i=1}^{n} z_{i} \sum_{i=1}^{n} z_{i} v_{i}^{2}-\left(\sum_{i=1}^{n} z_{i} v_{i}\right)^{2}\right) \\
& =\frac{1}{\left(1^{\top} z\right)^{2}}\left(\|a\|_{2}^{2}\|b\|_{2}^{2}-\langle a, b\rangle^{2}\right) \geq 0
\end{aligned}
$$

where $a=\left(\sqrt{z_{1}}, \cdots, \sqrt{z_{n}}\right), b=\left(\sqrt{z_{1}} v_{1}, \cdots, \sqrt{z_{n}} v_{n}\right)$, for any v.

Some special cases: geometric mean

geometric mean: $f(x)=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ on R_{++}^{n} is concave
Proof.

$$
\begin{aligned}
\nabla^{2} f(x) & =-\frac{\prod_{i=1}^{n} x_{i}^{1 / n}}{n^{2}}\left(n \operatorname{diag}^{2}(q)-q q^{T}\right) \quad\left(q_{i}=1 / x_{i}\right) \\
\Longrightarrow v^{T} \nabla^{2} f(x) v & =-\frac{\prod_{i=1}^{n} x_{i}^{1 / n}}{n^{2}}\left(\sum_{i=1}^{n} 1 \sum_{i=1}^{n} v_{i}^{2} q_{i}^{2}-\left(\sum_{i=1}^{n} q_{i} v_{i}\right)^{2}\right) \\
& =-\frac{\prod_{i=1}^{n} x_{i}^{1 / n}}{n^{2}}\left(\|a\|_{2}^{2}\|b\|_{2}^{2}-\langle a, b\rangle^{2}\right) \leq 0
\end{aligned}
$$

where $a_{i}=1, b_{i}=q_{i} v_{i}$ for any v, so $\nabla^{2} f(x) \preceq 0$.

Epigraph and sublevel set

α-sublevel set of $f: R^{n} \rightarrow R$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false)
epigraph of $f: R^{n} \rightarrow R$:

$$
\text { epi } f=\left\{(x, t) \in R^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set

Jensen's inequality and extensions

basic inequality: if f is convex, then for any $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

extension: if f is convex, then

$$
f(\mathrm{E}[z]) \leq \mathrm{E}[f(z)]
$$

for any random variable z.

Using Jensen's inequality: deriving Holder's inequality

$$
\left.\begin{array}{rl}
\theta \log a+ & (1-\theta) \log b
\end{array}\right)=\log (\theta a+(1-\theta) b) \quad 1 \quad a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b \quad \forall a, b \geq 0, \theta \in[0,1]
$$

Applying this with

$$
a=\frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}} \quad a=\frac{\left|y_{i}\right|^{p}}{\sum_{j}\left|y_{j}\right|^{p}} \quad \theta=1 / p
$$

yields

$$
\left(\frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}\right)^{1 / p}\left(\frac{\left|y_{i}\right|^{p}}{\sum_{j}\left|y_{j}\right|^{p}}\right)^{1 / q} \leq \frac{\left|x_{i}\right|^{p}}{p \sum_{j}\left|x_{j}\right|^{p}}+\frac{\left|y_{i}\right|^{p}}{q \sum_{j}\left|y_{j}\right|^{p}}
$$

and summing over i yields Holder's inequality.

Operations preserving convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

positive weighted sum \& composition with affine function

- f is convex $\Longrightarrow \alpha f$ is convex for any $\alpha \geq 0$
- f_{1}, f_{2} are convex $\Longrightarrow f_{1}+f_{2}$ is convex (extends to infinite sums, integrals)
- f is convex $\Longrightarrow f(A x+b)$ is convex

Examples:

- log barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- $f(x)=\|A x+b\|$

Pointwise maximum

If f_{1}, \cdots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \cdots, f_{m}(x)\right\}$ is convex examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in R^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[n]}
$$

is convex ($x_{[i]}$ is i th largest component of x)

Pointwise supremum

If $f(x, y)$ is convex in x for each $y \in A$, then

$$
g(x)=\sup _{y \in A} f(x, y)
$$

is convex

In terms of epigraph:

$$
\text { epi } g=\bigcap_{y \in A} \text { epi } f(\cdot, y)
$$

Examples

- support function of a set: $S_{C}(x)=\sup _{y \in C} y^{T} x$
- $f(x)=\sup _{y \in C}\|x-y\|$
- $\lambda_{\max }(X)=\sup _{\|u\|_{2}=1} u^{T} X u$ where $X \in S^{n}$ is convex

Minimization

If $f(x, y)$ is convex in (x, y) and C is a convex nonempty set, then

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex
examples

- $f(x, y)=x^{\top} A x+2 x^{\top} B y+y^{\top} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0 \quad C \succ 0
$$

Because

$$
g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x
$$

is convex, the Schur complement $A-B C^{-1} B^{T} \succeq 0$

- distance to a set: $\operatorname{dist}(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Minimization: proof

Proof.

Suppose $x_{1}, x_{2} \in \operatorname{dom} g$. Given $\epsilon>0, \exists y_{1}, y_{2} \in C$ such that $f\left(x_{i}, y_{i}\right) \leq g\left(x_{i}\right)+\epsilon$. Hence for any $\theta \in[0,1]$,

$$
\begin{aligned}
g\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\inf _{y \in C} f\left(\theta x_{1}+(1-\theta) x_{2}, y\right) \\
& \leq f\left(\theta x_{1}+(1-\theta) x_{2}, \theta y_{1}+(1-\theta) y_{2}\right) \\
& \leq \theta f\left(x_{1}, y_{1}\right)+(1-\theta) f\left(x_{2}, y_{2}\right) \\
& \leq \theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)+\epsilon
\end{aligned}
$$

which holds for any $\epsilon>0$. Thus

$$
g\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
$$

Composition with scalar functions

Composition of $g: R^{n} \rightarrow R$ and $h: R \rightarrow R$:

$$
f(x)=h(g(x))
$$

Use:

$$
\nabla^{2} f(x)=h^{\prime}(g(x)) \nabla^{2} g(x)+h^{\prime \prime}(g(x)) \nabla g(x) \nabla g(x)^{T}
$$

f is convex if

- g convex, h convex, \tilde{h} nondecreasing
- example: $\exp g(x)$ is convex if g is convex
- g concave, h convex, \tilde{h} nonincreasing
- example: $1 / g(x)$ is concave if g is concave and positive

Composition with vector functions

Composition of $g: R^{n} \rightarrow R^{k}$ and $h: R^{k} \rightarrow R$:

$$
f(x)=h\left(g(x)=h\left(g_{1}(x), \cdots, g_{k}(x)\right)\right.
$$

when $n=1$:

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

f is convex if

- g_{i} convex, h convex, \tilde{h} nondecreasing in each argument
- example: $\sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} is convex
- g_{i} concave, h convex, \tilde{h} nonincreasing in each argument
- example: $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} is concave and positive

Perspective

The perspective of a function $f: R^{n} \rightarrow R$ is the function $g: R^{n+1} \rightarrow R$,

$$
g(x, t)=\operatorname{tf}\left(\frac{x}{t}\right) \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

f is convex $\Longrightarrow g$ is convex.
For $t>0$,

$$
(x, t, s) \in \text { epi } g \Longleftrightarrow f(x / t) \leq s / t \Longleftrightarrow(x / t, s / t) \in \text { epi } f
$$

Hence epi g is the inverse image of epi f under the perspective mapping
examples:

- $f(x)=x^{T} x \Longrightarrow g(x, t)=x^{T} x / t$ is convex for $t>0$
- $f(x)=-\log x \Longrightarrow g(x, t)=t \log t-t \log x$ is convex on R_{++}^{2}

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f} y^{T} x-f(x)
$$

Figure: Conjugate function

The conjugate function: examples

- negative logarithm $f(x)=-\log x$

$$
f^{*}(y)=\sup _{x>0} x y+\log x \quad= \begin{cases}-1-\log (-y) & y<0 \\ \infty & \text { otherwise }\end{cases}
$$

- strictly convex quadratic $f(x)=1 / 2 x^{T} Q x$ with $Q \in S_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x} y^{\top} x-1 / 2 x^{T} Q x \\
& =\frac{1}{2} y^{\top} Q^{-1} y
\end{aligned}
$$

The conjugate function: properties

Properties:

- f^{*} is convex
- f is convex and closed (i.e., epi f is closed) $\Longrightarrow f^{* *}=f$.
- Frechel's inequality: $f(x)+f^{*}(y) \geq x^{T} y$
- Example: with $f(x)=(1 / 2) x^{\top} Q x$ with $Q \in S_{++}^{n}$, we have

$$
x^{\top} y \leq(1 / 2) x^{\top} Q x+(1 / 2) y^{\top} Q^{-1} y
$$

Convexity with respect to generalized inequalities

$f: R^{n} \rightarrow R^{m}$ is K-convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y) \preceq_{K} \theta f(x)+(1-\theta) f(y) \quad \forall x, y \in \operatorname{dom} f, \theta \in[0,1]
$$

Convexity with respect to generalized inequalities

$f: R^{n} \rightarrow R^{m}$ is K-convex if dom f is convex and

$$
f(\theta x+(1-\theta) y) \preceq_{k} \theta f(x)+(1-\theta) f(y) \quad \forall x, y \in \operatorname{dom} f, \theta \in[0,1]
$$

example: $f: S^{m} \rightarrow S^{m}$ with $f(X)=X^{2}$ is S_{+}^{m}-convex
Proof.
for fixed $z \in R^{m}, z^{T} X^{2} z=\|X z\|_{2}^{2}$ is convex in X, i.e.,

$$
\begin{aligned}
& z^{T}(\theta X+(1-\theta) Y)^{2} z \leq \theta z^{T} X^{2} z+(1-\theta) z^{T} Y^{2} z \quad \forall X, Y \in S^{m} \\
\Longrightarrow & (\theta X+(1-\theta) Y)^{2} \preceq \theta X^{2}+(1-\theta) Y^{2}
\end{aligned}
$$

Quasiconvex functions

Definition
A function $f(x)$ is quasiconvex if $\forall x, y \in \operatorname{dom} f$,

$$
f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\} \quad \forall \theta \in[0,1]
$$

Theorem
$f(x)$ is quasiconvex if and only if every level set of f is convex.

Quasiconvex functions: level sets

Theorem
$f(x)$ is quasiconvex if and only if every level set of f is convex.

Proof.

1. Suppose f is quasiconvex. Suppose $x, y \in \operatorname{dom} f$ belongs to level set $S_{a}=\{x \mid f(x) \leq a\}$. Then

$$
f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\} \leq a
$$

Thus $\theta x+(1-\theta) y \in S_{a}$ for all $\theta \in[0,1]$, so S_{a} is convex.
2. Suppose every level set of f is convex. For any $x, y \in \operatorname{dom} f$, let $a=\max \{f(x), f(y)\}$. Clearly $x, y \in S_{a}$. Because S_{a} is convex, $\theta x+(1-\theta) y \in S_{a}$ for any $\theta \in[0,1]$. Thus f is quasiconvex.

