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What is F ?
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F Flight Software Framework
— Targeted for instruments, CubeSats and other smaller platforms
— Currently baselined for JPL Sphinx Leon3 Avionics SOC

« A component-based architecture as well as a software framework to
support it

— Uses the concept of software components
« Designed from the ground up to be compact and reusable

* Includes framework, code generators, build tools,
Command/Telemetry GUI, and unit test environment

« Designed to make it easier for developers to concentrate on mission-
specific logic rather than common implementation patterns.



Where is it being used?
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Development
— Developed under JPL technology exploration task (2013)
— Matured under a number of JPL projects (2014-2017)
— Using established JPL flight processes/analysis tools
* Flew on RapidScat (2014-2016)
— Radar experiment on ISS
— Very stable with no reported software bugsf
* Flying on Asteria (Cubesat)
— Asteroid detection technology demonstrator
* In development for:
— Mars Helicopter Technology Development
— Lunar Flashlight (Cubesat)
— NEAScout (Cubesat)
« Available on GitHub

— Reference example can be run on Linux, MacOS, Cygwin and most embedded ARM
processors (e.g. Raspberry Pi)

— https://github.jpl.nasa.gov/FPRIME/fprime-sw.git



F . A Reusable Component Architecture
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« Consists of components (behaviors) and ports (interconnections for
data)

« Components are not dependent on other components, so can be
easily reused.

« Components to fulfill different requirements (simulation vs. actual) can
be substituted, even at run time.

« Components can have generic roles (commanding, telemetry, storage)
which are not dependent on specific applications.
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F . A Framework for quick development
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 F provides a C++ framework and Component
code generator that encapsulates:
— Thread management — O
— Inter-Process communication (IPC) \\

— Commanding
— Telemetry — -
— Parameters

« Developer specifies common
patterns in simple XML.

— Code generator generates boiler-
plate code.

— Developer concentrates on domain-
specific code.

— Framework invokes user code
automatically

Port 1 Port 2



F : A Framework for reuse
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« QOver time, a library of reusable components are being built:

— For common facilities:
» Rate group management
« Command dispatching/sequencing
« Telemetry storage
« Ground interfaces
— For specific hardware platforms:
« Device drivers
« Radios
* GNC devices
« Operating system adaptations

« A reusable ground system can be used
— Framework has uniform data representations

— Can be adapted to existing ground systems
* Runs on JPL multi-mission ground system

— Python-based lightweight ground system is provided with code



¥ F: A Portable Framework
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« Code base is in portable, embedded C++
« Has abstraction layer for OS facilities such as:
— Threads
— Synchronization
— Files
— Time
« Data products are stored and transmitted in a portable representation
— Allows interaction with ground system no matter the processor architecture
« Has been run on the following processor architectures:
— X86, PPC, ARM, MSP430, Leon3
« Has been run on the following OSes:
— VxWorks, RTEMS, Linux, MacOS, Cygwin, Raspberry Pi Raspbian
* Very compact
— Framework classes ~1K compiled



F components are decoupled from
each other, so unit testing is easier

F code generator generates
counterpart test component that can
be connected.

Test component “knows” the
Interfaces, commands, and telemetry

Tester can invoke generated C++
functions to exercise component
Interfaces, commands.

Telemetry automatically decoded and
stored for checking in test
component.

Port 1 * Port 2

Test Component



F . A Flight-ready Framework
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* 1In 2015-2016, C&DH components were taken through flight software
processes

— Design, coding and testing reviews with LARS tools and code coverage
» Design and code reviewed by peers
» Code scrubbed by static analyzers (e.g. Coverity)
* 100% coverage except certain assertions (default switch, etc)
» Delivered with repeatable automated unit tests

— Includes:
* Rate Groups
+ Command handling
+ Command Sequencer
+ Telemetry Processing
» Parameter storage
+ Event handling
* File Uplink/Downlink
* Telemetry Database
* Health Monitor
* File Manager
» Socket “Ground” interface



Both Ends of the Scale
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TI MSP430 Microcontroller
« 24K RAM
64K Flash

Rack Mount PC

* Quad-core Xeon
« 8GB RAM

« Hard disk
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