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Friends are the family we choose for ourselves. This book is

dedicated to my friends Rômulo, Léo, Moto and Chris, who

kept pushing me to “finish the damn book already”.



I know that two & two make four—and should be

glad to prove it too if I could—though I must say if

by any sort of process I could convert 2 & 2 into five

it would give me much greater pleasure.

—LORD BYRON

1813 letter to his future wife Annabella.

Their daughter Ada Lovelace was the first programmer.
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Everybody in this country should learn
to program a computer, because it
teaches you how to think.

—STEVE JOBS

As computers changed the world with their unprecedented power, a

new science flourished: computer science. It showed how computers

could be used to solve problems. It allowed us to push machines to

their full potential. And we achieved crazy, amazing things.

Computer science is everywhere, but it’s still taught as boring

theory. Many coders never even study it! However, computer sci-

ence is crucial to effective programming. Some friends of mine sim-

ply can’t find a good coder to hire. Computing power is abundant,

but people who can use it are scarce.

This is my humble attempt to help the world, by pushing you

to use computers efficiently. This book presents computer science

concepts in their plain distilled forms. I will keep academic formal-

ities to a minimum. Hopefully, computer science will stick to your

mind and improve your code.

Figure ǔ “Computer Problems”, courtesy of http://xkcd.com.

ix

http://xkcd.com
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Is this book for me?

If you want to smash problems with efficient solutions, this book

is for you. Little programming experience is required. If you al-

ready wrote a few lines of code and recognize basic programming

statements like for and while, you’ll be OK. If not, online pro-

gramming courses1 cover more than what’s required. You can do

one in a week, for free. For those who studied computer science,

this book is an excellent recap for consolidating your knowledge.

But isn’t computer science just for academics?

This book is for everyone. It’s about computational thinking. You’ll

learn to change problems into computable systems. You’ll use com-

putational thinking on everyday problems. Prefetching and caching

will streamline your packing. Parallelism will speed up your cook-

ing. Plus, your code will be awesome.

May the force be with you,

Wlad

1http://code.energy/coding-courses.

x

http://code.energy/coding-courses
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Basics

Computer science is not about machines, in
the same way that astronomy is not about
telescopes. There is an essential unity of
mathematics and computer science.

—EDSGER DIJKSTRA

C
OMPUTERS NEED US to break down problems into chunks

they can crunch. To do this, we need some math. Don’t

panic, it’s not rocket science—writing good code rarely

calls for complicated equations. This chapter is just a toolbox for

problem solving. You’ll learn to:

Model ideas into flowcharts and pseudocode,

  Know right from wrong with logic,

Count stuff,

Calculate probabilities safely.

With this, you will have what it takes to translate your ideas into

computable solutions.

ǔ.ǔ Ideas

When you’re on a complex task, keep your brain at the top of

its game: dump all important stuff on paper. Our brains’ work-

ing memory easily overflows with facts and ideas. Writing every-

thing down is part of many organizing methods. There are several

ways to do it. We’ll first see how flowcharts are used to represent

processes. We’ll then learn how programmable processes can be

drafted in pseudocode. We’ll also try and model a simple problem

with math.

1



Ǖ | CͧͥͨͭͬEͪ ͫCIEͦCE DISTILLED

Flowcharts

When Wikipedians discussed their collaboration process, they cre-

ated a flowchart that was updated as the debate progressed. Having

a picture of what was being proposed helped the discussion:

Previous page state

Edit the page

Was your edition 

modified by others?

Do you agree with

the other person?

Discuss the

issue with the 

other person

New page state

No

No

Yes

Yes

NoDo you accept that 

modification?

Yes

Figure ǔ.ǔ Wiki edition process (adapted from http://wikipedia.org).

Like the editing process above, computer code is essentially a pro-

cess. Programmers often use flowcharts for writing down comput-

ing processes. When doing so, you should follow these guidelines1

for others to understand your flowcharts:

• Write states and instruction steps inside rectangles.

• Write decision steps, where the process may go different

ways, inside diamonds.

• Never mix an instruction step with a decision step.

• Connect sequential steps with arrows.

• Mark the start and end of the process.

1There’s even an ISO standard specifying precisely how software systems di-
agrams should be drawn, called UML: http://code.energy/UML.

http://wikipedia.org
http://code.energy/UML
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Let’s see how this works for finding the biggest of three numbers:

Start

Read numbers A, B, C

A > B?

A > C?B > C?

Print B Print C Print A

Stop

Yes

YesNoYes

No

No

Figure ǔ.Ǖ Finding the maximum value between three variables.

Pseudocode

Just as flowcharts, pseudocode expresses computational processes.

Pseudocode is human-friendly code that cannot be understood by

a machine. The following example is the same as fig. 1.2. Take a

minute and test it out with some sample values of A, B, and C:2

function maximum(A, B, C)

if A > B

if A > C

max ← A

else

max ← C

else

if B > C

max ← B

else

max ← C

print max

2Here, ← is the assignment operator: x ← ͠ reads x is set to 1.
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Notice how this example completely disregards the syntactic rules

of programming languages? When you write pseudocode, you can

even throw in some spoken language! Just as you use flowcharts

to compose general mind maps, let your creativity flow free when

writing pseudocode (fig. 1.3 ).

Figure ǔ.ǖ “Pseudocode in Real Life”, courtesy of http://ctpǕǓǓ.com.

Mathematical Models

A model is a set of concepts that represents a problem and its char-

acteristics. It allows us to better reason and operate with the prob-

lem. Creating models is so important it’s taught in school. High

school math is (or should be) about modeling problems into num-

bers and equations, and applying tools on those to reach a solution.

Mathematically described models have a great advantage: they

can be adapted for computers using well established math tech-

niques. If your model has graphs, use graph theory. If it has equa-

tions, use algebra. Stand on the shoulders of giants who created

these tools. It will do the trick. Let’s see that in action in a typical

high school problem:

LIVESTOCK FENCE Your farm has two types of livestock.

You have 100 units of barbed wire to make a rectangular

fence for the animals, with a straight division for separating

them. How do you frame the fence in order to maximize

the pasture’s area?

Starting with what’s to be determined, w and l are the pasture’s

dimensions; w × l, the area. Maximizing it means using all the

barbed wire, so we relate w and l with 100:

http://ctp200.com
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A = w × l,

100 = 2w + 3l.

l

w

Pick w and l that maximize the area A.

Plugging l from the second equation (l = 100−2w
3 ) into the first,

A =
100

3
w −

2

3
w2.

That’s a quadratic equation! Its maximum is easily found with

the high school quadratic formula. Set A = 0, solve the equa-

tion, and the maximum is the midway point between the two roots.

Quadratic equations are important for you as a pressure cooking

pot is valuable to cooks. They save time. Quadratic equations help

us solve many problems faster. Remember, your duty is to solve

problems. A cook knows his tools, you should know yours. You

need mathematical modeling. And you will need logic.

ǔ.Ǖ Logic

Coders work with logic so much it messes their minds. Still, many

coders don’t really learn logic and use it unknowingly. By learning

formal logic, we can deliberately use it to solve problems.

Figure ǔ.Ǘ “Programmer’s Logic”, courtesy of http://programmers.life.

http://programmers.life
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We will start playing around with logical statements using special

operators and special algebra. We’ll then learn to solve problems

with truth tables and see how computers rely on logic.

Operators

In common math, variables and operators (+, ×, −,…) are used

to model numerical problems. In mathematical logic, variables and

operators represent the validity of things. They don’t express num-

bers, but True/False values. For instance, the validity of the ex-

pression “if the pool is warm, I’ll swim” is based on the validity of

two things, which can be mapped to logical variables A and B:

A : The pool is warm.

B : I swim.

They’re either True or False.3 A = True means a warm pool;

B = False means no swimming. B can’t be half-true, because

I can’t half swim. Dependency between variables is expressed

with →, the conditional operator. A → B is the idea that

A = True implies B = True:

A → B : If the pool is warm, then I’ll swim.

With more operators, different ideas can be expressed. To negate

ideas, we use !, the negation operator. !A is the opposite of A:

!A : The pool is cold.

!B : I don’t swim.

TӈӅ CӏӎӔӒӁӐӏӓӉӔӉӖӅ Given A → B and I didn’t swim, what can be

said about the pool? A warm pool forces the swimming, so without

swimming, it’s impossible for the pool to be warm. Every condi-

tional expression has a contrapositive equivalent:

for any two variables A and B,

A → B is the same as !B → !A.

3Values can be in between in fuzzy logic, but it won’t be covered in this book.
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Another example: if you can’t write good code, you haven’t read this

book. Its contrapositive is if you read this book, you can write good

code. Both sentences say the same in different ways.4

TӈӅ BӉӃӏӎӄӉӔӉӏӎӁӌ Be careful, saying “if the pool is warm, I’ll swim”

doesn’t mean I’ll only swim in warm water. The statement promises

nothing about cold pools. In other words, A → B doesn’t mean

B → A. To express both conditionals, use the biconditional:

A ↔ B : I’ll swim if and only if the pool is warm.

Here, the pool being warm is equivalent to me swimming: knowing

about the pool means knowing if I’ll swim and vice-versa. Again,

beware of the inverse error: never presume B → A follows

from A → B.

Aӎӄ,OӒ, EӘӃӌӕӓӉӖӅOӒ These logical operators are the most famous,

as they’re often explicitly coded. AND expresses all ideas are True;

OR expresses any idea is True; XOR expresses ideas are of opposing

truths. Imagine a party serving vodka and wine:

A : You drank wine.

B : You drank vodka.

A OR B : You drank.

A AND B : You drank mixing drinks.

A XOR B : You drank without mixing.

Make sure you understand how the operators we’ve seen so far

work. The following table recaps all possible combinations for two

variables. Notice how A → B is equivalent to !A OR B, and

A XOR B is equivalent to !(A ↔ B).

4And by the way, they’re both actually true.
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Table ǔ.ǔ Logical operations for Ǘ possible values ofA andB.

A B !A A → B A ↔ B A AND B A OR B A XOR B

Boolean Algebra

As elementary algebra simplifies numerical expressions, boolean

algebra5 simplifies logical expressions.

AӓӓӏӃӉӁӔӉӖӉӔә Parentheses are irrelevant for sequences of AND or

OR operations. As sequences of sums or multiplications in elemen-

tary algebra, they can be calculated in any order.

A AND (B AND C) = (A AND B) AND C.

A OR (B OR C) = (A OR B) OR C.

DӉӓӔӒӉӂӕӔӉӖӉӔә In elementary algebra we factor multiplicative

terms from sums: a × (b + c) = (a × b) + (a × c). Likewise

in logic, ANDing after an OR is equivalent to ORing results of ANDs,

and vice versa:

A AND (B OR C) = (A AND B) OR (A AND C).

A OR (B AND C) = (A OR B) AND (A OR C).

DӅMӏӒӇӁӎ’ӓ LӁӗ6 It can’t be summer and winter at once, so it’s ei-

ther not summer or not winter. And it’s not summer and not winter

if and only if it’s not the case it’s either summer or winter. Following

this reasoning, ANDs can be transformed into ORs and vice versa:

5After George Boole. His 1854 book joined logic and math, starting all this.
6De Morgan was friends with Boole. He tutored the young Ada Lovelace, who

became the first programmer a century before the first computer was constructed.
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!(A AND B) = !A OR !B,

!A AND !B = !(A OR B).

These rules transform logical models, reveal properties, and sim-

plify expressions. Let’s solve a problem:

HOT SERVER A server crashes if it’s overheating while

the air conditioning is off. It also crashes if it’s overheating

and its chassis cooler fails. In which conditions does the

server work?

Modeling it in logical variables, the conditions for the server to

crash can be stated in a single expression:

A : Server overheats.

B : Air conditioning off.

C : Chassis cooler fails.

D : Server crashes.

(A AND B) OR (A AND C) → D.

Using distributivity, we factorize the expression:

A AND (B OR C) → D.

The server works when (!D). The contrapositive reads:

!D → !(A AND (B OR C)).

We use DeMorgan’s Law to remove parentheses:

!D → !A OR !(B OR C).

Applying DeMorgan’s Law again,

!D → !A OR (!B AND !C).

This expression tells us that whenever the server works, either !A

(it’s not overheating), or !B AND !C (both air conditioning and

chassis cooler are working).
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Truth Tables

Another way to analyze logical models is checking what happens

in all possible configurations of its variables. A truth table has a

column for each variable. Rows represent possible combinations

of variable states.

One variable requires two rows: in one the variable is set True,

in the other False. To add a variable, we duplicate the rows. We

set the new variable True in the original rows, and False in the

duplicated rows (fig. 1.5). The truth table size doubles for each

added variable, so it can only be constructed for a few variables.7

V1

V2 V1

V2 V1V3

. . .

V2 V1V3V4

Figure ǔ.ǘ Tables listing the configurations of ǔ–ǘ logical variables.

Let’s see how a truth table can be used to analyze a problem.

FRAGILE SYSTEM We have to create a database system

with the following requirements:

I : If the database is locked, we can save data.

II : A database lock on a full write queue cannot happen.

III : Either the write queue is full, or the cache is loaded.

IV : If the cache is loaded, the database cannot be locked.

Is this possible? Under which conditions will it work?

7A truth table for 30 variables would have more than a billion rows.
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First we transform each requirement into a logical expression. This

database system can be modeled using four variables:

A : Database is locked.

B : Able to save data.

C : Write queue is full.

D : Cache is loaded.

∣
∣
∣
∣
∣
∣
∣
∣

I : A → B.

II : !(A AND C).
III : C OR D.

IV : D → !A.

We then create a truth table with all possible configurations. Extra

columns are added to check the requirements.

Table ǔ.Ǖ Truth table for exploring the validity of four expressions.

State # A B C D I II III IV All four

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

All requirements are met in states 2–4 and 6–8. In these states,

A = False, meaning the database can’t ever be locked. Notice

the cache will not be loaded only in states 3 and 7.
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To test what you’ve learned, solve the Zebra Puzzle.8 It’s a

famous logic problem wrongly attributed to Einstein. They say only

2% of people can solve it, but I doubt that. Using a big truth table

and correctly simplifying and combining logic statements, I’m sure

you’ll crack it.

Whenever you’re dealing with things that assume one of two

possibilities, remember they can be modeled as logic variables. This

way, it’s easy to derive expressions, simplify them, and draw conclu-

sions. Let’s now see the most impressive application of logic: the

design of electronic computers.

Logic in Computing

Groups of logical variables can represent numbers in binary form.9

Logic operations on binary digits can be combined to perform gen-

eral calculations. Logic gates perform logic operations on electric

current. They are used in electrical circuits that can perform calcu-

lations at very high speeds.

A logic gate receives values through input wires, performs its

operation, and places the result on its output wire. There are AND

gates, OR gates, XOR gates, and more. True and False are repre-

sented by electric currents with high or low voltage. Using gates,

complex logical expressions can be computed near instantly. For

example, this electrical circuit sums two numbers:

XOR

AND

XOR

AND

XOR

AND

A0

A1

B0

B1

S0

S1

S2

XOR

Figure ǔ.Ǚ A circuit to sum Ǖ-bit numbers given by pairs of logical

variables (A1A0 andB1B0) into a ǖ-bit number (S2S1S0).

8http://code.energy/zebra-puzzle.
9True = 1, False = 0. If you have no idea why ͟͠͠ in binary represents

the number 5, check Appendix I for an explanation of number systems.

http://code.energy/zebra-puzzle
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Let’s see how this circuit works. Take a minute to follow the oper-

ations performed by the circuit to realize how the magic happens:

XOR

AND

XOR

AND

XOR1

1

0

1

1

0

1

AND

XOR

Figure ǔ.ǚ Calculating 2 + 3 = 5 (in binary, ͟͠ + ͠͠ = ͟͠͠).

To take advantage of this fast form of computing, we transform

numerical problems to their binary/logical form. Truth tables help

model and test circuits. Boolean algebra simplifies expressions and

thus simplifies circuits.

At first, gates were made with bulky, inefficient and expensive

electrical valves. Once valves were replaced with transistors, logic

gates could be produced en masse. And we kept discovering ways

to make transistors smaller and smaller.10 The working principles

of the modern CPU are still based on boolean algebra. A modern

CPU is just a circuit of millions of microscopic wires and logic gates

that manipulate electric currents of information.

ǔ.ǖ Counting

It’s important to count things correctly—you’ll have to do it many

times when working with computational problems.11 The math in

this section will be more complex, but don’t be scared. Some people

think they can’t be good coders because they think they’re bad at

math. Well, I failed high school math , yet here I am . The

math that makes a good coder is not what’s required in typical math

exams from schools.

10In 2016, researchers created working transistors on a 1 nm scale. For refer-
ence, a gold atom is 0.15 nm wide.

11Counting and Logic belong to an important field to computer science called
Discrete Mathematics.
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Outside school, formulas and step-by-step procedures aren’t

memorized. They are looked up on the Internet when needed. Cal-

culations mustn’t be in pen and paper. What a good coder requires

is intuition. Learning about counting problems will strengthen that

intuition. Let’s now grind through a bunch of tools step by step:

multiplications, permutations, combinations and sums.

Multiplying

If an event happens in n different ways, and another event happens

in m different ways, the number of different ways both events can

happen is n × m. For example:

CRACKING THE CODE A PIN code is composed of two

digits and a letter. It takes one second to try a PIN. In the

worst case, how much time do we need to crack a PIN?

Two digits can be chosen in 100 ways (00-99) and a letter in 26

ways (A-Z). Therefore, there are 100× 26 = 2, 600 possible PINs.

In the worst case, we have to try every single PIN until we find the

right one. After 2,600 seconds (43 minutes), we’ll have cracked it.

TEAM BUILDING There are 23 candidates who want

to join your team. For each candidate, you toss a coin and

only hire if it shows heads. How many team configurations

are possible?

Before hiring, the only possible team configuration is you alone.

Each coin toss then doubles the number of possible configurations.

This has to be done 23 times, so we compute 2 to the power 23:

2× 2× · · · × 2
︸ ︷︷ ︸

23 times

= 223 = 8, 388, 608 team configurations.

Note that one of these configurations is still you alone.
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Permutations

If we have n items, we can order them in n factorial (n!) different

ways. The factorial is explosive, it gets to enormous numbers for

small values of n. If you are not familiar,

n! = n× (n− 1)× (n− 2)× · · · × 2× 1.

It’s easy to see n! is the number of ways n items can be ordered. In

how many ways can you choose a first item among n? After the first

item was chosen, in how many ways can you choose a second one?

Afterwards, how many options are left for a third? Think about it,

then we’ll move on to more examples.12

TRAVELING SALESMAN Your truck company delivers to

15 cities. You want to know in what order to serve these

cities to minimize gas consumption. If it takes a microsec-

ond to calculate the length of one route, how long does it

take to compute the length of all possible routes?

Each permutation of the 15 cities is a different route. The factorial

is the number of distinct permutations, so there are 15! = 15 ×
14× · · ·× 1 ≈ 1.3 trillion routes. That in microseconds is roughly

equivalent to 15 days. If instead you had 20 cities, it would take

77 thousand years.

THE PRECIOUS TUNE A musician is studying a scale

with 13 different notes. She wants you to render all possi-

ble melodies that use six notes only. Each note should play

once per melody, and each six-note melody should play for

one second. How much audio runtime is she asking for?

We want to count permutations of six out of the 13 notes. To ignore

permutations of unused notes, we must stop developing the facto-

rial after the sixth factor. Formally, n!/(n−m)! is the number of

possible permutations of m out of n possible items. In our case:

12By convention, 0! = 1. We say there’s one way to order zero items.
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13!

(13− 6)!
=

13× 12× 11× 10× 9× 8× 7!

7!

= 13× 12× 11× 10× 9× 8
︸ ︷︷ ︸

6 factors

= 1, 235, 520 melodies.

That’s over 1.2 million one-second melodies—it would take 343

hours to listen to everything. Better convince the musician to find

the perfect melody some other way.

Permutations with Identical Items

The factorial n! overcounts the number of ways to order n items

if some are identical. Identical items swapping their positions

shouldn’t count as a different permutation.

In a sequence of n items of which r are identical, there are r!
ways to reorder identical items. Thus, n! counts each distinct per-

mutation r! times. To get the number of distinct permutations, we

need to divide n! by this overcount factor. For instance, the number

of distinct permutations of the letters “CODE ENERGY” is 10!/3!.

PLAYING WITH DNA A biologist is studying a DNA seg-

ment related to a genetic disease. The segment is made

of 23 base pairs, where 9 must be A-T, 14 must be G-C.

She wants to run a simulation task on every possible DNA

segment having these numbers of base pairs. How many

simulation tasks is she looking at?

First we calculate all possible permutations of the 23 base pairs.

Then we divide the result to account for the 9 repeated A-T and

the 14 repeated G-C base pairs:

23!/(9!× 14!) = 817, 190 base pair permutations.

But the problem isn’t over. Considering orientation of base pairs:
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A

T C

G

A

T

isn’t the same as
A

T

C

G A

T

For each sequence of 23 base pairs, there are 223 distinct orienta-

tion configurations. Therefore, the total is:

817, 190× 223 ≈ 7 trillion sequences.

And that’s for a tiny 23 base pair sequence with a known distribu-

tion. The smallest replicable DNA known so far are from the minus-

cule Porcine circovirus, and it has 1,800 base pairs! DNA code and

life are truly amazing from a technological point of view. It’s crazy:

human DNA has about 3 billion base pairs, replicated in each of the

3 trillion cells of the human body.

Combinations

Picture a deck of 13 cards containing all  spades. How many ways

can you deal six cards to your opponent? We’ve seen 13!/(13 −
6)! is the number of permutations of six out of 13 possible items.

Since the order of the six cards doesn’t matter, we must divide this

by 6! to obtain:

13!

6!(13− 6)!
= 1, 716 combinations.

The binomial
(
n

m

)
is the number of ways to select m items out of

a set of n items, regardless of order:

(
n

m

)

=
n!

m!(n−m)!
.

The binomial is read “n choose m”.

CHESS QUEENS You have an empty chessboard and 8

queens, which can be placed anywhere on the board. In

how many different ways can the queens be placed?
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The chessboard has 64 squares in an 8×8 grid. The number of ways

to choose 8 squares out of the available 64 is
(
64
8

)
≈ 4.4 billion.13

Sums

Calculating sums of sequences occurs often when counting. Sequen-

tial sums are expressed using the capital-sigma (Σ) notation. It

indicates how an expression will be summed for each value of i:

finish i∑

start i

expression of i.

For instance, summing the first five odd numbers is written:

4∑

i=0

(2i+ 1) = 1 + 3 + 5 + 7 + 9.

Note i was replaced by each number between 0 and 4 to obtain 1,

3, 5, 7 and 9. Summing the first n natural numbers is thus:

n∑

i=1

i = 1 + 2 + · · ·+ (n− 1) + n.

When the prodigious mathematician Gauss was ten years old, he

got tired of summing natural numbers one by one and found this

neat trick:

n∑

i=1

i =
n(n+ 1)

2
.

Can you guess how Gauss discovered this? The trick is explained

in Appendix II. Let’s see how we can use it to solve a problem:

FLYING CHEAP  You need to fly to New York City any-

time in the next 30 days. Air ticket prices change unpre-

dictably according to the departure and return dates. How

many pairs of days must be checked to find the cheapest

tickets for flying to NYC and back within the next 30 days?

13Pro tip: Google ͥͣ choose ͧ for the result.
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Any pair of days between today (day 1) and the last day (day 30)

is valid, as long as the return is the same day of later than the de-

parture. Hence, 30 pairs begin with day 1, 29 pairs begin with

day 2, 28 with day 3, and so on. There’s only one pair that be-

gins on day 30. So 30+29+…+2+1 is the total number of pairs

that needs to be considered. We can write this
∑30

i=1 i and use

our handy formula:

30∑

i=1

i =
30(30 + 1)

2
= 465 pairs.

Also, we can solve this using combinations. From the 30 days avail-

able, pick two. The order doesn’t matter: the earlier day is the

departure, the later day is the return. This gives
(
30
2

)
= 435. But

wait! We must count the cases where arrival and departure are the

same date. There are 30 such cases, thus
(
30
2

)
+ 30 = 465.

ǔ.Ǘ Probability

The principles of randomness will help you understand gambling,

forecast the weather, or design a backup system with low risk of fail-

ure. The principles are simple, yet misunderstood by most people.

Figure ǔ.Ǜ “Random number”, courtesy of http://xkcd.com.

http://xkcd.com
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Let’s start using our counting skills to compute odds. Then we’ll

learn how different event types are used to solve problems. Finally,

we’ll see why gamblers lose everything.

Counting Outcomes

A die roll has six possible outcomes: , , , , and . The

chances of getting are thus 1/6. How about getting an odd num-

ber? It can happen in three ways ( , or ), so the chances are

3/6 = 1/2. Formally, the probability of an event to occur is:

P (event) =
# of ways event can happen

# of possible outcomes
.

This works because each possible outcome is equally likely to hap-

pen: the die is well balanced and the thrower isn’t cheating.

TEAM BUILDING, AGAIN There are 23 candidates who

want to join your team. For each candidate, you toss a coin

and only hire if it shows heads. What are the chances of

hiring nobody?

We’ve seen there are 223 = 8, 388, 608 possible team configu-

rations. The only way to hire nobody is by tossing 23 consecu-

tive tails. The probability of that happening is thus P (nobody) =
1/8, 388, 608. To put things into perspective, the probability that a

given commercial airline flight crashes is about one in five million.

Independent Events

If you toss a coin and roll a die, the chance of getting heads and

is 1/2 × 1/6 = 1/12 ≈ 0.08, or 8%. When the outcome

of an event does not influence the outcome of another event, they

are independent. The probability that two independent events will

happen is the product of their individual probabilities.

BACKING UP You need to store data for a year. One

disk has a probability of failing of one in a billion. Another

disk costs 20% the price but has a probability of failing of

one in two thousand. What should you buy?
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If you use three cheap disks, you only lose the data if all three

disks fail. The probability of that happening is (1/2, 000)3 =
1/8, 000, 000, 000. This redundancy achieves a lower risk of data

loss than the expensive disk, while costing only 60% the price.

Mutually Exclusive Events

A die roll cannot simultaneously yield and an odd number. The

probability to get either or an odd number is thus 1/6 + 1/2 =
2/3. When two events cannot happen simultaneously, they are mu-

tually exclusive. If you need any of the mutually exclusive events

to happen, just sum their individual probabilities.

SUBSCRIPTION CHOICE  Your website offers three plans:

free, basic, or pro. You know a random new customer has

a probability of 70% of choosing the free plan, 20% for the

basic, and 10% for the pro. What are the chances a new

user will sign up for a paying plan?

The events are mutually exclusive: a user can’t choose both the

basic and pro plans at the same time. The probability the user will

pay is 0.2 + 0.1 = 0.3.

Complementary Events

A die roll cannot simultaneously yield a multiple of three ( , )

and a number not divisible by three, but it must yield one of them.

The probability to get a multiple of three is 2/6 = 1/3, so the

probability to get a number not divisible by three is 1−1/3 = 2/3.

When two mutually exclusive events cover all possible outcomes,

they are complementary. The sum of individual probabilities of

complementary events is thus 100%.

TOWER DEFENSE GAME Your castle is defended by five

towers. Each tower has a 20% probability of disabling an

invader before he reaches the gate. What are the chances

of stopping him?
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There’s 0.2 + 0.2 + 0.2 + 0.2 + 0.2 = 1, or a 100% chance of

hitting the enemy, right? Wrong! Never sum the probabilities of

independent events, that’s a common mistake. Use complementary

events twice:

• The 20% chance of hitting is complementary to the

80% chance of missing. The probability that all towers

miss is: 0.85 ≈ 0.33.

• The event “all towers miss” is complementary to “at

least one tower hits”. The probability of stopping the

enemy is: 1− 0.33 = 0.67.

The Gambler’s Fallacy

If you flip a normal coin ten times, and you get ten heads, then

on the 11th flip, are you more likely to get a tail? Or, by playing

the lottery with the numbers 1 to 6, are you less likely to win than

playing with more evenly spaced numbers?

Don’t be a victim of the gambler’s fallacy. Past events never

affect the outcome of an independent event. Never. Ever. In a

truly random lottery drawing, the chances of any specific numbers

being chosen is the same as any other. There’s no “hidden law”

that forces numbers that weren’t frequently chosen in the past to

be chosen more often in the future.

Advanced Probabilities

There’s far more to probability than we can cover here. Always

remember to look for more tools when tackling complex problems.

For example:

TEAM BUILDING, AGAIN AND AGAIN There are 23 can-

didates who want to join your team. For each candidate,

you toss a coin and only hire if it shows heads. What are

the chances of hiring seven people or less?

Yes, this is hard. Googling around will eventually lead you to the

“binomial distribution”. You can visualize this on Wolfram Alpha14

by typing: B(͢͡,͠/͡) <= ͦ.
14http://wolframalpha.com.

http://wolframalpha.com
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Conclusion

In this chapter, we’ve seen things that are intimately related to prob-

lem solving, but do not involve any actual coding. Section 1.1

explains why and how we should write things down. We create

models for our problems, and use conceptual tools on the models

we create. Section 1.2 provides a toolbox for handling logic, with

boolean algebra and truth tables.

Section 1.3 shows the importance of counting possibilities and

configurations of various problems. A quick back-of-the-envelope

calculation can show you if a computation will be straightforward

or fruitless. Novice programmers often lose time analyzing way

too many scenarios. Finally, section 1.4 explains the basic rules of

counting odds. Probability is very useful when developing solutions

that must interact with our wonderful but uncertain world.

With this, we’ve outlined many important aspects of what aca-

demics call Discrete Mathematics. Many more fun theorems can be

picked up from the references below or navigating Wikipedia. For

instance, you can use the “Pigeonhole Principle” to prove at least

two people in New York City have exactly the same number of hairs!

Some of what we learned here will be especially relevant in

the next chapter, where we’ll discover perhaps the most important

aspect of computer science.

Reference

• Discrete Mathematics and its Applications, 7th Edition

– Get it at https://code.energy/rosen

• Prof. Jeannette Wing’s slides on computational thinking

– Get it at https://code.energy/wing

https://code.energy/rosen
https://code.energy/wing
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Complexity

In almost every computation, a variety of arrangements
for the processes is possible. It is essential to choose
that arrangement which shall tend to minimize the
time necessary for the calculation.

—ADA LOVELACE

H
OW MUCH TIME does it take to sort 26 shuffled cards? If

instead you had 52 cards, would it take twice as long?

How much longer would it take for a thousand decks of

cards? The answer is intrinsic to the method used to sort the cards.

A method is a list of unambiguous instructions for achieving a

goal. A method that always requires a finite series of operations

is called an algorithm. For instance, a card-sorting algorithm is a

method that will always specify some operations to sort a deck of

26 cards per suit and per rank.

Less operations need less computing power. We like fast so-

lutions, so we monitor the number of operations in our algorithms.

Many algorithms require a fast-growing number of operations when

the input grows in size. For example, our card-sorting algorithm

could take few operations to sort 26 cards, but four times as much

operations to sort 52 cards!

To avoid bad surprises when our problem size grows, we find

the algorithm’s time complexity. In this chapter, you’ll learn to:

Count and interpret time complexities,

Express their growth with fancy Big-O’s,

Run away from exponential algorithms,

Make sure you have enough computer memory.

But first, how do we define time complexity?

25
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Time complexity is written T(n). It gives the number of oper-

ations the algorithm performs when processing an input of size n.

We also refer to an algorithm’sT(n) as its running cost. If our card-

sorting algorithm follows T(n) = n2, we can predict how much

longer it takes to sort a deck once we double its size: T(2n)
T(n) = 4.

Hope for the best, prepare for the worst

Isn’t it faster to sort a pile of cards that’s almost sorted already?

Input size isn’t the only characteristic that impacts the number of

operations required by an algorithm. When an algorithm can have

different values of T(n) for the same value of n, we resort to cases:

• BEST CASE: when the input requires the minimum number of

operations for any input of that size. In sorting, it happens

when the input is already sorted.

• WORST CASE: when the input requires the maximum num-

ber of operations for any input of that size. In many sorting

algorithms, that’s when the input was given in reverse order.

• AVERAGE CASE: refers to the average number of operations

required for typical inputs of that size. For sorting, an input

in random order is usually considered.

In general, the most important is the worst case. From there, you

get a guaranteed baseline you can always count on. When nothing

is said about the scenario, the worst case is assumed. Next, we’ll

see how to analyze a worst case scenario, hands on.

Figure Ǖ.ǔ “Estimating Time”, courtesy of http://xkcd.com.

http://xkcd.com
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Ǖ.ǔ Counting Time

We find the time complexity of an algorithm by counting the num-

ber of basic operations it requires for a hypothetical input of size n.

We’ll demonstrate it with Selection Sort, a sorting algorithm that

uses a nested loop. An outer for loop updates the current position

being sorted, and an inner for loop selects the item that goes in

the current position:1

function selection_sort(list)

for current ← ͠ … list.length - ͠

smallest ← current

for i ← current + ͠ … list.length

if list[i] < list[smallest]

smallest ← i

list.swap_items(current, smallest)

Let’s see what happens with a list of n items, assuming the worst

case. The outer loop runs n − 1 times and does two operations

per run (one assignment and one swap) totaling 2n−2 operations.

The inner loop first runs n−1 times, then n−2 times, n−3 times,

and so on. We know how to sum these types of sequences:2

# of inner

loop runs
=

n−1 total runs of the outer loop.
︷ ︸︸ ︷

n− 1

1st pass of outer loop

+ n− 2

2nd pass of outer loop

+ · · · + 2 + 1

=

n−1∑

i=1

i =
(n− 1)(n)

2
=

n2 − n

2
.

In the worst case, the if condition is always met. This means the

inner loop does one comparison and one assignment (n2 − n)/2
times, hence n2−n operations. In total, the algorithm costs 2n−2
operations for the outer loop, plus n2 − n operations for the inner

loop. We thus get the time complexity:

T(n) = n2 + n− 2.

1To understand a new algorithm, run it on paper with a small sample input.
2From sec. 1.3,

∑
n

i=1
i = n(n+ 1)/2.
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Now what? If our list size was n = 8 and we double it, the sorting

time will be multiplied by:

T(16)

T(8)
=

162 + 16− 2

82 + 8− 2
≈ 3.86.

If we double it again we will multiply time by 3.90. Double it over

and over and find 3.94, 3.97, 3.98. Notice how this gets closer and

closer to 4? This means it would take four times as long to sort two

million items than to sort one million items.

Understanding Growth

Say the input size of an algorithm is very large, and we increase it

even more. To predict how the execution time will grow, we don’t

need to know all terms of T(n). We can approximate T(n) by its

fastest-growing term, called the dominant term.

INDEX CARDS Yesterday, you knocked over one box of

index cards. It took you two hours of Selection Sort to fix

it. Today, you spilled ten boxes. How much time will you

need to arrange the cards back in?

We’ve seen Selection Sort follows T(n) = n2 + n− 2. The fastest-

growing term is n2, therefore we can write T(n) ≈ n2. Assuming

there are n cards per box, we find:

T(10n)

T(n)
≈

(10n)2

n2
= 100.

It will take you approximately 100×(2 hours) = 200 hours! What

if we had used a different sorting method? For example, there’s

one called “Bubble Sort” whose time complexity is T(n) = 0.5n2+
0.5n. The fastest-growing term then gives T(n) ≈ 0.5n2, hence:

T(10n)

T(n)
≈

0.5× (10n)2

0.5× n2
= 100.
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Figure Ǖ.Ǖ Zooming out n2, n2 + n − 2, and 0.5n2 + 0.5n,
as n gets larger and larger.

The 0.5 coefficient cancels itself out! The idea that n2 + n − 2
and 0.5n2 + 0.5n both grow like n2 isn’t easy to get. How does

the fastest-growing term of a function ignore all other numbers and

dominate growth? Let’s try to visually understand this.

In fig. 2.2, the two time complexities we’ve seen are compared

to n2 at different zoom levels. As we plot them for larger and larger

values of n, their curves seem to get closer and closer. Actually, you

can plug any numbers into the bullets of T(n) = • n2 + • n+ •,

and it will still grow like n2.

Remember, this effect of curves getting closer works if the

fastest-growing term is the same. The plot of a function with a lin-

ear growth (n) never gets closer and closer to one with a quadratic

growth (n2), which in turn never gets closer and closer to one

having a cubic growth (n3).

That’s why with very big inputs, algorithms with a quadratically

growing cost perform a lot worse than algorithms with a linear cost.

However they perform a lot better than those with a cubic cost. If

you’ve understood this, the next section will be easy: we will just

learn the fancy notation coders use to express this.



ǖǓ | CͧͥͨͭͬEͪ ͫCIEͦCE DISTILLED

Ǖ.Ǖ The Big-O Notation

There’s a special notation to refer to classes of growth: the Big-O

notation. A function with a fastest-growing term of 2n or weaker is

O(2n); one with a quadratic or weaker growth is O(n2); growing

linearly or less, O(n), and so on. The notation is used for expressing

the dominant term of algorithms’ cost functions in the worst case—

that’s the standard way of expressing time complexity.3

Figure Ǖ.ǖ Different orders of growth often seen insideO.

Both Selection Sort and Bubble Sort are O(n2), but we’ll soon dis-

cover O(n logn) algorithms that do the same job. With our O(n2)
algorithms, 10× the input size resulted in 100× the running cost.

Using a O(n logn) algorithm, 10× the input size results in only

10 log 10 ≈ 34× the running cost.

When n is a million, n2 is a trillion, whereas n logn is just a few

million. Years running a quadratic algorithm on a large input could

be equivalent to minutes if aO(n logn) algorithm was used. That’s

why you need time complexity analysis when you design systems

that handle very large inputs.

When designing a computational system, it’s important to an-

ticipate the most frequent operations. Then you can compare the

Big-O costs of different algorithms that do these operations.4 Also,

3We say ‘oh’, e.g., “that sorting algorithm is oh-n-squared”.
4For the Big-O complexities of most algorithms that do common tasks, see

http://code.energy/bigo.

http://code.energy/bigo
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most algorithms only work with specific input structures. If you

choose your algorithms in advance, you can structure your input

data accordingly.

Some algorithms always run for a constant duration regardless

of input size—they’re O(1). For example, checking if a number

is odd or even: we see if its last digit is odd and boom, problem

solved. No matter how big the number. We’ll see more O(1) al-

gorithms in the next chapters. They’re amazing, but first let’s see

which algorithms are not amazing.

Ǖ.ǖ Exponentials

We say O(2n) algorithms are exponential time. From the graph of

growth orders (fig. 2.3), it doesn’t seem the quadratic n2 and the

exponential 2n are much different. Zooming out the graph, it’s ob-

vious the exponential growth brutally dominates the quadratic one:

Figure Ǖ.Ǘ Different orders of growth, zoomed out. The linear and

logarithmic curves grow so little they aren’t visible anymore.

Exponential time grows so much, we consider these algorithms “not

runnable”. They run for very few input types, and require huge

amounts of computing power if inputs aren’t tiny. Optimizing ev-

ery aspect of the code or using supercomputers doesn’t help. The

crushing exponential always dominates growth and keeps these al-

gorithms unviable.
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To illustrate the explosiveness of exponential growth, let’s

zoom out the graph even more and change the numbers (fig. 2.5).

The exponential was reduced in power (from 2 to 1.5) and had its

growth divided by a thousand. The polynomial had its exponent

increased (from 2 to 3) and its growth multiplied by a thousand.

Figure Ǖ.ǘ No exponential can be beaten by a polynomial. At this

zoom level, even the n logn curve grows too little to be visible.

Some algorithms are even worse than exponential time algorithms.

It’s the case of factorial time algorithms, whose time complexities

are O(n!). Exponential and factorial time algorithms are horrible,

but we need them for the hardest computational problems: the fa-

mous NP-complete problems. We will see important examples of

NP-complete problems in the next chapter. For now, remember

this: the first person to find a non-exponential algorithm to a NP-

complete problem gets a million dollars 5 from the Clay Mathe-

matics Institute.

It’s important to recognize the class of problem you’re dealing

with. If it’s known to be NP-complete, trying to find an optimal

solution is fighting the impossible. Unless you’re shooting for that

million dollars.

5It has been proven a non-exponential algorithm for any NP-complete prob-
lem could be generalized to all NP-complete problems. Since we don’t know if
such an algorithm exists, you also get a million dollars if you prove an NP-complete
problem cannot be solved by non-exponential algorithms!
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Ǖ.Ǘ Counting Memory

Even if we could perform operations infinitely fast, there would still

be a limit to our computing power. During execution, algorithms

need working storage to keep track of their ongoing calculations.

This consumes computer memory, which is not infinite.

The measure for the working storage an algorithm needs is

called space complexity. Space complexity analysis is similar to

time complexity analysis. The difference is that we count computer

memory, and not computing operations. We observe how space

complexity evolves when the algorithm’s input size grows, just as

we do for time complexity.

For example, Selection Sort (sec. 2.1) just needs working stor-

age for a fixed set of variables. The number of variables does not

depend on the input size. Therefore, we say Selection Sort’s space

complexity is O(1): no matter what the input size, it requires the

same amount of computer memory for working storage.

However, many other algorithms need working storage that

grows with input size. Sometimes, it’s impossible to meet an al-

gorithm’s memory requirements. You won’t find an appropriate

sorting algorithm with O(n logn) time complexity and O(1) space

complexity. Computer memory limitations sometimes force a trade-

off. With low memory, you’ll probably need an algorithm with slow

O(n2) time complexity because it has O(1) space complexity. In

future chapters, we’ll see how clever data handling can improve

space complexity.

Conclusion

In this chapter, we learned algorithms can have different types of vo-

racity for consuming computing time and computer memory. We’ve

seen how to assess it with time and space complexity analysis. We

learned to calculate time complexity by finding the exact T(n) func-

tion, the number of operations performed by an algorithm.

We’ve seen how to express time complexity using the Big-O no-

tation (O). Throughout this book, we’ll perform simple time com-

plexity analysis of algorithms using this notation. Many times, cal-
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culating T(n) is not necessary for inferring the Big-O complexity

of an algorithm. We’ll see easier ways to calculate complexity in

the next chapter.

We’ve seen the cost of running exponential algorithms explode

in a way that makes these algorithms not runnable for big inputs.

And we learned how to answer these questions:

• Given different algorithms, do they have a significant differ-

ence in terms of operations required to run?

• Multiplying the input size by a constant, what happens with

the time an algorithm takes to run?

• Would an algorithm perform a reasonable number of opera-

tions once the size of the input grows?

• If an algorithm is too slow for running on an input of a given

size, would optimizing the algorithm, or using a supercom-

puter help?

In the next chapter, we’ll focus on exploring how strategies under-

lying the design of algorithms are related to their time complexity.

Reference

• The Art of Computer Programming, Vol. 1, by Knuth

– Get it at https://code.energy/knuth

• The Computational Complexity Zoo, by hackerdashery
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• What is Big O, by Undefined Behavior

– Watch it at https://code.energy/bigo-vid
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