STA414/2104

Statistical Methods for Machine Learning ||

Murat A. Erdogdu

Department of Computer Science
Department of Statistical Sciences

UNIVERSITY OF

TORONTO

o

AAAAA

RV A
8BS
"y
il

Announcements

e Midterm exam is next week

If you are enrolled to Monday section, you will take the exam
on March 1%t at 14-16.

If you are enrolled to Tuesday section, you will take the exam
on March 2n at 19-21.

Exceptions will be made only if you currently live in a time
zone that “strictly” conflicts with your section’s exam time.
You need to contact the instructor by Feb 24 and get approval.
Requests made after this date will not be considered.

If neither of these times work for you, your final exam
(scheduled by FAS) will be worth 50% of your course mark.

Further instructions will be posted on the course website.

Exam will be on mostly ML concepts and derivations, covered
in lectures 1-6 (including this one).

Practice midterm will be posted on the course webpage.
Solutions will be posted on Friday.

Last time

* Naive Bayes classifier
 Statistical decision theory
* Bias-variance decomposition

* Optimization in ML

Today

* Multiclass logistic regression (recap)
* Neural networks

* Midterm review (if time permits)

Multiclass Classification

e Classification tasks with more than two categories:
o0t N (4A L2

owzen 1250

36794977659
sz 112839

897804997

® \We use multiclass logistic regression to demonstrate
computation graph.

Multiclass Classification

Consider a single data point (t, x).
Targets form a discrete set {1,..., K}.

It's often more convenient to represent them as one-hot
vectors, or a one-of-K encoding:

t=(0,...,0,1,0,...,0) e R¥

entry k is 1

We saw the MLE interpretation. Now we minimize errors.

Multiclass Classification

Now there are D input dimensions and K output
dimensions, so we need K x D weights, which we arrange as
a weight matrix W.

Also, we have a K-dimensional vector b of biases.
Linear predictions:

D
Zx = ZijXj + by for k=1,2,...K
j=1

Vectorized as in assignment 2:

z=Wx-+b

Multiclass Classification

® Predictions are like probabilities: want 1 > y, > 0 and
Zk vk =1

e A natural activation function to use is the softmax function,
a multivariable generalization of the sigmoid function:

e%k

yk = softmax(z1,...,zk)k = T
k/

® The inputs z are called the logits.
® Properties:
» Qutputs are positive and sum to 1 (so they can be
interpreted as probabilities)
» If one of the z, is much larger than the others,
softmax(z)x ~ 1 (behaves like argmax).

Multiclass Classification

e |f a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function for one data point:

K
Log(y, t Z ty log yx

=— T(logy),

where the log is applied elementwise.

e Error E is the sum (or average) of loss functions across data
points (y;,t;) fori=1,.., N.

LN
=N > Lerlyit)
i=1

e This is exactly the negative of the log-likelihood (up to
constants). Recall that 1/N doesn’t change the problem.

Multiclass Classification

e All we need is the gradient of the loss for one data point
a%ﬁCE(y,‘,t,‘) since:

e Error E is the sum (or average) of loss functions across data
points.

9 . 1<
£ =g 1y 2 Lonlyint
N
0
28

e This is exactly the negative of the log-likelihood (up to
constants). Recall that 1/N doesn’t change the problem.

E(yi;ti)

Multiclass Classification

e Multiclass logistic regression (for one sample):

z=Wx-+b
y = softmax(z)
Lep = —t' (logy)
e Gradient descent updates can be derived for each row of W:

aﬁc]g; . aECE sz
aWk - 82/(ka

= (yx — tx)x (for 1 sample)

N
1
W — Wy — U Z(y,'k — ti)x; (for N samples)
i=1

e Compare to the update given in lecture 4 and hw 2.

Limits of Linear Classification

e Visually, it's obvious that XOR is not linearly separable. But
how to show this?

Limits of Linear Classification

® Sometimes we can overcome this limitation using feature
maps, just like for linear regression. E.g., for XOR:

x| i) ¢a(x) 4s(x) |t
0O O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

e This is linearly separable. (Try it!)

e Not a general solution: it can be hard to pick good basis
functions. Instead, we'll use neural nets to learn nonlinear
hypotheses directly.

Feature maps are hard

e Can we automate the feature extraction somehow?

Neural Networks

Single Neuron (Unit)

e [or neural nets, we use a neuron, or unit to encode
non-linearities:

Yy i'th weight
output output blas
wy weights ' Z
w29)
v Y= b + § xzwz
inputs T
I T2 I3
nonlinearity i'th mput

e Compare with logistic regression: y = o(w'x + b)

e By throwing together lots of these incredibly simplistic
neuron-like processing units, we can do some powerful
computations!

Multilayer Perceptrons

e \We can connect lots
of units together into
a directed graph.

e Typically, units are
grouped together
into layers.

® This gives a
feed-forward neural
network.

an output
unit
)]

a hidden
unit

a connection
depth

an input
unit

output layer

second hidden layer

first hidden layer

input layer

Multilayer Perceptrons

® [Fach hidden layer i connects N;_1 input units to N; output units.

® |n the simplest case, all input units are connected to all output units. We
call this a fully connected layer.

e Note: the inputs and outputs for a layer are distinct from the inputs and

outputs to the network.
® |f we need to compute M outputs from N

inputs, we can do so in parallel using
matrix multiplication. This means we'll be
using a M x N matrix A A 4 A o4 A Y

® The output units are a function of the
input units:

y = f(x) = & (Wx+b)

e A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has
nothing to do with perceptrons!

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

Identity (ReLU)

y=s y = max(0, z)

Soft ReLU

y=logl+¢€*

Multilayer Perceptrons

Some activation functions:

Hard Threshold Logistic Hyperb(:al‘lrtl:h';'angent
[1 ifz>0 1 .,
Y=10 iftz<o Y =1ie= y=2"°¢

e? e ?

Multilayer Perceptrons

Each layer computes a function, so the
network computes a composition of
functions:

h(1) — f(l)(x) - ¢(W(1)x + b(l))
= f@ (M) = p(WRK®) 4 b))

y = FO(RED)

Or more simply:

Neural nets provide modularity: we can
implement each layer’'s computations as a
black box.

O O O
f(l)
x| 1OOO

Feature Learning
Last layer:

e |f task is regression: choose
y = f(L)(h(L—l)) - (W(L))Th(L—l) + pb)
e |f task is binary classification: choose
y = f(L)(h(L—l)) - U((W(L))Th(L—l) + b(L))
e Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

=1(x)
® The goal:
) _+_—t (x) +t_+
‘ e —_ 4
+ 4 -

Feature Learning

Suppose we're trying to classify images of handwritten
digits. Each image is represented as a vector of
28 x 28 = 784 pixel values.

Each first-layer hidden unit computes ¢(w; x). It acts as a
feature detector.

We can visualize w by reshaping it into an image. Here's an
example that responds to a diagonal stroke.

Feature Learning

Here are some of the features learned by the first hidden layer of
a handwritten digit classifier:

Expressive Power

e \We've seen that there are some functions that linear
classifiers can't represent. Are deep networks any better?

e Suppose a layer’s activation function was the identity, so the
layer just computes a affine transformation of the input

» We call this a linear layer

® Any sequence of linear layers can be equivalently
represented with a single linear layer.

y = WEW@WwW) «
Lw/

» Deep linear networks are no more expressive than linear
regression.

Expressive Power

Multilayer feed-forward neural nets with nonlinear activation
functions are universal function approximators: they can
approximate any function arbitrarily well.

This has been shown for various activation functions
(thresholds, logistic, ReLU, etc.)
» Even though RelU is “almost” linear, it's nonlinear enough.

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

o

Multilayer Perceptrons

e h; computes I[x; + xo — 0.5 > 0]
» ie.x3 OR xo

® hy computes I[x; + x2 — 1.5 > 0]
> ie. x;1 AND xo

e y computes I[h; — ho — 0.5 > 0] = [[h1 + (1 — hp) — 1.5 > 0]
» ie. hy AND (NOT hy) = x; XOR x»

Expressive Power

Universality for binary inputs and targets x;,t € {—1,+1}:
e Hard threshold hidden units, linear output
e Strategy: 2P hidden units, each of which responds to one
particular input configuration

® Only requires one hidden layer, though it needs to be
extremely wide.

Expressive Power

® |imits of universality

» You may need to represent an exponentially large network.

» How can you find the appropriate weights to represent a
given function?

» |f you can learn any function, you'll just overfit.

» Really, we desire a compact representation.

Expressive Power

® \What about the logistic activation function?

® You can approximate a hard threshold by scaling up the
weights and biases:

9T 5 2 a1 0 1 3 3 a4 =2 1 0 1 3 3 4

y = o(x) y = o(5x)

® This is good: logistic units are differentiable, so we can train
them with gradient descent.

Training neural networks with backpropagation

Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the
direction of steepest descent)

Weight space for a multilayer neural net: one coordinate for each
weight or bias of the network, in all the layers

Conceptually, not any different from what we've seen so far — just
higher dimensional and harder to visualize!

We want to define a loss £ and compute the gradient of the cost
dE /dw, which is the vector of partial derivatives.

» This is the average of d£/dw over all the training examples,
so in this lecture we focus on computing d£/dw.

Univariate Chain Rule

® \We've already been using the univariate Chain Rule.
e Recall: if f(x) and x(t) are univariate functions, then

d df dx
af(x(t)) T dr

Univariate Chain Rule

Recall: Univariate logistic least squares model

zZ=wx-+b
y=0(z2)
1 2

oL L
Let's compute the loss derivatives =, 3§

Univariate Chain Rule

How you would have done it in calculus class

1 2
ﬁfg(o'(wx+b)*f) 35, o Tr1 b 2
oL a1 2 b b 2T)_t)]
— = — | =(o(wx + b) — t)

Ow ow L2 19 2
o = ——(o(wx+b) —t)
5 2 0b
— E?(U(Wx+b)_t) o

w 5 :(a(wx+b)7t)£(0(wx+b)7t)

= (o(wx + b) — t)%(U(WX +b)—t) i
/ 5 :(rf(wx+b)—f)"'l(""x‘*'b)%(wx*—b)
= (o(wx +b) = t)o" (wx + b) - (wx + b) = (o(wx + b) — t)o’ (wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

dc

z=wx+b @ a
y = o(2) df _dLdy _dL

Computing the loss:
y—t

1 dzidydzidyg(z)
s oL _dtdz _de
ow dzdw dz

oL dLdz dL

Ob ~ dzdb dz

Remember, the goal isn’t to obtain closed-form solutions, but to

be able to write a program that efficiently computes the
derivatives.

Univariate Chain Rule

® \We can diagram out the computations using a computation
graph.
® The nodes represent all the inputs and computed guantities,
and the edges represent which nodes are computed directly
as a function of which other nodes.
Compute Loss
—_—

t

Computing the loss:

z=wx-+b X
y =0(z) ’UJ\Z Y r

£=%(y—t)2 b/

Compute Derivatives
—

Univariate Chain Rule

A slightly more convenient notation:

® Use y to denote the derivative d£/dy, sometimes called the error
signal.

® This emphasizes that the error signals are just values our program
is computing (rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wx—+b V=y—t
y =0l z=70(2)
L=y tp =2Zx

2

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

L,-Regularized regression Logistic regression
t Wil
l'\ by
¢
b Z Y £_’»Cr(>g Ti——2 —>y1\k
/ /'£
w >R XT3z~ Yo f /
2!
z=wx+b bf / ‘[
y=0(2) B
1) zp = Z wejx; + b
L= E(y —t) j
1, _
R= 2" Y D€

ﬁrcg:£+AR Ez—Ztklogyk
k

Multivariate Chain Rule

® Suppose we have a function f(x, y) and functions x(t) and
y(t). (All the variables here are scalar-valued.) Then

d of dx | Of dy
dtf(x(8),y(2)) = Ox dt oy dy dt

® Example:
flx,y)=y+e?
x(t) = cost
y(t) =t
® Plug in to Chain Rule:

df _ 0fdx 0f dy
At~ oxdt Oy dt

= (ye¥)-(—sint) + (1 + xe¥) -

/\
\/

2t

Multivariable Chain Rule

® |n the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofdr ofdy

dt ~ Oz dt ' Oy dt \x/
Values alread ted t\ -
alues already compute
by our pr)(/)gramp / y—"

® |0 our notation:

Backpropagation
Example: univariate logistic least squares regression

+ Backward pass:
Z.

>

2—Y—sL—> L g

Lreg =1
/u/ R ¢ E:yd—y
BT dLreg dz
AR =70'(2)
Forward pass:
= Lreg A S 0z —dﬁ
z=wx+b L=Tw dL:eg a ()Wi dw
y = o(2) dc =Zx+Rw
:['re _
L=ty v N -z
2 v =L~ b
1 Y= dy =z
R=-w? _ =z
2 =L(y—1)

Lreg = L+ AR

Backpropagation

Multilayer Perceptron (multiple outputs):

“11 (1) “”

N, N

.’L‘l—»Zlg,hl;’yl X
™~
L

x2—>22—>h2_>y2
/b el "
I:Ot‘ward pass:
=D wx + b
J
hi = o(zi)

ye=>_ wih + b
- : Z(yk - fk)2
2 k

Backward pass:

L£L=1
Vi =L (yx — t)
@:Wh;
b¢(<2) Yk
hi=>viw?
k
z = hio'(z)
W — 7
bV =z

Backpropagation

In vectorized form:

w w2

\

X—Z—h—y—L

b b®
Forward pass:

2 = Wy 4+ p()
h=o0(z)
y = W®h 4+ p®

1
L=-|t—yl?
Slt=yl

Backward pass:

L=1

y=~L(y—t)
W@ =gh'
b@ =y

h=w@Ty

Z=hod'(2)
W:ixT
b(D) =z

Computational Cost

Computational cost of forward pass: one add-multiply
operation per weight

zj = Z W,-J(-l)xj + bfl)
J

Computational cost of backward pass: two add-multiply
operations per weight

Rule of thumb: the backward pass is about as expensive as
two forward passes.

For a multilayer perceptron, this means the cost is linear in
the number of layers, quadratic in the number of units per
layer.

Backpropagation

® Backprop is used to train the overwhelming majority of neural nets
today.

» Even optimization algorithms much fancier than gradient
descent (e.g. second-order methods) use backprop to
compute the gradients.

Midterm review

e Review of some important ML concepts.

* Practice midterm will be posted on the course
webpage. Solutions will be posted on Friday.

Or

Generalization

e The goal in ML is to achieve good generalization by making accurate
predictions for new test data that is not known during learning.

e Choosing the values of parameters that minimize the loss function on
the training data may not be the best option.

e We would like to model the true regularities in the data and ignore the
noise in the data:

— It is hard to know which regularities are real and which are accidental

due to the particular training examples we happen to pick.

M

9

0

e Intuition: We expect the model to generalize
if it explains the data well given the complexity
of the model is low.

e A model can fit the data perfectly. But this is
not very informative.

Regularization in ML

* We can write the problem min Ep(w) + AEw (w)

Training error + Regularization term

Lasso tends to generate sparser solutions compared to a quadratic
regularizer (often referred to as L, and L, regularizers).

w2 4 W2 5

o
N

This constrains the
complexity of the model and

helps with generalization.

/ But how to test our model or
\j choose the penalty level?

I /
—
ey
=

Validation

If the data is plentiful, we can divide the dataset into three subsets:

* Training Data: used to fitting/learning the parameters of the model.

* Validation Data: not used for learning but for selecting the model,
choosing the amount of regularization that works best (i.e. M or any
other hyperparameter tuning).

e Test Data: used to get performance of the final model.

Rule of thumb: split 50% training, 25% validation, 25% test

validation

training set set

test set

* Forarangeof A (say A ={0.1,0.5,1,1.5,2})
* For each), train model on training data and compute its error on
validation data set
* Choose)\ that has the smallest error.

e Test the final performance of your model on test data.

2.4. Validation. What is cross-validation? Discuss why we use this method and the main
computational trade-offs involved.

Maximum Likelihood Estimation

* Recipe:

* Observedata: D = {x1,x2,....,xN}
Assume data is iid from a distribution x; ~ p(z|0)
Write down the joint densji\’fty

p(x1, T2, ”"TN|9) — H]O(%W) = /:(9, T1,T2, ...,ZCN)
=1

Plug in the observed values (data) and see it as a function of the unknown
parameters (at this stage, we call this function the likelihood)

Maximize the likelihood. ML

— arg mgxﬁ(@; L1, X2, ..., TN)

* We generally minimize negative log-likelihood since log is monotone strictly increasing
function, and converts products to summations (which behave nicely taking
derivatives). For example for linear regression,

N
Inp(t, W, 8) = ~0 3 (yloes. W))2+ > In - o In(2m).
n=1

The Exponential Family

e The exponential family of distributions over x is defined to be a set of
distributions of the form:

p(x|n) = h(x)g(n) exp {n u(x)}

where
— 7] is the vector of natural parameters

— u(x) is the vector of sufficient statistics

* The function g(7) can be interpreted as the coefficient that ensures
that the distribution p(x|7) is normalized:

o) [hx)exp {n"u(x)} dx = 1

1.1. Geometric distribution. Probability mass function of a random variable X distributed as
geometric distribution with parameter « is given as

We can easily compute

P(X = k) = y(1 — 4)¥! for k=1,2,... the expectation and the
(a) Show that this is a probability mass function. va r|a nce Of the SUfflClent
(b) Write the above distribution as an exponential family, and identify its sufficient statistics, . 4. | P
natural parameter, and normalizing function (or cumulant generating function or partition statistics! H OW

function).

MAP: Maximum A posteriori
Probability

* In Maximum A posteriori Probability (MAP) estimation, we
maximize the posterior

plow|D) = PEEIEE,
x p(D|w)P(w)
wWMAP — 4o max p(D;ZDJ;(W),

= argmax p(D|w)P(w)

Bayesian Linear Regression

e Consider a zero mean isotropic Gaussian prior, which is governed by a single
precision parameter: f |

p(w) = N(wl|0,a ') means diagonal covariance

for which the posterior is Gaussian with:
my = [Sy®'t wir = (87®) 137t
Sy, = al+p3e'd.

e |f we consider an infinitely broad prior, & =0, the mean my of the posterior
distribution reduces to maximum likelihood value wy,.

e The log of the posterior distribution is given by the sum of the log-likelihood
and the log of the prior:

N
2
Inp(w|D) = —g Z (tn — W' (xp))” — §WTW + const.
n=1
. with respect to w is equivalent

with a quadratic regulation term (ridge regression).

Approaches to Classification

e First attempt: Construct a that directly maps each
input vector to a specific class.

e There are

- Discriminative Approach: Model p(Ck|X), directly, for example by
representing them as parametric models, and optimize for parameters
using the training set (e.g. logistic regression).

- Generative Approach: Model class conditional densities p(x|Ck)
together with the prior probabilities p(Ci) for the classes. Infer
posterior probability using Bayes’ rule:

P(x|Ck)p(Ck

p(Chlx) — (x|Cr)p(Ck)
p(x)

* For example, we could fit multivariate Gaussians to the input vectors of

each class. Given a test vector, we see under which Gaussian the test
vector is most probable.

Fisher’s Linear Discriminant

1 1
* Let the mean of two classes be My = N, Z Xp, Mz = Ny Z Xn

neCy neCs
e Projecting onto the vector 4 o IS,
separating the two classes is | R
reasonable (say it is a unit - PR
vector for now): W X mj; — my. of \"I'.
ol
Ll s,
@,
= S
A 2 2 2 _ 2
e But we also want to minimize the s7 = (Y, —m1)~, S2 = E (Y — ma2)”~,
within-class variance: neCy neCsy

where my =w my. Yn =W Xj,.

2

e Fisher’s criterion: maximize ratio of J(w) = (m2 —my)

the s + 85 :
: ~1 0
: W XS, Spw

=5, (my — my)

Probabilistic Generative Models

e Model class conditional densities p(x|Cg) separately for each class, as
well as the class priors p(Cp).

e Consider the case of two classes. The posterior probability of class C; is given
by:

p(x|C1)p(C1)
p(x]C1)p(C1) + p(x|C2)p(Cs2)

I SE——
~ 14exp(—a) \

p(X\Cl)p(Cﬁ:ln (Cl|X>
p(x|C2)p(C2) —p(Ci|x)’

which is known as the . It represents the log of the ratio of
probabilities of two classes, also known as the

p(Ci]x) =

where we defined:

a = In

Gaussian class conditionals

1-t,

p(t, X . iz,) = 1Jj AN,) ’ (0= TN 1)

. 7T , we look at the terms of the log-likelihood
functions that depend on 77 :
Z [ty InT+ (1 —t,)In(1 — 7)] + const.

n

Differentiating, we get:
th,
Z N1 -l- Ny

. H1, we look at the terms of the log-likelihood
functions that depend on 1:

Ztnlnj\f(xn|u1, = ——Zt — 1) T2 (x,, — ;) + const.
D|fferent|at|ng, we get: And similarly: .

= Nl z::t nXn- Ho — E Z(l - tn)xn'

Logistic Regression

e Consider the problem of two-class classification.

* \We have seen that the posterior probability of class C, can be written as a

_ 1 _ T
p(CﬂX) — 1 —|—eXp(—WTX> _ O-(W X>7

where p(Cs|x) =1 — p(Cy|x), we omit the bias term for clarity.

e This model is known as logistic regression (although this is a model for
classification rather than regression).

logistic sigmoid function

Note that for generative models, we would first
determine the class conditional densities and
class-specific priors, and then use Bayes’ rule to
obtain the posterior probabilities.

Here we model p(Ck|x) directly.

VIL for Logistic Regression

e We observed a training dataset {xn,tn}, n=1,..,N; t, € {0,1}.

e Maximize the probability of getting the label right, so the likelihood function

takes form:
N

T
p(t|X, w) = H [ygn(l — yn)l_t”], Yn = 0(W" Xy).
n=1
e Taking the negative log of the likelihood, we can define
(that we want to minimize):
N N
E(W> — —1np(t|X,W) - = Z [tn lnyn + (1 _ tn) ln(l o yn):| — Z E,.
n=1 n=1
e Differentiating and using the chain rule:
d Yn — tn d . d
@En — yn(l _yn)’ d_wyn — yn(l _yn)xna @‘7@):0(@)(1_0(@))-
d dFE,, dy,
—En — —— = (Yn — In)Xn.
dw d, dw — Wn T)X ~

* Note that the factor involving the derivative of the logistic function cancelled.

Bias-Variance Trade-off

expected loss = (bias)? 4 variance + noise

/ 1 ™~

Average predictions over all datasets Solutions for individual datasets vary around Intrinsic va riability
differ from the optimal regression their averages -- how sensitive is the of the target values.
function. function to the particular choice of the
dataset. 0.15
(bias)
0.12¢ Varianoce
ias? = [{Eoly(x:D)) - h(x))p(x) dx o) —HZ S

0.06

variance = /ED [{y(x; D) — Epy(x; D)]}?] p(x) dx / _

noise = //{h(x) — t}p(x,t) dx dt

o

-3 -2 -1

In

2

* Trade-off between bias and variance: With very flexible models (high complexity)
we have low bias and high variance; With relatively rigid models (low complexity)
we have high bias and low variance.

e The model with the optimal predictive capabilities has to balance between bias
and variance.

Optimization: First and Second Order Methods

il = argmingq; () = Bt — [H'VE(p)

H? provides curvature information about the optimization landscape
and determines the type of optimization method.

H® =1 reduces to gradient descent which is a first order method, i.e.,
only uses first order derivative information (ignoring the step size). Cheap
per-iteration cost, but slow convergence rate.

H' = V2E(B") reduces to Newton’s method which is a second order
method, i.e., uses second order derivative information, e.g.

B =B~ VPE(8") T VE(')
* These methods get faster convergence rate, since they use curvature information.

Computing Hessian is numerically expensive so Newton’s method has
high per-iteration cost.

The performance of an algorithm is determined by both its convergence
rate and per-iteration cost.

