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Today’s lecture

*This lecture is being recorded and will be shared on quercus!
*Ask questions anytime either on chat or raising your hand.

Topics:
* Machine learning applications and challenges

e Course information and syllabus
 Types of learning methods
* Supervised learning: least squares

e Fundamentals: overfitting, generalization, regularization



Machine Learning’s Successes

* Biostatistics / Computational Biology.

* Neuroscience.

* Medical Imaging:
— computer-aided diagnosis, image-guided therapy.
— image registration, image fusion.

* Information Retrieval / Natural Language Processing:
— Text, audio, and image retrieval.
— Parsing, machine translation, text analysis.

* Speech processing:
— Speech recognition, voice identification.

* Robotics:
— Autonomous car driving, planning, control.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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Finding Structure in Data

European Community
Interbank Markets Monetary/Economic

Vector of word counts
on a webpage

Disasters and
Accidents

Marksts  « + CNYiusD

' REUTERS == -

. o o o . 1 { N L4
L d o o
.’ . ° o z e .

likelihcod of recession push index funds gl - .'.. & . !

iy 1 R, .. ‘ .'.. “.':o' a .
e Leading P TR %ﬁ R -4 LegallJudicial
e Rp—— Economic 1? g B "‘\-‘\

Beigum sdds 1o cHIOrars v commen e Indicators P v

PIMCO: Treasuries reflect The SEC shouldn’t e

bonds, bigger bailout ". '&' X .
Wall Stroet ends lower in .. :z' o “..5. "
fourth week of losses @ . . . A .

The madness of Wall Street v, e ..:." °4'-=:.
Police payment emalls N 2 R0

growing worry for Murdoch
executives

HP sinks as investors flee

“Death Crems® rocks Wall Strest business revamp @

Interactva: A wikd wosk on Wal Street
Mow mach stock shoud clder isvestors hold? BafA cutting 3,500 jobs this
Qquarter: memo

804,414 newswire stories

Google's blockbuster deal

Accounts/

Earnings ¥*

Government
Borrowings



Recommender systems

Collaborative Filtering/
Matrix Factorization/

NETELT

movielens
helping you find the right movies

amazon
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Recommender systems

. . . movielens .@ @ é@ ﬂ@
CO”abOFatlve Fllter'ng/ NE”:I.”( helping you find the right movies I DA@ A GAY ? ? ey [ eyt
Matrix Factorization/ | amazon i P S P I D

B rorn| P erere Ak P
Hierarchical Bayesian Model
Rating value of Latent user feature Latent item
user i for item j (preference) vector feature vector
T 2
’I“@'j|u,i,Vj,O' ~/ ./\/‘(11Z Vj, o ),
U—i‘o_u ~ N(O 021) i—1 N Latent variables that
g eeey IV .
’ ; ’ . we infer from
viloy o~ N(Ovava g=1,...., M. observed ratings.

Prediction: predict a rating rfj for user i and query movie j.

P(?“,:}‘R) — // P(?“;kj|ui,Vj)’i(ui,VHRJ)duide

Posterior over Latent Variables

Infer latent variables and make predictions using Markov chain Monte Carlo.
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Finding Structure in Data

Collaborative Filtering/
Matrix Factorization/

movielens @@ @ﬂﬂ
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Product Recommendation amazon i ? |Hedde oAk R geaen
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Learned ‘genre”’

Netflix dataset: Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
480,189 users :> The People vs. Larry Flynt Con Air
17,770 movies Canadian Bacon Men in Black Il
La Dolce Vita Men in Black

Over 100 million ratings.

Friday the 13th

The Texas Chainsaw Massacre
Children of the Corn

Child's Play

The Return of Michael Myers

* Part of the wining solution in the Netflix contest (1 million-dollar prize). .



Impact of Neural Networks
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Word error rate on Switchboard

Speech Recognition

100%a According to Microsoft’s
speech group:

Using DL
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NETFL'X The Netflix Tech Blog

Netflix uses:

— Restricted Boltzmann machines
— Probabilistic Matrix Factorization

Social Suppont

* From their blog:

To put these algorithms to use, we had to work to overcome some limitations, for
instance that they were built to handle 100 million ratings, instead of the more than 5
billion that we have, and that they were not built to adapt as members added more
ratings. But once we overcame those challenges, we put the two algorithms into
production, where they are still used as part of our recommendation engine.

11



Course Topics

Probabilistic Models
Bayesian Methods
Optimization

Decision trees
Unsupervised learning
Latent variable models N
Neural networks j
Sampling methods V/)
Reinforcement learning =
Algorithmic fairness

STACK
MORE
LAYERS

AmMm<»r

/ \
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Course Information

Lectures: This course has two identical sections each week:
— Monday 2pm-5pm online
* 2:10pm-3pm + 3:10pm-4pm + 4:10pm-5pm
— Tuesday 7pm-10pm online
* 7:10pm-8pm + 8:10pm-9pm + 9:10pm-10pm
Announcements and zoom links will be sent through quercus on Sunday.
Course website: erdogdu.github.io/sta414/
— Contains all course information, slides, additional reading,
assignments, announcements, OHs etc. Need to check regularly!

Piazza: should be available through quercus.

Your grade does not depend on your participation on Piazza. It’s just a good way for
asking questions, discussing with your instructor, TAs and your peers. We will only allow
questions that are related to the course materials/assignments/exams.

Email policy: Please use the Piazza site for most questions. For administrative issues that
only concern you, email the course staff.

Instructor email: sta414-2021-prof@cs.toronto.edu
TA email: sta414-2021-tas@cs.toronto.edu
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Course Evaluation

4 assignments: 50% (will not be equally weighted)

— No collaboration.

2-hour midterm: 20% (date TBD, most likely on the week of
Mar 1)

3-hour final: 30% (date determined by FAS)

Information about these will be posted on the website.



Assignments and Computation

* For the assignments:
-Each student is responsible for his/her own work

-You must write your own code, and your own solutions
-You can discuss with instructor and TAs

* Computation:
-Assignments will involve programming
-You should use Python
-It is freely available online



Pre-requisites

* Make sure that you have the necessary pre-
requisites.

* Linear algebra, probability, calculus
* STA314 is a pre-requisite!

— But there will be some overlap.
— Check the list of topics on course webpage!




Course Textbook

No required textbooks.

Christopher M. Bishop, Pattern Recognition and Machine Learning
(2006)

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani,
Introduction to Statistical Learning (2017)

Trevor Hastie, Robert Tibshirani, Jerome Friedman,
The Elements of Statistical Learning (2009)

Kevin P. Murphy,

Machine Learning: A Probabilistic Perspective

lan Goodfellow, Yoshua Bengio, Aaron Courville,
Deep Learning (2016)



What is Machine Learning?

e |t's similar to statistics...
— Both fields try to uncover patterns in data

— Both fields draw heavily on calculus, probability, and linear
algebra, and share many of the same core algorithms

e Butit’s not statistics!

— Stats is more concerned with helping scientists and
policymakers draw good conclusions; ML is more
concerned with building autonomous agents

— Stats puts more emphasis on interpretability and
mathematical rigor; ML puts more emphasis on predictive
performance, scalability, and autonomy



Consider observing a series of input vectors (feature, covariate):

Input Vectors

X1, X2, X3, X4, ...

What the computer sees
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Types of Learning

Consider observing a series of input vectors (feature, covariate):
X1, X2, X3, X4, ...

e Supervised Learning: We are also given target outputs (labels,
responses, output, classes): t,, t,,..., and the goal is to predict correct
output given a new input.

e Unsupervised Learning: The goal is to find relations in x’s, which can
be used for making predictions, decisions.

-There is no outcome variable, just a set of measurements.
- Objective can vary: 1- find relationships between data points 2- find low

dimensional representation of your data, etc

e Semi-supervised Learning: We are given only a limited amount of
labels, but lots of unlabeled data.

e Reinforcement Learning: Learning system receives a reward signal,
tries to learn to maximize the reward.



Supervised Learnin

Classification: target outputs t, are
discrete class labels. The goal Is to
correctly classify new inputs.

Regression: target outputs t; are
continuous. The goal Is to predict
the output given new inputs.

T x ./.
/f ]
e 3 /
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Handwritten Digit Classification
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Unsupervised Learning

The goal is to construct statistical model
that finds useful representation of data:
e Clustering
e Dimensionality reduction
* Modeling the data density
e Finding hidden causes (useful
explanation) of the data

Unsupervised Learning can be used for:
e Structure discovery
e Anomaly detection / Outlier detection
e Data compression, Data visualization
e Used to aid classification/regression
tasks (i.e. pre-processing)

Lt '.'_: - L
AL
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DNA Microarray Data

Expression matrix of 6830 genes (rows) and
64 samples (columns) for the human tumor
data.

The display is a heat map ranging from
bright green (under expressed) to bright
red (over expressed).

Questions we may ask:
e Which samples are similar to other samples
in terms of their expression levels across
genes.

e Which genes are similar to each other in
terms of their expression levels across
samples.
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Linear Least Squares

e Assume that you have a dataset D = {(t;,X;) fori=1,2,... N}

* The pair (t;,x;) is called a training sample.

e {; is target (response), xi= (T;1, T2, - .

2.0 1
1.51

1.0 1

0.0 1
—0.5

_10 4

[e]
2 0.5

T
., T;iq)" are features

eLooks linear! (d=1 for this Example)

eFind the “best” line that explains
the relationship between the target
and features.



Linear Least Squares

. . . . T
e Given a vector of d-dimensional inputs x = (21,2, ...,Z4)" ,we want

to predict the target ¢; (response) using the linear model:
d

Y(x, W) = wg + w11 + was + ... + wWaxrqy = wo + ij:cj.
j=1

* The term wy is the intercept, or often called bias term. It will be
convenient to include the constant variable 1 in x and write:

x=(1,21,...,2q) y(XaW) =x'w.

This subscript denotes coordinate index!

*\\Ve want to make y(XZ-, W) close to ; by minimizing a loss.

This subscript denotes sample index!



Linear Least Squares

One option is to minimize the sum of the squares of the errors between
the predictions y(x,,w) for each data point x,, and the corresponding
real-valued targets t,.

Loss (error) function: sum-of-squared
error function:

10? ® eData
| = curve fit |

N

X W—t

N | —

n=1

Solve:  ming,, F(w)

Source: Wikipedia
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Linear Least Squares

In matrix notation, we can write t = (t1,%2,....,tn)".

1 I11 T12 e T1d

1 =z T ... I9
X — 21 22 d

I N1 N2 TNd

10? ® eData
| = curve fit |

Intercept is included in design matrix to
write things in compact form.

E(w) =

N
ZX W—t

(Xw — ) (Xw —t).

DN | — [\DI»—l

Source: Wikipedia

Solve:  ming, F(w)
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Linear Least Squares

If xTx is nonsingular, then the unique solution is given by:

optjmal vector of
weights target values

10t o eData /
| = curve fit | /

w* = (XTX)"1XTt

\

the design matrix has one
Input vector per row

X
Source: Wikipedia

e At an arbitrary input Xo, the prediction is y(xqo, w) = x; w*.

e The entire model is characterized by d+1 parameters w".
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Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations:
X = (1,22, :I;N)T, together with corresponding real-valued targets:

t = (t1,t2,...tN)".

* The green plot is the true function sin(27z).
o e The training data was generated by taking

X, spaced uniformly between [0 1].

0f 1 ¢ The target set (blue circles) was obtained

o by first computing the corresponding values
L o | of the sin function, and then adding a small
Gaussian noise.

0 ~ 1
Goal: Fit the data using a polynomial function of the form:
M
y(x,w) = wo + wix + wox? + ... + wy M = ij:cj.
§=0
Note: the polynomial function is a nonlinear function of x, but it is a linear

function of the coefficients w | Still a linear model! 0



Example: Polynomial Curve Fitting

* As for the least squares example: we can minimize the sum of the
squares of the errors between the predictions y(z,,, w) for each data
point x,, and the corresponding target values t,..

4

( Ptn Loss function: sum-of-squared
? error function:

e Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w”.

e The model is characterized by M+1 parameters w".
e How do we choose M? | Model Selection.



Some Fits to the Data

0 1 0 , 1

For the black point
(which wasn’t in the
training data) your
prediction is here!

For M=9, we have fitted the training data perfectly! \



Overfitting

e Consider a separate test set containing 100 new data points generated
using the same procedure that was used to generate the training data.

—©— Training
—6— Test 1 M=9 11}

e For M=9, the training error is zero | The polynomial contains 10
parameters w, and so can be fitted exactly to the 10 data points.

e However, the test error has become very large. Why?

33



Overfitting

M=0 M=1 M=3 M =29
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37 Lr M =9
w3 -25.43 -5321.83 t
w3 17.37 48568.31
wy -231639.30 ot
wy 640042.26
we -1061800.52
w3 1042400.18 1t
wg -557682.99
wg 125201.43 .

e As M increases, the magnitude of coefficients gets larger.

e For M=9, the coefficients have become finely tuned to the data.

e Between data points, the function exhibits large oscillations.
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Varying the Size of the Data

9th order polynomial (M=9)

e For a given model complexity, the overfitting problem becomes less
severe as the size of the dataset increases.

 However, the number of parameters is not necessarily the most
appropriate measure of the model complexity!
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Generalization

e The goal is to achieve good generalization by making accurate predictions
for new test data that is not known during learning.
Generalization = do well on test data

e Choosing the values of parameters that minimize the loss function on
the training data may not be the best option.
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OF

Generalization

e The goal is to achieve good generalization by making accurate predictions
for new test data that is not known during learning.

e Choosing the values of parameters that minimize the loss function on
the training data may not be the best option.

e We would like to model the true regularities in the data and ignore the

noise in the data:

— It is hard to know which regularities are real and which are accidental
due to the particular training examples we happen to pick.

M

9

0

e Intuition: We expect the model to generalize
if it explains the data well given the complexity
of the model is low.

e A model can fit the data perfectly. But this is
not very informative.
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A Simple Way to Penalize Complexity

One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

penalized error target value regularization

function parameter
\ a \ )\/
=~ 2
E(w) = 5 3 {y(wn, w) —ta}” + 5w
n=1

2
where ||w|| = wl'w = w] + w3 + ... + w3, called the regularization term. Note

that we do not penalize the bias term wy,.



A Simple Way to Penalize Complexity

A

N
W)= 5 3 {uenw) ) 4 5w
(- ~— J‘\//
f(w) 2 r(w)

Simple game: minimize,, f(w)+ = - r(w)

,

2

W is 1 dimensional and takes on values from the set: w € {0, 1,2, 3}

f(0) =4
f(1)=3
f(2) =2
f3)=1

\

A
2

r Ty

1

(r(0)=0 )

r(l) =1

minimizer
w =3

w =3

I
=~ NN~ O

w € {0,1,2,3}

> > > >

w =0
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A Simple Way to Penalize Complexity

One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

penalized error target value regularization

function \ \ / parameter
1 50 A
=3 Z {y(Tn, W) —tn}” + §HWH2

where ||WH = w!w = w] + w3 + ... + wy,; called the regularization term. Note

that we do not penalize the bias term wy,.

e The idea is to “shrink” estimated parameters
towards zero (or towards the mean of some other
weights).

e Shrinking to zero: penalize coefficients based on
their size. But doesn’t provide sparsity!

e For a penalty function which is the sum of the

" squares of the parameters, this is known as

a “weight decay”, or “ridge regression”. 40



Regularization

A=0 A=1523e -8 A=1

1 ' ' ' i InNA=-00 InA=-18 InA=0
Training w 0.35 0.35 0.13

Test w} 232.37 4.74 -0.05

w} -5321.83 0.77  -0.06

" w} 48568.31 -31.97  -0.05
Z 05} 1w | -231639.30 -3.89  -0.03
B / wi | 640042.26 55.28 -0.02
/ wg | -1061800.52 4132 -0.01

wi | 1042400.18 -45.95  -0.00

ol wh | -557682.99 -91.53 0.00
- T30 - o S0 ws | 125201.43 72.68 0.01

Graph of the root-mean-squared training and test errors vs. InA, for
the M=9 polynomial.

How to choose the regularization parameter \?
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Validation

If the data is plentiful, we can divide the dataset into three subsets:

* Training Data: used to fitting/learning the parameters of the model.

* Validation Data: not used for learning but for selecting the model,
choosing the amount of regularization that works best (i.e. M or any
other hyperparameter tuning).

e Test Data: used to get performance of the final model.

Rule of thumb: split 50% training, 25% validation, 25% test

validation
set

training set

test set

* Forarange of A (say A ={0.1,0.5,1,1.5,2})
* For each ), train model on training data and compute its error on
validation data set

* Choose )\ that has the smallest error.
e Test the final performance of your model on test data.

Your model should never see test data!!



Validation

training set Va“g:tt'on test set
trainw/ A=01 ——> er=73

train w/ A =05 —

train w/ )\ = 1. >

err=1.1 |

err =10.5

testerr=1.2
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Cross Validation

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance.

 Forarange of A (sayA =4{0.1,0.5,1,1.5,2} )

S=4 fold cross-validation * Foreach),

e The data is partitioned into S groups.

KL, Then S-1 of the groups are used for training

run o the model, which is evaluated on the
remaining group that serves as validation.

run 3 Repeat procedure for all S possible choices of

un 4 the held-out group.

e Errors from the S runs are averaged, which is

\/\/ the CV error corresponding to that \.

Training set  Validation set e Pick A with smallest CV error.

eTest the final performance of your model on
test data.



The Rules of Probability

For discrete random variables X and Y Joint distribution
/f
Sum rule p(X)=> p(X,Y)
Y

Product Rule  »(X,Y) =p(Y|X)p(X)

\

\

Conditional distribution
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Bayes’ Rule

e From the product rule,

p(Y[X)P(X) = p(X|Y)P(Y)

p(XY)P(Y)

Bayes’ rule: p(Y[X) =

P(X)

e Remember the sum rule:
p(X)=> p(X)Y)
Y

e We will revisit Bayes’ Rule later in class.



Illustrative Example

e Distribution over two variables: X takes on 9 possible values, and Y
takes on 2 possible values.

p(Y)

p(X) p(X[Y =1)
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Probability Density

e Cumulative distribution function is defined as:
P(z) =P(X < 2)
The probability density is:
P'(z) = p(2)
P(z) :/ p(x)dz

e The sum and product rules
take similar forms:

p(r) = / p(x,y)dy

p(z,y) = py|z)p(x)
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Probability Density

e The probability density must
satisfy the following two conditions
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Expectations

e The average value of some function f(x) under a probability distribution
(density) p(x) is called the expectation of f(x):

=) p@)f(z) E[f]= / p(x)f(z)dzx

e |f we are given a finite number N of points drawn from the probability
distribution (density), then the expectation can be approximated as:

1 N

e Conditional Expectation with respect to the conditional distribution:

E:[fly] = Zp (x]y) f



Variances and Covariances

e The variance of f(x) is defined as:

var(f] = E |(f(2) - Elf @)))*] = E[f(2)°] - Elf ()]

which measures how much variability there is in f(x) around its mean
value E[f(x)].

e Note that if f(x) = x, then
var[z] = E[z?] — E[z]?



Variances and Covariances

e For two random variables x and y, the covariance is defined as:
coviz,y] = Kz, [{z —Elz|}{y —Elyl}]
= Egylzy] — Elz]Ely]

which measures the extent to which x and y vary together. If x and y are
independent, then their covariance vanishes.

e For two vectors of random variables x and y, the covariance is a matrix:

covix,y] = Exy [{x-— Ex]Hy" — E[yT]H
— Ex,y[xyT] o E[X]E[yT]



The Gaussian Distribution

e For the case of single real-valued variable x, the Gaussian distribution is
defined as:

1 1
Nl o?) = o e { — 55— 102

N (z|p, 02 .
i) which is governed by two parameters:

- 1t (mean)

- o2 (variance)

B = 1/(72 is called the precision.

3 z

e Next class, we will look at various distributions as well as at multivariate
extension of the Gaussian distribution.



The Gaussian Distribution

e For the case of single real-valued variable x, the Gaussian distribution is
defined as:

1 1
Nl o?) = o e { — 55— 102

N(z|p,0?)

e The Gaussian distribution satisfies:

2% N (z|p, 0?) >0

/OO N (z|u,0%) doz =1

— OO

which satisfies the two requirements
for a valid probability density



Mean and Variance

e Expected value of x takes the following form:

o0

Elz] :/ N (z|p,0%) xdx = p

— 0

Because the parameter W represents the average value of x under the
distribution, it is referred to as the mean.

e Similarly, the second order moment takes form:

E[z?] = / N (z|p,0%) 2° dz = p* + o

— OO

e |t then follows that the variance of x is given by:

var[z] = E[z?] — E[z]* = 0



Questions?



